WO2014118392A1 - Método de generación de hidrógeno mediante reacción con aluminio - Google Patents

Método de generación de hidrógeno mediante reacción con aluminio Download PDF

Info

Publication number
WO2014118392A1
WO2014118392A1 PCT/ES2013/000022 ES2013000022W WO2014118392A1 WO 2014118392 A1 WO2014118392 A1 WO 2014118392A1 ES 2013000022 W ES2013000022 W ES 2013000022W WO 2014118392 A1 WO2014118392 A1 WO 2014118392A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
hydrogen
alcohol
reaction
reactor
Prior art date
Application number
PCT/ES2013/000022
Other languages
English (en)
French (fr)
Inventor
Xavier SALUEÑA BERNA
Rodrigo MARTINEZ MAEZLU
Gregorio Borge Bravo
Josep Maria DAGA MONMANY
Joan MARTINEZ LOPEZ
Original Assignee
Reflectia, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reflectia, S.A. filed Critical Reflectia, S.A.
Priority to CN201380071616.1A priority Critical patent/CN105008270A/zh
Priority to EP13873870.3A priority patent/EP2952473A4/en
Priority to US14/765,062 priority patent/US20150360942A1/en
Priority to PCT/ES2013/000022 priority patent/WO2014118392A1/es
Priority to JP2015555762A priority patent/JP2016509570A/ja
Publication of WO2014118392A1 publication Critical patent/WO2014118392A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention refers to a method of hydrogen generation by reaction with aluminum, which provides, to the function to which it is intended, several advantages and innovative characteristics, which will be further described. ahead and that suppose an improvement of the current state of the art in its field of application.
  • the object of the invention focuses on an innovative method for generating hydrogen whose purpose is to be destined to fuel cells and which presents the particularity of contemplating the use of a solvent such as alcohol in the hydroxide solution, providing effects that favor the reaction of aluminum with water in the production of hydrogen.
  • the field of application of the present invention is part of the sector of the industry dedicated to the production of hydrogen with aluminum for fuel cells or for other industrial uses.
  • reaction is the following: aluminum (solid) reacts with water (liquid) and aluminum hydroxide (solid) and hydrogen (gas) are obtained.
  • the object of the present invention is therefore to develop a method for the generation of hydrogen from the reaction of aluminum with water which avoids the drawbacks described above by using a solvent such as alcohol, it being noted that, at least on the of the applicant, it is unknown the existence of any other invention that presents technical and constitutive characteristics similar to those presented by the method advocated here, as claimed.
  • alcohol in the sodium or potassium hydroxide solution favors the reaction of aluminum with water to obtain hydrogen.
  • the advantage of alcohols is that they do not react with aluminum, they dissolve the hydroxides, they are miscible in water and they have a lower density than aluminate.
  • isopropanol is preferred. Even so, ethanol and bioethanol can also be used. Among the advantages of isopropanol, the following should be mentioned: Good flow behavior, at temperatures above 60 ° C.
  • the reactor is filled with aluminum or aluminum alloys, either in bars, pellets, shavings, briquettes, pressed powders or sheets.
  • - Alcohol is added to the reactor and it is completely filled to eliminate the air inside. After part of the alcohol is emptied to cover only the aluminum, forcing the vacuum of the rest of the space or adding a noble gas or hydrogen. Other forms of purging can be used.
  • the hydroxide solution is dosed according to the demand for hydrogen.
  • the hydrogen and alcohol vapor generated is distilled in an exchanger.
  • the distilled alcohol is returned to the reactor.
  • Figure number 1.- Shows in a graph the comparison between the flow rate of hydrogen obtained with alcohol and without alcohol in a test carried out.
  • Figure number 2.- It shows another comparative graph of the obtaining of hydrogen, in this case with and without the addition of magnesium hydroxide.
  • Figure number 3 shows another comparative graph between the flow rate of hydrogen and the dosing flow rate of the solution.
  • a comparison is made between the flow rate obtained in liters per minute with a sodium hydroxide concentration of 35% by weight in a solution with isopropanol alcohol and one without alcohol, as a function of time in seconds, for a similar sample of 30 grams of aluminum chip with a thickness of lmm. Start by adding 5 ml at once and then drop by drop with a rate of 10 ml / min, increasing the dosage at 250 seconds.
  • the flow rate of hydrogen obtained is proportional to the amount of solution added, as long as there is sufficient aluminum to react. It also depends on the temperature that can be kept constant with a bath.
  • Another aspect to highlight is the thickness of the chip.
  • the amount of hydrogen obtained is approximately equal to 0.3 liters / min of hydrogen per 1 ml / min of 35% solution in alcohol.
  • it is of the order of 0.2 liters / min of hydrogen per 1 ml / min of 35% solution in alcohol.
  • the graph of Figure 3 shows the flow of hydrogen (dashed line) for a solution (solid line) of 35% by weight in sodium hydroxide and with 200 ml of isopropanol, two points of hydroxide spatula of magnesium and 100 gr of thickness aluminum lmm depending on the total liters of hydrogen produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

