WO2014104483A1 - Polyamide resin, preparation method therefor, and molded product comprising same - Google Patents

Polyamide resin, preparation method therefor, and molded product comprising same Download PDF

Info

Publication number
WO2014104483A1
WO2014104483A1 PCT/KR2013/002532 KR2013002532W WO2014104483A1 WO 2014104483 A1 WO2014104483 A1 WO 2014104483A1 KR 2013002532 W KR2013002532 W KR 2013002532W WO 2014104483 A1 WO2014104483 A1 WO 2014104483A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
dicarboxylic acid
acid
diamine
aliphatic dicarboxylic
Prior art date
Application number
PCT/KR2013/002532
Other languages
French (fr)
Korean (ko)
Inventor
이은주
권소영
김진규
방승엽
임상균
이기연
전석민
최성철
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014104483A1 publication Critical patent/WO2014104483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a polyamide resin, a method for preparing the same, and a product including the same. More specifically, the present invention relates to a high heat-resistant polyamide resin having excellent heat resistance and processability and capable of reducing gas generation during molding, a method for preparing the same, and a molded article including the same.
  • Nylon 66 and nylon 6 are the best known polyamide resins, and aliphatic polyamide resins such as nylon 610, nylon 612, nylon 11 and nylon 12 have been continuously developed.
  • aliphatic polyamide resins such as nylon 610, nylon 612, nylon 11 and nylon 12 have been continuously developed.
  • high heat-resistant nylons such as nylon 6T, nylon 9T, nylon 10T, nylon 11T, and nylon 12T are underway to improve the poor thermal properties of aliphatic polyamide resins (nylons). It is becoming.
  • the heat resistance temperature is considerably higher than that of general nylon and can be used in various fields requiring high heat resistance properties.
  • the high heat-resistant polyamide resin since the melting temperature is very high and the decomposition temperature is lower than the processing temperature, it is difficult to use alone, and it is generally copolymerized to lower the processing temperature.
  • linear aliphatic dicarboxylic acids such as adipic acid are mainly used.
  • the melting temperature (Tm) is about 300 to about 320 ° C, and the moldability is improved.
  • Tm melting temperature
  • the moldability is improved.
  • gas is generated by the cyclization reaction as in Scheme 1.
  • An object of the present invention is to provide a high heat-resistant polyamide resin that is excellent in heat resistance and processability, and can reduce the amount of gas generated during molding.
  • Another object of the present invention is to provide a method for producing the polyamide resin.
  • Another object of the present invention is to provide a molded article formed of the polyamide resin.
  • the polyamide resin is a polymer of dicarboxylic acid and diamine, and the dicarboxylic acid contains a branched aliphatic dicarboxylic acid.
  • the branched aliphatic dicarboxylic acid may comprise one or more of branched aliphatic dicarboxylic acids having about 5 to about 12 carbon atoms.
  • the dicarboxylic acid can comprise about 1 to about 60 mole% of the branched aliphatic dicarboxylic acid and about 40 to about 99 mole% of aromatic dicarboxylic acid.
  • the aromatic dicarboxylic acid may include one or more of aromatic dicarboxylic acids having 8 to 20 carbon atoms.
  • the dicarboxylic acid can further comprise up to about 45 mole percent linear aliphatic dicarboxylic acid.
  • the linear aliphatic dicarboxylic acid may include at least one of linear aliphatic dicarboxylic acids having 4 to 12 carbon atoms.
  • the diamine may comprise one or more of aliphatic diamines having 4 to 20 carbon atoms.
  • the glass transition temperature (Tg) of the polyamide resin is about 90 ° C. or more, the crystallization temperature (Tc) is about 250 to about 280 ° C., and the melting temperature (Tm) may be about 290 to about 320 ° C. have.
  • the intrinsic viscosity of the polyamide resin may be 0.3 to 2.0 dL / g.
  • the polyamide resin may be about 10% or less of gas generation under inert gas conditions and temperature conditions of about 120 to about 350 °C.
  • Another aspect of the present invention relates to a method for producing the polyamide resin.
  • the preparation method is characterized in that it comprises a step of polymerizing the dicarboxylic acid, and the diamine containing a branched aliphatic dicarboxylic acid.
  • the polyamide resin production method comprises preparing a prepolymer by polymerizing the dicarboxylic acid and the diamine; And solid phase polymerizing the prepolymer; It may include a step.
  • the prepolymer may have an intrinsic viscosity of about 0.05 kPa to about 0.40 dL / g.
  • the solid phase polymerization may be to heat the prepolymer to a temperature of about 170 to about 280 °C in the presence of an inert gas.
  • Another aspect of the present invention relates to a molded article formed from the polyamide resin.
  • the present invention has the effect of the invention to provide a high heat-resistant polyamide resin, a manufacturing method thereof, and a molded article including the same, which is excellent in heat resistance and workability and can reduce the amount of gas generated during molding.
  • the polyamide resin according to the present invention is a polymer of dicarboxylic acid and diamine, wherein the dicarboxylic acid includes a branched aliphatic dicarboxylic acid, and the dicarboxylic acid moiety and the diamine derived from the dicarboxylic acid.
  • the diamine moiety derived from has a repeating structure.
  • dicarboxylic acid or the like refers to dicarboxylic acid, alkyl esters thereof (lower alkyl esters having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester), and acids thereof. It is used in the sense including acid anhydride and the like, and reacts with diamine to form a dicarboxylic acid moiety.
  • the dicarboxylic acid moiety and the diamine moiety are residues remaining after the hydrogen atom, the hydroxy group or the alkoxy group is removed when the dicarboxylic acid and the diamine are polymerized. residue).
  • Dicarboxylic acids (components) used in the present invention include branched aliphatic dicarboxylic acids.
  • branched aliphatic dicarboxylic acid a compound containing at least one branched aliphatic dicarboxylic acid having 5 to 12 carbon atoms, which may or may not contain a hetero atom such as an oxygen atom (O), may be used.
  • O oxygen atom
  • 3- (tert-butyl) adipic acid (3- (tert-butyl) adipic acid), 3-methoxy-adipic acid, 2-methoxy-adipic acid (2-methoxy-adipic acid), 3-methyl adipic acid, 3- (3-methoxybenzoyl) -adipic acid, 3- (3-methoxy benzoyl) -adipic acid, Mixtures of these and the like can be used, but are not limited thereto.
  • aliphatic dicarboxylic acid in which the ⁇ -position, such as 3-methyl adipic acid, is branched can be used.
  • the content of the branched aliphatic dicarboxylic acid is about 1 to about 60 mole%, preferably about 20 to about 55 mole%, more preferably about 35 to about 55 mole% of the total dicarboxylic acid. It is excellent in heat resistance, processability, etc. of the polyamide resin in the above range, it is possible to prevent or reduce the generation of gas during molding.
  • the dicarboxylic acid includes aromatic dicarboxylic acid in addition to the branched aliphatic dicarboxylic acid.
  • aromatic dicarboxylic acid the compound containing 1 or more types of C8-C20 aromatic dicarboxylic acid can be used, For example, terephthalic acid, isophthalic acid, 2, 6- naphthalenedicarboxylic acid, 2 , 7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxyphenylene acid, 1,3-phenylenedioxydiacetic acid, defenic acid, 4,4'-oxybis ( Benzoic acid), benzylphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-diphenylcarboxylic acid, mixtures thereof, and the like.
  • terephthalic acid isophthalic acid, 2,
  • the content of the aromatic dicarboxylic acid is about 40 to about 99 mol%, preferably about 45 to about 80 mol%, more preferably about 45 to about 65 mol%, of the total dicarboxylic acids. It is excellent in heat resistance, workability, etc. of a polyamide resin in the said range.
  • the dicarboxylic acid used in the present invention may further include linear aliphatic dicarboxylic acid in order to improve processability and economical efficiency of the polyamide resin.
  • the linear aliphatic dicarboxylic acid may be a linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms, preferably adipic acid, but is not limited thereto.
  • the linear aliphatic dicarboxylic acid may further comprise about 45 mol% or less, preferably about 1 to about 40 mol%, of all dicarboxylic acids. In the above range, a copolymerized polyamide resin having more excellent processability and economical efficiency can be obtained.
  • one or more common aliphatic diamines for example, aliphatic diamines having 4 to 20 carbon atoms can be used.
  • Specific examples of the aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,10-decanediamine (DDA), 1,12 Dodecanediamine (DDDA), 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine , 5-methyl-1,9-nonanediamine, 2,2-oxybis (ethylamine), bis (3-aminopropyl) ether, ethylene glycol bis (3-aminopropyl) ether (EGBA), 1,7- One or more aliphatic linear diamines, such as diamino-3,5-dioxoheptane and mixtures thereof, may be
