WO2014115497A1 - Heater system - Google Patents

Heater system Download PDF

Info

Publication number
WO2014115497A1
WO2014115497A1 PCT/JP2014/000071 JP2014000071W WO2014115497A1 WO 2014115497 A1 WO2014115497 A1 WO 2014115497A1 JP 2014000071 W JP2014000071 W JP 2014000071W WO 2014115497 A1 WO2014115497 A1 WO 2014115497A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot water
flow rate
heat medium
heat exchanger
Prior art date
Application number
PCT/JP2014/000071
Other languages
French (fr)
Japanese (ja)
Inventor
▲祥▼▲隆▼ 久米
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112014000527.4T priority Critical patent/DE112014000527T5/en
Publication of WO2014115497A1 publication Critical patent/WO2014115497A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0257Central heating systems using heat accumulated in storage masses using heat pumps air heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present disclosure relates to a heating system including a ventilation heat exchanger.
  • Patent Document 1 discloses a heating system including a ventilation heat exchanger.
  • This ventilation heat exchanger heats the supply air by exchanging heat between the exhaust (inside air) exhausted from the room to the outside (inside air) and the intake air (outside air) taken into the room from the outside when the room is ventilated. It is. That is, the ventilation heat exchanger of Patent Document 1 has a function of suppressing a decrease in indoor temperature due to ventilation by suppressing thermal energy from being discharged outside the room together with the inside air during ventilation.
  • the exhaust gas cooled by exchanging heat with the supply air in the ventilation heat exchanger at a low outside air temperature falls below the dew point temperature, and thus the ventilation Condensation may occur on the exhaust outlet side of the heat exchanger.
  • condensation may cause the exhaust passage in the ventilation heat exchanger to be frozen and blocked, or may flow out to the wall surface of the house and cause mold or the like.
  • This disclosure aims to suppress condensation on the exhaust outlet side of the ventilation heat exchanger in a heating system including the ventilation heat exchanger.
  • a heating system in the present disclosure includes a heater for heating a heat medium, exhaust exhausted from the space to be heated to the outside of the room, and space to be heated from the outside of the room.
  • a ventilation heat exchanger that exchanges heat with the intake air that is taken in, and a high-temperature side heater core that heats the supply air heated by the ventilation heat exchanger, using the high-temperature side heat medium heated by the heater as a heat source,
  • a low-temperature side heater core that heats the supply air flowing into the ventilation heat exchanger using a low-temperature side heat medium that is lower in temperature than the heat medium flowing out from the high-temperature side heater core as a heat source, and a high temperature that flows into the high-temperature side heater core
  • a heat medium flow rate adjusting unit that adjusts a heat medium flow rate ratio between the flow rate of the heat medium on the side and the flow rate of the heat medium on the low temperature side flowing into the low temperature side heater core.
  • the heat medium flow rate adjustment unit since the heat medium flow rate adjustment unit is provided, the heating capacity of the low-temperature side heater core is adjusted, and the temperature of the supply air flowing into the ventilation heat exchanger, that is, the exhaust air and the heat in the ventilation heat exchanger.
  • the temperature of the supply air to be replaced can be adjusted. Therefore, the temperature of the exhaust gas flowing out from the ventilation heat exchanger can be adjusted, and condensation on the exhaust outlet side of the ventilation heat exchanger can be suppressed.
  • the heating system according to the present disclosure further includes a heat medium flow control unit that controls the operation of the heat medium flow control unit, and the temperature of the exhaust gas flowing out from the ventilation heat exchanger is the dew point temperature of the exhaust gas flowing out from the ventilation heat exchanger.
  • the heat medium flow rate control unit may control the operation of the heat medium flow rate adjustment unit so as to have a higher value.
  • the heating system 1 is applied to a residential house and heats each room (heating target space) such as a living room, a kitchen, and a bedroom. Furthermore, this residential house is a highly airtight house called a so-called high airtight house, and requires constant ventilation.
  • the heating system 1 includes a heat pump cycle 10 that heats hot water, a hot water storage tank 20 that stores hot water heated by the heat pump cycle 10, and indoor ventilation.
  • a supply air heating unit 30 for heating supply air (outside air) taken into the room from the outside is provided.
  • the heat pump cycle 10 is a vapor compression refrigeration cycle configured by sequentially connecting a compressor 11, a water-refrigerant heat exchanger 12, an electric expansion valve 13, an evaporator 14 and the like with refrigerant pipes.
  • the heat pump cycle 10 functions as a heating device that directly or indirectly heats a heat medium such as hot water or hot water described later.
  • this heat pump cycle 10 employs carbon dioxide as a refrigerant, and the refrigerant pressure on the high pressure side of the cycle from the discharge port side of the compressor 11 to the inlet side of the electric expansion valve 13 is equal to or higher than the critical pressure of the refrigerant.
  • the refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the heat pump cycle 10 and compresses and discharges the refrigerant until it reaches a critical pressure or higher.
  • an electric compressor that drives a fixed displacement type compression mechanism with a fixed discharge capacity by an electric motor is employed as the compressor 11.
  • the operation (the number of rotations) of the electric motor of the compressor 11 is controlled by a control signal output from a control device described later.
  • the water-refrigerant heat exchanger 12 heats hot water directly by exchanging heat between the refrigerant discharged from the compressor 11 and hot water.
  • Hot water is a fluid to be heated in the heat pump cycle 10 and is stored in a hot water storage tank 20 described later, and then supplied to a kitchen or a bath. Further, the hot water supply also serves as a heat medium for transferring the heat generated in the heat pump cycle 10 to the hot water stored in the hot water storage tank 20.
  • a plurality of tubes for circulating the refrigerant are provided as the refrigerant passage 12a, a water passage 12b is formed between adjacent tubes, and the refrigerant, cooling water, It is possible to employ a heat exchanger or the like configured by arranging inner fins that promote heat exchange between the two.
  • a counter flow type heat exchanger is employed as the water-refrigerant heat exchanger 12 in which the flow direction of the refrigerant flowing through the refrigerant passage 12a and the flow direction of hot water flowing through the water passage 12b are opposite flows. is doing.
  • heat is exchanged between the refrigerant on the inlet side of the refrigerant passage 12a and hot water on the outlet side of the water passage 12b, and heat is supplied to the refrigerant on the outlet side of the refrigerant passage 12a and the hot water on the inlet side of the water passage 12b. Since it can be exchanged, the temperature difference between the hot water and the refrigerant can be ensured over the entire heat exchange region, and the heat exchange efficiency can be improved.
  • the heat pump cycle 10 constitutes a supercritical refrigeration cycle as described above, in the refrigerant passage 12a of the water-refrigerant heat exchanger 12, the refrigerant does not condense and dissipates heat in the supercritical state. Reduce enthalpy.
  • the electric expansion valve 13 is a decompressor that decompresses the refrigerant flowing out from the refrigerant passage 12a of the water-refrigerant heat exchanger 12.
  • the electric expansion valve 13 is a variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the throttle opening degree of the valve body. . Further, the operation of the electric actuator is controlled by a control signal output from the control device.
  • the evaporator 14 evaporates the refrigerant decompressed by the electric expansion valve 13 by exchanging heat with the outside air or exhaust gas flowing out from the ventilation heat exchanger 34 of the air supply heating unit 30 described later.
  • a fin-and-tube heat exchanger or the like can be employed as such an evaporator 14.
  • the refrigerant outlet side of the evaporator 14 is connected to the suction port side of the compressor 11.
  • the component devices 11 to 14 of the heat pump cycle 10 are accommodated in one housing or one frame structure, and the heat pump unit As a single unit.
  • the hot water storage tank 20 is a hot water tank formed of a metal (for example, stainless steel) having excellent corrosion resistance.
  • the hot water storage tank 20 has a heat insulating structure whose outer periphery is covered with a heat insulating material, a vacuum heat insulating structure using a double tank, or the like, and can retain hot hot water for a long time.
  • the hot water storage tank 20 is also arranged outside the room.
  • Hot water stored in the hot water storage tank 20 is discharged from a hot water outlet provided in the upper part of the hot water storage tank 20, mixed with cold water from a water tap at a temperature control valve (not shown), and then adjusted in temperature (specifically Hot water is supplied to kitchens and baths. Further, tap water is supplied from a water supply port provided in the lower part of the hot water storage tank 20, and hot water for the amount of hot water supplied is replenished.
  • the hot water storage tank 20 is connected to the water passage 12 b of the water-refrigerant heat exchanger 12 of the heat pump cycle 10 by the first water circulation circuit 21.
  • the first water circulation circuit 21 is a water circulation circuit that circulates hot water between the hot water storage tank 20 and the water-refrigerant heat exchanger 12.
  • the first water circulation circuit 21 is provided with a first water circulation pump 22 as a water pressure feeder for circulating hot water.
  • the first water circulation pump 22 sucks hot water flowing out from a hot water outlet provided at the lower side of the hot water storage tank 20 and pumps the hot water into the water passage 12 b of the water-refrigerant heat exchanger 12. It is a water pump. Further, the operation (rotation speed) of the first water circulation pump 22 is controlled by a control signal output from the control device.
  • the first water circulation pump 22 when the first water circulation pump 22 is operated, hot water is supplied from the hot water outlet provided at the lower side of the hot water storage tank 20 ⁇ the first water circulation pump 22 ⁇ the water passage 12b of the water-refrigerant heat exchanger 12 ⁇ the hot water storage tank. It circulates in order of the hot water supply inlet provided on the upper side of 20. Accordingly, the hot water heated by the water-refrigerant heat exchanger 12 flows out to the upper side of the hot water storage tank 20, and the temperature distribution in which the temperature of the hot water is decreased from the upper side to the lower side in the hot water storage tank 20. Occurs.
  • a counter-flow type heat exchanger is adopted as the water-refrigerant heat exchanger 12. Accordingly, the hot water flowing out from the hot water outlet provided on the lower side of the hot water storage tank 20 has a relatively low enthalpy refrigerant and heat circulating in the refrigerant flow downstream of the refrigerant passage 12a of the water-refrigerant heat exchanger 12. Will be replaced. That is, the low-temperature hot-water supply on the lower side of the hot water storage tank 20 is exchanged by the water-refrigerant heat exchanger 12 with a heat medium that directly exchanges heat with the refrigerant flowing into the electric expansion valve 13 on the downstream side of the refrigerant passage 12a. Become.
  • hot water flowing out of the water passage 12b of the water-refrigerant heat exchanger 12 exchanges heat with a refrigerant having a relatively high enthalpy flowing through the refrigerant flow upstream side of the refrigerant passage 12a of the water-refrigerant heat exchanger 12. Heated. That is, the hot hot water on the upper side of the hot water storage tank 20 becomes a heat medium directly heated by the high-temperature high-pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 in the water-refrigerant heat exchanger 12. .
  • an air exhaust passage 32 through which exhaust air exhausted from the room to the outside flows and an air supply air passage 33 through which air supplied from the outside to the room flows are formed.
  • a casing 31 is provided.
  • the casing 31 accommodates an exhaust fan 32a, an air supply fan 33a, a ventilation heat exchanger 34, a high temperature side heater core 35 and a low temperature side heater core 36 for heating the supply air.
  • the exhaust blower fan 32a is an electric blower that blows exhaust air from the room to the outside, and is disposed on the most upstream side of the exhaust air flow path 32.
  • the supply air blower fan 33 a is an electric blower that blows supply air from the outside to the inside of the room, and is disposed on the most upstream side of the supply air flow path 33. Further, both the exhaust blower fan 32a and the supply air blower fan 33a are controlled in operating rate, that is, the rotation speed (the amount of air to be blown) by the control voltage output from the control device.
  • the ventilation heat exchanger 34 exchanges heat between the exhaust and the air supply when the room is ventilated. Therefore, the ventilation heat exchanger 34 can heat the supply air by, for example, exchanging heat between the high-temperature exhaust and the low-temperature supply air during indoor heating. That is, the ventilation heat exchanger 34 functions to suppress the temperature drop in the room due to ventilation by recovering the heat energy that is exhausted to the outside of the room together with the exhaust during heating, and heating the supply air.
  • a ventilation heat exchanger 34 plate surfaces of a plurality of metal plates (for example, an aluminum plate and a copper plate) having excellent heat conductivity are stacked in parallel to each other, and an exhaust passage and an intake passage are provided between adjacent metal plates.
  • metal plates for example, an aluminum plate and a copper plate
  • heat exchangers configured by disposing inner fins for promoting heat exchange between the exhaust and the supply air inside the respective exhaust passages and the supply passages can be employed.
  • the ventilation heat exchanger 34 can cool the supply air by, for example, exchanging heat between the high-temperature air supply and the low-temperature exhaust during indoor cooling.
  • the high temperature side heater core 35 circulates hot water therein, and heat supply for heating on the high temperature side that heats the supply air flowing out from the ventilation heat exchanger 34 (supply air downstream of the ventilation heat exchanger 34) using this warm water as a heat source. It is a vessel.
  • the low-temperature side heater core 36 circulates hot water that has flowed out of the high-temperature side heater core 35 and reduced in temperature therein, and uses this hot water as a heat source to flow into the ventilation heat exchanger 34 (the supply air upstream of the ventilation heat exchanger 34). This is a heat exchanger for heating on the low temperature side for heating the gas.
  • the high temperature side heater core 35 and the low temperature side heater core 36 are arranged in a second water circulation circuit 37 for circulating hot water, and are connected to a hot water passage 38 arranged in the hot water storage tank 20.
  • the second water circulation circuit 37 is a water circulation circuit that circulates hot water among the hot water passage 38, the high temperature side heater core 35, and the low temperature side heater core 36.
  • the second water circulation circuit 37 includes three types of flow rate adjusting valves 39 for adjusting the flow rate ratio between the flow rate of hot water flowing into the high temperature side heater core 35 and the flow rate of low temperature hot water flowing into the low temperature side heater core 36.
  • a second water circulation pump 40 or the like as a water pressure feeder for circulating hot water is disposed. Further, the second water circulation circuit 37 is provided with a bypass passage 41 that flows the hot water that has flowed out of the high-temperature side heater core 35 and decreased in temperature to bypass the low-temperature side heater core 36 to the inlet side of the second water circulation pump 40.
  • the hot water circulating in the second water circulation circuit 37 is a heat medium that moves the heat of hot water stored in the hot water storage tank 20 to the supply air, and uses the same tap water or ethylene glycol aqueous solution as the hot water. Can be adopted. That is, in the heating system 1, the heat generated in the heat pump cycle 10 is moved to the intake air via two types of heat media, hot water and hot water.
  • the hot water passage 38 is arranged to extend in the vertical direction while meandering in the hot water storage tank 20. Therefore, by circulating the hot water through the hot water passage 38, the hot water can be heated using hot water stored in the hot water storage tank 20 as a heat source.
  • the hot water inlet of the hot water passage 38 is provided below the hot water storage tank 20, and the hot water outlet of the hot water passage 38 is provided above the hot water storage tank 20.
  • the hot water supply in the hot water storage tank 20 has a temperature distribution in which the temperature increases from the lower side to the upper side, so that the hot water flowing through the hot water passage 38 is also from the lower side (hot water inlet side). The temperature increases toward the upper side (warm water outlet side).
  • the flow rate adjusting valve 39 is disposed upstream of the hot water flow of the low temperature side heater core 36, and bypasses and bypasses the flow rate of hot water that flows into the low temperature side heater core 36 out of the low temperature side hot water that has flowed out of the high temperature side heater core 35 and lowered in temperature.
  • This is an electric flow rate adjustment valve that changes the bypass flow rate ratio with the flow rate of hot water flowing into the passage 41. Further, the operation of the flow rate adjusting valve 39 is controlled by a control signal output from the control device.
  • the flow rate adjusting valve 39 adjusts the flow rate of the low temperature side hot water flowing into the low temperature side heater core 36 by changing the bypass flow rate ratio, so that the high temperature side hot water flowing into the high temperature side heater core 35 (the high temperature side heat flow).
  • the heat medium flow rate adjustment unit is configured to adjust the flow rate ratio (heat medium flow rate ratio) between the flow rate of the medium) and the flow rate of the low temperature side hot water (low temperature side heat medium) flowing into the low temperature side heater core 36.
  • the second water circulation pump 40 is an electric water pump that sucks the hot water flowing out from the low-temperature side heater core 36 and pumps it to the hot water inlet side of the hot water passage 38.
  • the operation (rotation speed) of the second water circulation pump 40 is controlled by a control signal output from the control device.
  • the hot water is arranged at the second water circulation pump 40 ⁇ the hot water inlet of the hot water passage 38 arranged on the lower side of the hot water storage tank ⁇ the hot water passage 38 ⁇ the upper side of the hot water storage tank. It circulates in order of the hot water outlet of the hot water passage 38 ⁇ the high temperature side heater core 35 ⁇ the flow rate adjustment valve 39 ⁇ the low temperature side heater core 36 ⁇ the second water circulation pump 40 and the flow rate adjustment valve 39 ⁇ the bypass passage 41 ⁇ the second water circulation pump 40. To do.
  • the exhaust gas flowing out from the ventilation heat exchanger 34 on the downstream side of the exhaust ventilation path 32 is sent to the evaporator 14 side of the heat pump cycle 10 as shown by a thick broken line arrow in FIG. 1.
  • a guiding duct (not shown) is connected.
  • a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. This control device performs various calculations and processes based on a control program stored in the ROM, and controls the operations of the above-described various electric actuators 11, 13, 22, 32a, 33a, 40, and the like.
  • a high pressure side pressure sensor On the input side of the control device, a high pressure side pressure sensor, a boiling temperature sensor, an evaporator temperature sensor, an outside air temperature sensor, a tank temperature sensor, a hot water temperature sensor, an inlet side exhaust temperature sensor 51, an inlet side exhaust humidity sensor 52, Various control sensor groups such as the outlet side exhaust temperature sensor 53 are connected, and detection signals from these sensor groups are input to the control device.
  • the high pressure side pressure sensor is a high pressure side pressure detector that detects the high pressure side refrigerant pressure Pd of the high pressure refrigerant discharged from the compressor 11.
  • the boiling temperature sensor is a boiling temperature detector that detects the boiling temperature Two of hot water flowing out from the water passage of the water-refrigerant heat exchanger 12.
  • the evaporator temperature sensor is an evaporator temperature detector that detects a refrigerant evaporation temperature (temperature of the evaporator 14) Ts in the evaporator 14.
  • the outside air temperature sensor is an outside air temperature detector that detects the outside air temperature Tam.
