WO2014097818A1 - Transparent electrode for touch panel, touch panel, and display device - Google Patents

Transparent electrode for touch panel, touch panel, and display device Download PDF

Info

Publication number
WO2014097818A1
WO2014097818A1 PCT/JP2013/081435 JP2013081435W WO2014097818A1 WO 2014097818 A1 WO2014097818 A1 WO 2014097818A1 JP 2013081435 W JP2013081435 W JP 2013081435W WO 2014097818 A1 WO2014097818 A1 WO 2014097818A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
titanium
layer
transparent electrode
conductive layer
Prior art date
Application number
PCT/JP2013/081435
Other languages
French (fr)
Japanese (ja)
Inventor
敏幸 木下
健 波木井
宏 石代
和央 吉田
一成 多田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014553037A priority Critical patent/JPWO2014097818A1/en
Publication of WO2014097818A1 publication Critical patent/WO2014097818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a transparent electrode for a touch panel, a touch panel including the transparent electrode for a touch panel, and a display device.
  • Capacitance type has the feature that multi-point input is possible, and practical use is progressing in smartphones.
  • the electrodes are arranged through the touch panel by forming the electrodes using a transparent conductive material.
  • a transparent electrode for a touch panel a metal oxide such as indium tin oxide (ITO) has been mainly used.
  • ITO indium tin oxide
  • the conductivity is not sufficient, voltage drop is likely to occur near the center of the panel, and an increase in the size of the touch panel is hindered.
  • the resistance value is to be kept low, a certain amount of thickness is required. Therefore, when the electrode has a pattern as in the projected capacitive method, this pattern is easily visible, and as a result, the ground The visibility of the displayed image becomes lower.
  • Patent Document 1 a configuration using metal nanowires having higher conductivity than ITO has been proposed as a transparent electrode for a touch panel (see, for example, Patent Document 1).
  • a transparent electrode for a touch panel using metal nanowires has a problem in that the visibility of a display image serving as a base is reduced due to light scattering of the metal nanowires when the addition amount of the metal nanowires is increased to reduce the resistance. Had.
  • the present invention provides a transparent electrode for a touch panel that has both sufficient conductivity and visibility, and a touch panel that is improved in visibility by using the transparent electrode for a touch panel, and a display device I will provide a.
  • the transparent electrode for a touch panel of the present invention includes a titanium-containing layer and a conductive layer mainly composed of silver provided adjacent to the titanium-containing layer.
  • the touch panel of this invention is equipped with the said transparent electrode for touch panels.
  • the display device of the present invention includes the touch panel and a display panel disposed on the touch panel.
  • a conductive layer mainly composed of silver is provided adjacent to the titanium-containing layer.
  • a conductive layer mainly composed of silver is formed on this titanium-containing layer, it is possible to obtain an interaction between silver atoms and titanium atoms constituting the titanium-containing layer, while suppressing the aggregation of silver while being thin
  • a conductive layer having a uniform thickness can be obtained. Therefore, in the transparent electrode using silver, it becomes possible to achieve both improved conductivity and improved visibility.
  • the touchscreen and display apparatus which are excellent in electroconductivity and visibility can be comprised using this transparent electrode.
  • a transparent electrode for a touch panel, a touch panel, and a display device that have both conductivity and visibility.
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a fourth embodiment corresponding to the AA cross section shown in FIG. 6.
  • FIG. 7 is a schematic cross-sectional view of a modification of the touch panel of the fourth embodiment corresponding to the AA cross-section shown in FIG.
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a fifth embodiment corresponding to the AA cross-section shown in FIG. 6.
  • FIG. 10 is a schematic cross-sectional view of a modified example of the touch panel of the fifth embodiment corresponding to the AA cross section shown in FIG. It is a top view which shows the electrode structure of the transparent electrode for touchscreens used for the touchscreen of 6th Embodiment. It is an enlarged view of the electrode structure of the transparent electrode for touchscreens shown in FIG. It is a cross-sectional schematic diagram of the touch panel of the sixth embodiment corresponding to the BB cross section shown in FIG. It is a perspective view which shows schematic structure of the display apparatus of 7th Embodiment.
  • Transparent electrode for touch panel first embodiment
  • Transparent electrode for touch panel second embodiment
  • Transparent electrode for touch panel third embodiment
  • Touch panel fourth embodiment: configuration using two transparent substrates
  • Touch panel sixth embodiment: configuration in which conductive layers are provided on both sides of a transparent substrate
  • Touch panel seventh embodiment: configuration in which a conductive layer is provided on one side of a transparent substrate
  • Display device seventh embodiment: configuration using a touch panel
  • the transparent electrode 10 for a touch panel includes a titanium-containing layer 12 and a conductive layer 13 and is formed on a transparent substrate 11.
  • the conductive layer 13 is formed such that one surfaces of the titanium-containing layer 12 and the conductive layer 13 are adjacent to each other.
  • a protective layer 14 is provided on many surfaces of the conductive layer 13.
  • a transparent substrate 11 is provided on the other surface side of the titanium-containing layer 12. That is, the transparent electrode 10 composed of the titanium-containing layer 12 and the conductive layer 13 is sandwiched between the transparent substrate 11 and the protective layer 14.
  • transparent electrode 10 for the touch panel of this example will be described in the order of the transparent substrate 11, the titanium-containing layer 12, the conductive layer 13, and the protective layer 14.
  • transparent means that the light transmittance in wavelength 550nm is 50% or more.
  • the transparent substrate 11 on which the touch panel transparent electrode 10 is formed may also serve as a front panel of the display panel.
  • Examples of such a transparent substrate 11 include glass, quartz, and a transparent resin film.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • physical treatment such as polishing, a coating made of an inorganic material or an organic material, A hybrid film is formed by combining these films.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film.
  • Such coatings and hybrid coatings have a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / ( m 2 ⁇ 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable.
  • the oxygen permeability measured by the method according to JIS-K-7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m (2 ⁇ 24 hours) or less is preferable.
  • the material for forming the barrier film as described above a material having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the resin film is used.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 can be preferably used.
  • the titanium-containing layer 12 is a layer configured using, for example, titanium or a titanium-containing compound.
  • the titanium-containing layer 12 is a layer formed adjacent to the conductive layer 13.
  • silver on the surface of the titanium-containing layer 12 is caused by the interaction between silver, which is the main component of the conductive layer 13, and titanium atoms constituting the titanium-containing layer 12.
  • the diffusion distance of atoms is reduced and silver aggregation is suppressed.
  • a thin silver layer that tends to be isolated in an island shape due to growth by a nuclear growth type (Volumer-Weber: VW type) is transformed into a single layer growth type (Frank-van der Merwe: FM type). It is formed. Therefore, by forming the conductive layer 13 mainly composed of silver in contact with the titanium-containing layer 12, the conductive layer 13 having a uniform thickness can be obtained although it is thin.
  • titanium-containing compound When a titanium-containing compound is used as the titanium-containing layer 12, the titanium content is large in the entire titanium-containing layer 12, particularly on the interface side with the conductive layer 13, because titanium atoms and silver atoms interact. It is preferable.
  • titanium-containing compounds include titanium alloys, titanium oxides, and titanium nitrides.
  • titanium alloy it is an alloy which has titanium as a main component, and it is preferable that the content rate of titanium is 50 atm% or more.
  • the titanium alloy include aluminum titanium (TiAl).
  • titanium oxide include titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), trititanium pentoxide (Ti 3 O 5 ), and magnesium phase titanium oxide (Ti n O 2n— 1 : n ⁇ 3).
  • titanium oxide for the titanium-containing layer 12 it is preferable to use a material having a lower oxygen content than the titanium content.
  • titanium nitride is titanium nitride (TiN).
  • the titanium-containing layer 12 only needs to be configured using titanium or the above-described titanium-containing compound, and may be configured using two or more of these. Further, the titanium-containing layer 12 may be added with a metal other than titanium. As these metals, for example, silver (Ag), magnesium (Mg), copper (Cu), indium (In), gold (Au), iridium (Ir), lithium (Li) or the like may be added. .
  • the titanium-containing layer 12 as described above has a thickness that does not hinder the light transmittance of the transparent electrode 10 for a touch panel, and is preferably 5 nm or less, for example.
  • the titanium-containing layer 12 needs a thickness that can ensure the film uniformity of the conductive layer 13 formed on the titanium-containing layer 12.
  • the titanium-containing layer 12 only needs to have one atomic layer or more of titanium atoms.
  • the titanium-containing layer 12 is preferably a continuous film. Even if the titanium-containing layer 12 has a defect in the continuous phase of titanium, the film uniformity of the conductive layer 13 can be ensured if the defect is smaller than the Ag atoms constituting the conductive layer 13.
  • titanium content layer 12 is not specifically limited, an electron beam vapor deposition method and a sputtering method are applied preferably.
  • the conductive layer 13 is a layer composed mainly of silver, is composed of silver or an alloy composed mainly of silver, and is a layer formed adjacent to the titanium-containing layer 12.
  • Examples of the method for forming the conductive layer 13 include a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. Examples include a method using a dry process. Of these, the vapor deposition method is preferably applied.
  • the conductive layer 13 is formed on the titanium-containing layer 12, so that it has sufficient conductivity without a high-temperature annealing treatment after the formation. It may have been subjected to a high temperature annealing treatment or the like.
  • an alloy mainly composed of silver (Ag) constituting the conductive layer 13 is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). Etc.
  • the conductive layer 13 as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the thickness of the conductive layer 13 is preferably set to 15 nm or less, and particularly preferably 12 nm or less, in order not to disturb the light transmittance of the transparent electrode 10 for touch panel.
  • the thickness of the conductive layer 13 is 15 nm or less, the absorption component and the reflection component of the layer are suppressed low, and the light transmittance of the transparent electrode 10 for touch panel is maintained, which is preferable.
  • the light transmittance of the transparent electrode 10 for touch panels further improves by making the thickness of the conductive layer 13 12 nm or less.
  • the conductive layer 13 has a thickness of at least 4 nm, the conductivity of the transparent electrode for touch panel 10 is ensured.
  • the conductive layer 13 described above preferably has an electrode pattern.
  • a plurality of electrode patterns are preferably formed in a matrix.
  • the matrix-like electrode pattern has a plurality of x electrode patterns or y electrode patterns, and each x electrode pattern or y electrode pattern is extended in the x direction or y direction, respectively, and is spaced from each other. Arranged in parallel.
  • Each of these x electrode patterns or y electrode patterns may have a shape in which rhombuses or other pattern portions arranged in the x direction are linearly connected in the x direction or the y direction.
  • the wiring pattern which consists of the conductive layer 13 may be connected to the edge part of each x electrode pattern and y electrode pattern, and this wiring pattern may be pulled out from the peripheral area on the transparent substrate 11 to an edge.
  • the transparent electrode for touch panel 10 may have a configuration having either an x electrode pattern or a y electrode pattern, or may have a configuration having both an x electrode pattern and a y electrode pattern.
  • the electrode pattern is not limited to the matrix shape, and may be other patterns.
  • the need for patterning of the titanium-containing layer 12 on which the conductive layer 13 is formed is determined according to the characteristics of the material constituting the titanium-containing layer 12. For example, when the conductivity of the titanium-containing layer 12 is low and the conductivity can be ignored, an electrode pattern such as the conductive layer 13 may not be formed on the titanium-containing layer 12. Further, when the conductivity of the titanium-containing layer 12 is high and it is necessary to consider the conductivity, it is necessary to form an electrode pattern similar to that of the conductive layer 13 on the titanium-containing layer 12.
  • the transparent electrode 10 for a touch panel having a laminated structure comprising the titanium-containing layer 12 and the conductive layer 13 provided adjacent to the titanium-containing layer 12 is protected on the side of the conductive layer 13 that is not in contact with the titanium-containing layer 12.
  • Layer 14 is provided.
  • the protective layer 14 has light transmittance so as not to impair the light transmittance of the transparent electrode 10 for a touch panel.
  • the protective layer 14 may be a layer that functions as an optical adjustment layer.
  • the protective layer 14 is configured using a plate-like or film-like member that covers the conductive layer 13 of the transparent electrode 10 for a touch panel, or an inorganic material, an organic material, or a resin material that covers the conductive layer 13. This protective layer 14 is provided so as to cover at least the conductive layer 13 in the transparent electrode 10 for a touch panel.
  • a member similar to the above-described transparent substrate 11 can be used.
  • a thin resin film can be used preferably.
  • the resin film may be formed with a coating made of an inorganic material or an organic material, or a hybrid coating combining these coatings.
  • the film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS-K-7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the protective layer 14 formed using an inorganic material, an organic material, or a resin material has a function of suppressing intrusion of substances that cause deterioration of the conductive layer 13 and the titanium-containing layer 12 such as moisture and oxygen. It is preferable to be comprised with a material.
  • a material for example, an inorganic material such as silicon oxide, silicon dioxide, silicon nitride, silicon oxynitride, or silicon oxycarbide is used.
  • a laminated structure may be formed using a film made of these inorganic materials or a film made of organic materials.
  • a preservative that prevents corrosion of the conductive layer 13 may be added to the protective layer 14.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the touch panel transparent electrode 10 configured as described above has a configuration in which the conductive layer 13 mainly composed of silver is provided adjacent to the titanium-containing layer 12.
  • the conductive layer 13 mainly composed of silver
  • the silver atoms constituting the conductive layer 13 interact with the titanium atoms constituting the titanium-containing layer 12, and the titanium-containing layer of silver atoms 12
  • the diffusion distance on the surface is reduced, and aggregation of silver is suppressed.
  • a thin silver layer that tends to be isolated in an island shape due to the growth of the nuclear growth type (Volumer-Weber: VW type) is caused by the growth of the single layer growth type (Frank-van der Merwe: FM type). Will be formed. Therefore, although it is thin, the conductive layer 13 having a uniform thickness can be obtained.
  • the conductive layer 13 is obtained which has a thin and uniform thickness on the upper part of the titanium-containing layer 12 and ensures conductivity while ensuring light transmission. For this reason, the electroconductivity in the transparent electrode 10 for touchscreens using silver can be improved, and also visibility of the display image etc. which become a foundation
  • FIG. 2 the schematic block diagram (sectional drawing) of the transparent electrode for touchscreens of 2nd Embodiment is shown.
  • the transparent electrode for touch panel 20 of the second embodiment is different from the transparent electrode for touch panel 10 of the first embodiment shown in FIG. 1 only in that a high refractive index layer 24 is provided.
  • the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate
  • the transparent electrode 20 for a touch panel includes a high refractive index layer 24, a titanium-containing layer 12, and a conductive layer 13, and is formed on the transparent substrate 11.
  • the titanium-containing layer 12 and the conductive layer 13 have the same configuration as in the first embodiment described above.
  • the transparent electrode 20 for touch panels is formed so that one surfaces of the titanium layer 12 and the conductive layer 13 are adjacent to each other.
  • the one side of the high refractive index layer 24 is formed in contact with the many sides of the titanium-containing layer 12, and the transparent substrate 11 is provided on the other side of the high refractive index layer 24.
  • a protective layer 14 is provided on the other surface of the conductive layer 13. Also about the transparent substrate 11 and the protective layer 14, it can be set as the structure similar to the above-mentioned 1st Embodiment.
  • the high refractive index layer 24 is a layer having a refractive index (n) of 2.0 or more at a wavelength of 550 nm.
  • the high refractive index layer 24 is a layer provided with the titanium-containing layer 12 sandwiched between the conductive layer 13.
  • a metal oxide is used for such a high refractive index layer 24.
  • a high refractive index material generally used for an optical film is preferably used.
  • titanium-containing layer 12 Even when the titanium-containing layer 12 is formed on the high-refractive index layer 24, it can be configured using titanium and a titanium-containing compound, similarly to the transparent electrode for a touch panel of the first embodiment. Further, when the titanium-containing layer 12 is formed on the high refractive index layer 24 using titanium oxide, a titanium oxide having a lower oxygen content than the metal oxide used for the high refractive index layer 24 is used.
  • titanium dioxide TiO 2
  • TiO 2 titanium oxide having a titanium content higher than at least titanium dioxide
  • a titanium oxide having a composition ratio of titanium to oxygen exceeding 1/2 is used for the titanium-containing layer 12.
  • the previously exemplified titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), trititanium pentoxide (Ti 3 O 5 ), magnesium phase titanium oxide (Ti n O 2n ⁇ 1 : n ⁇ 3) etc. are used.
  • the touch panel transparent electrode 20 may have a low refractive index layer (not shown) in contact with the high refractive index layer 24.
  • a low refractive index layer is provided between the surface of the high refractive index layer 24 opposite to the surface on which the titanium-containing layer 12 is formed, that is, between the transparent substrate 11 and the high refractive index layer 24. You may do it.
  • the low refractive index layer is a layer having a lower refractive index than the high refractive index layer.
  • the refractive index at a wavelength of 550 nm is preferably 0.1 or more lower than the high refractive index layer, and particularly preferably 0.3 or lower than the high refractive index layer.
  • Such a low refractive index layer is made of a material having a low refractive index and light transmittance.