Método de generación de hidrógeno mediante reacción con aluminio, a partir de la reacción de aluminio con agua en una disolución de hidróxido, que comprende la adición de alcohol como disolvente en la disolución. Dicho alcohol es de los de densidades más bajas, de mayor temperatura de vaporización y menor reactividad, preferentemente isopropanol, etanol o bioetanol. Tras llenar el reactor con aluminio, se añade el alcohol llenado completamente el reactor y vaciándolo para que solo cubra el aluminio, forzando el vacío del resto del espacio. Luego se dosifica la disolución de hidróxido en función de la demanda de hidrógeno. El hidrógeno y el vapor de alcohol generado se destilan en un intercambiador. El alcohol destilado se devuelve al reactor, y el hidrógeno se filtra y se almacena.

Description

MÉTODO DE GENERACIÓN DE HIDRÓGENO MEDIANTE REACCIÓN CON
ALUMINIO
OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un método de generación de hidrógeno mediante reacción con aluminio, el cual aporta, a la función a que se destina, varias ventajas e innovadoras características, que se describirán más adelante y que suponen una mejora del estado actual de la técnica en su campo de aplicación.
Más en particular, el objeto de la invención se centra en un innovador procedimiento para generar hidrógeno cuya finalidad es ser destinado a pilas de combustible y que presenta la particularidad de contemplar la utilización de un disolvente como el alcohol en la disolución de hidróxido, proporcionando efectos que favorecen la reacción del aluminio con agua en la obtención de hidrógeno.
CAMPO DE APLICACIÓN DE LA INVENCIÓN
El campo de aplicación de la presente invención se enmarca dentro del sector de la industria dedicada a producción de hidrógeno con aluminio para pilas de combustible o para otros usos industriales.
ANTECEDENTES DE LA INVENCIÓN Históricamente, la metodología utilizada en la producción de hidrógeno con aluminio se ha basado en introducir retales de aluminio en cestas dispuestas en el interior de un reactor con agua y reactivo; o en transformar el aluminio en polvo o nano partículas y combinarlo con vapor a alta temperatura; o en sumergir todo el metal en un reactor cambiando el nivel en función de la demanda, ya sea mediante presión o alturas entre vasos comunicantes.
Existen además, diferentes patentes para hacer reaccionar el aluminio con el agua mediante adición de productos químicos, amalgamas y aleaciones pero sin especificar el procedimiento.
El problema de trabajar con polvo o nano partículas de aluminio, aleaciones o amalgamas son los costes asociados a la materia prima y al medioambiente, por lo que se prefiere trabajar a partir de productos de aleaciones de aluminio normalizadas o de sus residuos .
Una de las formas más usual para acelerar la reacción aluminio-agua para la obtención de hidrógeno es la utilización de un álcali como hidróxido de sodio, ya que el coste es mínimo debido a que el hidróxido se recupera al final de la reacción y no es necesario aporte energético.
Dicha reacción es la siguiente: el aluminio (sólido) reacciona con agua (líquida) y se obtiene hidróxido de aluminio (sólido) e hidrógeno (gas) .
En principio, el hidróxido sólo se utiliza para eliminar la capa de óxido que siempre existe en la superficie del metal. Al (s) + H20 (líq) -> Al (OH) 3 (s)+ 3/2 H2 (g)
Sin embargo, debido a que el hidróxido de aluminio precipita sobre la superficie de aluminio, cesa la reacción al obstaculizar su contacto con el agua. Esto obliga a trabajar con disoluciones con mayor concentración de hidróxido de sodio, para provocar la transformación del hidróxido de aluminio (sólido) en aluminato de sodio (acuoso), que queda disuelto.
Uno de los problemas de trabajar con altas concentraciones de hidróxido de sodio es que la reacción es más violenta, genera altas temperaturas, el caudal de hidrógeno producido no es constante en el tiempo y que el hidrógeno arrastra partículas de hidróxido de sodio que pueden llegar a contaminar la pila de combustible.