  • the tank internal temperature sensor is a tank internal temperature detector that detects the temperature Tt of hot water stored in the hot water storage tank 20.
  • the hot water temperature sensor is a hot water temperature detector that detects an outlet temperature Tout of hot water flowing out from the hot water passage 38.
  • the inlet side exhaust temperature sensor 51 is an inlet side exhaust temperature detector that detects the inlet side exhaust temperature Texi of the exhaust flowing into the ventilation heat exchanger 34.
  • the inlet side exhaust humidity sensor 52 is an inlet side exhaust humidity detector that detects the inlet side exhaust humidity Hexi of the exhaust flowing into the ventilation heat exchanger 34.
  • the outlet side exhaust temperature sensor 53 is an outlet side exhaust temperature detector that detects the outlet side exhaust temperature Texo of the exhaust gas flowing out from the ventilation heat exchanger 34.
  • an operation panel (not shown) is connected to the input side of the control device.
  • This operation panel is provided with an operation switch for outputting an operation signal for requesting the operation of the heating system 1, a temperature setting switch for setting a boiling temperature (target heating temperature) of hot water, and the operation signals of these switches. Is input to the controller.
  • control device is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured.
  • movement of each control object apparatus among the control apparatuses comprises the control part which controls the operation
  • a configuration (hardware and software) that controls the operation (refrigerant discharge capacity) of the compressor 11 constitutes a compressor control unit
  • Hardware and software) constitutes the heat medium flow control unit.
  • You may comprise a compressor control part and a heat carrier flow control part with another apparatus with respect to a control apparatus.
  • the operation signal of the operation panel and the detection signal detected by the above-described control sensor group are read, and various controls connected to the output side of the control device based on the read operation signal and detection signal.
  • the control state of the target device (specifically, a control signal or control voltage output to various control target devices) is determined.
  • the control map stored in the ROM of the control device is referred to based on the hot water temperature setting signal from the operation panel and the outside air temperature Tam detected by the outside air temperature sensor. Determined. Specifically, the rotational speed (refrigerant discharge capacity) of the compressor 1 is determined to increase as the set temperature is increased by the hot water supply temperature setting signal and the outside air temperature Tam is decreased.
  • control signal output to the electric actuator of the electric expansion valve 13 is determined so that the high-pressure side refrigerant pressure Pd of the heat pump cycle 10 becomes the target high pressure.
  • the target high pressure is determined so that the coefficient of performance (COP) of the heat pump cycle 10 is maximized based on the outside air temperature Tam and the rotational speed of the compressor 11 with reference to the control map stored in the ROM of the control device. Is done.
  • the boiling temperature of the hot water flowing out from the water passage 12b of the water-refrigerant heat exchanger 12 is used by using a feedback control method or the like. Two is determined so as to approach the target heating temperature (for example, 80 ° C. to 90 ° C.) set by the temperature setting switch.
  • the control voltage output to the exhaust air fan 32a and the air supply fan 33a is determined so that the exhaust air fan 32a and the air supply fan 33a can exhibit a predetermined air blowing capability.
  • the exit temperature Tout of the warm water which flows out from the warm water path 38 (the warm water which flows into the high temperature side heater core 35) Temperature) is determined to be a predetermined reference temperature (in this embodiment, 40 ° C. to 50 ° C.).
  • This reference temperature is determined so that the supply air heat-exchanged with the hot water flowing out from the hot water passage 38 in the high-temperature side heater core 35 becomes a temperature (for example, 30 ° C. to 40 ° C.) at which the indoor heating can be appropriately realized. Value.
  • the control signal output to the flow rate adjustment valve 39 is determined so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is higher than the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34.
  • the heat energy that is discharged to the outside together with the exhaust is recovered by exchanging heat between the supply air and the exhaust. Therefore, as shown in FIG. 2, when the indoor temperature (that is, the inlet side exhaust temperature Texi) and the outside air temperature Tam are constant, the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 decreases. The amount of recovered heat energy will also increase.
  • the exhaust heat exchanger 34 will be moved to the outlet side of the exhaust passage. Condensation will occur. Such condensation may cause the exhaust passage in the ventilation heat exchanger 34 to be frozen and blocked, or flow out to the wall surface of the house and generate mold or the like.
  • the ventilation heat exchanger 34 exchanges heat between the supply air and the exhaust gas. Therefore, as shown in FIG. 2, by adjusting the temperature of the supply air flowing into the ventilation heat exchanger 34, the ventilation heat exchange is performed. The temperature of the exhaust gas flowing out from the vessel 34 can be adjusted.
  • the control device controls the operation of the flow rate adjustment valve 39 to adjust the flow rate of hot water flowing into the low-temperature side heater core 36, whereby the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is changed to the dew point temperature Tdp.
  • the temperature is made to approach a temperature that is higher by a reference value ⁇ (1 ° C. in the present embodiment) that is set in advance.
  • the reference value ⁇ is determined so that condensation does not occur on the outlet side of the exhaust passage of the ventilation heat exchanger 34 due to detection error of each detector, operation delay of the flow rate adjustment valve 39, and the like. Value.
  • control signal output to the flow rate adjustment valve 39 is determined as shown in the flowchart of FIG. 3 is a control flow executed as a subroutine of the main routine.
  • the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34 is calculated based on the outside temperature Tam, the inlet side exhaust temperature Texi, the inlet side exhaust humidity Hexi, etc. read in the main routine.
  • the dew point temperature Tdp can be calculated or estimated by using at least two detection values of the outside air temperature Tam, the inlet side exhaust temperature Texi, and the inlet side exhaust humidity Hexi.
  • the calculation accuracy of the dew point temperature Tdp is improved by using three detection values.
  • a value (Tdp + ⁇ ) obtained by adding a predetermined reference value ⁇ (for example, 1 ° C.) to the dew point temperature Tdp calculated in S1 is compared with the outlet side exhaust temperature Texo read in the main routine. To do.
  • the outlet side exhaust temperature Texo is higher than the value obtained by adding the reference value ⁇ to the dew point temperature Tdp. There is no risk of condensation on the outlet side of the exhaust passage.
  • the process proceeds to S3, in which a control signal output to the flow rate adjusting valve 39 is determined so as to decrease the flow rate of the hot water flowing into the low temperature side heater core 36 by a predetermined amount, and the process returns to the main routine.
  • a control signal output to the flow rate adjusting valve 39 is determined so as to decrease the flow rate of the hot water flowing into the low temperature side heater core 36 by a predetermined amount, and the process returns to the main routine.
  • the outlet side exhaust temperature Texo is lower than the value obtained by adding the reference body ⁇ to the dew point temperature Tdp. Condensation may occur on the outlet side of the exhaust passage.
  • the process proceeds to S4, the control signal output to the flow rate adjusting valve 39 is determined so that the flow rate of the hot water flowing into the low temperature side heater core 36 is increased by a predetermined amount, and the process returns to the main routine.
  • the temperature of the supply air flowing into the ventilation heat exchanger 34 can be raised and the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be raised, so the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be increased.
  • control signal and the control voltage determined as described above are output to various control target devices. Then, the heat pump cycle 10 is operated so that the temperature Tt of the hot water stored in the hot water storage tank 20 approaches the target heating temperature set by the temperature setting switch.
  • control device reads the detection signal and the operation signal at a predetermined control cycle until the operation switch of the operation panel is turned off and the operation stop of the heating system 1 is requested.
  • Control routines such as state determination ⁇ output of control voltages and control signals to various devices to be controlled are repeated.
  • the heating system 1 when the heating system 1 is operated, in the heat pump cycle 10, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage 12a of the water-refrigerant heat exchanger 12 and flows through the water passage 12b. To dissipate heat. Thereby, the hot water supplied through the water passage 12b is heated.
  • the high-pressure refrigerant that has flowed out of the refrigerant passage 12a flows into the electric expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the electric expansion valve 13 flows into the evaporator 14, absorbs heat from the exhaust gas flowing out from the exhaust ventilation path 32 of the supply air heating unit 30, and evaporates.
  • the refrigerant flowing out of the evaporator 14 is sucked into the compressor 11 and compressed again.
  • the relatively low temperature hot water supplied from the first water circulation pump 22 on the lower side of the hot water storage tank 20 is heated when it flows through the water passage 12 b of the water-refrigerant heat exchanger 12. Is done. Hot water that has been heated by the water-refrigerant heat exchanger 12 to a high temperature is stored above the hot water storage tank 20.
  • the warm water flows out from the warm water outlet on the upper side of the warm water passage 38.
  • the hot water flowing out from the hot water outlet of the hot water passage 38 is heated by the hot water supply at a relatively high temperature above the hot water storage tank 20 and rises in temperature until it reaches the reference temperature.
  • the hot water (high temperature side heat medium) whose temperature has been increased to the reference temperature flows into the high temperature side heater core 35 and exchanges heat with the supply air flowing out from the ventilation heat exchanger 34 to dissipate heat.
  • the supply air flowing out from the ventilation heat exchanger 34 is heated until it reaches a temperature at which the room can be appropriately heated.
  • the ventilation heat exchanger uses hot water (high temperature side heat medium) heated indirectly through hot water by the high temperature and high pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 as a heat source.
  • the supply air flowing out from 34 is heated.
  • the hot water (low temperature side heat medium) whose temperature has been reduced by releasing heat to the supply air at the high temperature side heater core 35 flows into the flow rate adjustment valve 39 and is distributed to the low temperature side heater core 36 and the bypass passage 41.
  • the flow rate of hot water flowing into the low-temperature side heater core 36 is adjusted so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 approaches a value (Tdp + ⁇ ) obtained by adding the reference value ⁇ to the dew point temperature Tdp.
  • the hot water that has flowed into the low-temperature side heater core 36 from the flow rate adjustment valve 39 exchanges heat with the supply air that is blown from the supply air blowing fan 33a and flows into the ventilation heat exchanger 34, and dissipates heat. Thereby, the supply air flowing into the ventilation heat exchanger 34 is heated.
  • the hot water flowing out from the low-temperature side heater core 36 joins the hot water flowing out from the bypass passage 41 and is sucked into the second water circulation pump 40 and is pumped to the hot water inlet of the hot water passage 38 disposed on the lower side of the hot water storage tank 20. .
  • hot water supplied to the lower side of the hot water storage tank 20 that exchanges heat with the hot water on the upstream side (the hot water inlet side) of the hot water flowing through the hot water passage 38 is supplied from the first water circulation pump 22 to the water-refrigerant heat exchanger.
  • the heat is exchanged with the refrigerant that is pumped to the 12 water passages 12 b and flows into the electric expansion valve 13 on the outlet side of the refrigerant passage 12 a of the water-refrigerant heat exchanger 12.
  • the temperature of the refrigerant flowing into the electric expansion valve 13 is lowered through the hot water by the hot water (low temperature side heat medium) flowing out from the low temperature side heater core 36.
  • the supply air (outside air) blown from the supply air blowing fan 33a is heated by the low-temperature side heater core 36 and flows into the supply passage of the ventilation heat exchanger 34.
  • the supply air that has flowed into the supply passage of the ventilation heat exchanger 34 is exchanged with the exhaust (inside air) that is blown from the exhaust blower fan 32 a and flows through the exhaust passage of the ventilation heat exchanger 34.
  • the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is adjusted so as to approach a value (Tdp + ⁇ ) obtained by adding the reference value ⁇ to the dew point temperature Tdp.
  • the supply air that has flowed out of the ventilation heat exchanger 34 is further heated by the high-temperature heater core 35 and blown into each room that is a space to be heated through a duct (not shown), while it flows out of the ventilation heat exchanger 34.
  • the exhausted air is blown to the evaporator 14 side of the heat pump cycle 10 through the exhaust ventilation path 32 and a duct (not shown).
  • hot water heated by the water-refrigerant heat exchanger 2 of the heat pump cycle 10 can be stored in the hot water storage tank 20. Furthermore, heating of each room
  • the heat medium heated indirectly through the hot water by the heat generated in the heat pump cycle 10 is used as a heat source to heat the supply air taken into the space to be heated.
  • the supply air can be sufficiently and easily raised to a temperature required for heating the space to be heated.
  • the temperature of the hot water that exchanges heat with the refrigerant that flows into the electric expansion valve 13 is lowered by exchanging heat between the hot water and the supply air that flows into the ventilation heat exchanger 34 in the low-temperature side heater core 36.
  • the coefficient of performance (COP) of the heat pump cycle can be improved by lowering the enthalpy of the refrigerant flowing into the electric expansion valve 13.
  • the heating system 1 since the two heat exchangers for heating, that is, the high temperature side heater core 35 and the low temperature side heater core 36, are provided, the space to be heated from the outside without causing a decrease in COP of the heat pump cycle 10. It is possible to sufficiently heat the air supplied to the air.
  • the flow rate adjustment valve 39 that is a heat medium flow rate adjustment unit is provided, so that the heating capacity of the low-temperature side heater core 36 is adjusted and the temperature of the supply air flowing into the ventilation heat exchanger 34 is adjusted. That is, the temperature of the supply air that exchanges heat with the exhaust can be adjusted by the ventilation heat exchanger 34. Therefore, the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be adjusted, and condensation on the exhaust outlet side of the ventilation heat exchanger 34 can be suppressed.
  • the flow rate is set so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 becomes a value obtained by adding the reference value ⁇ to the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34. Since the operation of the regulating valve 39 is controlled, dew condensation on the exhaust outlet side of the ventilation heat exchanger 34 can be reliably suppressed, and a reduction in the amount of recovered heat energy from the exhaust can be suppressed.
  • the second water circulation circuit 37 is provided with a bypass passage 41, and a low-temperature heater core 36 and a flow rate adjustment valve 39 disposed on the upstream side of the hot water flow of the bypass passage 41 are employed as the heat medium flow rate adjustment unit. ing. Therefore, when the heat medium flow rate adjustment unit changes the heat medium flow rate ratio, it can be suppressed that the temperature of the supply air to be blown into the space to be heated is changed.
  • the supply air flowing out from the ventilation heat exchanger 34 is heated using the hot water heated by the hot water supply as a heat source.
  • the maximum temperature of the hot water in the hot water storage tank 20 and the maximum temperature of the hot water flowing into the high temperature side heater core 35 can be set to different values.
  • the hot water stored in the hot water storage tank 20 can also be used as a heat source for a heating device (or a heating device) that requires a heat source in a temperature range different from that of the high temperature side heater core 35 or the low temperature side heater core 36. .
  • the heat of the exhaust gas is absorbed by the refrigerant and effectively used to heat the hot water supply water. can do.
  • the thermal energy of the exhaust can be prevented from being released to the outside, and the thermal energy of the exhaust can be effectively used for heating the room.
  • the hot water supply water may be operated without heating the room.
  • the operations of the exhaust air blowing fan 32a, the supply air blowing fan 33b, and the second water circulation pump 40 may be stopped, and the evaporator 14 may be operated so that the refrigerant absorbs heat from the outside air and evaporates.
  • the room may be heated without heating the hot water.
  • the operation of the compressor 11, the electric expansion valve 13, and the first water circulation pump 22 may be stopped.
  • the heat medium flow control unit may be configured using two normal two-type flow control valves.
  • a hot water branching portion for branching the flow of hot water is arranged, and two types of flow rate adjusting valves are provided in each of the hot water passage and the bypass passage 41 from the hot water branching portion to the low temperature side heater core 36. May be arranged.
  • a heater that requires a heat source in a temperature range lower than that of the high temperature side heater core 35 and higher than that of the low temperature side heater core 36.
  • a panel heater or towel warmer that requires a heat source in a temperature range of about 20 ° C. to 40 ° C. can be used as such a heater.
  • the hot water is heated by the heat pump cycle 10, and the hot water flowing into the high temperature side heater core 35 and the low temperature side heater core 36 is heated using the heated hot water as a heat source.
  • the hot water may be directly heated by the heat pump cycle 10.
  • the heater is not limited to the heat pump cycle 10, and for example, a gas boiler or a fuel combustion heater may be employed.
  • the evaporator 14 is configured to exchange heat between the refrigerant and the exhaust gas flowing out from the ventilation heat exchanger 34.
  • the evaporator 14 performs heat exchange between the refrigerant and the outside air. You may employ
  • the exhaust blower fan 32 a is arranged on the most upstream side of the exhaust air flow path 32, and the supply air fan 33 a is arranged on the most upstream side of the supply air flow path 33.
  • the arrangement of the exhaust fan 32a and the air supply fan 33a is not limited to this.
  • the exhaust air blowing fan 32 a may be arranged on the most upstream side of the exhaust air flow path 32, and the air supply fan 33 a may be arranged on the most downstream side of the air supply air flow of the air supply ventilation path 33.
  • two ventilation fans can be arrange
  • the ventilation heat exchanger 34 is configured by stacking and arranging a plurality of metal plates having excellent heat transfer properties, and configured as a sensible heat exchanger that exchanges heat between exhaust and supply air. Adopted. However, you may employ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention is provided with: a ventilation heat exchanger (34) that exchanges heat between exhaust air, which is discharged from inside a room that is the space that is the subject of heating to outside the room, and supply air introduced from outside the room to inside the room; a high-temperature-side heater core (35) that heats the supply air flowing out from the ventilation heat exchanger (34) and having as a heat source a thermal medium heated by a heater; a low-temperature-side heater core (36) that heats the supply air flowing into the ventilation heat exchanger (34) and having as a heat source the thermal medium flowing out from the high-temperature-side heater core (35); and a flow rate adjustment valve (39) that adjusts the flow rate of the thermal medium flowing into the low-temperature-side heater core (36). The flow rate adjustment valve (39) adjusts the flow rate of the thermal medium flowing into the low-temperature-side heater core (36) in a manner so that the temperature of the exhaust air flowing out from the ventilation heat exchanger (34) becomes higher than the dew point. Consequently, it is possible to suppress condensation at the exhaust air exit side of the ventilation heat exchanger.

