KR101920721B1 - 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본 - Google Patents

그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본 Download PDF

Info

Publication number
KR101920721B1
KR101920721B1 KR1020110054152A KR20110054152A KR101920721B1 KR 101920721 B1 KR101920721 B1 KR 101920721B1 KR 1020110054152 A KR1020110054152 A KR 1020110054152A KR 20110054152 A KR20110054152 A KR 20110054152A KR 101920721 B1 KR101920721 B1 KR 101920721B1
Authority
KR
South Korea
Prior art keywords
graphene
substrate
carbon
layer
catalyst
Prior art date
Application number
KR1020110054152A
Other languages
English (en)
Other versions
KR20110133452A (ko
Inventor
신현진
최재영
이영희
한강희
Original Assignee
삼성전자주식회사
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 성균관대학교 산학협력단 filed Critical 삼성전자주식회사
Publication of KR20110133452A publication Critical patent/KR20110133452A/ko
Application granted granted Critical
Publication of KR101920721B1 publication Critical patent/KR101920721B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/06Graphene nanoribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Abstract

그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본이 형성되며, 상기 제조방법은 완화된 조건에서 경제적인 방법으로 형성할 수 있다. 상기 그라펜 나노리본은 투명 전극이나 메모리, 트랜지스터, 센서 등의 다양한 전기소자에 적용될 수 있다.

