JP4182494B2 - Large temperature difference air conditioning system - Google Patents

Large temperature difference air conditioning system Download PDF

Info

Publication number
JP4182494B2
JP4182494B2 JP2006150572A JP2006150572A JP4182494B2 JP 4182494 B2 JP4182494 B2 JP 4182494B2 JP 2006150572 A JP2006150572 A JP 2006150572A JP 2006150572 A JP2006150572 A JP 2006150572A JP 4182494 B2 JP4182494 B2 JP 4182494B2
Authority
JP
Japan
Prior art keywords
heat
air
heat source
water
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006150572A
Other languages
Japanese (ja)
Other versions
JP2007322024A (en
Inventor
恵一 木村
満津雄 森田
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2006150572A priority Critical patent/JP4182494B2/en
Publication of JP2007322024A publication Critical patent/JP2007322024A/en
Application granted granted Critical
Publication of JP4182494B2 publication Critical patent/JP4182494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は大温度差空調システムに関するものである。   The present invention relates to a large temperature difference air conditioning system.

一般的に空調システムは、熱源水を使用する冷温水コイル式空調機を、循環処理と外気処理に使用して、構成しており、空調システム全体で熱源水の往きと還りの温度差を大きくとることができない。   In general, an air conditioning system consists of a cold / hot water coil air conditioner that uses heat source water for circulation treatment and outside air treatment, and the overall temperature difference between the return and return of the heat source water is large throughout the air conditioning system. I can't take it.

特開平10−232000号公報Japanese Patent Laid-Open No. 10-232000

そのため熱源水が多く必要となり、熱源装置や熱源水回路の配管径やポンプ容量が大きく、設備コストや熱源装置などの運転コストが高くなる問題がある。   Therefore, a large amount of heat source water is required, and there is a problem that the piping diameter and pump capacity of the heat source device and the heat source water circuit are large, and the operating cost of the equipment and the heat source device becomes high.

本発明は上記課題を解決するため、熱源装置と、この熱源装置で温度調整された熱源水が流れる熱源水回路と、還気を還気処理用冷温水コイルで熱交換して給気する還気処理用循環空調機と、外気と還気の混気を負荷に応じて混気処理用冷温水コイルと水熱源ヒートポンプの一方又は両方にて熱交換して給気する混気処理用空調機と、還気を空気熱源ヒートポンプで熱交換して給気しかつ熱回収しながら排気する排気兼用熱回収循環空調機と、を備え、熱源水が前記還気処理用冷温水コイル、前記混気処理用冷温水コイル及び前記水熱源ヒートポンプの順序で流れるように構成し、前記還気処理用冷温水コイルへの熱源水をバイパスさせて前記混気処理用冷温水コイル及び前記水熱源ヒートポンプの熱源水流量を制御する第1流量制御機構を、設けたことを最も主要な特徴とする。   In order to solve the above-mentioned problems, the present invention provides a heat source device, a heat source water circuit through which heat source water whose temperature is adjusted by the heat source device, and a return air that is supplied by exchanging heat with a cold / hot water coil for return air treatment. A circulation air conditioner for air treatment, and an air conditioner for air mixture treatment that supplies air by exchanging heat in one or both of the air-conditioning cold / hot water coil and the water heat source heat pump depending on the load. And an exhaust heat-recovery circulation air conditioner that exchanges heat with an air heat source heat pump and exhausts the air while recovering heat, and the heat source water is the cold / hot water coil for the return air treatment, the mixed air The cooling / hot water coil for treatment and the water heat source heat pump are configured to flow in the order, and the heat source water to the return air treatment cold / hot water coil is bypassed to heat the mixed gas treatment cold / hot water coil and the water heat source heat pump. The first flow control mechanism that controls the water flow rate The most important feature that is provided.