Description

暖房システムHeating system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年1月23日に出願された日本特許出願2013-9907を基にしている。 This application is based on Japanese Patent Application No. 2013-9907 filed on January 23, 2013, the disclosure of which was incorporated into this application by reference.
 本開示は、換気熱交換器を備える暖房システムに関する。 The present disclosure relates to a heating system including a ventilation heat exchanger.
 従来、特許文献1に、換気熱交換器を備える暖房システムが開示されている。この換気熱交換器は、室内の換気を行う際に、室内から室外へ排出される排気(内気)と室外から室内へ取り入れられる給気(外気)とを熱交換させて給気を加熱するものである。つまり、特許文献1の換気熱交換器は、換気時に内気とともに熱エネルギが室外に排出されてしまうことを抑制して、換気による室内の温度低下を抑制する機能を果たしている。 Conventionally, Patent Document 1 discloses a heating system including a ventilation heat exchanger. This ventilation heat exchanger heats the supply air by exchanging heat between the exhaust (inside air) exhausted from the room to the outside (inside air) and the intake air (outside air) taken into the room from the outside when the room is ventilated. It is. That is, the ventilation heat exchanger of Patent Document 1 has a function of suppressing a decrease in indoor temperature due to ventilation by suppressing thermal energy from being discharged outside the room together with the inside air during ventilation.
特許第4419475号公報Japanese Patent No. 4419475
 本願発明者の検討によると、この種の換気熱交換器では、例えば、低外気温時に換気熱交換器にて給気と熱交換して冷却された排気が露点温度以下となってしまい、換気熱交換器の排気出口側に結露が生じてしまうことがある。このような結露は、換気熱交換器内の排気通路を凍結させて閉塞させてしまったり、家屋の壁面等に流れ出てカビ等を発生させてしまったりするおそれがある。 According to the inventor's study, in this type of ventilation heat exchanger, for example, the exhaust gas cooled by exchanging heat with the supply air in the ventilation heat exchanger at a low outside air temperature falls below the dew point temperature, and thus the ventilation Condensation may occur on the exhaust outlet side of the heat exchanger. Such condensation may cause the exhaust passage in the ventilation heat exchanger to be frozen and blocked, or may flow out to the wall surface of the house and cause mold or the like.
 本開示は、換気熱交換器を備える暖房システムにおいて、換気熱交換器の排気出口側の結露を抑制することを目的とする。 This disclosure aims to suppress condensation on the exhaust outlet side of the ventilation heat exchanger in a heating system including the ventilation heat exchanger.
 本開示は、上記目的を達成するために案出されたもので、本開示における暖房システムは、熱媒体を加熱する加熱器と、暖房対象空間から室外へ排出される排気と室外から暖房対象空間へ取り入れられる給気とを熱交換させる換気熱交換器と、加熱器にて加熱された高温側の熱媒体を熱源として、換気熱交換器にて加熱された給気を加熱する高温側ヒータコアと、高温側ヒータコアから流出した熱媒体よりも低い温度となっている低温側の熱媒体を熱源として、換気熱交換器へ流入する給気を加熱する低温側ヒータコアと、高温側ヒータコアへ流入する高温側の熱媒体の流量と低温側ヒータコアへ流入する低温側の熱媒体の流量との熱媒体流量比を調整する熱媒体流量調整部とを備える。 The present disclosure has been devised in order to achieve the above object, and a heating system in the present disclosure includes a heater for heating a heat medium, exhaust exhausted from the space to be heated to the outside of the room, and space to be heated from the outside of the room. A ventilation heat exchanger that exchanges heat with the intake air that is taken in, and a high-temperature side heater core that heats the supply air heated by the ventilation heat exchanger, using the high-temperature side heat medium heated by the heater as a heat source, A low-temperature side heater core that heats the supply air flowing into the ventilation heat exchanger using a low-temperature side heat medium that is lower in temperature than the heat medium flowing out from the high-temperature side heater core as a heat source, and a high temperature that flows into the high-temperature side heater core A heat medium flow rate adjusting unit that adjusts a heat medium flow rate ratio between the flow rate of the heat medium on the side and the flow rate of the heat medium on the low temperature side flowing into the low temperature side heater core.
 これによれば、熱媒体流量調整部を備えているので、低温側ヒータコアの加熱能力を調整して、換気熱交換器へ流入する給気の温度、すなわち、換気熱交換器にて排気と熱交換する給気の温度を調整することができる。従って、換気熱交換器から流出する排気の温度を調整することができ、換気熱交換器の排気出口側の結露を抑制することができる。 According to this, since the heat medium flow rate adjustment unit is provided, the heating capacity of the low-temperature side heater core is adjusted, and the temperature of the supply air flowing into the ventilation heat exchanger, that is, the exhaust air and the heat in the ventilation heat exchanger. The temperature of the supply air to be replaced can be adjusted. Therefore, the temperature of the exhaust gas flowing out from the ventilation heat exchanger can be adjusted, and condensation on the exhaust outlet side of the ventilation heat exchanger can be suppressed.
 あるいは、本開示における暖房システムは、熱媒体流量調整部の作動を制御する熱媒体流量制御部をさらに備え、換気熱交換器から流出する排気の温度が換気熱交換器から流出する排気の露点温度より高い値となるように、熱媒体流量制御部が熱媒体流量調整部の作動を制御するようになっていてもよい。 Alternatively, the heating system according to the present disclosure further includes a heat medium flow control unit that controls the operation of the heat medium flow control unit, and the temperature of the exhaust gas flowing out from the ventilation heat exchanger is the dew point temperature of the exhaust gas flowing out from the ventilation heat exchanger. The heat medium flow rate control unit may control the operation of the heat medium flow rate adjustment unit so as to have a higher value.
一実施形態の暖房システムの模式的な全体構成図である。It is a typical whole block diagram of the heating system of one Embodiment. 低温側ヒータコアへ流入する温水流量の変化に対する換気熱交換器から流出する排気の温度変化等を示すグラフである。It is a graph which shows the temperature change etc. of the exhaust_gas | exhaustion which flows out out of the ventilation heat exchanger with respect to the change of the warm water flow rate which flows into a low temperature side heater core. 一実施形態の暖房システムの制御処理の要部を示すフローチャートである。It is a flowchart which shows the principal part of the control processing of the heating system of one Embodiment.
 以下、図1を用いて、本開示の一実施形態を説明する。暖房システム1は、住宅用家屋に適用されており、リビング、キッチン、寝室等の各室内(暖房対象空間)の暖房を行うものである。さらに、この住宅用家屋は、いわゆる高気密住宅と呼ばれる気密性の高い家屋であって、定常的な換気が必要とされている。 Hereinafter, an embodiment of the present disclosure will be described with reference to FIG. The heating system 1 is applied to a residential house and heats each room (heating target space) such as a living room, a kitchen, and a bedroom. Furthermore, this residential house is a highly airtight house called a so-called high airtight house, and requires constant ventilation.
 暖房システム1は、図1の模式的な全体構成図に示すように、給湯水を加熱するヒートポンプサイクル10、このヒートポンプサイクル10にて加熱された給湯水を貯留する貯湯タンク20、室内の換気時に室外から室内へ取り入れられる給気(外気)を加熱する給気加熱ユニット30等を備えている。 As shown in the schematic overall configuration diagram of FIG. 1, the heating system 1 includes a heat pump cycle 10 that heats hot water, a hot water storage tank 20 that stores hot water heated by the heat pump cycle 10, and indoor ventilation. A supply air heating unit 30 for heating supply air (outside air) taken into the room from the outside is provided.
 まず、ヒートポンプサイクル10は、圧縮機11、水-冷媒熱交換器12、電気式膨張弁13、蒸発器14等を順次冷媒配管で接続することによって構成された蒸気圧縮式の冷凍サイクルである。また、ヒートポンプサイクル10は、後述する給湯水や温水といった熱媒体を直接的にあるいは間接的に加熱する加熱装置としての機能を果たす。 First, the heat pump cycle 10 is a vapor compression refrigeration cycle configured by sequentially connecting a compressor 11, a water-refrigerant heat exchanger 12, an electric expansion valve 13, an evaporator 14 and the like with refrigerant pipes. The heat pump cycle 10 functions as a heating device that directly or indirectly heats a heat medium such as hot water or hot water described later.
 さらに、このヒートポンプサイクル10は、冷媒として二酸化炭素を採用しており、圧縮機11の吐出口側から電気式膨張弁13の入口側へ至るサイクルの高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成している。また、この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Further, this heat pump cycle 10 employs carbon dioxide as a refrigerant, and the refrigerant pressure on the high pressure side of the cycle from the discharge port side of the compressor 11 to the inlet side of the electric expansion valve 13 is equal to or higher than the critical pressure of the refrigerant. This constitutes a supercritical refrigeration cycle. The refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 圧縮機11は、ヒートポンプサイクル10において冷媒を吸入し、臨界圧力以上となるまで圧縮して吐出するものである。本実施形態では、圧縮機11として、吐出容量が固定された固定容量型圧縮機構を電動モータにて駆動する電動圧縮機を採用している。圧縮機11の電動モータは、後述する制御装置から出力される制御信号によって、その作動(回転数)が制御される。 The compressor 11 sucks the refrigerant in the heat pump cycle 10 and compresses and discharges the refrigerant until it reaches a critical pressure or higher. In the present embodiment, an electric compressor that drives a fixed displacement type compression mechanism with a fixed discharge capacity by an electric motor is employed as the compressor 11. The operation (the number of rotations) of the electric motor of the compressor 11 is controlled by a control signal output from a control device described later.
 水-冷媒熱交換器12は、圧縮機11から吐出された冷媒と給湯水とを熱交換させて給湯水を直接的に加熱するものである。給湯水は、ヒートポンプサイクル10の加熱対象流体であり、後述する貯湯タンク20内に貯留された後、調理場や風呂等に給湯される。さらに、給湯水は、ヒートポンプサイクル10にて発生した熱を貯湯タンク20内に貯留された給湯水へ移動させる熱媒体としての機能も果たす。 The water-refrigerant heat exchanger 12 heats hot water directly by exchanging heat between the refrigerant discharged from the compressor 11 and hot water. Hot water is a fluid to be heated in the heat pump cycle 10 and is stored in a hot water storage tank 20 described later, and then supplied to a kitchen or a bath. Further, the hot water supply also serves as a heat medium for transferring the heat generated in the heat pump cycle 10 to the hot water stored in the hot water storage tank 20.
 このような水-冷媒熱交換器12としては、冷媒通路12aとして冷媒を流通させる複数本のチューブを設け、隣り合うチューブ間に水通路12bを形成し、水通路12b内に冷媒と冷却水との間の熱交換を促進するインナーフィンを配置して構成された熱交換器等を採用することができる。 As such a water-refrigerant heat exchanger 12, a plurality of tubes for circulating the refrigerant are provided as the refrigerant passage 12a, a water passage 12b is formed between adjacent tubes, and the refrigerant, cooling water, It is possible to employ a heat exchanger or the like configured by arranging inner fins that promote heat exchange between the two.
 さらに、本実施形態では、水-冷媒熱交換器12として、冷媒通路12aを流れる冷媒の流れ方向と水通路12bを流れる給湯水の流れ方向が対向流となる対向流型の熱交換器を採用している。 Further, in the present embodiment, a counter flow type heat exchanger is employed as the water-refrigerant heat exchanger 12 in which the flow direction of the refrigerant flowing through the refrigerant passage 12a and the flow direction of hot water flowing through the water passage 12b are opposite flows. is doing.
 対向流型の熱交換器では、冷媒通路12a入口側の冷媒と水通路12b出口側の給湯水とを熱交換させ、冷媒通路12a出口側の冷媒と水通路12b入口側の給湯水とを熱交換させることができるので、熱交換領域の全域に亘って給湯水と冷媒との温度差を確保して熱交換効率を向上させることができる。 In the counter-flow heat exchanger, heat is exchanged between the refrigerant on the inlet side of the refrigerant passage 12a and hot water on the outlet side of the water passage 12b, and heat is supplied to the refrigerant on the outlet side of the refrigerant passage 12a and the hot water on the inlet side of the water passage 12b. Since it can be exchanged, the temperature difference between the hot water and the refrigerant can be ensured over the entire heat exchange region, and the heat exchange efficiency can be improved.
 また、ヒートポンプサイクル10は、前述したように、超臨界冷凍サイクルを構成しているので、水-冷媒熱交換器12の冷媒通路12aでは、冷媒は凝縮することなく超臨界状態のまま放熱して、エンタルピを低下させる。 Further, since the heat pump cycle 10 constitutes a supercritical refrigeration cycle as described above, in the refrigerant passage 12a of the water-refrigerant heat exchanger 12, the refrigerant does not condense and dissipates heat in the supercritical state. Reduce enthalpy.
 電気式膨張弁13は、水-冷媒熱交換器12の冷媒通路12aから流出した冷媒を減圧させる減圧器である。具体的には、電気式膨張弁13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させる電動アクチュエータを有して構成される可変絞り機構である。さらに、この電動アクチュエータは、制御装置から出力される制御信号によって、その作動が制御される。 The electric expansion valve 13 is a decompressor that decompresses the refrigerant flowing out from the refrigerant passage 12a of the water-refrigerant heat exchanger 12. Specifically, the electric expansion valve 13 is a variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the throttle opening degree of the valve body. . Further, the operation of the electric actuator is controlled by a control signal output from the control device.
 蒸発器14は、電気式膨張弁13にて減圧された冷媒を、外気あるいは後述する給気加熱ユニット30の換気熱交換器34から流出した排気と熱交換させて蒸発させるものである。このような蒸発器14としては、フィンアンドチューブ型の熱交換器等を採用することができる。蒸発器14の冷媒出口側には、圧縮機11の吸入口側が接続されている。 The evaporator 14 evaporates the refrigerant decompressed by the electric expansion valve 13 by exchanging heat with the outside air or exhaust gas flowing out from the ventilation heat exchanger 34 of the air supply heating unit 30 described later. As such an evaporator 14, a fin-and-tube heat exchanger or the like can be employed. The refrigerant outlet side of the evaporator 14 is connected to the suction port side of the compressor 11.
 なお、ヒートポンプサイクル10の各構成機器11~14(図1の一点鎖線で囲まれた範囲の構成機器)は、1つの筐体内に収容され、もしくは、1つのフレーム構造内に収容され、ヒートポンプユニットとして一体的に構成されている。 The component devices 11 to 14 of the heat pump cycle 10 (component devices in the range surrounded by the one-dot chain line in FIG. 1) are accommodated in one housing or one frame structure, and the heat pump unit As a single unit.
 次に、貯湯タンク20について説明する。貯湯タンク20は、耐食性に優れた金属(例えば、ステンレス)で形成される温水タンクである。貯湯タンク20は、外周を断熱材で覆われた断熱構造あるいは二重タンクによる真空断熱構造等を有し、高温の給湯水を長時間保温することができる。また、この貯湯タンク20も室外に配置されている。 Next, the hot water storage tank 20 will be described. The hot water storage tank 20 is a hot water tank formed of a metal (for example, stainless steel) having excellent corrosion resistance. The hot water storage tank 20 has a heat insulating structure whose outer periphery is covered with a heat insulating material, a vacuum heat insulating structure using a double tank, or the like, and can retain hot hot water for a long time. The hot water storage tank 20 is also arranged outside the room.
 貯湯タンク20に貯留された給湯水は、貯湯タンク20の上部に設けられた出湯口から出湯され、図示しない温調弁において水道からの冷水と混合されて温度調節された後、室内(具体的には調理場や風呂等)に給湯される。また、貯湯タンク20の下部に設けられた給水口からは水道水が給水されて、給湯された分の給湯水が補充される。 Hot water stored in the hot water storage tank 20 is discharged from a hot water outlet provided in the upper part of the hot water storage tank 20, mixed with cold water from a water tap at a temperature control valve (not shown), and then adjusted in temperature (specifically Hot water is supplied to kitchens and baths. Further, tap water is supplied from a water supply port provided in the lower part of the hot water storage tank 20, and hot water for the amount of hot water supplied is replenished.
 さらに、貯湯タンク20は、第1水循環回路21によってヒートポンプサイクル10の水-冷媒熱交換器12の水通路12bと接続されている。第1水循環回路21は、貯湯タンク20と水-冷媒熱交換器12との間で給湯水を循環させる水循環回路である。この第1水循環回路21には、給湯水を循環させる水圧送器としての第1水循環ポンプ22が配置されている。 Furthermore, the hot water storage tank 20 is connected to the water passage 12 b of the water-refrigerant heat exchanger 12 of the heat pump cycle 10 by the first water circulation circuit 21. The first water circulation circuit 21 is a water circulation circuit that circulates hot water between the hot water storage tank 20 and the water-refrigerant heat exchanger 12. The first water circulation circuit 21 is provided with a first water circulation pump 22 as a water pressure feeder for circulating hot water.
 第1水循環ポンプ22は、貯湯タンク20の下方側に設けられた給湯水出口から流出した給湯水を吸入して、水-冷媒熱交換器12の水通路12bへ給湯水を圧送する電動式の水ポンプである。さらに、この第1水循環ポンプ22は、制御装置から出力される制御信号によって、その作動(回転数)が制御される。 The first water circulation pump 22 sucks hot water flowing out from a hot water outlet provided at the lower side of the hot water storage tank 20 and pumps the hot water into the water passage 12 b of the water-refrigerant heat exchanger 12. It is a water pump. Further, the operation (rotation speed) of the first water circulation pump 22 is controlled by a control signal output from the control device.
 従って、第1水循環ポンプ22を作動させると、給湯水は、貯湯タンク20の下方側に設けられた給湯水出口→第1水循環ポンプ22→水-冷媒熱交換器12の水通路12b→貯湯タンク20の上方側に設けられた給湯水入口の順に循環する。これにより、水-冷媒熱交換器12にて加熱された給湯水は貯湯タンク20の上方側に流出し、貯湯タンク20内では上方側から下方側へ向かって給湯水の温度が低くなる温度分布が生じる。 Therefore, when the first water circulation pump 22 is operated, hot water is supplied from the hot water outlet provided at the lower side of the hot water storage tank 20 → the first water circulation pump 22 → the water passage 12b of the water-refrigerant heat exchanger 12 → the hot water storage tank. It circulates in order of the hot water supply inlet provided on the upper side of 20. Accordingly, the hot water heated by the water-refrigerant heat exchanger 12 flows out to the upper side of the hot water storage tank 20, and the temperature distribution in which the temperature of the hot water is decreased from the upper side to the lower side in the hot water storage tank 20. Occurs.
 さらに、本実施形態では、水-冷媒熱交換器12として対向流型の熱交換器を採用している。従って、貯湯タンク20の下方側に設けられた給湯水出口から流出した給湯水は、水-冷媒熱交換器12の冷媒通路12aのうち冷媒流れ下流側を流通する比較的エンタルピの低い冷媒と熱交換することになる。つまり、貯湯タンク20の下方側の低温の給湯水は、水-冷媒熱交換器12にて、冷媒通路12a下流側の電気式膨張弁13へ流入する冷媒と直接的に熱交換する熱媒体となる。 Furthermore, in this embodiment, a counter-flow type heat exchanger is adopted as the water-refrigerant heat exchanger 12. Accordingly, the hot water flowing out from the hot water outlet provided on the lower side of the hot water storage tank 20 has a relatively low enthalpy refrigerant and heat circulating in the refrigerant flow downstream of the refrigerant passage 12a of the water-refrigerant heat exchanger 12. Will be replaced. That is, the low-temperature hot-water supply on the lower side of the hot water storage tank 20 is exchanged by the water-refrigerant heat exchanger 12 with a heat medium that directly exchanges heat with the refrigerant flowing into the electric expansion valve 13 on the downstream side of the refrigerant passage 12a. Become.