  • a low refractive index material generally used for optical films such as magnesium fluoride (MgF 2 ), lithium fluoride (LiF), calcium fluoride (CaF 2 ), and aluminum fluoride (AlF 3 ) is used.
  • the touch panel transparent electrode 20 includes a high refractive index layer 24 in addition to the titanium-containing layer 12 and the conductive layer 13. For this reason, in addition to the effect which the transparent electrode 20 for touchscreens of the above-mentioned 1st Embodiment has, the reflection which arises in the conductive layer 13 which has silver as a main component is suppressed, and the transparent electrode 20 for touchscreens in the transparent electrode 20 for touchscreens Light scattering is further suppressed, and visibility can be further improved.
  • FIG. 3 the schematic block diagram (sectional drawing) of the transparent electrode for touchscreens of 3rd Embodiment is shown.
  • the transparent electrode 30 for a touch panel according to the third embodiment includes only a first high refractive index layer 35 serving as an optical adjustment layer as a protective layer, and further includes a second high refractive index layer 34.
  • the transparent electrode 10 for touch panels of 1st Embodiment shown in FIG. Hereinafter, the detailed description which overlaps about the component similar to 1st Embodiment and 2nd Embodiment is abbreviate
  • the transparent electrode 30 for a touch panel includes a second high refractive index layer 34, a titanium-containing layer 12, a conductive layer 13, and a first high refractive index layer 35 in this order, on the transparent substrate 11. Is formed.
  • the titanium-containing layer 12 and the conductive layer 13 have the same configuration as in the first embodiment described above.
  • the touch panel transparent electrode 30 has a conductive layer 13 formed adjacent to one surface of the titanium-containing layer 12, and has a second high refractive index layer 34 on the other surface side of the titanium-containing layer 12. Furthermore, in the conductive layer 13, the first high refractive index layer 35 is provided on the other surface side that is not in contact with the titanium-containing layer 12. Further, the second high refractive index layer 34 includes the transparent substrate 11 on the surface side not in contact with the titanium-containing layer 12.
  • the titanium-containing layer 12 and the conductive layer 13 are sandwiched between the two high-refractive index layers including the first high-refractive index layer 35 and the second high-refractive index layer 34. It is a configuration. Both the first high refractive index layer 35 and the second high refractive index layer 34 are layers having a refractive index of 2.0 or more at a wavelength of 550 nm. As such 1st high refractive index layer 35 and 2nd high refractive index layer 34, the same material as the high refractive index layer in the transparent electrode for touchscreens of the above-mentioned 2nd Embodiment can be used.
  • titanium having a lower oxygen content than the metal oxide used for the second high-refractive index layer 34 when the titanium-containing layer 12 using titanium oxide is formed on the second high-refractive index layer 34, titanium having a lower oxygen content than the metal oxide used for the second high-refractive index layer 34.
  • Oxides are preferably used.
  • titanium dioxide TiO 2
  • titanium oxide having a titanium content higher than that of titanium dioxide is used for the titanium-containing layer 12. That is, a titanium oxide having a composition ratio of titanium to oxygen exceeding 1/2 is used for the titanium-containing layer 12.
  • the transparent electrode 30 for a touch panel may include a low refractive index layer in contact with the first high refractive index layer 35 and the second high refractive index layer 34.
  • the low refractive index layer is preferably formed outside the first high refractive index layer 35 and the second high refractive index layer 34.
  • the touch panel transparent electrode 30 is formed above the first high refractive index layer 35 or between the second high refractive index layer 34 and the transparent substrate 11.
  • the transparent electrode 30 for a touch panel has a configuration in which the titanium-containing layer 12 and the conductive layer 13 are sandwiched between the first high refractive index layer 35 and the second high refractive index layer 34.
  • the transparent electrode 30 for touchscreens is scattering of the light which permeate
  • Touch panel (fourth embodiment: configuration using two transparent substrates)> Next, a fourth embodiment of the present invention will be described. 4th Embodiment demonstrates the touchscreen using the transparent electrode 30 for touchscreens of the above-mentioned 3rd Embodiment. 4 to 7 show a schematic configuration of the touch panel of the present embodiment.
  • FIG. 4 is a perspective view showing a schematic configuration of the touch panel of the present embodiment.
  • FIG. 5 is a plan view showing an electrode configuration of two transparent electrodes for a touch panel used in the touch panel of the present embodiment.
  • FIG. 6 is a schematic diagram showing a planar arrangement of electrode portions of the touch panel shown in FIGS. 4 and 5.
  • FIG. 7 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the AA cross-section shown in FIG.
  • the touch panel of this embodiment demonstrates the structure using two transparent electrodes for touch panels, the transparent electrode for 1st touch panels, and the transparent electrode for 2nd touch panels.
  • a touch panel 40 shown in FIG. 4 is a projected capacitive touch panel.
  • a first substrate 43, a first touch panel transparent electrode 41, a second substrate 45, and a second touch panel transparent electrode 42 are arranged in this order, and the upper portion is covered with a front plate 47.
  • the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have the configuration of the touch panel transparent electrode according to the third embodiment described with reference to FIG. 3 described above. Accordingly, the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have a configuration in which a titanium-containing layer, a conductive layer, and a high refractive index layer are laminated.
  • the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 show only the first conductive layer 44 and the second conductive layer 46, and other titanium-containing layers and high
  • the illustration of the configuration of the refractive index layer is omitted.
  • substrate 45 are the structures similar to the transparent substrate demonstrated in embodiment of the transparent electrode for touchscreens mentioned above.
  • the first conductive layer 44 is the conductive layer described in the embodiment of the transparent electrode for a touch panel described above, and is configured as a plurality of x electrode patterns x1, x2,... Patterned on the titanium-containing layer.
  • Each of the x electrode patterns x1, x2,... Is arranged in parallel with an interval between each other, with each extending in the x direction.
  • Each of these x electrode patterns x1, x2,... Has a shape in which rhombus pattern portions arranged in the x direction are linearly connected in the x direction in the vicinity of the apex of the rhombus, for example.
  • x wirings 49x are connected to the respective end portions of the x electrode patterns x1, x2,. These x wirings 49 x are wired in the peripheral region of the first substrate 43, and are drawn out to the edge of the first substrate 43.
  • Each of these x wirings 49x may be configured as a first conductive layer 44 mainly composed of silver, similarly to the x electrode patterns x1, x2,. It may be configured by.
  • the second conductive layer 46 is the conductive layer described in the embodiment of the transparent electrode for touch panel described above, and is configured as a plurality of y electrode patterns y1, y2,... Patterned on the titanium-containing layer.
  • the y electrode patterns y1, y2,... Are arranged in parallel while being spaced apart from each other in a state of extending in the y direction orthogonal to the x electrode patterns x1, x2,.
  • Each of these y electrode patterns y1, y2,... Has, for example, a shape in which rhombus pattern portions arranged in the y direction are linearly connected in the y direction in the vicinity of the apex of the rhombus.
  • the rhombus pattern portions constituting the y electrode patterns y1, y2,... are in contrast to the rhombus pattern portions forming the x electrode patterns x1, x2,.
  • the shape is arranged at a position that does not overlap in plan view and occupies as large a range as possible without overlapping.
  • the x electrode patterns x1, x2,... Constituted by the first conductive layer 44 and the y electrode pattern y1 constituted by the second conductive layer 46. , Y2,... are difficult to see.
  • Each y electrode pattern y1, y2,... Is laminated with each x electrode pattern x1, x2,. Since the second substrate 45 and the like are sandwiched between these laminated portions, insulation between the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,.
  • a y wiring 49y is connected to each end of each y electrode pattern y1, y2,. These y wirings 49y are wired in the peripheral region of the second substrate 45, and are drawn out to the edge of the second substrate 45 so as to be aligned with the x wirings 49x.
  • Each of such y wirings 49y may be configured as the second conductive layer 46 mainly composed of silver, similarly to the y electrode patterns y1, y2,. It may be configured by.
  • a flexible printed circuit board or the like is connected to the x wiring 49x and the y wiring 49y drawn to the edge of the first substrate 43 or the second substrate 45.
  • the front plate 47 shown in FIG. 4 is a plate material on which the portion corresponding to the input position on the touch panel 40 is pressed.
  • the front plate 47 is made of a light-transmitting plate material like the first substrate 43 and the second substrate 45. Further, the front plate 47 may be used by selecting a material having optical characteristics as required. Such a front plate 47 is bonded to the second touch panel transparent electrode 42 side by an adhesive layer (not shown), for example.
  • the front plate 47 is provided with a light-shielding film that covers the peripheral edges of the first substrate 43 and the second substrate 45, and the x wiring 49x drawn from the x electrode patterns x1, x2,.
  • the y wiring 49y drawn from the patterns y1, y2,... Is prevented from being visually recognized from the front plate 47 side.
  • the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,... From the flexible printed circuit board connected to the x wiring 49x and the y wiring 49y.
  • a voltage is applied.
  • the capacitance of each part existing in the touch panel 40 changes, and the x electrode patterns x1, x2,... And the y electrode patterns y1, y2 It appears as a change in voltage. This change differs depending on the distance from the position touched by the finger or touch pen, and is greatest at the position touched by the finger or touch pen. For this reason, the position designated by the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. .
  • FIG. 7 shows a cross-sectional configuration of the touch panel 40 shown in FIGS. 4 to 6, particularly a cross-sectional schematic view corresponding to the AA cross section shown in FIG.
  • FIG. 7 shows a configuration of a touch panel to which the configuration of the transparent electrode for a touch panel according to the third embodiment described above is applied.
  • the touch panel 40 has a configuration in which a first substrate 43, a first touch panel transparent electrode 41, a second substrate 45, a second touch panel transparent electrode 42, and a front plate 47 are laminated in this order. is there.
  • the first touch panel transparent electrode 41 includes a second high refractive index layer 53, a first titanium-containing layer 51, a first conductive layer 44, and a fourth high refractive index layer 55 stacked in this order on the first substrate 43. It is the structure which was made.
  • the second touch panel transparent electrode 42 includes the third high refractive index layer 56, the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 on the second substrate 45. It is the structure laminated
  • the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have the same first conductive layer 44 and second conductive layer 46 as the first substrate 43 and the second substrate 45. It is laminated so as to be in the direction. Then, the second substrate 45 provided with the second touch panel transparent electrode 42 is laminated on the fourth high refractive index layer 55 of the first touch panel transparent electrode 41.
  • the 1st titanium content layer 51 and the 2nd titanium content layer 52 are the same composition as the titanium content layer explained in the above-mentioned embodiment of the transparent electrode for touch panels.
  • 7 shows an example in which the second titanium-containing layer 52 is formed in the same pattern as the second conductive layer 46.
  • the second titanium-containing layer 52 is made of a material constituting the second titanium-containing layer 52. The necessity of patterning is determined according to the characteristics. For example, when the conductivity of the second titanium-containing layer 52 is high, the second titanium-containing layer 52 needs to be formed in the same pattern as the second conductive layer 46 as shown in FIG.
  • the second titanium-containing layer 52 may not be patterned.
  • the conductivity of the first titanium-containing layer 51 when the conductivity of the first titanium-containing layer 51 is high, it is necessary to be formed in the same pattern as the first conductive layer 44. When the conductivity is low It may not be formed in the same pattern as the first conductive layer 44.
  • the second high-refractive index layer 53, the first high-refractive index layer 54, the fourth high-refractive index layer 55, and the third high-refractive index layer 56 are the high-refractive index described in the embodiment of the transparent electrode for touch panel described above.
  • the structure is the same as that of the layer.
  • the touch panel 40 as described above includes two layers of the touch panel transparent electrodes described in the third embodiment. Therefore, the first conductive layer 44 or the second conductive layer 46 mainly composed of silver is provided adjacent to the first titanium-containing layer 51 or the second titanium-containing layer 52. Accordingly, the diffusion distance of silver is reduced by the interaction between silver atoms and titanium atoms, and the first conductive layer 44 and the second conductive layer 46 are grown by single-layer growth type (Frank-van der Merwe: FM type) growth. Is formed. As a result, on the first titanium-containing layer 51 or the second titanium-containing layer 52, the first conductive layer 44 and the second conductive layer that have ensured conductivity while ensuring light transmittance by having a thin and uniform thickness.
  • the first conductive layer 44 or the second conductive layer 46 mainly composed of silver is provided adjacent to the first titanium-containing layer 51 or the second titanium-containing layer 52. Accordingly, the diffusion distance of silver is reduced by the interaction between silver atoms and titanium atoms, and the first conductive layer 44
  • Layer 46 is obtained. For this reason, in a touch panel, it has sufficient electroconductivity with light transmittance, and the voltage drop at the time of enlarging a conductive film can be suppressed, maintaining the visibility of the display image of a foundation
  • the touch panel 40 is a projected capacitive type having x electrode patterns x1, x2,... And y electrode patterns y1, y2,. Therefore, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,.
  • the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,... Are transparent conductive layers mainly composed of silver. Is possible. Therefore, the x electrode patterns x 1, x 2,... And the y electrode patterns y 1, y 2,... Themselves are difficult to be visually recognized, and deterioration of the visibility of the display image via the touch panel 40 can be prevented.
  • FIG. 8 shows a cross-sectional configuration of a modified example of the touch panel of the fourth embodiment, in particular, a schematic cross-sectional view corresponding to the AA cross section shown in FIG.
  • the touch panel 40A of the modification shown in FIG. 8 has a configuration in which a first substrate 43, a first touch panel transparent electrode 41A, a second substrate 45, a second touch panel transparent electrode 42A, and a front plate 47 are laminated in this order. is there.
  • the first touch panel transparent electrode 41 ⁇ / b> A has a configuration in which a second high refractive index layer 53, a first titanium-containing layer 51, and a first conductive layer 44 are laminated in this order on a first substrate 43.
  • the second touch panel transparent electrode 42 ⁇ / b> A has a configuration in which a second titanium-containing layer 52, a second conductive layer 46, and a first high refractive index layer 54 are laminated in this order on the second substrate 45. That is, the touch panel 40A of the modification shown in FIG. 8 has a configuration in which the fourth high refractive index layer 55 and the third high refractive index layer 56 are excluded from the configuration of the touch panel 40 shown in FIG.
  • the first touch panel transparent electrode 41A and the second touch panel transparent electrode 42A have the same first conductive layer 44 and second conductive layer 46 as the first substrate 43 and the second substrate 45. It is laminated so as to be in the direction.
  • the second substrate 45 provided with the second touch panel transparent electrode 42 is laminated on the first conductive layer 44 of the first touch panel transparent electrode 41A.
  • 41 A of transparent electrodes for 1st touch panels are the structures similar to the transparent electrode 20 for touch panels shown in FIG. 2 demonstrated as the above-mentioned 2nd Embodiment.
  • 42 A of transparent electrodes for 2nd touch panels are the structures which provided the high refractive index layer on the conductive layer 13 in the transparent electrode 10 for touch panels shown in FIG. 1 demonstrated in the above-mentioned 1st Embodiment.
  • the second touch panel transparent electrode 42A is the second high refraction formed between the transparent substrate 11 and the titanium-containing layer 12 in the touch panel transparent electrode 30 shown in FIG. 3 described in the third embodiment. This is a configuration excluding the rate layer 34.
  • the touch panel 40A according to the modified example as described above is also configured to include two layers of the touch panel transparent electrode described in the above-described embodiment. For this reason, it has sufficient electroconductivity with light transmittance, can suppress the voltage drop at the time of enlarging a conductive film, maintaining the visibility of the display image of a foundation
  • the configuration from the first titanium-containing layer 51 to the second conductive layer 46 is sandwiched between the first high refractive index layer 54 and the second high refractive index layer 53. For this reason, it becomes the structure by which the high refractive index layer was provided in both the incident surface and exit surface of the light from the display image etc. which become the foundation
  • FIG. 9 shows the configuration of the touch panel of the present embodiment.
  • FIG. 9 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the AA cross-section shown in FIG.
  • the schematic configuration of the touch panel, the electrode configuration of the transparent electrode for the touch panel, and the planar arrangement of the electrode portion of the touch panel are the same as the configurations shown in FIGS.
  • the touch panel 50 of the present embodiment has a configuration in which a first touch panel transparent electrode 41 and a second touch panel transparent electrode 42 are provided on both surfaces of a substrate 57, and other configurations are described above. This is the same as the embodiment. For this reason, the same code
  • the second touch panel transparent electrode 41 In the first touch panel transparent electrode 41, the second high refractive index layer 53, the first titanium-containing layer 51, the first conductive layer 44, and the fourth high refractive index layer 55 are laminated in this order from the substrate 57 side. It is a configuration.
  • the third high refractive index layer 56, the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 are laminated in this order from the substrate 57 side. It is a configuration.
  • the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 are formed by laminating the first conductive layer 44 and the second conductive layer 46 on different surfaces with respect to the substrate 57. Yes.
  • the substrate 57 can have the same configuration as the substrate described in the embodiment of the transparent electrode for a touch panel described above. Moreover, each said layer which comprises the transparent electrode 41 for 1st touch panels, and the transparent electrode 42 for 2nd touch panels is the structure similar to the touch panel of the above-mentioned 4th Embodiment.
  • the configurations of the first conductive layer 44 and the second conductive layer 46 are the same as those of the touch panel of the fourth embodiment described above, and the x electrode patterns x1, x2,. And y electrode pattern y1, y2, ... comprised by the 2nd conductive layer 46 becomes a pattern structure and arrangement
  • the touch panel 50 as described above includes two layers of the touch panel transparent electrodes described in the third embodiment. For this reason, it has the same effect as the touch panel of the above-mentioned fourth embodiment, has sufficient conductivity as well as light transmittance, and increased the size of the conductive film while maintaining good visibility of the underlying display image. The voltage drop at the time can be suppressed.
  • FIG. 10 shows a cross-sectional configuration of a modified example of the touch panel of the fifth embodiment, in particular, a schematic cross-sectional view corresponding to the AA cross section shown in FIG.
  • the touch panel 40A of the modification shown in FIG. 10 has a configuration in which the second high refractive index layer 53 and the third high refractive index layer 56 are removed from the configuration of the touch panel 50 shown in FIG.
  • the first touch panel transparent electrode 41A has a configuration in which the first titanium-containing layer 51, the first conductive layer 44, and the fourth high refractive index layer 55 are laminated in this order from the substrate 57 side.
  • the transparent electrode 42A for the second touch panel has a configuration in which the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 are laminated in this order from the substrate 57 side.
  • the first touch panel transparent electrode 41A and the second touch panel transparent electrode 42A are the protective layer on the conductive layer 13 in the touch panel transparent electrode 10 shown in FIG. 1 described in the first embodiment.
  • 14 is a configuration in which a high refractive index layer serving as an optical adjustment layer is provided.
  • the transparent electrode 30 for a touch panel shown in FIG. 3 described in the third embodiment the second high refractive index layer 34 formed between the transparent substrate 11 and the titanium-containing layer 12 is excluded. .
  • the touch panel 50 ⁇ / b> A of the modified example as described above is also configured to include two layers of the touch panel transparent electrode described in the above-described embodiment. For this reason, it has sufficient electroconductivity with light transmittance, can suppress the voltage drop at the time of enlarging a conductive film, maintaining the visibility of the display image of a foundation
  • the configuration from the first conductive layer 44 to the second conductive layer 46 is sandwiched between the first high refractive index layer 54 and the fourth high refractive index layer 55. For this reason, it becomes the structure by which the high refractive index layer was provided in both the incident surface and exit surface of the light from the display image etc. which are the foundations of this touch panel 50A. For this reason, the light transmittance of the touch panel 50 ⁇ / b> A can be improved, and the visibility of a display image or the like serving as a base can be improved by suppressing light scattering.
  • Touch panel (sixth embodiment: configuration in which a conductive layer is provided on one side of a transparent substrate)> Next, a sixth embodiment of the present invention will be described. 6th Embodiment demonstrates the touchscreen using the transparent electrode 30 for touchscreens of the above-mentioned 3rd Embodiment. 11 to 13 show the configuration of the touch panel of this embodiment. Note that in the touch panel of this example, a configuration using a single-layer transparent electrode for a touch panel will be described.
  • FIG. 11 is a plan view showing an electrode configuration of a transparent electrode for a touch panel used in the touch panel of the present embodiment and a planar arrangement of electrode portions.
  • FIG. 12 is an enlarged view of an electrode portion of the transparent electrode for a touch panel.
  • FIG. 13 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the BB cross-section shown in FIGS. 11 and 12.
  • the configuration of the touch panel of the sixth embodiment is the same as that of the touch panel configuration shown in FIG. 4 except that the touch panel transparent electrode to be used is a single layer. For this reason, the same code
  • the touch panel 60 shown in FIG. 11 has a first conductive layer 62 having y electrode patterns y1, y2,... And a second conductive having x electrode patterns x1, x2,.
  • a layer 63 In FIG. 11, only the first conductive layer 62 and the second conductive layer 63 formed on the substrate 61 are shown, and the illustration of other titanium-containing layers and high refractive index layers is omitted.
  • the touch panel 60 includes a substrate 61 and a second high refractive index layer 67, a titanium-containing layer 66, a first conductive layer 62, and a second conductive layer 63 that are sequentially stacked on the substrate 61. , An interlayer insulating film 65, a connection electrode 64, a first high refractive index layer 68, and a front plate 47.
  • the first conductive layer 62 and the second conductive layer 63 are formed in the same layer.
  • the first conductive layer 62 and the second conductive layer 63 are formed adjacent to the titanium-containing layer 66 formed in the same pattern as the first conductive layer 62 and the second conductive layer 63.
  • the first conductive layer 62 and the second conductive layer 63 have x electrode patterns x1, x2,... And y electrode patterns y1, y2,.
  • the x electrode pattern has a rhombus pattern arranged in a matrix at intervals and a connecting portion that is provided in the x direction linearly from the vicinity of the apex of the rhombus pattern and connects adjacent rhombus patterns in the x direction. is doing.
  • the y electrode pattern has a rhombus pattern arranged in a matrix and a connecting portion that is provided in the y direction linearly from the vicinity of the apex of the rhombus pattern and connects adjacent rhombus patterns in the y direction.
  • the connecting portion in the y direction is constituted by a connection electrode 64 provided on the connecting portion in the x direction via the interlayer insulating film 65.
  • the interlayer insulating film 65 is provided at a position covering the connecting portion in the x direction of the second conductive layer 63.
  • the edge part of the connection electrode 64 is connected to the vertex vicinity of a rhombus pattern, and the y electrode pattern by the 1st conductive layer 62 is comprised.
  • the substrate 61, the titanium-containing layer 66, the first high-refractive index layer 68, and the second high-refractive index layer 67 may have the same configuration as that described in the above-described embodiment of the transparent electrode for touch panel. it can. Further, as an example, the titanium-containing layer 66 is patterned in the same shape as the first conductive layer 62 and the second conductive layer 63, but any other configuration can be used as long as the insulation between the x electrode pattern and the y electrode pattern can be secured. The pattern can also be
  • the first conductive layer 62 and the second conductive layer 63 are the conductive layers described in the embodiment of the transparent electrode for a touch panel described above, and a plurality of x electrode patterns x1, x2,. And a plurality of y electrode patterns y1, y2,...
  • the y electrode patterns are arranged with an interval enough to maintain an insulating state without overlapping with the x electrode patterns x1, x2,. Accordingly, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,.
  • the y electrode pattern has a shape that occupies as large a range as possible within a range having an interval sufficient to maintain an insulation state with the x electrode patterns x1, x2,.
  • each x electrode pattern x1, x2,... And each y electrode pattern y1, y2,... Has an x wiring 69x or y wiring at each end, as in the embodiments of the touch panel described above. 69y is connected.
  • connection electrode 64 linearly connects each y electrode pattern in the y direction in the vicinity of the apex of the rhombic y electrode pattern, which constitutes each y electrode pattern.
  • the connection electrode 64 is disposed at each position where the connection electrode 64 intersects the connecting portion of the rhombic pattern of the x electrode patterns x1, x2,.
  • the interlayer insulating film 65 covers the connecting portions of the rhombic patterns of the x electrode patterns x1, x2,...
  • connection electrodes 64 are on the interlayer insulating film on the x electrode patterns x1, x2,. 65 are stacked. Therefore, the insulation between the x electrode patterns x1, x2,...
  • connection electrode 64 may be made of a general electrode material such as silver or a light-transmissive electrode material such as ITO. From the viewpoint of the visibility of the underlying display image through the touch panel 60, preferably, an electrode material having light transmissivity and containing Ag as a main component is used similarly to the first conductive layer 62 and the second conductive layer 63.
  • connection electrode 64 is a layer below the first conductive layer 62 and the second conductive layer 63. May be provided. At this time, the connection electrode 64 is arranged at each position intersecting in plan view with a portion connecting the rhombus patterns of the x electrode patterns x1, x2,. At each of these intersecting positions, at least an interlayer insulating layer is sandwiched between the connection electrode 64 and the connecting portion of the rhombic pattern of the x electrode patterns x1, x2,. Therefore, even in the example in which the connection electrode 64 is provided below the first conductive layer 62 and the second conductive layer 63, the x electrode patterns x1, x2,. Insulation with y2,... is ensured.
  • the above-described touch panel 60 can be enlarged in the same manner as the touch panel of the above-described embodiment by using the transparent electrode for a touch panel described in the above-described third embodiment, which has sufficient conductivity as well as light transmittance. The deterioration of the visibility of the display image via the touch panel 60 can be prevented.
  • the touch panel of the present invention is not limited to the configurations of the above-described embodiments and modifications, and can be widely applied as long as the configuration uses a transparent electrode for a touch panel.
  • the pattern shape is not limited.
  • the touch panel may be a resistance film type in which two transparent electrodes for a touch panel provided with a solid film-like conductive layer are arranged with a spacer interposed therebetween, or may be a surface type capacitive type.
  • FIG. 14 is a perspective view of the configuration of the display device of this embodiment.
  • a display device 70 shown in FIG. 14 is a display device with an information input function in which a touch panel 71 is provided on the display surface of the display panel 72.
  • the touch panel 71 of the display device 70 can be applied with the touch panel of the above-described embodiment and modification.
  • the display panel 72 is not particularly limited, and for example, a flat display panel such as a liquid crystal display panel or a display panel using an organic electroluminescent element, or a CRT (Cathode Ray Ray Tube) display can be used. Further, the display panel 72 is not limited to a display panel that displays a moving image, and may be a display panel for a still image.
  • a flat display panel such as a liquid crystal display panel or a display panel using an organic electroluminescent element, or a CRT (Cathode Ray Ray Tube) display
  • CRT Cathode Ray Ray Tube
  • a touch panel 71 is arranged so as to cover the display surface on the image display surface.
  • the touch panel 71 and the display panel 72 are further accommodated in a frame-shaped case member 73 as necessary.
  • a front plate made of a transparent plate material may be provided on the case member 73.
  • the position information of the contact portion can be input to the touch panel 71.
  • Transparent electrodes for touch panels (hereinafter referred to as transparent electrodes) of Samples 101 to 124 were produced on a transparent substrate so as to have an area of 5 cm ⁇ 5 cm.
  • a polyethylene terephthalate (PET) substrate (samples 101 to 118, samples 120 to 124) and a glass substrate (sample 119) were prepared.
  • Table 1 below shows the configuration of each layer in each of the transparent electrodes of Samples 101 to 124.
  • a procedure for manufacturing each of the transparent electrodes of the samples 101 to 124 will be described.
  • the resistance heating boat was energized and heated, and the conductive layer made of silver was sampled at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • the thickness was 6 nm for 105, 8 nm for sample 106, and 15 nm for sample 107.
  • a high refractive index layer made of titanium oxide (TiO 2 ) is formed with a thickness of 30 nm on one main surface of a transparent substrate made of PET, and a conductive layer made of silver is formed thereon.
  • a transparent electrode having a laminated structure of the high refractive index layer and the upper conductive layer was produced.
  • a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium oxide (TiO 2 ) is put into a heating boat, and these substrate holder and the heating boat are connected to a vacuum of the electron beam evaporation apparatus. Attached to the tank. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
  • the vacuum chamber of the electron beam evaporation apparatus is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by irradiating an electron beam to a heating boat containing titanium oxide, and the deposition rate is 0.1 nm / second to 0.2 nm.
  • a high refractive index layer made of titanium oxide having a thickness of 30 nm was provided on the transparent substrate at a rate of / sec.
  • the transparent substrate formed up to the high refractive index layer is transferred to a vacuum chamber of a vacuum evaporation apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a resistance heating boat containing silver is energized. And heated.
  • a conductive layer made of silver was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second with a thickness of 6 nm for sample 108, 8 nm for sample 109, and 15 nm for sample 110.
  • a high refractive index layer made of titanium dioxide (TiO 2 ) is formed on a PET transparent substrate with a thickness of 30 nm, and a titanium-containing layer made of titanium is formed thereon with a thickness of 0.1 nm. Then, a conductive layer made of silver was formed to a thickness of 8 nm.
  • a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium dioxide (TiO 2 ) is put into a heating boat, and these substrate holder and heating boat are connected to a vacuum chamber of the electron beam evaporation apparatus. Attached to.
  • a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
  • the vacuum chamber of the electron beam vapor deposition apparatus is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by irradiating an electron beam onto a heating boat containing titanium dioxide, and the deposition rate is 0.1 nm / second to 0.2 nm.
  • a high refractive index layer made of titanium dioxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
  • the substrate formed up to the high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a voltage was applied to the titanium target, A titanium-containing layer made of titanium was provided on top with a thickness of 0.1 nm.
  • the base material formed up to the titanium-containing layer is transferred to a vacuum chamber of a vacuum deposition apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a resistance heating boat containing silver. did.
  • a conductive layer made of silver having a film thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • Transparent electrodes of Samples 112 to 114 were obtained in the same procedure as Sample 111 except that the titanium-containing layer was changed to the thicknesses (1 nm, 5 nm, and 10 nm) shown in Table 1, respectively.
  • Each transparent electrode of Sample 116 was obtained in the same procedure as Sample 112, except that the material used for the titanium-containing layer was magnetic phase titanium oxide (Ti n O 2n-1 ).
  • Each transparent electrode of Sample 117 was obtained in the same procedure as Sample 112 except that the material used for the titanium-containing layer was dititanium trioxide (Ti 2 O 3 ).
  • Each transparent electrode of Sample 118 was obtained in the same procedure as Sample 112, except that the material used for the titanium-containing layer was titanium nitride (TiN).
  • a high refractive index layer made of titanium dioxide (TiO 2 ) is formed with a thickness of 30 nm on a transparent substrate made of alkali-free glass as follows, and a titanium-containing layer made of titanium is formed thereon with a thickness of 1 nm. Then, a conductive layer made of silver was formed to a thickness of 8 nm.
  • a transparent substrate made of alkali-free glass is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium dioxide (TiO 2 ) is put into a heating boat, and these substrate holder and the heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber.
  • a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
  • the vacuum chamber of the electron beam vapor deposition apparatus is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by irradiating an electron beam onto a heating boat containing titanium dioxide, and the deposition rate is 0.1 nm / second to 0.2 nm.
  • a high refractive index layer made of titanium dioxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
  • the substrate formed up to the high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a voltage was applied to the titanium target, A titanium-containing layer made of titanium was provided on top with a thickness of 1 nm.
  • the base material on which the titanium-containing layer was formed was transferred to a vacuum chamber of a vacuum evaporation apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a resistance heating boat containing silver was energized. Heated. As a result, a conductive layer made of silver having a film thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • Each transparent electrode of the sample 120 was obtained in the same procedure as the sample 112 except that the material used for the high refractive index layer was niobium oxide (Nb 2 O 5 ).
  • Each transparent electrode of Sample 121 was obtained in the same procedure as Sample 112 except that the material used for the high refractive index layer was tantalum oxide (Ta 2 O 5 ).
  • Each transparent electrode of Sample 122 was obtained in the same procedure as Sample 112 except that the material used for the high refractive index layer was cerium oxide (CeO 2 ).
  • a titanium-containing layer made of titanium was formed with a thickness of 1 nm on one main surface of a transparent substrate made of PET, and a conductive layer made of silver was formed thereon with a thickness of 8 nm.
  • a transparent substrate made of PET was fixed to a base material holder of a commercially available sputtering apparatus, and a titanium (Ti) target was attached to a vacuum chamber of the sputtering apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
  • the substrate formed up to the titanium-containing layer was transferred to a vacuum chamber of a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a resistance heating boat containing silver.
  • a conductive layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • a second high refractive index layer made of niobium oxide (Nb 2 O 5 ) is formed on a transparent substrate made of PET in the following manner with a thickness of 30 nm, and a titanium-containing layer made of titanium is formed on the upper portion by 1 nm.
  • the conductive layer made of silver is formed with a thickness of 8 nm on the titanium-containing layer, and the first high refractive index layer made of niobium oxide (Nb 2 O 5 ) is further formed on the conductive layer with a thickness of 30 nm. The thickness was formed.
  • a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, niobium oxide (Nb 2 O 5 ) is placed in a heating boat, and these substrate holder and heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber.
  • a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus.
  • silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
  • the heating boat containing niobium oxide is heated by irradiating the electron beam with a deposition rate of 0.1 nm / second to 0.2 nm.
  • a second high refractive index layer made of niobium oxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
  • the substrate formed up to the second high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the pressure of the sputtering apparatus was reduced to 4 ⁇ 10 ⁇ 4 Pa, a voltage was applied to the titanium target.
  • a titanium-containing layer made of titanium was provided on the transparent substrate with a thickness of 1 nm.
  • the substrate on which the titanium-containing layer has been formed is transferred to a vacuum chamber of a vacuum deposition apparatus, the vacuum chamber of the vacuum deposition apparatus is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a resistance heating boat containing silver. did.
  • a conductive layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • the substrate on which the conductive layer has been formed is transferred to a vacuum chamber of an electron beam vapor deposition device, and the vacuum chamber of the electron beam vapor deposition device is depressurized to 4 ⁇ 10 ⁇ 4 Pa. Irradiation and heating were performed, and a first high refractive index layer made of niobium oxide having a thickness of 30 nm was provided on the conductive layer at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • the samples 105 to 110 having no titanium-containing layer have low visibility. These are because the aggregation of Ag constituting the conductive layer occurs due to the absence of the titanium-containing layer, and the uniformity of the conductive layer is lowered.
  • the resistance values of Samples 105 to 110 were large due to Ag aggregation, and the resistance values could not be measured except for Sample 107 and Sample 110 in which the conductive layer was formed as thick as 15 nm.
  • the visibility is lower than the other samples.
  • Samples 111 to 114 in which a titanium-containing layer was formed and TiO 2 was further formed as a high refractive index layer had a surface resistance higher than that of sample 109 formed under the same conditions except that a titanium-containing layer was not formed. And visibility is improved. From this result, it can be seen that by forming the Ag conductive layer in contact with the titanium-containing layer, aggregation of Ag constituting the conductive layer was suppressed, and a thin and highly uniform conductive layer was formed.
  • the thickness of the titanium-containing layer is increased, the visibility is improved and the sheet resistance is decreased. From this result, if the titanium-containing layer is 10 nm or less, the greater the thickness of the titanium-containing layer, the higher the uniformity of the conductive layer formed on the titanium-containing layer, and the transparent with high visibility and conductivity. An electrode can be formed.
  • the transparent electrodes of the samples 116 and 117 using titanium oxide have a visibility of 4.1 and 4.0 and a sheet resistance value of 11.5 and 12.1, respectively.
  • the visibility and the resistance value are lowered.
  • the titanium-containing layer contains oxygen atoms that are difficult to bond with silver atoms, and the film quality of silver constituting the electrode layer on the titanium-containing layer is deteriorated. For this reason, it is preferable to use a material with a low oxygen content for the titanium-containing layer.
  • the samples 120 to 122 using Nb 2 O 5 , Ta 2 O 5 , or CeO 2 as the high refractive index layer are visually recognized as compared with the sample 112 having the same configuration except for the high refractive index layer. Although the properties and resistance values were inferior, sufficiently good results were obtained.
  • the same result as that of the sample 112 is obtained, so that the glass substrate can be used as the base material of the transparent electrode in the same manner as the resin film.
  • the sample 123 in which the high refractive index layer is not provided has a sufficiently good result, although the visibility is inferior to that of the sample 112 having the same configuration except that the high refractive index layer is provided. Moreover, it turns out that the visibility of a transparent electrode improves by having a high refractive index layer from this result.
  • one high refractive index layer is provided in the sample 124 having a configuration in which two high refractive index layers are formed and a conductive layer and a titanium-containing layer are sandwiched between the first high refractive index layer and the second high refractive index layer. Visibility is improved as compared with the sample 120. From this result, it is understood that the visibility of the transparent electrode is improved by providing a high refractive index layer above and below the configuration of the conductive layer and the titanium-containing layer and sandwiching the conductive layer between the high refractive index layers.
  • an electrode film that is, a transparent electrode
  • a transparent electrode having a low resistance although being a thin film
  • the formation of a uniform conductive layer can suppress light scattering and improve the visibility of a display image or the like as a base.
  • the conductive layer and the titanium-containing layer are sandwiched between high refractive index layers, that is, a configuration in which a high refractive index layer is formed on both the incident side and the emission side of the conductive layer, It was confirmed that the visibility of the transparent electrode was further improved.
  • y wiring 51 ... first titanium-containing layer, 52. ..Second titanium-containing layer, 55... 4th high refractive index layer, 56. DESCRIPTION OF SYMBOLS 1 ... Board
  • substrate 64 ... Connection electrode, 65 ... Interlayer insulation film, 70 ... Display apparatus, 72 ... Display panel, 73 ... Case member, x1 ... x electrode pattern, y1 ... y electrode pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a transparent electrode for a touch panel that has both conductivity and visibility. The transparent electrode for a touch panel is provided with a titanium-containing layer and a conductive layer that comprises silver as a main component thereof and that is arranged so as to be adjacent to the titanium-containing layer.

Description

タッチパネル用透明電極、タッチパネル、および表示装置Transparent electrode for touch panel, touch panel, and display device
 本発明は、タッチパネル用透明電極、このタッチパネル用透明電極を備えるタッチパネル、及び、表示装置に関する。 The present invention relates to a transparent electrode for a touch panel, a touch panel including the transparent electrode for a touch panel, and a display device.
 表示パネルの表示面側に配置されるタッチパネルには、抵抗膜式、表面型静電容量式、投影型静電容量式、光学式、超音波式などの様々な方式があるが、投影型静電容量式は多点入力できるという特徴を有しており、スマートフォンなどでの実用化が進んでいる。 There are various types of touch panels arranged on the display surface side of the display panel, such as a resistive film type, a surface type capacitive type, a projected type capacitive type, an optical type, and an ultrasonic type. Capacitance type has the feature that multi-point input is possible, and practical use is progressing in smartphones.
 ところで、投影型静電容量方式のように、パネル面の全面にわたって電極が配置される構成のタッチパネルにおいては、透明性の導電性材料を用いて電極を構成することにより、タッチパネルを介して配置される表示画像の視認性を確保している。このようなタッチパネル用透明電極としては、主としてインジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。しかしながら、ITO等の金属酸化物は、光透過性には優れるものの導電性が十分ではなく、パネルの中央付近で電圧降下が起こりやく、タッチパネルの大型化が阻害される。また、抵抗値を低く抑えようとした場合、ある程度の厚さが必要とされるため、投影型静電容量方式のように電極がパターンを有する場合、このパターンが視認され易くなり、結果として下地となる表示画像の視認性が低下する。 By the way, in the touch panel in which the electrodes are arranged over the entire surface of the panel surface as in the projected capacitance method, the electrodes are arranged through the touch panel by forming the electrodes using a transparent conductive material. The visibility of the displayed image is ensured. As such a transparent electrode for a touch panel, a metal oxide such as indium tin oxide (ITO) has been mainly used. However, although metal oxides such as ITO are excellent in light transmittance, the conductivity is not sufficient, voltage drop is likely to occur near the center of the panel, and an increase in the size of the touch panel is hindered. In addition, when the resistance value is to be kept low, a certain amount of thickness is required. Therefore, when the electrode has a pattern as in the projected capacitive method, this pattern is easily visible, and as a result, the ground The visibility of the displayed image becomes lower.
 そこで近年においては、タッチパネル用透明電極として、ITOよりも導電性が高い金属ナノワイヤーを用いた構成が提案されている(例えば、特許文献1参照)。 Therefore, in recent years, a configuration using metal nanowires having higher conductivity than ITO has been proposed as a transparent electrode for a touch panel (see, for example, Patent Document 1).
特開2012-33466号公報JP 2012-33466 A
 しかしながら、金属ナノワイヤーを用いたタッチパネル用透明電極は、抵抗を下げるために金属ナノワイヤーの添加量を増加させると、金属ナノワイヤーの光散乱により下地となる表示画像の視認性が低下する課題を有していた。 However, a transparent electrode for a touch panel using metal nanowires has a problem in that the visibility of a display image serving as a base is reduced due to light scattering of the metal nanowires when the addition amount of the metal nanowires is increased to reduce the resistance. Had.
 そこで本発明は、十分な導電性と視認性とを兼ね備えたタッチパネル用透明電極を提供すること、並びに、このタッチパネル用透明電極を用いることによって視認性の向上が図られたタッチパネル、及び、表示装置を提供する。 Therefore, the present invention provides a transparent electrode for a touch panel that has both sufficient conductivity and visibility, and a touch panel that is improved in visibility by using the transparent electrode for a touch panel, and a display device I will provide a.
 本発明のタッチパネル用透明電極は、チタン含有層と、チタン含有層に隣接して設けられた銀を主成分とする導電層とを備える。
 本発明のタッチパネルは、上記タッチパネル用透明電極を備える。
 また、本発明の表示装置は、上記タッチパネルと、このタッチパネルに重ねて配置された表示パネルとを備える。
The transparent electrode for a touch panel of the present invention includes a titanium-containing layer and a conductive layer mainly composed of silver provided adjacent to the titanium-containing layer.
The touch panel of this invention is equipped with the said transparent electrode for touch panels.
Moreover, the display device of the present invention includes the touch panel and a display panel disposed on the touch panel.
 本発明のタッチパネル用透明電極によれば、チタン含有層に隣接させて、銀を主成分とした導電層が設けられる。このチタン含有層上に銀を主成分とする導電層を形成することにより、銀原子とチタン含有層を構成するチタン原子との相互作用を得ることができ、銀の凝集が抑えられ、薄いながらも均一な厚さの導電層が得られる。
 従って、銀を用いた透明電極において、導電性の向上と視認性の向上との両立が可能となる。また、この透明電極を用いて、導電性と視認性とに優れるタッチパネル及び表示装置を構成することができる。
According to the transparent electrode for a touch panel of the present invention, a conductive layer mainly composed of silver is provided adjacent to the titanium-containing layer. By forming a conductive layer mainly composed of silver on this titanium-containing layer, it is possible to obtain an interaction between silver atoms and titanium atoms constituting the titanium-containing layer, while suppressing the aggregation of silver while being thin A conductive layer having a uniform thickness can be obtained.
Therefore, in the transparent electrode using silver, it becomes possible to achieve both improved conductivity and improved visibility. Moreover, the touchscreen and display apparatus which are excellent in electroconductivity and visibility can be comprised using this transparent electrode.
 本発明によれば、導電性と視認性とを兼ね備えたタッチパネル用透明電極、タッチパネル及び表示装置を提供することができる。 According to the present invention, it is possible to provide a transparent electrode for a touch panel, a touch panel, and a display device that have both conductivity and visibility.
第1実施形態のタッチパネル用透明電極の概略構成を示す図である。It is a figure which shows schematic structure of the transparent electrode for touchscreens of 1st Embodiment. 第2実施形態のタッチパネル用透明電極の概略構成を示す図である。It is a figure which shows schematic structure of the transparent electrode for touchscreens of 2nd Embodiment. 第3実施形態のタッチパネル用透明電極の概略構成を示す図である。It is a figure which shows schematic structure of the transparent electrode for touchscreens of 3rd Embodiment. 第4実施形態のタッチパネルの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the touchscreen of 4th Embodiment. 第4実施形態のタッチパネルに用いられる、タッチパネル用透明電極の電極構成を示す平面図である。It is a top view which shows the electrode structure of the transparent electrode for touchscreens used for the touchscreen of 4th Embodiment. 第4実施形態のタッチパネルの電極部分の平面配置を示す模式図である。It is a schematic diagram which shows the planar arrangement | positioning of the electrode part of the touchscreen of 4th Embodiment. 図6に示すA-A断面に相当する、第4実施形態のタッチパネルの断面模式図である。FIG. 7 is a schematic cross-sectional view of a touch panel according to a fourth embodiment corresponding to the AA cross section shown in FIG. 6. 図6に示すA-A断面に相当する、第4実施形態のタッチパネルの変形例の断面模式図である。FIG. 7 is a schematic cross-sectional view of a modification of the touch panel of the fourth embodiment corresponding to the AA cross-section shown in FIG. 図6に示すA-A断面に相当する、第5実施形態のタッチパネルの断面模式図である。FIG. 7 is a schematic cross-sectional view of a touch panel according to a fifth embodiment corresponding to the AA cross-section shown in FIG. 6. 図6に示すA-A断面に相当する、第5実施形態のタッチパネルの変形例の断面模式図である。FIG. 10 is a schematic cross-sectional view of a modified example of the touch panel of the fifth embodiment corresponding to the AA cross section shown in FIG. 第6実施形態のタッチパネルに用いられる、タッチパネル用透明電極の電極構成を示す平面図である。It is a top view which shows the electrode structure of the transparent electrode for touchscreens used for the touchscreen of 6th Embodiment. 図11に示すタッチパネル用透明電極の電極構成の拡大図である。It is an enlarged view of the electrode structure of the transparent electrode for touchscreens shown in FIG. 図11に示すB-B断面に相当する、第6実施形態のタッチパネルの断面模式図である。It is a cross-sectional schematic diagram of the touch panel of the sixth embodiment corresponding to the BB cross section shown in FIG. 第7実施形態の表示装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the display apparatus of 7th Embodiment.
 以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.タッチパネル用透明電極(第1実施形態)
2.タッチパネル用透明電極(第2実施形態)
3.タッチパネル用透明電極(第3実施形態)
4.タッチパネル(第4実施形態:2枚の透明基板を用いた構成)
5.タッチパネル(第5実施形態:透明基板の両面に導電層を設けた構成)
6.タッチパネル(第6実施形態:透明基板の片面に導電層を設けた構成)
7.表示装置(第7実施形態:タッチパネルを用いた構成)
Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.
The description will be given in the following order.
1. Transparent electrode for touch panel (first embodiment)
2. Transparent electrode for touch panel (second embodiment)
3. Transparent electrode for touch panel (third embodiment)
4). Touch panel (fourth embodiment: configuration using two transparent substrates)
5. Touch panel (fifth embodiment: configuration in which conductive layers are provided on both sides of a transparent substrate)
6). Touch panel (sixth embodiment: configuration in which a conductive layer is provided on one side of a transparent substrate)
7). Display device (seventh embodiment: configuration using a touch panel)
〈1.タッチパネル用透明電極(第1実施形態)〉
 本発明の第1実施形態について説明する。
 図1に、第1実施形態のタッチパネル用透明電極の概略構成図(断面図)を示す。図1に示すように、タッチパネル用透明電極10は、チタン含有層12と、導電層13とを備えて、透明基板11上に形成されている。タッチパネル用透明電極10は、チタン含有層12と導電層13との一方面同士が隣接して導電層13が形成されている。また、導電層13の多方面上には、保護層14が設けられている。そして、チタン含有層12の他方面側に透明基板11を備える。つまり、チタン含有層12と導電層13とからなる透明電極10が、透明基板11と保護層14とに挟持された構成である。
<1. Transparent electrode for touch panel (first embodiment)>
A first embodiment of the present invention will be described.
In FIG. 1, the schematic block diagram (sectional drawing) of the transparent electrode for touchscreens of 1st Embodiment is shown. As shown in FIG. 1, the transparent electrode 10 for a touch panel includes a titanium-containing layer 12 and a conductive layer 13 and is formed on a transparent substrate 11. In the transparent electrode 10 for a touch panel, the conductive layer 13 is formed such that one surfaces of the titanium-containing layer 12 and the conductive layer 13 are adjacent to each other. A protective layer 14 is provided on many surfaces of the conductive layer 13. A transparent substrate 11 is provided on the other surface side of the titanium-containing layer 12. That is, the transparent electrode 10 composed of the titanium-containing layer 12 and the conductive layer 13 is sandwiched between the transparent substrate 11 and the protective layer 14.
 以下に、本例のタッチパネル用透明電極10について、透明基板11、チタン含有層12、及び導電層13、及び、保護層14の順に、詳細な構成を説明する。なお、本例のタッチパネル用透明電極10において、透明とは波長550nmでの光透過率が50%以上であることをいう。 Hereinafter, the detailed configuration of the transparent electrode 10 for the touch panel of this example will be described in the order of the transparent substrate 11, the titanium-containing layer 12, the conductive layer 13, and the protective layer 14. In addition, in the transparent electrode 10 for touchscreens of this example, transparent means that the light transmittance in wavelength 550nm is 50% or more.
[透明基板]
 タッチパネル用透明電極10が形成される透明基板11は、表示パネルの前面板を兼ねるものであってもよい。このような透明基板11としては、例えば、ガラス、石英、透明樹脂フィルムが挙げられる。
[Transparent substrate]
The transparent substrate 11 on which the touch panel transparent electrode 10 is formed may also serve as a front panel of the display panel. Examples of such a transparent substrate 11 include glass, quartz, and a transparent resin film.
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、タッチパネル用透明電極10との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理や、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。 Examples of the glass include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. On the surface of these glass materials, from the viewpoints of adhesion, durability, and smoothness with the transparent electrode 10 for the touch panel, physical treatment such as polishing, a coating made of an inorganic material or an organic material, A hybrid film is formed by combining these films.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Is mentioned.
 樹脂フィルムの表面には、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜及びハイブリッド被膜は、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m・24時間・atm)以下、水蒸気透過度が10-5g/(m・24時間)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed. Such coatings and hybrid coatings have a water vapor transmission rate (25 ± 0.5 ° C., relative humidity 90 ± 2% RH) measured by a method according to JIS-K-7129-1992 of 0.01 g / ( m 2 · 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable. Furthermore, the oxygen permeability measured by the method according to JIS-K-7126-1987 is 10 −3 ml / (m 2 · 24 hours · atm) or less, and the water vapor permeability is 10 −5 g / (m (2 · 24 hours) or less is preferable.
 以上のようなバリア性フィルムを形成する材料としては、樹脂フィルムの劣化をもたらす水分や酸素等の浸入を抑制する機能を有する材料を用いる。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As the material for forming the barrier film as described above, a material having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the resin film is used. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers (organic layers) made of an organic material. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。特に、特開2004-68143号公報に記載の大気圧プラズマ重合法を好ましく用いることができる。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. In particular, the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 can be preferably used.
[チタン含有層]
 チタン含有層12は、例えば、チタン、チタン含有化合物を用いて構成された層である。また、チタン含有層12は、導電層13に隣接して形成された層である。導電層13と接してチタン含有層12が形成されることにより、導電層13の主成分である銀と、チタン含有層12を構成するチタン原子との相互作用により、チタン含有層12表面における銀原子の拡散距離が減少し、銀の凝集が抑えられる。このため、一般的に、核成長型(Volumer-Weber:VW型)での成長により島状に孤立し易い薄銀層が、単層成長型(Frank-van der Merwe:FM型)の成長によって形成される。従って、チタン含有層12に接して、銀を主成分とする導電層13を形成することにより、薄いながらも、均一な厚さの導電層13が得られる。
[Titanium-containing layer]
The titanium-containing layer 12 is a layer configured using, for example, titanium or a titanium-containing compound. The titanium-containing layer 12 is a layer formed adjacent to the conductive layer 13. By forming the titanium-containing layer 12 in contact with the conductive layer 13, silver on the surface of the titanium-containing layer 12 is caused by the interaction between silver, which is the main component of the conductive layer 13, and titanium atoms constituting the titanium-containing layer 12. The diffusion distance of atoms is reduced and silver aggregation is suppressed. For this reason, generally, a thin silver layer that tends to be isolated in an island shape due to growth by a nuclear growth type (Volumer-Weber: VW type) is transformed into a single layer growth type (Frank-van der Merwe: FM type). It is formed. Therefore, by forming the conductive layer 13 mainly composed of silver in contact with the titanium-containing layer 12, the conductive layer 13 having a uniform thickness can be obtained although it is thin.
 このチタン含有層12としてチタン含有化合物を用いる場合には、チタン原子と銀原子とを相互作用させるため、チタン含有層12の全体において、特に導電層13との界面側において、チタン含有量が多いことが好ましい。チタン含有化合物としては、例えば、チタン合金、チタン酸化物、チタン窒化物が挙げられる。 When a titanium-containing compound is used as the titanium-containing layer 12, the titanium content is large in the entire titanium-containing layer 12, particularly on the interface side with the conductive layer 13, because titanium atoms and silver atoms interact. It is preferable. Examples of titanium-containing compounds include titanium alloys, titanium oxides, and titanium nitrides.
 チタン合金としては、チタンを主成分とした合金であり、チタンの含有率が50atm%以上であることが好ましい。チタン合金としては、例えば、アルミニウムチタン(TiAl)が挙げられる。
 また、チタン酸化物としては、例えば、一酸化チタン(TiO)、三酸化二チタン(Ti)、五酸化三チタン(Ti)、マグネリ相チタン酸化物(Ti2n-1:n≧3)が挙げられる。チタン含有層12にチタン酸化物を用いる際には、チタン含有量よりも酸素含有量が少ない材料を用いることが好ましい。
 チタン窒化物としては、例えば窒化チタン(TiN)が挙げられる。
As a titanium alloy, it is an alloy which has titanium as a main component, and it is preferable that the content rate of titanium is 50 atm% or more. Examples of the titanium alloy include aluminum titanium (TiAl).
Examples of titanium oxide include titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), trititanium pentoxide (Ti 3 O 5 ), and magnesium phase titanium oxide (Ti n O 2n— 1 : n ≧ 3). When using titanium oxide for the titanium-containing layer 12, it is preferable to use a material having a lower oxygen content than the titanium content.
An example of titanium nitride is titanium nitride (TiN).
 また、チタン含有層12は、チタンや上述したチタン含有化合物を用いて構成されていればよく、これらを2種以上用いて構成されていてもよい。さらに、チタン含有層12は、チタン以外の金属が添加されていてもよい。これらの金属としては、例えば、銀(Ag)、マグネシウム(Mg)、銅(Cu)、インジウム(In)、金(Au)、イリジウム(Ir)、リチウム(Li)等が添加されていてもよい。 Further, the titanium-containing layer 12 only needs to be configured using titanium or the above-described titanium-containing compound, and may be configured using two or more of these. Further, the titanium-containing layer 12 may be added with a metal other than titanium. As these metals, for example, silver (Ag), magnesium (Mg), copper (Cu), indium (In), gold (Au), iridium (Ir), lithium (Li) or the like may be added. .
 以上のようなチタン含有層12は、タッチパネル用透明電極10の光透過性を阻害しない程度の厚さとし、例えば5nm以下とすることが好ましい。一方、チタン含有層12は、チタン含有層12上に形成される導電層13の膜均一性を確保することができる程度の厚さを必要とする。この厚さとしてチタン含有層12は、チタン原子が1原子層以上形成されていればよい。また、チタン含有層12は、連続膜であることが好ましい。なお、チタン含有層12においてチタンの連続相に欠陥があっても、この欠陥が導電層13を構成するAg原子よりも小さければ、導電層13の膜均一性を確保することができる。 The titanium-containing layer 12 as described above has a thickness that does not hinder the light transmittance of the transparent electrode 10 for a touch panel, and is preferably 5 nm or less, for example. On the other hand, the titanium-containing layer 12 needs a thickness that can ensure the film uniformity of the conductive layer 13 formed on the titanium-containing layer 12. As the thickness, the titanium-containing layer 12 only needs to have one atomic layer or more of titanium atoms. The titanium-containing layer 12 is preferably a continuous film. Even if the titanium-containing layer 12 has a defect in the continuous phase of titanium, the film uniformity of the conductive layer 13 can be ensured if the defect is smaller than the Ag atoms constituting the conductive layer 13.
 尚、このようなチタン含有層12の形成方法が特に限定されることはないが、電子ビーム蒸着法、及びスパッタ法が好ましく適用される。 In addition, although the formation method of such a titanium content layer 12 is not specifically limited, an electron beam vapor deposition method and a sputtering method are applied preferably.
[導電層]
 導電層13は、銀を主成分として構成された層であって、銀又は銀を主成分とした合金を用いて構成され、チタン含有層12に隣接して形成された層である。このような導電層13の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。なかでも蒸着法が好ましく適用される。また、導電層13は、チタン含有層12上に形成されることにより、形成後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、形成後に高温アニール処理等を行ったものであってもよい。
[Conductive layer]
The conductive layer 13 is a layer composed mainly of silver, is composed of silver or an alloy composed mainly of silver, and is a layer formed adjacent to the titanium-containing layer 12. Examples of the method for forming the conductive layer 13 include a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. Examples include a method using a dry process. Of these, the vapor deposition method is preferably applied. In addition, the conductive layer 13 is formed on the titanium-containing layer 12, so that it has sufficient conductivity without a high-temperature annealing treatment after the formation. It may have been subjected to a high temperature annealing treatment or the like.
 導電層13を構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。 As an example, an alloy mainly composed of silver (Ag) constituting the conductive layer 13 is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). Etc.
 以上のような導電層13は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。 The conductive layer 13 as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
 さらに、タッチパネル用透明電極10の光透過性を阻害しないために、導電層13の厚さを15nm以下となるように設定することが好ましく、特に12nm以下とすることが好ましい。導電層13の厚さが15nm以下では、層の吸収成分及び反射成分が低く抑えられ、タッチパネル用透明電極10の光透過率が維持されるため好ましい。さらに、導電層13の厚さを12nm以下とすることにより、タッチパネル用透明電極10の光透過性がさらに向上する。また、導電層13は、少なくとも厚さが4nm以上あれば、タッチパネル用透明電極10の導電性が確保される。 Furthermore, the thickness of the conductive layer 13 is preferably set to 15 nm or less, and particularly preferably 12 nm or less, in order not to disturb the light transmittance of the transparent electrode 10 for touch panel. When the thickness of the conductive layer 13 is 15 nm or less, the absorption component and the reflection component of the layer are suppressed low, and the light transmittance of the transparent electrode 10 for touch panel is maintained, which is preferable. Furthermore, the light transmittance of the transparent electrode 10 for touch panels further improves by making the thickness of the conductive layer 13 12 nm or less. Moreover, if the conductive layer 13 has a thickness of at least 4 nm, the conductivity of the transparent electrode for touch panel 10 is ensured.
 また、上述の導電層13は、電極パターンを有することが好ましい。導電層13の電極パターンとしては、例えば、マトリクス状に複数の電極パターンが形成されていることが好ましい。マトリクス状の電極パターンとしては、複数のx電極パターン又はy電極パターンを有し、各x電極パターン又はy電極パターンが、それぞれx方向又はy方向に延設された状態で、互いに間隔を保って並列に配置される。これらの各x電極パターン又はy電極パターンは、例えばx方向に配列されたひし形やその他の形状のパターン部分を、x方向又はy方向に直線状に連結した形状とすることができる。また、各x電極パターン、y電極パターンの端部に、導電層13からなる配線パターンが接続され、透明基板11上における周縁領域から端縁に、この配線パターンが引き出されていてもよい。 Further, the conductive layer 13 described above preferably has an electrode pattern. As the electrode pattern of the conductive layer 13, for example, a plurality of electrode patterns are preferably formed in a matrix. The matrix-like electrode pattern has a plurality of x electrode patterns or y electrode patterns, and each x electrode pattern or y electrode pattern is extended in the x direction or y direction, respectively, and is spaced from each other. Arranged in parallel. Each of these x electrode patterns or y electrode patterns may have a shape in which rhombuses or other pattern portions arranged in the x direction are linearly connected in the x direction or the y direction. Moreover, the wiring pattern which consists of the conductive layer 13 may be connected to the edge part of each x electrode pattern and y electrode pattern, and this wiring pattern may be pulled out from the peripheral area on the transparent substrate 11 to an edge.
 また、タッチパネル用透明電極10は、x電極パターン又はy電極パターンのいずれか一方の電極パターンを有する構成としてもよく、x電極パターンとy電極パターンとの両方の電極パターンを有する構成としてもよい。さらに、電極パターンとしては、上記マトリクス状に限らず、他のパターンとしてもよい。 The transparent electrode for touch panel 10 may have a configuration having either an x electrode pattern or a y electrode pattern, or may have a configuration having both an x electrode pattern and a y electrode pattern. Furthermore, the electrode pattern is not limited to the matrix shape, and may be other patterns.
 なお、導電層13が形成されるチタン含有層12は、チタン含有層12を構成する材料の特性に応じて、パターニングの要否が決められる。例えば、チタン含有層12の導電性が低く、導電性を無視できる場合には、チタン含有層12に導電層13のような電極パターンを形成しなくてもよい。また、チタン含有層12の導電性が高く、導電性を考慮する必要がある場合には、チタン含有層12に導電層13と同様の電極パターンを形成する必要がある。 It should be noted that the need for patterning of the titanium-containing layer 12 on which the conductive layer 13 is formed is determined according to the characteristics of the material constituting the titanium-containing layer 12. For example, when the conductivity of the titanium-containing layer 12 is low and the conductivity can be ignored, an electrode pattern such as the conductive layer 13 may not be formed on the titanium-containing layer 12. Further, when the conductivity of the titanium-containing layer 12 is high and it is necessary to consider the conductivity, it is necessary to form an electrode pattern similar to that of the conductive layer 13 on the titanium-containing layer 12.
[保護層]
 上記チタン含有層12、及び、チタン含有層12に隣接して設けられた導電層13からなる積層構造のタッチパネル用透明電極10は、導電層13のチタン含有層12と接していない側に、保護層14を備える。この場合、タッチパネル用透明電極10の光透過性を損なうことのないように、保護層14が光透過性を有することが好ましい。また、保護層14は光学調整層として機能する層であってもよい。
[Protective layer]
The transparent electrode 10 for a touch panel having a laminated structure comprising the titanium-containing layer 12 and the conductive layer 13 provided adjacent to the titanium-containing layer 12 is protected on the side of the conductive layer 13 that is not in contact with the titanium-containing layer 12. Layer 14 is provided. In this case, it is preferable that the protective layer 14 has light transmittance so as not to impair the light transmittance of the transparent electrode 10 for a touch panel. The protective layer 14 may be a layer that functions as an optical adjustment layer.
 保護層14は、タッチパネル用透明電極10の導電層13を覆う、板状又はフィルム状の部材や、導電層13を覆う無機材料、有機材料又は樹脂材料を用いて構成される。この保護層14は、タッチパネル用透明電極10において少なくとも導電層13を覆う状態で設けられている。 The protective layer 14 is configured using a plate-like or film-like member that covers the conductive layer 13 of the transparent electrode 10 for a touch panel, or an inorganic material, an organic material, or a resin material that covers the conductive layer 13. This protective layer 14 is provided so as to cover at least the conductive layer 13 in the transparent electrode 10 for a touch panel.
 保護層14を構成する板状又はフィルム状の部材としては、上述の透明基板11と同様の部材を用いることができる。なかでも、タッチパネル用透明電極10を薄型化できることから、薄型の樹脂フィルムを好ましく使用することができる。 As a plate-like or film-like member constituting the protective layer 14, a member similar to the above-described transparent substrate 11 can be used. Especially, since the transparent electrode 10 for touch panels can be reduced in thickness, a thin resin film can be used preferably.
 さらに樹脂フィルムは、透明基板11と同様に、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。被膜は、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS-K-7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 Furthermore, as with the transparent substrate 11, the resin film may be formed with a coating made of an inorganic material or an organic material, or a hybrid coating combining these coatings. The film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS-K-7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 また、無機材料、有機材料又は樹脂材料を用いて構成された保護層14としては、特に、水分や酸素等、導電層13やチタン含有層12の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることが好ましい。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜や、有機材料からなる膜を用いて積層構造としてもよい。また、保護層14には導電層13の腐食を防ぐ防腐剤を添加していてもよい。 In addition, the protective layer 14 formed using an inorganic material, an organic material, or a resin material has a function of suppressing intrusion of substances that cause deterioration of the conductive layer 13 and the titanium-containing layer 12 such as moisture and oxygen. It is preferable to be comprised with a material. As such a material, for example, an inorganic material such as silicon oxide, silicon dioxide, silicon nitride, silicon oxynitride, or silicon oxycarbide is used. Further, in order to improve the brittleness of the sealing film, a laminated structure may be formed using a film made of these inorganic materials or a film made of organic materials. In addition, a preservative that prevents corrosion of the conductive layer 13 may be added to the protective layer 14.
 これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
[タッチパネル用透明電極の効果]
 以上のように構成されたタッチパネル用透明電極10は、チタン含有層12に隣接させて、銀を主成分とした導電層13を設けた構成である。これにより、チタン含有層12に隣接させて導電層13を形成する際には、導電層13を構成する銀原子がチタン含有層12を構成するチタン原子と相互作用し、銀原子のチタン含有層12表面での拡散距離が減少し、銀の凝集が抑えられる。このため、一般的には核成長型(Volumer-Weber:VW型)での成長により島状に孤立し易い薄銀層が、単層成長型(Frank-van der Merwe:FM型)の成長によって形成されるようになる。従って、薄いながらも、均一な厚さの導電層13が得られるようになる。
[Effect of transparent electrode for touch panel]
The touch panel transparent electrode 10 configured as described above has a configuration in which the conductive layer 13 mainly composed of silver is provided adjacent to the titanium-containing layer 12. Thus, when the conductive layer 13 is formed adjacent to the titanium-containing layer 12, the silver atoms constituting the conductive layer 13 interact with the titanium atoms constituting the titanium-containing layer 12, and the titanium-containing layer of silver atoms 12 The diffusion distance on the surface is reduced, and aggregation of silver is suppressed. For this reason, in general, a thin silver layer that tends to be isolated in an island shape due to the growth of the nuclear growth type (Volumer-Weber: VW type) is caused by the growth of the single layer growth type (Frank-van der Merwe: FM type). Will be formed. Therefore, although it is thin, the conductive layer 13 having a uniform thickness can be obtained.
 以上の結果、この様なチタン含有層12の上部に、薄く均一な厚さを有することで光透過性を確保しつつ、導電性を確保した導電層13が得られる。このため、銀を用いたタッチパネル用透明電極10における導電性を向上させ、さらに、光散乱を抑制して下地となる表示画像等の視認性を向上させることができる。 As a result of the above, the conductive layer 13 is obtained which has a thin and uniform thickness on the upper part of the titanium-containing layer 12 and ensures conductivity while ensuring light transmission. For this reason, the electroconductivity in the transparent electrode 10 for touchscreens using silver can be improved, and also visibility of the display image etc. which become a foundation | substrate can be improved by suppressing light scattering.
〈2.タッチパネル用透明電極(第2実施形態)〉
 次に、本発明の第2実施形態について説明する。
 図2に、第2実施形態のタッチパネル用透明電極の概略構成図(断面図)を示す。図2に示すように、第2実施形態のタッチパネル用透明電極20は、高屈折率層24を備えることのみが、図1に示す第1実施形態のタッチパネル用透明電極10と異なる。以下、第1実施形態と同様の構成要素について重複する詳細な説明を省略し、第2実施形態のタッチパネル用透明電極の構成を説明する。
<2. Transparent electrode for touch panel (second embodiment)>
Next, a second embodiment of the present invention will be described.
In FIG. 2, the schematic block diagram (sectional drawing) of the transparent electrode for touchscreens of 2nd Embodiment is shown. As shown in FIG. 2, the transparent electrode for touch panel 20 of the second embodiment is different from the transparent electrode for touch panel 10 of the first embodiment shown in FIG. 1 only in that a high refractive index layer 24 is provided. Hereinafter, the detailed description which overlaps about the component similar to 1st Embodiment is abbreviate | omitted, and demonstrates the structure of the transparent electrode for touchscreens of 2nd Embodiment.
 図2に示すように、タッチパネル用透明電極20は、高屈折率層24と、チタン含有層12と、導電層13とを備えて、透明基板11上に形成されている。チタン含有層12及び導電層13は、上述の第1実施形態と同様の構成である。また、タッチパネル用透明電極20は、チタン有層12と導電層13との一方面同士が隣接して形成されている。そして、高屈折率層24の一方面側がチタン含有層12の多方面側に接して形成され、高屈折率層24の他方面側に透明基板11を備えている。また、導電層13の他方面上には、保護層14が設けられている。透明基板11及び保護層14についても、上述の第1実施形態と同様の構成とすることができる。 As shown in FIG. 2, the transparent electrode 20 for a touch panel includes a high refractive index layer 24, a titanium-containing layer 12, and a conductive layer 13, and is formed on the transparent substrate 11. The titanium-containing layer 12 and the conductive layer 13 have the same configuration as in the first embodiment described above. Moreover, the transparent electrode 20 for touch panels is formed so that one surfaces of the titanium layer 12 and the conductive layer 13 are adjacent to each other. The one side of the high refractive index layer 24 is formed in contact with the many sides of the titanium-containing layer 12, and the transparent substrate 11 is provided on the other side of the high refractive index layer 24. A protective layer 14 is provided on the other surface of the conductive layer 13. Also about the transparent substrate 11 and the protective layer 14, it can be set as the structure similar to the above-mentioned 1st Embodiment.
[高屈折率層]
 高屈折率層24は、波長550nmにおける屈折率(n)が2.0以上の層である。高屈折率層24は、導電層13との間にチタン含有層12を挟持して設けられた層である。このような高屈折率層24には金属酸化物が用いられ、例えば、二酸化チタン(TiO:n=2.3~2.4)、酸化ジルコニウム(ZrO:n=2.4)、酸化カドミウム(CdO:n=2.49)、酸化インジウムスズ(ITO:n=2.1~2.2)、酸化ハフニウム(HfO:n=2.1)、五酸化タンタル(Ta:n=2.16)、酸化ニオブ(Nb:n=2.2~2.4)、酸化セリウム(CeO:n=2.2)等が用いられる。例えば、一般的に光学フィルムに用いられる高屈折率材料が好ましく用いられる。
[High refractive index layer]
The high refractive index layer 24 is a layer having a refractive index (n) of 2.0 or more at a wavelength of 550 nm. The high refractive index layer 24 is a layer provided with the titanium-containing layer 12 sandwiched between the conductive layer 13. For such a high refractive index layer 24, a metal oxide is used. For example, titanium dioxide (TiO 2 : n = 2.3 to 2.4), zirconium oxide (ZrO 2 : n = 2.4), oxidation Cadmium (CdO: n = 2.49), indium tin oxide (ITO: n = 2.1 to 2.2), hafnium oxide (HfO 2 : n = 2.1), tantalum pentoxide (Ta 2 O 5 : n = 2.16), niobium oxide (Nb 2 O 5 : n = 2.2 to 2.4), cerium oxide (CeO 2 : n = 2.2) and the like are used. For example, a high refractive index material generally used for an optical film is preferably used.
[チタン含有層]
 高屈折率層24上にチタン含有層12を形成する場合にも、第1実施形態のタッチパネル用透明電極と同様に、チタン、チタン含有化合物を用いて構成することができる。
 また、高屈折率層24上に、チタン酸化物を用いてチタン含有層12を形成する場合には、高屈折率層24に用いる金属酸化物よりも酸素含有量が少ないチタン酸化物を用いる。
[Titanium-containing layer]
Even when the titanium-containing layer 12 is formed on the high-refractive index layer 24, it can be configured using titanium and a titanium-containing compound, similarly to the transparent electrode for a touch panel of the first embodiment.
Further, when the titanium-containing layer 12 is formed on the high refractive index layer 24 using titanium oxide, a titanium oxide having a lower oxygen content than the metal oxide used for the high refractive index layer 24 is used.
 例えば、高屈折率層24に二酸化チタン(TiO)を用いる場合には、チタン含有層12に少なくとも二酸化チタンよりもチタン含有量の多いチタン酸化物を用いる。つまり、酸素に対するチタンの組成比が1/2を超えるチタン酸化物を、チタン含有層12に用いる。例えば、先に例示した一酸化チタン(TiO)、三酸化二チタン(Ti)、五酸化三チタン(Ti)、マグネリ相チタン酸化物(Ti2n-1:n≧3)等を用いる。 For example, when titanium dioxide (TiO 2 ) is used for the high refractive index layer 24, a titanium oxide having a titanium content higher than at least titanium dioxide is used for the titanium-containing layer 12. That is, a titanium oxide having a composition ratio of titanium to oxygen exceeding 1/2 is used for the titanium-containing layer 12. For example, the previously exemplified titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), trititanium pentoxide (Ti 3 O 5 ), magnesium phase titanium oxide (Ti n O 2n−1 : n ≧ 3) etc. are used.
[低屈折率層]
 また、タッチパネル用透明電極20は、高屈折率層24に接して低屈折率層(図示省略)を有していてもよい。図2に示す構成では、高屈折率層24のチタン含有層12が形成されている面と反対側の面、つまり、透明基板11と高屈折率層24との間に低屈折率層を有していてもよい。高屈折率層24に接して低屈折率層を有することにより、タッチパネル用透明電極20の光透過性がさらに向上する。
[Low refractive index layer]
The touch panel transparent electrode 20 may have a low refractive index layer (not shown) in contact with the high refractive index layer 24. In the configuration shown in FIG. 2, a low refractive index layer is provided between the surface of the high refractive index layer 24 opposite to the surface on which the titanium-containing layer 12 is formed, that is, between the transparent substrate 11 and the high refractive index layer 24. You may do it. By having the low refractive index layer in contact with the high refractive index layer 24, the light transmittance of the transparent electrode 20 for a touch panel is further improved.
 低屈折率層は、高屈折率層よりも、低い屈折率を有する層である。さらに、波長550nmにおける屈折率が、高屈折率層よりも0.1以上低いことが好ましく、高屈折率層よりも0.3以上低いことが特に好ましい。このような低屈折率層は、低い屈折率と光透過性とを有する材料で構成される。例えば、フッ化マグネシウム(MgF)、フッ化リチウム(LiF)、フッ化カルシウム(CaF)、フッ化アルミニウム(AlF)等の光学フィルムに一般的に用いられる低屈折率材料が用いられる。 The low refractive index layer is a layer having a lower refractive index than the high refractive index layer. Furthermore, the refractive index at a wavelength of 550 nm is preferably 0.1 or more lower than the high refractive index layer, and particularly preferably 0.3 or lower than the high refractive index layer. Such a low refractive index layer is made of a material having a low refractive index and light transmittance. For example, a low refractive index material generally used for optical films such as magnesium fluoride (MgF 2 ), lithium fluoride (LiF), calcium fluoride (CaF 2 ), and aluminum fluoride (AlF 3 ) is used.
[タッチパネル用透明電極の効果]
 タッチパネル用透明電極20は、チタン含有層12及び導電層13に加え、高屈折率層24を有する。このため、タッチパネル用透明電極20は、上述の第1実施形態のタッチパネル用透明電極の有する効果に加えて、銀を主成分とする導電層13で生じる反射が抑制され、タッチパネル用透明電極20における光散乱がさらに抑制され、視認性をさらに向上させることができる。
[Effect of transparent electrode for touch panel]
The touch panel transparent electrode 20 includes a high refractive index layer 24 in addition to the titanium-containing layer 12 and the conductive layer 13. For this reason, in addition to the effect which the transparent electrode 20 for touchscreens of the above-mentioned 1st Embodiment has, the reflection which arises in the conductive layer 13 which has silver as a main component is suppressed, and the transparent electrode 20 for touchscreens in the transparent electrode 20 for touchscreens Light scattering is further suppressed, and visibility can be further improved.
〈3.タッチパネル用透明電極(第3実施形態)〉
 次に、本発明の第3実施形態について説明する。
 図3に、第3実施形態のタッチパネル用透明電極の概略構成図(断面図)を示す。図3に示すように、第3実施形態のタッチパネル用透明電極30は、保護層として光学調整層となる第1高屈折率層35を備え、さらに、第2高屈折率層34を備えることのみが、図1に示す第1実施形態のタッチパネル用透明電極10と異なる。以下、第1実施形態及び第2実施形態と同様の構成要素についての重複する詳細な説明は省略し、第3実施形態のタッチパネル用透明電極の構成を説明する。
<3. Transparent electrode for touch panel (third embodiment)>
Next, a third embodiment of the present invention will be described.
In FIG. 3, the schematic block diagram (sectional drawing) of the transparent electrode for touchscreens of 3rd Embodiment is shown. As shown in FIG. 3, the transparent electrode 30 for a touch panel according to the third embodiment includes only a first high refractive index layer 35 serving as an optical adjustment layer as a protective layer, and further includes a second high refractive index layer 34. However, it differs from the transparent electrode 10 for touch panels of 1st Embodiment shown in FIG. Hereinafter, the detailed description which overlaps about the component similar to 1st Embodiment and 2nd Embodiment is abbreviate | omitted, and demonstrates the structure of the transparent electrode for touchscreens of 3rd Embodiment.
 図3に示すように、タッチパネル用透明電極30は、第2高屈折率層34、チタン含有層12、導電層13、及び、第1高屈折率層35をこの順に備えて、透明基板11上に形成されている。チタン含有層12及び導電層13は、上述の第1実施形態と同様の構成である。 As shown in FIG. 3, the transparent electrode 30 for a touch panel includes a second high refractive index layer 34, a titanium-containing layer 12, a conductive layer 13, and a first high refractive index layer 35 in this order, on the transparent substrate 11. Is formed. The titanium-containing layer 12 and the conductive layer 13 have the same configuration as in the first embodiment described above.
 タッチパネル用透明電極30は、チタン含有層12の一方面上に隣接して導電層13が形成され、チタン含有層12の他方面側に第2高屈折率層34を有している。さらに、導電層13において、チタン含有層12と接していない他方面側に、第1高屈折率層35を有する。また、第2高屈折率層34において、チタン含有層12と接していない面側に、透明基板11を備えている。 The touch panel transparent electrode 30 has a conductive layer 13 formed adjacent to one surface of the titanium-containing layer 12, and has a second high refractive index layer 34 on the other surface side of the titanium-containing layer 12. Furthermore, in the conductive layer 13, the first high refractive index layer 35 is provided on the other surface side that is not in contact with the titanium-containing layer 12. Further, the second high refractive index layer 34 includes the transparent substrate 11 on the surface side not in contact with the titanium-containing layer 12.
 このように、タッチパネル用透明電極30は、チタン含有層12と導電層13とが、第1高屈折率層35及び第2高屈折率層34からなる2層の高屈折率層により挟まれた構成である。
 第1高屈折率層35及び第2高屈折率層34は、ともに波長550nmにおける屈折率が2.0以上の層である。このような第1高屈折率層35及び第2高屈折率層34としては、上述の第2実施形態のタッチパネル用透明電極における高屈折率層と同じ材料を使用できる。
As described above, in the touch panel transparent electrode 30, the titanium-containing layer 12 and the conductive layer 13 are sandwiched between the two high-refractive index layers including the first high-refractive index layer 35 and the second high-refractive index layer 34. It is a configuration.
Both the first high refractive index layer 35 and the second high refractive index layer 34 are layers having a refractive index of 2.0 or more at a wavelength of 550 nm. As such 1st high refractive index layer 35 and 2nd high refractive index layer 34, the same material as the high refractive index layer in the transparent electrode for touchscreens of the above-mentioned 2nd Embodiment can be used.
 また、第2高屈折率層34上にチタン酸化物を用いたチタン含有層12を形成されている場合には、第2高屈折率層34に用いる金属酸化物よりも酸素含有量が少ないチタン酸化物が用いられることが好ましい。例えば、二酸化チタン(TiO)を用いられる場合には、チタン含有層12に少なくとも二酸化チタンよりもチタン含有量の多いチタン酸化物を用いられる。つまり、酸素に対するチタンの組成比が1/2を超えるチタン酸化物が、チタン含有層12に用いられる。 Further, when the titanium-containing layer 12 using titanium oxide is formed on the second high-refractive index layer 34, titanium having a lower oxygen content than the metal oxide used for the second high-refractive index layer 34. Oxides are preferably used. For example, when titanium dioxide (TiO 2 ) is used, titanium oxide having a titanium content higher than that of titanium dioxide is used for the titanium-containing layer 12. That is, a titanium oxide having a composition ratio of titanium to oxygen exceeding 1/2 is used for the titanium-containing layer 12.
 さらに、タッチパネル用透明電極30は、第1高屈折率層35及び第2高屈折率層34に接して低屈折率層を備えていてもよい。低屈折率層は、第1高屈折率層35及び第2高屈折率層34の外側に形成されていることが好ましい。例えば、図3に示すタッチパネル用透明電極30では、第1高屈折率層35の上部や、第2高屈折率層34と透明基板11との間に形成されていることが好ましい。 Furthermore, the transparent electrode 30 for a touch panel may include a low refractive index layer in contact with the first high refractive index layer 35 and the second high refractive index layer 34. The low refractive index layer is preferably formed outside the first high refractive index layer 35 and the second high refractive index layer 34. For example, in the transparent electrode 30 for a touch panel shown in FIG. 3, it is preferable that the touch panel transparent electrode 30 is formed above the first high refractive index layer 35 or between the second high refractive index layer 34 and the transparent substrate 11.
[タッチパネル用透明電極の効果]
 タッチパネル用透明電極30は、チタン含有層12及び導電層13が、第1高屈折率層35及び第2高屈折率層34に挟まれた構成を有する。このため、タッチパネル用透明電極30は、上述の第1実施形態及び第2実施形態のタッチパネル用透明電極の有する効果に加えて、タッチパネル用透明電極を透過する光の散乱、つまり、タッチパネル用透明電極における入射側の光と射出側の光の両方において光散乱を抑制することができる。このため、タッチパネル用透明電極30の光透過率を向上させることができ、視認性を向上させることができる。
[Effect of transparent electrode for touch panel]
The transparent electrode 30 for a touch panel has a configuration in which the titanium-containing layer 12 and the conductive layer 13 are sandwiched between the first high refractive index layer 35 and the second high refractive index layer 34. For this reason, in addition to the effect which the transparent electrode for touchscreens of the above-mentioned 1st Embodiment and 2nd Embodiment has, the transparent electrode 30 for touchscreens is scattering of the light which permeate | transmits the transparent electrode for touchscreens, ie, the transparent electrode for touchscreens Light scattering can be suppressed in both the incident side light and the exit side light. For this reason, the light transmittance of the transparent electrode 30 for touch panels can be improved, and visibility can be improved.
〈4.タッチパネル(第4実施形態:2枚の透明基板を用いた構成)〉
 次に、本発明の第4実施形態について説明する。第4実施形態では、上述の第3実施形態のタッチパネル用透明電極30を用いたタッチパネルについて説明する。図4~7に、本実施形態のタッチパネルの概略構成を示す。
<4. Touch panel (fourth embodiment: configuration using two transparent substrates)>
Next, a fourth embodiment of the present invention will be described. 4th Embodiment demonstrates the touchscreen using the transparent electrode 30 for touchscreens of the above-mentioned 3rd Embodiment. 4 to 7 show a schematic configuration of the touch panel of the present embodiment.
 図4は、本実施形態のタッチパネルの概略構成を示す斜視図である。また、図5は、本実施形態のタッチパネルに用いられる、2枚のタッチパネル用透明電極の電極構成を示す平面図である。図6は、図4及び図5に示すタッチパネルの電極部分の平面配置を示す模式図である。そして、図7は、図6に示すA-A断面に相当する、本実施形態のタッチパネルの断面模式図である。
 なお、本実施形態のタッチパネルは、第1タッチパネル用透明電極と第2タッチパネル用透明電極との、2つのタッチパネル用透明電極を用いる構成について説明する。
FIG. 4 is a perspective view showing a schematic configuration of the touch panel of the present embodiment. FIG. 5 is a plan view showing an electrode configuration of two transparent electrodes for a touch panel used in the touch panel of the present embodiment. FIG. 6 is a schematic diagram showing a planar arrangement of electrode portions of the touch panel shown in FIGS. 4 and 5. FIG. 7 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the AA cross-section shown in FIG.
In addition, the touch panel of this embodiment demonstrates the structure using two transparent electrodes for touch panels, the transparent electrode for 1st touch panels, and the transparent electrode for 2nd touch panels.
[タッチパネルの構成]
 図4に示すタッチパネル40は、投影型静電容量式のタッチパネルである。このタッチパネル40は、第1基板43、第1タッチパネル用透明電極41、第2基板45、及び、第2タッチパネル用透明電極42がこの順に配置され、この上部が前面板47で覆われている。第1タッチパネル用透明電極41、及び、第2タッチパネル用透明電極42は、上述の図3を用いて説明した第3実施形態のタッチパネル用透明電極の構成である。従って、第1タッチパネル用透明電極41、及び、第2タッチパネル用透明電極42は、チタン含有層、導電層、及び、高屈折率層が積層された構成である。
[Configuration of touch panel]
A touch panel 40 shown in FIG. 4 is a projected capacitive touch panel. In the touch panel 40, a first substrate 43, a first touch panel transparent electrode 41, a second substrate 45, and a second touch panel transparent electrode 42 are arranged in this order, and the upper portion is covered with a front plate 47. The first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have the configuration of the touch panel transparent electrode according to the third embodiment described with reference to FIG. 3 described above. Accordingly, the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have a configuration in which a titanium-containing layer, a conductive layer, and a high refractive index layer are laminated.
 以下、タッチパネル40を構成する主要各層の詳細を説明する。なお、以下の説明は、図4及び図5と共に、図6の電極部分の平面模式図を用いて行う。また、図4~6においては、第1タッチパネル用透明電極41及び第2タッチパネル用透明電極42の構成は、第1導電層44及び第2導電層46のみを示し、他のチタン含有層や高屈折率層の構成については図示を省略している。 Hereinafter, details of each main layer constituting the touch panel 40 will be described. In addition, the following description is performed using the schematic plan view of the electrode portion of FIG. 6 together with FIGS. 4 to 6, the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 show only the first conductive layer 44 and the second conductive layer 46, and other titanium-containing layers and high The illustration of the configuration of the refractive index layer is omitted.
[第1基板、第2基板]
 第1基板43及び第2基板45は、上述のタッチパネル用透明電極の実施形態において説明した透明基板と同様の構成である。
[First substrate, second substrate]
The 1st board | substrate 43 and the 2nd board | substrate 45 are the structures similar to the transparent substrate demonstrated in embodiment of the transparent electrode for touchscreens mentioned above.
[第1導電層]
 第1導電層44は、上述のタッチパネル用透明電極の実施形態で説明した導電層であり、チタン含有層上においてパターニングされた複数のx電極パターンx1,x2,・・・として構成されている。各x電極パターンx1,x2,・・・は、それぞれがx方向に延設された状態で、互いに間隔を保って並列に配置されている。これらの各x電極パターンx1,x2,・・・は、例えばx方向に配列されたひし形のパターン部分を、ひし形の頂点付近においてx方向に直線状に連結した形状である。
[First conductive layer]
The first conductive layer 44 is the conductive layer described in the embodiment of the transparent electrode for a touch panel described above, and is configured as a plurality of x electrode patterns x1, x2,... Patterned on the titanium-containing layer. Each of the x electrode patterns x1, x2,... Is arranged in parallel with an interval between each other, with each extending in the x direction. Each of these x electrode patterns x1, x2,... Has a shape in which rhombus pattern portions arranged in the x direction are linearly connected in the x direction in the vicinity of the apex of the rhombus, for example.
 また、各x電極パターンx1,x2,・・・には、それぞれの端部にx配線49xが接続されている。これらのx配線49xは、第1基板43の周縁領域に配線され、第1基板43の端縁に引き出されている。このような各x配線49xは、x電極パターンx1,x2,・・・と同様に、銀を主成分とする第1導電層44として構成されたものであってもよく、別途形成した導電層で構成されたものであってもよい。 Further, x wirings 49x are connected to the respective end portions of the x electrode patterns x1, x2,. These x wirings 49 x are wired in the peripheral region of the first substrate 43, and are drawn out to the edge of the first substrate 43. Each of these x wirings 49x may be configured as a first conductive layer 44 mainly composed of silver, similarly to the x electrode patterns x1, x2,. It may be configured by.
[第2導電層]
 第2導電層46は、上述のタッチパネル用透明電極の実施形態で説明した導電層であり、チタン含有層上においてパターニングされた複数のy電極パターンy1,y2,・・・として構成されている。各y電極パターンy1,y2,・・・は、それぞれがx電極パターンx1,x2,・・・と直交するy方向に延設された状態で、互いに間隔を保って並列に配置されている。これらの各y電極パターンy1,y2,・・・は、例えばy方向に配列されたひし形のパターン部分を、ひし形の頂点付近においてy方向に直線状に連結した形状である。
[Second conductive layer]
The second conductive layer 46 is the conductive layer described in the embodiment of the transparent electrode for touch panel described above, and is configured as a plurality of y electrode patterns y1, y2,... Patterned on the titanium-containing layer. The y electrode patterns y1, y2,... Are arranged in parallel while being spaced apart from each other in a state of extending in the y direction orthogonal to the x electrode patterns x1, x2,. Each of these y electrode patterns y1, y2,... Has, for example, a shape in which rhombus pattern portions arranged in the y direction are linearly connected in the y direction in the vicinity of the apex of the rhombus.
 ここで、図6に示すように、各y電極パターンy1,y2,・・・を構成するひし形のパターン部分は、x電極パターンx1,x2,・・・を形成するひし形のパターン部分に対して、平面視的に重ならない位置に配置され、重ならない範囲でできるだけ大きな範囲を占める形状とする。これにより、第2基板45の中央部の領域においては、第1導電層44で構成されたx電極パターンx1,x2,・・・、及び、第2導電層46で構成されたy電極パターンy1,y2,・・・が視認され難い構成となる。 Here, as shown in FIG. 6, the rhombus pattern portions constituting the y electrode patterns y1, y2,... Are in contrast to the rhombus pattern portions forming the x electrode patterns x1, x2,. The shape is arranged at a position that does not overlap in plan view and occupies as large a range as possible without overlapping. Thus, in the central region of the second substrate 45, the x electrode patterns x1, x2,... Constituted by the first conductive layer 44 and the y electrode pattern y1 constituted by the second conductive layer 46. , Y2,... Are difficult to see.
 各y電極パターンy1,y2,・・・は、ひし形の電極パターンの連結部分においてのみ、各x電極パターンx1,x2,・・・と積層される。これらの積層部分には、第2基板45等が挟持されるため、x電極パターンx1,x2,・・・とy電極パターンy1,y2,・・・との絶縁性が確保される。 Each y electrode pattern y1, y2,... Is laminated with each x electrode pattern x1, x2,. Since the second substrate 45 and the like are sandwiched between these laminated portions, insulation between the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,.
 また、各y電極パターンy1,y2,・・・には、それぞれの端部にy配線49yが接続されている。これらのy配線49yは、第2基板45の周縁領域に配線され、x配線49xと並ぶように第2基板45の端縁に引き出されている。このような各y配線49yは、y電極パターンy1,y2,・・・と同様に、銀を主成分とする第2導電層46として構成されたものであってもよく、別途形成した導電層で構成されたものであってもよい。 Further, a y wiring 49y is connected to each end of each y electrode pattern y1, y2,. These y wirings 49y are wired in the peripheral region of the second substrate 45, and are drawn out to the edge of the second substrate 45 so as to be aligned with the x wirings 49x. Each of such y wirings 49y may be configured as the second conductive layer 46 mainly composed of silver, similarly to the y electrode patterns y1, y2,. It may be configured by.
 尚、第1基板43又は第2基板45の端縁に引き出された、x配線49x及びy配線49yにはフレキシブルプリント基板などが接続される。 A flexible printed circuit board or the like is connected to the x wiring 49x and the y wiring 49y drawn to the edge of the first substrate 43 or the second substrate 45.
[前面板]
 図4に示す前面板47は、タッチパネル40において入力位置に対応する部分が押圧される板材である。このような前面板47は、第1基板43及び第2基板45と同様に光透過性を有する板材が用いられる。また、この前面板47は、必要に応じて光学特性を備えた材料を選択して用いてもよい。このような前面板47は、例えば接着層(図示省略)等によって第2タッチパネル用透明電極42側に張り合わせられている。
[Front plate]
The front plate 47 shown in FIG. 4 is a plate material on which the portion corresponding to the input position on the touch panel 40 is pressed. The front plate 47 is made of a light-transmitting plate material like the first substrate 43 and the second substrate 45. Further, the front plate 47 may be used by selecting a material having optical characteristics as required. Such a front plate 47 is bonded to the second touch panel transparent electrode 42 side by an adhesive layer (not shown), for example.
 また、この前面板47には、第1基板43及び第2基板45の周縁を覆う遮光膜が設けられ、x電極パターンx1,x2,・・・から引き出されたx配線49x、及び、y電極パターンy1,y2,・・・から引き出されたy配線49yが、前面板47側から視認されることを防いでいる。 Further, the front plate 47 is provided with a light-shielding film that covers the peripheral edges of the first substrate 43 and the second substrate 45, and the x wiring 49x drawn from the x electrode patterns x1, x2,. The y wiring 49y drawn from the patterns y1, y2,... Is prevented from being visually recognized from the front plate 47 side.
[タッチパネルの動作]
 以上のようなタッチパネル40を動作させる場合、x配線49x及びy配線49yに接続させたフレキシブルプリント基板等から、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・に対して電圧を印加する。電圧を印加した状態で、前面板47の表面に指又はタッチペンが触れると、タッチパネル40内に存在する各部の容量が変化し、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・の電圧の変化となって現れる。この変化は、指又はタッチペンが触れた位置からの距離によって異なり、指又はタッチペンが触れた位置で最も大きくなる。このため、電圧の変化が最大となる、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・で指定された位置が、指又はタッチペンが触れた位置として検出される。
[Touch panel operation]
When operating the touch panel 40 as described above, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,... From the flexible printed circuit board connected to the x wiring 49x and the y wiring 49y. In contrast, a voltage is applied. When a finger or a touch pen touches the surface of the front plate 47 with a voltage applied, the capacitance of each part existing in the touch panel 40 changes, and the x electrode patterns x1, x2,... And the y electrode patterns y1, y2 It appears as a change in voltage. This change differs depending on the distance from the position touched by the finger or touch pen, and is greatest at the position touched by the finger or touch pen. For this reason, the position designated by the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. .
[タッチパネル用透明電極]
 次に、図7に、図4~6に示すタッチパネル40の断面構成、特に、図6に示すA-A断面に相当する断面模式図を示す。図7は、上述の第3実施形態のタッチパネル用透明電極の構成を適用したタッチパネルの構成である。
[Transparent electrode for touch panel]
Next, FIG. 7 shows a cross-sectional configuration of the touch panel 40 shown in FIGS. 4 to 6, particularly a cross-sectional schematic view corresponding to the AA cross section shown in FIG. FIG. 7 shows a configuration of a touch panel to which the configuration of the transparent electrode for a touch panel according to the third embodiment described above is applied.
 図7に示すように、タッチパネル40は、第1基板43、第1タッチパネル用透明電極41、第2基板45、第2タッチパネル用透明電極42、及び、前面板47がこの順に積層された構成である。第1タッチパネル用透明電極41は、第1基板43上において、第2高屈折率層53、第1チタン含有層51、第1導電層44、及び、第4高屈折率層55がこの順に積層された構成である。また、第2タッチパネル用透明電極42は、第2基板45上において、第3高屈折率層56、第2チタン含有層52、第2導電層46、及び、第1高屈折率層54がこの順に積層された構成である。 As shown in FIG. 7, the touch panel 40 has a configuration in which a first substrate 43, a first touch panel transparent electrode 41, a second substrate 45, a second touch panel transparent electrode 42, and a front plate 47 are laminated in this order. is there. The first touch panel transparent electrode 41 includes a second high refractive index layer 53, a first titanium-containing layer 51, a first conductive layer 44, and a fourth high refractive index layer 55 stacked in this order on the first substrate 43. It is the structure which was made. The second touch panel transparent electrode 42 includes the third high refractive index layer 56, the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 on the second substrate 45. It is the structure laminated | stacked in order.
 また、タッチパネル40において、第1タッチパネル用透明電極41と第2タッチパネル用透明電極42とは、第1基板43及び第2基板45に対して、第1導電層44及び第2導電層46が同じ方向となるように積層されている。そして、第1タッチパネル用透明電極41の第4高屈折率層55上に、第2タッチパネル用透明電極42の設けられた第2基板45が積層された構成である。 In the touch panel 40, the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 have the same first conductive layer 44 and second conductive layer 46 as the first substrate 43 and the second substrate 45. It is laminated so as to be in the direction. Then, the second substrate 45 provided with the second touch panel transparent electrode 42 is laminated on the fourth high refractive index layer 55 of the first touch panel transparent electrode 41.
[第1チタン含有層、第2チタン含有層]
 第1チタン含有層51、及び、第2チタン含有層52は、上述のタッチパネル用透明電極の実施形態において説明したチタン含有層と同様の構成である。
 なお、図7では、第2チタン含有層52が第2導電層46と同じパターンに形成されている例を示すが、第2チタン含有層52は、第2チタン含有層52を構成する材料の特性に応じて、パターニングの要否が決められる。例えば、第2チタン含有層52の導電性が高い場合には、図7に示すように第2チタン含有層52を第2導電層46と同様のパターンに形成される必要がある。また、第2チタン含有層52の導電性が低く、導電性を無視できる場合には、第2チタン含有層52がパターニングされていなくてもよい。
 また、第1チタン含有層51においても、第1チタン含有層51の導電性が高い場合には、第1導電層44と同様のパターンに形成される必要があり、導電性が低い場合には第1導電層44と同様のパターンに形成されていなくてもよい。
[First titanium-containing layer, second titanium-containing layer]
The 1st titanium content layer 51 and the 2nd titanium content layer 52 are the same composition as the titanium content layer explained in the above-mentioned embodiment of the transparent electrode for touch panels.
7 shows an example in which the second titanium-containing layer 52 is formed in the same pattern as the second conductive layer 46. However, the second titanium-containing layer 52 is made of a material constituting the second titanium-containing layer 52. The necessity of patterning is determined according to the characteristics. For example, when the conductivity of the second titanium-containing layer 52 is high, the second titanium-containing layer 52 needs to be formed in the same pattern as the second conductive layer 46 as shown in FIG. Further, when the conductivity of the second titanium-containing layer 52 is low and the conductivity can be ignored, the second titanium-containing layer 52 may not be patterned.
Also, in the first titanium-containing layer 51, when the conductivity of the first titanium-containing layer 51 is high, it is necessary to be formed in the same pattern as the first conductive layer 44. When the conductivity is low It may not be formed in the same pattern as the first conductive layer 44.
[第1~4高屈折率層]
 第2高屈折率層53、第1高屈折率層54、第4高屈折率層55、及び、第3高屈折率層56は、上述のタッチパネル用透明電極の実施形態において説明した高屈折率層と同様の構成である。
[First to fourth high refractive index layers]
The second high-refractive index layer 53, the first high-refractive index layer 54, the fourth high-refractive index layer 55, and the third high-refractive index layer 56 are the high-refractive index described in the embodiment of the transparent electrode for touch panel described above. The structure is the same as that of the layer.
[タッチパネルの効果]
 以上のようなタッチパネル40は、上述の第3実施形態において説明したタッチパネル用透明電極を2層備えて構成されている。このため、第1チタン含有層51又は第2チタン含有層52に隣接させて、銀を主成分とした第1導電層44又は第2導電層46が設けられる構成である。従って、銀原子とチタン原子との相互作用により、銀の拡散距離が減少し、単層成長型(Frank-van der Merwe:FM型)の成長によって、第1導電層44及び第2導電層46が形成される。
 この結果、第1チタン含有層51又は第2チタン含有層52上に、薄く均一な厚さを有することで光透過性を確保しつつ、導電性を確保した第1導電層44及び第2導電層46が得られる。このため、タッチパネルにおいて、光透過性と共に充分な導電性を備え、下地の表示画像の視認性を良好に保ちつつ、導電性フィルムを大型化した際の電圧降下を抑えることができる。
[Effect of touch panel]
The touch panel 40 as described above includes two layers of the touch panel transparent electrodes described in the third embodiment. Therefore, the first conductive layer 44 or the second conductive layer 46 mainly composed of silver is provided adjacent to the first titanium-containing layer 51 or the second titanium-containing layer 52. Accordingly, the diffusion distance of silver is reduced by the interaction between silver atoms and titanium atoms, and the first conductive layer 44 and the second conductive layer 46 are grown by single-layer growth type (Frank-van der Merwe: FM type) growth. Is formed.