  • the content of the aliphatic diamine may be about 60 mol% or more, preferably about 70 to about 99 mol%, in the total diamines. In the above range may be excellent in heat resistance, processability and the like of the polyamide resin.
  • the diamine used in the present invention may further contain an aromatic diamine in order to increase the heat resistance, processability and the like of the polyamide resin.
  • aromatic diamine one or more kinds of aromatic diamines having 6 to 30 carbon atoms can be used.
  • phenylenediamine compounds such as m-phenylenediamine and p-phenylenediamine
  • xylenediamine compounds such as m-xylenediamine and p-xylenediamine
  • naphthalenediamine compound, etc. can be illustrated, This is not restrictive.
  • the content thereof may be about 40 mol% or less, preferably about 1 to about 30 mol%, of the total diamine. It is excellent in heat resistance, workability, etc. of a copolyamide resin in the said range.
  • the ratio of the dicarboxylic acid and the diamine may be, for example, about 0.85 to about 1.05, preferably about 0.90 to about 1.03. In the above range, it is possible to prevent a decrease in physical properties due to unreacted monomers.
  • the polyamide resin of the present invention may be one in which the end group is sealed with an end capping agent containing at least one aliphatic carboxylic acid and aromatic carboxylic acid.
  • an end capping agent containing at least one aliphatic carboxylic acid and aromatic carboxylic acid.
  • the end-sealing agent for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauryl acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid , Benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, mixtures thereof and the like may be used, but is not limited thereto.
  • the terminal encapsulant may be included, for example, about 0.01 to about 5 moles, preferably about 0.1 to about 3 moles, based on 100 moles of the dicarboxylic acid and the diamine.
  • the copolymerized polyamide resin of the present invention may be prepared according to a conventional polyamide production method, for example, may be prepared by polymerizing the dicarboxylic acid and the diamine.
  • the copolymerization may be carried out according to a conventional copolymerization preparation method, for example, may be carried out using a melt polymerization method or the like, and the polymerization temperature is about 80 to about 300 ° C, preferably about 90 to about 280 ° C.
  • the polymerization pressure may be about 10 to about 40 kgf / cm 2 , but is not limited thereto.
  • the method for producing the polyamide resin may be prepared by polymerizing the dicarboxylic acid and the diamine to prepare a prepolymer, and by prepolymerizing the prepolymer.
  • the dicarboxylic acid, the diamine, the catalyst and water are charged to the reactor, stirred at about 80 to about 150 ° C. for about 0.5 to about 2 hours, and then at a temperature of about 200 to about 280 ° C.
  • the prepolymer has an intrinsic viscosity [ ⁇ ] of about 0.05 kPa to about 0.40 dL / g, preferably about 0.1 kPa to about 0.40 kDL / g, measured by a Ubbelodhde viscometer at 25 ° C. using 98% sulfuric acid solution.
  • intrinsic viscosity
  • Copolymer polyamide having a desired weight average molecular weight in the above range can be obtained.
  • the solid phase polymerisation of the prepolymer to about 170 to about 280 ° C., preferably about 180 to about 250 ° C., more preferably about 200 to about 250 ° C. in the presence of an inert gas such as nitrogen, argon May be heated.
  • Copolymer polyamide having a weight average molecular weight of about 20,000 kPa to about 45,000 g / mol in the above range can be obtained.
  • a catalyst may be used in the copolymerization reaction.
  • a phosphorus-based catalyst may be used.
  • phosphoric acid, phosphorus acid, hypophosphorous acid or salts or derivatives thereof may be used.
  • phosphoric acid, phosphoric acid, hypophosphorous acid, sodium hypophosphate, sodium hypophosphinate and the like can be used.
  • the catalyst is for example about 0 to about 3 parts by weight, preferably about 0.001 to about 1 part by weight, more preferably about 0.01 to about 1 part by weight based on 100 parts by weight of the total monomers (dicarboxylic acid and diamine). 0.5 parts by weight may be used, but is not limited thereto.
  • the terminal blocker may be used as the content in the method for preparing the polyamide resin, and by adjusting the content of the terminal blocker, the viscosity of the copolymerized polyamide resin may be adjusted.
  • the glass transition temperature (Tg) of the polyamide resin according to the present invention is about 90 ° C. or more, preferably about 90 ° C. to about 100 ° C.
  • the crystallization temperature (Tc) is about 250 to about 280 ° C., preferably about 260 ° C. It is about 280 ° C
  • the melting temperature (Tm) may be about 290 to about 320 ° C, preferably about 300 ° C to about 320 ° C.
  • the polyamide resin has an intrinsic viscosity [ ⁇ ] of about 0.3 kPa to about 2.0 kDL / g, preferably about 0.6 kPa to about 2.0 kDL / g, measured by a Ubbelodhde viscometer at 25 ° C. using 98% sulfuric acid solution. More preferably about 0.8 kPa to about 1.5 kPa dL / g.
  • the polyamide resin may have a weight average molecular weight of about 20,000 to about 45,000 ⁇ g / mol measured by GPC.
  • the polyamide resin may be about 10% or less, and preferably about 2% to about 8%, based on an inothermal TGA method, measured under inert gas conditions and temperature conditions of about 120 to about 350 ° C. Specifically, the gas generation amount is maintained for about 30 minutes at about 120 °C in the polymer specimen under a stream of nitrogen, to blow out moisture that may be present in the polymer, and then maintained at about 350 °C for about 30 minutes to the polyamide resin The weight loss rate was measured.
  • the molded article according to the invention is formed from the polyamide resin.
  • the molded article may be manufactured for use in a connector, which requires characteristics such as high heat resistance and low gas generation amount, but is not limited thereto.
  • the molded article can be easily formed by those skilled in the art to which the present invention pertains.
  • Example 1-3 and Comparative Example 1-3
  • dicarboxylic acid (Diacid)
  • terephthalic acid terephthalic acid (TPA)
  • 3-methyladipic acid 3-methyladipic acid
  • adipic acid adipic acid
  • diamine diamine
  • 1,6-hexamethylenediamine is used as the catalyst based on 1.65 mol parts of benzoic acid and 100 parts by weight of the dicarboxylic acid and diamine based on 100 mol parts of the dicarboxylic acid and diamine.
  • 0.1 parts by weight of hypophosphinate and about 97 parts by weight of water were placed in a 1 liter autoclave and filled with nitrogen. After stirring at 130 ° C.
  • the polyamide resins prepared in Examples and Comparative Examples were evaluated for melting temperature, crystallization temperature, glass transition temperature, intrinsic viscosity, and gas generation amount by the following method, and the results are shown in Table 2 below.
  • Tm Melting temperature
  • Tc crystallization temperature
  • Tg glass transition temperature
  • DSC Different Scanning Calorimeter
  • Gas generation amount (unit:%): It measured at inert gas conditions and # 120-350 degreeC using iso-thermal TGA. Specifically, under the nitrogen stream, the polymer specimen was maintained at 120 ° C. for 30 minutes to blow out moisture that may be present in the polymer, and then maintained at 350 ° C. for 30 minutes to measure the weight loss ratio.
  • the polyamide resins (Examples 1 to 3) according to the present invention have excellent heat resistance with a glass transition temperature of 90 ° C. or higher, and from the results of melting temperature, crystallization temperature and intrinsic viscosity, It can be seen that excellent.
  • the gas generation amount is 7.2% or less, and when used for the connector, blisters may not occur.
  • Comparative Example 1 which does not use the branched aliphatic dicarboxylic acid of the present invention, has a disadvantage that processing is difficult because the melting temperature is too high, and Comparative Examples 2 and 3 have blisters having a gas generation amount of 10% or more. There is a high possibility of occurrence.
  • the polyamide resins (Examples 1 to 3) according to the present invention are excellent in heat resistance at a glass transition temperature of 90 ° C. or higher and excellent in workability from the results of melting temperature, crystallization temperature, intrinsic viscosity, and the like.
  • the gas generation amount is 7.2% or less, and when used for the connector, blisters may not occur.
  • Comparative Example 1 which does not use the branched aliphatic dicarboxylic acid of the present invention, has a disadvantage that processing is difficult because the melting temperature is too high, and Comparative Examples 2 and 3 have blisters having a gas generation amount of 10% or more. There is a high possibility of occurrence.