請求項1の発明によれば、還気処理用冷温水コイルで使用(熱交換)した熱源水を混気処理用冷温水コイル及び水熱源ヒートポンプで再利用(熱交換)することにより、空調システム全体において熱源水が往きと還りで大温度差(従来の倍以上)となり、熱源水回路の循環水量が少水量(半分以下)となるので、熱源装置や熱源水回路の配管径やポンプ容量が小さくて済み、設備コストと運転コストを大幅削減できる。しかも排気兼用熱回収循環空調機による熱回収効果でさらに省エネとなり、局所空調もできる。
混気処理用空調機は、混気処理用冷温水コイルと水熱源ヒートポンプにより二段階で混気を冷却又は加熱できるので、処理できる負荷範囲が広がり、酷暑や極寒などの過酷な外気条件にも対応できる。冷却の場合、混気処理用空調機の混気処理用冷温水コイルと水熱源ヒートポンプで混気を二段階で冷却して低温送風することで少風量化できる。その分、還気処理用循環空調機の能力や空気搬送ダクト径や搬送動力が小さくて済み、設備コストと運転コストを大幅削減できる。
また、冷温水コイルで通常負荷までをカバー、通常負荷からピーク負荷までは水熱源ヒートポンプでカバーできるので、熱源装置関係の設備が通常負荷を処理できるだけの能力規模で済み、冷温水コイルのみの空調機で空調システムを構成した場合と比べて、余分な設備コストを削減できる。
室内負荷変動によって還気処理用循環空調機の還気処理用冷温水コイルへの熱源水流量を減少させても、第1流量制御機構でバイパスさせて混気処理用空調機に必要な熱源水流量を確保し、能力低下を防止できる。
請求項2の発明によれば、夜間蓄熱ができ、大温度差少水量運転ができるので超小型の蓄熱槽で済み、設備コストと運転コストを大幅削減できる。
請求項3の発明によれば、簡単にコイル全体の微少な流量制御ができ、変動負荷による少負荷時にも空調システム全体での熱源水の温度差が保証され、空調機の能力低下を防止できる。フィン群を複数の伝熱管路で共用してあるので、所定の伝熱管路への熱源水を止めても、伝熱面積が大きく交換熱量を多くとれ、熱交換能力が高い。
請求項4の発明によれば、空調システム全体で熱源水に大温度差(たとえば熱源水の往きと還りで20℃の温度差)がついても2つの熱源装置による2段階の冷却又は加熱で確実に水温調整でき、直列運転により平均COPも向上し、運転コストの削減が図れる。
請求項5の発明によれば、楕円管なので圧力損失が少なく、送風動力を増やすことなく伝熱管有効長を長くとることができ、大温度差化に最適である。
According to the first aspect of the present invention, the heat source water used (heat exchange) in the return air treatment cold / hot water coil is reused (heat exchange) by the mixed heat treatment cold / hot water coil and the water heat source heat pump. As a whole, the heat source water goes back and forth, resulting in a large temperature difference (more than double the conventional), and the amount of circulating water in the heat source water circuit is small (less than half), so the pipe diameter and pump capacity of the heat source device and heat source water circuit are It is small and can greatly reduce the equipment cost and operation cost. In addition, the heat recovery effect of the exhaust-heat-collecting heat recovery circulation air conditioner further saves energy and allows local air conditioning.
The air-conditioning air conditioner can cool or heat the air-fuel mixture in two stages by using the air-conditioning cold / hot water coil and the water heat source heat pump. Yes. In the case of cooling, the air volume can be reduced by cooling the air-fuel mixture in two stages with the air-cooling hot / cold water coil and the water heat source heat pump of the air-conditioning air conditioner and blowing it at a low temperature. As a result, the capacity, the air transfer duct diameter and the transfer power of the return air processing circulation air conditioner can be reduced, and the equipment cost and operation cost can be greatly reduced.
In addition, it is possible to cover the normal load with the cold / hot water coil and cover the normal load to the peak load with the water heat source heat pump, so the capacity related to the heat source equipment can handle the normal load, and air conditioning with only the cold / hot water coil Compared to the case where the air conditioning system is configured with a machine, the extra equipment cost can be reduced.
Even if the flow rate of the heat source water to the return air treatment cold / hot water coil of the return air treatment circulation air conditioner is reduced due to the indoor load fluctuation, the heat source water required for the air mixture treatment air conditioner is bypassed by the first flow rate control mechanism. A flow rate can be secured to prevent a decrease in capacity.
According to the second aspect of the present invention, heat can be stored at night and operation with a large temperature difference and a small amount of water can be performed.
According to the invention of claim 3, the flow rate of the entire coil can be easily controlled, and the temperature difference of the heat source water in the entire air conditioning system can be guaranteed even when the load is small due to a variable load, thereby preventing a reduction in the capacity of the air conditioner. . Since the fin group is shared by a plurality of heat transfer pipes, even if the heat source water to the predetermined heat transfer pipe is stopped, the heat transfer area is large and the amount of exchange heat can be increased, and the heat exchange capacity is high.
According to the invention of claim 4, even if there is a large temperature difference in the heat source water in the entire air conditioning system (for example, a temperature difference of 20 ° C. between the return and return of the heat source water), two-stage cooling or heating by two heat source devices ensures The water temperature can be adjusted, and the average COP is improved by the series operation, and the operation cost can be reduced.
According to the invention of claim 5, since it is an elliptical tube, there is little pressure loss, the effective length of the heat transfer tube can be increased without increasing the blast power, and it is optimal for a large temperature difference.