Otro de los problemas derivados de trabajar por inmersión o dosificación de líquido sobre aluminio, es que las gotas resultantes al retirar el líquido o depositadas sobre el aluminio pueden convertirse en una película sólida al permanecer la reacción inactiva, que puede retardar el reinicio de la reacción.
El objetivo de la presente invención es, pues, desarrollar un método de generación de hidrógeno a partir de la reacción de aluminio con agua que evite los inconvenientes anteriormente descritos mediante la utilización de un disolvente como el alcohol, debiendo señalarse que, al menos por parte del solicitante, se desconoce la existencia de ninguna otra invención que presente unas características técnicas y constitutivas semejantes a las que presenta el método aquí preconizado, según se reivindica. EXPLICACIÓN DE LA INVENCIÓN
De forma concreta, pues, lo que la invención propone es un método para generar hidrógeno, para pilas de combustible, mediante reacción con aluminio y que utiliza alcohol en la disolución de hidróxido.
Dicha adición de alcohol en la disolución de hidróxido de sodio o potasio favorece la reacción de aluminio con agua para la obtención de hidrógeno. La ventaja de los alcoholes es que no reaccionan con el aluminio, disuelven los hidróxidos, son miscibles en agua y tienen menor densidad que el aluminato.
Sus principales ventajas son:
- Facilita la introducción de todo el aluminio en el reactor, para la obtención de hidrógeno y evitar métodos mecánicos complicados para la dosificación del aluminio.
- Facilita el control e interrupción del caudal de hidrógeno generado por el reactor, en función de la dosificación de disolución de hidróxido de sodio; permite las paradas y la rápida puesta en marcha.
- Facilita la purga de aire en el reactor por inundación de alcohol.
- Facilita el vaciado del reactor.
- Se reduce la emisión de partículas de sosa caustica debida a la formación de una película en la fase superior por su menor densidad respecto a la disolución . - Favorece el reparto del agua entre las virutas o partículas de aluminio y su agitación, siendo la reacción más homogénea.
- Facilita el control de la reacción haciendo la reacción y el caudal de hidrógeno obtenido más constante en el tiempo.
Reduce el rápido incremento
temperatura del reactor.
- No interviene en la reacción, de forma que puede recuperarse fácilmente tras la reacción por decantación .
- Durante su evaporación atrapa las partículas de hidróxido que precipitan por destilación.
- Es utilizado en disoluciones con una concentración de hidróxido de sodio de entre el 30% y el 40% en peso para optimi :ar el caudal y el hidrógeno total obtenido.
Conviene destacar que, a tenor de los ensayos realizados con diferentes alcoholes, se obtienen mejores resultados con los alcoholes de densidades más bajas. Además, de entre estos, es preferible trabajar con los de mayor temperatura de vaporización, menor reactividad y mejor precio.
Por dicha razón se prefiere el isopropanol. Aún así, pueden utilizarse también el etanol y el bioetanol . Entre las ventajas del isopropanol, cabe mencionar lo siguiente: Buen comportamiento a caudal, a temperaturas superiores a 60°C.
Rendimiento bueno hidrógeno-cantidad de aluminio, precio bajo, no toxicidad para una baja concentración media ponderada en el tiempo, temperatura de ebullición alta que facilita el control de los vapores . La desventaja de trabajar con isopropanol, es que el rendimiento de hidrógeno total obtenido en comparación con el teórico es aproximadamente del 85% o 90%. Sin embargo, esto puede corregirse con la adición de una pequeña cantidad de hidróxido de magnesio o potásico.
En cuanto al procedimiento para trabajar con el alcohol en un reactor los pasos a seguir serian los siguientes :
Se procede al llenado del reactor con aluminio o aleaciones de aluminio ya sea en barra, pellets, viruta, briquetas, polvos prensados o láminas. - Se añade al reactor alcohol y se llena completamente para eliminar el aire de su interior. Después se vacia parte del alcohol para que sólo cubra el aluminio, forzando el vacio del resto del espacio o añadiendo un gas noble o hidrógeno. Pueden utilizarse otras formas de purgado.