Abstract

A polyamide resin of the present invention is a polymer of a dicarboxylic acid and a diamine, and the dicarboxylic acid comprises a branched aliphatic dicarboxylic acid. The polyamide resin has remarkable heat resistance and processability, and can reduce gas generation during molding.

Description

폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품Polyamide resin, preparation method thereof and molded article comprising same
본 발명은 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품에 관한 것이다. 보다 구체적으로는, 내열성, 가공성이 우수하고, 성형 시 가스 발생량을 감소시킬 수 있는 고내열 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다.The present invention relates to a polyamide resin, a method for preparing the same, and a product including the same. More specifically, the present invention relates to a high heat-resistant polyamide resin having excellent heat resistance and processability and capable of reducing gas generation during molding, a method for preparing the same, and a molded article including the same.
폴리아미드 수지로는 나일론 66 및 나일론 6이 가장 잘 알려져 있으며, 나일론 610, 나일론 612, 나일론 11, 나일론 12 등의 지방족 폴리아미드 수지도 지속적으로 개발되어 왔다. 또한, 지방족 폴리아미드 수지(나일론)의 부족한 열적 특성을 향상시키기 위해, 나일론 6T, 나일론 9T, 나일론 10T, 나일론 11T, 나일론 12T 등의 고내열 나일론(반방향족 폴리아미드 수지)의 상업화 및 개발이 진행되고 있다.Nylon 66 and nylon 6 are the best known polyamide resins, and aliphatic polyamide resins such as nylon 610, nylon 612, nylon 11 and nylon 12 have been continuously developed. In addition, commercialization and development of high heat-resistant nylons (semi-aromatic polyamide resins) such as nylon 6T, nylon 9T, nylon 10T, nylon 11T, and nylon 12T are underway to improve the poor thermal properties of aliphatic polyamide resins (nylons). It is becoming.
상기 고내열 나일론은 반결정 구조를 가짐으로써, 내열 온도가 일반 나일론에 비해 상당히 높고, 고내열 특성을 요구하는 다양한 분야에 사용될 수 있다. 그러나, 상기 고내열 폴리아미드 수지의 경우, 용융온도가 매우 높고, 분해 온도가 가공 온도에 비해 낮기 때문에 단독으로는 사용되기 어려우며, 가공 온도를 낮추기 위해 공중합시키는 것이 일반적이다. 이러한 공중합 단량체로서, 아디프산(adipic acid) 등의 선형 지방족 디카르복실산이 주로 사용되고 있다. Since the high heat resistant nylon has a semi-crystal structure, the heat resistance temperature is considerably higher than that of general nylon and can be used in various fields requiring high heat resistance properties. However, in the case of the high heat-resistant polyamide resin, since the melting temperature is very high and the decomposition temperature is lower than the processing temperature, it is difficult to use alone, and it is generally copolymerized to lower the processing temperature. As such copolymerized monomers, linear aliphatic dicarboxylic acids such as adipic acid are mainly used.
그러나, 상기 아디프산 등을 공단량체로 사용할 경우, 용융온도(Tm)가 약 300 내지 약 320℃가 되어 성형성이 향상되지만, 예를 들면, 약 300 내지 약 330℃의 성형 온도에서, 하기 반응식 1과 같은 고리화 반응이 진행되어 가스가 발생하는 단점이 있다.However, when the adipic acid or the like is used as a comonomer, the melting temperature (Tm) is about 300 to about 320 ° C, and the moldability is improved. For example, at a molding temperature of about 300 Pa to about 330 ° C, There is a disadvantage in that gas is generated by the cyclization reaction as in Scheme 1.
[반응식 1]Scheme 1
[규칙 제26조에 의한 보정 07.05.2013] 
Figure WO-DOC-CHEMICAL-1
[Revision under Rule 26 07.05.2013]
Figure WO-DOC-CHEMICAL-1
따라서, (성형) 가공성을 높임과 동시에 가스 발생을 방지하거나 줄일 수 있는 고내열 폴리아미드 수지의 개발이 필요한 실정이다.Therefore, there is a need for development of a high heat-resistant polyamide resin capable of improving (molding) processability and preventing or reducing gas generation.
본 발명의 목적은 내열성, 가공성이 우수하고, 성형 시 가스 발생량을 감소시킬 수 있는 고내열 폴리아미드 수지를 제공하기 위한 것이다.An object of the present invention is to provide a high heat-resistant polyamide resin that is excellent in heat resistance and processability, and can reduce the amount of gas generated during molding.
본 발명의 다른 목적은 상기 폴리아미드 수지의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing the polyamide resin.
본 발명의 또 다른 목적은 상기 폴리아미드 수지로 형성된 성형품을 제공하기 위한 것이다.Another object of the present invention is to provide a molded article formed of the polyamide resin.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 폴리아미드 수지에 관한 것이다. 상기 폴리아미드 수지는 디카르복실산과 디아민의 중합체이며, 상기 디카르복실산은 분지형 지방족 디카르복실산을 포함하는 것을 특징으로 한다.One aspect of the invention relates to polyamide resins. The polyamide resin is a polymer of dicarboxylic acid and diamine, and the dicarboxylic acid contains a branched aliphatic dicarboxylic acid.
구체예에서, 상기 분지형 지방족 디카르복실산은 탄소수 약 5 내지 약 12의 분지형 지방족 디카르복실산 중 1종 이상을 포함할 수 있다.In embodiments, the branched aliphatic dicarboxylic acid may comprise one or more of branched aliphatic dicarboxylic acids having about 5 to about 12 carbon atoms.
구체예에서, 상기 디카르복실산은 약 1 내지 약 60 몰%의 상기 분지형 지방족 디카르복실산 및 약 40 내지 약 99 몰%의 방향족 디카르복실산을 포함할 수 있다.In an embodiment, the dicarboxylic acid can comprise about 1 to about 60 mole% of the branched aliphatic dicarboxylic acid and about 40 to about 99 mole% of aromatic dicarboxylic acid.
바람직하게는 상기 방향족 디카르복실산은 탄소수 8 내지 20의 방향족 디카르복실산 중 1종 이상을 포함할 수 있다.Preferably, the aromatic dicarboxylic acid may include one or more of aromatic dicarboxylic acids having 8 to 20 carbon atoms.
구체예에서, 상기 디카르복실산은 약 45 몰% 이하의 선형 지방족 디카르복실산을 더욱 포함할 수 있다.In an embodiment, the dicarboxylic acid can further comprise up to about 45 mole percent linear aliphatic dicarboxylic acid.
바람직하게는 상기 선형 지방족 디카르복실산은 탄소수 4 내지 12의 선형 지방족 디카르복실산 중 1종 이상을 포함할 수 있다.Preferably, the linear aliphatic dicarboxylic acid may include at least one of linear aliphatic dicarboxylic acids having 4 to 12 carbon atoms.
구체예에서, 상기 디아민은 탄소수 4 내지 20의 지방족 디아민 중 1종 이상을 포함할 수 있다.In embodiments, the diamine may comprise one or more of aliphatic diamines having 4 to 20 carbon atoms.
구체예에서, 상기 폴리아미드 수지의 유리전이온도(Tg)는 약 90℃ 이상이고, 결정화온도(Tc)는 약 250 내지 약 280℃이며, 용융온도(Tm)는 약 290 내지 약 320℃일 수 있다.In an embodiment, the glass transition temperature (Tg) of the polyamide resin is about 90 ° C. or more, the crystallization temperature (Tc) is about 250 to about 280 ° C., and the melting temperature (Tm) may be about 290 to about 320 ° C. have.
구체예에서, 상기 폴리아미드 수지의 고유점도는 0.3 내지 2.0 dL/g일 수 있다.In embodiments, the intrinsic viscosity of the polyamide resin may be 0.3 to 2.0 dL / g.
구체예에서, 상기 폴리아미드 수지는 불활성 기체 조건 및 약 120 내지 약 350℃의 온도 조건에서의 가스 발생량이 약 10% 이하일 수 있다.In embodiments, the polyamide resin may be about 10% or less of gas generation under inert gas conditions and temperature conditions of about 120 to about 350 ℃.
본 발명의 다른 관점은 상기 폴리아미드 수지의 제조방법에 관한 것이다. 상기 제조방법은 분지형 지방족 디카르복실산을 포함하는 디카르복실산, 및 상기 디아민을 중합하는 단계를 포함하는 것을 특징으로 한다.Another aspect of the present invention relates to a method for producing the polyamide resin. The preparation method is characterized in that it comprises a step of polymerizing the dicarboxylic acid, and the diamine containing a branched aliphatic dicarboxylic acid.
구체예에서, 상기 폴리아미드 수지 제조방법은 상기 디카르복실산 및 상기 디아민을 중합하여 예비중합체를 제조하고; 그리고 상기 예비중합체를 고상 중합하는; 단계를 포함할 수 있다.In an embodiment, the polyamide resin production method comprises preparing a prepolymer by polymerizing the dicarboxylic acid and the diamine; And solid phase polymerizing the prepolymer; It may include a step.
바람직하게는 상기 예비중합체는 고유점도가 약 0.05 내지 약 0.40 dL/g일 수 있다.Preferably, the prepolymer may have an intrinsic viscosity of about 0.05 kPa to about 0.40 dL / g.
바람직하게는 상기 고상 중합은 상기 예비중합체를 불활성 기체 존재 하에 약 170 내지 약 280℃의 온도로 가열하는 것일 수 있다.Preferably, the solid phase polymerization may be to heat the prepolymer to a temperature of about 170 to about 280 ℃ in the presence of an inert gas.
본 발명의 또 다른 관점은 상기 폴리아미드 수지로부터 형성된 성형품에 관한 것이다.Another aspect of the present invention relates to a molded article formed from the polyamide resin.
본 발명은 내열성, 가공성이 우수하고, 성형 시 가스 발생량을 감소시킬 수 있는 고내열 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 발명의 효과를 갖는다.The present invention has the effect of the invention to provide a high heat-resistant polyamide resin, a manufacturing method thereof, and a molded article including the same, which is excellent in heat resistance and workability and can reduce the amount of gas generated during molding.