図1〜図4は、本発明の大温度差空調システムの一実施例を示しており、この大温度差空調システムは、熱源装置1と、この熱源装置1で温度調整された熱源水が流れる配管等から成る熱源水回路2と、熱源水を矢印方向に送る送水ポンプPと、還気を還気処理用冷温水コイル3で熱交換して給気する還気処理用循環空調機4と、外気と還気の混気を負荷に応じて混気処理用冷温水コイル5と水熱源ヒートポンプ6の一方又は両方にて一段階又は二段階で選択的に熱交換して給気する混気処理用空調機7と、還気を空気熱源ヒートポンプ8で熱交換して給気しかつ熱回収しながら排気する排気兼用熱回収循環空調機9と、熱源水の蓄熱槽11と、熱源水回路2の熱源水をバイパスさせて蓄熱槽11と熱源装置1を循環させる夜間蓄熱などを行うための蓄熱手段12と、を備えている。   1 to 4 show an embodiment of a large temperature difference air conditioning system according to the present invention. In this large temperature difference air conditioning system, a heat source device 1 and heat source water whose temperature is adjusted by the heat source device 1 flow. A heat source water circuit 2 composed of pipes, a water supply pump P for sending the heat source water in the direction of the arrow, a return air processing circulation air conditioner 4 for exchanging heat in the return air processing cold / hot water coil 3 and supplying air The air-fuel mixture is supplied by selectively exchanging heat in one or two stages in one or both of the air-conditioning cold / hot water coil 5 and the water heat source heat pump 6 according to the load. The processing air conditioner 7, the exhaust air combined heat recovery circulating air conditioner 9 that exchanges heat with the air heat source heat pump 8 to supply and exhaust the heat while recovering heat, the heat storage tank 11 of the heat source water, and the heat source water circuit The night heat storage that bypasses the heat source water 2 and circulates the heat storage tank 11 and the heat source device 1 is performed. And a, a heat storage means 12 for.

熱源水回路2の熱源水は、還気処理用冷温水コイル3、混気処理用冷温水コイル5及び水熱源ヒートポンプ6の順序で直列に流れるように構成し、還気処理用冷温水コイル3への熱源水の一部又は全部をバイパスさせて混気処理用冷温水コイル5及び水熱源ヒートポンプ6の熱源水流量を制御する第1流量制御機構10を、設ける。図例では第1流量制御機構10は、還気処理用冷温水コイル3の熱源水出入口をバイパスするバイパス流路13と流量調整弁14などにて構成しているが構成の変更は自由である。冷水や温水を作るチラーや冷温水機などの熱源装置1は、図例では2つ備えており、熱源水が熱源装置1、1に直列に流れるように構成し、熱源水を負荷に応じて熱源装置1、1の一方又は両方にて一段階又は二段階で選択的に熱交換して温度調整をするようにしている。図例では蓄熱手段12は、三方弁などの流路切換機構28と、流路切換機構28と蓄熱槽11をつなぐバイパス流路29などにて構成しているが構成の変更は自由である。   The heat source water of the heat source water circuit 2 is configured to flow in series in the order of the return air treatment cold / hot water coil 3, the mixed air treatment cold / hot water coil 5 and the water heat source heat pump 6, and the return air treatment cold / hot water coil 3. A first flow rate control mechanism 10 is provided that controls a heat source water flow rate of the mixed heat treatment cold / hot water coil 5 and the water heat source heat pump 6 by bypassing part or all of the heat source water to the heat source water. In the illustrated example, the first flow rate control mechanism 10 is configured by a bypass flow path 13 and a flow rate adjustment valve 14 that bypass the heat source water inlet / outlet of the cold / hot water coil 3 for return air treatment, but the configuration can be changed freely. . The heat source device 1 such as a chiller or a chiller / heater for producing cold water or hot water is provided with two in the illustrated example, and the heat source water is configured to flow in series with the heat source devices 1 and 1, and the heat source water according to the load. Temperature adjustment is performed by selectively exchanging heat in one or two stages in one or both of the heat source devices 1 and 1. In the illustrated example, the heat storage means 12 includes a flow path switching mechanism 28 such as a three-way valve, and a bypass flow path 29 that connects the flow path switching mechanism 28 and the heat storage tank 11, but the configuration can be freely changed.

