WO2014109288A1 - 断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法 - Google Patents

断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法 Download PDF

Info

Publication number
WO2014109288A1
WO2014109288A1 PCT/JP2014/000046 JP2014000046W WO2014109288A1 WO 2014109288 A1 WO2014109288 A1 WO 2014109288A1 JP 2014000046 W JP2014000046 W JP 2014000046W WO 2014109288 A1 WO2014109288 A1 WO 2014109288A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
sheet
heat conduction
heat insulating
Prior art date
Application number
PCT/JP2014/000046
Other languages
English (en)
French (fr)
Inventor
剛 久万
周三 今井
敦 熊崎
岩井 雅治
Original Assignee
株式会社カネカ
栃木カネカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 栃木カネカ株式会社 filed Critical 株式会社カネカ
Priority to EP14737950.7A priority Critical patent/EP2944858B1/en
Priority to CN201480004472.2A priority patent/CN104919240B/zh
Priority to JP2014538553A priority patent/JP5734526B2/ja
Publication of WO2014109288A1 publication Critical patent/WO2014109288A1/ja
Priority to US14/796,199 priority patent/US10099446B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/047Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24281Struck out portion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24281Struck out portion type
    • Y10T428/24289Embedded or interlocked

Definitions

  • the present invention relates to a heat insulating sheet, a heat insulating material, a method for manufacturing a heat insulating sheet, and a method for manufacturing a heat insulating material.
  • Patent Document 1 discloses a laminated heat insulating material in which low emissivity layers and low heat conductive layers are alternately stacked. Patent Document 1 Japanese Patent Laid-Open No. 58-78751
  • the heat insulating material constituted by alternately laminating metal vapor deposition sheets and nets, it is difficult to reduce the weight while satisfying the required heat insulating properties.
  • the heat insulation sheet which concerns on 1 aspect of this invention is arrange
  • a protrusion including a resin on at least the surface is provided that protrudes from a surface opposite to the surface on which the first heat conduction suppressing layer of the first radiant heat reflection layer is laminated.
  • the first heat conduction suppressing layer may include a resin.
  • the heat insulating sheet may have an opening on a surface opposite to the surface on which the first heat conduction suppressing layer of the first radiant heat reflection layer is laminated, and the protrusion may be formed along an edge of the opening.
  • the opening may be a through-hole penetrating the first radiant heat reflecting layer and the first heat conduction suppressing layer.
  • the heat insulating sheet penetrates the first radiant heat reflection layer and the first heat conduction suppression layer at a position different from the opening on the surface opposite to the surface on which the first heat conduction suppression layer of the first radiant heat reflection layer is laminated. It may further have other through holes.
  • the heat insulation sheet which concerns on 1 aspect of this invention is arrange
  • the heat insulation sheet which concerns on 1 aspect of this invention is arrange
  • the first radiant heat reflecting layer includes a heat conduction suppressing layer and a protruding portion including a resin on at least a surface protruding from a surface opposite to a surface of the first radiant heat reflecting layer on which the first heat conduction suppressing layer is laminated.
  • the first heat conduction suppressing layer has an opening on a surface opposite to the surface on which the first heat conduction suppressing layer is laminated, and the protrusion is formed along the edge of the opening.
  • the opening may be a through-hole penetrating the first radiant heat reflection layer, the first heat conduction suppression layer, the second radiant heat reflection layer, and the second heat conduction suppression layer.
  • the protruding portion may have a joint portion that extends along the inner wall of the through hole and joins the first heat conduction suppressing layer and the second heat conduction suppressing layer.
  • the heat insulating sheet has a first radiant heat reflecting layer, a first heat conduction suppressing layer, at a position different from the opening on the surface opposite to the surface on which the first heat conduction suppressing layer of the first radiant heat reflecting layer is laminated, You may further have the other through-hole which penetrates a 2nd radiant heat reflective layer and a 2nd heat conduction suppression layer.
  • the first heat conduction suppressing layer may have a resin layer
  • the second heat conduction suppressing layer may have a nonwoven fabric layer containing resin fibers.
  • the protruding portion may be formed of a mixture of materials of the resin layer and the nonwoven fabric layer.
  • the protruding portion may have a shape or a size that does not enter the void formed in the nonwoven fabric layer.
  • the heat insulation sheet which concerns on 1 aspect of this invention is arrange
  • the resin contained in the first heat conduction suppressing layer is melted and on the other surface of the first heat conduction suppressing layer or the surface opposite to the surface on which the first heat conduction suppressing layer of the first radiant heat reflection layer is laminated.
  • a second heat conduction suppressing layer having a non-woven fabric layer containing resin fibers, and the protruding portion has a first heat conduction suppressing layer of the first radiant heat reflecting layer in which the resin fibers are melted in addition to the resin. It may be formed by depositing on the surface opposite to the surface to be laminated.
  • the first radiant heat reflection layer may have an opening on a surface opposite to the surface on which the first heat conduction suppressing layer is laminated, and the protrusion may be formed along an edge of the opening.
  • the opening may be a through-hole penetrating the first radiant heat reflection layer, the first heat conduction suppression layer, the second radiant heat reflection layer, and the second heat conduction suppression layer.
  • the protrusion is formed by melting the resin and the resin fiber, extends along the inner wall of the through hole, and joins the first heat conduction suppressing layer and the second heat conduction suppressing layer. May be included.
  • the protruding portion may have a shape or a size that does not enter the void formed in the nonwoven fabric layer.
  • the heat insulating material according to one embodiment of the present invention is formed by stacking a plurality of the above heat insulating sheets with a protruding portion interposed therebetween.
  • the plurality of heat insulating sheets include a first heat insulating sheet having a first through hole and a second heat insulating sheet disposed opposite to the first heat insulating sheet and having a second through hole, the first through hole and the second heat insulating sheet.
  • a through-hole may be provided in the position which does not overlap in the lamination direction of a some heat insulation sheet.
  • the heat insulating sheet manufacturing method includes a first heat conduction suppressing layer that suppresses heat conduction and a first radiant heat reflection that is disposed on one surface side of the first heat conduction suppressing layer and reflects radiant heat.
  • a method for producing a heat insulating sheet comprising a laminated sheet having a layer, wherein the resin contained in the first heat conduction-suppressing layer is melted to deposit the resin on at least one surface of the laminated sheet, at least one of A step of forming a protrusion including resin on at least the surface protruding from the surface.
  • an opening may be formed on at least one surface of the laminated sheet, and a protruding portion may be formed along the edge of the opening.
  • the laminated sheet is opposite to the surface on which the second radiant heat reflection layer disposed on the other surface side of the first heat conduction suppression layer and the first heat conduction suppression layer of the second radiant heat reflection layer are laminated.
  • a second heat conduction suppressing layer disposed on the surface side, the second heat conduction suppressing layer has a resin layer, and in the above step, the first radiant heat reflection layer, the first heat conduction suppressing layer, In a state where the first sheet on which the second radiant heat reflection layer is laminated and the second sheet including the second heat conduction suppressing layer are stacked, the surface side opposite to the surface on which the second sheet of the first sheet is laminated, Or after inserting a hot needle from the surface opposite to the surface on which the first sheet of the second sheet is laminated, a through-hole penetrating the first sheet and the second sheet is formed as an opening, and Resin and second heat conduction of resin layer of first heat conduction suppressing layer melted by piercing The first sheet and the second sheet are joined by a part
  • the method for manufacturing a heat insulating material includes a step of manufacturing a heat insulating material by laminating a plurality of heat insulating sheets manufactured by the method for manufacturing a heat insulating sheet with a protruding portion interposed therebetween.
  • FIG. 1 shows an example of a partial cross-sectional view of a heat insulating sheet 300 according to this embodiment.
  • the heat insulating sheet 300 includes a metal vapor-deposited sheet 100 and a nonwoven fabric sheet 200.
  • the metal vapor-deposited sheet 100 has a resin layer 102 and metal layers 104 and 106.
  • the metal layer 104 is disposed on one surface side of the resin layer 102, and the metal layer 106 is disposed on the other surface side of the resin layer 102.
  • the metal layers 104 and 106 may be formed by evaporating metal on both surfaces of the resin layer 102.
  • the metal layer may be formed only on one surface of the resin layer 102.
  • the resin layer 102 is formed of a thermoplastic resin.
  • a thermoplastic resin for example, polyester, polyethylene, polypropylene, or polyamide can be used as the thermoplastic resin. It is desirable to use a polyester-based material from the viewpoints of melting point, water absorption, metal vapor deposition, tear strength, weight, cost, and the like.
  • the resin layer 102 is an example of a first heat conduction suppressing layer or a second heat conduction suppressing layer that suppresses heat conduction.
  • the metal constituting the metal layers 104 and 106 for example, aluminum, gold, silver, copper, nickel, or the like can be used. From the viewpoints of vertical infrared reflectance, easiness of vapor deposition, uniformity of deposited film, weight, cost, etc., it is desirable to use aluminum as the metal.
  • the metal layers 104 and 106 are an example of a first radiant heat reflective layer or a second radiant heat reflective layer that reflects radiant heat.
  • the method for depositing the metal on the resin layer 102 is not particularly limited, and may be performed by electrothermal heating, sputtering, ion plating, ion beam, or the like using a continuous or batch type vacuum vapor deposition machine.
  • the thicknesses of the metal layers 104 and 106 are not particularly limited, but are preferably 100 angstroms or more and 1000 angstroms or less. By setting the thickness of the metal layer 104 or 106 to 100 angstroms or more, the amount of infrared rays transmitted from the metal layer 104 or 106 can be further suppressed, and the deterioration of the heat insulation characteristics can be further suppressed.
  • the thickness of the metal layers 104 and 106 is set to 1000 angstroms or less, an increase in thermal conductivity in the metal layers 104 and 106 can be further suppressed, and generation of cracks due to bending or the like can be further suppressed during construction.
  • the thickness of the metal vapor-deposited sheet 100 is desirably 3 ⁇ m or more and 100 ⁇ m or less. As for the thickness of the metal vapor deposition sheet 100, 6 micrometers or more and 50 micrometers or less are further more desirable. By setting the thickness of the metal vapor-deposited sheet 100 to 3 ⁇ m or more, the generation of wrinkles in the metal layer 104 or 106 can be further suppressed. By setting the thickness of the metal vapor-deposited sheet 100 to 6 ⁇ m or more, the generation of wrinkles in the metal layer 104 or 106 can be further suppressed.
  • the thickness of the metal vapor deposition sheet 100 is 100 ⁇ m or less, an increase in weight can be further suppressed, an increase in contact area with the nonwoven fabric sheet 200 can be further suppressed, and a decrease in heat insulation characteristics can be further suppressed.
  • the thickness of the metal vapor-deposited sheet 100 50 ⁇ m or less an increase in weight can be further suppressed, an increase in the contact area with the nonwoven fabric sheet 200 can be further suppressed, and a decrease in heat insulating properties can be further suppressed.
  • the thicknesses of the metal layers 104 and 106 are obtained by measuring the surface resistance value with a four-point low resistance meter (Dia Instruments Lorester EP) and calculating the deposition film thickness using the surface resistance value and the metal film specific resistance value. Can be obtained.
  • the thickness of the metal vapor deposition sheet 100 can be measured by the method of 6.1 of JIS L 1913.
  • Nonwoven fabric sheet 200 has a resin layer containing resin fibers.
  • the nonwoven fabric sheet 200 may have a structure in which resin fibers are overlapped in multiple layers.
  • the resin fiber may be formed of a thermoplastic resin.
  • As the flexible resin for example, polyester, polyethylene, polypropylene, polyamide, or the like can be used. From the viewpoint of melting point, water absorption, stretchability, tear strength, weight, cost, etc., it is desirable to use a polyester resin.
  • the nonwoven fabric sheet 200 is an example of a first heat conduction suppressing layer or a second heat conduction suppressing layer that suppresses heat conduction.
  • Density of the nonwoven fabric sheet is, 2 g / m 2 or more 15 g / m 2 or less.
  • the density (weight per unit area) of the nonwoven fabric sheet is more preferably 3 g / m 2 or more and 15 g / m 2 or less.
  • the density is low, that is, the basis weight is light, and the density of the nonwoven fabric sheet is more desirably 3 g / m 2 or more and 10 g / m 2 or less.
  • the density of a nonwoven fabric sheet shall be 2 g / m ⁇ 2> or more, since the metal vapor deposition sheets which pinch
  • the heat insulating sheet 300 includes a through hole 302 that penetrates the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200.
  • the through hole 302 is an example of an opening.
  • the heat insulating sheet 300 further includes a protrusion 304 formed along the outer periphery of the through hole 302.
  • the protrusion 304 includes a resin at least on the surface.
  • the heat insulation sheet 300 has the metal vapor deposition sheet 100 on the surface opposite to the surface on which the nonwoven fabric sheet 200 is laminated. You may provide the opening which is the hole which penetrates and does not penetrate the nonwoven fabric sheet 200.
  • the heat insulation sheet 300 may include other through-holes that are not formed with protrusions in addition to holes that penetrate the metal vapor-deposited sheet 100 and do not penetrate the nonwoven fabric sheet 200.
  • the protruding portion 304 protrudes from the surface 101 opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • the protrusion 304 may protrude from the surface 201 opposite to the surface on which the metal vapor deposition sheet 100 of the nonwoven fabric sheet 200 is laminated.
  • the protrusion 304 protrudes from the surface 101 opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated, at a height H.
  • the heat insulating sheet 300 has a plurality of through holes 302 and a plurality of protrusions 304.
  • a heat insulating material can be comprised by laminating
  • FIG. The heat insulating material may be configured by stacking, for example, 1 to 1000 sheets, 2 to 100 sheets, or 3 to 75 sheets of heat insulating sheets 300. Since the protruding portion 304 protrudes from the surface 101 of the metal vapor deposition sheet 100, the protruding portion 304 functions as a support between the heat insulating sheets 300. Therefore, it can prevent that the laminated heat insulation sheets 300 contact other than the protrusion part 304.
  • the protrusion part 304 contains resin on the surface, it can suppress the heat conduction by the heat insulation sheets 300 contacting more, and can improve the heat insulation characteristic of the heat insulation sheet 300.
  • FIG. The surface of the protruding portion 304 may be covered with a resin.
  • the nonwoven fabric sheet 200 may have a structure in which a plurality of resin fibers are overlapped, voids are formed between the resin fibers. Therefore, depending on the shape or size of the protruding portion 304, when a plurality of heat insulating sheets 300 are stacked, the protruding portion 304 may enter a gap formed in the nonwoven fabric sheet 200 of the adjacent heat insulating sheet 300. In such a case, the protrusion 304 does not exhibit the function as a support column, and causes a decrease in the heat insulating characteristics of the heat insulating material.
  • the protrusion 304 is formed in a shape or size that does not completely enter the gap formed in the nonwoven fabric sheet 200.
  • the diameter of the protrusion 304 is made larger than the maximum diameter of the gap formed in the nonwoven fabric sheet 200.