이하, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 폴리아미드 수지는 디카르복실산과 디아민의 중합체이며, 상기 디카르복실산은 분지형 지방족 디카르복실산을 포함하는 것으로서, 상기 디카르복실산으로부터 유도된 디카르복실산 부분 및 상기 디아민으로부터 유도된 디아민 부분이 반복되는 구조를 가지는 것이다.The polyamide resin according to the present invention is a polymer of dicarboxylic acid and diamine, wherein the dicarboxylic acid includes a branched aliphatic dicarboxylic acid, and the dicarboxylic acid moiety and the diamine derived from the dicarboxylic acid. The diamine moiety derived from has a repeating structure.
본 명세서에 있어서, 디카르복실산 등의 용어는 디카르복실산, 이의 알킬 에스테르(모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르), 이들의 산무수물(acid anhydride) 등을 포함하는 의미로 사용되며, 디아민과 반응하여, 디카르복실산 부분(dicarboxylic acid moiety)을 형성한다. 또한, 본 명세서에 있어서, 디카르복실산 부분(dicarboxylic acid moiety) 및 디아민 부분(diamine moiety)은, 디카르복실산 및 디아민이 중합 반응될 때, 수소 원자, 히드록시기 또는 알콕시기가 제거되고 남은 잔기(residue)를 의미한다.In the present specification, the term dicarboxylic acid or the like refers to dicarboxylic acid, alkyl esters thereof (lower alkyl esters having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester), and acids thereof. It is used in the sense including acid anhydride and the like, and reacts with diamine to form a dicarboxylic acid moiety. In addition, in the present specification, the dicarboxylic acid moiety and the diamine moiety are residues remaining after the hydrogen atom, the hydroxy group or the alkoxy group is removed when the dicarboxylic acid and the diamine are polymerized. residue).
(A) 디카르복실산(A) dicarboxylic acid
본 발명에 사용되는 디카르복실산 (성분)은 분지형 지방족 디카르복실산을 포함한다. 상기 분지형 지방족 디카르복실산으로는 산소 원자(O) 등의 헤테로 원자를 포함하거나 포함하지 않는 탄소수 5 내지 12의 분지형 지방족 디카르복실산을 1종 이상 포함하는 화합물을 사용할 수 있으며, 예를 들면, 3-(tert-부틸)아디프산(3-(tert-butyl)adipic acid), 3-메톡시-아디프산(3-methoxy-adipic acid), 2-메톡시-아디프산(2-methoxy-adipic acid), 3-메틸아디프산(3-methyl adipic acid), 3-(3-메톡시벤조일)-아디프산(3-(3-methoxy benzoyl)-adipic acid), 이들의 혼합물 등을 사용할 수 있으나, 이에 제한되지 않는다. 바람직하게는 3-메틸아디프산 등의 γ 위치가 분지된 지방족 디카르복실산을 사용할 수 있다.Dicarboxylic acids (components) used in the present invention include branched aliphatic dicarboxylic acids. As the branched aliphatic dicarboxylic acid, a compound containing at least one branched aliphatic dicarboxylic acid having 5 to 12 carbon atoms, which may or may not contain a hetero atom such as an oxygen atom (O), may be used. For example, 3- (tert-butyl) adipic acid (3- (tert-butyl) adipic acid), 3-methoxy-adipic acid, 2-methoxy-adipic acid (2-methoxy-adipic acid), 3-methyl adipic acid, 3- (3-methoxybenzoyl) -adipic acid, 3- (3-methoxy benzoyl) -adipic acid, Mixtures of these and the like can be used, but are not limited thereto. Preferably, aliphatic dicarboxylic acid in which the γ-position, such as 3-methyl adipic acid, is branched can be used.
상기 분지형 지방족 디카르복실산의 함량은 전체 디카르복실산 중, 약 1 내지 약 60 몰%, 바람직하게는 약 20 내지 약 55 몰%, 더욱 바람직하게는 약 35 내지 약 55 몰%이다. 상기 범위에서 폴리아미드 수지의 내열성, 가공성 등이 우수하고, 성형 시 가스 발생을 방지하거나 줄일 수 있다.The content of the branched aliphatic dicarboxylic acid is about 1 to about 60 mole%, preferably about 20 to about 55 mole%, more preferably about 35 to about 55 mole% of the total dicarboxylic acid. It is excellent in heat resistance, processability, etc. of the polyamide resin in the above range, it is possible to prevent or reduce the generation of gas during molding.
또한, 상기 디카르복실산은 상기 분지형 지방족 디카르복실산 외에 방향족 디카르복실산을 포함한다. 상기 방향족 디카르복실산으로는 탄소수 8 내지 20의 방향족 디카르복실산을 1종 이상 포함하는 화합물을 사용할 수 있으며, 예를 들면, 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,4-페닐렌디옥시페닐렌산, 1,3-페닐렌디옥시디아세트산, 디펜산, 4,4'-옥시비스(벤조산), 디페닐메탄-4,4'-디카르복실산, 디페닐설폰-4,4'-디카르복실산, 4,4'-디페닐카르복실산, 이들의 혼합물 등을 사용할 수 있으나, 이에 제한되지 않는다. 바람직하게는, 테레프탈산, 이소프탈산 또는 이들의 혼합물일 수 있다.In addition, the dicarboxylic acid includes aromatic dicarboxylic acid in addition to the branched aliphatic dicarboxylic acid. As said aromatic dicarboxylic acid, the compound containing 1 or more types of C8-C20 aromatic dicarboxylic acid can be used, For example, terephthalic acid, isophthalic acid, 2, 6- naphthalenedicarboxylic acid, 2 , 7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxyphenylene acid, 1,3-phenylenedioxydiacetic acid, defenic acid, 4,4'-oxybis ( Benzoic acid), benzylphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'-diphenylcarboxylic acid, mixtures thereof, and the like. This is not restrictive. Preferably, it may be terephthalic acid, isophthalic acid or a mixture thereof.
상기 방향족 디카르복실산의 함량은 전체 디카르복실산 중, 약 40 내지 약 99 몰%, 바람직하게는 약 45 내지 약 80 몰%, 더욱 바람직하게는 약 45 내지 약 65 몰%이다. 상기 범위에서 폴리아미드 수지의 내열성, 가공성 등이 우수하다.The content of the aromatic dicarboxylic acid is about 40 to about 99 mol%, preferably about 45 to about 80 mol%, more preferably about 45 to about 65 mol%, of the total dicarboxylic acids. It is excellent in heat resistance, workability, etc. of a polyamide resin in the said range.
본 발명에 사용되는 디카르복실산은, 폴리아미드 수지의 가공성 및 경제성을 향상시키기 위하여, 선형 지방족 디카르복실산을 더욱 포함할 수 있다. 상기 선형 지방족 디카르복실산으로는 탄소수 4 내지 12의 선형 지방족 디카르복실산, 바람직하게는 아디프산(adipic acid)을 사용할 수 있으나, 이에 제한되지 않는다.The dicarboxylic acid used in the present invention may further include linear aliphatic dicarboxylic acid in order to improve processability and economical efficiency of the polyamide resin. The linear aliphatic dicarboxylic acid may be a linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms, preferably adipic acid, but is not limited thereto.
상기 선형 지방족 디카르복실산은 전체 디카르복실산 중, 약 45 몰% 이하, 바람직하게는 약 1 내지 약 40 몰%로 더욱 포함할 수 있다. 상기 범위에서 가공성, 경제성 등이 더욱 우수한 공중합 폴리아미드 수지를 얻을 수 있다.The linear aliphatic dicarboxylic acid may further comprise about 45 mol% or less, preferably about 1 to about 40 mol%, of all dicarboxylic acids. In the above range, a copolymerized polyamide resin having more excellent processability and economical efficiency can be obtained.
(B) 디아민(B) diamine
본 발명에 사용되는 디아민으로는 통상의 지방족 디아민, 예를 들면, 탄소수 4 내지 20의 지방족 디아민을 1종 이상 사용할 수 있다. 상기 지방족 디아민의 구체적인 예로는 1,4-부탄디아민, 1,6-헥산디아민, 1,7-헵탄디아민, 1,8-옥탄디아민, 1,10-데칸디아민(decanediamine: DDA), 1,12-도데칸디아민(dodecanediamine: DDDA), 3-메틸-1,5-펜탄디아민, 2,2,4-트리메틸-1,6-헥산디아민, 2,4,4-트리메틸-1,6-헥산디아민, 5-메틸-1,9-노난디아민, 2,2-옥시비스(에틸아민), 비스(3-아미노프로필)에테르, 에틸렌글리콜 비스(3-아미노프로필)에테르(EGBA), 1,7-디아미노-3,5-디옥소헵탄, 이들의 혼합물 등의 지방족 선형 디아민을 1종 이상 사용할 수 있으나, 이에 한정되지 않는다.As the diamine used in the present invention, one or more common aliphatic diamines, for example, aliphatic diamines having 4 to 20 carbon atoms can be used. Specific examples of the aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,10-decanediamine (DDA), 1,12 Dodecanediamine (DDDA), 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine , 5-methyl-1,9-nonanediamine, 2,2-oxybis (ethylamine), bis (3-aminopropyl) ether, ethylene glycol bis (3-aminopropyl) ether (EGBA), 1,7- One or more aliphatic linear diamines, such as diamino-3,5-dioxoheptane and mixtures thereof, may be used, but is not limited thereto.
상기 지방족 디아민의 함량은 전체 디아민 중, 약 60 몰% 이상, 바람직하게는 약 70 내지 약 99 몰%일 수 있다. 상기 범위에서 폴리아미드 수지의 내열성, 가공성 등이 우수할 수 있다.The content of the aliphatic diamine may be about 60 mol% or more, preferably about 70 to about 99 mol%, in the total diamines. In the above range may be excellent in heat resistance, processability and the like of the polyamide resin.
또한, 본 발명에 사용되는 디아민은 폴리아미드 수지의 내열성, 가공성 등을 높이기 위하여, 방향족 디아민을 더욱 포함할 수도 있다. 상기 방향족 디아민으로는 탄소수 6 내지 30의 방향족 디아민을 1종 이상 사용할 수 있다. 예를 들면, m-페닐렌디아민, p-페닐렌디아민 등의 페닐렌디아민 화합물, m-자일렌디아민, p-자일렌디아민 등의 자일렌디아민 화합물, 나프탈렌디아민 화합물 등을 예시할 수 있으나, 이에 제한되지 않는다.In addition, the diamine used in the present invention may further contain an aromatic diamine in order to increase the heat resistance, processability and the like of the polyamide resin. As the aromatic diamine, one or more kinds of aromatic diamines having 6 to 30 carbon atoms can be used. For example, phenylenediamine compounds, such as m-phenylenediamine and p-phenylenediamine, xylenediamine compounds, such as m-xylenediamine and p-xylenediamine, naphthalenediamine compound, etc. can be illustrated, This is not restrictive.
상기 방향족 디아민 사용 시, 그 함량은 전체 디아민 중, 약 40 몰% 이하, 바람직하게는 약 1 내지 약 30 몰%일 수 있다. 상기 범위에서 공중합 폴리아미드 수지의 내열성, 가공성 등이 우수하다.When using the aromatic diamine, the content thereof may be about 40 mol% or less, preferably about 1 to about 30 mol%, of the total diamine. It is excellent in heat resistance, workability, etc. of a copolyamide resin in the said range.