 一方、水-冷媒熱交換器12の水通路12bから流出する給湯水は、水-冷媒熱交換器12の冷媒通路12aのうち冷媒流れ上流側を流通する比較的エンタルピの高い冷媒と熱交換して加熱される。つまり、貯湯タンク20の上方側の高温の給湯水は、水-冷媒熱交換器12にて、ヒートポンプサイクル10の圧縮機11から吐出された高温高圧冷媒によって直接的に加熱された熱媒体となる。 On the other hand, hot water flowing out of the water passage 12b of the water-refrigerant heat exchanger 12 exchanges heat with a refrigerant having a relatively high enthalpy flowing through the refrigerant flow upstream side of the refrigerant passage 12a of the water-refrigerant heat exchanger 12. Heated. That is, the hot hot water on the upper side of the hot water storage tank 20 becomes a heat medium directly heated by the high-temperature high-pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 in the water-refrigerant heat exchanger 12. .
 給気加熱ユニット30は、室内の換気を行う際に、室内から室外へ排出される排気が流通する排気通風路32および室外から室内へ取り入れられる給気が流通する給気通風路33が形成されたケーシング31を有する。このケーシング31内に、排気送風ファン32a、給気送風ファン33a、換気熱交換器34、給気を加熱する高温側ヒータコア35および低温側ヒータコア36が収容される。 When the air supply heating unit 30 ventilates the room, an air exhaust passage 32 through which exhaust air exhausted from the room to the outside flows and an air supply air passage 33 through which air supplied from the outside to the room flows are formed. A casing 31 is provided. The casing 31 accommodates an exhaust fan 32a, an air supply fan 33a, a ventilation heat exchanger 34, a high temperature side heater core 35 and a low temperature side heater core 36 for heating the supply air.
 排気送風ファン32aは、室内から室外へ排気を送風する電動送風機であって、排気通風路32の排気流れ最上流側に配置されている。給気送風ファン33aは、室外から室内へ給気を送風する電動送風機であって、給気通風路33の給気流れ最上流側に配置されている。また、排気送風ファン32aおよび給気送風ファン33aは、いずれも制御装置から出力される制御電圧によって稼働率、すなわち回転数(送風する空気量)が制御される。 The exhaust blower fan 32a is an electric blower that blows exhaust air from the room to the outside, and is disposed on the most upstream side of the exhaust air flow path 32. The supply air blower fan 33 a is an electric blower that blows supply air from the outside to the inside of the room, and is disposed on the most upstream side of the supply air flow path 33. Further, both the exhaust blower fan 32a and the supply air blower fan 33a are controlled in operating rate, that is, the rotation speed (the amount of air to be blown) by the control voltage output from the control device.
 換気熱交換器34は、室内の換気を行う際に、排気と給気とを熱交換させるものである。従って、換気熱交換器34は、例えば、室内の暖房時には、高温の排気と低温の給気とを熱交換させて、給気を加熱することができる。つまり、換気熱交換器34は、暖房時に排気とともに室外へ排出されてしまう熱エネルギを回収して給気を加熱することによって、換気による室内の温度低下を抑制する機能を果たす。 The ventilation heat exchanger 34 exchanges heat between the exhaust and the air supply when the room is ventilated. Therefore, the ventilation heat exchanger 34 can heat the supply air by, for example, exchanging heat between the high-temperature exhaust and the low-temperature supply air during indoor heating. That is, the ventilation heat exchanger 34 functions to suppress the temperature drop in the room due to ventilation by recovering the heat energy that is exhausted to the outside of the room together with the exhaust during heating, and heating the supply air.
 このような換気熱交換器34としては、伝熱性に優れる複数の金属板(例えば、アルミニウム板や銅板)の板面同士を互いに平行に積層配置し、隣り合う金属板間に排気通路と吸気通路とを交互に形成し、それぞれの排気通路および給気通路の内部に排気と給気との熱交換を促進するインナーフィンを配置することによって構成された熱交換器等を採用することができる。なお、換気熱交換器34は、例えば、室内の冷房時には、高温の給気と低温の排気とを熱交換させて、給気を冷却することもできる。 As such a ventilation heat exchanger 34, plate surfaces of a plurality of metal plates (for example, an aluminum plate and a copper plate) having excellent heat conductivity are stacked in parallel to each other, and an exhaust passage and an intake passage are provided between adjacent metal plates. Are alternately formed, and heat exchangers configured by disposing inner fins for promoting heat exchange between the exhaust and the supply air inside the respective exhaust passages and the supply passages can be employed. Note that the ventilation heat exchanger 34 can cool the supply air by, for example, exchanging heat between the high-temperature air supply and the low-temperature exhaust during indoor cooling.
 高温側ヒータコア35は、内部に温水を流通させ、この温水を熱源として換気熱交換器34から流出する給気(換気熱交換器34下流側の給気)を加熱する高温側の加熱用熱交換器である。低温側ヒータコア36は、内部に高温側ヒータコア35から流出して温度低下した温水を流通させて、この温水を熱源として換気熱交換器34へ流入する給気(換気熱交換器34上流側の給気)を加熱する低温側の加熱用熱交換器である。 The high temperature side heater core 35 circulates hot water therein, and heat supply for heating on the high temperature side that heats the supply air flowing out from the ventilation heat exchanger 34 (supply air downstream of the ventilation heat exchanger 34) using this warm water as a heat source. It is a vessel. The low-temperature side heater core 36 circulates hot water that has flowed out of the high-temperature side heater core 35 and reduced in temperature therein, and uses this hot water as a heat source to flow into the ventilation heat exchanger 34 (the supply air upstream of the ventilation heat exchanger 34). This is a heat exchanger for heating on the low temperature side for heating the gas.
 高温側ヒータコア35および低温側ヒータコア36は、温水を循環させる第2水循環回路37に配置されており、貯湯タンク20内に配置された温水通路38に接続されている。第2水循環回路37は、温水通路38、高温側ヒータコア35および低温側ヒータコア36の間で温水を循環させる水循環回路である。 The high temperature side heater core 35 and the low temperature side heater core 36 are arranged in a second water circulation circuit 37 for circulating hot water, and are connected to a hot water passage 38 arranged in the hot water storage tank 20. The second water circulation circuit 37 is a water circulation circuit that circulates hot water among the hot water passage 38, the high temperature side heater core 35, and the low temperature side heater core 36.
 第2水循環回路37には、高温側ヒータコア35へ流入する高温側の温水の流量と低温側ヒータコア36へ流入する低温側の温水の流量との流量比を調整する三方式の流量調整弁39および温水を循環させる水圧送器としての第2水循環ポンプ40等が配置されている。さらに、第2水循環回路37には、高温側ヒータコア35から流出して温度低下した温水を低温側ヒータコア36を迂回させて第2水循環ポンプ40の入口側へ流すバイパス通路41が設けられている。 The second water circulation circuit 37 includes three types of flow rate adjusting valves 39 for adjusting the flow rate ratio between the flow rate of hot water flowing into the high temperature side heater core 35 and the flow rate of low temperature hot water flowing into the low temperature side heater core 36. A second water circulation pump 40 or the like as a water pressure feeder for circulating hot water is disposed. Further, the second water circulation circuit 37 is provided with a bypass passage 41 that flows the hot water that has flowed out of the high-temperature side heater core 35 and decreased in temperature to bypass the low-temperature side heater core 36 to the inlet side of the second water circulation pump 40.
 また、第2水循環回路37を循環する温水は、貯湯タンク20内に貯留された給湯水の有する熱を給気へ移動させる熱媒体であって、給湯水と同じ水道水あるいはエチレングリコール水溶液等を採用することができる。つまり、暖房システム1では、給湯水と温水との2種類の熱媒体を介して、ヒートポンプサイクル10にて発生した熱を吸気へ移動させる。 The hot water circulating in the second water circulation circuit 37 is a heat medium that moves the heat of hot water stored in the hot water storage tank 20 to the supply air, and uses the same tap water or ethylene glycol aqueous solution as the hot water. Can be adopted. That is, in the heating system 1, the heat generated in the heat pump cycle 10 is moved to the intake air via two types of heat media, hot water and hot water.
 温水通路38は、貯湯タンク20内を蛇行しながら上下方向に伸びるように配置されている。従って、温水を温水通路38に流通させることで、貯湯タンク20内に貯湯された給湯水を熱源として温水を加熱することができる。 The hot water passage 38 is arranged to extend in the vertical direction while meandering in the hot water storage tank 20. Therefore, by circulating the hot water through the hot water passage 38, the hot water can be heated using hot water stored in the hot water storage tank 20 as a heat source.
 さらに、温水通路38の温水入口は貯湯タンク20の下方側に設けられ、温水通路38の温水出口は貯湯タンク20の上方側に設けられている。前述の如く、貯湯タンク20内の給湯水には下方側から上方側へ向かって温度が高くなる温度分布が生じているので、温水通路38を流通する温水についても下方側(温水入口側)から上方側(温水出口側)へ向かって温度が上昇することになる。 Furthermore, the hot water inlet of the hot water passage 38 is provided below the hot water storage tank 20, and the hot water outlet of the hot water passage 38 is provided above the hot water storage tank 20. As described above, the hot water supply in the hot water storage tank 20 has a temperature distribution in which the temperature increases from the lower side to the upper side, so that the hot water flowing through the hot water passage 38 is also from the lower side (hot water inlet side). The temperature increases toward the upper side (warm water outlet side).
 流量調整弁39は、低温側ヒータコア36の温水流れ上流側に配置されて、高温側ヒータコア35から流出して温度低下した低温側の温水のうち、低温側ヒータコア36へ流入させる温水の流量とバイパス通路41へ流入させる温水の流量とのバイパス流量比を変化させる電動式の流量調整弁である。さらに、この流量調整弁39は、制御装置から出力される制御信号によって、その作動が制御される。 The flow rate adjusting valve 39 is disposed upstream of the hot water flow of the low temperature side heater core 36, and bypasses and bypasses the flow rate of hot water that flows into the low temperature side heater core 36 out of the low temperature side hot water that has flowed out of the high temperature side heater core 35 and lowered in temperature. This is an electric flow rate adjustment valve that changes the bypass flow rate ratio with the flow rate of hot water flowing into the passage 41. Further, the operation of the flow rate adjusting valve 39 is controlled by a control signal output from the control device.
 つまり、流量調整弁39は、バイパス流量比を変化させて低温側ヒータコア36へ流入する低温側の温水の流量を調整することによって、高温側ヒータコア35へ流入する高温側の温水(高温側の熱媒体)の流量と低温側ヒータコア36へ流入する低温側の温水(低温側の熱媒体)の流量との流量比(熱媒体流量比)を調整する熱媒体流量調整部を構成している。 That is, the flow rate adjusting valve 39 adjusts the flow rate of the low temperature side hot water flowing into the low temperature side heater core 36 by changing the bypass flow rate ratio, so that the high temperature side hot water flowing into the high temperature side heater core 35 (the high temperature side heat flow). The heat medium flow rate adjustment unit is configured to adjust the flow rate ratio (heat medium flow rate ratio) between the flow rate of the medium) and the flow rate of the low temperature side hot water (low temperature side heat medium) flowing into the low temperature side heater core 36.
 第2水循環ポンプ40は、低温側ヒータコア36から流出した温水を吸入して、温水通路38の温水入口側へ圧送する電動式の水ポンプである。この第2水循環ポンプ40は、制御装置から出力される制御信号によってその作動(回転数)が制御される。 The second water circulation pump 40 is an electric water pump that sucks the hot water flowing out from the low-temperature side heater core 36 and pumps it to the hot water inlet side of the hot water passage 38. The operation (rotation speed) of the second water circulation pump 40 is controlled by a control signal output from the control device.
 従って、第2水循環ポンプ40を作動させると、温水は、第2水循環ポンプ40→貯湯タンクの下方側に配置された温水通路38の温水入口→温水通路38→貯湯タンクの上方側に配置された温水通路38の温水出口→高温側ヒータコア35→流量調整弁39→低温側ヒータコア36→第2水循環ポンプ40の順に循環するとともに、流量調整弁39→バイパス通路41→第2水循環ポンプ40の順に循環する。 Therefore, when the second water circulation pump 40 is operated, the hot water is arranged at the second water circulation pump 40 → the hot water inlet of the hot water passage 38 arranged on the lower side of the hot water storage tank → the hot water passage 38 → the upper side of the hot water storage tank. It circulates in order of the hot water outlet of the hot water passage 38 → the high temperature side heater core 35 → the flow rate adjustment valve 39 → the low temperature side heater core 36 → the second water circulation pump 40 and the flow rate adjustment valve 39 → the bypass passage 41 → the second water circulation pump 40. To do.
 さらに、給気加熱ユニット30には、排気通風路32の下流側に、換気熱交換器34から流出した排気を、図1の太破線矢印に示すように、ヒートポンプサイクル10の蒸発器14側へ導くダクト(図示せず)が接続されている。これにより、蒸発器14では、電気式膨張弁13にて減圧された低圧冷媒を排気と熱交換させて蒸発させることができる。 Further, in the supply air heating unit 30, the exhaust gas flowing out from the ventilation heat exchanger 34 on the downstream side of the exhaust ventilation path 32 is sent to the evaporator 14 side of the heat pump cycle 10 as shown by a thick broken line arrow in FIG. 1. A guiding duct (not shown) is connected. Thereby, in the evaporator 14, the low pressure refrigerant decompressed by the electric expansion valve 13 can be evaporated by exchanging heat with the exhaust.
 次に、電気制御部の概要を説明する。図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。この制御装置は、ROMに記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11、13、22、32a、33a、40等の作動を制御する。 Next, an outline of the electric control unit will be described. A control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. This control device performs various calculations and processes based on a control program stored in the ROM, and controls the operations of the above-described various electric actuators 11, 13, 22, 32a, 33a, 40, and the like.
 制御装置の入力側には、高圧側圧力センサ、沸上温度センサ、蒸発器温度センサ、外気温センサ、タンク内温度センサ、温水温度センサ、入口側排気温度センサ51、入口側排気湿度センサ52、そして出口側排気温度センサ53といった各種制御用のセンサ群が接続され、これらのセンサ群の検出信号が制御装置へ入力される。高圧側圧力センサは、圧縮機11から吐出された高圧冷媒の高圧側冷媒圧力Pdを検出する高圧側圧力検出器である。沸上温度センサは、水-冷媒熱交換器12の水通路から流出する給湯水の沸上温度Twoを検出する沸上温度検出器である。蒸発器温度センサは、蒸発器14における冷媒蒸発温度(蒸発器14の温度)Tsを検出する蒸発器温度検出器である。外気温センサは、外気温Tamを検出する外気温検出器である。タンク内温度センサは、貯湯タンク20内に貯湯された給湯水の温度Ttを検出するタンク内温度検出器である。温水温度センサは、温水通路38から流出する温水の出口温度Toutを検出する温水温度検出器である。入口側排気温度センサ51は、換気熱交換器34へ流入する排気の入口側排気温度Texiを検出する入口側排気温度検出器である。入口側排気湿度センサ52は、換気熱交換器34へ流入する排気の入口側排気湿度Hexiを検出する入口側排気湿度検出器である。出口側排気温度センサ53は、換気熱交換器34から流出した排気の出口側排気温度Texoを検出する出口側排気温度検出器である。 On the input side of the control device, a high pressure side pressure sensor, a boiling temperature sensor, an evaporator temperature sensor, an outside air temperature sensor, a tank temperature sensor, a hot water temperature sensor, an inlet side exhaust temperature sensor 51, an inlet side exhaust humidity sensor 52, Various control sensor groups such as the outlet side exhaust temperature sensor 53 are connected, and detection signals from these sensor groups are input to the control device. The high pressure side pressure sensor is a high pressure side pressure detector that detects the high pressure side refrigerant pressure Pd of the high pressure refrigerant discharged from the compressor 11. The boiling temperature sensor is a boiling temperature detector that detects the boiling temperature Two of hot water flowing out from the water passage of the water-refrigerant heat exchanger 12. The evaporator temperature sensor is an evaporator temperature detector that detects a refrigerant evaporation temperature (temperature of the evaporator 14) Ts in the evaporator 14. The outside air temperature sensor is an outside air temperature detector that detects the outside air temperature Tam. The tank internal temperature sensor is a tank internal temperature detector that detects the temperature Tt of hot water stored in the hot water storage tank 20. The hot water temperature sensor is a hot water temperature detector that detects an outlet temperature Tout of hot water flowing out from the hot water passage 38. The inlet side exhaust temperature sensor 51 is an inlet side exhaust temperature detector that detects the inlet side exhaust temperature Texi of the exhaust flowing into the ventilation heat exchanger 34. The inlet side exhaust humidity sensor 52 is an inlet side exhaust humidity detector that detects the inlet side exhaust humidity Hexi of the exhaust flowing into the ventilation heat exchanger 34. The outlet side exhaust temperature sensor 53 is an outlet side exhaust temperature detector that detects the outlet side exhaust temperature Texo of the exhaust gas flowing out from the ventilation heat exchanger 34.
 さらに、制御装置の入力側には、図示しない操作パネルが接続されている。この操作パネルには、暖房システム1の作動を要求する作動信号を出力する作動スイッチ、給湯水の沸上温度(目標加熱温度)を設定する温度設定スイッチ等が設けられ、これらのスイッチの操作信号が制御装置へ入力される。 Furthermore, an operation panel (not shown) is connected to the input side of the control device. This operation panel is provided with an operation switch for outputting an operation signal for requesting the operation of the heating system 1, a temperature setting switch for setting a boiling temperature (target heating temperature) of hot water, and the operation signals of these switches. Is input to the controller.
 なお、制御装置は、その出力側に接続された各種制御対象機器を制御する制御部が一体的に構成されたものである。制御装置のうちそれぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 Note that the control device is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured. The structure (hardware and software) which controls the operation | movement of each control object apparatus among the control apparatuses comprises the control part which controls the operation | movement of each control object apparatus.
 例えば、制御装置のうち、圧縮機11の作動(冷媒吐出能力)を制御する構成(ハードウェアおよびソフトウェア)が圧縮機制御部を構成しており、流量調整弁39の作動を制御する構成(ハードウェアおよびソフトウェア)が熱媒体流量制御部を構成している。圧縮機制御部や熱媒体流量制御部を制御装置に対して別の装置で構成してもよい。 For example, in the control device, a configuration (hardware and software) that controls the operation (refrigerant discharge capacity) of the compressor 11 constitutes a compressor control unit, and a configuration that controls the operation of the flow rate adjustment valve 39 (hardware). Hardware and software) constitutes the heat medium flow control unit. You may comprise a compressor control part and a heat carrier flow control part with another apparatus with respect to a control apparatus.