  • the protrusion part 304 can prevent entering the space
  • the weight reduction of the heat insulation sheet 300 can be achieved by using the nonwoven fabric sheet 200. Therefore, the heat insulation characteristic of the heat insulation material comprised by laminating
  • the protrusion part 304 since the protrusion part 304 should just function as a support
  • the through-hole 302 is formed by inserting a hot needle from a surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal deposition sheet 100 is laminated in a state where the metal deposition sheet 100 and the nonwoven fabric sheet 200 are overlapped, and then extracting the through hole 302. , May be formed. Note that the through hole 302 may be formed by a method other than piercing the hot needle.
  • the protrusion 304 is formed along the edge of the through hole 302.
  • the protrusion 304 along the outer periphery of the through hole 302 is formed by a part of the resin contained in the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 melted by the hot needle. Therefore, the protrusion 304 is formed of a mixture of materials contained in the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200.
  • the protrusion 304 has an extension 306 that extends along the inner wall of the through hole 302.
  • the extension part 306 covers the inner wall of the through hole 302 and functions as a joining part that joins the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200.
  • the protruding portion 304 and the extension portion 306 are a surface of the nonwoven fabric sheet 200 opposite to the surface on which the metal deposition sheet 100 is laminated or the nonwoven fabric of the metal deposition sheet 100 in a state where the metal deposition sheet 100 and the nonwoven fabric sheet 200 are overlapped. It is formed in the process of pulling out the hot needle from the surface opposite to the surface on which the sheet 200 is laminated.
  • the through hole 302 is formed by piercing the hot needle in a state where the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are overlapped. And the metal vapor deposition sheet 100 and the nonwoven fabric sheet 200 are welded by a part of resin which comprises the metal vapor deposition sheet 100 and the nonwoven fabric sheet 200 which were fuse
  • FIG. 2 is an example of a partial cross-sectional view of a heat insulating material 400 in which a plurality of heat insulating sheets 300 according to this embodiment are stacked.
  • the heat insulating material 400 is configured by laminating heat insulating sheets 300A, 300B, 300C, 300D, and 300E.
  • the heat insulating sheets 300A, 300B, 300C, 300D, and 300E have through holes 302A, 302B, 302C, 302D, and 302E.
  • Through holes 302A, 302B, 302C, 302D, and 302E allow air remaining between the heat insulating sheets 300A, 300B, 300C, 300D, and 300E when the heat insulating sheets 300A, 300B, 300C, 300D, and 300E are overlapped. It functions as a passage for discharging to the outside. Thereby, the clearance gap between heat insulation sheet 300A, 300B, 300C, 300D, and 300E can be made into a vacuum state, and the heat insulation characteristic of the heat insulating material 400 can be improved.
  • the heat insulating sheets 300A, 300B, 300C, 300D and 300E have a plurality of through holes formed by hot needles. However, it is desirable that at least some of the through holes formed in each of the heat insulating sheets 300A, 300B, 300C, 300D, and 300E are not formed so that their positions coincide. Thereby, it is possible to prevent at least some of the through holes from overlapping each other in the stacking direction, and it is possible to further suppress infrared rays from passing through the through holes.
  • the through hole may be formed using a technique other than a thermal needle such as thermal spraying or laser processing.
  • the respective through holes 302A, 302B, 302C, 302D, and 302E formed in the heat insulating sheets 300A, 300B, 300C, 300D, and 300E may be provided at positions that do not overlap in the stacking direction.
  • infrared rays pass through the through holes 302A, 302B, 302C, 302D, and 302E. It can be suppressed more. Therefore, the heat insulation characteristic of the heat insulating material 400 is hardly deteriorated by forming a plurality of through holes in each of the heat insulating sheets 300A, 300B, 300C, 300D, and 300E.
  • At least a part of the through holes formed in the heat insulating sheet may be formed at a position that does not overlap with at least a part of the through holes formed in another adjacent heat insulating sheet. That is, if the deterioration of the heat insulating property of the heat insulating material is suppressed, a part of the through holes formed in the heat insulating sheet is formed at a position overlapping with a part of the through holes formed in the other adjacent heat insulating sheets. It may be.
  • the position which does not overlap should just be in the position where at least 70% or more of the through holes formed in the heat insulating sheet do not overlap with the through holes formed in the other adjacent heat insulating sheets.
  • the protruding portion 304 that protrudes from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated is a strut between the heat insulating sheets 300. Function. Therefore, even if the several heat insulation sheet 300 is laminated
  • the protrusion 304 is formed around the through hole by a part of the melted resin. Can be formed. Since resin is contained in at least the surface of the protrusion 304, the protrusion 304 hardly contributes to heat conduction between the heat insulating sheets 300. Therefore, by laminating the heat insulating sheet 300 with the plurality of protruding portions 304 sandwiched therebetween, it is possible to prevent a decrease in heat insulating characteristics due to the heat insulating sheets 300 coming into contact with each other.
  • the heat insulation sheet 300 which concerns on this embodiment, by melt
  • the heat insulating material 400 is formed by stacking the plurality of heat insulating sheets 300, the air remaining between the heat insulating sheets 300 is removed. It becomes easy to extrude outside, and it becomes easy to make the space between the heat insulating sheets 300 into a vacuum state.
  • FIG. 3 shows an example of a schematic diagram of a hot needle processing apparatus for manufacturing the heat insulating sheet 300.
  • the hot needle processing apparatus includes transport rolls 10 and 20, a hot needle roll 40, and a brush roll 50.
  • a plurality of hot needles are arranged in a staggered pattern on the hot needle roll 40.
  • the temperature of the hot needle roll 40 is heated above the melting point of the resin contained in the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200. Between the hot needle roll 40 and the brush roll 50, the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are passed in an overlapped state, and the hot needle is pierced into the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200, and a plurality of penetrations are made. Form holes.
  • the metal vapor deposition sheet 100 is disposed on the brush roll 50 side
  • the nonwoven fabric sheet 200 is disposed on the hot needle roll 40 side
  • a hot needle may be inserted.
  • the nonwoven fabric sheet 200 is arrange
  • the metal vapor deposition sheet 100 is arrange
  • FIG. 4 is a flowchart showing an example of the manufacturing process of the heat insulating sheet 300.
  • the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are laminated, the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are passed between the hot needle roll 40 and the brush roll 50 to pierce the hot needle from the nonwoven fabric sheet 200 side.
  • a plurality of through holes penetrating the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are formed (S100).
  • the metal vapor-deposited sheet 100 and the non-woven fabric sheet 200 are joined by welding the resin melted from the metal vapor-deposited sheet 100 and the non-woven fabric sheet 200 to the inner walls of the plurality of through holes with a hot needle (S102). Further, a plurality of protrusions along the outer periphery of the plurality of through holes 302 are formed on the surface of the metal vapor-deposited sheet 100 opposite to the surface on which the non-woven fabric sheet 200 is laminated by a resin melted from the metal vapor-deposited sheet 100 and the non-woven fabric sheet 200. 304 is formed (S104), and the hot needle is extracted from the nonwoven fabric sheet 200 side (S106).
  • the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are overlapped, the metal vapor-deposited sheet 100 and the non-woven fabric sheet 200 are joined by piercing the hot needle to form a plurality of through holes 302, Further, a plurality of protrusions 304 can be formed along the outer periphery of the plurality of through holes 302.
  • the heat insulating material 400 can be manufactured by laminating a plurality of heat insulating sheets manufactured by the manufacturing method as described above with the protruding portion 304 interposed therebetween.
  • FIG. 5 shows an example of a partially enlarged view of the heat insulating sheet 300 as viewed from the metal vapor-deposited sheet 100 side.
  • the heat insulating sheet 300 has a plurality of through holes formed in a staggered manner.
  • the through hole 302 is formed by piercing a hot needle while conveying the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 in the Y direction.
  • the through hole 302 has an elliptical shape having a long axis along the Y direction.
  • the distances from the through hole 302a to the adjacent through hole 302b and the through hole 302c are the distance D1 and the distance D2, respectively.
  • the distance between the through hole 302b and the through hole 302c arranged along the X direction perpendicular to the transport direction is a distance X.
  • the distance between the through hole 302a and the through hole 302d arranged along the Y direction parallel to the transport direction is the distance Y.
  • FIG. 6 shows an example of an enlarged view of the through hole 302.
  • the length of the long axis of the through hole 302 parallel to the transport direction is the length H1
  • the length of the short axis of the through hole 302 perpendicular to the transport direction is the length H2.
  • FIG. 7 shows the results of measuring the heat insulation characteristics of the heat insulation sheet 300 by changing the density of the nonwoven fabric sheet 200 and the needle diameter of the heat needle.
  • the resin layer of the metal vapor-deposited sheet used for the measurement of the heat insulating properties is a polyester film called Toray's Lumirror CX40.
  • the metal vapor deposition sheet obtained by vacuum-depositing aluminum on both surfaces of this polyester film was used.
  • the nonwoven fabric sheet used for the measurement of heat insulating properties is a 05TH type polyester wet nonwoven fabric made by Hirose Paper.
  • the nonwoven fabric sheet having a nonwoven fabric density of 15 g / m 2 is a wet nonwoven fabric of 05TH-15 manufactured by Hirose Paper.
  • the nonwoven fabric sheet having a nonwoven fabric density of 8 g / m 2 is a wet nonwoven fabric of 05TH-8 manufactured by Hirose Paper.
  • the nonwoven fabric sheet having a nonwoven fabric density of 5 g / m 2 is a wet nonwoven fabric of 05TH-5 manufactured by Hirose Paper.
  • the hot needle may be formed in a tapered shape in which the outer diameter of the tip is smaller than the outer diameter of the proximal end.
  • the hot needle may have a conical shape that becomes thicker from the tip toward the axial direction of the hot needle.
  • the needle diameter of the hot needle in FIG. 7 indicates the outer diameter of a portion separated from the tip of the hot needle by a distance of 7 mm toward the proximal end along the axial direction of the hot needle.
  • the needle diameter of the hot needle indicates the major axis length of the ellipse of the part.
  • the hot needle is pierced from the point of the hot needle to the base end side along the axial direction of the hot needle from 0.5 mm to 6.5 mm on the laminated sheet in which the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are stacked.
  • a through hole may be formed in the laminated sheet.
  • the length H1 of the long axis of the through hole 302 formed in the heat insulating sheet 300 and the maximum diameter of the void formed in the nonwoven fabric sheet 200 were observed with JSM-T20, a scanning electron microscope, and image processing was performed. It was measured by. More specifically, five samples are prepared by cutting out a part of the surface of the nonwoven fabric sheet 200 in a side of 5 mm square, and these samples are imaged at a magnification of 200 times with a scanning electron microscope, and are included in the captured image. A void having the largest circle within the void was identified from among the voids, and the diameter of the largest circle within the identified void was measured as the maximum diameter.
  • the through-holes 302 were sequentially formed with a hot needle at 300 ° C. while being conveyed at a linear speed of about 20 m / min in a state where the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 were stacked.
  • the interval between the hot needles was 17 mm.
  • the heat insulating sheet 300 is cut to a width of 1000 mm and a length of about 630 mm to 730 mm, the cut heat insulating sheets 300 are stacked, and after sewing a width of 1000 mm on one side, it is wound around a winding rod having a diameter of 200 mm,
  • the heat insulating material comprised with the heat insulation sheet 300 was prepared.
  • the long axis length of the through hole in the table is one arbitrary from the heat insulating sheet of each one of the plurality of through holes formed in the heat insulating material of 10 samples configured under the respective conditions.
  • the average value of the major axis length measured about the selected through-hole is shown.
  • surface shows the average value of the penetration
  • the sample corresponding to the heat insulation characteristic shown as the conventional method in the table is a metal vapor-deposited sheet in which aluminum is vacuum-deposited on both sides of a polyester film called Lumirror CX40 made by Toray, and a fiber made of polyester with a thickness of about 200 ⁇ m. It is a heat insulating material configured by laminating 25 layers of knitted nets having a mesh mesh number of about 90 / cm 2 .
  • the maximum gap diameter of the nonwoven fabric sheet it is possible to reduce the maximum gap diameter of the nonwoven fabric sheet and prevent the protruding portion 304 from being buried in the gap of the nonwoven fabric sheet.
  • the increase in the density of the nonwoven fabric sheet can be further suppressed, the increase in the contact area between the metal vapor deposited sheet and the nonwoven fabric sheet can be further suppressed, and the deterioration of the heat insulation properties can be further suppressed, so the maximum void diameter of the nonwoven fabric sheet can be made too small. It is desirable that it is not too much.
  • the protruding portion 304 can be prevented from being buried in the non-woven fabric sheet gap.
  • the diameter of the through hole 302 is not excessively large.
  • the long axis length H1 (melting ring diameter) of the through-hole 302 is in the range of 50 to 2000 ⁇ m, and the maximum void diameter of the nonwoven fabric sheet is 50 to 500 ⁇ m. A range is desirable. Further, it is more preferable that the long axis length H1 (melting ring diameter) of the through hole 302 is in the range of 50 to 1700 ⁇ m, and the maximum void diameter of the nonwoven fabric sheet is in the range of 50 to 400 ⁇ m.
  • the length H1 (melting ring diameter) of the long axis of the through hole 302 is in the range of 300 to 1700 ⁇ m, and the maximum void diameter of the nonwoven fabric sheet is in the range of 60 to 400 ⁇ m. Further, the long axis length H1 (melting ring diameter) of the through hole 302 may be in the range of 50 to 1000 ⁇ m.
  • FIG. 8 is a table showing an example of measurement results of numerical values regarding the through holes formed in the heat insulating sheet 300 of the sample for evaluation. Each numerical value in the table is a value for the parameters shown in FIGS. 5 and 6. A digital scope made by Moritex was used to measure the numerical values for the through holes.
  • the resin layer of the metal vapor deposition sheet 100 used for the heat insulation sheet 300 of the sample for evaluation is a polyester film (Toray Lumirror CX40). And the metal vapor deposition sheet 100 was formed by vacuum-depositing aluminum on both surfaces of the polyester film.
  • the thickness of the AL vapor deposition film is 9 ⁇ m.
  • the nonwoven fabric sheet 200 is made of Hirose Paper 05TH-5 (weight per unit: 5 g / m 2 ) made of polyester.
  • the needle diameter of the hot needle used to form the through hole 302 is 0.7 mm.
  • the heat insulation characteristic of the sample heat insulation sheet 300 was 0.63 W / m 2 .
  • the average of the distance X between the through holes 302 formed in the sample heat insulating sheet 300 was 25.12. Furthermore, the distance Y was 22.62. The average of the distance D1 was 16.88 mm. Moreover, the average of distance D2 was 16.90. The average of the long axis length H1 of the through holes was 1.21 mm, and the average of the short axis length H2 was 0.44 mm. The average area of the through holes was 0.438 mm 2 . The number of through holes per 1 m 2 was 3,520. The area of the through hole per 1 m 2 was 1,531 mm 2 . Furthermore, the aperture ratio which is the ratio which the through-hole per 1 m 2 occupies was 0.15%.
  • the needle diameter of the hot needle is preferably 0.1 mm to 3.0 mm, and more preferably 0.1 mm to 2.4 mm.