본 발명의 폴리아미드 수지에서, 상기 디카르복실산과 상기 디아민의 비율(몰비: 디아민/디카르복실산)은 예를 들면, 약 0.85 내지 약 1.05, 바람직하게는 약 0.90 내지 약 1.03일 수 있다. 상기 범위에서 미반응 단량체에 의한 물성 저하를 방지할 수 있다.In the polyamide resin of the present invention, the ratio of the dicarboxylic acid and the diamine (molar ratio: diamine / dicarboxylic acid) may be, for example, about 0.85 to about 1.05, preferably about 0.90 to about 1.03. In the above range, it is possible to prevent a decrease in physical properties due to unreacted monomers.
본 발명의 폴리아미드 수지는 말단기가 지방족 카르복실산 및 방향족 카르복실산을 1종 이상 포함하는 말단봉지제(end capping agent)로 봉지된 것일 수 있다. 상기 말단봉지제로는 예를 들면, 아세트산, 프로피온산, 부티르산, 발레르산, 카프로산, 카프릴산, 라우릴산, 트리데칸산, 미리스트산, 팔미트산, 스테아르산, 피발산, 이소부틸산, 벤조산, 톨루산, α-나프탈렌카르복실산, β-나프탈렌카르복실산, 메틸나프탈렌카르복실산, 이들의 혼합물 등을 사용할 수 있으나, 이에 제한되지 않는다.The polyamide resin of the present invention may be one in which the end group is sealed with an end capping agent containing at least one aliphatic carboxylic acid and aromatic carboxylic acid. As the end-sealing agent, for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauryl acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid , Benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, mixtures thereof and the like may be used, but is not limited thereto.
상기 말단봉지제는 상기 디카르복실산 및 상기 디아민 100 몰부에 대하여, 예를 들면, 약 0.01 내지 약 5 몰부, 바람직하게는 약 0.1 내지 약 3 몰부로 포함될 수 있다.The terminal encapsulant may be included, for example, about 0.01 to about 5 moles, preferably about 0.1 to about 3 moles, based on 100 moles of the dicarboxylic acid and the diamine.
본 발명의 공중합 폴리아미드 수지는 통상의 폴리아미드 제조방법에 따라 제조될 수 있으며, 예를 들면, 상기 디카르복실산, 및 상기 디아민을 중합하여 제조할 수 있다.The copolymerized polyamide resin of the present invention may be prepared according to a conventional polyamide production method, for example, may be prepared by polymerizing the dicarboxylic acid and the diamine.
상기 공중합은 통상의 공중합 제조 방법에 따라 수행될 수 있으며, 예를 들면, 용융 중합 방법 등을 사용하여 수행할 수 있고, 중합 온도는 약 80 내지 약 300℃, 바람직하게는 약 90 내지 약 280℃일 수 있으며, 중합 압력은 약 10 내지 약 40 kgf/cm2일 수 있으나, 이에 제한되지 않는다.The copolymerization may be carried out according to a conventional copolymerization preparation method, for example, may be carried out using a melt polymerization method or the like, and the polymerization temperature is about 80 to about 300 ° C, preferably about 90 to about 280 ° C. The polymerization pressure may be about 10 to about 40 kgf / cm 2 , but is not limited thereto.
일 구체예에서, 상기 폴리아미드 수지의 제조방법은 상기 디카르복실산, 및 상기 디아민을 중합하여 예비중합체를 제조하고, 그리고, 상기 예비중합체를 고상 중합하여 제조할 수 있다. 예를 들면, 상기 디카르복실산, 상기 디아민, 촉매 및 물을 반응기에 채우고, 약 80 내지 약 150℃에서 약 0.5 내지 약 2시간 동안 교반시킨 후, 약 200 내지 약 280℃의 온도 및 약 20 내지 약 40 kgf/cm2의 압력에서, 약 2 내지 약 4시간 동안 유지한 다음, 압력을 약 10 내지 약 30 kgf/cm2로 낮추고 약 1 내지 약 3시간 동안 (공중합) 반응시켜 폴리아미드 예비중합체를 얻은 후, 유리전이온도(Tg)와 용융온도(Tm)사이의 온도로 진공 상태에서 약 10 내지 약 30시간 동안 고상 중합(Solid State Polymerization)하는 단계를 통하여 얻을 수 있다.In one embodiment, the method for producing the polyamide resin may be prepared by polymerizing the dicarboxylic acid and the diamine to prepare a prepolymer, and by prepolymerizing the prepolymer. For example, the dicarboxylic acid, the diamine, the catalyst and water are charged to the reactor, stirred at about 80 to about 150 ° C. for about 0.5 to about 2 hours, and then at a temperature of about 200 to about 280 ° C. and about 20 At a pressure of from about 40 kgf / cm 2 to about 2 to about 4 hours, then the pressure is lowered to about 10 to about 30 kgf / cm 2 and reacted for about 1 to about 3 hours (copolymerization) After obtaining the polymer, it can be obtained through a solid state polymerization (Solid State Polymerization) for about 10 to about 30 hours in a vacuum at a temperature between the glass transition temperature (Tg) and the melting temperature (Tm).
상기 예비중합체는 98% 황산용액을 사용하여 25℃에서 우베로드(Ubbelodhde) 점도계로 측정한 고유점도[η]가 약 0.05 내지 약 0.40 dL/g, 바람직하게는 약 0.1 내지 약 0.40 dL/g일 수 있다. 상기 범위에서 원하는 중량평균분자량을 갖는 공중합 폴리아미드를 얻을 수 있다.The prepolymer has an intrinsic viscosity [η] of about 0.05 kPa to about 0.40 dL / g, preferably about 0.1 kPa to about 0.40 kDL / g, measured by a Ubbelodhde viscometer at 25 ° C. using 98% sulfuric acid solution. Can be. Copolymer polyamide having a desired weight average molecular weight in the above range can be obtained.
다른 구체예에서, 상기 고상 중합은 상기 예비중합체를 질소, 아르곤 등의 불활성 기체 존재 하에 약 170 내지 약 280℃, 바람직하게는 약 180 내지 약 250℃, 더욱 바람직하게는 약 200 내지 약 250℃로 가열시키는 것일 수 있다. 상기 범위에서 약 20,000 내지 약 45,000 g/mol의 중량평균분자량을 갖는 공중합 폴리아미드를 얻을 수 있다.In another embodiment, the solid phase polymerisation of the prepolymer to about 170 to about 280 ° C., preferably about 180 to about 250 ° C., more preferably about 200 to about 250 ° C. in the presence of an inert gas such as nitrogen, argon May be heated. Copolymer polyamide having a weight average molecular weight of about 20,000 kPa to about 45,000 g / mol in the above range can be obtained.
상기 공중합 반응에는 촉매가 사용될 수 있다. 상기 촉매로는 포스포러스계 촉매가 사용될 수 있으며, 예를 들면, 포스포릭산, 포스포러스산, 하이포포스포러스산 또는 그 염이나 유도체 등이 사용될 수 있다. 보다 구체적인 예로서, 포스포릭산, 포스포러스산, 하이포포스포러스산, 소듐 하이포포스페이트, 소듐 하이포포스피네이트 등이 사용될 수 있다.A catalyst may be used in the copolymerization reaction. As the catalyst, a phosphorus-based catalyst may be used. For example, phosphoric acid, phosphorus acid, hypophosphorous acid or salts or derivatives thereof may be used. As a more specific example, phosphoric acid, phosphoric acid, hypophosphorous acid, sodium hypophosphate, sodium hypophosphinate and the like can be used.
상기 촉매는 예를 들면, 전체 단량체(디카르복실산 및 디아민) 100 중량부에 대하여, 약 0 내지 약 3 중량부, 바람직하게는 약 0.001 내지 약 1 중량부, 더욱 바람직하게는 약 0.01 내지 약 0.5 중량부로 사용될 수 있으나, 이에 제한되지 않는다.The catalyst is for example about 0 to about 3 parts by weight, preferably about 0.001 to about 1 part by weight, more preferably about 0.01 to about 1 part by weight based on 100 parts by weight of the total monomers (dicarboxylic acid and diamine). 0.5 parts by weight may be used, but is not limited thereto.
또한, 상기 폴리아미드 수지의 제조방법에는 상기 말단봉지제가 상기 함량으로 사용될 수 있으며, 말단봉지제의 함량을 조절하여, 제조되는 공중합 폴리아미드 수지의 점도를 조절할 수 있다.In addition, the terminal blocker may be used as the content in the method for preparing the polyamide resin, and by adjusting the content of the terminal blocker, the viscosity of the copolymerized polyamide resin may be adjusted.
본 발명에 따른 폴리아미드 수지의 유리전이온도(Tg)는 약 90℃ 이상, 바람직하게는 약 90 내지 약 100℃이고, 결정화온도(Tc)는 약 250 내지 약 280℃, 바람직하게는 약 260 내지 약 280℃이며, 용융온도(Tm)는 약 290 내지 약 320℃, 바람직하게는 약 300 내지 약 320℃일 수 있다.The glass transition temperature (Tg) of the polyamide resin according to the present invention is about 90 ° C. or more, preferably about 90 ° C. to about 100 ° C., and the crystallization temperature (Tc) is about 250 to about 280 ° C., preferably about 260 ° C. It is about 280 ° C, the melting temperature (Tm) may be about 290 to about 320 ° C, preferably about 300 ° C to about 320 ° C.
상기 폴리아미드 수지는 98% 황산용액을 사용하여 25℃에서 우베로드(Ubbelodhde) 점도계로 측정한 고유점도[η]가 약 0.3 내지 약 2.0 dL/g, 바람직하게는 약 0.6 내지 약 2.0 dL/g, 더욱 바람직하게는 약 0.8 내지 약 1.5 dL/g일 수 있다.The polyamide resin has an intrinsic viscosity [η] of about 0.3 kPa to about 2.0 kDL / g, preferably about 0.6 kPa to about 2.0 kDL / g, measured by a Ubbelodhde viscometer at 25 ° C. using 98% sulfuric acid solution. More preferably about 0.8 kPa to about 1.5 kPa dL / g.
상기 폴리아미드 수지는 GPC로 측정한 중량평균분자량이 약 20,000 내지 약 45,000 g/mol일 수 있다.The polyamide resin may have a weight average molecular weight of about 20,000 to about 45,000 μg / mol measured by GPC.
또한, 상기 폴리아미드 수지는 isothermal TGA 방법으로 불활성 가스 조건 및 약 120 내지 약 350℃의 온도 조건에서 측정한 가스 발생량이 약 10% 이하, 바람직하게는 약 2 내지 약 8%일 수 있다. 구체적으로, 상기 가스 발생량은 질소 기류 하에서, 고분자 시편을 약 120℃에서 약 30분 동안 유지하여, 고분자 내 존재할 수 있는 수분을 날려 준 후, 약 350℃에서 약 30분 동안 유지하여 폴리아미드 수지의 무게 감소 비율을 측정하였다.In addition, the polyamide resin may be about 10% or less, and preferably about 2% to about 8%, based on an inothermal TGA method, measured under inert gas conditions and temperature conditions of about 120 to about 350 ° C. Specifically, the gas generation amount is maintained for about 30 minutes at about 120 ℃ in the polymer specimen under a stream of nitrogen, to blow out moisture that may be present in the polymer, and then maintained at about 350 ℃ for about 30 minutes to the polyamide resin The weight loss rate was measured.