還気処理用循環空調機4は、ケーシング内に、熱源水が通水される還気処理用冷温水コイル3と、給気用ファンと、を備え、この還気処理用冷温水コイル3にて還気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、被空調空間に給気して空調する。還気処理用循環空調機4は図例のファンコイルユニットのみならずエアハンドリングユニットなど各種のものに変更自由である。   The return air processing circulation air conditioner 4 includes a return air processing cold / hot water coil 3 through which heat source water is passed and a supply air fan in the casing. Then, the return air is cooled or heated, and the cooling operation and the heating operation can be switched freely, and the air-conditioned space is supplied and air-conditioned. The return air processing circulation air conditioner 4 can be changed to various types such as an air handling unit as well as the fan coil unit shown in the figure.

混気処理用空調機7は、ケーシング内に、混気処理用冷温水コイル5と、水熱源ヒートポンプ6と、加湿器27と、給気用ファンと、を備えている。水熱源ヒートポンプ6は、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱源水などに対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を行う空気熱交換器15及び熱源水が通水される水熱交換器16と、循環冷媒を圧縮する圧縮機17と、循環冷媒を膨張させる膨張弁等の減圧機構と、空気熱交換器15及び水熱交換器16の蒸発工程と凝縮工程を切換えるバルブ等の切換機構と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。この混気処理用冷温水コイル5と空気熱交換器15の一方又は両方にて空調用空気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、被空調空間に給気して外気処理をしながら空調する。   The air-conditioning air conditioner 7 includes an air-conditioning cold / hot water coil 5, a water heat source heat pump 6, a humidifier 27, and an air supply fan in a casing. The water heat source heat pump 6 repeats the steps of evaporation, compression, condensation, and expansion for the circulating refrigerant, and dissipates heat in the refrigerant condensing step in the refrigerant evaporation step for air and heat source water that exchanges heat with the circulating refrigerant. The air heat exchanger 15 and the heat source water 16 through which the heat source water is passed, and the compressor 17 for compressing the circulating refrigerant are respectively performed. And a decompression mechanism such as an expansion valve that expands the circulating refrigerant, and a switching mechanism such as a valve that switches between the evaporation process and the condensation process of the air heat exchanger 15 and the water heat exchanger 16, and the refrigerant circulates in these It is made up of pipe connections. The air-conditioning air is cooled or heated by one or both of the mixed air-cooling hot / cold water coil 5 and the air heat exchanger 15 so that the cooling operation and the heating operation can be switched, and the air-conditioned space is supplied to the outside air. Air-condition while processing.

混気処理用空調機7には、混気処理用冷温水コイル5への熱源水の一部又は全部をバイパスさせて混気処理用冷温水コイル5の熱源水流量を制御する第2流量制御機構18を、設ける。これにより、混気処理用空調機7において、第2流量制御機構18で混気処理用冷温水コイル5への熱源水をバイパスさせて水熱源ヒートポンプ6のみに流し、混気処理用冷温水コイル5で冷却できない温水でも水熱源ヒートポンプ6で冷却、または混気処理用冷温水コイル5で加熱できない冷水でも水熱源ヒートポンプ6で加熱ができる。図例では第2流量制御機構18は、三方弁やバイパス流路などにて構成しているが構成の変更は自由である。   The air-conditioning air conditioner 7 controls the flow rate of the heat source water in the air-cooling hot / cold water coil 5 by bypassing part or all of the heat source water to the air-cooling hot / cold water coil 5. A mechanism 18 is provided. Thus, in the air-conditioning air conditioner 7, the second flow rate control mechanism 18 bypasses the heat source water to the air-cooling hot / cold water coil 5 and flows only to the water heat source heat pump 6. Even the hot water that cannot be cooled by the water 5 can be cooled by the water heat source heat pump 6, or even the cold water that cannot be heated by the mixed heat treatment cold / hot water coil 5 can be heated by the water heat source heat pump 6. In the illustrated example, the second flow rate control mechanism 18 is configured by a three-way valve, a bypass flow path, or the like, but the configuration can be freely changed.