 暖房システム1の作動を説明する。暖房システム1に外部電源から電力が供給された状態で、操作パネルの作動スイッチから作動要求信号が出力されると、制御装置が予めROM(記憶回路)に記憶している制御処理(制御プログラム)を実行する。 The operation of the heating system 1 will be described. When an operation request signal is output from the operation switch of the operation panel in a state where electric power is supplied to the heating system 1 from the external power source, a control process (control program) stored in a ROM (storage circuit) in advance by the control device Execute.
 この制御処理では、操作パネルの操作信号および上述した制御用のセンサ群により検出された検出信号を読み込み、読み込まれた操作信号および検出信号に基づいて、制御装置の出力側に接続された各種制御対象機器の制御状態(具体的には、各種制御対象機器へ出力される制御信号あるいは制御電圧)を決定する。 In this control process, the operation signal of the operation panel and the detection signal detected by the above-described control sensor group are read, and various controls connected to the output side of the control device based on the read operation signal and detection signal. The control state of the target device (specifically, a control signal or control voltage output to various control target devices) is determined.
 例えば、圧縮機11へ出力される制御信号については、操作パネルからの給湯温度設定信号および外気温センサにより検出された外気温Tamに基づいて、制御装置のROMに記憶された制御マップを参照して決定される。具体的には、給湯温度設定信号による設定温度の上昇および外気温Tamの低下に伴って、圧縮機1の回転数(冷媒吐出能力)が増加するように決定される。 For example, for the control signal output to the compressor 11, the control map stored in the ROM of the control device is referred to based on the hot water temperature setting signal from the operation panel and the outside air temperature Tam detected by the outside air temperature sensor. Determined. Specifically, the rotational speed (refrigerant discharge capacity) of the compressor 1 is determined to increase as the set temperature is increased by the hot water supply temperature setting signal and the outside air temperature Tam is decreased.
 また、電気式膨張弁13の電動アクチュエータに出力される制御信号については、ヒートポンプサイクル10の高圧側冷媒圧力Pdが目標高圧となるように決定される。この目標高圧は、外気温Tamおよび圧縮機11の回転数に基づいて、制御装置のROMに記憶された制御マップを参照して、ヒートポンプサイクル10の成績係数(COP)が最大となるように決定される。 Further, the control signal output to the electric actuator of the electric expansion valve 13 is determined so that the high-pressure side refrigerant pressure Pd of the heat pump cycle 10 becomes the target high pressure. The target high pressure is determined so that the coefficient of performance (COP) of the heat pump cycle 10 is maximized based on the outside air temperature Tam and the rotational speed of the compressor 11 with reference to the control map stored in the ROM of the control device. Is done.
 また、第1水循環回路21の第1水循環ポンプ22へ出力される制御電圧については、フィードバック制御手法等を用いて、水-冷媒熱交換器12の水通路12bから流出する給湯水の沸上温度Twoが温度設定スイッチによって設定された目標加熱温度(例えば、80℃~90℃)に近づくように決定される。また、排気送風ファン32aおよび給気送風ファン33aへ出力される制御電圧については、排気送風ファン32aおよび給気送風ファン33aが予め定めた所定送風能力を発揮できるように決定される。 As for the control voltage output to the first water circulation pump 22 of the first water circulation circuit 21, the boiling temperature of the hot water flowing out from the water passage 12b of the water-refrigerant heat exchanger 12 is used by using a feedback control method or the like. Two is determined so as to approach the target heating temperature (for example, 80 ° C. to 90 ° C.) set by the temperature setting switch. The control voltage output to the exhaust air fan 32a and the air supply fan 33a is determined so that the exhaust air fan 32a and the air supply fan 33a can exhibit a predetermined air blowing capability.
 また、第2水循環回路37の第2水循環ポンプ40へ出力される制御電圧については、フィードバック制御手法等を用いて、温水通路38から流出する温水の出口温度Tout(高温側ヒータコア35へ流入する温水温度)が予め定めた基準温度(本実施形態では、40℃~50℃)となるように決定される。この基準温度は、高温側ヒータコア35にて温水通路38から流出した温水と熱交換した給気が、室内の暖房を適切に実現可能な温度(例えば、30℃~40℃)となるように定められた値である。 Moreover, about the control voltage output to the 2nd water circulation pump 40 of the 2nd water circulation circuit 37, using the feedback control method etc., the exit temperature Tout of the warm water which flows out from the warm water path 38 (the warm water which flows into the high temperature side heater core 35) Temperature) is determined to be a predetermined reference temperature (in this embodiment, 40 ° C. to 50 ° C.). This reference temperature is determined so that the supply air heat-exchanged with the hot water flowing out from the hot water passage 38 in the high-temperature side heater core 35 becomes a temperature (for example, 30 ° C. to 40 ° C.) at which the indoor heating can be appropriately realized. Value.
 また、流量調整弁39へ出力される制御信号については、換気熱交換器34から流出する排気の温度が、換気熱交換器34から流出する排気の露点温度Tdpより高い値となるように決定される。 The control signal output to the flow rate adjustment valve 39 is determined so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is higher than the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34. The
 ここで、暖房時の換気熱交換器34では、給気と排気とを熱交換させることによって、排気とともに室外へ排出されてしまう熱エネルギを回収している。従って、図2に示すように、室内の温度(すなわち、入口側排気温度Texi)および外気温Tamが一定である場合には、換気熱交換器34から流出する排気の温度が低くなるに伴って、熱エネルギの回収量も増加することになる。 Here, in the ventilation heat exchanger 34 at the time of heating, the heat energy that is discharged to the outside together with the exhaust is recovered by exchanging heat between the supply air and the exhaust. Therefore, as shown in FIG. 2, when the indoor temperature (that is, the inlet side exhaust temperature Texi) and the outside air temperature Tam are constant, the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 decreases. The amount of recovered heat energy will also increase.
 ところが、熱エネルギの回収量を増加させるために、換気熱交換器34から流出する排気の温度を露点温度Tdp以下となるまで低下させてしまうと、換気熱交換器34の排気通路の出口側に結露が生じてしまう。このような結露は、換気熱交換器34内の排気通路を凍結させて閉塞させてしまったり、家屋の壁面等に流れ出てカビ等を発生させてしまったりする原因となる。 However, if the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is lowered to the dew point temperature Tdp or less in order to increase the amount of recovered heat energy, the exhaust heat exchanger 34 will be moved to the outlet side of the exhaust passage. Condensation will occur. Such condensation may cause the exhaust passage in the ventilation heat exchanger 34 to be frozen and blocked, or flow out to the wall surface of the house and generate mold or the like.
 これに対して、換気熱交換器34では給気と排気とを熱交換させるので、図2に示すように、換気熱交換器34へ流入する給気の温度を調整することで、換気熱交換器34から流出する排気の温度を調整することができる。 On the other hand, the ventilation heat exchanger 34 exchanges heat between the supply air and the exhaust gas. Therefore, as shown in FIG. 2, by adjusting the temperature of the supply air flowing into the ventilation heat exchanger 34, the ventilation heat exchange is performed. The temperature of the exhaust gas flowing out from the vessel 34 can be adjusted.
 そこで、本実施形態では、制御装置が流量調整弁39の作動を制御し、低温側ヒータコア36へ流入させる温水流量を調整することによって、換気熱交換器34から流出する排気の温度が露点温度Tdpよりも予め定めた基準値α(本実施形態では、1℃)だけ高い温度に近づくようにしている。 Therefore, in the present embodiment, the control device controls the operation of the flow rate adjustment valve 39 to adjust the flow rate of hot water flowing into the low-temperature side heater core 36, whereby the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is changed to the dew point temperature Tdp. The temperature is made to approach a temperature that is higher by a reference value α (1 ° C. in the present embodiment) that is set in advance.
 なお、この基準値αは、各検出器の検出誤差や流量調整弁39の作動遅れ等によって、換気熱交換器34の排気通路の出口側に結露が生じてしまうことがないように決定された値である。 The reference value α is determined so that condensation does not occur on the outlet side of the exhaust passage of the ventilation heat exchanger 34 due to detection error of each detector, operation delay of the flow rate adjustment valve 39, and the like. Value.
 具体的には、流量調整弁39に出力される制御信号については、図3のフローチャートに示すように決定される。なお、図3のフローチャートは、メインルーチンのサブルーチンとして実行される制御フローである。 Specifically, the control signal output to the flow rate adjustment valve 39 is determined as shown in the flowchart of FIG. 3 is a control flow executed as a subroutine of the main routine.
 S1では、メインルーチンで読み込んだ、外気温Tam、入口側排気温度Texiおよび入口側排気湿度Hexi等に基づいて、換気熱交換器34から流出する排気の露点温度Tdpを算出する。 In S1, the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34 is calculated based on the outside temperature Tam, the inlet side exhaust temperature Texi, the inlet side exhaust humidity Hexi, etc. read in the main routine.
 なお、露点温度Tdpは、外気温Tam、入口側排気温度Texiおよび入口側排気湿度Hexiのうち、少なくとも2つの検出値を用いることによって算出あるいは推定することができる。本実施形態では、3つの検出値を用いることによって、露点温度Tdpの算出精度を向上させている。 Note that the dew point temperature Tdp can be calculated or estimated by using at least two detection values of the outside air temperature Tam, the inlet side exhaust temperature Texi, and the inlet side exhaust humidity Hexi. In the present embodiment, the calculation accuracy of the dew point temperature Tdp is improved by using three detection values.
 続く、S2では、S1にて算出された露点温度Tdpに予め定めた基準値α(例えば、1℃)を加算した値(Tdp+α)と、メインルーチンで読み込んだ、出口側排気温度Texoとを比較する。 Subsequently, in S2, a value (Tdp + α) obtained by adding a predetermined reference value α (for example, 1 ° C.) to the dew point temperature Tdp calculated in S1 is compared with the outlet side exhaust temperature Texo read in the main routine. To do.
 S2にて、Tdp+α<Texoになっていると判定された場合は、出口側排気温度Texoが、露点温度Tdpに基準値αを加算した値よりも高くなっているので、換気熱交換器34の排気通路の出口側に結露が生じてしまうおそれはない。 If it is determined in S2 that Tdp + α <Texo, the outlet side exhaust temperature Texo is higher than the value obtained by adding the reference value α to the dew point temperature Tdp. There is no risk of condensation on the outlet side of the exhaust passage.
 そこで、S3へ進み、低温側ヒータコア36へ流入させる温水の流量を、予め定めた所定量分減少させるように、流量調整弁39へ出力される制御信号を決定して、メインルーチンへ戻る。これにより、換気熱交換器34へ流入する給気の温度を低下させて、換気熱交換器34から流出する排気の温度を低下させることができるので、換気熱交換器34における熱エネルギの回収量を増加させることができる。 Therefore, the process proceeds to S3, in which a control signal output to the flow rate adjusting valve 39 is determined so as to decrease the flow rate of the hot water flowing into the low temperature side heater core 36 by a predetermined amount, and the process returns to the main routine. Thereby, the temperature of the supply air flowing into the ventilation heat exchanger 34 can be lowered, and the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be lowered. Therefore, the amount of recovered heat energy in the ventilation heat exchanger 34 Can be increased.
 S2にて、Tdp+α=Texoになっていると判定された場合は、出口側排気温度Texoが露点温度Tdpよりも基準値αだけ高くなっているので、流量調整弁39へ出力される制御信号を変更することなくメインルーチンへ戻る。 If it is determined in S2 that Tdp + α = Texo, the outlet side exhaust temperature Texo is higher than the dew point temperature Tdp by the reference value α, so that the control signal output to the flow rate adjustment valve 39 is Return to the main routine without change.
 S2にて、Tdp+α>Texoになっていると判定された場合は、出口側排気温度Texoが、露点温度Tdpに基準体αを加算した値よりも低くなっているので、換気熱交換器34の排気通路の出口側に結露が生じてしまうおそれがある。 If it is determined in S2 that Tdp + α> Texo, the outlet side exhaust temperature Texo is lower than the value obtained by adding the reference body α to the dew point temperature Tdp. Condensation may occur on the outlet side of the exhaust passage.
 そこで、S4へ進み、低温側ヒータコア36へ流入させる温水の流量を、予め定めた所定量分増加させるように、流量調整弁39へ出力される制御信号を決定して、メインルーチンへ戻る。これにより、換気熱交換器34へ流入する給気の温度を上昇させて、換気熱交換器34から流出する排気の温度を上昇させることができるので、換気熱交換器34から流出する排気の温度を露点温度Tdpより高い値とすることができる。 Therefore, the process proceeds to S4, the control signal output to the flow rate adjusting valve 39 is determined so that the flow rate of the hot water flowing into the low temperature side heater core 36 is increased by a predetermined amount, and the process returns to the main routine. As a result, the temperature of the supply air flowing into the ventilation heat exchanger 34 can be raised and the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be raised, so the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be increased. Can be made higher than the dew point temperature Tdp.
 さらに、制御装置が実行する制御処理では、上記の如く決定した制御信号および制御電圧を各種制御対象機器へ出力する。そして、貯湯タンク20内に貯湯された給湯水の温度Ttが、温度設定スイッチによって設定された目標加熱温度に近づくように、ヒートポンプサイクル10を作動させる。 Further, in the control process executed by the control device, the control signal and the control voltage determined as described above are output to various control target devices. Then, the heat pump cycle 10 is operated so that the temperature Tt of the hot water stored in the hot water storage tank 20 approaches the target heating temperature set by the temperature setting switch.
 その後、制御装置は、操作パネルの作動スイッチがOFFされて暖房システム1の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→各種制御対象機器の制御状態の決定→各種制御対象機器への制御電圧および制御信号の出力といった制御ルーチンを繰り返す。 After that, the control device reads the detection signal and the operation signal at a predetermined control cycle until the operation switch of the operation panel is turned off and the operation stop of the heating system 1 is requested. Control routines such as state determination → output of control voltages and control signals to various devices to be controlled are repeated.
 従って、暖房システム1を作動させると、ヒートポンプサイクル10では、圧縮機11から吐出された高温高圧冷媒が、水-冷媒熱交換器12の冷媒通路12aへ流入し、水通路12bを流通する給湯水へ放熱する。これにより、水通路12bを流通する給湯水が加熱される。 Therefore, when the heating system 1 is operated, in the heat pump cycle 10, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage 12a of the water-refrigerant heat exchanger 12 and flows through the water passage 12b. To dissipate heat. Thereby, the hot water supplied through the water passage 12b is heated.
 冷媒通路12aから流出した高圧冷媒は、電気式膨張弁13へ流入して低圧冷媒となるまで減圧される。電気式膨張弁13にて減圧された低圧冷媒は、蒸発器14へ流入し、給気加熱ユニット30の排気通風路32から流出した排気から吸熱して蒸発する。蒸発器14から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。 The high-pressure refrigerant that has flowed out of the refrigerant passage 12a flows into the electric expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the electric expansion valve 13 flows into the evaporator 14, absorbs heat from the exhaust gas flowing out from the exhaust ventilation path 32 of the supply air heating unit 30, and evaporates. The refrigerant flowing out of the evaporator 14 is sucked into the compressor 11 and compressed again.
 また、第1水循環回路21では、第1水循環ポンプ22から圧送された貯湯タンク20の下方側の比較的低温の給湯水が、水-冷媒熱交換器12の水通路12bを流通する際に加熱される。水-冷媒熱交換器12にて加熱されて高温となった給湯水は、貯湯タンク20の上方側へ貯留される。 In the first water circulation circuit 21, the relatively low temperature hot water supplied from the first water circulation pump 22 on the lower side of the hot water storage tank 20 is heated when it flows through the water passage 12 b of the water-refrigerant heat exchanger 12. Is done. Hot water that has been heated by the water-refrigerant heat exchanger 12 to a high temperature is stored above the hot water storage tank 20.
 また、第2水循環回路37では、第2水循環ポンプ40が作動しているので、温水通路38の上方側の温水出口から温水が流出する。この際、温水通路38の温水出口から流出する温水は、貯湯タンク20の上方側の比較的高い温度の給湯水によって加熱され、基準温度となるまで温度上昇する。 In the second water circulation circuit 37, since the second water circulation pump 40 is operating, the warm water flows out from the warm water outlet on the upper side of the warm water passage 38. At this time, the hot water flowing out from the hot water outlet of the hot water passage 38 is heated by the hot water supply at a relatively high temperature above the hot water storage tank 20 and rises in temperature until it reaches the reference temperature.
 そして、基準温度となるまで温度上昇した温水(高温側の熱媒体)は、高温側ヒータコア35へ流入して、換気熱交換器34から流出した給気と熱交換して放熱する。これにより、換気熱交換器34から流出した給気が室内の暖房を適切に実現可能な温度となるまで加熱される。 And the hot water (high temperature side heat medium) whose temperature has been increased to the reference temperature flows into the high temperature side heater core 35 and exchanges heat with the supply air flowing out from the ventilation heat exchanger 34 to dissipate heat. Thereby, the supply air flowing out from the ventilation heat exchanger 34 is heated until it reaches a temperature at which the room can be appropriately heated.
 つまり、高温側ヒータコア35では、ヒートポンプサイクル10の圧縮機11から吐出された高温高圧冷媒によって給湯水を介して間接的に加熱された温水(高温側の熱媒体)を熱源として、換気熱交換器34から流出した給気を加熱している。 That is, in the high temperature side heater core 35, the ventilation heat exchanger uses hot water (high temperature side heat medium) heated indirectly through hot water by the high temperature and high pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 as a heat source. The supply air flowing out from 34 is heated.
 さらに、高温側ヒータコア35にて給気に放熱して温度低下した温水(低温側の熱媒体)は、流量調整弁39へ流入して、低温側ヒータコア36およびバイパス通路41へ分配される。この際、低温側ヒータコア36へ流入する温水流量は、換気熱交換器34から流出する排気の温度が露点温度Tdpに基準値αを加えた値(Tdp+α)に近づくように調整される。 Furthermore, the hot water (low temperature side heat medium) whose temperature has been reduced by releasing heat to the supply air at the high temperature side heater core 35 flows into the flow rate adjustment valve 39 and is distributed to the low temperature side heater core 36 and the bypass passage 41. At this time, the flow rate of hot water flowing into the low-temperature side heater core 36 is adjusted so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 approaches a value (Tdp + α) obtained by adding the reference value α to the dew point temperature Tdp.