본 발명에 따른 성형품은 상기 폴리아미드 수지로부터 형성된다. 예를 들면, 상기 성형품 고내열 특성, 적은 가스 발생량 등의 특성을 요구하는 커넥터 용도 등으로 제조될 수 있으나, 이에 제한되지 않는다. 상기 성형품은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 용이하게 형성될 수 있다.The molded article according to the invention is formed from the polyamide resin. For example, the molded article may be manufactured for use in a connector, which requires characteristics such as high heat resistance and low gas generation amount, but is not limited thereto. The molded article can be easily formed by those skilled in the art to which the present invention pertains.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예Example
실시예 1-3 및 비교예 1-3Example 1-3 and Comparative Example 1-3
하기 표 1의 조성에 따라, 디카르복실산(Diacid)으로서, 테레프탈산(terephthalic acid: TPA), 3-메틸아디프산(3-methyladipic acid) 및 아디프산(adipic acid)과 디아민(Diamine)으로서, 1,6-헥사메틸렌디아민(hexamethylene diamine)을 상기 디카르복실산 및 디아민 100 몰부에 대하여, 말단봉지제로서 벤조산 1.65 몰부, 상기 디카르복실산 및 디아민 100 중량부에 대하여, 촉매로서 소듐 하이포포스피네이트 0.1 중량부 및 물 약 97 중량부와 함께 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 130℃에서 60분간 교반시키고, 230℃로 2시간 동안 승온 시킨 후, 25 kgf/cm2를 유지하면서 3시간 동안 반응시킨 다음, 15 kgf/cm2로 감압시킨 후 1시간 동안 반응시킨 다음, 이를 침출(flash)하여, 물과 폴리아미드 예비 공중합체(점도: 약 0.20 dl/g)를 분리하였다. 분리된 폴리아미드 예비 공중합체를 텀블러 형태의 반응기에 투입하고, 불활성 기체인 질소를 서서히 투입한 다음 240℃에서 5시간 동안 고상 중합을 실시하여 폴리아미드 수지를 얻었다.According to the composition of Table 1, as the dicarboxylic acid (Diacid), terephthalic acid (terephthalic acid (TPA), 3-methyladipic acid (3-methyladipic acid) and adipic acid (adipic acid) and diamine (Diamine) As a catalyst, 1,6-hexamethylenediamine is used as the catalyst based on 1.65 mol parts of benzoic acid and 100 parts by weight of the dicarboxylic acid and diamine based on 100 mol parts of the dicarboxylic acid and diamine. 0.1 parts by weight of hypophosphinate and about 97 parts by weight of water were placed in a 1 liter autoclave and filled with nitrogen. After stirring at 130 ° C. for 60 minutes, the temperature was raised to 230 ° C. for 2 hours, the reaction was continued for 3 hours while maintaining 25 kgf / cm 2 , and the pressure was reduced to 15 kgf / cm 2 , followed by reaction for 1 hour. By flashing, water and polyamide precopolymer (viscosity: about 0.20 dl / g) were separated. The separated polyamide precopolymer was introduced into a tumbler-type reactor, nitrogen was added slowly as an inert gas, and then subjected to solid phase polymerization at 240 ° C. for 5 hours to obtain a polyamide resin.
표 1
  단량체(몰%) 실시예 비교예
1 2 3 1 2 3
Diacid 테레프탈산 55 55 55 100 55 65
3-메틸아디프산 45 5 20 - - -
아디프산 - 40 25 - 45 35
Diamine 1,6-헥사메틸렌디아민 100
몰비(R) [Diamine]/[Diacid] 1.015
Table 1
Monomer (mol%) Example Comparative example
One 2 3 One 2 3
Diacid Terephthalic acid 55 55 55 100 55 65
3-methyladipic acid 45 5 20 - - -
Adipic acid - 40 25 - 45 35
Diamine 1,6-hexamethylenediamine 100
Molar ratio (R) [Diamine] / [Diacid] 1.015
실험예Experimental Example
상기 실시예 및 비교예에서 제조한 폴리아미드 수지에 대하여 다음과 같은 방법으로 용융온도, 결정화온도, 유리전이온도, 고유점도 및 가스 발생량을 평가하여 그 결과를 하기 표 2에 나타내었다.The polyamide resins prepared in Examples and Comparative Examples were evaluated for melting temperature, crystallization temperature, glass transition temperature, intrinsic viscosity, and gas generation amount by the following method, and the results are shown in Table 2 below.
물성 평가 방법Property evaluation method
(1) 용융온도(Tm), 결정화온도(Tc) 및 유리전이온도(Tg)(단위: ℃): 실시예 및 비교예에서 제조한 폴리아미드 수지에 대해 Different Scanning Calorimeter(DSC)를 사용하여 측정하였다. DSC는 TA사의 Q20 측정기를 이용하였고, 질소 분위기, 30 내지 400℃의 온도 범위에서 승온 속도 10℃/min, 냉각 속도 10℃/min의 조건으로 측정하였다. 이때, 용융온도는 두 번째 승온 시 흡열 피크의 최대 지점으로 결정하였고, 결정화온도는 냉각 시 발열 피크의 최대 지점으로 하였으며, 유리전이온도는 두 번째 승온 시 측정된 온도로 결정하였다.(1) Melting temperature (Tm), crystallization temperature (Tc) and glass transition temperature (Tg) (unit: ℃): measured by using Different Scanning Calorimeter (DSC) on polyamide resin prepared in Examples and Comparative Examples It was. DSC was used by Q20 measuring instrument of TA company, and it measured on the conditions of the temperature increase rate of 10 degree-C / min, and cooling rate of 10 degree-C / min in nitrogen atmosphere, the temperature range of 30-400 degreeC. At this time, the melting temperature was determined as the maximum point of the endothermic peak at the second elevated temperature, the crystallization temperature was determined as the maximum point of the exothermic peak during cooling, and the glass transition temperature was determined as the temperature measured at the second elevated temperature.
(2) 고유점도(단위: dL/g): 98%의 황산 용액 및 25℃에서 우베로드(Ubbelodhde) 점도계를 사용하여 측정하였다.(2) Intrinsic viscosity (unit: dL / g): Measured using a Ubbelodhde viscometer at 98% sulfuric acid solution and 25 ℃.
(3) 가스 발생량(단위: %): iso-thermal TGA를 사용하여 불활성 가스 조건 및 120 내지 350℃에서 측정하였다. 구체적으로, 질소 기류 하에서, 고분자 시편을 120℃에서 30분 동안 유지하여, 고분자 내 존재할 수 있는 수분을 날려 준 후, 350℃에서 30분 동안 유지하여 무게 감소 비율을 측정하였다.(3) Gas generation amount (unit:%): It measured at inert gas conditions and # 120-350 degreeC using iso-thermal TGA. Specifically, under the nitrogen stream, the polymer specimen was maintained at 120 ° C. for 30 minutes to blow out moisture that may be present in the polymer, and then maintained at 350 ° C. for 30 minutes to measure the weight loss ratio.
표 2
  실시예 비교예
1 2 3 1 2 3
용융온도 (℃) 300 305 302 365 302 320
결정화온도 (℃) 260 265 262 338 267 295
유리전이온도 (℃) 93 92 92 - 90 100
고유점도 (dL/g) 0.91 0.90 0.92 0.82 0.92 0.79
가스 발생량 (%) 3.3% 7.2% 6.5% - 11.3% 10.4%
TABLE 2
Example Comparative example
One 2 3 One 2 3
Melting temperature (℃) 300 305 302 365 302 320
Crystallization temperature (℃) 260 265 262 338 267 295
Glass transition temperature (℃) 93 92 92 - 90 100
Intrinsic Viscosity (dL / g) 0.91 0.90 0.92 0.82 0.92 0.79
Gas generation amount (%) 3.3% 7.2% 6.5% - 11.3% 10.4%
상기 표 2의 결과로부터, 본 발명에 따른 폴리아미드 수지(실시예 1 내지 3)는 유리전이온도가 90℃ 이상으로 내열성이 우수하고, 용융온도 및 결정화온도, 고유점도 등의 결과로부터, 가공성이 우수함을 알 수 있다. 또한, 가스 발생량이 7.2% 이하로서, 커넥터 용도로 사용 시, 수포(blister)가 발생하지 않을 수 있다. 반면, 본 발명의 분지형 지방족 디카르복실산을 사용하지 않은 비교예 1은 용융온도가 너무 높아 가공이 어려운 단점이 있고, 비교예 2 및 3은 가스 발생량이 10% 이상으로 수포(blister)가 발생할 우려가 높음을 알 수 있다.From the results of Table 2, the polyamide resins (Examples 1 to 3) according to the present invention have excellent heat resistance with a glass transition temperature of 90 ° C. or higher, and from the results of melting temperature, crystallization temperature and intrinsic viscosity, It can be seen that excellent. In addition, the gas generation amount is 7.2% or less, and when used for the connector, blisters may not occur. On the other hand, Comparative Example 1, which does not use the branched aliphatic dicarboxylic acid of the present invention, has a disadvantage that processing is difficult because the melting temperature is too high, and Comparative Examples 2 and 3 have blisters having a gas generation amount of 10% or more. There is a high possibility of occurrence.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.상기 표 2의 결과로부터, 본 발명에 따른 폴리아미드 수지(실시예 1 내지 3)는 유리전이온도가 90℃ 이상으로 내열성이 우수하고, 용융온도 및 결정화온도, 고유점도 등의 결과로부터, 가공성이 우수함을 알 수 있다. 또한, 가스 발생량이 7.2% 이하로서, 커넥터 용도로 사용 시, 수포(blister)가 발생하지 않을 수 있다. 반면, 본 발명의 분지형 지방족 디카르복실산을 사용하지 않은 비교예 1은 용융온도가 너무 높아 가공이 어려운 단점이 있고, 비교예 2 및 3은 가스 발생량이 10% 이상으로 수포(blister)가 발생할 우려가 높음을 알 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention. The polyamide resins (Examples 1 to 3) according to the present invention are excellent in heat resistance at a glass transition temperature of 90 ° C. or higher and excellent in workability from the results of melting temperature, crystallization temperature, intrinsic viscosity, and the like. In addition, the gas generation amount is 7.2% or less, and when used for the connector, blisters may not occur. On the other hand, Comparative Example 1, which does not use the branched aliphatic dicarboxylic acid of the present invention, has a disadvantage that processing is difficult because the melting temperature is too high, and Comparative Examples 2 and 3 have blisters having a gas generation amount of 10% or more. There is a high possibility of occurrence.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (15)