  • the nonwoven fabric density is desirably 2g / m 2 ⁇ 20g / m 2, and more preferably 2g / m 2 ⁇ 15g / m 2.
  • the distance X and the distance Y are preferably in the range of 10 mm to 50 mm, and in the range of 20 mm to 30 mm. More desirably.
  • the distance D1 and the distance D2 are preferably in the range of 5 mm to 40 mm, and more preferably in the range of 10 mm to 20 mm.
  • the length H1 of the long axis of the through hole is preferably in the range of 50 ⁇ m to 4000 ⁇ m, more preferably in the range of 50 ⁇ m to 2000 ⁇ m, and still more preferably in the range of 300 ⁇ m to 1700 ⁇ m.
  • the length H2 of the short axis of the through hole is preferably in the range of 20 ⁇ m to 1000 ⁇ m, and more preferably in the range of 40 ⁇ m to 800 ⁇ m.
  • the short axis length H2 of the through hole may be 70 ⁇ m or less, and may be 55 ⁇ m or less.
  • the opening ratio of the through holes is desirably 0.05% to 1.1%, and more desirably 0.10% to 0.50%.
  • the opening ratio of the through holes is more preferably 0.10% to 0.20%.
  • FIG. 9 is a table showing an example of a measurement result regarding the height H of the through hole formed in the heat insulating sheet 300 of the sample for evaluation used in the measurement shown in FIG.
  • the height H shows the height from the surface 101 opposite to the surface where the nonwoven fabric sheet 200 of the metal vapor deposition sheet 100 is laminated
  • the height H is a one-layer heat insulation sheet in which an AL vapor-deposited sheet in which a through hole is formed by a hot needle and a non-woven sheet, and an AL vapor-deposited sheet in which a through hole by a hot needle is not formed and a non-woven sheet.
  • Subtracting thickness B in the case of laminating 10 layers of laminated sheets of AL vapor-deposited sheets and non-woven fabric sheets with no through holes formed by hot needles from thickness A in the case of laminating 9 layers of laminated sheets Calculated by
  • Thickness A and thickness B were obtained by fixing Mitutoyo's Digimatic Gauge (minimum scale 1 ⁇ m, measuring pressure 0.3 N) to Mitutoyo's stand (measuring table 58 mm, flatness 1.3 ⁇ m or less), 10 layers laminated sheet was measured at a measurement pressure of 0.24 ⁇ 0.01 KPa in a state of being sandwiched between a measuring table and a glass plate of 26 mm ⁇ 76 mm ⁇ thickness 3 ⁇ 0.1 mm (flatness 2 ⁇ m or less).
  • the lamination sheet in which the through-hole was formed was laminated
  • the average of the heights H of the through holes 302 formed in the heat insulating sheet 300 of the sample was 32 ⁇ m.
  • the height H of the through hole is higher than 5 ⁇ m in the case of a heat insulating material configured at least under the above conditions.
  • stacking multiple heat insulation sheets 300 can be made thinner by making height H of a through-hole into 250 micrometers or less.
  • the metal vapor deposition sheet 100 in which the metal layer 104 and the metal layer 106 are vapor-deposited on both surfaces of the resin layer 102 has been described.
  • the metal vapor-deposited sheet 100 may be a sheet in which a metal layer is vapor-deposited only on one surface.
  • the heat insulating sheet 300 is formed by laminating the metal layer 104 on one surface side of the resin layer 102 and laminating the nonwoven fabric sheet 200 on the surface side opposite to the surface of the resin layer 102 on which the metal layer 104 is laminated. May be configured.
  • the through-hole 302 which penetrates the metal vapor deposition sheet 100 and the nonwoven fabric sheet 200 is formed, and the protrusion part 304 made to protrude from the surface opposite to the surface where the resin layer 102 of the metal layer 104 is laminated
  • stacked around the through-hole 302. May be formed.
  • a plurality of protrusions are formed with resin on both surfaces or one surface of a metal vapor-deposited sheet obtained by depositing metal on both surfaces or one surface of a resin layer such as a polyester film, and the protrusions are formed.
  • the heat insulating material may be formed by laminating a plurality of the deposited metal sheets.
  • the protruding portion may be formed together with the through hole by piercing the hot needle, or formed by other methods such as applying a material such as a resin forming the protruding portion to both sides or one side of the metal vapor-deposited sheet. May be.
  • the heat insulating sheet 300 may have a protruding portion 305 formed along the outer periphery of the through hole 302 and another protruding portion formed of resin independent of the through hole 302.
  • an opening 303 not penetrating the metal deposition sheet 103 is formed in the metal deposition sheet 103 in which the metal layer 104 is deposited on one surface of the resin layer 102, and protrudes around the opening 303.
  • FIG. The opening 303 is formed on the surface opposite to the surface on which the resin layer 102 of the metal layer 104 is laminated.
  • the opening 303 penetrates the metal layer 104 and does not penetrate the resin layer 102.
  • the protruding portion 304 is formed along the edge of the opening 303 so as to protrude from the surface opposite to the surface on which the resin layer 102 of the metal layer 104 is laminated.
  • the opening 303 may be formed by piercing a hot needle adjusted in depth so as not to penetrate the metal vapor deposition sheet 103.
  • the metal vapor-deposited sheet 103 has another through-hole 307 that penetrates the resin layer 102 and the metal layer 104 at a position different from the opening 303 on the surface opposite to the surface on which the resin layer 102 of the metal layer 104 is laminated. You can do it. Thereby, when laminating the plurality of metal vapor deposition sheets 103 with the protrusions 304 interposed therebetween, even if the opening 303 does not penetrate the metal vapor deposition sheet 103, the plurality of metal vapor deposition sheets 103 are interposed through the other through holes 307. The gap between them can be evacuated.
  • the heat insulating sheet 300 in which the nonwoven fabric sheet 200 is laminated on one surface of the metal vapor-deposited sheet 100 may have a through hole 302 and an opening 303.
  • the through hole 302 passes through the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200.
  • a protruding portion 304 is formed along the edge of the through-hole 302 so as to protrude from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • the opening 303 is formed on the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated, and penetrates the metal vapor-deposited sheet 100 and does not penetrate the nonwoven fabric sheet 200.
  • a protruding portion 304 is formed along the edge of the opening 303 so as to protrude from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • the heat insulating sheet 300 may be configured by forming the protrusions 304 around the holes penetrating the heat insulating sheet 300 and the holes not penetrating.
  • the through hole 302 and the opening 303 may be formed by piercing a hot needle having a different length from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • the heat insulating sheet 300 in which the nonwoven fabric sheet 200 is laminated on one surface of the metal vapor-deposited sheet 100 may have a through hole 302 and another through hole 307.
  • the through hole 302 and the other through hole 307 penetrate the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200.
  • a protruding portion 304 is formed along the edge of the through-hole 302 so as to protrude from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • no protrusion is formed around the other through hole 307.
  • the heat insulation sheet 300 may have the through-hole 302 in which the protrusion part 304 was formed along the edge, and the other through-hole 307 in which the protrusion part 304 is not formed.
  • the through-hole 302 is pierced with a hot needle from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated, or the surface opposite to the surface on which the metal vapor-deposited sheet 100 is laminated. You may form by extracting.
  • Other through-holes 307 may be formed using a technique such as punching or laser processing.
  • the heat insulating sheet 300 in which the nonwoven fabric sheet 200 is laminated on one surface of the metal vapor-deposited sheet 100 may have an opening 303 and another through hole 307.
  • the opening 303 is formed on the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated, and penetrates the metal vapor-deposited sheet 100 and does not penetrate the nonwoven fabric sheet 200.
  • a protruding portion 304 is formed along the edge of the opening 303 so as to protrude from the surface opposite to the surface on which the nonwoven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated.
  • the heat insulating sheet 300 has other through holes 307 penetrating the metal vapor-deposited sheet 100 and the non-woven fabric sheet 200 at positions different from the openings 303 on the surface opposite to the surface on which the non-woven fabric sheet 200 of the metal vapor-deposited sheet 100 is laminated. You may have.
  • the opening 303 may be formed by piercing a hot needle adjusted in depth so as not to penetrate the nonwoven fabric sheet 200.
  • Other through-holes 307 may be formed using a technique such as punching or laser processing.
  • the metal vapor deposition sheet 100 used for the heat insulating sheet 300 as shown in FIGS. 13 to 15 may also be a metal vapor deposition sheet in which a metal layer is vapor-deposited only on one surface.
  • the protrusion part 304 may be formed in the surface side in which the metal layer of the metal vapor deposition sheet was vapor-deposited, and the nonwoven fabric sheet 300 may be arrange
  • FIG. 16 shows the result of measuring the heat insulation characteristics of a heat insulating sheet 300 provided with a through hole 302 having a protrusion 304 around it and another through hole 307 having no protrusion around it.
  • the resin layer of the metal vapor-deposited sheet used for the measurement of the heat insulating properties is a polyester film called Toray's Lumirror CX40.
  • the metal vapor deposition sheet obtained by vacuum-depositing aluminum on both surfaces of this polyester film was used.
  • the nonwoven fabric sheet used for the measurement of heat insulating properties is a 05TH type polyester wet nonwoven fabric made by Hirose Paper. In the table, the nonwoven fabric sheet having a nonwoven fabric density of 5 g / m 2 is a wet nonwoven fabric of 05TH-5 manufactured by Hirose Paper.
  • the needle diameter of the hot needle in FIG. 16 indicates the outer diameter of a portion separated from the tip of the hot needle by a distance of 7 mm toward the proximal end along the axial direction of the hot needle.
  • the needle diameter of the hot needle indicates the major axis length of the ellipse of the part.
  • the hot needle is pierced from the point of the hot needle to the base end side along the axial direction of the hot needle from 0.5 mm to 6.5 mm on the laminated sheet in which the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 are stacked. Through holes were formed in the laminated sheet.
  • the length H1 of the long axis of the through hole 302 formed in the heat insulating sheet 300 and the maximum diameter of the void formed in the nonwoven fabric sheet 200 were observed with JSM-T20, a scanning electron microscope, and image processing was performed. It was measured by. More specifically, five samples are prepared by cutting out a part of the surface of the nonwoven fabric sheet 200 in a side of 5 mm square, and these samples are imaged at a magnification of 200 times with a scanning electron microscope, and are included in the captured image. A void having the largest circle within the void was identified from among the voids, and the diameter of the largest circle within the identified void was measured as the maximum diameter.
  • the through-holes 302 were sequentially formed with a hot needle at 300 ° C. while being conveyed at a linear speed of about 20 m / min in a state where the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 were stacked.
  • the interval between the hot needles was 17 mm.
  • the heat insulating sheet 300 was cut into a width of 1000 mm and a length of about 630 mm to 730 mm.
  • Another through-hole 307 was formed in the cut heat insulation sheet 300 using a screw punch made by Nonaka Seisakusho.
  • Other through-holes 307 were formed in a lattice pattern at intervals of 75 mm.
  • the diameter of the other through hole 307 is 1 mm.
  • 152 other through holes 307 per 1 m 2 were formed.
  • the aperture ratio, which is the ratio occupied by other through holes 307 per 1 m 2 was 0.05%.
  • the aperture ratio, which is the ratio occupied by the through holes 302 and other through holes 307 per 1 m 2 was 0.20%.
  • the heat insulating sheet 300 in which the through-hole 302 and other through-holes 307 were formed was laminated, and after sewing a portion having a width of 1000 mm on one side, the heat-insulating sheet 300 was wound around a winding rod having a diameter of 200 mm and constituted by 25 layers of the heat-insulating sheet 300. Insulation was prepared.
  • the long axis length of the through hole 302 in the table is one from the heat insulating sheet of each one of the plurality of through holes 302 formed in the heat insulating material of 10 samples configured under each condition.
  • the average value of the major axis length measured about the arbitrarily selected through-hole 302 is shown.
  • surface shows the average value of the penetration
  • the sample corresponding to the heat insulation characteristic shown as the conventional method in the table is a metal vapor-deposited sheet in which aluminum is vacuum-deposited on both sides of a polyester film called Lumirror CX40 made by Toray, and a fiber made of polyester with a thickness of about 200 ⁇ m. It is a heat insulating material constituted by laminating 25 layers of knitted nets of about 90 / cm 2 mesh.
  • the heat insulating sheet 300 having other through holes 307 in addition to the through holes 302 can provide a heat insulating material having excellent heat insulating properties.
  • FIG. 17 shows the result of measuring the heat insulation characteristics of the heat insulation sheet 300 including the opening 303 having the protrusion 304 around and the other through hole 307 having no protrusion around.
  • the metal vapor-deposited sheet and non-woven fabric sheet used for the measurement of the heat insulation properties are the same as the metal vapor-deposited sheet and non-woven fabric sheet from which the measurement results shown in FIG. 16 were obtained.
  • the length of the hot needle used to form the opening 303 is 5 mm.
  • the needle diameter of the hot needle in FIG. 17 indicates the outer diameter of a portion separated from the tip of the hot needle by a distance of 30 ⁇ m along the axial direction of the hot needle toward the base end.
  • the needle diameter of the hot needle indicates the major axis length of the ellipse of the part.
  • the thermal needle pierces the laminated sheet obtained by laminating the metal vapor-deposited sheet 100 and the nonwoven fabric sheet 200 from the tip of the thermal needle to the base end side along the axial direction of the thermal needle to a position of 30 ⁇ m and penetrates the metal vapor-deposited sheet 100 And the opening 303 which has not penetrated the nonwoven fabric sheet 200 was formed in the laminated sheet.
  • the measurement method of the length H1 of the major axis of the opening 303 formed in the heat insulating sheet 300 and the maximum diameter of the void formed in the nonwoven fabric sheet 200 is the same method as the case of obtaining the measurement result shown in FIG.
  • openings 303 are sequentially formed with a 300 ° C. hot needle.
  • the interval between the hot needles was 17 mm.
  • the heat insulating sheet 300 was cut into a width of 1000 mm and a length of about 630 mm to 730 mm.
  • Another through-hole 307 was formed in the cut heat insulation sheet 300 using a screw punch made by Nonaka Seisakusho.
  • Other through-holes 307 were formed in a grid pattern at intervals of 45 mm.
  • the diameter of the other through hole 307 is 1 mm.
  • 450 other through holes 307 per 1 m 2 were formed.
  • the aperture ratio which is the ratio occupied by other through holes 307 per 1 m 2 , was 0.14%.
  • the heat insulating sheet 300 in which the opening 303 and the other through-holes 307 are stacked and laminated on a side having a width of 1000 mm is wound around a winding rod having a diameter of 200 mm, and the heat insulating sheet 300 is formed of 25 layers of heat insulating sheet 300. Materials were prepared.
  • the major axis length of the opening 303 in the table is arbitrarily selected from one of the heat insulating sheets of one sample among the openings 303 formed in the heat insulating material of ten samples configured under the respective conditions.
  • the average value of the major axis length measured for the measured opening 303 is shown.
  • surface shows the average value of the penetration
  • the sample corresponding to the heat insulation characteristic shown as the conventional method in the table is a metal vapor-deposited sheet in which aluminum is vacuum-deposited on both sides of a polyester film called Lumirror CX40 made by Toray, and a fiber made of polyester with a thickness of about 200 ⁇ m. It is a heat insulating material constituted by laminating 25 layers of knitted nets of about 90 / cm 2 mesh.
  • the heat insulating sheet 300 having the opening 303 and the other through-holes 307 can provide a heat insulating material having excellent heat insulating characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Filtering Materials (AREA)