 流量調整弁39から低温側ヒータコア36へ流入した温水は、給気送風ファン33aから送風されて換気熱交換器34へ流入する給気と熱交換して放熱する。これにより、換気熱交換器34へ流入する給気が加熱される。低温側ヒータコア36から流出した温水は、バイパス通路41から流出した温水と合流して第2水循環ポンプ40に吸入され、貯湯タンク20の下方側に配置された温水通路38の温水入口へ圧送される。 The hot water that has flowed into the low-temperature side heater core 36 from the flow rate adjustment valve 39 exchanges heat with the supply air that is blown from the supply air blowing fan 33a and flows into the ventilation heat exchanger 34, and dissipates heat. Thereby, the supply air flowing into the ventilation heat exchanger 34 is heated. The hot water flowing out from the low-temperature side heater core 36 joins the hot water flowing out from the bypass passage 41 and is sucked into the second water circulation pump 40 and is pumped to the hot water inlet of the hot water passage 38 disposed on the lower side of the hot water storage tank 20. .
 ここで、温水通路38を流通する温水のうち温水流れ上流側(温水入口側)の温水と熱交換する貯湯タンク20の下方側の給湯水は、第1水循環ポンプ22から水-冷媒熱交換器12の水通路12bへ圧送されて、水-冷媒熱交換器12の冷媒通路12a出口側の電気式膨張弁13へ流入する冷媒と熱交換する。 Here, hot water supplied to the lower side of the hot water storage tank 20 that exchanges heat with the hot water on the upstream side (the hot water inlet side) of the hot water flowing through the hot water passage 38 is supplied from the first water circulation pump 22 to the water-refrigerant heat exchanger. The heat is exchanged with the refrigerant that is pumped to the 12 water passages 12 b and flows into the electric expansion valve 13 on the outlet side of the refrigerant passage 12 a of the water-refrigerant heat exchanger 12.
 従って、ヒートポンプサイクル10では、低温側ヒータコア36から流出した温水(低温側の熱媒体)によって、電気式膨張弁13へ流入する冷媒の温度を給湯水を介して低下させている。 Therefore, in the heat pump cycle 10, the temperature of the refrigerant flowing into the electric expansion valve 13 is lowered through the hot water by the hot water (low temperature side heat medium) flowing out from the low temperature side heater core 36.
 また、給気加熱ユニット30では、給気送風ファン33aから送風された給気(外気)が低温側ヒータコア36にて加熱され、換気熱交換器34の給気通路へ流入する。換気熱交換器34の給気通路へ流入した給気は、排気送風ファン32aから送風されて換気熱交換器34の排気通路を流通する排気(内気)と熱交換する。これにより、換気熱交換器34から流出する排気の温度が露点温度Tdpに基準値αを加えた値(Tdp+α)に近づくように調整される。 In the supply air heating unit 30, the supply air (outside air) blown from the supply air blowing fan 33a is heated by the low-temperature side heater core 36 and flows into the supply passage of the ventilation heat exchanger 34. The supply air that has flowed into the supply passage of the ventilation heat exchanger 34 is exchanged with the exhaust (inside air) that is blown from the exhaust blower fan 32 a and flows through the exhaust passage of the ventilation heat exchanger 34. Thereby, the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 is adjusted so as to approach a value (Tdp + α) obtained by adding the reference value α to the dew point temperature Tdp.
 換気熱交換器34から流出した給気は、高温側ヒータコア35にてさらに加熱されて、図示しないダクトを介して暖房対象空間である各室内へ送風される、一方、換気熱交換器34から流出した排気は、排気通風路32および図示しないダクトを介してヒートポンプサイクル10の蒸発器14側へ送風される。 The supply air that has flowed out of the ventilation heat exchanger 34 is further heated by the high-temperature heater core 35 and blown into each room that is a space to be heated through a duct (not shown), while it flows out of the ventilation heat exchanger 34. The exhausted air is blown to the evaporator 14 side of the heat pump cycle 10 through the exhaust ventilation path 32 and a duct (not shown).
 以上の如く、暖房システム1では、ヒートポンプサイクル10の水-冷媒熱交換器2にて加熱された給湯水を貯湯タンク20に貯留することができる。さらに、高温側ヒータコア35にて加熱された給気を、暖房対象空間である各室内へ送風することによって、各室内の暖房を実現することができる。 As described above, in the heating system 1, hot water heated by the water-refrigerant heat exchanger 2 of the heat pump cycle 10 can be stored in the hot water storage tank 20. Furthermore, heating of each room | chamber interior is realizable by ventilating the air supply heated with the high temperature side heater core 35 to each room | chamber interior which is heating object space.
 この際、高温側ヒータコア35では、ヒートポンプサイクル10にて発生した熱によって給湯水を介して間接的に加熱された熱媒体を熱源として、暖房対象空間へ取り入れられる給気を加熱しているので、給気を暖房対象空間の暖房に必要な程度の温度まで充分かつ容易に昇温させることができる。 At this time, in the high temperature side heater core 35, the heat medium heated indirectly through the hot water by the heat generated in the heat pump cycle 10 is used as a heat source to heat the supply air taken into the space to be heated. The supply air can be sufficiently and easily raised to a temperature required for heating the space to be heated.
 さらに、低温側ヒータコア36にて、温水と換気熱交換器34へ流入する給気とを熱交換させることによって、電気式膨張弁13へ流入する冷媒と熱交換する給湯水の温度を低下させるので、電気式膨張弁13へ流入する冷媒のエンタルピを低下させて、ヒートポンプサイクルの成績係数(COP)を向上させることができる。 Furthermore, the temperature of the hot water that exchanges heat with the refrigerant that flows into the electric expansion valve 13 is lowered by exchanging heat between the hot water and the supply air that flows into the ventilation heat exchanger 34 in the low-temperature side heater core 36. The coefficient of performance (COP) of the heat pump cycle can be improved by lowering the enthalpy of the refrigerant flowing into the electric expansion valve 13.
 つまり、暖房システム1によれば、高温側ヒータコア35および低温側ヒータコア36の2つの加熱用熱交換器を備えていることによって、ヒートポンプサイクル10のCOPの低下を招くことなく、室外から暖房対象空間へ取り入れられる給気を充分に加熱することができる。 That is, according to the heating system 1, since the two heat exchangers for heating, that is, the high temperature side heater core 35 and the low temperature side heater core 36, are provided, the space to be heated from the outside without causing a decrease in COP of the heat pump cycle 10. It is possible to sufficiently heat the air supplied to the air.
 また、暖房システム1によれば、熱媒体流量調整部である流量調整弁39を備えているので、低温側ヒータコア36の加熱能力を調整して、換気熱交換器34へ流入する給気の温度、すなわち、換気熱交換器34にて排気と熱交換する給気の温度を調整することができる。従って、換気熱交換器34から流出する排気の温度を調整することができ、換気熱交換器34の排気出口側の結露を抑制することができる。 In addition, according to the heating system 1, the flow rate adjustment valve 39 that is a heat medium flow rate adjustment unit is provided, so that the heating capacity of the low-temperature side heater core 36 is adjusted and the temperature of the supply air flowing into the ventilation heat exchanger 34 is adjusted. That is, the temperature of the supply air that exchanges heat with the exhaust can be adjusted by the ventilation heat exchanger 34. Therefore, the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 can be adjusted, and condensation on the exhaust outlet side of the ventilation heat exchanger 34 can be suppressed.
 さらに、本実施形態では、具体的に、換気熱交換器34から流出する排気の温度が換気熱交換器34から流出する排気の露点温度Tdpに基準値αを加算した値となるように、流量調整弁39の作動を制御するので、換気熱交換器34の排気出口側の結露を確実に抑制することができるとともに、排気からの熱エネルギの回収量が低下してしまうことを抑制できる。 Further, in the present embodiment, specifically, the flow rate is set so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger 34 becomes a value obtained by adding the reference value α to the dew point temperature Tdp of the exhaust gas flowing out from the ventilation heat exchanger 34. Since the operation of the regulating valve 39 is controlled, dew condensation on the exhaust outlet side of the ventilation heat exchanger 34 can be reliably suppressed, and a reduction in the amount of recovered heat energy from the exhaust can be suppressed.
 また、本実施形態では、第2水循環回路37にバイパス通路41を設け、熱媒体流量調整部として、低温側ヒータコア36およびバイパス通路41の温水流れ上流側に配置された流量調整弁39を採用している。従って、熱媒体流量調整部が、熱媒体流量比を変化させる際に、暖房対象空間へ送風させる給気の温度を変化させてしまうことを抑制できる。 In the present embodiment, the second water circulation circuit 37 is provided with a bypass passage 41, and a low-temperature heater core 36 and a flow rate adjustment valve 39 disposed on the upstream side of the hot water flow of the bypass passage 41 are employed as the heat medium flow rate adjustment unit. ing. Therefore, when the heat medium flow rate adjustment unit changes the heat medium flow rate ratio, it can be suppressed that the temperature of the supply air to be blown into the space to be heated is changed.
 その理由は、流量調整弁39が低温側ヒータコア36へ流入する温水(低温側の熱媒体)の流量を変化させても、高温側ヒータコア35へ流入する温水(高温側の熱媒体)の流量が変化しないからである。 The reason for this is that even if the flow rate adjusting valve 39 changes the flow rate of the hot water (low temperature side heat medium) flowing into the low temperature side heater core 36, the flow rate of the hot water (high temperature side heat medium) flowing into the high temperature side heater core 35 is maintained. This is because it does not change.
 また、暖房システム1の高温側ヒータコア35では、給湯水によって加熱された温水を熱源として、換気熱交換器34から流出した給気を加熱している。このような構成では、貯湯タンク20内の給湯水の最高温度と、高温側ヒータコア35へ流入する温水の最高温度とを異なる値とすることができる。 Moreover, in the high temperature side heater core 35 of the heating system 1, the supply air flowing out from the ventilation heat exchanger 34 is heated using the hot water heated by the hot water supply as a heat source. In such a configuration, the maximum temperature of the hot water in the hot water storage tank 20 and the maximum temperature of the hot water flowing into the high temperature side heater core 35 can be set to different values.
 従って、高温側ヒータコア35にて加熱された給気の温度を、不必要に上昇させてしまうことなく、室内の暖房を適切に実現可能な温度に容易に調整することができる。さらに、貯湯タンク20内に貯留された給湯水を、高温側ヒータコア35あるいは低温側ヒータコア36とは異なる温度帯の熱源を必要とする暖房用機器(あるいは加熱用機器)の熱源として用いることもできる。 Therefore, it is possible to easily adjust the temperature of the supply air heated by the high-temperature side heater core 35 to a temperature at which room heating can be appropriately realized without unnecessarily increasing the temperature. Furthermore, the hot water stored in the hot water storage tank 20 can also be used as a heat source for a heating device (or a heating device) that requires a heat source in a temperature range different from that of the high temperature side heater core 35 or the low temperature side heater core 36. .
 また、暖房システム1では、蒸発器14にて冷媒と換気熱交換器34から流出した排気とを熱交換させるので、排気の有する熱を冷媒に吸熱させて給湯水を加熱するために有効に活用することができる。延いては、排気の有する熱エネルギが室外に放出されてしまうことを抑制し、排気の有する熱エネルギを室内の暖房を行うために有効に活用することができる。 Moreover, in the heating system 1, since the refrigerant and the exhaust gas flowing out from the ventilation heat exchanger 34 are heat-exchanged in the evaporator 14, the heat of the exhaust gas is absorbed by the refrigerant and effectively used to heat the hot water supply water. can do. As a result, the thermal energy of the exhaust can be prevented from being released to the outside, and the thermal energy of the exhaust can be effectively used for heating the room.
 なお、上述の説明では、室内の暖房を行う際の暖房システム1の作動について説明したが、もちろん、室内の暖房を行うことなく給湯水を加熱するように作動させてもよい。この場合は、排気送風ファン32a、給気送風ファン33bおよび第2水循環ポンプ40の作動を停止させ、蒸発器14では冷媒が外気から吸熱して蒸発するように作動させればよい。 In the above description, the operation of the heating system 1 when heating the room has been described. Of course, the hot water supply water may be operated without heating the room. In this case, the operations of the exhaust air blowing fan 32a, the supply air blowing fan 33b, and the second water circulation pump 40 may be stopped, and the evaporator 14 may be operated so that the refrigerant absorbs heat from the outside air and evaporates.
 さらに、貯湯タンク20内の給湯水が充分に加熱されて昇温されている場合は、給湯水の加熱を行うことなく室内の暖房を行ってもよい。この場合は、圧縮機11、電気式膨張弁13および第1水循環ポンプ22の作動を停止させればよい。
(他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
Furthermore, when the hot water in the hot water storage tank 20 is sufficiently heated and heated, the room may be heated without heating the hot water. In this case, the operation of the compressor 11, the electric expansion valve 13, and the first water circulation pump 22 may be stopped.
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上述の実施形態では、熱媒体流量調整部として流量調整弁39を採用した例を説明したが、熱媒体流量調整部はこれに限定されない。例えば、通常の二方式の流量調整弁を2つ用いて熱媒体流量調整部を構成してもよい。この場合は、流量調整弁39に代えて、温水の流れを分岐する温水分岐部を配置し、温水分岐部から低温側ヒータコア36へ至る温水通路およびバイパス通路41のそれぞれに二方式の流量調整弁を配置すればよい。 (1) In the above-described embodiment, the example in which the flow rate adjustment valve 39 is employed as the heat medium flow rate adjustment unit has been described, but the heat medium flow rate adjustment unit is not limited thereto. For example, the heat medium flow control unit may be configured using two normal two-type flow control valves. In this case, instead of the flow rate adjusting valve 39, a hot water branching portion for branching the flow of hot water is arranged, and two types of flow rate adjusting valves are provided in each of the hot water passage and the bypass passage 41 from the hot water branching portion to the low temperature side heater core 36. May be arranged.
 (2)上述の実施形態では、高温側ヒータコア35の温水出口側に流量調整弁39を接続した例を説明したが、例えば、高温側ヒータコア35の温水出口側と流量調整弁39の入口側との間に、高温側ヒータコア35から流出した温水を熱源として加熱対象物を加熱する加熱器を配置してもよい。 (2) In the above-described embodiment, the example in which the flow rate adjustment valve 39 is connected to the hot water outlet side of the high temperature side heater core 35 has been described, but for example, the hot water outlet side of the high temperature side heater core 35 and the inlet side of the flow rate adjustment valve 39 A heater for heating the object to be heated using hot water flowing out from the high-temperature side heater core 35 as a heat source may be disposed.
 このような加熱器としては、高温側ヒータコア35よりも低い温度帯で、かつ、低温側ヒータコア36よりも高い温度帯の熱源を必要とするものを採用することが望ましい。具体的には、このような加熱器としては、20℃~40℃程度の温度帯の熱源を必要とするパネルヒータやタオルウォーマ等を採用することができる。 As such a heater, it is desirable to employ a heater that requires a heat source in a temperature range lower than that of the high temperature side heater core 35 and higher than that of the low temperature side heater core 36. Specifically, a panel heater or towel warmer that requires a heat source in a temperature range of about 20 ° C. to 40 ° C. can be used as such a heater.
 (3)上述の実施形態では、ヒートポンプサイクル10によって給湯水を加熱し、さらに加熱された給湯水を熱源として高温側ヒータコア35および低温側ヒータコア36へ流入する温水を加熱した例を説明したが、ヒートポンプサイクル10によって直接温水を加熱する構成としてもよい。さらに、加熱器としては、ヒートポンプサイクル10に限定されることなく、例えば、ガスボイラや燃料燃焼式ヒータ等を採用してもよい。 (3) In the above-described embodiment, the hot water is heated by the heat pump cycle 10, and the hot water flowing into the high temperature side heater core 35 and the low temperature side heater core 36 is heated using the heated hot water as a heat source. The hot water may be directly heated by the heat pump cycle 10. Further, the heater is not limited to the heat pump cycle 10, and for example, a gas boiler or a fuel combustion heater may be employed.
 (4)上述の実施形態では、蒸発器14にて冷媒と換気熱交換器34から流出した排気とを熱交換させる構成を採用しているが、蒸発器14にて冷媒と外気とを熱交換させる構成を採用してもよい。これにより、給気加熱ユニット30の排気通風路32の下流側からヒートポンプサイクル10の蒸発器14側へ排気を導くダクトを廃止できる。 (4) In the above-described embodiment, the evaporator 14 is configured to exchange heat between the refrigerant and the exhaust gas flowing out from the ventilation heat exchanger 34. However, the evaporator 14 performs heat exchange between the refrigerant and the outside air. You may employ | adopt the structure to make. Thereby, the duct which guides exhaust_gas | exhaustion from the downstream of the exhaust ventilation path 32 of the supply air heating unit 30 to the evaporator 14 side of the heat pump cycle 10 can be abolished.
 (5)上述の実施形態では、排気送風ファン32aを排気通風路32の排気流れ最上流側に配置し、給気送風ファン33aを給気通風路33の給気流れ最上流側に配置した例を説明したが、排気送風ファン32aおよび給気送風ファン33aの配置はこれに限定されない。 (5) In the above-described embodiment, the exhaust blower fan 32 a is arranged on the most upstream side of the exhaust air flow path 32, and the supply air fan 33 a is arranged on the most upstream side of the supply air flow path 33. However, the arrangement of the exhaust fan 32a and the air supply fan 33a is not limited to this.
 例えば、排気送風ファン32aを排気通風路32の排気流れ最上流側に配置し、給気送風ファン33aを給気通風路33の給気流れ最下流側に配置してもよい。これにより、2つの送風ファンを室外側に配置することができ、室内のユーザに排気送風ファン32aおよび給気送風ファン33aの作動音が聞こえてしまうことを抑制できる。 For example, the exhaust air blowing fan 32 a may be arranged on the most upstream side of the exhaust air flow path 32, and the air supply fan 33 a may be arranged on the most downstream side of the air supply air flow of the air supply ventilation path 33. Thereby, two ventilation fans can be arrange | positioned on the outdoor side, and it can suppress that the indoor user hears the operation sound of the exhaust ventilation fan 32a and the air supply ventilation fan 33a.
 (6)上述の実施形態では、換気熱交換器34として伝熱性に優れる複数の金属板を積層配置することによって構成されて排気と給気との間で熱を交換する顕熱交換器として構成されたものを採用した。しかしながら、伝熱性および透湿性を有する材質で形成された板状部材を積層配置することによって構成された、いわゆる全熱交換器を採用してもよい。 (6) In the above-described embodiment, the ventilation heat exchanger 34 is configured by stacking and arranging a plurality of metal plates having excellent heat transfer properties, and configured as a sensible heat exchanger that exchanges heat between exhaust and supply air. Adopted. However, you may employ | adopt what is called a total heat exchanger comprised by laminating | stacking the plate-shaped member formed with the material which has heat conductivity and moisture permeability.
 このような全熱交換器では、排気と給気との間で温度のみならず湿度の交換を行うこともできるので、上述の実施形態において換気熱交換器34として全熱交換器を採用すれば、換気熱交換器34の排気出口側の結露をより一層確実に抑制することができる。 In such a total heat exchanger, not only the temperature but also the humidity can be exchanged between the exhaust and the supply air. Therefore, if the total heat exchanger is employed as the ventilation heat exchanger 34 in the above-described embodiment. The dew condensation on the exhaust outlet side of the ventilation heat exchanger 34 can be more reliably suppressed.