排気兼用熱回収循環空調機9は、ケーシング内に、空気熱源ヒートポンプ8と、給気用ファンと、排気用ファンと、を備えている。空気熱源ヒートポンプ8は、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を行う給気側熱交換器19及び排気側熱交換器20と、循環冷媒を圧縮する圧縮機21と、循環冷媒を膨張させる膨張弁等の減圧機構と、給気側熱交換器19及び排気側熱交換器20の蒸発工程と凝縮工程を切換えるバルブ等の切換機構と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。この空気熱源ヒートポンプ8の排気側熱交換器20にて排気から熱回収しながら給気側熱交換器19にて空調用空気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、被空調空間に給気して空調しながら排気する。   The exhaust combined heat recovery circulation air conditioner 9 includes an air heat source heat pump 8, an air supply fan, and an exhaust fan in a casing. The air heat source heat pump 8 repeats the steps of evaporation, compression, condensation, and expansion for the circulating refrigerant, and performs heat absorption in the refrigerant condensing step for the heat exchanged with the circulating refrigerant in the refrigerant condensing step. Thus, the supply-side heat exchanger 19 and the exhaust-side heat exchanger 20 that perform the steps of evaporating and condensing the circulating refrigerant, which are different from each other, the compressor 21 that compresses the circulating refrigerant, and the expansion that expands the circulating refrigerant A pressure reducing mechanism such as a valve, and a switching mechanism such as a valve for switching between an evaporation process and a condensation process of the supply side heat exchanger 19 and the exhaust side heat exchanger 20, and pipe connection for circulating the refrigerant It consists of The air-side heat exchanger 19 cools or heats the air-conditioning air while recovering heat from the exhaust gas in the exhaust-side heat exchanger 20 of the air heat source heat pump 8, and the air-cooling operation and the heating operation can be switched. Air is supplied to the air-conditioned space and exhausted while air-conditioning.

還気処理用冷温水コイル3と混気処理用冷温水コイル5と水熱源ヒートポンプ6の空気熱交換器15と空気熱源ヒートポンプ8の給気側熱交換器19及び排気側熱交換器20の伝熱管は楕円管するのが好ましいが円形管でもよい。図5と図6に示すように、還気処理用冷温水コイル3と混気処理用冷温水コイル5は、フィン群22と、このフィン群22に挿着される複数本(図例では2つ)の伝熱管路23と、を備え、所定の伝熱管路23の熱源水を熱源水流通制御手段24にて流通・停止させることによりコイル全体の熱源水流量を調整するように構成する。図例では熱源水流通制御手段24は、伝熱管路23の入口に個別に設けた流量制御用又は開閉用のバルブ25と、バルブ25を制御する図示省略の制御器と、を備えているが、その構成変更は自由である。このバルブ25を流量制御用とすればバルブ単体での流量制御に加えて所定の伝熱管路23の熱源水を流通・停止させることによりコイル全体の熱源水流量をさらに少水量に調整できる。図6は、フィン群22の伝熱管路挿着面方向から見た簡略図で、伝熱管路23がコイル通風空気に対して直交流となるように設けてあるので、バイパス空気が少なくてコイル通風空気との交換熱量を多くとれ、熱交換能力が高い。なお、伝熱管路23とバルブ25の数の変更は自由である。   Transmission of the return air treatment cold / hot water coil 3, the mixed air treatment cold / hot water coil 5, the air heat exchanger 15 of the water heat source heat pump 6, and the air supply side heat exchanger 19 and the exhaust side heat exchanger 20 of the air heat source heat pump 8. The heat tube is preferably an elliptical tube, but may be a circular tube. As shown in FIGS. 5 and 6, the return air treatment cold / hot water coil 3 and the mixed air treatment cold / hot water coil 5 include a fin group 22 and a plurality of fins 22 inserted in the fin group 22 (2 in the illustrated example). The heat source water flow rate of the entire coil is adjusted by causing the heat source water flow control means 24 to circulate and stop the heat source water of the predetermined heat transfer conduit 23. In the illustrated example, the heat source water flow control means 24 includes a flow rate control or opening / closing valve 25 individually provided at the inlet of the heat transfer pipe 23 and a controller (not shown) that controls the valve 25. The configuration change is free. If this valve 25 is used for flow control, in addition to controlling the flow rate of the valve alone, the heat source water flow in the entire coil can be adjusted to a smaller amount by circulating and stopping the heat source water in the predetermined heat transfer pipe 23. FIG. 6 is a simplified view of the fin group 22 as seen from the direction of the heat transfer pipe insertion surface, and the heat transfer pipe 23 is provided so as to be orthogonal to the coil ventilation air. A large amount of heat can be exchanged with the ventilation air, and the heat exchange capacity is high. The number of heat transfer pipes 23 and valves 25 can be changed freely.