Abstract

 金属蒸着シートとネットとを交互に積層することで構成した断熱材によれば、要求される断熱特性を満たしながら、軽量化することが困難であった。断熱シートは、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部とを備える。

Description

断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法
 本発明は、断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法に関する。
 ポリエステル樹脂シートの両面にアルミニウムを真空蒸着した金属蒸着フィルムとポリエステルの繊維で編んだネットとを交互に積層することで構成した断熱材が知られている。特許文献1には、低輻射率層と低熱伝導層とを交互に重ねた積層断熱材について開示されている。
 特許文献1 特開昭58-78751号公報
 金属蒸着シートとネットとを交互に積層することで構成した断熱材によれば、要求される断熱特性を満たしながら、軽量化することが困難であった。
 本発明の一態様に係る断熱シートは、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部とを備える。
 上記断熱シートにおいて、第1熱伝導抑制層は、樹脂を含んでよい。
 上記断熱シートは、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面上に開口を有し、突出部は、開口の縁に沿って形成されてよい。
 上記断熱シートにおいて、開口は、第1輻射熱反射層および第1熱伝導抑制層を貫通する貫通孔でよい。
 上記断熱シートは、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面上の開口とは異なる位置に、第1輻射熱反射層、および第1熱伝導抑制層を貫通する他の貫通孔をさらに有してよい。
 本発明の一態様に係る断熱シートは、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、第1熱伝導抑制層の他方の面側に配置された第2熱伝導抑制層と、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部とを備え、第1輻射熱反射層は、第1熱伝導抑制層が積層される面と反対の面上に開口を有し、突出部は、開口の縁に沿って形成されている。
 本発明の一態様に係る断熱シートは、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、第2輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面側に配置された第2熱伝導抑制層と、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部とを備え、第1輻射熱反射層は、第1熱伝導抑制層が積層される面と反対の面上に開口を有し、突出部は、開口の縁に沿って形成されている。
 上記断熱シートにおいて、開口は、第1輻射熱反射層、第1熱伝導抑制層、第2輻射熱反射層および第2熱伝導抑制層を貫通する貫通孔でよい。
 上記断熱シートにおいて、突出部は、貫通孔の内壁に沿って延長し、第1熱伝導抑制層と第2熱伝導抑制層とを接合する接合部を有してよい。
 上記断熱シートは、第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上の前記開口とは異なる位置に、第1輻射熱反射層、第1熱伝導抑制層、第2輻射熱反射層および第2熱伝導抑制層を貫通する他の貫通孔をさらに有してよい。
 上記断熱シートにおいて、第1熱伝導抑制層は、樹脂層を有し、第2熱伝導抑制層は、樹脂繊維を含む不織布層を有してよい。
 上記断熱シートにおいて、突出部は、樹脂層および不織布層のそれぞれの材料の混合物で形成されてよい。
 上記断熱シートにおいて、突出部は、不織布層に形成された空隙に入り込まない形状または大きさでよい。
 本発明の一態様に係る断熱シートは、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、第1熱伝導抑制層に含まれる樹脂が融解して、第1熱伝導抑制層の他方の面、または第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面上に、堆積することで形成された、少なくとも表面に前記樹脂を含む突出部とを備える。
 上記断熱シートにおいて、第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、第2輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面側に配置され、樹脂繊維を含む不織布層を有する第2熱伝導抑制層とをさらに備え、突出部は、樹脂に加えて樹脂繊維が融解して、第1輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面上に、堆積することで形成されてよい。
 上記断熱シートにおいて、第1輻射熱反射層は、第1熱伝導抑制層が積層される面と反対の面上に開口を有し、突出部は、開口の縁に沿って形成されてよい。
 上記断熱シートにおいて、開口は、第1輻射熱反射層、第1熱伝導抑制層、第2輻射熱反射層および第2熱伝導抑制層を貫通する貫通孔でよい。
 上記断熱シートにおいて、突出部は、樹脂および樹脂繊維が融解することで形成され、貫通孔の内壁に沿って延長し、第1熱伝導抑制層と第2熱伝導抑制層とを接合する接合部を有してよい。
 上記断熱シートにおいて、突出部は、不織布層に形成された空隙に入り込まない形状または大きさでもよい。
 本発明の一態様に係る断熱材は、上記の断熱シートを、突出部を挟んで複数積層することにより形成される。
 複数の断熱シートは、第1貫通孔を有する第1断熱シートと、第1断熱シートに対向して配置され、第2貫通孔を有する第2断熱シートとを含み、第1貫通孔と第2貫通孔とは、複数の断熱シートの積層方向において、重ならない位置に設けられてもよい。
 本発明の一態様に係る断熱シートの製造方法は、熱伝導を抑制する第1熱伝導抑制層と、第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層とを有する積層シートを備える断熱シートの製造方法であって、第1熱伝導抑制層に含まれる樹脂を融解させることで積層シートの少なくとも一方の面上に樹脂を堆積させることにより、少なくとも一方の面より突出した、少なくとも表面に樹脂を含む突出部を形成する工程を含む。
 上記製造方法は、上記工程において、積層シートの少なくとも一方の面に開口を形成し、かつ突出部を開口の縁に沿って形成してよい。
 上記製造方法において、積層シートは、第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、第2輻射熱反射層の第1熱伝導抑制層が積層される面と反対の面側に配置された第2熱伝導抑制層とをさらに有し、第2熱伝導抑制層は、樹脂層を有し、上記工程において、第1輻射熱反射層、第1熱伝導抑制層、および第2輻射熱反射層が積層された第1シートと第2熱伝導抑制層を含む第2シートとを重ねた状態で、第1シートの第2シートが積層される面と反対の面側、または第2シートの第1シートが積層される面と反対の面から熱針を刺し込んだ後、抜き出すことにより開口として第1シートおよび第2シートを貫通する貫通孔を形成し、熱針の刺し抜きにより溶融した第1熱伝導抑制層の樹脂層の樹脂および第2熱伝導抑制層の樹脂層の樹脂の少なくとも一方の一部により第1シートと第2シートとを接合し、熱針の刺し抜きにより溶融した第1熱伝導抑制層の樹脂層の樹脂および第2熱伝導抑制層の樹脂層の樹脂の少なくとも一方の一部により貫通孔の縁に沿った突出部を形成してよい。
 本発明の一態様に係る断熱材の製造方法は、上記の断熱シートの製造方法により製造された複数の断熱シートを、突出部を挟んで積層することにより、断熱材を製造する工程を含む。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る断熱シートの部分断面図の一例である。 本実施形態に係る断熱シートを複数積層した断熱材の部分断面図の一例である。 断熱シートを製造する熱針加工装置の概略図の一例である。 断熱シートの製造工程の一例を示すフローチャートである。 貫通孔に関する数値について説明するための図である。 貫通孔に関する数値について説明するための図である。 不織布シートの密度および熱針の針径を変えて、断熱シートの断熱特性を測定した結果の一例を示す表である。 評価用のサンプルの断熱シートに形成された貫通孔に関する数値の測定結果の一例を示す表である。 評価用のサンプルの断熱シートに形成された貫通孔の高さHに関する測定結果の一例を示す表である。 他の実施例に係る断熱シートの部分断面図の一例である。 他の実施例に係る断熱シートの部分断面図の一例である。 他の実施例に係る断熱シートの部分断面図の一例である。 他の実施例に係る断熱シートの部分断面図の一例である。 他の実施例に係る断熱シートの部分断面図の一例である。 他の実施例に係る断熱シートの部分断面図の一例である。 貫通孔および他の貫通孔を有する断熱シートの断熱特性を測定した結果の一例を示す表である。 開口および他の貫通孔を有する断熱シートの断熱特性を測定した結果の一例である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る断熱シート300の部分断面図の一例を示す。断熱シート300は、金属蒸着シート100および不織布シート200を備える。金属蒸着シート100は、樹脂層102と、金属層104および106とを有する。
 金属層104は、樹脂層102の一方の面側に配置され、金属層106は、樹脂層102の他方の面側に配置されている。金属層104および106は、樹脂層102の両面に金属を蒸着することで形成されてもよい。また、金属層は、樹脂層102のいずれか一方の面にのみ形成されてもよい。
 樹脂層102は、熱可塑性樹脂により形成されている。熱可塑性樹脂として、例えば、ポリエステル、ポリエチレン、ポリプロピレン、またはポリアミド等を用いることができる。融点、吸水性、金属の蒸着性、断裂強度、重量、またはコスト等の観点から、ポリエステル系の材料を用いることが望ましい。樹脂層102は、熱伝導を抑制する第1熱伝導抑制層または第2熱伝導抑制層の一例である。
 金属層104および106を構成する金属として、例えば、アルミニウム、金、銀、銅、ニッケル等を用いることができる。垂直赤外線反射率、蒸着のしやすさ、蒸着膜の均一性、重量、またはコスト等の観点から、金属としてアルミニウムを用いることが望ましい。金属層104および106は、輻射熱を反射する第1輻射熱反射層または第2輻射熱反射層の一例である。
 樹脂層102に金属を蒸着させる方法は、特に限定されないが、連続式またはバッチ式真空蒸着機により、電熱加熱、スパッタリング、イオンプレーティング、イオンビーム等により行ってもよい。金属層104および106の厚さは、特に限定されないが、100オングストローム以上1000オングストローム以下が望ましい。金属層104または106の厚さを、100オングストローム以上にすることにより、金属層104または106から透過する赤外線量をより抑制し、断熱特性の低下をより抑制できる。また、金属層104および106の厚さを1000オングストローム以下にすることで、金属層104および106における熱伝導率の増加をより抑制し、また、施工時に折り曲げ等によるクラックの発生をより抑制できる。
 金属蒸着シート100の厚みは、3μm以上100μm以下が望ましい。金属蒸着シート100の厚みは、6μm以上50μm以下がさらに望ましい。金属蒸着シート100の厚みを、3μm以上にすることにより、金属層104または106にシワが発生することをより抑制できる。金属蒸着シート100の厚みを、6μm以上にすることにより、金属層104または106にシワが発生することをより抑制できる。また、金属蒸着シート100の厚みを、100μm以下にすることにより、重量の増加をより抑制でき、不織布シート200への接触面積の増加をより抑制し、断熱特性の低下をより抑制できる。また、金属蒸着シート100の厚みを、50μm以下にすることにより、重量の増加をよりさらに抑制でき、不織布シート200への接触面積の増加をより抑制し、断熱特性の低下をよりさらに抑制できる。
 なお、金属層104および106の厚みは、四点式低抵抗計(ダイアインスツルメンツ製ロレスターEP)で面抵抗値を計測し、面抵抗値と金属膜固有抵抗値を用いて蒸着膜厚を算出することで得られる。金属蒸着シート100の厚みは、JIS L 1913の6.1項の方法で測定できる。
 不織布シート200は、樹脂繊維を含む樹脂層を有する。不織布シート200は、樹脂繊維を多重に重ね合わせた構造を有してもよい。樹脂繊維は、熱可塑性樹脂で形成されてもよい。可撓性樹脂として、例えば、ポリエステル、ポリエチレン、ポリプロピレン、またはポリアミド等を用いることができる。融点、吸水性、伸縮性、断裂強度、重量、またはコスト等の観点から、ポリエステル系樹脂を用いることが望ましい。不織布シート200は、熱伝導を抑制する第1熱伝導抑制層または第2熱伝導抑制層の一例である。