- Se dosifica la disolución de hidróxido en función de la demanda de hidrógeno.
- El hidrógeno y el vapor de alcohol generado se destila en un intercambiador. El alcohol destilado se devuelve al reactor .
- El hidrógeno se filtra y se almacena.
El descrito método de generación de hidrógeno mediante reacción con aluminio representa, pues, una innovación de características estructurales y constitutivas desconocidas hasta ahora para el fin a que se destina, razones que unidas a su utilidad práctica, la dotan de fundamento suficiente para obtener el privilegio de exclusividad que se solicita.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, de un juego de planos, en los que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1.- Muestra en un gráfico la comparación entre el caudal del hidrógeno obtenidos con alcohol y sin alcohol en un ensayo realizado.
La figura número 2.- Muestra otro gráfico comparativo de la obtención de hidrógeno, en este caso con y sin adición de hidróxido de magnesio.
La figura número 3.- Muestra otro gráfico comparativo entre el caudal de hidrogeno y el caudal de dosificación de la disolución. ENSAYOS
En un primer ensayo se realiza una comparación entre el caudal obtenido en litros por minuto con una concentración de hidróxido sódico del 35% en peso en una disolución con alcohol isopropanol y una sin alcohol, en función del tiempo en segundos, para una muestra similar de 30 gramos de aluminio en viruta con un espesor de lmm. Se inicia añadiendo 5 mi de golpe y posteriormente gota a gota con una cadencia de 10 ml/min, aumentando la dosificación a los 250 segundos .
Tal como se aprecia en el gráfico de la figura 1, donde el caudal de la disolución con alcohol se ha representado con la linea de trazo continuo y el de la disolución sin alcohol con la linea de trazo discontinuo, se observa que con el alcohol la respuesta a cambios de dosificación de hidróxido sódico es más inmediata. El caudal decrece cuando se va agotando el aluminio o la dosificación es menor.
En un segundo ensayo se añade una punta de espátula de hidróxido de magnesio a la mezcla y se observa que aumenta el rendimiento de hidrógeno total obtenido por cantidad de aluminio.
A continuación se comparan los caudales obtenidos, en litros/minuto, para 45 gramos de viruta de aluminio con una pureza del 85% y un espesor de lmm, con una concentración del 35% en sosa caustica, con y sin hidróxido de magnesio, en función del hidrógeno total obtenido (litros) , añadiendo la disolución gota a gota, con cadencia de 10 ml/minuto. Atendiendo al gráfico de la figura 2, donde la linea de trazo continuo muestra la evolución del hidrógeno obtenido en la mezcla con hidróxido de magnesio y la línea de trazo discontinuo la de la mezcla que no lo incorpora, se aprecian los resultados de dicho ensayo. En cuanto a la dosificación conviene destacar lo siguiente:
El caudal de hidrógeno obtenido es proporcional a la cantidad de disolución añadida, siempre y cuando haya aluminio suficiente para reaccionar. También depende de la temperatura que puede mantenerse constante con un baño.
Otro aspecto a destacar es el espesor de la viruta.
Para una viruta de lmm de espesor y una temperatura entre 60 y 75°C la cantidad de hidrógeno obtenido es aproximadamente igual a 0,3 litros/min de hidrógeno por cada 1 ml/min de disolución 35% en alcohol. Para la mezcla de virutas de fabricación, es del orden de 0,2 litros/min de hidrógeno por cada 1 ml/min de disolución 35% en alcohol. En la gráfica de la figura 3 se observa el caudal de hidrógeno (línea de trazo discontinuo) para una disolución (línea de trazo continuo) del 35% en peso en hidróxido de sodio y con 200 mi de isopropanol, dos puntas de espátula de hidróxido de magnesio y 100 gr de aluminio de espesor lmm en función de los litros totales de hidrógeno producido.
En total se obtienen 115,5 litros de hidrógeno para un aluminio de una pureza de un 85%.