この空調システムにおいて冷房運転する場合、熱源水として例えば7℃の冷水を流すと、還気処理用循環空調機4の還気処理用冷温水コイル3による熱交換で熱源水が例えば7℃から17℃へ温度上昇(水温差10℃)し、さらに混気処理用空調機7の混気処理用冷温水コイル5及び水熱源ヒートポンプ6の水熱交換器16による熱交換で熱源水が例えば17℃から27℃へ温度上昇(水温差10℃)し、空調システム全体において熱源水が往きと還りでΔt20℃の温度差となる。熱源装置1に戻った熱源水は温度調整され、熱源水回路2を循環する。   When cooling operation is performed in this air conditioning system, for example, when cold water of 7 ° C. is flown as heat source water, the heat source water is changed from, for example, 7 ° C. to 17 ° C. by heat exchange by the return air treatment cold / hot water coil 3 of the return air treatment circulation air conditioner 4. The heat source water is, for example, 17 ° C. by heat exchange by the mixed heat treatment cold / hot water coil 5 of the mixed air treatment air conditioner 7 and the water heat exchanger 16 of the water heat source heat pump 6. The temperature rises to 27 ° C. (water temperature difference 10 ° C.), and the heat source water goes back and forth in the entire air conditioning system, resulting in a temperature difference of Δt 20 ° C. The temperature of the heat source water returned to the heat source device 1 is adjusted and circulates in the heat source water circuit 2.

同様に暖房運転する場合は、熱源水として例えば50℃の温水を流すと、還気処理用循環空調機4の還気処理用冷温水コイル3による熱交換で熱源水が例えば50℃から40℃へ温度降下(水温差10℃)し、さらに混気処理用空調機7の混気処理用冷温水コイル5及び水熱源ヒートポンプ6の水熱交換器16による熱交換で熱源水が例えば40℃から30℃へ温度降下(水温差10℃)し、空調システム全体において熱源水が往きと還りでΔt20℃の温度差となる。この熱源水の温度差の増減、設定変更は自由である。   Similarly, when heating operation is performed, when hot water of, for example, 50 ° C. is flowed as heat source water, the heat source water is, for example, 50 ° C. to 40 ° C. by heat exchange by the return air treatment cold / hot water coil 3 of the return air treatment circulation air conditioner 4. The heat source water is changed from 40 ° C. by heat exchange by the mixed heat treatment cold / hot water coil 5 of the mixed air treatment air conditioner 7 and the water heat exchanger 16 of the water heat source heat pump 6. The temperature drops to 30 ° C. (water temperature difference of 10 ° C.), and the heat source water goes back and forth in the entire air conditioning system, resulting in a temperature difference of Δt 20 ° C. The temperature difference of the heat source water can be increased or decreased and the setting can be changed.

なお、前記実施例において、還気処理用循環空調機4と混気処理用空調機7と排気兼用熱回収循環空調機9と熱源装置1の数の増減は自由である。また、混気処理用空調機7の加湿器27や蓄熱槽11、蓄熱手段12を省略するも自由である。   In addition, in the said Example, increase / decrease in the number of the return air processing circulation air conditioners 4, the mixed gas processing air conditioners 7, the exhaust heat combined use heat recovery circulation air conditioners 9, and the heat source devices 1 is free. Further, the humidifier 27, the heat storage tank 11, and the heat storage means 12 of the air-conditioning air conditioner 7 may be omitted.

大温度差空調システムの全体簡略説明図である。1 is an overall simplified explanatory diagram of a large temperature difference air conditioning system. 還気処理用循環空調機の簡略説明図である。It is a simplified explanatory drawing of the circulation air conditioner for return air processing. 混気処理用空調機の簡略説明図である。It is a simplified explanatory drawing of the air-conditioning machine for mixed air processing. 排気兼用熱回収循環空調機の簡略説明図である。It is a simplified explanatory view of an exhaust combined heat recovery circulation air conditioner. 冷温水コイルの簡略平面図である。It is a simplified top view of a cold / hot water coil. 冷温水コイルの簡略側面図である。It is a simplified side view of a cold / hot water coil.