 不織布シートの密度(目付)は、2g/m以上15g/m以下が望ましい。不織布シートの密度(目付)は、3g/m以上15g/m以下がより望ましい。熱伝導を防止するためには、密度が低い、つまり目付が軽いほうが望ましく、不織布シートの密度は、3g/m以上10g/m以下がさらに望ましい。不織布シートの密度を、2g/m以上にすれば、不織布シートを挟む金属蒸着シート同士がより接触しにくくなるので好ましい。不織布シートの密度を、3g/m以上にすれば、不織布シートを挟む金属蒸着シート同士がより接触しにくくなるので好ましい。不織布シートの密度を、15g/m以下にすれば、断熱特性がより良好になるので好ましい。なお、不織布シートの密度(目付)は、JIS L 1913の6.2項の方法で測定できる。
 断熱シート300は、金属蒸着シート100および不織布シート200を貫通する貫通孔302を備える。貫通孔302は、開口の一例である。断熱シート300は、貫通孔302の外周に沿って形成されている突出部304をさらに備える。突出部304は、少なくとも表面に樹脂を含んでいる。なお、断熱シート300は、金属蒸着シート100および不織布シート200を貫通する貫通孔302に加えて、金属蒸着シート100の不織布シート200が積層される面と反対の面上に、金属蒸着シート100を貫通し、不織布シート200を貫通していない穴である開口を備えてもよい。金属蒸着シート100の不織布シート200が積層される面と反対の面上の開口の周囲には、開口の縁に沿って金属蒸着シート100の不織布シート200が積層される面と反対の面より突出した突出部を有してもよい。また、断熱シート300は、金属蒸着シート100を貫通し、不織布シート200を貫通していない穴に加えて、周囲に突出部が形成されていない他の貫通孔を備えてもよい。
 突出部304は、金属蒸着シート100の不織布シート200が積層される面と反対の面101より突出している。突出部304は、不織布シート200の金属蒸着シート100が積層される面と反対の面201より突出してもよい。突出部304は、金属蒸着シート100の不織布シート200が積層される面と反対の面101から高さH、突出している。
 断熱シート300は、複数の貫通孔302および複数の突出部304を有する。そして、断熱シート300を複数の突出部304を挟んで複数積層することにより断熱材を構成することができる。断熱材は、断熱シート300を例えば1枚から1000枚、2枚から100枚、あるいは3枚から75枚重ねることで構成してもよい。突出部304が、金属蒸着シート100の面101から突出しているので、突出部304が、断熱シート300間の支柱として機能する。したがって、積層された断熱シート300同士が突出部304以外で接触することを防止できる。そして、突出部304は、表面に樹脂を含んでいるので、断熱シート300同士が接触することによる熱伝導をより抑制でき、断熱シート300の断熱特性を向上させることができる。突出部304は、表面が樹脂で覆われていてもよい。
 不織布シート200は、樹脂繊維を多重に重ね合わせた構造でよいので、樹脂繊維間に空隙が形成されている。よって、突出部304の形状または大きさによっては、複数の断熱シート300を積層した場合に、突出部304が、隣接する断熱シート300の不織布シート200に形成された空隙に入り込む可能性がある。このような場合、突出部304が支柱としての機能を発揮せず、断熱材の断熱特性の低下を招く。
 そこで、突出部304は、不織布シート200に形成された空隙に完全には入り込まない形状または大きさに形成されていることが望ましい。例えば、突出部304の径を、不織布シート200に形成された空隙の最大径より大きくする。これにより、突出部304が、不織布シート200の空隙に入り込むことを防止できる。そして、複数の断熱シート300を積層した場合に、断熱シート300同士が接触することで、熱伝導が発生し、断熱特性が低下することを防止できる。また、不織布シート200を用いることで、断熱シート300の軽量化を図ることができる、よって、複数の断熱シート300を積層することで構成される断熱材の断熱特性の低下を防止し、かつ軽量化を図ることができる。
 なお、突出部304は、断熱シート300同士が接触しないように断熱シート300間の支柱として機能すればよいので、突出部304は、突出部304の一部分、例えば先端部分が、不織布シート200に形成された空隙に入り込む形状または大きさでもよい。つまり、突出部304は、突出部304の少なくとも一部分が、不織布シート200に形成された空隙に入り込まない形状または大きさでよい。
 ここで、貫通孔302は、金属蒸着シート100と不織布シート200とを重ね合わせた状態で、不織布シート200の金属蒸着シート100が積層される面と反対の面から熱針を刺し込んだ後、抜き出すことにより、形成されてもよい。貫通孔302は、金属蒸着シート100と不織布シート200とを重ね合わせた状態で、金属蒸着シート100の不織布シート200が積層される面と反対の面から熱針を刺し込んだ後、抜き出すことにより、形成されてもよい。なお、貫通孔302は、熱針の刺し抜き以外の手法で形成されてもよい。
 さらに、金属蒸着シート100および不織布シート200に含まれる樹脂を融解させることで、金属蒸着シート100の不織布シート200が積層される面と反対の面、および不織布シート200の金属蒸着シート100が積層される面と反対の面の少なくとも一方の面上に樹脂を堆積させることにより、貫通孔302の縁に沿って突出部304が形成される。例えば熱針により融解した金属蒸着シート100および不織布シート200に含まれる樹脂の一部により、貫通孔302の外周に沿った突出部304が形成される。よって、突出部304は、金属蒸着シート100および不織布シート200に含まれる材料の混合物により形成されている。
 また、突出部304は、貫通孔302の内壁に沿って延長する延長部306を有している。延長部306は、貫通孔302の内壁を覆い、金属蒸着シート100と不織布シート200とを接合する接合部として機能する。突出部304および延長部306は、金属蒸着シート100と不織布シート200とを重ね合わせた状態で、不織布シート200の金属蒸着シート100が積層される面と反対の面、または金属蒸着シート100の不織布シート200が積層される面と反対の面から熱針を刺し込んだ後、抜き出す過程において、形成される。
 上記のとおり、金属蒸着シート100と不織布シート200とを重ね合わせた状態で、熱針を刺し抜きすることにより、貫通孔302が形成される。そして、熱針により溶融した金属蒸着シート100および不織布シート200を構成する樹脂の一部により、金属蒸着シート100と不織布シート200とが溶着される。さらに、貫通孔302の周縁部に、熱針により溶融した金属蒸着シート100および不織布シート200を構成する樹脂の一部が固化することで、突出部304が形成される。
 図2は、本実施形態に係る断熱シート300を複数積層した断熱材400の部分断面図の一例である。断熱材400は、断熱シート300A、300B、300C、300Dおよび300Eを積層することで構成されている。ここで、断熱シート300A、300B、300C、300Dおよび300Eは、貫通孔302A、302B、302C、302D、および302Eを有する。貫通孔302A、302B、302C、302D、および302Eは、断熱シート300A、300B、300C、300Dおよび300Eを重ね合わせた場合に、断熱シート300A、300B、300C、300Dおよび300Eの間に残留する空気を外部に排出するための通路として機能する。これにより、断熱シート300A、300B、300C、300Dおよび300Eの間の隙間を真空状態にすることができ、断熱材400の断熱特性を向上させることができる。
 断熱シート300A、300B、300C、300Dおよび300Eは、熱針により形成された複数の貫通孔を有する。しかし、断熱シート300A、300B、300C、300Dおよび300Eのそれぞれに形成される貫通孔の少なくとも一部は、それぞれの位置が一致するように形成されていないことが望ましい。これにより、少なくとも一部の貫通孔が互いに積層方向において重なることを防止でき、貫通孔を介して赤外線が通過することをより抑制することができる。なお、貫通孔は、溶射、レーザ加工など熱針以外の手法を用いて形成してもよい。
 例えば、断熱シート300A、300B、300C、300Dおよび300Eに形成されたそれぞれの貫通孔302A、302B、302C、302D、および302Eは、積層方向において重ならない位置に設けられてもよい。これにより、断熱シート300A、300B、300C、300Dおよび300Eのそれぞれに複数の貫通孔が形成されていたとしても、貫通孔302A、302B、302C、302D、および302Eを介して赤外線が通過することをより抑制できる。よって、断熱シート300A、300B、300C、300Dおよび300Eにそれぞれ複数の貫通孔が形成されることによる断熱材400の断熱特性の低下はほとんどない。
 断熱シートに形成された少なくとも一部の貫通孔は、隣接する他の断熱シートに形成された少なくとも一部の貫通孔と重ならない位置に形成されていてもよい。つまり、断熱材の断熱特性の低下が抑制されていれば、断熱シートに形成された一部の貫通孔が、隣接する他の断熱シートに形成された一部の貫通孔と重なる位置に形成されていてもよい。なお、重ならない位置とは、断熱シートに形成されたすべての貫通孔のうち少なくとも70%以上の貫通孔が、隣接する他の断熱シートに形成された貫通孔と重ならない位置にあればよい。
 ここで、特許文献1のように、低輻射率層と低熱伝導率層とを交互に積層した場合、固定物質により形成された貫通孔を介して低輻射率層同士が接触し、断熱特性が低下する可能性がある。
 これに対して、本実施形態に係る断熱シート300によれば、金属蒸着シート100の不織布シート200が積層される面と反対の面より突出している突出部304が、断熱シート300間の支柱として機能する。したがって、複数の断熱シート300を積層したとしても、金属蒸着シート100同士が接触することを低減でき、断熱特性が低下することを抑制できる。なお、突出部が、不織布シート200の金属蒸着シート100が積層される面と反対の面より突出している場合にも、同様に金属蒸着シート100同士が接触することを低減でき、断熱特性が低下することを抑制できる。
 また、例えば、熱針の刺し抜きにより、金属蒸着シート100および不織布シート200に含まれる樹脂の一部を融解させることで、融解された樹脂の一部により、貫通孔の周囲部に突出部304を形成することができる。突出部304の少なくとも表面に樹脂が含まれるので、突出部304が断熱シート300間の熱伝導にほとんど寄与しない。よって、断熱シート300を複数の突出部304を挟んで積層することにより、断熱シート300同士が接触することに伴う断熱特性の低下を防止できる。
 また、本実施形態に係る断熱シート300によれば、熱針の刺し抜きにより金属蒸着シート100および不織布シート200に含まれる樹脂の一部を溶融することで、金属蒸着シート100と不織布シート200とが溶着される。よって、断熱シート300の重量の増加を抑制できる。
 例えば、熱針の刺し抜きにより、断熱シート300に複数の貫通孔を形成することで、複数の断熱シート300を積層して断熱材400を構成する場合に、断熱シート300間に残留する空気を外部に押し出しやすくなり、断熱シート300間を真空状態にしやすくなる。しかも、例えば、熱針の刺し抜きにより、断熱シート300に複数の貫通孔を形成することで、断熱シート300に複数の貫通孔を形成する工程および断熱シート300に突出部304を形成する工程を、金属蒸着シート100と不織布シート200とを溶着する工程において実現できる。よって、断熱シート300の生産性を向上させることができる。
 図3は、断熱シート300を製造する熱針加工装置の概略図の一例を示す。熱針加工装置は、搬送ロール10および20と、熱針ロール40と、ブラシロール50とを備える。熱針ロール40には、複数の熱針が千鳥状に配置されている。
 熱針ロール40の温度を、金属蒸着シート100および不織布シート200に含まれる樹脂の融点以上に加熱する。熱針ロール40とブラシロール50との間を、金属蒸着シート100と不織布シート200とを重ね合わせた状態で通過させて、熱針を金属蒸着シート100と不織布シート200とに突き刺し、複数の貫通孔を形成する。
 ここで、ブラシロール50側に金属蒸着シート100を配置して、熱針ロール40側に不織布シート200を配置して、不織布シート200の金属蒸着シート100が積層される面と反対の面側から、熱針を刺し込んでもよい。これにより、ブラシロール50の表面に設けられたブラシと、不織布シート200とが絡むことで、生産性が低下することを抑制できる。また、ブラシロール50側に不織布シート200を配置して、熱針ロール40側に金属蒸着シート100を配置して、金属蒸着シート100の不織布シート200が積層される面と反対の面側から、熱針を刺し込んでもよい。なお、金属蒸着シート100の不織布シート200が積層される面と反対の面側から熱針を刺し込む場合には、ブラシロール50の代わりにゴムローラなど不織布シート200に絡まないローラを用いることが望ましい。