  1. 디카르복실산과 디아민의 중합체이며,It is a polymer of dicarboxylic acid and diamine,
    상기 디카르복실산은 분지형 지방족 디카르복실산을 포함하는 것을 특징으로 하는 폴리아미드 수지.And said dicarboxylic acid comprises a branched aliphatic dicarboxylic acid.
  2. 제1항에 있어서, 상기 분지형 지방족 디카르복실산은 탄소수 5 내지 12의 분지형 지방족 디카르복실산 중 1종 이상을 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin according to claim 1, wherein the branched aliphatic dicarboxylic acid contains at least one of branched aliphatic dicarboxylic acids having 5 to 12 carbon atoms.
  3. 제1항에 있어서, 상기 디카르복실산은 상기 분지형 지방족 디카르복실산 약 1 내지 약 60 몰% 및 방향족 디카르복실산 약 40 내지 약 99 몰%를 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin of claim 1, wherein the dicarboxylic acid comprises about 1 to about 60 mole% of said branched aliphatic dicarboxylic acid and about 40 to about 99 mole% of aromatic dicarboxylic acid.
  4. 제3항에 있어서, 상기 방향족 디카르복실산은 탄소수 8 내지 20의 방향족 디카르복실산 중 1종 이상을 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin according to claim 3, wherein the aromatic dicarboxylic acid contains at least one of aromatic dicarboxylic acids having 8 to 20 carbon atoms.
  5. 제1항에 있어서, 상기 디카르복실산은 약 45 몰% 이하의 선형 지방족 디카르복실산을 더욱 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin of claim 1 wherein the dicarboxylic acid further comprises up to about 45 mole percent linear aliphatic dicarboxylic acid.
  6. 제5항에 있어서, 상기 선형 지방족 디카르복실산은 탄소수 4 내지 12의 선형 지방족 디카르복실산 중 1종 이상을 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin according to claim 5, wherein the linear aliphatic dicarboxylic acid comprises at least one of linear aliphatic dicarboxylic acids having 4 to 12 carbon atoms.
  7. 제1항에 있어서, 상기 디아민은 탄소수 4 내지 20의 지방족 디아민 중 1종 이상을 포함하는 것을 특징으로 하는 폴리아미드 수지.The polyamide resin according to claim 1, wherein the diamine contains at least one of aliphatic diamines having 4 to 20 carbon atoms.
  8. 제1항에 있어서, 상기 폴리아미드 수지의 유리전이온도(Tg)는 약 90℃ 이상이고, 결정화온도(Tc)는 약 250 내지 약 280℃이며, 용융온도(Tm)는 약 290 내지 약 320℃인 것을 특징으로 하는 폴리아미드 수지.The glass transition temperature (Tg) of the polyamide resin is about 90 ° C. or more, the crystallization temperature (Tc) is about 250 to about 280 ° C., and the melting temperature (Tm) is about 290 to about 320 ° C. Polyamide resin, characterized in that.
  9. 제1항에 있어서, 상기 폴리아미드 수지의 고유점도는 약 0.3 내지 약 2.0 dL/g인 것을 특징으로 하는 폴리아미드 수지.The polyamide resin of claim 1 wherein the intrinsic viscosity of the polyamide resin is from about 0.3 kPa to about 2.0 dL / g.
  10. 제1항에 있어서, 상기 폴리아미드 수지는 불활성 기체 조건 및 약 120 내지 약 350℃의 온도 조건에서의 가스 발생량이 약 10% 이하인 것을 특징으로 하는 폴리아미드 수지.The polyamide resin according to claim 1, wherein the polyamide resin has an amount of gas generated under inert gas conditions and a temperature condition of about 120 to about 350 ° C of about 10% or less.
  11. 분지형 지방족 디카르복실산을 포함하는 디카르복실산, 및 디아민을 중합하는 단계를 포함하는 것을 특징으로 하는 폴리아미드 수지 제조방법.A method for producing a polyamide resin, comprising the step of polymerizing a dicarboxylic acid comprising a branched aliphatic dicarboxylic acid, and a diamine.
  12. 제11항에 있어서, 상기 폴리아미드 수지 제조방법은 상기 디카르복실산 및 상기 디아민을 중합하여 예비중합체를 제조하고; 그리고The method of claim 11, wherein the polyamide resin production method comprises: polymerizing the dicarboxylic acid and the diamine to prepare a prepolymer; And
    상기 예비중합체를 고상 중합하는;Solid phase polymerizing the prepolymer;
    단계를 포함하는 것을 특징으로 하는 폴리아미드 수지 제조방법.Polyamide resin production method comprising the step of.
  13. 제12항에 있어서, 상기 예비중합체는 고유점도가 약 0.05 내지 약 0.4 dL/g인 것을 특징으로 하는 폴리아미드 수지 제조방법.13. The method of claim 12, wherein the prepolymer has an intrinsic viscosity of about 0.05 kPa to about 0.4 kDL / g.
  14. 제12항에 있어서, 상기 고상 중합은 상기 예비중합체를 불활성 기체 존재 하에 약 170 내지 약 280℃의 온도로 가열하는 것을 특징으로 하는 폴리아미드 수지 제조방법.The method of claim 12, wherein the solid phase polymerization heats the prepolymer to a temperature of about 170 to about 280 ° C. in the presence of an inert gas.
  15. 제1항 내지 제10항 중 어느 한 항에 따른 폴리아미드 수지로부터 형성된 성형품.A molded article formed from the “polyamide” resin according to any one of claims 1 to 10.
PCT/KR2013/002532 2012-12-28 2013-03-27 Polyamide resin, preparation method therefor, and molded product comprising same WO2014104483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120157680A KR101557543B1 (en) 2012-12-28 2012-12-28 Polyamide resin, method for preparing the same, and article comprising the same
KR10-2012-0157680 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104483A1 true WO2014104483A1 (en) 2014-07-03