符号の説明Explanation of symbols

1 熱源装置
2 熱源水回路
3 還気処理用冷温水コイル
4 還気処理用循環空調機
5 混気処理用冷温水コイル
6 水熱源ヒートポンプ
7 混気処理用空調機
8 空気熱源ヒートポンプ
9 排気兼用熱回収循環空調機
10 第1流量制御機構
11 蓄熱槽
12 蓄熱手段
15 空気熱交換器
19 給気側熱交換器
20 排気側熱交換器
22 フィン群
23 伝熱管路
DESCRIPTION OF SYMBOLS 1 Heat source apparatus 2 Heat source water circuit 3 Cooling / heating water coil for return air processing 4 Circulating air conditioner for returning air processing 5 Cold / hot water coil for air mixing processing 6 Water heat source heat pump 7 Air conditioning device for air mixing processing 8 Air heat source heat pump 9 Heat for exhaust gas Recovery circulation air conditioner 10 First flow control mechanism 11 Heat storage tank 12 Heat storage means 15 Air heat exchanger 19 Supply side heat exchanger 20 Exhaust side heat exchanger 22 Fin group 23 Heat transfer pipe

Claims (5)

熱源装置(1)と、この熱源装置(1)で温度調整された熱源水が流れる熱源水回路(2)と、還気を還気処理用冷温水コイル(3)で熱交換して給気する還気処理用循環空調機(4)と、外気と還気の混気を負荷に応じて混気処理用冷温水コイル(5)と水熱源ヒートポンプ(6)の空気熱交換器(15)の一方又は両方にて熱交換して給気する混気処理用空調機(7)と、還気を空気熱源ヒートポンプ(8)の給気側熱交換器(19)で熱交換して給気しかつ前記空気熱源ヒートポンプ(8)の排気側熱交換器(20)で熱回収しながら排気する排気兼用熱回収循環空調機(9)と、を備え、熱源水が前記還気処理用冷温水コイル(3)、前記混気処理用冷温水コイル(5)及び前記水熱源ヒートポンプ(6)の水熱交換器(16)の順序で流れるように構成し、前記還気処理用冷温水コイル(3)への熱源水をバイパスさせて前記混気処理用冷温水コイル(5)及び前記水熱交換器(16)の熱源水流量を制御する第1流量制御機構(10)を、設けたことを特徴とする大温度差空調システム。 The heat source device (1), the heat source water circuit (2) through which the heat source water whose temperature has been adjusted by the heat source device (1), and the return air are heat-exchanged by the return air treatment cold / hot water coil (3) to supply air The return air treatment circulation air conditioner (4), the mixed air of the outside air and the return air, depending on the load, the mixed heat treatment cold / hot water coil (5), and the air heat exchanger (15) of the water heat source heat pump (6) Of the mixed air processing air conditioner (7) that exchanges heat by one or both of the air supply and the supply air by heat exchange of the return air in the air supply side heat exchanger (19) of the air heat source heat pump (8) And an exhaust-heat-use heat recovery circulation air conditioner (9) that exhausts heat while recovering heat with the exhaust-side heat exchanger (20) of the air heat source heat pump (8), and the heat source water is the cold / hot water for the return air treatment. The coil (3), the mixed heat treatment cold / hot water coil (5), and the water heat exchanger (16) of the water heat source heat pump (6) in this order And the heat source water flow rate of the mixed heat treatment cold / hot water coil (5) and the water heat exchanger (16) by bypassing the heat source water to the return air treatment cold / hot water coil (3) A large temperature difference air conditioning system characterized in that a first flow rate control mechanism (10) for controlling the air flow is provided. 蓄熱槽(11)と、熱源水回路(2)の熱源水をバイパスさせて前記蓄熱槽(11)と熱源装置(1)の間を循環させる蓄熱手段(12)と、を備えた請求項1記載の大温度差空調システム。 The heat storage tank (11) and heat storage means (12) for bypassing the heat source water of the heat source water circuit (2) and circulating between the heat storage tank (11) and the heat source device (1). Large temperature difference air conditioning system as described. 還気処理用冷温水コイル(3)と混気処理用冷温水コイル(5)が、フィン群(22)と、このフィン群(22)に挿着される複数本の伝熱管路(23)と、を備え、所定の前記伝熱管路(23)の熱源水を流通・停止させることによりコイル全体の熱源水流量を調整するように構成した請求項1又は2記載の大温度差空調システム。 The return air treatment cold / hot water coil (3) and the mixed air treatment cold / hot water coil (5) include a fin group (22) and a plurality of heat transfer pipes (23) inserted into the fin group (22). The large temperature difference air conditioning system according to claim 1 or 2, wherein the heat source water flow rate of the entire coil is adjusted by circulating and stopping the heat source water of the predetermined heat transfer pipe (23) . 熱源装置(1)を2つ備え、熱源水が2つの熱源装置(1)、(1)に直列に流れるように構成した請求項1、2又は3記載の大温度差空調システム。 The large temperature difference air conditioning system according to claim 1, 2 or 3 , wherein two heat source devices (1) are provided so that heat source water flows in series with the two heat source devices (1) and (1) . 還気処理用冷温水コイル(3)と混気処理用冷温水コイル(5)と水熱源ヒートポンプ(6)の空気熱交換器(15)と空気熱源ヒートポンプ(8)の給気側熱交換器(19)及び排気側熱交換器(20)の伝熱管を楕円管にした請求項1、2、3又は4記載の大温度差空調システム。 Cold / hot water coil (3) for return air treatment, cold / hot water coil (5) for mixed air treatment , air heat exchanger (15) of water heat source heat pump (6), and supply air side heat exchanger of air heat source heat pump (8) The large temperature difference air-conditioning system according to claim 1, 2, 3 or 4, wherein the heat transfer tubes of (19) and the exhaust side heat exchanger (20) are elliptical tubes.
JP2006150572A 2006-05-30 2006-05-30 Large temperature difference air conditioning system Active JP4182494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150572A JP4182494B2 (en) 2006-05-30 2006-05-30 Large temperature difference air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150572A JP4182494B2 (en) 2006-05-30 2006-05-30 Large temperature difference air conditioning system