 図4は、断熱シート300の製造工程の一例を示すフローチャートである。金属蒸着シート100と不織布シート200とを積層した状態で、金属蒸着シート100および不織布シート200を熱針ロール40とブラシロール50との間を通過させることで、不織布シート200側から熱針を突き刺し、金属蒸着シート100と不織布シート200とを貫通する複数の貫通孔を形成する(S100)。
 熱針により、金属蒸着シート100および不織布シート200から融解した樹脂を複数の貫通孔の内壁に溶着させることで、金属蒸着シート100と不織布シート200とを接合する(S102)。さらに、金属蒸着シート100の不織布シート200が積層される面と反対の面上に、金属蒸着シート100および不織布シート200から融解した樹脂により、複数の貫通孔302の外周に沿って複数の突出部304を形成し(S104)、熱針を不織布シート200側から抜き出す(S106)。
 以上のように、金属蒸着シート100および不織布シート200を重ね合わせた状態で、熱針を刺し抜きすることにより、金属蒸着シート100および不織布シート200を接合し、複数の貫通孔302を形成し、さらに複数の貫通孔302の外周に沿って複数の突出部304を形成することができる。
 また、上記のような製造方法により製造された複数の断熱シートを、突出部304を挟んで積層することにより、断熱材400を製造することができる。
 図5は、断熱シート300を金属蒸着シート100側から見た部分拡大図の一例を示す。断熱シート300には、千鳥状に複数の貫通孔が形成されている。貫通孔302は、金属蒸着シート100および不織布シート200をY方向に搬送しながら、熱針を突き刺すことにより、形成される。よって、貫通孔302は、Y方向に沿った長軸を有する楕円形状になる。貫通孔302aから、隣接する貫通孔302bおよび貫通孔302cまでの距離は、それぞれ距離D1および距離D2である。搬送方向に直角なX方向に沿って配置されている貫通孔302bと貫通孔302cとの間の距離は、距離Xである。搬送方向に平行なY方向に沿って配置された貫通孔302aと貫通孔302dとの間の距離は、距離Yである。
 図6は、貫通孔302の拡大図の一例を示す。搬送方向に平行な貫通孔302の長軸の長さは、長さH1であり、搬送方向に垂直な貫通孔302の短軸の長さは、長さH2である。
 図7は、不織布シート200の密度および熱針の針径を変えて、断熱シート300の断熱特性を測定した結果を示す。
 この断熱特性の測定に用いられた金属蒸着シートの樹脂層は、東レ製のルミラーCX40というポリエステルフィルムである。このポリエステルフィルムの両面にアルミニウムを真空蒸着することで得られる金属蒸着シートを用いた。断熱特性の測定に用いられた不織布シートは、廣瀬製紙製の05THタイプのポリエステル製の湿式不織布である。表中において、不織布密度が15g/mである不織布シートは、廣瀬製紙製の05TH-15という湿式不織布である。不織布密度が8g/mである不織布シートは、廣瀬製紙製の05TH-8という湿式不織布である。不織布密度が5g/mである不織布シートは、廣瀬製紙製の05TH-5という湿式不織布である。
 熱針は、尖端の外径が基端の外径より小さくなるテーパー状に形成されていてもよい。熱針は、尖端から熱針の軸方向に向かって太くなる円錐形状でもよい。図7中の熱針の針径は、熱針の尖端から熱針の軸方向に沿って基端側に7mmの距離だけ離れた部分の外径を示す。なお、熱針の断面が楕円形の場合には、熱針の針径は、当該部分の楕円の長軸長を示す。熱針は、金属蒸着シート100と不織布シート200とを重ねた積層シートに、熱針の尖端から熱針の軸方向に沿って基端側に、0.5mmから6.5mmの位置まで突き刺さり、積層シートに貫通孔を形成してもよい。
 断熱シート300に形成された貫通孔302の長軸の長さH1および不織布シート200に形成された空隙の最大径は、走査型電子顕微鏡である日本電子製JSM-T20にて観測し、画像処理により測定した。より具体的には、不織布シート200の表面の一部分を一辺5mm四方に切り取ったサンプルを5点準備し、これらのサンプルを走査型電子顕微鏡により倍率200倍で撮像し、撮像された画像に含まれる空隙の中から空隙内に収まる円が最大となる空隙を特定し、特定された空隙に収まる最大の円の直径を最大径として測定した。
 金属蒸着シート100と不織布シート200とを重ねた状態で約20m/minの線速で搬送しながら、300℃の熱針で貫通孔302を順次形成した。なお、熱針の間隔は、17mmとした。断熱シート300は、幅1000mm、長さ630mmから730mm程度にカットし、カットした断熱シート300を積層し、一辺の幅1000mm部位の縫製を行った後、直径200mmの巻き付け棒に巻き付け、25層の断熱シート300で構成された断熱材を用意した。
 表中の貫通孔の長軸長は、それぞれの条件で構成された10枚のサンプルの断熱材に形成された複数の貫通孔のうち、それぞれの1枚のサンプルの断熱シートから1個の任意に選択された貫通孔について測定された長軸長の平均値を示す。
 また、用意された断熱材をジェック東理社製のボイルオフ式カロリーメータ試験機に挿入し、液体窒素(LN)の蒸発量を測定することで侵入熱量(W/m)を測定し、その測定結果を断熱材の断熱特性とした。測定は、以下の条件で行った。
 (1)温度条件:77K(低温側)/300K(高温側)
 (2)真空度:1×10-3Pa~1×10-5Pa
 (3)計測時間:断熱材の中間層温度が飽和(Δ1℃/1h)状態に達し、且つ、蒸発窒素ガス量の1時間当たり平均が飽和(Δ10cc/1h)状態に達してから24h
 (4)計測間隔:20sec
 (5)窒素ガスの流量測定に用いた機器:堀場エスペック製マスフローメーターSEF-405(標準流量レンジ500SCCM、流量精度±1%)
 (6)窒素ガスの温度計測に用いた機器:チノー製 JIS1級 シース型K熱電対
 (7)データロガー:KEYENCE製NR-1000
 なお、表中の断熱特性は、25層の断熱シートで構成された断熱材について測定された侵入熱量の平均の値を示す。また、表中の従来法として示された断熱特性に対応するサンプルは、東レ製のルミラーCX40というポリエステルフィルムの両面にアルミニウムを真空蒸着した金属蒸着シートと、ポリエステル製の厚さ200μm程度の繊維で編んだ、網目メッシュ数90/cm程度のネットとを25層積層することで構成された断熱材である。
 ここで、不織布シートの空隙最大径を小さくし、突出部304が不織布シートの空隙に埋没することを防止できる。しかし、不織布シートの密度の増加をより抑制し、金属蒸着シートと不織布シートとの接触面積の増加をより抑制し、断熱特性の低下をより抑制できるので、不織布シートの空隙最大径をあまり小さくし過ぎないことが望ましい。
 また、貫通孔302の径を大きくし、突出部304の径を大きくすることで、突出部304が不織布シート空隙に埋没することを防止できる。しかし、貫通孔302から赤外線放射熱が通過することをより抑制し、断熱特性の低下をより抑制できるので、貫通孔302の径をあまり大きくし過ぎないことが望ましい。
 したがって、従来法のサンプルの断熱特性と比較した場合、貫通孔302の長軸の長さH1(溶環径)は、50~2000μmの範囲、かつ不織布シートの空隙最大径は、50~500μmの範囲であることが望ましい。さらに、貫通孔302の長軸の長さH1(溶環径)は50~1700μmの範囲、かつ不織布シートの空隙最大径は50~400μmの範囲にすることがより望ましい。また、貫通孔302の長軸の長さH1(溶環径)は、300~1700μmの範囲、かつ不織布シートの空隙最大径は60~400μmの範囲にすることがさらに望ましい。また、貫通孔302の長軸の長さH1(溶環径)は、50~1000μmの範囲でもよい。
 図8は、評価用のサンプルの断熱シート300に形成された貫通孔に関する数値の測定結果の一例を示す表である。表中のそれぞれの数値は、図5および図6に示すパラメータについての値である。貫通孔に関する数値の測定には、モリテックス製のデジタルスコープを用いた。
 評価用のサンプルの断熱シート300に用いられた金属蒸着シート100の樹脂層は、ポリエステルフィルム(東レ製ルミラーCX40)である。そして、そのポリエステルフィルムの両面にアルミニウムを真空蒸着することで、金属蒸着シート100を形成した。なお、AL蒸着フィルムの厚みは、9μmである。また、不織布シート200は、ポリエステル製である廣瀬製紙製05TH-5(目付:5g/m)である。さらに、貫通孔302を形成するのに用いられた熱針の針径は、0.7mmである。また、サンプルの断熱シート300の断熱特性は、0.63W/mであった。
 サンプルの断熱シート300に形成された貫通孔302間の距離Xの平均は、25.12であった。さらに、距離Yは、22.62であった。距離D1の平均は、16.88mmであった。また、距離D2の平均は、16.90であった。貫通孔の長軸の長さH1の平均は、1.21mm、短軸の長さH2の平均は、0.44mmであった。貫通孔の面積の平均は、0.438mmであった。1mあたりの貫通孔の数は、3,520個であった。1mあたりの貫通孔の面積は、1,531mmであった。さらに、1mあたりの貫通孔が占める割合である開口率は、0.15%であった。
 図7に示す測定結果を考慮すると、熱針の針径は、0.1mm~3.0mmが望ましく、0.1mm~2.4mmがより望ましい。また、不織布密度は、2g/m~20g/mが望ましく、2g/m~15g/mがより望ましい。
 図7および図8に示す測定結果を考慮すると、少なくとも上記の条件で構成された断熱材の場合、距離Xおよび距離Yは、10mm~50mmの範囲であることが望ましく、20mm~30mmの範囲であることがさらに望ましい。距離D1および距離D2は、5mm~40mmの範囲であることが望ましく、10mmから20mmの範囲であることがさらに望ましい。貫通孔の長軸の長さH1は、50μm~4000μmの範囲であることが望ましく、50μm~2000μmの範囲であることがより望ましく、300μm~1700μmの範囲であることがさらに望ましい。貫通孔の短軸の長さH2は、20μm~1000μmの範囲であることが望ましく、40μm~800μmの範囲であることがより望ましい。貫通孔の短軸の長さH2は、70μm以下であってもよく、さらに55μm以下であってもよい。また、貫通孔の開口率は、0.05%~1.1%であることが望ましく、0.10%~0.50%であることがより望ましい。貫通孔の開口率は、0.10%~0.20%であることがさらに望ましい。
 図9は、図8に示す測定に用いられた評価用のサンプルの断熱シート300に形成された貫通孔の高さHに関する測定結果の一例を示す表である。ここで、高さHは、図1に示すように、金属蒸着シート100の不織布シート200が積層される面と反対の面101からの高さを示す。
 高さHは、熱針による貫通孔が形成されたAL蒸着シートと不織布シートとを積層した1層の断熱シートと、熱針による貫通孔が形成されていないAL蒸着シートと不織布シートを積層した9層の積層シートとを積層した場合の厚みAから、熱針による貫通孔が形成されていないAL蒸着シートと不織布シートを積層した10層の積層シートを積層した場合の厚みBを減算することにより算出した。
 厚みAおよび厚みBは、ミツトヨ製のデジマチックゲージ(最小目盛1μm、測定圧力0.3N)をミツトヨ製のスタンド(測定台58mm、平面度1.3μm以下)に固定し、10層の積層シートを測定台と26mm×76mm×厚さ3±0.1mm(平面度2μm以下)のガラス板に挟んだ状態でそれぞれ測定圧力0.24±0.01KPaで測定した。なお、貫通孔が形成された積層シートは、測定加圧側から5層目に積層し、貫通孔を形成しない断熱シートとの差を測定した。測定の結果、サンプルの断熱シート300に形成された貫通孔302の高さHの平均は、32μmであった。
 図9に示す測定結果を考慮すると、少なくとも上記の条件で構成された断熱材の場合、貫通孔の高さHは、5μmより高いことが望ましい。また、貫通孔の高さHを250μm以下にすることで、断熱シート300を複数積層して構成された断熱材の厚みをより薄くできる。
 上記の実施形態では、樹脂層102の両面に金属層104および金属層106を蒸着した金属蒸着シート100を用いる例について説明した。しかし、金属蒸着シート100は、一方の面のみに金属層を蒸着させたシートを用いてもよい。例えば、樹脂層102の一方の面側に、金属層104を積層し、樹脂層102の金属層104が積層される面の反対の面側に、不織布シート200を積層することで、断熱シート300を構成してもよい。そして、金属蒸着シート100および不織布シート200を貫通する貫通孔302を形成し、貫通孔302の周囲に、金属層104の樹脂層102が積層される面と反対の面より突出させた突出部304を形成してもよい。