Claims

R E I V I N D I C A C I O N E S
1.- MÉTODO DE GENERACIÓN DE HIDRÓGENO MEDIANTE REACCIÓN CON ALUMINIO, del tipo aplicable para pilas de combustible generando dicho hidrógeno a partir de la reacción de aluminio con agua en una disolución de hidróxido, caracterizado porque comprende la adición de alcohol como disolvente en la disolución.
2.- MÉTODO DE GENERACIÓN DE HIDRÓGENO
MEDIANTE REACCIÓN CON ALUMINIO, según la reivindicación
1, caracterizado porque el alcohol utilizado se escoge de entre los alcoholes de densidades más bajas.
3.- MÉTODO DE GENERACIÓN DE HIDRÓGENO
MEDIANTE REACCIÓN CON ALUMINIO, según la reivindicación
2, caracterizado porque el alcohol utilizado se escoge de entre los alcoholes de mayor temperatura de vaporización y menor reactividad.
4. - MÉTODO DE GENERACIÓN DE HIDRÓGENO MEDIANTE REACCIÓN CON ALUMINIO, según la reivindicación 1, caracterizado porque el alcohol utilizado es isopropanol .
5. - MÉTODO DE GENERACIÓN DE HIDRÓGENO MEDIANTE REACCIÓN CON ALUMINIO, según la reivindicación 1, caracterizado porque el alcohol utilizado es etanol.
6.- MÉTODO DE GENERACIÓN DE HIDRÓGENO
MEDIANTE REACCIÓN CON ALUMINIO, según la reivindicación 1, caracterizado porque el alcohol utilizado es bioetanol .
7.- MÉTODO DE GENERACIÓN DE HIDRÓGENO
MEDIANTE REACCIÓN CON ALUMINIO, según cualquiera de las reivindicaciones 1-6, caracterizado porque comprende los siguientes pasos:
Llenado del reactor con aluminio o aleaciones de aluminio ya sea en barra, pellets, viruta, briquetas, polvos prensados o láminas .
- Se añade al reactor alcohol y se llena completamente para eliminar el aire de su interior. Posteriormente se vacia parte de dicho alcohol hasta que sólo cubra el aluminio, forzando el vacio del resto del espacio.
- Se dosifica la disolución de hidróxido en función de la demanda de hidrógeno.
- El hidrógeno y el vapor de alcohol generado se destila en un intercambiador.
El alcohol destilado se devuelve al reactor .
- El hidrógeno se filtra y se almacena.
PCT/ES2013/000022 2013-02-01 2013-02-01 Método de generación de hidrógeno mediante reacción con aluminio WO2014118392A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380071616.1A CN105008270A (zh) 2013-02-01 2013-02-01 通过与铝反应产生氢气的方法
EP13873870.3A EP2952473A4 (en) 2013-02-01 2013-02-01 METHOD FOR PRODUCING HYDROGEN THROUGH A REACTION WITH ALUMINUM
US14/765,062 US20150360942A1 (en) 2013-02-01 2013-02-01 Generating hydrogen by means of reaction with aluminium
PCT/ES2013/000022 WO2014118392A1 (es) 2013-02-01 2013-02-01 Método de generación de hidrógeno mediante reacción con aluminio
JP2015555762A JP2016509570A (ja) 2013-02-01 2013-02-01 アルミニウムとの反応により水素を生成する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/000022 WO2014118392A1 (es) 2013-02-01 2013-02-01 Método de generación de hidrógeno mediante reacción con aluminio

Publications (1)

Publication Number Publication Date
WO2014118392A1 true WO2014118392A1 (es) 2014-08-07

Family

ID=51261488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000022 WO2014118392A1 (es) 2013-02-01 2013-02-01 Método de generación de hidrógeno mediante reacción con aluminio

Country Status (5)