Publications (2)

Publication Number Publication Date
JP2007322024A JP2007322024A (en) 2007-12-13
JP4182494B2 true JP4182494B2 (en) 2008-11-19

Family

ID=38855003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150572A Active JP4182494B2 (en) 2006-05-30 2006-05-30 Large temperature difference air conditioning system

Country Status (1)

Country Link
JP (1) JP4182494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107981A (en) * 2018-02-01 2019-08-09 木村工机株式会社 Conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907687B2 (en) * 2009-04-13 2012-04-04 木村工機株式会社 Heat pump type medium temperature air conditioning system
CN102278798A (en) * 2011-07-28 2011-12-14 深圳市易网通通信技术有限公司 Mixed wet film heat pipe heat exchange air conditioning system
WO2013131436A1 (en) * 2012-03-05 2013-09-12 Rong Guohua Air-conditioning unit with heat recovery
CN106918114B (en) * 2017-02-05 2020-04-03 广东美的暖通设备有限公司 Communication method and device of multi-split air conditioning system
CN107806683B (en) * 2017-12-03 2023-11-07 卡林热泵技术有限公司 Grain depot grain pile environment control system with multi-energy source and heat pump in cold and hot two-way coupling
CN112240608B (en) * 2019-07-18 2023-06-27 木村工机株式会社 Heat exchanger and air conditioner
JP7473364B2 (en) 2020-03-10 2024-04-23 日本ピーマック株式会社 How to renovate your air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107981A (en) * 2018-02-01 2019-08-09 木村工机株式会社 Conditioner
EP3521713A3 (en) * 2018-02-01 2019-10-30 Kimura Kohki Co., Ltd. Air conditioning system
US10808959B2 (en) 2018-02-01 2020-10-20 Kimura Kohki Co., Ltd. Air conditioning system
CN110107981B (en) * 2018-02-01 2021-07-06 木村工机株式会社 Air conditioning apparatus

Also Published As

Publication number Publication date
JP2007322024A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4182494B2 (en) Large temperature difference air conditioning system
CN101547803B (en) Air conditioning system for vehicle
JP4582243B2 (en) Dehumidification system
JP6119141B2 (en) Air conditioning system
JP3800210B2 (en) Water source heat pump unit
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP4746077B2 (en) Heat pump air conditioning system
JP2007232282A (en) Heat pump type water heater
JP2006292313A (en) Geothermal unit
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2007139262A (en) Water-cooled heat pump type air conditioner
JP2019515238A (en) Energy-efficient central air conditioning and heat pump system
JP2006242524A (en) Air conditioner
JP2020192965A (en) Heat exchange system
JP2010243005A (en) Dehumidification system
KR20090117055A (en) Hvac for bus
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP2018070027A (en) Heat storage device
KR100613502B1 (en) Heat pump type air conditioner
JP4073165B2 (en) Engine cooling device and refrigeration device
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
JP7274886B2 (en) Vehicle air conditioner
JP2004239453A (en) Heat pump cycle using supercritical cooling medium
KR20120093668A (en) Heat pump system for vehicle
JP4073166B2 (en) Air conditioner and operation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250