 上記の実施形態では、不織布シート200の金属蒸着シート100が積層される面と反対の面側から熱針を刺し抜きすることで、貫通孔302および突出部304を形成する例について説明した。しかし、熱針を刺し抜きすることで貫通孔302および突出部304を形成する場合には、金属蒸着シート100の不織布シート200が積層される面と反対の面側から熱針を刺し抜きすることで、図10に示すように、不織布シート200の金属蒸着シート100が積層される面と反対の面より突出させた突出部304を形成してもよい。また、図11に示すように、金属蒸着シート100の不織布シート200が積層される面と反対の面より突出する突出部304に加えて、不織布シート200の金属蒸着シート100が積層される面と反対の面より突出する突出部305を形成してもよい。
 さらに、不織布シート200を用いずに、例えば、ポリエステルフィルム等の樹脂層の両面または片面に金属を蒸着した金属蒸着シートの両面または片面に、樹脂により複数の突出部を形成し、突出部が形成された複数の金属蒸着シートを積層することにより断熱材を形成してもよい。突出部は、上記のように、熱針の刺し抜きにより貫通孔とともに形成してもよいし、突出部を形成する樹脂などの材料を金属蒸着シートの両面または片面に塗布など他の手法により形成してもよい。また、断熱シート300は、貫通孔302の外周に沿って形成された突出部305と、貫通孔302とは独立した、樹脂により形成された他の突出部とを有してもよい。なお、当該他の突出部は、樹脂などの材料を塗布などの手法により形成してもよい。
 図12に示すように、樹脂層102の一方の面に金属層104が蒸着された金属蒸着シート103に、金属蒸着シート103を貫通していない開口303を形成して、開口303の周囲に突出部304を形成することで断熱シートを構成してもよい。開口303は、金属層104の樹脂層102が積層される面と反対の面に形成されている。開口303は、金属層104を貫通し、樹脂層102を貫通していない。突出部304は、開口303の縁に沿って、金属層104の樹脂層102が積層される面と反対の面より突出して形成されている。開口303は、金属蒸着シート103を貫通しないように刺す深さを調整した熱針を刺し抜きすることにより形成してよい。また、金属蒸着シート103は、金属層104の樹脂層102が積層される面と反対の面の開口303とは異なる位置に、樹脂層102および金属層104を貫通する他の貫通孔307を有してよい。これにより、突出部304を挟んで複数の金属蒸着シート103を積層する場合に、開口303が金属蒸着シート103を貫通していなくても、他の貫通孔307を介して複数の金属蒸着シート103間の隙間を真空状態にすることができる。
 図13に示すように、金属蒸着シート100の一方の面に不織布シート200を積層した断熱シート300は、貫通孔302および開口303を有してよい。貫通孔302は、金属蒸着シート100および不織布シート200を貫通している。貫通孔302の周囲には、貫通孔302の縁に沿って、金属蒸着シート100の不織布シート200が積層されている面と反対の面より突出した突出部304が形成されている。開口303は、金属蒸着シート100の不織布シート200が積層されている面と反対の面に形成されており、金属蒸着シート100を貫通し、不織布シート200を貫通していない。開口303の周囲には、開口303の縁に沿って、金属蒸着シート100の不織布シート200が積層されている面と反対の面より突出した突出部304が形成されている。このように、断熱シート300は、断熱シート300を貫通する穴および貫通していない穴の周囲のそれぞれに突出部304を形成することで構成してよい。なお、貫通孔302および開口303は、金属蒸着シート100の不織布シート200が積層されている面と反対の面から、長さの異なる熱針を刺し抜きすることにより、形成してよい。
 図14に示すように、金属蒸着シート100の一方の面に不織布シート200を積層した断熱シート300は、貫通孔302および他の貫通孔307を有してよい。貫通孔302および他の貫通孔307は、金属蒸着シート100および不織布シート200を貫通している。貫通孔302の周囲には、貫通孔302の縁に沿って、金属蒸着シート100の不織布シート200が積層されている面と反対の面より突出した突出部304が形成されている。一方、他の貫通孔307の周囲には、突出部は形成されていない。このように、断熱シート300は、縁に沿って突出部304が形成された貫通孔302と、突出部304が形成されていない他の貫通孔307とを有してよい。貫通孔302は、金属蒸着シート100の不織布シート200が積層されている面とは反対の面、または不織布シート200の金属蒸着シート100が積層されている面とは反対の面から熱針を刺し抜きすることにより形成してよい。他の貫通孔307は、ポンチ加工、レーザ加工などの手法を利用して形成してよい。
 図15に示すように、金属蒸着シート100の一方の面に不織布シート200を積層した断熱シート300は、開口303および他の貫通孔307を有してよい。開口303は、金属蒸着シート100の不織布シート200が積層されている面と反対の面に形成されており、金属蒸着シート100を貫通し、不織布シート200を貫通していない。開口303の周囲には、開口303の縁に沿って、金属蒸着シート100の不織布シート200が積層されている面と反対の面より突出した突出部304が形成されている。また、断熱シート300は、金属蒸着シート100の不織布シート200が積層される面と反対の面の開口303とは異なる位置に、金属蒸着シート100および不織布シート200を貫通する他の貫通孔307を有してよい。開口303は、不織布シート200を貫通しないように刺す深さを調整した熱針を刺し抜きすることにより形成してよい。他の貫通孔307は、ポンチ加工、レーザ加工などの手法を利用して形成してよい。
 なお、図13~図15に示すような断熱シート300に用いられる金属蒸着シート100についても、一方の面のみに金属層を蒸着させた金属蒸着シートを用いてもよい。そして、金属蒸着シートの金属層が蒸着された面側に突出部304を形成し、金属蒸着シートの金属層が蒸着された面と反対の面側に、不織布シート300を配置してよい。
 図16は、周囲に突出部304を有する貫通孔302と、周囲に突出部を有さない他の貫通孔307とを備える断熱シート300の断熱特性を測定した結果を示す。
 この断熱特性の測定に用いられた金属蒸着シートの樹脂層は、東レ製のルミラーCX40というポリエステルフィルムである。このポリエステルフィルムの両面にアルミニウムを真空蒸着することで得られる金属蒸着シートを用いた。断熱特性の測定に用いられた不織布シートは、廣瀬製紙製の05THタイプのポリエステル製の湿式不織布である。表中において、不織布密度が5g/mである不織布シートは、廣瀬製紙製の05TH-5という湿式不織布である。
 図16中の熱針の針径は、熱針の尖端から熱針の軸方向に沿って基端側に7mmの距離だけ離れた部分の外径を示す。なお、熱針の断面が楕円形の場合には、熱針の針径は、当該部分の楕円の長軸長を示す。熱針は、金属蒸着シート100と不織布シート200とを重ねた積層シートに、熱針の尖端から熱針の軸方向に沿って基端側に、0.5mmから6.5mmの位置まで突き刺さり、積層シートに貫通孔を形成した。
 断熱シート300に形成された貫通孔302の長軸の長さH1および不織布シート200に形成された空隙の最大径は、走査型電子顕微鏡である日本電子製JSM-T20にて観測し、画像処理により測定した。より具体的には、不織布シート200の表面の一部分を一辺5mm四方に切り取ったサンプルを5点準備し、これらのサンプルを走査型電子顕微鏡により倍率200倍で撮像し、撮像された画像に含まれる空隙の中から空隙内に収まる円が最大となる空隙を特定し、特定された空隙に収まる最大の円の直径を最大径として測定した。
 金属蒸着シート100と不織布シート200とを重ねた状態で約20m/minの線速で搬送しながら、300℃の熱針で貫通孔302を順次形成した。なお、熱針の間隔は、17mmとした。断熱シート300は、幅1000mm、長さ630mmから730mm程度にカットした。
 カットした断熱シート300に、野中製作所製のスクリューポンチを用いて他の貫通孔307を形成した。75mm間隔に格子状に他の貫通孔307を形成した。他の貫通孔307の直径は、1mmである。1m辺り152個の他の貫通孔307を形成した。1mあたりの他の貫通孔307が占める割合である開口率は、0.05%であった。1mあたりの貫通孔302および他の貫通孔307が占める割合である開口率は、0.20%であった。
 貫通孔302および他の貫通孔307が形成された断熱シート300を積層し、一辺の幅1000mm部位の縫製を行った後、直径200mmの巻き付け棒に巻き付け、25層の断熱シート300で構成された断熱材を用意した。
 表中の貫通孔302の長軸長は、それぞれの条件で構成された10枚のサンプルの断熱材に形成された複数の貫通孔302のうち、それぞれの1枚のサンプルの断熱シートから1個の任意に選択された貫通孔302について測定された長軸長の平均値を示す。
 また、用意された断熱材をジェック東理社製のボイルオフ式カロリーメータ試験機に挿入し、液体窒素(LN)の蒸発量を測定することで侵入熱量(W/m)を測定し、その測定結果を断熱材の断熱特性とした。測定は、図7に示す測定結果を得た上記の条件と同一の条件で行った。
 なお、表中の断熱特性は、25層の断熱シートで構成された断熱材について測定された侵入熱量の平均の値を示す。また、表中の従来法として示された断熱特性に対応するサンプルは、東レ製のルミラーCX40というポリエステルフィルムの両面にアルミニウムを真空蒸着した金属蒸着シートと、ポリエステル製の厚さ200μm程度の繊維で編んだ、網目メッシュ90/cm程度のネットとを25層積層することで構成された断熱材である。
 図16に示す測定結果の通り、貫通孔302のほかに他の貫通孔307を有する断熱シート300でも優れた断熱特性を有する断熱材を提供できる。
 図17は、周囲に突出部304を有する開口303と、周囲に突出部を有さない他の貫通孔307とを備える断熱シート300の断熱特性を測定した結果を示す。
 この断熱特性の測定に用いられた金属蒸着シートおよび不織布シートは、図16に示した測定結果が得られた金属蒸着シートおよび不織布シートと同一である。
 開口303を形成するのに用いた熱針の長さは、5mmである。図17中の熱針の針径は、熱針の尖端から熱針の軸方向に沿って基端側に30μmの距離だけ離れた部分の外径を示す。なお、熱針の断面が楕円形の場合には、熱針の針径は、当該部分の楕円の長軸長を示す。熱針は、金属蒸着シート100と不織布シート200とを重ねた積層シートに、熱針の尖端から熱針の軸方向に沿って基端側に、30μmの位置まで突き刺さり、金属蒸着シート100を貫通し、不織布シート200を貫通していない開口303を積層シートに形成した。
 断熱シート300に形成された開口303の長軸の長さH1および不織布シート200に形成された空隙の最大径の測定方法は、図16に示す測定結果を得た場合と同一の方法である。
 金属蒸着シート100と不織布シート200とを重ねた状態で約20m/minの線速で搬送しながら、300℃の熱針で開口303を順次形成した。なお、熱針の間隔は、17mmとした。断熱シート300は、幅1000mm、長さ630mmから730mm程度にカットした。
 カットした断熱シート300に、野中製作所製のスクリューポンチを用いて他の貫通孔307を形成した。45mm間隔に格子状に他の貫通孔307を形成した。他の貫通孔307の直径は、1mmである。1m辺り450個の他の貫通孔307を形成した。1mあたりの他の貫通孔307が占める割合である開口率は、0.14%であった。
 開口303および他の貫通孔307が形成された断熱シート300を積層し、一辺の幅1000mm部位の縫製を行った後、直径200mmの巻き付け棒に巻き付け、25層の断熱シート300で構成された断熱材を用意した。
 表中の開口303の長軸長は、それぞれの条件で構成された10枚のサンプルの断熱材に形成された開口303のうち、それぞれの1枚のサンプルの断熱シートから1個の任意に選択された開口303について測定された長軸長の平均値を示す。
 また、用意された断熱材をジェック東理社製のボイルオフ式カロリーメータ試験機に挿入し、液体窒素(LN)の蒸発量を測定することで侵入熱量(W/m)を測定し、その測定結果を断熱材の断熱特性とした。測定は、図7および図16に示す測定結果を得た上記の条件と同一の条件で行った。
 なお、表中の断熱特性は、25層の断熱シートで構成された断熱材について測定された侵入熱量の平均の値を示す。また、表中の従来法として示された断熱特性に対応するサンプルは、東レ製のルミラーCX40というポリエステルフィルムの両面にアルミニウムを真空蒸着した金属蒸着シートと、ポリエステル製の厚さ200μm程度の繊維で編んだ、網目メッシュ90/cm程度のネットとを25層積層することで構成された断熱材である。
 図17に示す測定結果の通り、開口303および他の貫通孔307を有する断熱シート300でも優れた断熱特性を有する断熱材を提供できる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100,103 金属蒸着シート
102 樹脂層
104,106 金属層
200 不織布シート
300 断熱シート
302 貫通孔
303 開口
304 突出部
305 突出部
306 延長部
307 他の貫通孔
400 断熱材
H1 貫通孔の長軸の長さ
H2 貫通孔の短軸の長さ