Description

그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본{Process for preparing graphene nano ribbon and graphene nano ribbon prepared by the same}
그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본에 관한 것으로서, 상기 그라펜 나노리본은 보다 완화된 조건에서 경제적인 방법으로 제조할 수 있다.
일반적으로 그래파이트(graphite)는 탄소 원자가 6각형 모양으로 연결된 판상의 2차원 그라펜 시트(graphene sheet)가 적층되어 있는 구조이다. 최근 그래파이트로부터 한층 또는 수층의 그라펜 시트를 벗겨 내어, 상기 시트의 특성을 조사한 결과 기존의 물질과 다른 매우 유용한 특성이 발견되었다.
상기 그라펜 시트의 경우, 주어진 두께의 그라펜 시트의 결정 방향성에 따라서 전기적 특성이 변화하므로 사용자가 선택 방향으로의 전기적 특성을 발현시킬 수 있으므로 소자를 쉽게 디자인 할 수 있다는 장점이 있다. 이러한 그라펜 시트의 특징은 향후 탄소계 전기 소자 또는 탄소계 전자기 소자 등에 매우 효과적으로 이용될 수 있다.
특히 상기 그라펜의 반도체 성질을 구현하기 위해서는 그라펜의 두께를 나노패턴 형태로 조절하여 밴드갭을 조절할 필요가 있다. 그러나 이와 같은 1㎛ 이하의 두께를 갖는 그라펜 나노패턴을 형성하기 위해서는 고진공하에서 고가의 장비를 필요로 하는 엄격한 공정 조건이 요구되고 있다.
일태양에 따른 기술적 과제는 보다 완화된 조건하에 경제적인 방법으로 그라펜 나노리본을 제조하는 방법을 제공하는 것이다.
다른 일태양에 따른 기술적 과제는 상기 제조방법에 의해 얻어진 그라펜 나노리본을 제공하는 것이다.
또 다른 일태양에 따른 기술적 과제는 상기 그라펜 나노리본을 채용한 투명전극 또는 전기소자를 제공하는 것이다.
일태양에 따르면,
기판의 적어도 일면 상에 시트 형상의 그라펜을 형성하는 단계;
상기 그라펜 상에 나노패턴을 갖는 플라즈마 마스크를 형성하는 단계; 및
상기 플라즈마 마스크가 형성된 적층체를 플라즈마 처리하여 그라펜에 나노패턴을 형성하는 단계를 포함하는 그라펜 나노리본의 제조방법을 제공한다.
일구현예에 따르면, 상기 나노패턴을 갖는 플라즈마 마스크를 형성하는 공정은,
상기 그라펜 상에 비정질 카본을 적층하는 단계; 및
상기 비정질 카본 상에 광을 조사하여 비정질 카본에 나노패턴을 형성하는 단계;를 포함할 수 있다.
일구현예에 따르면, 상기 플라즈마 마스크는 그라펜에 나노패턴이 형성된 후 제거될 수 있으며, 예를 들어 상기 열처리에 의해 상기 플라즈마 마스크를 제거할 수 있다.
일구현예에 따르면, 상기 그라펜은 1층 내지 10층의 두께를 가질 수 있다.
일구현예에 따르면, 상기 그라펜은 1층 또는 2층의 두께를 가질 수 있다.
일구현예에 따르면, 상기 광조사는 레이져 광조사를 사용할 수 있다.
일구현예에 따르면, 상기 플라즈마는 그라펜 두께에 따라 적절한 강도를 조절할 수 있다.
일구현예에 따르면, 상기 열처리는 기상 열처리로서, O2, H2, CH4, C2H4, C2H2 등을 단독으로, 또는 2종 이상을 조합한 조건에서 약 400 내지 약 1,000℃에서 약 10분 내지 약 5시간 동안 수행할 수 있다.
일구현예에 따르면, 상기 기판으로서는 Si 기판, 글래스 기판, GaN 기판, 실리카 기판 등의 무기질 기판; Ni, Co, Fe, Pt, Pd, Au, Al, Cr, Cu, Mn, Mo, Rh, Ir, Ta, Ti, W, U, V 및 Zr 기판 중 어느 하나로 이루어지는 금속 기판을 예로 들 수 있다.
일구현예에 따르면, 상기 그라펜은 1cm2 이상의 면적을 가질 수 있다.
일구현예에 따르면, 상기 그라펜은 단위 면적 1000㎛2당 10개 이하의 주름을 가질 수 있다.
일구현예에 따르면, 상기 그라펜은 단위 면적 1mm2당 99% 이상의 범위로 존재할 수 있다.
일태양에 따르면,
상기 제조방법에 의해 얻어진 그라펜 나노리본을 제공한다.
일태양에 따르면, 상기 그라펜 나노리본은 투명전극이나 메모리소자, 트랜지스터, 센서 등의 다양한 전기소자에 활용할 수 있다.
상기 그라펜 나노리본의 제조방법은 고진공이나 고가의 장비가 요구되지 않으며, 보다 완화된 조건에서 경제적인 방법으로 그라펜 나노리본을 제조할 수 있으며, 이와 같은 그라펜 나노리본은 투명전극이나 전기소자와 같은 다양한 분야에 적용될 수 있다.
도 1은 일구현예에 따른 그라펜 나노리본의 제조공정을 나타내는 개략도이다.
도 2는 일구현예에 따른 그라펜 나노리본을 구비하는 태양전지의 모식도를 나타낸다.
도 3은 일구현예에 따른 그라펜 나노리본을 구비하는 연료전지의 분해사시도를 나타낸다.
도 4는 도 3의 연료전지를 구성하는 막-전극 접합체(MEA)의 단면 모식도이다.
도 5는 일구현예에 따른 그라펜 나노리본을 구비하는 전계 효과형 트랜지스터의 모식도를 나타낸다.
도 6은 실시예 1에서 얻어진 나노패턴이 형성된 비정질탄소층을 나타낸다.
도 7은 실시예 1에서 얻어진 나노패턴이 형성된 그라펜 나노리본을 나타낸다.
일태양에 따르면, 그라펜 나노리본의 제조방법이 제공되며, 상기 제조방법은 나노패턴이 형성된 플라즈마 마스크를 그라펜 상에 형성한 후, 여기에 플라즈마 처리를 하여 그라펜 상에 나노패턴을 형성함으로써 그라펜 나노리본을 형성하게 된다.
상기와 같은 그라펜 나노리본의 제조방법은 종래의 e-빔 리쏘그래피 방법에 따른 고진공, 고가의 특정 레지스트 조성물, 기판의 규격제한이 요구됨으로 인해 경제성이 저하된 것에 반하여, 일반 대기하에서도 공정이 가능하며 고가의 레지스트 조성물이 아닌 비정질 카본 등으로 이루어진 플라즈마 마스크를 사용하여 경제적으로 제조하는 것이 가능해진다.
본 명세서에서 사용되는 "그라펜"이라는 용어는 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성한 것으로서, 상기 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 5원환 및/또는 7원환을 더 포함하는 것도 가능하다. 그 결과 상기 그라펜은 서로 공유결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 상기 그라펜은 단일층으로 이루어질 수 있으나, 이들이 여러개 서로 적층되어 복수층을 형성하는 것도 가능하다.
상기 그라펜 나노리본 제조공정에 따른 그라펜에서 그라펜의 층수는 1층 내지 10층, 예를 들어 1층 또는 2층이 가능하나, 이들에 제한되는 것은 아니며, 플라즈마로 패턴 형성이 가능한 두께라면 제한 없이 사용가능하다.
상기 그라펜 나노리본 형성 공정은, 우선 시트 형상의 그라펜을 기판의 적어도 일면 상에 형성하게 되는 바, 상기 그라펜은 기상법, 액상법, 폴리머법 등의 방법으로 제조할 수 있으며, 제조된 그라펜을 소정의 기판 상에 전사하거나, 또는 기판 상에 형성된 그라펜을 그대로 사용하는 것도 가능하다.
이와 같이 그라펜이 기판 상에 형성된 후, 여기에 나노패턴을 갖는 플라즈마 마스크를 형성하게 된다. 이와 같은 플라즈마 마스크는 이어지는 광조사 처리 과정에서 그라펜에 나노패턴을 형성하게 된다. 즉 플라즈마 마스크 상에서 열린 부분으로 플라즈마가 통과하여 그라펜을 연소에 의해 제거하게 되며, 닫힌 부분에서는 플라즈마가 통과하지 못하여 그라펜이 그대로 잔류함으로써 그라펜 상에 나노패턴을 형성하게 된다.
상기 플라즈마 마스크의 소재로서는 비정질 카본, 등을 사용할 수 있으며, 나노패턴의 형성이 가능한 물질이라면 제한 없이 사용할 수 있다.
상기 나노패턴이 형성되지 않은 물질을 그라펜 상에 형성한 후, 광조사 등의 방법으로 나노패턴을 형성하는 것도 가능하다.
상기 플라즈마 마스크로서 비정질 카본을 소재로 하는 경우를 예로 들면 다음과 같다.
그라펜을 기판의 적어도 일면 상에 전사하거나 형성한 후, 비정질 탄소의 공급원으로서 CH4, C2H4, C2H4 등을 탄소공급원으로 이용하여 상기 그라펜 상에 약10nm 내지 약 1㎛의 두께로 증착할 수 있다. 이때의 증착 방법으로서는 화학기상증착법(CVD), 스퍼터링 등의 방법을 사용할 수 있다.
상기와 같이 비정질탄소를 그라펜의 일면 상에 증착하여 형성한 후, 광조사를 통해 상기 비정질탄소에 1㎛ 이하, 예를 들어 1 내지 1,000nm의 폭을 갖는 나노패턴을 형성하여 플라즈마 마스크를 형성하게 되는 바, 이때의 광조사는 레이져 광조사를 선택할 수 있다. 상기 레이져 광조사시 레이져광의 강도는 형성된 비정질탄소의 두께에 따라 조절할 수 있으며, 비정질탄소층이 두꺼우면 레이져광의 강도가 증가하고, 얇으면 레이져광의 강도가 감소하게 된다. 상기 레이져광으로서는 파장이, 예를 들어 약 532nm의 것을 사용할 수 있으며, 그 세기는 약 0.01 내지 약 1W의 것을 사용할 수 있다.
상기와 같이 그라펜 상에 나노패턴을 갖는 플라즈마 마스크를 형성한 후, 플라즈마 처리를 통해 상기 그라펜 상에 나노패턴을 형성하게 된다. 상기 플라즈마는 상기 플라즈마 마스크의 열린부분에 존재하는 그라펜을 연소시키게 되며, 플라즈마가 통과하지 못하는 부분에서는 그라펜이 그대로 잔류함으로써 나노 패턴 형성이 가능해진다.
이와 같이 그라펜 상에 나노패턴을 형성한 후, 상기 플라즈마 마스크를 제거하게 되는 바, 이는 별도의 열처리 챔버 상에 상기 나노패턴이 형성된 적층체를 위치시킨 후, 소정의 열처리를 통해 상기 플라즈마 마스크, 예를 들어 비정질 탄소 등을 제거할 수 있게 된다. 이때의 열처리는 기상 열처리 등을 사용할 수 있으며, 예를 들어 O2, H2, CH4, C2H4, C2H2 등을 단독으로, 또는 2종 이상을 조합한 조건에서 약 400 내지 약1000℃에서 약 10분 내지 약 5시간 동안 수행할 수 있다.
상기와 같이 그라펜 상에 존재하는 플라즈마 마스크를 제거함으로써 나노패턴이 형성된 그라펜 나노리본을 형성할 수 있게 된다.
상기 공정에서 그라펜이 형성되는 기판으로서는 실리콘(Si) 기판, 글래스 기판, GaN 기판, 실리카 기판 등의 무기질 기판; Ni, Co, Fe, Pt, Pd, Au, Al, Cr, Cu, Mn, Mo, Rh, Ir, Ta, Ti, W, U, V 및 Zr의 금속 기판; 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 또는 폴리에틸렌나프탈레이트와 같은 투명한 고분자 물질; 중 어느 하나 이상으로 이루어지는 기판을 예로 들 수 있다. 이와 같은 기판은 그 두께에 제한은 없으며 소정 용도에 따라 적절한 두께를 선택하여 사용할 수 있다.
상기 플라즈마 마스크로서 비정질 카본을 사용한 경우의 상기 그라펜 나노리본의 형성과정을 도시하면 도 1과 같다.
도 1에서, 기판으로서 실리콘상에 실리카(SiO2) 웨이퍼를 적층한 후, 여기에 별도의 공정으로 제조한 그라펜을 전사한다. 그라펜을 기판 상에 전사한 후, PECVD 코팅의 방법으로 비정질 탄소를 증착한다. 이어서 소정 강도의 레이져 광을 소정 패턴 형상으로 상기 비정질 탄소에 조사하게 되면, 레이져 광이 조사된 비정질 탄소 부분은 연소에 의해 제거되어 상기 비정질 탄소에 나노패턴이 형성된다. 나노패턴이 형성된 비정질 탄소에 플라즈마 처리를 수행하면, 플라즈마가 통과한 영역에서는 그라펜이 연소되고, 플라즈마가 통과하지 못하는 영역에서는 그라펜이 그대로 잔류하게 되어 그라펜에 나노패턴을 형성하게 된다. 다음으로, 상기 나노패턴이 형성된 그라펜 적층체를 별도의 열처리 챔버에 위치시키고, 기상 열처리를 수행하면 상기 비정질 탄소는 제거되고, 기판 상에서 나노패턴이 형성된 그라펜이 잔류하게 되어 그라펜 나노리본을 형성하게 된다.
상기 그라펜 나노리본 제조공정에서 사용되는 그라펜은 특별히 한정되는 것은 아니지만, 가급적 흠결이 적은 것을 사용할 수 있다. 예를 들어 단위 면적 1000㎛2당 10개 이하, 예를 들어 5개 이하 또는 3개 이하의 주름을 가질 수 있다. 또한 상기 그라펜은 1mm2 이상의 면적을 가질 수 있으며, 예를 들어 1mm2 내지 100m2의 면적 또는 1mm2 내지 25m2의 면적을 가질 수 있다. 아울러 상기 그라펜은 단위면적 1mm2당 99% 이상의 영역에서 그라펜이 존재하며, 예를 들어 단위면적 1mm2당 99% 내지 99.999%의 영역에서 존재할 수 있다. 이와 같은 존재범위에서 상기 그라펜은 균질하게 존재할 수 있으며, 그에 따라 균질한 전기적 특성 등을 나타낼 수 있다.
상술한 그라펜 나노리본 제조공정에서 사용되는 그라펜은 예를 들어 이하와 같은 방법으로 제조할 수 있으나 이에 한정되는 것은 아니다.
- 그라펜 형성 공정 (기상법)
상기 그래파이트화 촉매 금속막 상에 그라펜을 형성하는 방법으로서는 기상법 또는 액상법을 사용할 수 있으며, 종래 알려져 있는 방법이라면 제한 없이 사용할 수 있다.
예를 들어 상기 기상법으로서는, 그래파이트화 촉매를 막의 형태로 형성하고, 여기에 기상의 탄소 공급원을 투입하면서 열처리하여 그라펜을 생성시킨 후, 이를 냉각하에 성장시킴으로써 형성된다. 즉, 그래파이트화 촉매가 막의 형태로 존재하는 챔버 내에 기상의 탄소 공급원을 소정 압력으로 공급하면서 소정 온도에서 소정 시간 동안 열처리하면, 상기 기상의 탄소 공급원에 존재하는 탄소성분들이 서로 결합하여 6각형의 판상 구조를 형성하면서 그라펜이 생성되며, 이를 소정 냉각 속도로 냉각하면 균일한 배열 상태를 갖는 그라펜 시트를 상기 그래파이트화 촉매 금속막 상에서 얻을 수 있게 된다.
상기 그라펜 시트 형성 과정에서 탄소 공급원으로서는 탄소를 공급할 수 있으며, 300℃ 이상의 온도에서 기상으로 존재할 수 있는 물질이라면 특별한 제한 없이 사용할 수 있다. 상기 기상 탄소 공급원으로서는 카본을 함유하는 화합물이면 가능하며, 탄소수 6개 이하의 화합물이 바람직하며, 더욱 바람직하게는 탄소수 4개 이하의 화합물이고, 더욱 바람직하게는 탄소수 2개 이하의 화합물이다. 그러한 예로서는 일산화탄소, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있다.
이와 같은 탄소 공급원은 그래파이트화 촉매가 존재하는 챔버 내에 일정한 압력으로 투입되는 것이 바람직하며, 상기 챔버 내에서는 상기 탄소공급원만 존재하거나, 또는 헬륨, 아르곤 등과 같은 불활성 가스와 함께 존재하는 것도 가능하다.
또한, 상기 기상 탄소 공급원과 더불어 수소를 사용할 수 있다. 수소는 금속 촉매의 표면을 깨끗하게 유지하여 기상 반응을 제어하기 위하여 사용될 수 있으며, 용기 전체 부피의 5 내지 40 부피% 사용가능하고, 바람직하게는 10 내지 30 부피%이며, 더욱 바람직하게는 15 내지 25 부피% 이다.
막 형태의 그래파이트화 촉매가 존재하는 챔버 내에 상기 기상의 탄소 공급원을 투입한 후, 이를 소정 온도에서 열처리하면 그라펜이 상기 그래파이트화 촉매의 표면 상에 형성된다. 상기 열처리 온도는 그라펜의 생성에 있어서 중요한 요소로 작용하며, 예를 들어 300 내지 2000℃, 또는 500 내지 1500℃를 사용할 수 있다.
상기와 같은 열처리는 소정 온도에서 일정한 시간 동안 유지함으로써 그라펜의 생성 정도를 조절하는 것이 가능하다. 즉 열처리 공정을 장시간 유지할 경우 생성되는 그라펜이 많아지므로, 결과적인 그라펜의 두께를 크게 할 수 있으며, 열처리 공정이 그보다 짧아지면 결과적인 그라펜의 두께가 작아지는 효과를 낳게 된다. 따라서 목적하는 그라펜의 두께를 얻기 위해서는 상기 탄소 공급원의 종류 및 공급 압력, 그래파이트화 촉매의 종류, 챔버의 크기 외에, 상기 열처리 공정의 유지시간이 중요한 요소로서 작용할 수 있다. 이와 같은 열처리 공정의 유지 시간은 예를 들어 0.001 내지 1000시간 동안 유지할 수 있다.
상기 열처리를 위한 열원으로서는 유도가열(inductin heating), 복사열, 레이져, IR, 마이크로파, 플라즈마, UV, 표면 플라즈몬 가열 등을 제한 없이 사용할 수 있다. 이와 같은 열원은 상기 챔버에 부착되어 챔버 내부를 소정 온도까지 승온시키는 역할을 수행한다.
상기와 같은 열처리 이후에, 상기 열처리 결과물은 소정의 냉각 공정을 거치게 된다. 이와 같은 냉각 공정은 생성된 그라펜이 균일하게 성장하여 일정하게 배열될 수 있도록 하기 위한 공정으로서, 급격한 냉각은 생성되는 그라펜 시트의 균열 등을 야기할 수 있으므로, 가급적 일정 속도로 서서히 냉각시키는 것이 바람직하며, 예를 들어 분당 0.1 내지 10℃의 속도로 냉각시키는 것을 예로 들 수 있고, 자연 냉각 등의 방법을 사용하는 것도 가능하다. 상기 자연 냉각은 열처리에 사용된 열원을 단순히 제거한 것으로서, 이와 같은 열원의 제거만으로도 충분한 냉각 속도를 얻는 것이 가능해진다.
상술한 바와 같은 열처리 및 냉각 과정은 1사이클 과정으로 수행할 수 있으나, 이들을 수차례 반복하여 층수가 높으면서 치밀한 구조의 그라펜을 생성하는 것도 가능하다.
상기 그래파이트화 촉매는 판상 구조체인 금속막의 형태로 사용되며, 상기 탄소공급원과 접촉함으로써 탄소공급원으로부터 제공된 탄소성분들이 서로 결합하여 6각형의 판상 구조를 형성하도록 도와주는 역할을 수행한다. 그 예로서는 그래파이트 합성, 탄화반응 유도, 또는카본나노튜브 제조에 사용되는 촉매를 사용할 수 있다. 예를 들어 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V 및 Zr로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있다.
상기 기상법에 의해 얻어지는 그라펜은 기상의 순수한 재료 및 고온의 열처리를 통해 얻어지므로 흠결이 거의 없는 균질한 구조를 갖는다.
- 그라펜 형성 공정 (폴리머법)
상기 그라펜을 형성하는 다른 방법으로서는 폴리머법을 예로 들 수 있다. 상기 그래파이트화 촉매 금속막에 액상 탄소계 물질을 접촉시키는 공정으로서 탄소계 물질인 탄소 함유 폴리머를 상기 기판 상에 도포하는 공정을 사용할 수 있다.
상기 탄소계 물질로서 탄소 함유 폴리머를 사용하는 경우, 일반적인 탄소 함유 폴리머라면 어느 것이나 제한 없이 사용할 수 있으나, 자기 조립 폴리머를 사용하는 경우 폴리머가 촉매 표면에서 수직 방향으로 규칙적으로 배열되어 보다 치밀한 구조의 그라펜을 형성하는 것이 가능해진다.
이와 같은 자기조립막을 형성하는 자기 조립 폴리머로서는 양친매성 폴리머, 액정 폴리머 및 전도성 폴리머로 이루어진 군으로부터 선택된 하나 이상의 자기 조립 폴리머를 사용할 수 있다.
상기 양친매성 폴리머는 구조체 내에 친수성 및 소수성 작용기를 모두 가지므로 수용액 중에서 일정한 배향으로 배열되는 것이 가능하며, 예를 들어 랭뮤어-브로젯 배열, 디핑 배열, 스핀 배열 등이 가능하다. 상기 양친매성 폴리머는 아미노기, 히드록시기, 카르복실기, 설페이트기, 설포네이트기, 포스페이트기 또는 그의 염으로 이루어진 군으로부터 선택된 하나 이상을 포함하는 친수성 작용기; 및 할로겐원자, C1-C30 알킬기, C1-C30 할로겐화 알킬기, C2-C30 알케닐기, C2-C30 할로겐화 알케닐기, C2-C30 알키닐기, C2-C30 할로겐환 알키닐기, C1-C30 알콕시기, C1-C30 할로겐화 알콕시기, C1-C30 헤테로알킬기, C1-C30 할로겐화 헤테로알킬기, C6-C30 아릴기, C6-C30 할로겐화 아릴기, C7-C30 아릴알킬기 및 C7-C30 할로겐화 아릴알킬기로 이루어진 군으로부터 선택된 하나 이상을 포함하는 소수성 작용기를 포함한다. 이와 같은 양친매성 폴리머로서는 카프르산, 라우르산, 팔미트산, 스테아르산, 미리스톨레산(myristoleic acid), 팔미톨레산(palmitoleic acid), 올레산, 스테아리돈산, 리놀렌산, 카프릴 아민, 라우릴 아민, 스테아릴 아민, 올레일 아민 등을 예로 들 수 있다.
상기 액정 폴리머는 액상 중에서 일정 배향으로 배열되는 성질을 가지고 있으며, 상기 전도성 폴리머는 용매에 용해된 후 막을 만들어서 용매가 휘발되면 자기 자신들끼리 배열하여 특정한 결정 구조를 이루게 되는 특성을 갖고 있으므로, 디핑 배열, 스핀 코팅 배열 등이 가능하다. 이와 같은 폴리머의 예로서는 폴리아세틸렌계, 폴리피롤계, 폴리티오펜계, 폴리아닐린계, 폴리플로오렌계, 폴리(3-헥실티오펜), 폴리나프탈렌계, 폴리(p-페닐렌 설파이드), 및 폴리(p-페닐렌 비닐렌)계 등을 예로 들 수 있다.
상기 탄소 함유 폴리머는 구조 내에 탄소-탄소 이중결합 또는 탄소-탄소 삼중결합 등의 중합 기능성 작용기를 적어도 하나 가질 수 있다. 이들은 막을 형성한 후 자외선 조사 등의 중합 공정에 의해 폴리머 간의 중합을 유도할 수 있다. 이러한 공정으로 얻어진 탄소계 물질은 분자량이 높기 때문에 이후 열처리시 탄소의 휘발을 억제하는 것이 가능해진다.
이와 같은 탄소 함유 폴리머의 중합 공정은 상기 그래파이트화 촉매 상에 도포하기 이전 또는 이후에 수행할 수 있다. 즉, 그래파이트화 촉매 상에 도포하기 전에 탄소 함유 폴리머 간의 중합을 유도한 경우에는, 별도의 중합공정으로 얻어진 중합 막을 상기 그래파이트화 촉매 상에 전사하여 탄소계 물질층을 형성할 수 있다. 이와 같은 중합 공정 및 전사 공정은 수회 반복하여 목적하는 그라펜 시트의 두께를 제어하는 것이 또한 가능하다.
상기 탄소 함유 폴리머는 다양한 도포법으로 상기 그래파이트화 촉매 상에 배열될 수 있는 바, 예를 들어 랭뮤어-브로젯(Langmuir-Blodgett), 딥코팅, 스핀코팅, 진공증착 등의 방법으로 상기 촉매 표면에 배열할 수 있다. 특히 이와 같은 도포 방법에 따라 상기 탄소 함유 폴리머는 기판 상에 전체적으로 도포되거나, 또는 상기 그래파이트화 촉매 상에 선택적으로 도포될 수 있다.
한편, 기판 상에 배열되는 탄소 함유 폴리머의 분자량, 막의 두께 또는 자기조립막의 층수는 목적하는 그라펜의 층 수에 따라 조절될 수 있다. 즉, 분자량이 큰 탄소 함유 폴리머를 사용할수록 탄소 함량이 높아 생성되는 그라펜의 층 수가 많아지게 된다. 탄소 함유 폴리머의 분자량을 통해서 그라펜 층의 두께를 조절하는 것도 가능하다.
또한 자기 조립 유기물 중 양친매성 유기물은 분자 내에 친수성 부위와 소수성 부위를 모두 포함하고 있으며, 유기물, 예를 들어 폴리머의 친수성 부위는 친수성인 그래파이트화 촉매에 결합하여 우선적으로 촉매층 상에 고르게 배열하게 되며, 상기 양친매성 유기물의 소수성 부위는 기판의 반대쪽으로 노출되어, 촉매층과 결합되지 않은 다른 양친매성 유기물, 예를 들어 양친매성 폴리머의 친수성 부위와 결합한다. 상기 양친매성 유기물의 함량이 충분한 경우, 이와 같은 친수성-소수성 결합에 의해 상기 양친매성 유기물은 상기 촉매층 상에 순차적으로 적층된다. 이들이 순차적으로 결합하여 복수개의 층을 구성한 후, 열처리에 의해 그라펜 층을 구성하게 된다. 따라서 적절한 양친매성 유기물을 선택하고, 그 함량을 조절하여 형성되는 유기물 막의 두께를 제어함에 따라 그라펜의 층 수를 조절하는 것이 가능해지므로 용도에 맞춰 적절한 두께의 그라펜을 제조할 수 있다는 장점을 갖게 된다.
- 그라펜 형성 공정 (액상법)
상기 그라펜을 형성하는 다른 방법으로서는 액상법을 예로 들 수 있다. 이와 같은 액상법은 그래파이트화 촉매 금속막에 액상 탄소계 물질을 접촉시킨 후 열처리하여 그라펜을 형성할 수 있다.
상기 그래파이트화 촉매 금속막에 액상 탄소계 물질을 접촉시키는 공정으로서는 탄소계 물질인 액상 탄소계 물질 내에 상기 기판을 침지한 후 예비열처리하는 공정을 사용할 수 있다.
이와 같은 액상 탄소계 물질로서는 유기 용매를 예를 들 수 있으며, 탄소를 포함하며, 상기 그래파이트화 촉매에 열분해될 수 있는 것이라면 어느 것이나 제한 없이 사용할 수 있으며, 끓는점이 60 내지 400℃인 극성 또는 비극성 유기용매를 사용할 수 있다. 이와 같은 유기용매로서는 알코올계 유기용매, 에테르계 유기 용매, 케톤계 유기용매, 에스테르계 유기용매, 유기산 유기용매 등을 사용할 수 있으며, 그래파이트화 금속 촉매와의 흡착이 용이하고, 반응성이 좋으며, 환원력이 우수하다는 측면에서 알코올계 및 에테르계 유기용매를 사용하는 것이 보다 바람직하다. 이와 같은 알코올계 유기용매로서는 1가 알코올류 및 다가 알코올류 등을 단독으로 또는 혼합하여 사용할 수 있으며, 상기 1가 알코올로서는 프로판올, 펜타올, 헥사놀, 헵타놀, 옥타놀 등을 사용할 수 있으며, 다가 알코올로서는 프로필렌 글리콜, 디에틸렌 글리콜, 디프로필렌 글리콜, 트리에틸렌 글리콜, 트리프로필렌 글리콜, 옥틸렌 글리콜, 테트라에틸렌 글리콜, 네오펜틸 글리콜, 1,2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 2,3-부탄디올, 디메틸-2,2-부탄디올-1,2 및 디메틸-2,2-부탄디올-1,3 등을 사용할 수 있다. 상기 1가 알코올류 및 다가 알코올류는 히드록시기 외에 에테르기를 포함할 수 있다.
상기 액상 탄소계 물질을 사용하는 경우는, 예비 열처리 과정에 의해 침탄 과정을 진행할 수 있으며, 이와 같은 예비 열처리 과정에 의해 액상 탄소계 물질은 그래파이트화 촉매에 의해 열분해된다. 액상 탄소계 물질이 상기 그래파이트화 촉매에 의해 열분해되는 과정은 문헌(Nature, vol 418, page 964) 등에 이미 알려져 있으며, 예를 들어 다가 알코올과 같은 유기 용매의 열분해 결과물은 알칸, H2, CO2, H2O 등이며, 분해 결과물 중 탄소 성분이 촉매 내부에 침탄된다. 상기 문헌은 인용에 의해 본 명세서에 통합된다.
이와 같은 열분해를 위한 상기 예비 열처리 과정은 100 내지 400℃의 온도에서 10분 내지 24시간 동안 수행할 수 있다.
한편, 상기와 같은 침탄 공정에서 침탄의 정도를 조절함으로써 촉매 내의 탄소 함량을 조절할 수 있으며, 그에 따라 이어지는 그라펜 생성 공정에서 형성되는 그라펜 층의 두께를 조절하는 것이 가능해진다. 예를 들어 상기 액상 탄소계 물질의 분해반응 과정에서, 분해가 용이한 물질을 사용할 경우 분해된 탄소의 함량이 많아지고, 그 결과 다량의 탄소가 상기 촉매 내에 침탄되는 것이 가능해진다. 또한 상기 열처리 온도 및 시간을 조절하여 침탄 공정을 제어하면, 촉매 내에 침탄되는 탄소의 함량을 조절하는 것이 가능하며, 그에 따라 그라펜 생성 정도를 조절하는 것이 가능해진다. 따라서 그라펜 층의 두께를 쉽게 제어하는 것이 가능해진다.
상술한 바와 같이 탄소 함유 폴리머 또는 액상 탄소계 물질을 그래파이트화 촉매 금속막과 접촉시킨 후, 열처리를 수행하여 상기 촉매 금속막 상에 그라펜을 형성하게 된다. 이와 같은 열처리 공정은 상술한 기상법과 동일한 방법으로 수행할 수 있다.
이와 같은 형성된 그라펜 나노리본은 목적하는 용도에 따라 패턴의 폭(width)을 다르게 함으로써 밴드갭을 조절하여 반도체 성질을 구현하는 것이 가능해진다. 그에 따라 FED, LCD, OLED 등의 다양한 표시소자; 슈퍼 커패시터, 연료전지 또는 태양전지와 같은 다양한 전지, FET, 메모리 소자 등의 다양한 나노소자, 수소 저장체, 광섬유, 센서와 같은 전기소자;에 효과적으로 이용할 수 있다는 장점이 있다.
상기 그라펜 나노리본을 채용한 태양전지의 예로서는 도 2에 도시한 바와 같은 염료감응 태양전지가 있으며, 상기 염료감응 태양전지는 반도체 전극(10), 전해질층(13) 및 대향전극(14)을 포함하며, 상기 반도체 전극은 전도성 투명기판(11) 및 광흡수층(12)으로 이루어지며, 전도성 유리기판 상에 나노입자 산화물(12a)의 콜로이드 용액을 코팅하여 고온의 전기로에서 가열한 후 염료(12b)를 흡착시켜 완성된다.
상기 전도성 투명기판(11)으로서 상기 그라펜 나노리본을 구비한 투명 전극을 사용하게 된다. 이와 같은 투명 전극은 상술한 바와 같은 제조공정에 따라 그라펜 나노리본을 투명 기판상에 형성하여 얻어지며, 상기 투명 기판으로서는 예를 들어 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 또는 폴리에틸렌나프탈레이트와 같은 투명한 고분자 물질 또는 글래스 기판을 사용할 수 있다. 이는 대향전극(14)에도 그대로 적용된다.
상기 염료 감응 태양전지를 구부림이 가능한 구조, 예를 들어 원통형 구조를 만들기 위해서는 상기 투명 전극 외에도, 대향전극 등이 모두 함께 연질로 구성되는 것이 바람직하다.
상기 태양전지에 사용되는 나노입자 산화물(12a)은 반도체 미립자로서 광 여기하에서 전도대 전자가 캐리어로 되어 애노드 전류를 제공하는 n형 반도체인 것이 바람직하다. 구체적으로 예시하면 TiO2, SnO2, ZnO2, WO3, Nb2O5, Al2O3, MgO, TiSrO3 등을 들 수 있으며, 특히 바람직하게는 아나타제형의 TiO2이다. 아울러 상기 금속 산화물은 이들에 한정되는 것은 아니며, 이들을 단독 또는 두 가지 이상 혼합하여 사용할 수 있다. 이와 같은 반도체 미립자는 표면에 흡착된 염료가 보다 많은 빛을 흡수하도록 하기 위하여 표면적을 크게 하는 것이 바람직하며, 이를 위해 반도체 미립자의 입경이 20nm 이하 정도로 하는 것이 바람직하다.
또한 상기 염료(12b)는 태양 전지 혹은 광전지 분야에서 일반적으로 사용되는 것이라면 아무 제한 없이 사용할 수 있으나, 루테늄 착물이 바람직하다. 상기 루테늄 착물로서는 RuL2(SCN)2, RuL2(H2O)2, RuL3, RuL2 등을 사용할 수 있다(식중 L은 2,2'-비피리딜-4,4'-디카르복실레이트 등을 나타낸다). 그렇지만 이와 같은 염료(12b)로서는 전하 분리기능을 갖고 감응 작용을 나타내는 것이면 특별히 한정되는 것은 아니며, 루테늄 착물 이외에도 예를 들어 로다민 B, 로즈벤갈, 에오신, 에리스로신 등의 크산틴계 색소, 퀴노시아닌, 크립토시아닌 등의 시아닌계 색소, 페노사프라닌, 카브리블루, 티오신, 메틸렌블루 등의 염기성 염료, 클로로필, 아연 포르피린, 마그네슘 포르피린 등의 포르피린계 화합물, 기타 아조 색소, 프탈로시아닌 화합물, Ru 트리스비피리딜 등의 착화합물, 안트라퀴논계 색소, 다환 퀴논계 색소 등을 들 수 있으며, 이들을 단독 또는 두가지 이상 혼합하여 사용할 수 있다.
상기 나노입자 산화물(12a) 및 염료(12b)를 포함하는 광흡수층(12)의 두께는 15미크론 이하, 바람직하게는 1 내지 15미크론이 좋다. 왜냐하면 이 광흡수층은 그 구조상의 이유에서 직렬저항이 크고, 직렬저항의 증가는 변환효율의 저하를 초래하는 바, 막 두께를 15미크론 이하로 함으로써 그 기능을 유지하면서 직렬저항을 낮게 유지하여 변환효율의 저하를 방지할 수 있게 된다.
상기 염료감응 태양전지에 사용되는 전해질층(13)은 액체 전해질, 이온성 액체 전해질, 이온성 겔 전해질, 고분자 전해질 및 이들간에 복합체를 예로 들 수 있다. 대표적으로는 전해액으로 이루어지고, 상기 광흡수층(12)을 포함하거나, 또는 전해액이 광흡수층에 침윤되도록 형성된다. 전해액으로서는 예를 들면 요오드의 아세토나이트릴 용액 등을 사용할 수 있으나 이에 한정되는 것은 아니며, 홀 전도 기능이 있는 것이라면 어느 것이나 제한 없이 사용할 수 있다.
더불어 상기 염료감응 태양전지는 촉매층을 더 포함할 수 있으며, 이와 같은 촉매층은 염료감응 태양전지의 산화환원 반응을 촉진하기 위한 것으로서 백금, 탄소, 그래파이트, 카본 나노튜브, 카본블랙, p-형 반도체 및 이들간의 복합체 등을 사용할 수 있으며, 이들은 상기 전해질층과 상대 전극 사이에 위치하게 된다. 이와 같은 촉매층은 미세구조로 표면적을 증가시킨 것이 바람직하며, 예를 들어 백금이면 백금흑 상태로, 카본이면 다공질 상태로 되어 있는 것이 바람직하다. 백금흑 상태는 백금의 양극 산화법, 염화백금산 처리 등에 의해, 또한 다공질 상태의 카본은, 카본 미립자의 소결이나 유기폴리머의 소성 등의 방법에 의해 형성할 수 있다.
상술한 바와 같은 염료 감응 태양전지는 전도성이 우수하고, 가요성인 그라펜 나노리본 함유 투명 전극을 채용함으로써 보다 우수한 광효율 및 가공성을 갖게 된다.
다른 구현예에 따르면, 상기 그라펜 나노리본을 포함하는 연료전지가 제공된다.
연료전지는 전해질막을 사이에 두고 애노드와 캐소드를 구비하고 있다. 애노드에서는 수소 산화 반응(HOR)이 일어나서 수소이온과 전자가 생성되며(H2 → 2H+ + 2e-), 수소이온(H+)은 전해질막을 따라 캐소드로 확산하고 전자는 외부회로를 따라 이동한다. 캐소드에서는 산소 환원 반응(ORR)이 일어나서 물이 생성된다(2H+ + 2e- + 1/2O2 → H2O). 이때 전해질막으로부터 수소이온(H+)을, 외부회로로부터 전자를 공급받는다.
상기 연료전지는 구체적인 예를 들면, 인산형 연료전지(PAFC), 고분자 전해질형 연료전지 PEMFC 또는 직접 메탄올 연료전지(DMFC)로서 구현될 수 있다. 한편, 상술한 연료전지용 전극 촉매는 연료전지의 캐소드에 적용될 수도 있다.
도 3은 연료전지의 일 구현예를 나타내는 분해 사시도이고, 도 4는 도 3의 연료전지를 구성하는 막-전극 접합체(MEA)의 단면 모식도이다.
도 3에 나타내는 연료 전지(100)는 2개의 단위셀(111)이 한 쌍의 홀더(112,112)에 협지되어 개략 구성되어 있다. 단위셀(111)은 막-전극 접합체(110)와, 막-전극 접합체(110)의 두께 방향의 양측에 배치된 바이폴라 플레이트(120,120)로 구성되어 있다. 바이폴라 플레이트(120,120)는 도전성을 가진 금속 또는 카본 등으로 구성되어 있고, 막-전극 접합체(110)에 각각 접합함으로써, 집전체로서 기능함과 동시에, 막-전극 접합체(110)의 촉매층에 대해 산소 및 연료를 공급한다.
한편, 도 3에 나타내는 연료 전지(100)는 단위셀(111)의 수가 2개인데, 단위셀의 수는 2개에 한정되지 않고, 연료 전지에 요구되는 특성에 따라 수십 내지 수백 정도까지 늘릴 수도 있다.
막-전극 접합체(110)는 도 4에 나타내는 바와 같이, 전해질막(200)과, 전해질막(200)의 두께 방향의 양측에 배치되고 촉매층(210,210')과, 촉매층(210,210')에 각각 적층된 제1 기체 확산층(221,221')과, 제1 기체 확산층(221,221')에 각각 적층된 제2 기체 확산층(220,220')으로 구성될 수 있다. 상기 전해질막으로는, 예를 들어, 폴리벤즈이미다졸 전해질막, 폴리벤조옥사진-폴리벤즈이미다졸 공중합체 전해질막, 폴리테트라플루오로에틸렌(PTFE) 다공질막 등을 사용할 수 있다.
촉매층(210,210')은 연료극 및 산소극으로서 기능하는 것으로, 촉매 및 바인더가 포함되어 각각 구성되어 있으며, 상기 촉매의 전기화학적인 표면적을 증가시킬 수 있는 물질이 더 포함될 수 있다. 상기 촉매로는 백금(Pt) 단독 또는 금, 팔라듐, 로듐, 이리듐, 루테늄, 주석, 몰리브데늄, 코발트, 크롬으로 이루어진 군에서 선택된 일종 이상의 금속과 백금의 합금 혹은 혼합물을 사용하거나 또는 상기 촉매 금속이 카본계 담체에 담지된 담지 촉매인 것일 수 있다. 예를 들어, 백금(Pt), 백금코발트(PtCo) 및 백금루테늄(PtRu)으로 이루어진 군으로부터 선택된 하나 이상의 촉매 금속이거나 또는 상기 촉매 금속이 카본계 담체에 담지된 담지 촉매를 사용한다. 상기 바인더로는 폴리(비닐리덴플루오라이드), 폴리테트라플루오로에틸렌, 테트라플루오로에틸렌-헥사플루오로에틸렌 공중합체 및 퍼플루오로에틸렌로 이루어진 군으로부터 선택된 하나 이상을 사용하며, 바인더의 함량은 촉매 1 중량부를 기준으로 하여 0.001 내지 0.5 중량부이다. 만약 바인더의 함량이 상기 범위일 때 전극의 젖음 상태를 효과적으로 개선할 수 있다.
제1 기체 확산층(221,221') 및 제2 기체 확산층(220, 220')은 각각 예를 들면 카본 시트, 카본 페이퍼 등으로 형성될 수 있고, 바이폴라 플레이트(120, 120)를 통해 공급된 산소 및 연료를 촉매층(210,210')의 전면으로 확산시킨다.
상기 일구현예에 따른 그라펜 나노리본은 상기 기체확산층, 바이폴라플레이트 또는 촉매층에 사용될 수 있다. 이 막-전극 접합체(110)를 포함하는 연료전지(100)는 100 내지 300℃의 온도에서 작동하고, 한 쪽 촉매층 측에 바이폴라 플레이트(120)를 통해 연료로서 예를 들어 수소가 공급되고, 다른 쪽 촉매층 측에는 바이폴라 플레이트(120)를 통해 산화제로서 예를 들면 산소가 공급된다. 그리고 한 쪽 촉매층에 있어서 수소가 산화되어 수소이온(H+)이 생기고, 이 수소이온(H+)이 전해질막(200)을 전도하여 다른 쪽 촉매층에 도달하고, 다른 쪽 촉매층에 있어서 수소이온(H+)과 산소가 전기화학적으로 반응하여 물(H2O)을 생성함과 동시에, 전기 에너지를 발생시킨다. 또한, 연료로서 공급되는 수소는 탄화수소 또는 알코올의 개질에 의해 발생된 수소일 수도 있고, 또 산화제로서 공급되는 산소는 공기에 포함되는 상태에서 공급될 수도 있다.
또 다른 구현예에 따르면, 상기 그라펜 나노리본 함유 투명전극이 사용되는 표시소자로서는 전자종이 표시소자, 유기발광 표시소자, 액정 표시소자 등을 예로 들 수 있다.
이들 중 상기 유기발광 표시소자는 형광성 또는 인광성 유기 화합물 박막에 전류를 흘려주면, 전자와 정공이 유기막에서 결합하면서 빛이 발생하는 현상을 이용한 능동 발광형 표시 소자이다. 일반적인 유기 전계 발광 소자는 기판 상부에 애노드가 형성되어 있고, 이 애노드 상부에 정공 수송층, 발광층, 전자 수송층 및 캐소드가 순차적으로 형성되어 있는 구조를 가지고 있다. 전자와 정공의 주입을 보다 용이하게 하기 위하여 전자 주입층 및 정공 주입층을 더 구비하는 것도 가능하며, 필요에 따라 정공차단층, 버퍼층 등을 더 구비할 수 있다. 상기 애노드는 그 특성상 투명하고 전도성이 우수한 소재가 바람직한 바, 상기 구현예에 따른 그라펜 나노리본 함유 투명 전극을 유용하게 사용할 수 있다.
상기 정공수송층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 바람직하게는 폴리트리페닐아민(polytriphenylamine)을 사용할 수 있으나, 이에 한정되지 않는다.
상기 전자수송층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 바람직하게는 폴리옥사디아졸(polyoxadiazole)을 사용할 수 있으나, 이에 한정되지 않는다.
상기 발광층에 사용되는 발광물질로서는 일반적으로 사용되는 형광 혹은 인광 발광물질을 제한없이 사용할 수 있으나, 1종 이상의 고분자 호스트, 고분자와 저분자의 혼합물 호스트, 저분자 호스트, 및 비발광 고분자 매트릭스로 이루어진 군으로부터 선택된 하나 이상을 더 포함할 수 있다. 여기에서 고분자 호스트, 저분자 호스트, 비발광 고분자 매트릭스로는 유기 전계 발광 소자용 발광층 형성시 통상적으로 사용되는 것이라면 모두 다 사용가능하며, 고분자 호스트의 예로는 폴리(비닐카르바졸), 폴리플루오렌, 폴리(p-페닐렌 비닐렌), 폴리티오펜 등이 있고, 저분자 호스트의 예로는 CBP(4,4'-N,N'-디카르바졸-비페닐), 4,4'-비스[9-(3,6-비페닐카바졸릴)]-1-1,1'-비페닐{4,4'-비스[9-(3,6-비페닐카바졸릴)]-1-1,1'-비페닐}, 9,10-비스[(2',7'-t-부틸)-9',9''-스피로비플루오레닐(spirobifluorenyl)안트라센, 테트라플루오렌 등이 있고, 비발광 고분자 매트릭스로는 폴리메틸메타크릴레이트, 폴리스티렌 등이 있지만, 이에 한정하는 것은 아니다. 상술한 발광층은 진공증착법, 스퍼터링법, 프린팅법, 코팅법, 잉크젯방법 등에 의해 형성될 수 있다.
상기 일구현예에 따른 유기 전계발광 소자의 제작은 특별한 장치나 방법을 필요로 하지 않으며, 통상의 발광 재료를 이용한 유기 전계발광 소자의 제작방법에 따라 제작될 수 있다.
또 다른 구현예에 따르면, 상기 그라펜 나노리본은 다양한 전기소자에 사용될 수 있으며, 예를 들어 센서, 바이폴라 정션 트랜지스터, 전계 효과형 트랜지스터, 이종 접합 바이폴러 트랜지스터, 싱글 일렉트론 트랜지스터, 발광다이오드, 유기전계 발광다이오드 등을 예시할 수 있다. 이와 같은 소자들에서 상기 그라펜 나노리본은 채널층, 전극, 또는 전극과 채널층 사이의 버퍼층 등에 사용될 수 있다.
이들 중 전계 효과형 트랜지스터(FET)의 예를 도 5에 도시한다. 도 5에서 기판(311) 상에 실리카 기판(312)이 존재하며, 그 위에 상기 그라펜 나노리본(313)이 채널층으로서 놓여진다. 좌우에는 소스전극(314) 및 드레인 전극(317)이 존재하며, 절연체층(316)을 사이에 두고 게이트 전극(315)이 존재하게 된다. 여기서 게이트 전극에 전압을 인가함으로써 소스-드레인 전극 사이에 흐르는 전류를 제어한다. 즉, 상기 반도체층이 채널 영역을 이루고 있고, 게이트 전극에 인가되는 전압으로 소스 전극과 드레인 전극의 사이에 흐르는 전류가 제어됨으로써 온/오프 동작한다.
여기서, 소스 전극과 드레인 전극의 간격은 상기 박막 트랜지스터를 이용하는 용도에 따라 결정되고, 예를 들어 O.1㎛ 내지 1㎜, 예를 들어 1㎛ 내지 100㎛, 또는 5㎛ 내지 100㎛이다.
일구현예에 따른 트랜지스터에 있어서의 절연체층의 재료로는, 전기 절연성을 갖고 박막으로서 형성할 수 있는 것이면 특별히 한정되지 않고, 금속 산화물(규소의 산화물을 포함한다), 금속 질화물(규소의 질화물을 포함한다), 고분자, 유기 저분자 등 실온에서의 전기 저항율이 1OΩ㎝ 이상인 재료를 이용할 수 있으며, 예를 들어 비유전율이 높은 무기 산화물 피막을 사용할 수 있다.
상기 무기 산화물로는 산화 규소, 산화 알루미늄, 산화 탄탈럼, 산화 타이타늄, 산화 주석, 산화 바나듐, 타이타늄산 바륨스트론튬, 지르코늄산 타이타늄산 바륨, 지르코늄산 타이타늄산 납, 타이타늄산 납 란타늄, 타이타늄산 스트론튬, 타이타늄산 바륨, 불화 바륨 마그네슘, 란타늄 산화물, 불소 산화물, 마그네슘 산화물, 비스무트 산화물, 타이타늄산 비스무트, 니오븀 산화물, 타이타늄산 스트론튬 비스무트, 탄탈럼산 스트론튬 비스무트, 오산화 탄탈럼, 탄탈럼산 니오븀산 비스무트, 트라이옥사이드이트륨 및 이들을 조합한 것을 들 수 있고, 산화 규소, 산화 알루미늄, 산화 탄탈럼, 산화 티타늄을 예로 들 수 있다.
또한, 질화 규소(Si3N4, SixNy (x, y〉0)), 질화 알루미늄 등의 무기 질화물도 적합하게 이용할 수 있다.
또한, 절연체층은 알콕시드 금속을 포함하는 전구 물질로 형성될 수도 있고, 이 전구 물질의 용액을, 예컨대 기판에 피복하고, 이것을 열처리를 포함하는 화학 용액 처리를 함으로써 절연체층이 형성된다.
상기 알콕시드 금속에 있어서의 금속으로는, 예컨대 전이 금속, 란타노이드, 또는 주족 원소로부터 선택되고, 구체적으로는, 바륨(Ba), 스트론튬(Sr), 타이타늄(Ti), 비스무트(Bi), 탄탈럼(Ta), 지르코늄(Zr), 철(Fe),니켈(Ni), 망간(Mn), 납(Pb), 란타늄(La), 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 니오븀(Nb), 탈륨(Tl), 수은(Hg), 구리(Cu), 코발트(Co), 로듐(Rh), 스칸듐(Sc) 및 이트륨(Y) 등을 들 수 있다. 또한, 상기 알콕시드 금속에 있어서의 알콕시드로는, 예컨대 메탄올, 에탄올, 프로판올, 아이소프로판올, 뷰탄올, 아이소뷰탄올 등을 포함하는 알코올류, 메톡시 에탄올, 에톡시 에탄올, 프로폭시 에탄올, 뷰톡시 에탄올, 펜톡시 에탄올, 헵톡시 에탄올, 메톡시 프로판올, 에톡시 프로판올, 프로폭시 프로판올, 뷰톡시 프로판올, 펜톡시 프로판올, 헵톡시 프로판올을 포함하는 알콕시 알코올류 등으로부터 유도되는 것을 들 수 있다.
일구현예에 따른 절연체층을 상기한 바와 같은 재료로 구성하면, 절연체층 중에 분극이 발생하기 용이해지고, 트랜지스터 동작의 임계 전압을 저감할 수 있다. 또한, 상기 재료 중에서도 Si3N4, SixNy, SiONx (x, y〉0) 등의 질화 규소로 절연체층을 형성하면, 공핍층이 한층 더 발생하기 용이해지며, 트랜지스터 동작의 임계 전압을 더욱 저감시킬 수 있다.
유기 화합물을 이용한 절연체층으로는 폴리이미드, 폴리아마이드, 폴리에스터, 폴리아크릴레이트, 광라디칼 중합계, 광 양이온 중합계의 광경화성 수지, 아크릴로나이트릴 성분을 함유하는 공중합체, 폴리바이닐페놀, 폴리바이닐알코올, 노볼락 수지 및 사이아노에틸풀루란 등을 이용할 수도 있다.
그 밖에, 왁스, 폴리에틸렌, 폴리클로로피렌, 폴리에틸렌테레프탈레이트, 폴리옥시메틸렌, 폴리바이닐클로라이드, 폴리불화바이닐리덴, 폴리메틸메타크릴레이트, 폴리설폰, 폴리카보네이트, 폴리이미드사이아노에틸 풀룰란, 폴리(바이닐페놀)(PVP), 폴리(메틸메타크릴레이트)(PMMA), 폴리카보네이트(PC), 폴리스타이렌(PS), 폴리올레핀, 폴리아크릴아마이드, 폴리(아크릴산), 노볼락 수지, 레졸 수지, 폴리이미드, 폴리자일렌, 에폭시 수지에 더하여, 풀룰란 등의 높은 유전율을 갖는 고분자 재료를 사용하는 것도 가능하다.
상기 절연체층은 상술한 바와 같은 무기 또는 유기 화합물 재료를 복수 이용한 혼합층일 수도 있고, 이들 적층 구조체일 수도 있다. 이 경우, 필요에 따라 유전율이 높은 재료와 발수성을 갖는 재료를 혼합하거나 적층함으로써 디바이스의 성능을 제어할 수도 있다.
상기 절연체층의 형성 방법으로는 진공 증착법, 분자선 에피택셜 성장법, 이온 클러스터빔법, 저에너지 이온빔법, 이온 플레이팅법, CVD법, 스퍼터링법, 대기압 플라즈마법 등의 건식 프로세스나, 스프레이 코팅법, 스핀 코팅법, 블레이드 코팅법, 딥 코팅법, 캐스팅법, 롤 코팅법, 바 코팅법, 다이 코팅법 등의 도포에 의한 방법, 인쇄나 잉크 젯 등의 패터닝에 의한 방법 등의 습식 프로세스를 들 수 있고, 재료에 따라 사용할 수 있다. 습식 프로세스는 무기 산화물의 미립자를 임의의 유기 용제 또는 물에 필요에 따라 계면 활성제 등의 분산 보조제를 이용하여 분산한 액을 도포, 건조하는 방법이나 산화물 전구체, 예컨대 알콕시드체의 용액을 도포, 건조하는 이른바 졸겔법이 사용된다.
상기 반도체층인 그라펜층과 절연체층 사이에는 금속 원자층 및/또는 금속 이온층이 더 형성될 수 있다. 상기 금속 원자층은 Zn, Al, Ga, Zr, Ni, Co, Pd 또는 이들의 혼합물 등을 포함할 수 있다. 상기 금속 이온층은 Zn, Al, Ga, Zr, Ni, Co, Pd 또는 이들의 혼합물의 이온을 포함할 수 있으며, 이들은 금속염의 형태로 존재할 수 있다. 상기 금속염의 대응 음이온으로서는 할로겐, (COOH)-1, NO3 2-, SO4 2-, CO3 -2 등을 예시할 수 있다. 이들 금속원자층 또는 금속이온층은 금속 원자 또는 금속 이온이 1층 내지 3층으로 적층된 두께를 가질 수 있다.
상기 금속 원자층 또는 금속 이온층은 당업계에 알려져 있는 방법을 통해 형성할 수 있으며, 예를 들어 진공 증착법, 분자선 에피택셜 성장법, 이온 클러스터빔법, 저에너지 이온빔법, 이온 플레이팅법, CVD법, 스퍼터링법, 대기압 플라즈마법 등의 건식 프로세스나, 스프레이 코팅법, 스핀 코팅법, 블레이드 코팅법, 딥 코팅법, 캐스팅법, 롤 코팅법, 바 코팅법, 다이 코팅법 등의 도포에 의한 방법, 인쇄나 잉크 젯 등의 패터닝에 의한 방법 등의 습식 프로세스를 들 수 있고, 재료에 따라 사용할 수 있으며, 특별히 한정되는 것은 아니다.
상기 트랜지스터, 예를 들어 박막 트랜지스터에 있어서의 기판은, 박막 트랜지스터의 구조를 지지하는 역할을 하는 것이고, 재료로는 유리 외에 금속 산화물이나 질화물 등의 무기 화합물, 플라스틱 필름(PET, PES, PC)이나 금속 기판 또는 이들 복합체나 적층체 등도 이용하는 것이 가능하다. 또한, 기판 이외의 구성 요소에 의해 박막 트랜지스터의 구조를 충분히 지지할 수 있는 경우에는, 기판을 사용하지 않는 것도 가능하다. 또한, 기판의 재료로는 실리콘(Si) 웨이퍼가 사용되는 것이 많다. 이 경우, Si 자체를 게이트 전극겸 기판으로 이용할 수 있다. 또한, Si의 표면을 산화하고, SiO2를 형성하여 절연층으로서 활용하는 것도 가능하다. 이 경우, 기판겸 게이트 전극의 Si 기판에 리드선 접속용 전극으로서, Au 등의 금속층을 성막하는 것도 있다.
일구현예에 따른 트랜지스터에 있어서의 게이트 전극, 소스 전극 및 드레인 전극의 재료로는 도전성 재료이면 특별히 한정되지 않고, 백금, 금, 은, 니켈, 크롬, 구리, 철, 주석, 안티몬납, 탄탈륨, 인듐, 팔라듐, 텔루륨, 레늄, 이리듐, 알루미늄, 루테늄, 게르마늄, 몰리브데늄, 텅스텐, 산화주석ㅇ안티몬, 산화인듐ㅇ주석(ITO), 불소 도핑 산화 아연, 아연, 탄소, 흑연, 유리상 탄소, 은 페이스트 및 카본 페이스트, 리튬, 베릴륨, 나트륨, 마그네슘, 칼륨, 칼슘, 스칸듐, 타이타늄, 망간, 지르코늄, 갈륨, 니오븀, 나트륨, 나트륨-칼륨 합금, 마그네슘, 리튬, 알루미늄, 마그네슘/구리 혼합물, 마그네슘/은 혼합물, 마그네슘/알루미늄 혼합물, 마그네슘/인듐 혼합물, 알루미늄/산화 알루미늄 혼합물, 리튬/알루미늄 혼합물 등이 이용되고, 이들을 이용하는 경우는 스퍼터법 또는 진공 증착법에 의해 성막하여 전극을 형성할 수 있다.
일구현예에 따른 트랜지스터에 있어서, 소스 전극, 드레인 전극으로는, 상기 도전성 재료를 포함하는 용액, 페이스트, 잉크, 분산액 등의 유동성 전극 재료를 이용하여 형성한 것도 이용 가능하다. 금속 미립자를 함유하는 분산물로는, 예컨대 공지된 도전성 페이스트 등을 이용할 수도 있지만, 통상 입자 직경이 0.5㎚ 내지 50㎚, 1㎚ 내지 10㎚의 금속 미립자를 함유하는 분산물이면 바람직하다. 이 금속 미립자의 재료로는, 예컨대 백금, 금, 은, 니켈, 크로뮴, 구리, 철, 주석, 안티몬납, 탄탈럼, 인듐, 팔라듐, 텔루륨, 레늄, 이리듐, 알루미늄, 루테늄, 저마늄, 몰리브데넘, 텅스텐, 아연 등을 이용할 수 있다.
이들의 금속 미립자를, 주로 유기 재료로 이루어지는 분산 안정제를 이용하여, 물이나 임의의 유기 용제인 분산매 중에 분산한 분산물을 이용하여 전극을 형성하는 것이 바람직하다. 이러한 금속 미립자의 분산물의 제조 방법으로는, 가스중 증발법, 스퍼터링법, 금속 증기 합성법 등의 물리적 생성법이나, 콜로이드법, 공침법 등의 액상으로 금속 이온을 환원하여 금속 미립자를 생성하는 화학적 생성법을 예로 들 수 있다.
이들 금속 미립자 분산물을 이용하여 상기 전극을 성형하고, 용매를 건조시킨 후, 필요에 따라 100℃ 내지 300℃, 예를 들어 150℃ 내지 200℃의 범위에서 형상대로 가열함으로써 금속 미립자를 열융착시켜 목적하는 형상을 갖는 전극 패턴을 형성할 수 있다.
또한, 게이트 전극, 소스 전극 및 드레인 전극의 재료로서, 도핑 등으로 도전율을 향상시킨 공지된 도전성 폴리머를 이용할 수 있고, 예컨대 도전성 폴리아닐린, 도전성 폴리피롤, 도전성 폴리싸이오펜(폴리에틸렌다이옥시싸이오펜과 폴리스타이렌설폰산의 착체 등), 폴리에틸렌다이옥시싸이오펜(PEDOT)과 폴리스타이렌설폰산의 착체 등도 적합하게 사용된다. 이들 재료에 의해 소스 전극과 드레인 전극의 반도체층과의 접촉 저항을 저감할 수 있다.
소스 전극 및 드레인 전극을 형성하는 재료는, 상술한 예 중에서도 반도체층과의 접촉면에서 전기 저항이 적은 것이 바람직하다. 이 때의 전기 저항은, 즉 전류 제어 디바이스를 제작했을 때 전계 효과 이동도와 대응하고 있으며, 큰 이동도를 얻기 위해서는 가능한 한 저항이 작은 것이 필요하다.
상기 전극의 형성 방법으로는, 예컨대 증착, 전자빔 증착, 스퍼터링, 대기압 플라즈마법, 이온 플레이팅, 화학 기상 증착, 전착, 무전해 도금, 스핀 코팅, 인쇄 또는 잉크 젯 등의 수단에 의해 형성된다. 또한, 필요에 따라 패터닝하는 방법으로는, 상기 방법을 이용하여 형성한 도전성 박막을, 공지된 포토리소그래프법이나 리프트 오프법을 이용하여 전극 형성하는 방법, 알루미늄이나 구리 등의 금속박상에 열 전사, 잉크 젯 등에 의해, 레지스트를 형성하여 에칭하는 방법이 있다. 또한, 도전성 폴리머의 용액 또는 분산액, 금속 미립자를 함유하는 분산액 등을 직접 잉크젯법에 의해 패터닝할 수도 있고, 도공막으로부터 리소그래피나 레이저 연마 등에 의해 형성할 수도 있다. 또한 도전성 폴리머나 금속 미립자를 함유하는 도전성 잉크, 도전성 페이스트 등을 볼록판, 오목판, 평판, 스크린 인쇄 등의 인쇄법으로 패터닝하는 방법도 이용할 수 있다.
이렇게 하여 형성된 전극의 막 두께는 전류가 통하면 특별히 제한은 없지만, 예를 들어 0.2㎚ 내지 10㎛ 또는 4㎚ 내지 300㎚의 범위이다. 이 범위내이면, 막 두께가 얇음에 따라 저항이 높아져 전압 강하를 발생시키지 않는다.
또한, 일구현예에 따른 트랜지스터에서는, 예컨대 주입 효율을 향상시킬 목적으로, 반도체층과 소스 전극 및 드레인 전극의 사이에 버퍼층을 설치할 수도 있다. 버퍼층으로는 n형 박막트랜지스터에 대해서는 유기 EL 소자의 음극에 사용되는 LiF, Li2O, CsF, NaCO3, KCl, MgF2, CaCO3 등의 알칼리 금속, 알칼리 토류 금속 이온 결합을 갖는 화합물을 사용할 수 있다. 또한, Alq(트리스(8-퀴놀리놀)알루미늄 착체) 등 유기 EL 소자로 전자 주입층, 전자 수송층으로서 사용되는 화합물을 삽입할 수도 있다.
버퍼층은 캐리어의 주입 장벽을 내림으로써 임계값 전압을 내리고, 트랜지스터를 저전압 구동시키는 효과가 있다. 상기 버퍼층은 전극과 반도체층의 사이에 얇게 존재하면 무방하고, 그 두께는 0.1㎚ 내지 30㎚, 또는 0.3㎚ 내지 20㎚이다.
또한 상기 박막 트랜지스터에 있어서, 발광소자를 상기 박막 트랜지스터와 전기적으로 연결한 후, 소스-드레인 사이를 흐르는 전류를 이용하여 상기 발광소자를 제어할 수 있으며, 이를 이용하여 평판표시장치를 구성할 수 있다.
이하에서 실시예를 들어 본 발명을 보다 상세하게 설명하나 본 발명이 이에 한정되는 것은 아니다.
실시예 1
크기가 1cm X 1cm이고 두께가 300nm인 실리카(SiO2) 웨이퍼를 형성한다. 상기 실리카 웨이퍼 상에 크기가 1cm X 1cm인 2층의 그라펜을 전사한다. 이어서 상기 그라펜 상에 CVD 코팅의 방법으로 비정질 탄소를 20nm의 두께로 형성한다. 상기 비정질 탄소층에 532nm 레이져 장비를 사용하여 100 mW 세기로 레이져 조사시 패턴의 간격을 조절하여 폭이 40 내지 100nm인 나노패턴을 형성한다.
다음으로, 상기 적층체를 기상 열처리 챔버에 위치시킨 후, H2 : CH4 = 100 : 50 sccm 대기하에서 700℃에서 60분간 열처리하여 그라펜 상에 존재하는 비정질탄소를 제거하여 목적하는 그라펜 나노리본을 제조한다.
도 6은 비정질탄소를 그라펜 상에 형성한 후 레이져 광조사에 의해 얻어진 나노패턴을 나타내는 광학 화상을 나타내며, 도 7은 플라즈마 및 열처리 후의 나노패턴이 형성된 그라펜 나노리본이 형성된 광학 화상을 나타낸다.

Claims (15)

  1. 기판의 적어도 일면 상에 시트 형상의 그라펜을 형성하는 단계;
    상기 그라펜 상에 나노패턴을 갖는 플라즈마 마스크를 형성하는 단계; 및
    상기 플라즈마 마스크가 형성된 적층체를 플라즈마 처리하여 그라펜에 나노패턴을 형성하는 단계;를 포함하고,
    상기 나노패턴을 갖는 플라즈마 마스크를 형성하는 공정이,
    상기 그라펜 상에 비정질 카본을 적층하는 단계; 및
    상기 비정질 카본 상에 광을 조사하여 비정질 카본에 나노패턴을 형성하는 단계;를 포함하는 것인 그라펜 나노리본의 제조방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 플라즈마 마스크가 그라펜에 나노패턴이 형성된 후 제거된 후 제거되는 것인 그라펜 나노리본의 제조방법.
  4. 제3항에 있어서,
    상기 플라즈마 마스크 제거 공정이 400 내지 1,200℃에서 O2, H2, CH4, C2H4, 및 C2H2를 단독 또는 2종 이상 사용하여 10분 내지 5시간 동안 열처리에 의해 수행되는 것인 그라펜 나노리본의 제조방법.
  5. 제1항에 있어서,
    상기 그라펜이 1층 내지 10층의 두께를 갖는 것인 그라펜 나노리본의 제조방법.
  6. 제1항에 있어서,
    상기 그라펜이 1층 또는 2층의 두께를 갖는 것인 그라펜 나노리본의 제조방법.
  7. 제1항에 있어서,
    상기 광조사가 레이져 광조사인 것인 그라펜 나노리본의 제조방법.
  8. 삭제
  9. 제1항에 있어서,
    상기 기판이 Si 기판, 글래스 기판, GaN 기판, 실리카 기판 등의 무기질 기판; Ni, Co, Fe, Pt, Pd, Au, Al, Cr, Cu, Mn, Mo, Rh, Ir, Ta, Ti, W, U, V 및 Zr 중 선택된 금속 기판; 중 어느 하나 이상으로 이루어지는 것인 그라펜 나노리본의 제조방법.
  10. 제1항에 있어서,
    상기 그라펜이 1cm2 이상의 면적을 갖는 것인 그라펜 나노리본의 제조방법.
  11. 제1항에 있어서,
    상기 그라펜이 단위 면적 1000㎛2당 10개 이하의 주름을 갖는 그라펜 나노리본의 제조방법.
  12. 제1항에 있어서,
    상기 그라펜이 단위 면적 1mm2당 99% 이상의 범위로 존재하는 것인 그라펜 나노리본의 제조방법.
  13. 삭제
  14. 삭제
  15. 삭제
KR1020110054152A 2010-06-04 2011-06-03 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본 KR101920721B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100053031 2010-06-04
KR1020100053031 2010-06-04

Publications (2)

Publication Number Publication Date
KR20110133452A KR20110133452A (ko) 2011-12-12
KR101920721B1 true KR101920721B1 (ko) 2018-11-22

Family

ID=45064694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110054152A KR101920721B1 (ko) 2010-06-04 2011-06-03 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본

Country Status (2)

Country Link
US (1) US8968587B2 (ko)
KR (1) KR101920721B1 (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0909818D0 (en) * 2009-06-08 2009-07-22 Isis Innovation Device
US9202945B2 (en) * 2011-12-23 2015-12-01 Nokia Technologies Oy Graphene-based MIM diode and associated methods
CN103359719B (zh) * 2012-04-05 2015-01-21 清华大学 石墨烯纳米窄带的制备方法
KR101498082B1 (ko) * 2012-05-15 2015-03-11 엘지전자 주식회사 광을 이용한 그래핀의 제조 방법
US9174413B2 (en) 2012-06-14 2015-11-03 International Business Machines Corporation Graphene based structures and methods for shielding electromagnetic radiation
US9413075B2 (en) * 2012-06-14 2016-08-09 Globalfoundries Inc. Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies
US9515288B2 (en) 2012-06-19 2016-12-06 Koninklijke Philips N.V. Organic electroluminescent device
KR101556360B1 (ko) 2012-08-16 2015-09-30 삼성전자주식회사 그래핀 물성 복귀 방법 및 장치
KR101984695B1 (ko) 2012-08-29 2019-09-03 삼성전자주식회사 그래핀 소자 및 그 제조방법
KR101993767B1 (ko) 2012-10-17 2019-07-01 한국전자통신연구원 그래핀 나노리본 센서
CN103151246B (zh) * 2013-01-31 2015-09-02 西安电子科技大学 基于Cu膜退火和氯气反应的侧栅石墨烯晶体管制备方法
US20140255791A1 (en) * 2013-03-07 2014-09-11 Nano And Advanced Materials Institute Limited Transparent or Translucent Lithium Ion Battery
US9099305B2 (en) 2013-04-30 2015-08-04 Stmicroelectronics S.R.L. Method for coupling a graphene layer and a substrate and device comprising the graphene/substrate structure obtained
GB2521677A (en) * 2013-12-31 2015-07-01 Intelligent Energy Ltd Fuel cell stack assembly and method of assembly
GB2521678A (en) * 2013-12-31 2015-07-01 Intelligent Energy Ltd Fuel cell flow plate
WO2015180163A1 (en) * 2014-05-30 2015-12-03 East China University Of Science And Technology Methods and systems for converting carbon dioxide into graphene
KR101831017B1 (ko) 2014-06-11 2018-03-29 광주과학기술원 그래핀 나노리본의 제조방법 및 이에 의해 제조된 나노리본을 포함하는 센서
KR102360025B1 (ko) * 2014-10-16 2022-02-08 삼성전자주식회사 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자
CN104549385A (zh) * 2014-12-31 2015-04-29 武汉理工大学 一种氧化石墨烯复合FePO4非均相可见光Fenton催化剂及其制备方法
CN106033153B (zh) * 2015-03-17 2019-02-01 复旦大学 基于石墨烯的可调光致透明波导结构
CN104934583B (zh) * 2015-04-17 2020-12-08 重庆大学 一种单质硅-石墨烯纳米带复合材料的制备方法
KR102417998B1 (ko) 2015-07-07 2022-07-06 삼성전자주식회사 그래핀 나노패턴의 형성방법과 그래핀 함유 소자 및 그 제조방법
EP3359639A4 (en) * 2015-10-07 2018-11-14 The Regents of the University of California Graphene-based multi-modal sensors
CN105424768B (zh) * 2015-11-30 2019-01-29 中国电子科技集团公司第四十八研究所 氢气传感器芯体用介质材料、氢气传感器芯体及其制备方法和应用
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
CN105700201B (zh) * 2016-01-30 2018-07-13 中南林业科技大学 一种基于石墨烯的光滤波器件
WO2017143027A1 (en) * 2016-02-16 2017-08-24 Ohio University Roll-to-roll graplhene production, transfer of graphene, and substrate recovery
CN105668503B (zh) * 2016-03-10 2017-05-31 北京大学 一种由金属辅助的二维材料纳米带的制备方法
CN107123581B (zh) * 2017-04-07 2018-11-20 中山大学 一种基于二维层状材料的器件及制备方法
KR102018577B1 (ko) 2017-12-29 2019-09-05 재단법인 파동에너지 극한제어 연구단 나노물질 리본 패터닝 방법 및 이에 의해 제조되는 나노물질 리본 패턴
US11117801B2 (en) 2018-04-24 2021-09-14 Imam Abdulrahman Bin Faisal University Transparent electrode with a composite layer of a graphene layer and nanoparticles
CN109830413B (zh) * 2019-01-11 2021-04-06 西安理工大学 GaN微米棒阵列/石墨烯场发射阴极复合材料制备方法
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CN110665497A (zh) * 2019-09-19 2020-01-10 塞文科技(上海)有限公司 一种石墨烯纳米带负载钯单原子催化剂及其制备方法
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
WO2023283481A1 (en) * 2021-07-09 2023-01-12 University Of Cincinnati Method for making 3d-shaped 3d graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188508B1 (ko) * 1993-03-26 1999-06-01 세끼사와 다까시 비정질탄소막을 사용하는 패턴형성방법과 에칭방법 및 비정질탄소막 형성방법
US20060099750A1 (en) * 2003-06-12 2006-05-11 Deheer Walt A Patterned thin film graphite devices and method for making same
US20070287011A1 (en) 2003-06-12 2007-12-13 Deheer Walt A Incorporation of functionalizing molecules in nanopatterned epitaxial graphene electronics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890176A (en) * 1972-08-18 1975-06-17 Gen Electric Method for removing photoresist from substrate
JP3787680B2 (ja) 2001-03-27 2006-06-21 大阪瓦斯株式会社 グラファイトリボンおよびその製造方法
JP2009234815A (ja) 2008-03-26 2009-10-15 Fujitsu Ltd グラフェンシート系材料の処理方法及び装置
KR20100016928A (ko) 2008-08-05 2010-02-16 서울대학교산학협력단 그래핀 나노 구조 용액 및 그래핀 소자의 제조방법.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188508B1 (ko) * 1993-03-26 1999-06-01 세끼사와 다까시 비정질탄소막을 사용하는 패턴형성방법과 에칭방법 및 비정질탄소막 형성방법
US20060099750A1 (en) * 2003-06-12 2006-05-11 Deheer Walt A Patterned thin film graphite devices and method for making same
US20070287011A1 (en) 2003-06-12 2007-12-13 Deheer Walt A Incorporation of functionalizing molecules in nanopatterned epitaxial graphene electronics

Also Published As

Publication number Publication date
US8968587B2 (en) 2015-03-03
US20110300338A1 (en) 2011-12-08
KR20110133452A (ko) 2011-12-12

Similar Documents

Publication Publication Date Title
KR101920721B1 (ko) 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본
KR101878734B1 (ko) 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터
KR101919423B1 (ko) 그래핀 반도체 및 이를 포함하는 전기소자
KR101993382B1 (ko) 기판상의 그래핀 및 상기 기판상 그래핀의 제조방법
KR101878750B1 (ko) 알칼리 금속 함유 단일층 그라펜 및 이를 포함하는 전기소자
KR101435999B1 (ko) 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
KR101384665B1 (ko) 그라펜 시트를 함유하는 투명 전극, 이를 채용한 표시소자및 태양전지
JP5916761B2 (ja) 金属酸化物薄膜およびナノ材料から誘導される金属複合薄膜の低温製造
KR102059129B1 (ko) 그래핀의 제조 방법 및 이를 포함하는 그래핀 적용 소자
KR20110020443A (ko) 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
US9056424B2 (en) Methods of transferring graphene and manufacturing device using the same
KR101878735B1 (ko) 그래핀의 제조방법
KR101377591B1 (ko) 그라펜 시트, 이를 포함하는 투명 전극, 활성층, 이를 구비한 표시소자, 전자소자, 광전소자, 배터리, 태양전지 및 염료감응 태양전지
KR101984693B1 (ko) 환원 그래핀 옥사이드의 제조 방법
CN107452897A (zh) 有机薄膜太阳能电池制备方法和制备装置
KR101769023B1 (ko) 플렉서블 나노제너레이터 및 이의 제조 방법
KR20120087844A (ko) 그라펜의 제조 방법, 이를 포함하는 투명 전극, 활성층, 이를 구비한 표시소자, 전자소자, 광전소자, 배터리, 태양전지 및 염료감응 태양전지
KR102516209B1 (ko) 초미세 열-광정보 검출용 그래핀 기반 센서, 이의 제조방법, 및 그래핀의 밴드갭 제어방법
KR102258124B1 (ko) 광활성층의 제조방법, 이에 의해 제조된 광활성층을 포함하는 소자
KR20230172353A (ko) 용액상 리간드 교환을 통한 페로브스카이트 양자점 박막의 단일 단계 제조방법 및 이로부터 제조된 페로브스카이트 양자점 박막
KR20130019169A (ko) 플루오르화 그래핀의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right