Claims (6)

  1.  熱媒体を加熱する加熱器(10)と、
     暖房対象空間から室外へ排出される排気と室外から暖房対象空間へ取り入れられる給気とを熱交換させる換気熱交換器(34)と、
     前記加熱器(10)にて加熱された高温側の熱媒体を熱源として、前記換気熱交換器(34)にて加熱された給気を加熱する高温側ヒータコア(35)と、
     前記高温側ヒータコア(35)から流出した熱媒体よりも低い温度となっている低温側の熱媒体を熱源として、前記換気熱交換器(34)へ流入する給気を加熱する低温側ヒータコア(36)と、
     前記高温側ヒータコア(35)へ流入する前記高温側の熱媒体の流量と前記低温側ヒータコア(36)へ流入する前記低温側の熱媒体の流量との熱媒体流量比を調整する熱媒体流量調整部(39)とを備える暖房システム。
    A heater (10) for heating the heat medium;
    A ventilation heat exchanger (34) for exchanging heat between the exhaust exhausted from the heating target space to the outside and the supply air taken from the outdoor to the heating target space;
    A high-temperature side heater core (35) for heating the supply air heated by the ventilation heat exchanger (34) using the high-temperature side heat medium heated by the heater (10) as a heat source;
    A low-temperature side heater core (36) that heats the supply air flowing into the ventilation heat exchanger (34) using a low-temperature-side heat medium that is lower in temperature than the heat medium flowing out from the high-temperature side heater core (35) as a heat source. )When,
    Heat medium flow rate adjustment for adjusting a heat medium flow rate ratio between the flow rate of the high temperature side heat medium flowing into the high temperature side heater core (35) and the flow rate of the low temperature side heat medium flowing into the low temperature side heater core (36). A heating system comprising a section (39).
  2.  前記熱媒体流量調整部(39)は、前記低温側ヒータコア(36)へ流入する前記低温側の熱媒体の流量を調整することによって、前記熱媒体流量比を調整する請求項1に記載の暖房システム。 The heating according to claim 1, wherein the heat medium flow rate adjusting unit (39) adjusts the heat medium flow rate ratio by adjusting a flow rate of the low temperature side heat medium flowing into the low temperature side heater core (36). system.
  3.  前記低温側ヒータコア(36)へ流入する熱媒体の流量は、前記換気熱交換器(34)から流出する排気の温度が露点温度(Tdp)に基準値(α)を加えた値(Tdp+α)に近づくように調整される請求項1または2に記載の暖房システム。 The flow rate of the heat medium flowing into the low temperature side heater core (36) is a value (Tdp + α) obtained by adding the reference value (α) to the dew point temperature (Tdp) of the exhaust gas flowing out of the ventilation heat exchanger (34). The heating system according to claim 1 or 2 adjusted so that it may approach.
  4.  さらに、前記低温側の熱媒体を前記低温側ヒータコア(36)を迂回させて流すバイパス通路(41)を備え、
     前記熱媒体流量調整部は、前記低温側ヒータコア(36)へ流入する前記低温側の熱媒体の流量と前記バイパス通路(41)へ流入する前記低温側の熱媒体の流量とのバイパス流量比を変化させる流量調整弁(39)で構成されている請求項2に記載の暖房システム。
    And a bypass passage (41) through which the low temperature side heat medium flows through the low temperature side heater core (36).
    The heat medium flow rate adjustment unit sets a bypass flow rate ratio between a flow rate of the low temperature side heat medium flowing into the low temperature side heater core (36) and a flow rate of the low temperature side heat medium flowing into the bypass passage (41). The heating system according to claim 2, comprising a flow rate adjusting valve (39) to be changed.
  5.  さらに、前記熱媒体流量調整部(39)の作動を制御する熱媒体流量制御部を備え、
     前記熱媒体流量制御部は、前記換気熱交換器(34)から流出する前記排気の温度が前記換気熱交換器(34)から流出する前記排気の前記露点温度(Tdp)より高い値となるように、前記熱媒体流量調整部(39)の作動を制御する請求項1ないし4のいずれか1つに記載の暖房システム。
    Furthermore, a heat medium flow control unit for controlling the operation of the heat medium flow control unit (39),
    The heat medium flow control unit is configured so that the temperature of the exhaust gas flowing out from the ventilation heat exchanger (34) is higher than the dew point temperature (Tdp) of the exhaust gas flowing out from the ventilation heat exchanger (34). Further, the heating system according to any one of claims 1 to 4, wherein the operation of the heat medium flow control unit (39) is controlled.
  6.  前記加熱器は、高圧冷媒を減圧させる減圧器(13)を有するヒートポンプサイクル(10)であり、
     前記低温側ヒータコア(36)から流出した前記低温側の熱媒体によって、前記減圧器(13)へ流入する冷媒の温度を低下させる請求項1ないし5のいずれか1つに記載の暖房システム。
    The heater is a heat pump cycle (10) having a decompressor (13) for decompressing a high-pressure refrigerant,
    The heating system according to any one of claims 1 to 5, wherein the temperature of the refrigerant flowing into the pressure reducer (13) is reduced by the low-temperature side heat medium flowing out from the low-temperature side heater core (36).
PCT/JP2014/000071 2013-01-23 2014-01-10 Heater system WO2014115497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014000527.4T DE112014000527T5 (en) 2013-01-23 2014-01-10 heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013009907A JP5831467B2 (en) 2013-01-23 2013-01-23 Heating system
JP2013-009907 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115497A1 true WO2014115497A1 (en) 2014-07-31