Country Link
US (1) US20150360942A1 (es)
EP (1) EP2952473A4 (es)
JP (1) JP2016509570A (es)
CN (1) CN105008270A (es)
WO (1) WO2014118392A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453258B2 (ja) * 2016-01-29 2019-01-16 アルハイテック株式会社 水素エネルギーの供給システム
JP7470941B2 (ja) 2020-05-25 2024-04-19 アルハイテック株式会社 水素の製造方法及び製造装置
JP7495128B2 (ja) 2021-04-02 2024-06-04 アルハイテック株式会社 アルミニウム合金を用いた水素の製造方法
US12012332B1 (en) 2023-01-30 2024-06-18 Kuwait University Dual hydrogen and suspension production system using effervescent tablets containing hydrogen active production metallic particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014213A2 (en) * 2000-08-14 2002-02-21 The University Of British Columbia Hydrogen generation from water split reaction
JP2004018340A (ja) * 2002-06-19 2004-01-22 Honda Motor Co Ltd 水素発生方法および水素発生装置
JP2007131481A (ja) * 2005-11-10 2007-05-31 Asahi Kasei Life & Living Corp 水素発生材料及び水素製造方法
WO2009151500A1 (en) * 2008-04-02 2009-12-17 Cedar Ridge Research Llc Aluminum-alkali hydroxide recyclable hydrogen generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165388C1 (ru) * 2000-07-04 2001-04-20 Закрытое акционерное общество "ФИРМА РИКОМ" Способ получения водорода
JP2004504243A (ja) * 2000-07-13 2004-02-12 ハイドロジェン エナジー アメリカ エルエルスィー 水分解による水素生成を制御する方法及び装置
KR100837291B1 (ko) * 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 수소발생재료, 수소의 제조장치 및 연료전지
US20090267023A1 (en) * 2005-07-20 2009-10-29 Takeshi Miki Hydrogen Generating Material and Method for Producing the Same
CN101175689A (zh) * 2005-07-20 2008-05-07 日立麦克赛尔株式会社 氢产生材料及氢产生材料的制造方法
JP2007290888A (ja) * 2006-04-24 2007-11-08 Hitachi Maxell Ltd 水素の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014213A2 (en) * 2000-08-14 2002-02-21 The University Of British Columbia Hydrogen generation from water split reaction
JP2004018340A (ja) * 2002-06-19 2004-01-22 Honda Motor Co Ltd 水素発生方法および水素発生装置
JP2007131481A (ja) * 2005-11-10 2007-05-31 Asahi Kasei Life & Living Corp 水素発生材料及び水素製造方法
WO2009151500A1 (en) * 2008-04-02 2009-12-17 Cedar Ridge Research Llc Aluminum-alkali hydroxide recyclable hydrogen generator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETROVIC, J. ET AL.: "Reaction of aluminum with water to produce hydrogen", U.S. DEPARTMENT OF ENERGY, 2008, Retrieved from the Internet <URL:http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/aluminium_water_hydrogen.pdf> [retrieved on 20130916] *
WANG H Z ET AL.: "A review on hydrogen production using aluminum and aluminum alloys.", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 13, no. 4, 1 May 2009 (2009-05-01), pages 845 - 853, XP025949747, DOI: 10.1016/J.RSER.2008.02.009 *

Also Published As

Publication number Publication date
EP2952473A4 (en) 2016-07-20
EP2952473A1 (en) 2015-12-09
JP2016509570A (ja) 2016-03-31
US20150360942A1 (en) 2015-12-17
CN105008270A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2014118392A1 (es) Método de generación de hidrógeno mediante reacción con aluminio
RU2415074C2 (ru) Производство водорода с использованием электрохимического риформинга и регенерации электролита
JP5150604B2 (ja) 水素ガスの生成方法
US8133288B2 (en) Aqueous borohydride compositions
US20050191234A1 (en) Hydrogen storage system materials and methods including hydrides and hydroxides
TW201002679A (en) Process for the preparation of an alkylene carbonate and an alkylene glycol
JP6169164B2 (ja) アルカリ金属炭酸塩を含む硝酸塩組成物および熱媒体または蓄熱媒体としてのその使用
Zhang et al. A carbon-efficient bicarbonate electrolyzer
CA2595824A1 (en) Storage-stable fuel concentrate
JP2008266777A (ja) 水素発生用合金、水素発生方法および燃料電池
US20120145949A1 (en) Method for producing electronic grade aqueous ammonium fluoride solution
FR3059992A1 (fr) Dispositif pour generer du dihydrogene par hydrolyse catalytique d&#39;hydrures
CN104733065A (zh) 用于放射性废物的运输容器和/或贮存容器的干燥方法
CN110407778A (zh) 一种5-羟甲基糠醛的储存方法、5-羟甲基糠醛的醇溶液及含有5-羟甲基糠醛的组合物
Robb et al. Engineering-Scale Batch Purification of Ternary MgCl2-KCl-NaCl Salt Using Thermal and Magnesium Contact Treatment
CN203700540U (zh) 一种制备金属钠的熔融电解装置
ES2882514T3 (es) Composición acuosa de hidruros
RU2397141C2 (ru) Способ получения водорода и химический реактор для его осуществления
US20050155279A1 (en) Storage-stable fuel concentrate
BR112016008813B1 (pt) Método para a preparação de 1,4-butanodiol
RU2018129322A (ru) Жидкометаллический накопитель энергии
WO2023124348A1 (zh) 直链碳酸酯及其制备方法
ES2573786T3 (es) Procedimiento para hacer reaccionar glicerina hasta dar sales orgánicas
US20160254098A1 (en) Method for preparing ionic liquid having carboxylic acid anion using microreactor
RU2250245C2 (ru) Теплоаккумулирующий состав для заполнения медных капсул на основе октагидрата гидроксида бария

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555762

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013873870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013873870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14765062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE