WO2014101694A1 - 一种熔盐电解法生产钛的方法及装置 - Google Patents

一种熔盐电解法生产钛的方法及装置 Download PDF

Info

Publication number
WO2014101694A1
WO2014101694A1 PCT/CN2013/089779 CN2013089779W WO2014101694A1 WO 2014101694 A1 WO2014101694 A1 WO 2014101694A1 CN 2013089779 W CN2013089779 W CN 2013089779W WO 2014101694 A1 WO2014101694 A1 WO 2014101694A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
molten salt
cathode
salt electrolysis
producing titanium
Prior art date
Application number
PCT/CN2013/089779
Other languages
English (en)
French (fr)
Inventor
罗森伯格⋅哈里
郭蔚
郭建平
Original Assignee
金坛市六九钛业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金坛市六九钛业科技有限公司 filed Critical 金坛市六九钛业科技有限公司
Publication of WO2014101694A1 publication Critical patent/WO2014101694A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Definitions

  • a method and a device for producing titanium by molten salt electrolysis relating to a method and a device for directly producing high-purity titanium by using titanium tetrachloride as a raw material by molten salt electrolysis. Background technique
  • high-purity titanium In the industry, titanium having a purity of 99.995% or more, that is, a total of metal impurities of 50 ppm or less is called high-purity titanium. Mainly used in high-tech fields such as large-scale integrated circuits, aerospace, medical alloys. At present, the preparation methods of high-purity titanium can be divided into two major categories: physical methods and chemical refining methods. Among them, the physical method mainly includes a regional melting method, a segregation method, a high vacuum melting method, a vacuum evaporation method, an electromigration method, an electromagnetic field purification method, a photoexcitation refining method, an electron beam melting method, and the like.
  • the chemical refining method mainly includes a solvent extraction method, a displacement precipitation method, a chloride fine sputum method, an iodide thermal decomposition method, a disproportionation decomposition method, a refining refining method, a molten salt electrolysis method, and the like.
  • a solvent extraction method mainly includes a solvent extraction method, a displacement precipitation method, a chloride fine sputum method, an iodide thermal decomposition method, a disproportionation decomposition method, a refining refining method, a molten salt electrolysis method, and the like.
  • a solvent extraction method mainly includes a solvent extraction method, a displacement precipitation method, a chloride fine sputum method, an iodide thermal decomposition method, a disproportionation decomposition method, a refining refining method, a molten salt electrolysis method, and the like.
  • the Claull method widely used and developed are
  • Molten salt electrolysis is a method for preparing pure titanium by electrochemical principle.
  • crude titanium, a titanium alloy or a titanium compound is used as an anode, and a raw material titanium is dissolved in an electrolytic solution at a certain deposition potential, and high-purity titanium is precipitated at the cathode.
  • Impurities with a higher dissolution potential than titanium during electrolysis remain on the anode or precipitate in the electrolyte, and impurities with a lower dissolution potential than titanium are also dissolved in the electrolyte together with titanium.
  • Molten salt electrolysis is a relatively early development method. In actual production, the molten salt electrolysis method is mainly used as a refining method, that is, electrolytic purification using molten titanium as an anode in a molten salt.
  • Patent Publication No. CN101343756A the invention is a Chinese patent application for a method for preparing titanium metal by high-temperature molten salt electrolysis of titanium dioxide, which has a short process flow, high electrolysis efficiency and low cost when extracting titanium metal.
  • this method is for ordinary sponge titanium and cannot be used to produce high purity titanium of 99.995% or more.
  • Application Publication No. CN101775626A entitled "A device for producing high purity titanium by molten salt electrolysis.
  • the disclosed technical solution states that the device can be used to produce titanium having a purity of 99.99% or more, and can realize continuous production and increase production.
  • the invention is based on sponge titanium as a raw material, and is purified by a molten salt electrolysis method to produce high-purity titanium.
  • the raw materials for producing high-purity titanium by molten salt electrolysis in the industry are all sponge titanium, and the raw material preparation cost is high, the product purity is not ideal, and the preparation energy consumption is high.
  • the object of the present invention is to provide a high-purity titanium molten salt electrolysis method for producing titanium by using titanium tetrachloride as a raw material, which can effectively save raw materials and preparation costs and improve product purity. Method and device.
  • a method for producing titanium by molten salt electrolysis which is characterized in that titanium tetrachloride is used as a raw material, magnesium metal is used as an anode, and titanium tetrachloride is introduced into sodium chloride and potassium chloride. Electrolysis is carried out in two mixed molten salts of calcium chloride and magnesium chloride, and the formed titanium is deposited on the cathode to obtain a titanium product.
  • a method of producing titanium by a molten salt electrolysis method according to the present invention is characterized in that the cathode is a metal rod-like cathode made of titanium.
  • a method for producing titanium by a molten salt electrolysis method according to the present invention is characterized in that the titanium tetrachloride is high-purity titanium tetrachloride having a purity of 99.995%.
  • a method for producing titanium by the molten salt electrolysis method of the present invention characterized in that argon gas protection is applied during the electrolysis process.
  • the method for producing titanium by the molten salt electrolysis method of the present invention is characterized in that the mixed molten salt is a mixed molten salt of sodium chloride and potassium chloride.
  • a method for producing titanium by the molten salt electrolysis method of the present invention characterized in that the mixed molten salt is a mixed molten salt of calcium chloride and magnesium chloride.
  • a method for producing titanium by the molten salt electrolysis method of the present invention characterized in that the mixed molten salt is a mixed molten salt of sodium chloride and calcium chloride.
  • the method for producing titanium by the molten salt electrolysis method of the present invention is characterized in that the mixed molten salt is a mixed molten salt of potassium chloride and magnesium chloride.
  • a method for producing titanium by the molten salt electrolysis of the present invention characterized in that the molar ratio of the mixed molten salt of sodium chloride and potassium chloride is 1:1.
  • a method for producing titanium by the molten salt electrolysis method of the present invention characterized in that the voltage of the electrolysis process is 1.7 to 3.0V.
  • a method of producing titanium by a molten salt electrolysis method characterized in that the voltage of the electrolysis process is 1.9V.
  • a device for producing titanium by molten salt electrolysis characterized in that the structure comprises:
  • Electrolytic reaction boiler the electrolytic reaction boiler is a cup-shaped stainless steel reaction pot with an open upper end and a flat flange.
  • the upper end of the reaction pot is provided with an upper sealing cover, and a heating device is arranged outside the electrolytic reaction pot, in the stainless steel reaction pot and An insulating ring is arranged between the upper sealing cover;
  • a positive electrode connecting head is arranged on the flat flange of the reaction pot, and a negative electrode connecting head is arranged on the upper sealing cover provided at the upper end of the reaction pot;
  • separator cylinder wherein the separator cylinder is a straight tubular cylinder centered in the electrolytic reaction pot;
  • An electrolytic cathode the cathode being composed of a cathode link vertically connected to the top of the electrolytic reaction pot and a rod-shaped cathode fixed at the lower end of the cathode link and centered in the isolation cylinder;
  • the feed pipe is a pipe passing through the top of the electrolytic reaction pot and the discharge port in the isolation cylinder in the electrolytic reaction pot.
  • a device for producing titanium by molten salt electrolysis according to the present invention is characterized in that the structure further comprises a cathode cover which is an inverted alumina which is open at the lower end and is fixed on the cathode link by the upper top. Ceramic cup-shaped housing.
  • a device for producing titanium by molten salt electrolysis is characterized in that the structure further comprises a vacuum pumping device, the structure comprising a ring between the upper flat flange of the electrolytic reaction pot and the top cover of the electrolytic reaction pot. The plate and the evacuation tube passing through the annular plate.
  • the apparatus for producing titanium by the molten salt electrolysis method of the present invention is characterized in that the upper sealing cover provided at the upper end of the reaction pot is centrally opened with a through hole capable of passing through the cathode cover and the cathode, in the through hole
  • the card is provided with a sealing plate, and the cathode link and the feed tube of the electrolytic cathode pass through the sealing plate.
  • a device for producing titanium by molten salt electrolysis characterized in that an upper sealing cover plate provided at an upper end of the reaction pot is further provided with an insulating ring plate, and a cap shape is provided on the insulating ring plate. Cooling tower body; the cathode link end of the electrolytic cathode passes through the top of the cap cooling tower body and is coupled with the lifting device.
  • a device for producing titanium by molten salt electrolysis is characterized in that the cap-shaped cooling tower body is further provided with a vacuuming device, and the structure thereof comprises a cap-shaped cooling tower body lower edge and an insulating ring. An annular plate between the plates and an evacuation tube passing through the annular plate.
  • a device for producing titanium by a molten salt electrolysis method according to the present invention is characterized in that a heating device provided outside the electrolytic reaction vessel is an electric heating furnace which can be embedded in an electrolytic reaction vessel.
  • a device for producing titanium by molten salt electrolysis according to the present invention is characterized in that the feed through pipe passes through the top of the electrolytic reaction pot and extends to the lower portion of the cathode cover in the electrolytic reaction pot, and the bottom end is bent. The upward and discharge ports are facing the electrolytic cathode.
  • a method for producing titanium by molten salt electrolysis characterized in that the metal magnesium anode floats between the electrolytic reaction vessel and the outer wall of the separator cylinder, and is selected from the group consisting of sodium chloride, potassium chloride, calcium chloride and magnesium chloride.
  • the two mixed molten salts are above.
  • a method for producing titanium by molten salt electrolysis uses titanium tetrachloride as a raw material, and passes through a protective gas and a titanium tetrachloride liquid into a molten salt to directly form titanium metal as an anode magnesium. The metal is not in contact with the cathode, and the tetrachloride is introduced.
  • the purity of titanium obtained by titanium and cathode is basically unchanged. As long as high-purity titanium tetrachloride is input, high-purity titanium can be obtained at the cathode, so that the purity of titanium can be effectively ensured, and the current industrial production can be utilized. Titanium tetrachloride with a purity of 99.995% or more can produce titanium with a purity of 99.995% or more. Compared with the process of producing high-purity titanium metal from titanium sponge, the cost is greatly reduced.
  • FIG. 1 is a schematic structural view of an apparatus for producing titanium by a molten salt electrolysis method according to the present invention. detailed description
  • a method for producing titanium by molten salt electrolysis wherein the production process uses titanium tetrachloride as a raw material, magnesium metal as an anode, and titanium tetrachloride is introduced into sodium chloride, potassium chloride and calcium chloride. Electrolyzing in two mixed molten salts of magnesium chloride, the formed titanium is deposited on the cathode to obtain a titanium product; the cathode is a metal rod-shaped cathode made of titanium; and the titanium tetrachloride is high-purity titanium tetrachloride. The purity is 99.995%; argon gas protection is applied during the electrolysis process.
  • a molten salt electrolysis method for producing titanium in the present invention is a composite molten salt, on the one hand, to ensure a low melting point temperature of the molten salt system; on the one hand, to ensure the density of the molten salt It is required that the magnesium as the anode be floated on the molten salt in the anode region of the electrolysis process.
  • the weight ratio of sodium chloride to potassium chloride in the mixed molten salt of sodium chloride and potassium chloride is preferably 1:1.
  • Calcium chloride and magnesium chloride may also be used, but they must be mixed salts such as calcium chloride and magnesium chloride, sodium chloride and calcium chloride, potassium chloride and magnesium chloride.
  • the method of the present invention theoretically, can provide 2.46V due to the voltage of Mg as the anode becoming Mg ions, and the minimum deposition of titanium ions to titanium requires 1.76V, excess 0.7V, and it is necessary to overcome the resistance in the system, so it is required External voltage +0.7V+ molten salt voltage + other resistance voltage (resistance X current), generally requires voltage: 1.7 ⁇ 3.0V, optimally 1.9V; Current: depends on the feed rate of titanium tetrachloride The feed rate is 28 ml/min and the current is 400 A. The temperature depends on the type of mixed salt such as a mixed salt temperature of 1:1 of sodium chloride and potassium chloride at a molar ratio of 1:1.
  • the device for producing titanium by the molten salt electrolysis method of the invention comprises the following structure:
  • Electrolytic reaction pot 1 The electrolytic reaction boiler is a cup-shaped stainless steel reaction pot with an open upper end and a flat flange.
  • the upper end of the reaction pot is provided with an upper sealing cover 2, and a heating device 3 is arranged outside the electrolytic reaction pot.
  • An insulating ring 4 is arranged between the reaction pot and the upper sealing cover;
  • a positive electrode connecting head 5 is arranged on the flat flange of the reaction pot, and a negative electrode connecting head 6 is arranged on the upper sealing cover provided at the upper end of the reaction pot;
  • isolation cylinder 7 is a straight tubular cylinder centered in the electrolytic reaction pot with a gap;
  • An electrolytic cathode the cathode being composed of a cathode link 8 vertically connected to the top of the electrolytic reaction pot and a rod-shaped cathode 9 fixed at the lower end of the cathode link and centered in the isolation cylinder;
  • the feed pipe is a pipe passing through the top of the electrolytic reaction pot and the discharge port is located in the isolation cylinder in the electrolytic reaction pot; the feed pipe passes through the top of the electrolytic reaction pot Extending to the lower part of the cathode cover in the electrolytic reaction pot, the bottom end is bent upward, and the discharge port is opposite to the electrolytic cathode.
  • a device for producing titanium by molten salt electrolysis according to the present invention, the structure further comprising a cathode cover 11 which is an inverted alumina ceramic which is open at the lower end and is fixed on the cathode link by the upper top. Cup-shaped housing.
  • a device for producing titanium by molten salt electrolysis according to the present invention, the structure further comprising a vacuum pumping device, the structure comprising an annular plate 12 between the upper flat flange of the electrolytic reaction pot and the top cover of the electrolytic reaction pot and The evacuation tube 13 is passed through the annular plate.
  • the apparatus for producing titanium by the molten salt electrolysis method of the present invention wherein the upper top cover plate provided at the upper end of the reaction pot is centrally opened with a through hole capable of passing through the cathode cover and the cathode, and is mounted in the through hole card.
  • the sealing plate 14 is sealed, and the cathode link and the feed tube of the electrolytic cathode pass through the sealing plate.
  • a device for producing titanium by molten salt electrolysis according to the present invention, further comprising an insulating ring plate 15 on the upper sealing cover provided at the upper end of the reaction pot, and a cap-like cooling on the insulating ring plate
  • the tower body 16; the cathode link end of the electrolytic cathode passes through the top of the cap-shaped cooling tower body and is coupled to the lifting device 17 .
  • the cap-shaped cooling tower body is further provided with a vacuuming device, and the structure thereof comprises a cap-shaped cooling tower body between the lower edge and the insulating ring plate.
  • a device for producing titanium by the molten salt electrolysis method of the present invention wherein the heating device provided outside the electrolytic reaction vessel is a resistor 20 which can be embedded in the electrolytic reaction vessel.
  • a method for producing titanium by molten salt electrolysis according to the present invention characterized in that the metal magnesium anode 21 floats between the electrolytic reaction vessel and the outer wall of the separator cylinder, and is selected from the group consisting of sodium chloride, potassium chloride and chlorine. Two kinds of mixed molten salts of calcium and magnesium chloride.
  • the cathode cover encloses the cathode, the argon gas enters the cathode cover through the feed pipe, and the titanium tetrachloride also enters the cathode cover through the feed pipe;
  • the cathode material is a titanium rod;
  • the optional cathode rod material is graphite, the optional cathode cover material is aluminum oxide ceramic;
  • the optional feed tube material is stainless steel;
  • the optional isolation tube material is The stainless steel, the isolating cylinder separates the reaction pot into a cathode area and an anode area, and the cathode area and the anode area are in communication at the bottom.
  • the salt used for electrolysis was placed in the reaction pot.
  • the salt used for electrolysis is a mixed salt of sodium chloride and potassium chloride in a molar ratio of 1 : 1, and the anode material is placed in the anode region.
  • the anode material is magnesium metal; the valve for opening the vacuum tube is vacuumed by the vacuum pump and the cap-shaped cooling tower body is vacuumed; the cap-shaped cooling tower body and the reaction pot are filled with argon gas to a slight positive pressure, and the reaction is observed at any time. The pressure inside the furnace ensures a slight positive pressure.
  • the method and apparatus for producing titanium by the molten salt electrolysis method of the present invention can directly produce high-purity titanium from titanium tetrachloride, thereby eliminating the need to use titanium sponge as a raw material, thereby saving cost and producing higher purity. Titanium.
  • the shape of the produced high-purity titanium is cylindrical or square.
  • the titanium ingot of this shape can be directly used as a raw material for the electron beam furnace or the vacuum self-consumption furnace in the next step. This saves the process of briquetting and welding, further saving costs.
  • Embodiment 1 Instruction manual
  • sodium chloride and potassium chloride are placed in an electrolytic reaction pot, and the molar ratio of sodium chloride to potassium chloride is 1:1; the device for producing titanium according to the molten salt electrolysis method shown in Fig. 1 is completed, and the electric reaction pot is passed.
  • the vacuum pumping device vacuuming to 5> ⁇ 10 &, starting the electrolytic reactor resistance heating furnace, so that the electrolytic reaction pot contains sodium chloride and potassium chloride, the control temperature is 745.9 ° C, through the feed pipe
  • the titanium tetrachloride liquid and argon gas were introduced, the purity of the titanium tetrachloride liquid was 99.995%, the inlet speed was controlled to 28 ml/min, and electrolysis was performed for electrolysis.
  • the electrolysis was carried out under the following conditions: voltage: 1.9 V current: 400 A. After the electrolysis is completed, the cathode link is lifted by the lifting motor lifting device, and the titanium metal generated at the cathode is lifted into the cooling tower body, cooled to room temperature, and then discharged. The purity of the metal titanium obtained after washing was 99.996%.
  • sodium chloride and potassium chloride are placed in an electrolytic reaction pot, and the molar ratio of sodium chloride to potassium chloride is 1:1; the device for producing titanium according to the molten salt electrolysis method shown in Fig. 1 is completed, and the electric reaction pot is passed.
  • the vacuum pumping device vacuuming to 5> ⁇ 10 &, starting the electrolytic reactor resistance heating furnace, so that the electrolytic reaction pot contains sodium chloride and potassium chloride, the control temperature is 745.9 ° C, through the feed pipe
  • the titanium tetrachloride liquid and argon gas are introduced, the purity of the titanium tetrachloride liquid is 99.995%, the inlet speed is controlled to 26 ml/min, and electrolysis is performed for electrolysis.
  • the electrolysis process conditions are voltage: 1.9 V current: 380 A.
  • the cathode link is lifted by the lifting motor lifting device, and the titanium metal generated at the cathode is lifted into the cooling tower body, cooled to room temperature, and then discharged.
  • the purity of the metal titanium obtained after washing was 99.995%.
  • sodium chloride and potassium chloride are placed in an electrolytic reaction pot, and the molar ratio of sodium chloride to magnesium chloride is 3:2; the device for producing titanium according to the molten salt electrolysis method shown in Fig. 1 is completed, and the vacuum is passed through the electric reaction pot.
  • Pumping device pumping vacuum to 5> ⁇ 10 &, start the electrolytic reactor resistance heating furnace, so that sodium chloride and potassium chloride are melted in the electrolytic reaction pot, the temperature is controlled at 510 ° C, and the feed is passed through the feed pipe.
  • the electrolysis process conditions are voltage: 1.9V current: 400A.
  • sodium chloride and potassium chloride are placed in an electrolytic reaction pot, and the molar ratio of sodium chloride to calcium chloride is 1:1; the device for producing titanium according to the molten salt electrolysis method shown in Fig. 1 is completed, and the electric reaction pot is passed.
  • the vacuum pumping device vacuuming to 5> ⁇ 10 &, starting the electrolytic reactor resistance heating furnace, so that the electrolytic reaction pot contains sodium chloride and potassium chloride, the temperature is controlled at 560 ° C, through the feed pipe
  • the titanium tetrachloride liquid and argon gas are introduced, the purity of the titanium tetrachloride liquid is 99.995%, the inlet speed is controlled to 20 ml/min, and electrolysis is performed for electrolysis.
  • the electrolysis process conditions are voltage: 1.9 V current: 300 A.
  • the cathode link is lifted by the lifting motor lifting device, and the titanium metal generated at the cathode is lifted into the cooling tower body, cooled to room temperature, and then discharged.
  • the purity of the metal titanium obtained after washing was 99.991%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种熔盐电解法生产钛的方法及装置,涉及一种采用四氯化钛为原料熔盐电解法直接生产高纯钛的装置。其特征在于采用四氯化钛为原料,将四氯化钛通入氯化钠和氯化钾的混合熔盐中,采用金属镁为阳极、金属钛为阴极进行电解,四氯化钛电解生成氯化镁和钛,生成的钛直接在钛阴极上沉积,分离得到钛产品。本发明的一种熔盐电解法生产钛的方法及其装置,可以从四氯化钛直接生产高纯钛,从而无需使用海绵钛作为原材料,可以节省成本,并可以生产更高纯度的钛。生产的高纯钛的形状为圆柱状或方柱状。该形状的钛锭可以直接作为下一步工序电子束熔炉或真空自耗炉的原料。从而节省了压块和焊接的工艺,进一步节省了成本。

Description

说 明 书 一种熔盐电解法生产钛的方法及装置 技术领域
[0001 ]一种熔盐电解法生产钛的方法及装置, 涉及一种采用四氯化钛为原料熔盐电解法直接 生产高纯钛的方法及装置。 背景技术
[0002] 工业界一般是将纯度在 99.995% 以上, 即金属杂质总和在 50ppm 以下的钛称为高纯 钛。 主要应用于大规模集成电路、 航空航天、 医疗合金等高科技领域。 目前, 高纯钛的制备 方法可以分为物理法和化学精炼法两大类。 其中物理法主要有区域熔炼法、 偏析法、 高真空 熔炼法、 真空蒸熘法、 电迁移法、 电磁场提纯法、 光激发精制法、 电子束熔炼法等。 化学精 炼法主要有溶剂萃取法、 置换沉淀法、 氯化物精熘法、 碘化物热分解法、 歧化分解法、 熔析 精炼法、 熔盐电解法等。 在上述方法中, 得到广泛应用和发展的有克劳尔法、 碘化物热分解 法、 熔盐电解法和电子束熔炼法。
[0003]熔盐电解法是利用电化学原理制取纯钛的一种方法。 该方法是以粗钛、 钛合金或钛化 合物作阳极, 在一定析出电位下使原料钛溶入电解液中, 并在阴极析出高纯钛。电解过程中溶 出电位比钛高的杂质留在阳极上或沉淀在电解液中, 溶出电位比钛低的杂质也同钛一起溶入 电解液中。 熔盐电解法是发展比较早的一种方法。 实际生产中熔盐电解法主要作为一种精炼 方法, 即利用海绵钛作为阳极在熔盐中进行电解提纯。
[0004] 专利公开号 CN101343756A, 发明名称为一种高温熔盐电解二氧化钛制备金属钛的方 法的中国专利申请, 该方案称提取金属钛时的工艺流程短、 电解效率高、 成本低。 但是该方 法是针对普通海绵钛, 不能用来生产 99.995% 以上的高纯钛。
[0005] 申请公布号 CN102517611A, 发明名称为熔盐电解提炼设备及其提炼金属的方法。 该 发明公布的技术方案认为, 减少了提炼出的高纯钛中的杂质, 进一步地提高了高纯钛的纯度。
[0006] 申请公布号 CN101775626A, 发明名称为一种熔盐电解法生产高纯钛的装置。 该发明 公布的技术方案称可以用该装置生产纯度达到 99.99% 以上的钛,且能够实现连续生产,提高 产量。 该发明是以海绵钛为原材料, 通过熔盐电解方法进行提纯生产高纯钛。
[0007] 申请公布号 CN101984101A, 发明名称为一种高纯钛的生产方法。 该发明公布的技术 方案是通过四氯化钛 加热后成为气体和镁蒸气进行反应, 生成金属钛和氯化镁。将金属钛进 行反复清洗后可以得到高纯钛。
[0008] 目前工业界熔盐电解生产高纯钛的原材料均为海绵钛, 其原材料制备成本高、 产品纯 度不理想, 制备能耗高。 发明内容
[0009]本发明的目的就是针对上述已有技术存在的不足, 提供一种能有效节约原料和制备成 本, 提高产品纯度的以四氯化钛为原料直接生产高纯钛熔盐电解法生产钛的方法及装置。
[0010] 本发明的目的是通过以下技术方案实现的。
[001 1 ]—种熔盐电解法生产钛的方法, 其特征在于其生产过程采用四氯化钛为原料, 以金属 镁为阳极, 将四氯化钛通入选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐中进行 电解, 生成的钛在阴极上沉积得到钛产品。
[0012] 本发明的一种熔盐电解法生产钛的方法, 其特征在于所述的阴极为钛制金属棒状阴 极。
[0013] 本发明的一种熔盐电解法生产钛的方法, 其特征在于所述的四氯化钛为高纯四氯化 钛, 纯度为 99.995%。 说 明 书
[0014] 本发明的 -种熔盐电解法生产钛的方法, 其特征在于在电解过程通入氩气保护。
[0015]本发明的- 种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为氯化钠和氯化 钾的混合熔盐。
[001 6]本发明的- 种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为氯化钙和氯化 镁的混合熔盐。
[001 7]本发明的- 种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为氯化钠和氯化 钙的混合熔盐。
[0018]本发明的- 种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为氯化钾和氯化 镁的混合熔盐。
[001 9]本发明的- 种熔盐电解法生产钛的方法, 其特征在于为氯化钠和氯化钾的混合熔盐的 摩尔比为 1 : 1。
[0020]本发明的- 种熔盐电解法生产钛的方法,其特征在于其电解的过程的电压为 1.7~3.0V。
[0021 ] 本发明的 -种熔盐电解法生产钛的方法, 其特征在于其电解的过程的电压为 1.9V。
[0022] 一种熔盐电解法生产钛的装置, 其特征在于其结构包括:
电解反应锅, 电解反应锅炉为一上端敞口、 带有平法兰的杯状不锈钢反应锅, 反应锅上 端设有上封顶盖板, 在电解反应锅外设有加热装置, 在不锈钢反应锅与上封顶盖板间设有绝 缘环; 反应锅带有的平法兰上设有正电极联接头, 反应锅上端设有的上封顶盖板上设有负电 极联接头;
隔离筒, 该隔离筒为间隙居中位于电解反应锅内的直管状节筒;
电解阴极,该阴极由与电解反应锅顶盖垂直贯穿联接的阴极联杆和固定在阴极联杆下端、 居中位于隔离筒内的棒状阴极组成;
进料通管, 该进料通管为穿过电解反应锅顶盖、 出料口位于电解反应锅中的隔离筒内的 通管。
[0023]本发明的一种熔盐电解法生产钛的装置, 其特征在于其结构还包括一阴极罩, 该阴极 罩为下端敞口、 上顶居中固定在阴极联杆上的倒置的氧化铝陶瓷的杯状壳体。
[0024]本发明的一种熔盐电解法生产钛的装置, 其特征在于其结构还包括真空抽气装置, 其 结构包括位于电解反应锅上端平法兰和电解反应锅顶盖间的环状板和穿过环状板的抽真空 管。
[0025]本发明的一种熔盐电解法生产钛的装置, 其特征在于所述的反应锅上端设有的上封顶 盖板上居中开有能通过阴极罩、 阴极的通孔, 在通孔卡装有封密塞板, 电解阴极的阴极联杆 和进料通管穿过封密塞板。
[0026]本发明的一种熔盐电解法生产钛的装置, 其特征在于在反应锅上端设有的上封顶盖板 上, 还设有一个绝缘环板, 在绝缘环板上设有帽状的冷却塔体; 电解阴极的阴极联杆端穿过 帽状冷却塔体上顶, 与提升装置联接。
[0027]本发明的一种熔盐电解法生产钛的装置, 其特征在于所述的帽状冷却塔体还设有抽真 空装置, 其结构包括位于帽状的冷却塔体下沿和绝缘环板间的环状板和穿过环状板的抽真空 管。
[0028]本发明的一种熔盐电解法生产钛的装置, 其特征在于在电解反应锅外设有的加热装置 为能嵌放入电解反应锅的电加热炉。
[0029]本发明的一种熔盐电解法生产钛的装置, 其特征在于所述的进料通管穿过电解反应锅 顶盖、 伸至电解反应锅内的阴极罩下部, 底端弯折向上、 出料口正对电解阴极。
[0030]本发明的一种熔盐电解法生产钛的方法, 其特征在于其金属镁阳极浮于电解反应锅和 隔离筒外壁间的选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐之上。
[0031 ]本发明的一种熔盐电解法生产钛的方法, 采用四氯化钛为原料, 通过保护气体和四氯 化钛液体通入熔盐中进行, 直接生成金属钛, 作为阳极的镁金属不和阴极接触, 通入的四氯 说 明 书
化钛和阴极获得的钛的纯度基本不变, 只要输入高纯度的四氯化钛, 就能在阴极获得高纯度 的钛, 使钛的纯度得到了有效保证, 利用目前工业上可以生产出的 99.995% 以上纯度的四氯 化钛, 就可以生产 99.995% 以上纯度的钛, 与以海绵钛为原料生产高纯金属钛的工艺相比, 成本大大降低。 附图说明
[0032] 图 1 为本发明的一种熔盐电解法生产钛的装置的结构示意图。 具体实施方式
[0033] 一种熔盐电解法生产钛的方法, 其生产过程采用四氯化钛为原料, 以金属镁为阳极, 将四氯化钛通入选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐中进行电解, 生成 的钛在阴极上沉积得到钛产品; 所述的阴极为钛制金属棒状阴极; 所述的四氯化钛为高纯四 氯化钛, 纯度为 99.995% ; 在电解过程通入氩气保护。
[0034]本发明的一种熔盐电解法生产钛的方法, 电解过程选择的熔盐采用复合熔盐, 一方面 是要保证低的熔盐体系熔点温度; 一方面要保证熔盐的密度的要求, 使作为阳极的镁能浮于 电解过程的阳极区的熔盐上。 其所述的氯化钠和氯化钾的混合熔盐中氯化钠和氯化钾的重量 比最好为 1 : 1。 也可以选用氯化钙和氯化镁, 但必须是混合盐, 如氯化钙和氯化镁、 氯化钠 和氯化钙、 氯化钾和氯化镁等。
[0035] 本发明的方法, 理论上由于作为阳极的 Mg变成 Mg 离子的电压可以提供 2.46V, 钛 离子沉积成钛需要最低 1.76V, 多余 0.7V, 还需要克服***里的阻力, 因此需要外部加电压 =0.7V+熔盐电压 +其它的电阻电压(电阻 X 电流),一般需要电压为:1.7~3.0V,最佳为 1.9V ; 电流:取决于四氯化钛的进料速率如进料速率为 28ml/min 电流为 400A,温度取决于混合盐的 种类如摩尔比 1 : 1 的氯化钠和氯化钾的混合盐温度为 750°C。
[0036] 当电压为 1.9V, 摩尔比 1 : 1 的氯化钠和氯化钾的混合盐温度为 750°C时, 其相关的 实
Figure imgf000005_0001
说 明 书
本发明的一种熔盐电解法生产钛的装置, 其结构包括:
电解反应锅 1, 电解反应锅炉为一上端敞口、 带有平法兰的杯状不锈钢反应锅, 反应锅上 端设有上封顶盖板 2, 在电解反应锅外设有加热装置 3, 在不锈钢反应锅与上封顶盖板间设有 绝缘环 4 ; 反应锅带有的平法兰上设有正电极联接头 5, 反应锅上端设有的上封顶盖板上设有 负电极联接头 6 ;
隔离筒 7, 该隔离筒为间隙居中位于电解反应锅内的直管状节筒;
电解阴极, 该阴极由与电解反应锅顶盖垂直贯穿联接的阴极联杆 8 和固定在阴极联杆下 端、 居中位于隔离筒内的棒状阴极 9 组成;
进料通管 10, 该进料通管为穿过电解反应锅顶盖、 出料口位于电解反应锅中的隔离筒内 的通管; 所述的进料通管穿过电解反应锅顶盖、 伸至电解反应锅内的阴极罩下部, 底端弯折 向上、 出料口正对电解阴极。
[0037]本发明的一种熔盐电解法生产钛的装置, 其结构还包括一阴极罩 11, 该阴极罩为下端 敞口、 上顶居中固定在阴极联杆上的倒置的氧化铝陶瓷的杯状壳体。
[0038]本发明的一种熔盐电解法生产钛的装置, 其结构还包括真空抽气装置, 其结构包括位 于电解反应锅上端平法兰和电解反应锅顶盖间的环状板 12 和穿过环状板的抽真空管 13。
[0039]本发明的一种熔盐电解法生产钛的装置, 所述的反应锅上端设有的上封顶盖板上居中 开有能通过阴极罩、 阴极的通孔, 在通孔卡装有封密塞板 14, 电解阴极的阴极联杆和进料通 管穿过封密塞板。
[0040]本发明的一种熔盐电解法生产钛的装置, 在反应锅上端设有的上封顶盖板上, 还设有 一个绝缘环板 15, 在绝缘环板上设有帽状的冷却塔体 16 ; 电解阴极的阴极联杆端穿过帽状冷 却塔体上顶, 与提升装置联接 17。
[0041 ]本发明的一种熔盐电解法生产钛的装置, 所述的帽状冷却塔体还设有抽真空装置, 其 结构包括位于帽状的冷却塔体下沿和绝缘环板间的环状板 18 和穿过环状板的抽真空管 19。
[0042]本发明的一种熔盐电解法生产钛的装置, 在电解反应锅外设有的加热装置为能嵌放入 电解反应锅的电阻 20 加热炉。
[0043] 本发明的一种熔盐电解法生产钛的方法, 其特征在于其金属镁阳极 21 浮于电解反应 锅和隔离筒外壁间的所述的选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐上。
[0044]本发明的一种熔盐电解法生产钛的装置, 阴极罩将阴极笼罩在内, 氩气通过进料管进 入阴极罩内, 四氯化钛也通过进料管进入阴极罩内; 可选的, 其阴极材料为钛棒; 可选的阴 极杆材料为石墨, 可选的阴极罩材料为三氧化二铝陶瓷; 可选的进料管材料为不锈钢; 可选 的隔离筒材料为不锈钢, 隔离筒将反应锅隔为阴极区和阳极区, 阴极区和阳极区在底部是相 通的。
[0045]将电解所用的盐置于所述反应锅中。 可选的, 电解所用的盐为氯化钠和氯化钾的混合 盐, 混合盐的摩尔比为 1 : 1, 将阳极材料置于阳极区内。 阳极材料为金属镁; 打开抽真空管 的阀通过真空泵将反应锅和帽状的冷却塔体抽真空后; 对帽状的冷却塔体和反应锅内充氩气 至微正压, 并且随时观察反应炉内的压力, 保证微正压。
[0046]再加热反应锅直至盐熔化; 将阴极伸入反应埚内; 开启电解电源; 同时将四氯化钛通 进料管输送到阴极区陶瓷罩内; 在阴极片上反应获得金属钛, 在阴极片上获得设定量的金属 钛后, 停止电解电源, 将阴极提升至反应锅上设有的帽状的冷却塔体中, 进行冷却后, 取出 金属钛。
[0047] 本发明的一种熔盐电解法生产钛的方法及其装置, 可以从四氯化钛直接生产高纯钛, 从而无需使用海绵钛作为原材料, 可以节省成本, 并可以生产更高纯度的钛。 生产的高纯钛 的形状为圆柱状或方柱状。 该形状的钛锭可以直接作为下一步工序电子束熔炉或真空自耗炉 的原料。 从而节省了压块和焊接的工艺, 进一步节省了成本。
[0048] 实施例 1 说 明 书
首先将氯化钠和氯化钾放入电解反应锅, 氯化钠和氯化钾的摩尔比为 1 : 1 ; 按图 1 所 示熔盐电解法生产钛的装置联接完成, 通过电反应锅的真空抽气装置, 抽真空至 5>< 10 &, 启 动电解反应锅电阻加热炉, 使电解反应锅内有氯化钠和氯化钾熔化, 控制温度为 745.9°C, 通 过进料通管通入四氯化钛液体和氩气, 四氯化钛液体的纯度为 99.995% 通入速度控制为 28ml/min, 通电进行电解, 电解的工艺条件为电压: 1.9V 电流: 400A。 电解完成后, 提通过 提电机提升装置上提阴极联杆, 将在阴极生成的金属钛提升至冷却塔体中, 进行冷却至室温 后, 出炉。 清洗后制得的金属钛纯度为 99.996%。
[0049] 实施例 2
首先将氯化钠和氯化钾放入电解反应锅, 氯化钠和氯化钾的摩尔比为 1 : 1 ; 按图 1 所 示熔盐电解法生产钛的装置联接完成, 通过电反应锅的真空抽气装置, 抽真空至 5>< 10 &, 启 动电解反应锅电阻加热炉, 使电解反应锅内有氯化钠和氯化钾熔化, 控制温度为 745.9°C, 通 过进料通管通入四氯化钛液体和氩气, 四氯化钛液体的纯度为 99.995% 通入速度控制为 26ml/min, 通电进行电解, 电解的工艺条件为电压: 1.9V 电流: 380A。 电解完成后, 提通过 提电机提升装置上提阴极联杆, 将在阴极生成的金属钛提升至冷却塔体中, 进行冷却至室温 后, 出炉。 清洗后制得的金属钛纯度为 99.995%。
[0050] 实施例 3
首先将氯化钠和氯化钾放入电解反应锅, 氯化钠和氯化镁的摩尔比为 3 : 2 ; 按图 1 所 示熔盐电解法生产钛的装置联接完成, 通过电反应锅的真空抽气装置, 抽真空至 5>< 10 &, 启 动电解反应锅电阻加热炉, 使电解反应锅内有氯化钠和氯化钾熔化, 控制温度为 510°C, 通过 进料通管通入四氯化钛液体和氩气, 四氯化钛液体的纯度为 99.995% 通入速度控制为 28ml/min, 通电进行电解, 电解的工艺条件为电压: 1.9V 电流: 400A。 电解完成后, 提通过 提电机提升装置上提阴极联杆, 将在阴极生成的金属钛提升至冷却塔体中, 进行冷却至室温 后, 出炉。 清洗后制得的金属钛纯度为 99.995%。
[0051 ] 实施例 4
首先将氯化钠和氯化钾放入电解反应锅, 氯化钠和氯化钙的摩尔比为 1 : 1 ; 按图 1 所 示熔盐电解法生产钛的装置联接完成, 通过电反应锅的真空抽气装置, 抽真空至 5>< 10 &, 启 动电解反应锅电阻加热炉, 使电解反应锅内有氯化钠和氯化钾熔化, 控制温度为 560°C, 通过 进料通管通入四氯化钛液体和氩气, 四氯化钛液体的纯度为 99.995% 通入速度控制为 20ml/min, 通电进行电解, 电解的工艺条件为电压: 1.9V 电流: 300A。 电解完成后, 提通过 提电机提升装置上提阴极联杆, 将在阴极生成的金属钛提升至冷却塔体中, 进行冷却至室温 后, 出炉。 清洗后制得的金属钛纯度为 99.991%。

Claims

权 利 要 求 书
1. 一种熔盐电解法生产钛的方法, 其特征在于其生产过程采用四氯化钛为原料, 以金属 镁为阳极, 将四氯化钛通入选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐中进行 电解, 电解生成的钛在阴极上沉积得到钛产品。
2. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的阴极为钛制 金属棒状阴极。
3. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的四氯化钛为 高纯四氯化钛, 纯度为 99.995%。
4. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于在电解过程通入氩 气保护。
5. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为 氯化钠和氯化钾的混合熔盐。
6. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为 氯化钙和氯化镁的混合熔盐。
7. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为 氯化钠和氯化钙的混合熔盐。
8. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于所述的混合熔盐为 氯化钾和氯化镁的混合熔盐。
9. 根据权利要求 5 所述的一种熔盐电解法生产钛的方法, 其特征在于为氯化钠和氯化钾 的混合熔盐的摩尔比为 1 : 1。
10. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于其电解的过程的 电压为 1.7 3.0V。
11. 根据权利要求 1 所述的一种熔盐电解法生产钛的方法, 其特征在于其电解的过程的 电压为 1.9V。
12. 一种熔盐电解法生产钛的装置, 其特征在于其结构包括:
电解反应锅, 电解反应锅炉为一上端敞口、 带有平法兰的杯状不锈钢反应锅, 反应锅上 端设有上封顶盖板, 在电解反应锅外设有加热装置, 在不锈钢反应锅与上封顶盖板间设有绝 缘环; 反应锅带有的平法兰上设有正电极联接头, 反应锅上端设有的上封顶盖板上设有负电 极联接头;
隔离筒, 该隔离筒为间隙居中位于电解反应锅内的直管状节筒;
电解阴极,该阴极由与电解反应锅顶盖垂直贯穿联接的阴极联杆和固定在阴极联杆下端、 居中位于隔离筒内的棒状阴极组成;
进料通管, 该进料通管为穿过电解反应锅顶盖、 出料口位于电解反应锅中的隔离筒内的 通管。
13. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于其结构还包括一 阴极罩, 该阴极罩为下端敞口、上顶居中固定在阴极联杆上的倒置的氧化铝陶瓷的杯状壳体。
14. 根据权利要求 12所述的一种熔盐电解法生产钛的装置, 其特征在于其结构还包括真 空抽气装置, 其结构包括位于电解反应锅上端平法兰和电解反应锅顶盖间的环状板和穿过环 状板的抽真空管。
15. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的反应锅上 端设有的上封顶盖板上居中开有能通过阴极罩、 阴极的通孔, 在通孔卡装有封密塞板, 电解 阴极的阴极联杆和进料通管穿过封密塞板。
16. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于在反应锅上端设 有的上封顶盖板上, 还设有一个绝缘环板, 在绝缘环板上设有帽状的冷却塔体; 电解阴极的 阴极联杆端穿过帽状冷却塔体上顶, 与提升装置联接。
17. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的帽状冷却 权 利 要 求 书
塔体还设有抽真空装置, 其结构包括位于帽状的冷却塔体下沿和绝缘环板间的环状板和穿过 环状板的抽真空管。
18. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于在电解反应锅外 设有的加热装置为能嵌放入电解反应锅的电阻加热炉。
19. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的进料通管 穿过电解反应锅顶盖、 伸至电解反应锅内的阴极罩下部, 底端弯折向上、 出料口正对电解阴 极。
20. 根据权利要求 12 所述的一种熔盐电解法生产钛的方法, 其特征在于其金属镁阳极浮 于电解反应锅和隔离筒外壁间的选自氯化钠、 氯化钾、 氯化钙、 氯化镁中的二种混合熔盐之 上。
21. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的阴极联杆 的材质为石墨。
22. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的隔离筒的 材质为不锈钢。
23. 根据权利要求 13 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的阴极罩材 质为三氧化二铝陶瓷。
24. 根据权利要求 12 所述的一种熔盐电解法生产钛的装置, 其特征在于所述的进料管材 质为不锈钢。
PCT/CN2013/089779 2012-12-31 2013-12-18 一种熔盐电解法生产钛的方法及装置 WO2014101694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210585145.3 2012-12-31
CN201210585145.3A CN103014775B (zh) 2012-12-31 2012-12-31 一种熔盐电解法生产钛的方法及装置

Publications (1)

Publication Number Publication Date
WO2014101694A1 true WO2014101694A1 (zh) 2014-07-03

Family

ID=47963875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089779 WO2014101694A1 (zh) 2012-12-31 2013-12-18 一种熔盐电解法生产钛的方法及装置

Country Status (2)

Country Link
CN (1) CN103014775B (zh)
WO (1) WO2014101694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549240A (zh) * 2020-04-30 2020-08-18 广州上仕工程管理有限公司 一种有色金属合金材料的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834969B (zh) * 2012-11-23 2016-08-03 宁波创润新材料有限公司 熔盐电解装置
CN103014775B (zh) * 2012-12-31 2016-03-23 金坛市六九钛业科技有限公司 一种熔盐电解法生产钛的方法及装置
CN103014762B (zh) * 2012-12-31 2015-09-16 金坛市六九钛业科技有限公司 一种熔盐电解法生产金属的装置
CN104947152B (zh) * 2014-03-31 2017-12-26 晟通科技集团有限公司 熔盐电解精炼法制备高纯钛的方法
CN104928719B (zh) * 2015-06-10 2017-12-08 宁夏德运创润钛业有限公司 一种熔盐电解冶炼高纯钛装置及其冶炼方法
CN104928721B (zh) * 2015-06-12 2017-09-22 中南大学 一种低价钛氯化物熔盐电解质的制备及精炼装置
CN109825854A (zh) * 2019-03-26 2019-05-31 北京科技大学 一种熔盐电解-高温蒸馏制备高纯钛金属的装置及方法
CN110408960B (zh) * 2019-06-24 2021-02-12 北京科技大学 氧化物熔融电解-真空精馏连续制备高纯钛的方法和设备
CN111304676B (zh) * 2020-04-01 2021-02-26 北京镭硼科技有限责任公司 一种制备单质硼-10的熔盐电解装置
CN111960448B (zh) * 2020-09-24 2024-03-12 青海北辰科技有限公司 四氯化钛生产中混合熔盐产物的精制装置及其精制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB698151A (en) * 1951-08-24 1953-10-07 Ici Ltd Electrolytic production of titanium
CN201024217Y (zh) * 2006-12-06 2008-02-20 北京有色金属研究总院 一种半连续熔盐电解精炼装置
CN101652486A (zh) * 2007-01-22 2010-02-17 材料及电化学研究公司 原位生成氯化钛的金属热还原
CN102517611A (zh) * 2011-12-27 2012-06-27 宁波江丰电子材料有限公司 熔盐电解提炼设备及其提炼金属的方法
CN103014762A (zh) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 一种熔盐电解法生产金属的装置
CN103014775A (zh) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 一种熔盐电解法生产钛的方法及装置
CN203284483U (zh) * 2012-12-31 2013-11-13 金坛市六九钛业科技有限公司 一种熔盐电解法生产金属的装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB775870A (en) * 1953-06-13 1957-05-29 Peter Spence & Sons Ltd Improved electrolytic process for preparing titanium metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB698151A (en) * 1951-08-24 1953-10-07 Ici Ltd Electrolytic production of titanium
CN201024217Y (zh) * 2006-12-06 2008-02-20 北京有色金属研究总院 一种半连续熔盐电解精炼装置
CN101652486A (zh) * 2007-01-22 2010-02-17 材料及电化学研究公司 原位生成氯化钛的金属热还原
CN102517611A (zh) * 2011-12-27 2012-06-27 宁波江丰电子材料有限公司 熔盐电解提炼设备及其提炼金属的方法
CN103014762A (zh) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 一种熔盐电解法生产金属的装置
CN103014775A (zh) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 一种熔盐电解法生产钛的方法及装置
CN203284483U (zh) * 2012-12-31 2013-11-13 金坛市六九钛业科技有限公司 一种熔盐电解法生产金属的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549240A (zh) * 2020-04-30 2020-08-18 广州上仕工程管理有限公司 一种有色金属合金材料的制备方法

Also Published As

Publication number Publication date
CN103014775A (zh) 2013-04-03
CN103014775B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014101694A1 (zh) 一种熔盐电解法生产钛的方法及装置
WO2014101693A1 (zh) 一种熔盐电解法生产金属的装置
CN104947152B (zh) 熔盐电解精炼法制备高纯钛的方法
CN106835203B (zh) 一种熔盐的净化装置及方法
CN102719857B (zh) 一种直接电解二氧化钛生产金属钛的方法及电解槽
CN103205774A (zh) 锂盐一步法熔融电解制金属锂的方法
CN109825854A (zh) 一种熔盐电解-高温蒸馏制备高纯钛金属的装置及方法
CN102851679A (zh) 一种熔盐电解去除硅中硼和磷杂质的方法
CN102408134B (zh) 一种铱粉的电化学溶解方法
CN101974767A (zh) 一种熔盐电解制备钨粉的方法
CN206580891U (zh) 一种熔盐电解装置
CN104928719B (zh) 一种熔盐电解冶炼高纯钛装置及其冶炼方法
CN102408135B (zh) 一种三氯化铱水合物的制备方法
CN106757167A (zh) 一种熔盐脉冲电流电解制备钛的方法及装置
CN203284483U (zh) 一种熔盐电解法生产金属的装置
CN204982083U (zh) 一种新型熔盐电解冶炼高纯钛装置
CN107723748B (zh) 常压空心等离子电极在熔盐电解中的应用
CN106591888B (zh) 一种低化合价钛离子熔盐电解质的制备方法及装置
JP2003306789A (ja) スポンジチタンの製造方法及び製造装置
CA2645103A1 (en) Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing ti or ti alloy by use of them
CN206319069U (zh) 一种用于清除熔盐中金属杂质的净化装置
CN203700540U (zh) 一种制备金属钠的熔融电解装置
JP2012172194A (ja) 電解装置およびそれを用いた電解採取方法
JP2004256907A (ja) 高純度亜鉛の製造方法
JP4513297B2 (ja) 金属酸化物の還元方法及び金属酸化物の還元装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869602

Country of ref document: EP

Kind code of ref document: A1