Family

ID=51227294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000071 WO2014115497A1 (en) 2013-01-23 2014-01-10 Heater system

Country Status (3)

Country Link
JP (1) JP5831467B2 (en)
DE (1) DE112014000527T5 (en)
WO (1) WO2014115497A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI129149B (en) * 2016-09-16 2021-08-13 Byro Energiatekniikka Oy Exhaust air heat pump apparatus and method of processing exhaust air
KR101786551B1 (en) 2016-11-08 2017-10-24 린나이코리아 주식회사 How to prevent moisture condensation within the heat exchanger of the boiler and water heater
CA2995017C (en) * 2017-03-01 2019-12-24 Kimura Kohki Co., Ltd. Air conditioner and air conditioning system including the same
DE102017003355A1 (en) * 2017-04-06 2018-10-11 Stiebel Eltron Gmbh & Co. Kg heat pump system
JP6949130B2 (en) * 2017-09-26 2021-10-13 三菱電機株式会社 Refrigeration cycle equipment
EP3572732A1 (en) * 2018-05-25 2019-11-27 Weider Wärmepumpen GmbH Heat pump heating device for heating of a building or an industrial water storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162743A (en) * 1984-09-04 1986-03-31 Matsushita Seiko Co Ltd Heat exchanger and ventilation device with heater
JP2002317990A (en) * 2001-04-18 2002-10-31 Daikin Ind Ltd Humidity control and ventilation device
JP2010107059A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Refrigerating and air-conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162743A (en) * 1984-09-04 1986-03-31 Matsushita Seiko Co Ltd Heat exchanger and ventilation device with heater
JP2002317990A (en) * 2001-04-18 2002-10-31 Daikin Ind Ltd Humidity control and ventilation device
JP2010107059A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Refrigerating and air-conditioning apparatus

Also Published As

Publication number Publication date
DE112014000527T5 (en) 2015-10-15
JP2014142101A (en) 2014-08-07
JP5831467B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5983451B2 (en) Heating system
WO2014115497A1 (en) Heater system
WO2012085970A1 (en) Hot-water-supplying, air-conditioning composite device
WO2015115404A1 (en) Air-conditioning system
JP2006283989A (en) Cooling/heating system
JP5790736B2 (en) Air conditioner
EP3184936A1 (en) Ground source heat pump system with a cooling function
WO2014115496A1 (en) Heater system
JP4182494B2 (en) Large temperature difference air conditioning system
WO2013128668A1 (en) Exhaust heat recovery system and operating method therefor
KR101166385B1 (en) A air conditioning system by water source and control method thereof
EP3358923B1 (en) Cooling system with reduced pressure drop
CN214250050U (en) Heat recovery air conditioning system
CN106885388B (en) A kind of air-conditioning system
JP6310077B2 (en) Heat source system
JP2016114319A (en) Heating system
JP4605725B2 (en) Additional condensing device and refrigeration cycle device with additional condensing system using the same
JP6938950B2 (en) Air conditioning system
JP4970084B2 (en) Air conditioning system
JP2016114298A (en) Air conditioner
WO2014057454A2 (en) Combined air conditioner, heat pump and water heater
KR20160107714A (en) System for preserving temperature and humidity
JP6239100B2 (en) Air conditioning system
JP2022064500A (en) Air conditioner
JP2012077980A (en) Control method of refrigerating cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014000527

Country of ref document: DE

Ref document number: 1120140005274

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743326

Country of ref document: EP

Kind code of ref document: A1