Claims (25)

  1.  熱伝導を抑制する第1熱伝導抑制層と、
     前記第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、
     前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部と
    を備える断熱シート。
  2.  前記第1熱伝導抑制層は、前記樹脂を含む、請求項1に記載の断熱シート。
  3.  前記断熱シートは、前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上に開口を有し、
     前記突出部は、前記開口の縁に沿って形成されている、請求項1または請求項2に記載の断熱シート。
  4.  前記開口は、前記第1輻射熱反射層および前記第1熱伝導抑制層を貫通する貫通孔である、請求項3に記載の断熱シート。
  5.  前記断熱シートは、前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上の前記開口とは異なる位置に、前記第1輻射熱反射層、および前記第1熱伝導抑制層を貫通する他の貫通孔をさらに有する、請求項3または請求項4に記載の断熱シート。
  6.  熱伝導を抑制する第1熱伝導抑制層と、
     前記第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、
     前記第1熱伝導抑制層の他方の面側に配置された第2熱伝導抑制層と、
     前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部と
    を備え、
     前記第1輻射熱反射層は、前記第1熱伝導抑制層が積層される面と反対の面上に開口を有し、
     前記突出部は、前記開口の縁に沿って形成されている、断熱シート。
  7.  熱伝導を抑制する第1熱伝導抑制層と、
     前記第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、
     前記第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、
     前記第2輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面側に配置された第2熱伝導抑制層と、
     前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面より突出している、少なくとも表面に樹脂を含む突出部と
    を備え、
     前記第1輻射熱反射層は、前記第1熱伝導抑制層が積層される面と反対の面上に開口を有し、
     前記突出部は、前記開口の縁に沿って形成されている、断熱シート。
  8.  前記開口は、前記第1輻射熱反射層、前記第1熱伝導抑制層、第2輻射熱反射層および前記第2熱伝導抑制層を貫通する貫通孔である、請求項7に記載の断熱シート。
  9.  前記突出部は、前記貫通孔の内壁に沿って延長し、前記第1熱伝導抑制層と前記第2熱伝導抑制層とを接合する接合部を有する、請求項8に記載の断熱シート。
  10.  前記断熱シートは、前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上の前記開口とは異なる位置に、前記第1輻射熱反射層、前記第1熱伝導抑制層、第2輻射熱反射層および前記第2熱伝導抑制層を貫通する他の貫通孔をさらに有する、請求項8または請求項9に記載の断熱シート。
  11.  前記第1熱伝導抑制層は、樹脂層を有し、
     前記第2熱伝導抑制層は、樹脂繊維を含む不織布層を有する、請求項7から請求項10のいずれか1つに記載の断熱シート。
  12.  前記突出部は、前記樹脂層および前記不織布層のそれぞれの材料の混合物で形成されている、請求項11に記載の断熱シート。
  13.  前記突出部は、前記不織布層に形成された空隙に入り込まない形状または大きさである、請求項11または請求項12に記載の断熱シート。
  14.  熱伝導を抑制する第1熱伝導抑制層と、
     前記第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層と、
     前記第1熱伝導抑制層に含まれる樹脂が融解して、前記第1熱伝導抑制層の他方の面、または前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上に、堆積することで形成された、少なくとも表面に前記樹脂を含む突出部と
    を備える断熱シート。
  15.  前記第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、
     前記第2輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面側に配置され、樹脂繊維を含む不織布層を有する第2熱伝導抑制層と
    をさらに備え、
     前記突出部は、前記樹脂に加えて前記樹脂繊維が融解して、前記第1輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面上に、堆積することで形成されている、請求項14に記載の断熱シート。
  16.  前記第1輻射熱反射層は、前記第1熱伝導抑制層が積層される面と反対の面上に開口を有し、
     前記突出部は、前記開口の縁に沿って形成されている、請求項15に記載の断熱シート。
  17.  前記開口は、前記第1輻射熱反射層、前記第1熱伝導抑制層、第2輻射熱反射層および前記第2熱伝導抑制層を貫通する貫通孔である、請求項16に記載の断熱シート。
  18.  前記突出部は、前記樹脂および前記樹脂繊維が融解することで形成され、前記貫通孔の内壁に沿って延長し、前記第1熱伝導抑制層と前記第2熱伝導抑制層とを接合する接合部を有する、請求項17に記載の断熱シート。
  19.  前記突出部は、前記不織布層に形成された空隙に入り込まない形状または大きさである、請求項15から請求項18のいずれか1つに記載の断熱シート。
  20.  請求項1から請求項19のいずれか1つに記載の断熱シートを、前記突出部を挟んで複数積層することにより形成された断熱材。
  21.  複数の前記断熱シートは、第1貫通孔を有する第1断熱シートと、前記第1断熱シートに対向して配置され、第2貫通孔を有する第2断熱シートとを含み、
     前記第1貫通孔と前記第2貫通孔とは、前記複数の断熱シートの積層方向において、重ならない位置に設けられている、請求項20に記載の断熱材。
  22.  熱伝導を抑制する第1熱伝導抑制層と、前記第1熱伝導抑制層の一方の面側に配置され、輻射熱を反射する第1輻射熱反射層とを有する積層シートを備える断熱シートの製造方法であって、
     前記第1熱伝導抑制層に含まれる樹脂を融解させることで前記積層シートの少なくとも一方の面上に前記樹脂を堆積させることにより、前記少なくとも一方の面より突出した、少なくとも表面に前記樹脂を含む突出部を形成する工程を含む、断熱シートの製造方法。
  23.  前記工程において、前記積層シートの前記少なくとも一方の面に開口を形成し、かつ前記突出部を前記開口の縁に沿って形成する、請求項22に記載の断熱シートの製造方法。
  24.  前記積層シートは、前記第1熱伝導抑制層の他方の面側に配置された第2輻射熱反射層と、前記第2輻射熱反射層の前記第1熱伝導抑制層が積層される面と反対の面側に配置された第2熱伝導抑制層とをさらに有し、
     前記第2熱伝導抑制層は、樹脂層を有し、
     前記工程において、前記第1輻射熱反射層、前記第1熱伝導抑制層、および前記第2輻射熱反射層が積層された第1シートと前記第2熱伝導抑制層を含む第2シートとを重ねた状態で、前記第1シートの前記第2シートが積層される面と反対の面側、または前記第2シートの前記第1シートが積層される面と反対の面から熱針を刺し込んだ後、抜き出すことにより前記開口として前記第1シートおよび前記第2シートを貫通する貫通孔を形成し、前記熱針の刺し抜きにより溶融した前記第1熱伝導抑制層の前記樹脂層の前記樹脂および前記第2熱伝導抑制層の前記樹脂層の前記樹脂の少なくとも一方の一部により前記第1シートと前記第2シートとを接合し、前記熱針の刺し抜きにより溶融した前記第1熱伝導抑制層の前記樹脂層の前記樹脂および前記第2熱伝導抑制層の前記樹脂層の前記樹脂の少なくとも一方の一部により前記貫通孔の縁に沿った前記突出部を形成する、請求項23に記載の断熱シートの製造方法。
  25.  請求項22から請求項24のいずれか1つに記載の断熱シートの製造方法により製造された複数の断熱シートを、前記突出部を挟んで積層することにより、断熱材を製造する工程を含む断熱材の製造方法。
PCT/JP2014/000046 2013-01-11 2014-01-08 断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法 WO2014109288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14737950.7A EP2944858B1 (en) 2013-01-11 2014-01-08 Heat insulating sheet, heat insulating material, heat insulating sheet manufacturing method, and heat insulating material manufacturing method
CN201480004472.2A CN104919240B (zh) 2013-01-11 2014-01-08 隔热片、隔热部件、隔热片的制造方法及隔热部件的制造方法
JP2014538553A JP5734526B2 (ja) 2013-01-11 2014-01-08 断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法
US14/796,199 US10099446B2 (en) 2013-01-11 2015-07-10 Heat insulating sheet, heat insulating material, method of manufacturing heat insulating sheet, and method of manufacturing heat insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-003948 2013-01-11
JP2013003948 2013-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/796,199 Continuation US10099446B2 (en) 2013-01-11 2015-07-10 Heat insulating sheet, heat insulating material, method of manufacturing heat insulating sheet, and method of manufacturing heat insulating material

Publications (1)

Publication Number Publication Date
WO2014109288A1 true WO2014109288A1 (ja) 2014-07-17

Family

ID=51166938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000046 WO2014109288A1 (ja) 2013-01-11 2014-01-08 断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法

Country Status (5)

Country Link
US (1) US10099446B2 (ja)
EP (1) EP2944858B1 (ja)
JP (2) JP5734526B2 (ja)
CN (2) CN104919240B (ja)
WO (1) WO2014109288A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044800A (ja) * 2014-08-27 2016-04-04 国立研究開発法人産業技術総合研究所 真空断熱材及びその製造方法
JP2017141913A (ja) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 断熱体とその製造方法
WO2018230343A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 断熱シートおよびこれを用いた積層断熱シート
WO2019188158A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 断熱体およびこれを用いた断熱シート、ならびに断熱体の製造方法
WO2019188159A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 断熱体およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862821B2 (ja) * 2016-12-26 2021-04-21 東京エレクトロン株式会社 成膜装置、成膜方法及び断熱部材
EP3751186B1 (en) * 2018-03-23 2022-08-10 Kaneka Corporation Heat insulating sheet, heat insulating material, and method for manufacturing heat insulating sheet
WO2019217328A1 (en) 2018-05-07 2019-11-14 California Institute Of Technology Gel and polymer based flow meters
CN110001160A (zh) * 2019-04-02 2019-07-12 中国兵器工业第五九研究所 一种耐高温的多层复合隔热部件及其制备方法
US11668613B2 (en) 2019-05-06 2023-06-06 California Institute Of Technology ABA type block co-polymers for temperature sensing and flow meters
US11912807B2 (en) 2020-03-25 2024-02-27 Samsung Electronics Co., Ltd. Composite for sensing heat or infrared light and device including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878751A (ja) 1981-11-05 1983-05-12 星子 幸男 積層断熱材の積層方法
JPH08238716A (ja) * 1995-03-03 1996-09-17 Inax Corp 保温シート

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE559232A (ja) * 1956-07-16
FR1378150A (fr) * 1963-09-18 1964-11-13 Comp Generale Electricite Dispositif d'isolation thermique
FR2884589B1 (fr) * 2005-04-15 2007-06-08 Icopal Sas Soc Par Actions Sim Isolant mince reflechissant pour sous-toiture, et procede de fabrication de cet isolant
GB2452059A (en) * 2007-08-22 2009-02-25 Hunt Tech Ltd Breathable insulation with infrared reflective coating
JP5333038B2 (ja) * 2008-09-10 2013-11-06 パナソニック株式会社 真空断熱材とその製造方法
CN101736819A (zh) * 2008-11-18 2010-06-16 张灿 一种屋顶墙面隔热建材及其制造方法
JP5877647B2 (ja) * 2011-03-10 2016-03-08 ユニ・チャーム株式会社 液吸収シートの製造方法
CN102705633B (zh) * 2012-05-31 2014-12-10 山东胜利钢管有限公司 高剪切力三层聚烯烃防腐保温钢管及其制作工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878751A (ja) 1981-11-05 1983-05-12 星子 幸男 積層断熱材の積層方法
JPH08238716A (ja) * 1995-03-03 1996-09-17 Inax Corp 保温シート

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044800A (ja) * 2014-08-27 2016-04-04 国立研究開発法人産業技術総合研究所 真空断熱材及びその製造方法
JP2017141913A (ja) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 断熱体とその製造方法
WO2018230343A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 断熱シートおよびこれを用いた積層断熱シート
WO2019188158A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 断熱体およびこれを用いた断熱シート、ならびに断熱体の製造方法
WO2019188159A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 断熱体およびその製造方法
CN111712666A (zh) * 2018-03-30 2020-09-25 松下知识产权经营株式会社 隔热体及其制造方法
JPWO2019188159A1 (ja) * 2018-03-30 2021-04-08 パナソニックIpマネジメント株式会社 断熱体およびその製造方法
CN111712666B (zh) * 2018-03-30 2022-05-10 松下知识产权经营株式会社 隔热体及其制造方法
JP7241263B2 (ja) 2018-03-30 2023-03-17 パナソニックIpマネジメント株式会社 断熱体およびその製造方法
JP7340734B2 (ja) 2018-03-30 2023-09-08 パナソニックIpマネジメント株式会社 断熱体およびこれを用いた断熱シート、ならびに断熱体の製造方法

Also Published As

Publication number Publication date
CN104919240A (zh) 2015-09-16
EP2944858B1 (en) 2019-11-27
CN104919240B (zh) 2017-04-05
EP2944858A1 (en) 2015-11-18
CN105946321A (zh) 2016-09-21
JP5734526B2 (ja) 2015-06-17
JP5758555B1 (ja) 2015-08-05
JP2015143574A (ja) 2015-08-06
US20150314552A1 (en) 2015-11-05
US10099446B2 (en) 2018-10-16
EP2944858A4 (en) 2017-02-15
JPWO2014109288A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP5758555B1 (ja) 断熱シート、断熱材、断熱シートの製造方法、および断熱材の製造方法
JP5722775B2 (ja) 電磁波シールドシート
CN102245823A (zh) 包含具有皮/芯型构造的纤维的非织造片材
JP5887799B2 (ja) 繊維シートの製造方法
Maity et al. Structure-property relationships of needle-punched nonwoven fabric
US20100279177A1 (en) Carbon fiber conductive sheet and manufacturing method thereof
JP6375906B2 (ja) 蒸着マスク、蒸着マスク準備体、フレーム付き蒸着マスク及び有機半導体素子の製造方法
JP2011111708A (ja) 異成分の素材を用いた複合ニードルパンチング不織布およびその製造方法
JP7219259B2 (ja) 断熱シート
JP4039464B1 (ja) 塗膜防水施工用下張り緩衝材及び塗膜防水施工法
JP2011181714A (ja) 電磁波シールドシート及びその製造方法
Ozturk et al. A comparative study on air permeability properties of multilayered nonwoven structures
CN103459067B (zh) 用于从复合纤维结构制造整体式轴对称的金属部件的方法
JP6499429B2 (ja) 農業用被覆シート及びその製造方法
KR20210096220A (ko) 스펀본드 부직포의 제조 방법 및 스펀본드 부직포
JP5377453B2 (ja) 真空断熱材およびその製造方法
JP2011094669A (ja) 繊維シートおよび真空断熱材
RU16160U1 (ru) Рулонный теплоизоляционный материал
JP2019096560A (ja) 超電導ケーブル
JP2012107692A (ja) 断熱材及び保温バック
JP2019085444A (ja) 導電性部材における通気性接着層を形成可能な布帛、および、導電性部材とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014538553

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014737950

Country of ref document: EP