Family

ID=51021517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002532 WO2014104483A1 (en) 2012-12-28 2013-03-27 Polyamide resin, preparation method therefor, and molded product comprising same

Country Status (2)

Country Link
KR (1) KR101557543B1 (en)
WO (1) WO2014104483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130001A1 (en) * 2015-11-10 2017-05-11 Iowa State University Research Foundation, Inc. Bioadvantaged nylon: polycondensation of 3-hexenedioic acid with hexamethylenediamine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982342A1 (en) * 1998-08-27 2000-03-01 Ube Industries, Ltd. Polyamide having excellent stretching properties
KR20070104246A (en) * 2006-04-21 2007-10-25 이엠에스-케미에 아게 Transparent polyamide molding compositions
US20110135860A1 (en) * 2004-05-14 2011-06-09 Arkema France Blends of transparent amorphous polyamides based on diamines and on tetradecanedioic acid and semicrystalline polyamides
US20110189419A1 (en) * 2008-07-07 2011-08-04 Arkema France Polyamide, composition comprising such a polyamide and their uses
KR20120075348A (en) * 2010-12-28 2012-07-06 제일모직주식회사 Polyamide resin composition having improved surface reflectance and heat resistance
KR101183393B1 (en) * 2008-07-11 2012-09-14 상하이 킹파 사이언스 앤 테크놀로지 컴퍼니 리미티드 A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056194B2 (en) 2000-03-27 2008-03-05 独立行政法人科学技術振興機構 Method for producing amide condensate using carboxylic acid and amine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982342A1 (en) * 1998-08-27 2000-03-01 Ube Industries, Ltd. Polyamide having excellent stretching properties
US20110135860A1 (en) * 2004-05-14 2011-06-09 Arkema France Blends of transparent amorphous polyamides based on diamines and on tetradecanedioic acid and semicrystalline polyamides
KR20070104246A (en) * 2006-04-21 2007-10-25 이엠에스-케미에 아게 Transparent polyamide molding compositions
US20110189419A1 (en) * 2008-07-07 2011-08-04 Arkema France Polyamide, composition comprising such a polyamide and their uses
KR101183393B1 (en) * 2008-07-11 2012-09-14 상하이 킹파 사이언스 앤 테크놀로지 컴퍼니 리미티드 A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same
KR20120075348A (en) * 2010-12-28 2012-07-06 제일모직주식회사 Polyamide resin composition having improved surface reflectance and heat resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130001A1 (en) * 2015-11-10 2017-05-11 Iowa State University Research Foundation, Inc. Bioadvantaged nylon: polycondensation of 3-hexenedioic acid with hexamethylenediamine
US10793673B2 (en) * 2015-11-10 2020-10-06 Iowa State University Research Foundation, Inc. Bioadvantaged nylon: polycondensation of 3-hexenedioic acid with hexamethylenediamine
US11401377B2 (en) 2015-11-10 2022-08-02 Iowa State University Research Foundation, Inc. Bioadvantaged nylon: polycondensation of 3-hexenedioic acid with hexamethylenediamine
US11976169B2 (en) 2015-11-10 2024-05-07 Iowa State University Research Foundation, Inc. Bioadvantaged nylon: polycondensation of 3-hexenedioic acid with hexamethylenediamine

Also Published As

Publication number Publication date
KR20140086776A (en) 2014-07-08
KR101557543B1 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
WO2013094916A1 (en) Polyamide resin, method for preparing same, and article comprising same
US9580552B2 (en) Polyamide ester resin, method for preparing the same, and molded article including the same
US9371421B2 (en) Crystalline polyamide ester resin, method for preparing the same, and article including the same
KR101771781B1 (en) Polyamide ester resin, method for preparing the same and article comprising the same
WO2014104482A1 (en) Polyamide resin, preparation method therefor, and molded product including same
KR20150135737A (en) Copolymerized polyamide resin, method for preparing the same and article comprising the same
WO2013089408A1 (en) Polyamide resin, preparation method thereof, and product comprising same
WO2014104483A1 (en) Polyamide resin, preparation method therefor, and molded product comprising same
KR20160039773A (en) Polyamide resin, method for preparing the same, and article comprising the same
KR101557535B1 (en) Copolymerized polyamide resin, method for preparing the same, and article comprising the same
KR20120078540A (en) Polyamide resin with excellent heat resistance and chemical resistance
WO2016175475A1 (en) Polyamide resin, polyamide resin composition containing same, preparation method therefor, and molded product including same
KR101987540B1 (en) Copolymerized polyamide resin, method for preparing the same and article comprising the same
WO2014104699A1 (en) Polyamide resin, method for preparing same, and molded product including same
KR101899624B1 (en) Copolymerized polyamide resin, method for preparing the same, and article comprising the same
JP3523316B2 (en) Production method of semi-aromatic polyamide
JP5524538B2 (en) Polyamide sheet
KR20160017197A (en) Copolymerized polyamide resin, method for preparing the same and article comprising the same
KR101557540B1 (en) Copolymerized polyamide resin, method for preparing the same, and article comprising the same
JPH06234850A (en) New high-melting-point crystalline polyamide
WO2014065594A1 (en) Polyamide production method
WO2015178560A1 (en) Copolymerized polyamide resin, method for preparing same, and molded product comprising same
JP3563099B2 (en) Polyamide manufacturing method
KR101685244B1 (en) Polyamide resin, method for preparing the same, and article comprising the same
CN116554463A (en) Preparation method of high-toughness copolyamide 6/66

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867910

Country of ref document: EP

Kind code of ref document: A1