As a result, on the first titanium-containing layer 51 or the second titanium-containing layer 52, the first conductive layer 44 and the second conductive layer that have ensured conductivity while ensuring light transmittance by having a thin and uniform thickness. Layer 46 is obtained. For this reason, in a touch panel, it has sufficient electroconductivity with light transmittance, and the voltage drop at the time of enlarging a conductive film can be suppressed, maintaining the visibility of the display image of a foundation | substrate.
 特に、このタッチパネル40は、x電極パターンx1,x2,・・・及びこれに直交して配置されたy電極パターンy1,y2,・・・を有する投影型静電容量式である。このため、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・には、高い導電性が要求される。本例のタッチパネルでは、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・が、銀を主成分とする透明導電層であるため、導電性を維持しつつ薄膜化が可能である。従って、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・自体が視認され難くなり、タッチパネル40を介した表示画像の視認性の劣化も防止できる。 In particular, the touch panel 40 is a projected capacitive type having x electrode patterns x1, x2,... And y electrode patterns y1, y2,. Therefore, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. In the touch panel of this example, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,... Are transparent conductive layers mainly composed of silver. Is possible. Therefore, the x electrode patterns x 1, x 2,... And the y electrode patterns y 1, y 2,... Themselves are difficult to be visually recognized, and deterioration of the visibility of the display image via the touch panel 40 can be prevented.
[タッチパネルの変形例]
 次に、第4実施形態のタッチパネルの変形例について説明する。図8に、第4実施形態のタッチパネルの変形例の断面構成、特に、図6に示すA-A断面に相当する断面模式図を示す。
[Modification of touch panel]
Next, a modification of the touch panel according to the fourth embodiment will be described. FIG. 8 shows a cross-sectional configuration of a modified example of the touch panel of the fourth embodiment, in particular, a schematic cross-sectional view corresponding to the AA cross section shown in FIG.
 図8に示す変形例のタッチパネル40Aは、第1基板43、第1タッチパネル用透明電極41A、第2基板45、第2タッチパネル用透明電極42A、及び、前面板47がこの順に積層された構成である。第1タッチパネル用透明電極41Aは、第1基板43上において、第2高屈折率層53、第1チタン含有層51、及び、第1導電層44がこの順に積層された構成である。また、第2タッチパネル用透明電極42Aは、第2基板45上において、第2チタン含有層52、第2導電層46、及び、第1高屈折率層54がこの順に積層された構成である。
 つまり、図8に示す変形例のタッチパネル40Aは、図7に示すタッチパネル40の構成から、第4高屈折率層55と第3高屈折率層56とを除いた構成である。
The touch panel 40A of the modification shown in FIG. 8 has a configuration in which a first substrate 43, a first touch panel transparent electrode 41A, a second substrate 45, a second touch panel transparent electrode 42A, and a front plate 47 are laminated in this order. is there. The first touch panel transparent electrode 41 </ b> A has a configuration in which a second high refractive index layer 53, a first titanium-containing layer 51, and a first conductive layer 44 are laminated in this order on a first substrate 43. The second touch panel transparent electrode 42 </ b> A has a configuration in which a second titanium-containing layer 52, a second conductive layer 46, and a first high refractive index layer 54 are laminated in this order on the second substrate 45.
That is, the touch panel 40A of the modification shown in FIG. 8 has a configuration in which the fourth high refractive index layer 55 and the third high refractive index layer 56 are excluded from the configuration of the touch panel 40 shown in FIG.
 また、タッチパネル40Aにおいて、第1タッチパネル用透明電極41Aと第2タッチパネル用透明電極42Aとは、第1基板43及び第2基板45に対して、第1導電層44及び第2導電層46が同じ方向となるように積層されている。そして、第1タッチパネル用透明電極41Aの第1導電層44上に、第2タッチパネル用透明電極42の設けられた第2基板45が積層された構成である。 In the touch panel 40A, the first touch panel transparent electrode 41A and the second touch panel transparent electrode 42A have the same first conductive layer 44 and second conductive layer 46 as the first substrate 43 and the second substrate 45. It is laminated so as to be in the direction. The second substrate 45 provided with the second touch panel transparent electrode 42 is laminated on the first conductive layer 44 of the first touch panel transparent electrode 41A.
 第1タッチパネル用透明電極41Aは、上述の第2実施形態として説明した図2に示すタッチパネル用透明電極20と同様の構成である。
 第2タッチパネル用透明電極42Aは、上述の第1実施形態において説明した図1に示すタッチパネル用透明電極10において、導電層13上に高屈折率層を設けた構成である。或いは、第2タッチパネル用透明電極42Aは、上述の第3実施形態において説明した図3に示すタッチパネル用透明電極30において、透明基板11とチタン含有層12との間に形成された第2高屈折率層34を除いた構成である。
41 A of transparent electrodes for 1st touch panels are the structures similar to the transparent electrode 20 for touch panels shown in FIG. 2 demonstrated as the above-mentioned 2nd Embodiment.
42 A of transparent electrodes for 2nd touch panels are the structures which provided the high refractive index layer on the conductive layer 13 in the transparent electrode 10 for touch panels shown in FIG. 1 demonstrated in the above-mentioned 1st Embodiment. Alternatively, the second touch panel transparent electrode 42A is the second high refraction formed between the transparent substrate 11 and the titanium-containing layer 12 in the touch panel transparent electrode 30 shown in FIG. 3 described in the third embodiment. This is a configuration excluding the rate layer 34.
[タッチパネルの効果]
 以上のような変形例のタッチパネル40Aにおいても、上述の実施形態において説明したタッチパネル用透明電極を2層備えて構成されている。このため、光透過性と共に充分な導電性を備え、下地の表示画像の視認性を良好に保ちつつ、導電性フィルムを大型化した際の電圧降下を抑えることができる。
[Effect of touch panel]
The touch panel 40A according to the modified example as described above is also configured to include two layers of the touch panel transparent electrode described in the above-described embodiment. For this reason, it has sufficient electroconductivity with light transmittance, can suppress the voltage drop at the time of enlarging a conductive film, maintaining the visibility of the display image of a foundation | substrate.
 さらに、タッチパネル40Aにおいても、第1チタン含有層51から第2導電層46までの構成が、第1高屈折率層54と第2高屈折率層53に挟まれた構成となる。このため、このタッチパネル40Aの下地となる表示画像等からの光の入射面と射出面との両方に、高屈折率層が設けられた構成となる。このため、タッチパネル40Aの光透過率を向上させることができ、光散乱を抑制して下地となる表示画像等の視認性を向上させることができる。 Furthermore, also in the touch panel 40A, the configuration from the first titanium-containing layer 51 to the second conductive layer 46 is sandwiched between the first high refractive index layer 54 and the second high refractive index layer 53. For this reason, it becomes the structure by which the high refractive index layer was provided in both the incident surface and exit surface of the light from the display image etc. which become the foundation | substrate of this touch panel 40A. For this reason, the light transmittance of the touch panel 40A can be improved, and the visibility of a display image or the like serving as a base can be improved by suppressing light scattering.
〈5.タッチパネル(第5実施形態:透明基板の両面に導電層を設けた構成)〉
 次に、本発明の第5実施形態について説明する。第5実施形態は、上述の第3実施形態のタッチパネル用透明電極30を用いたタッチパネルについて説明する。図9に、本実施形態のタッチパネルの構成を示す。
 図9は、図6に示すA-A断面に相当する、本実施形態のタッチパネルの断面模式図である。なお、第5実施形態においても、タッチパネルの概略構成、タッチパネル用透明電極の電極構成、及び、タッチパネルの電極部分の平面配置については、図4~6に示す構成と同様である。
<5. Touch panel (fifth embodiment: configuration in which conductive layers are provided on both surfaces of a transparent substrate)>
Next, a fifth embodiment of the present invention will be described. 5th Embodiment demonstrates the touchscreen using the transparent electrode 30 for touchscreens of the above-mentioned 3rd Embodiment. FIG. 9 shows the configuration of the touch panel of the present embodiment.
FIG. 9 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the AA cross-section shown in FIG. Also in the fifth embodiment, the schematic configuration of the touch panel, the electrode configuration of the transparent electrode for the touch panel, and the planar arrangement of the electrode portion of the touch panel are the same as the configurations shown in FIGS.
[タッチパネルの構成]
 図9に示すように、本実施形態のタッチパネル50は、基板57の両面に第1タッチパネル用透明電極41と第2タッチパネル用透明電極42とが設けられた構成であり、それ以外の構成は上述の実施形態と同様である。このため、上述の実施形態のタッチパネルと同様の構成には同様の符号を付し、重複する説明は省略する。
[Configuration of touch panel]
As shown in FIG. 9, the touch panel 50 of the present embodiment has a configuration in which a first touch panel transparent electrode 41 and a second touch panel transparent electrode 42 are provided on both surfaces of a substrate 57, and other configurations are described above. This is the same as the embodiment. For this reason, the same code | symbol is attached | subjected to the structure similar to the touch panel of the above-mentioned embodiment, and the overlapping description is abbreviate | omitted.
 第1タッチパネル用透明電極41は、基板57側から、第2高屈折率層53、第1チタン含有層51、第1導電層44、及び、第4高屈折率層55がこの順に積層された構成である。
 第2タッチパネル用透明電極42は、基板57側から、第3高屈折率層56、第2チタン含有層52、第2導電層46、及び、第1高屈折率層54がこの順に積層された構成である。
 また、タッチパネル50において、第1タッチパネル用透明電極41と第2タッチパネル用透明電極42とは、基板57に対して、第1導電層44と第2導電層46とがそれぞれ異なる面に積層されている。
In the first touch panel transparent electrode 41, the second high refractive index layer 53, the first titanium-containing layer 51, the first conductive layer 44, and the fourth high refractive index layer 55 are laminated in this order from the substrate 57 side. It is a configuration.
In the second touch panel transparent electrode 42, the third high refractive index layer 56, the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 are laminated in this order from the substrate 57 side. It is a configuration.
In the touch panel 50, the first touch panel transparent electrode 41 and the second touch panel transparent electrode 42 are formed by laminating the first conductive layer 44 and the second conductive layer 46 on different surfaces with respect to the substrate 57. Yes.
 基板57は、上述のタッチパネル用透明電極の実施形態で説明した基板と同様の構成とすることができる。また、第1タッチパネル用透明電極41及び第2タッチパネル用透明電極42を構成する上記各層は、上述の第4実施形態のタッチパネルと同様の構成である。 The substrate 57 can have the same configuration as the substrate described in the embodiment of the transparent electrode for a touch panel described above. Moreover, each said layer which comprises the transparent electrode 41 for 1st touch panels, and the transparent electrode 42 for 2nd touch panels is the structure similar to the touch panel of the above-mentioned 4th Embodiment.
 さらに、第1導電層44及び第2導電層46の構成も、上述の第4実施形態のタッチパネルと同様であり、第1導電層44で構成されたx電極パターンx1,x2,・・・、及び第2導電層46で構成されたy電極パターンy1,y2,・・・が視認され難いパターン構成及び配置構成となっている。 Further, the configurations of the first conductive layer 44 and the second conductive layer 46 are the same as those of the touch panel of the fourth embodiment described above, and the x electrode patterns x1, x2,. And y electrode pattern y1, y2, ... comprised by the 2nd conductive layer 46 becomes a pattern structure and arrangement | positioning structure which are hard to be visually recognized.
[タッチパネルの効果]
 以上のようなタッチパネル50は、上述の第3実施形態において説明したタッチパネル用透明電極を2層備えて構成されている。このため、上述の第4実施形態のタッチパネルと同様の効果を有し、光透過性と共に充分な導電性を備え、下地の表示画像の視認性を良好に保ちつつ、導電性フィルムを大型化した際の電圧降下を抑えることができる。
[Effect of touch panel]
The touch panel 50 as described above includes two layers of the touch panel transparent electrodes described in the third embodiment. For this reason, it has the same effect as the touch panel of the above-mentioned fourth embodiment, has sufficient conductivity as well as light transmittance, and increased the size of the conductive film while maintaining good visibility of the underlying display image. The voltage drop at the time can be suppressed.
[タッチパネルの変形例]
 次に、第5実施形態のタッチパネルの変形例について説明する。図10に、第5実施形態のタッチパネルの変形例の断面構成、特に、図6に示すA-A断面に相当する断面模式図を示す。
[Modification of touch panel]
Next, a modification of the touch panel according to the fifth embodiment will be described. FIG. 10 shows a cross-sectional configuration of a modified example of the touch panel of the fifth embodiment, in particular, a schematic cross-sectional view corresponding to the AA cross section shown in FIG.
 図10に示す変形例のタッチパネル50Aは、第1タッチパネル用透明電極41A、基板57、第2タッチパネル用透明電極42A、及び、前面板47がこの順に積層された構成である。また、タッチパネル50Aにおいて、第1タッチパネル用透明電極41Aと第2タッチパネル用透明電極42Aとは、基板57のそれぞれの主面上に、第1チタン含有層51又は第2チタン含有層52が形成された構成である。つまり、図10に示す変形例のタッチパネル40Aは、図9に示すタッチパネル50の構成から、第2高屈折率層53と第3高屈折率層56とを除いた構成である。 10 is a configuration in which a first touch panel transparent electrode 41A, a substrate 57, a second touch panel transparent electrode 42A, and a front plate 47 are laminated in this order. In the touch panel 50 </ b> A, the first touch panel transparent electrode 41 </ b> A and the second touch panel transparent electrode 42 </ b> A have the first titanium-containing layer 51 or the second titanium-containing layer 52 formed on each main surface of the substrate 57. It is a configuration. That is, the touch panel 40A of the modification shown in FIG. 10 has a configuration in which the second high refractive index layer 53 and the third high refractive index layer 56 are removed from the configuration of the touch panel 50 shown in FIG.
 第1タッチパネル用透明電極41Aは、基板57側から、第1チタン含有層51、第1導電層44、及び、第4高屈折率層55がこの順に積層された構成である。また、第2タッチパネル用透明電極42Aは、基板57側から、第2チタン含有層52、第2導電層46、及び、第1高屈折率層54がこの順に積層された構成である。 The first touch panel transparent electrode 41A has a configuration in which the first titanium-containing layer 51, the first conductive layer 44, and the fourth high refractive index layer 55 are laminated in this order from the substrate 57 side. The transparent electrode 42A for the second touch panel has a configuration in which the second titanium-containing layer 52, the second conductive layer 46, and the first high refractive index layer 54 are laminated in this order from the substrate 57 side.
 このように、第1タッチパネル用透明電極41A、及び、第2タッチパネル用透明電極42Aは、上述の第1実施形態において説明した図1に示すタッチパネル用透明電極10において、導電層13上の保護層14として、光学調整層となる高屈折率層を設けた構成である。或いは、上述の第3実施形態において説明した図3に示すタッチパネル用透明電極30において、透明基板11とチタン含有層12との間に形成された第2高屈折率層34を除いた構成である。 As described above, the first touch panel transparent electrode 41A and the second touch panel transparent electrode 42A are the protective layer on the conductive layer 13 in the touch panel transparent electrode 10 shown in FIG. 1 described in the first embodiment. 14 is a configuration in which a high refractive index layer serving as an optical adjustment layer is provided. Alternatively, in the transparent electrode 30 for a touch panel shown in FIG. 3 described in the third embodiment, the second high refractive index layer 34 formed between the transparent substrate 11 and the titanium-containing layer 12 is excluded. .
[タッチパネルの効果]
 以上のような変形例のタッチパネル50Aにおいても、上述の実施形態において説明したタッチパネル用透明電極を2層備えて構成されている。このため、光透過性と共に充分な導電性を備え、下地の表示画像の視認性を良好に保ちつつ、導電性フィルムを大型化した際の電圧降下を抑えることができる。
[Effect of touch panel]
The touch panel 50 </ b> A of the modified example as described above is also configured to include two layers of the touch panel transparent electrode described in the above-described embodiment. For this reason, it has sufficient electroconductivity with light transmittance, can suppress the voltage drop at the time of enlarging a conductive film, maintaining the visibility of the display image of a foundation | substrate.
 さらに、タッチパネル50Aにおいても、第1導電層44から第2導電層46までの構成が、第1高屈折率層54と第4高屈折率層55とに挟まれた構成となる。このため、このタッチパネル50Aの下地となる表示画像等からの光の入射面と射出面との両方に、高屈折率層が設けられた構成となる。このため、タッチパネル50Aの光透過率を向上させることができ、光散乱を抑制して下地となる表示画像等の視認性を向上させることができる。 Furthermore, in the touch panel 50A, the configuration from the first conductive layer 44 to the second conductive layer 46 is sandwiched between the first high refractive index layer 54 and the fourth high refractive index layer 55. For this reason, it becomes the structure by which the high refractive index layer was provided in both the incident surface and exit surface of the light from the display image etc. which are the foundations of this touch panel 50A. For this reason, the light transmittance of the touch panel 50 </ b> A can be improved, and the visibility of a display image or the like serving as a base can be improved by suppressing light scattering.
〈6.タッチパネル(第6実施形態:透明基板の片面に導電層を設けた構成)〉
 次に、本発明の第6実施形態について説明する。第6実施形態は、上述の第3実施形態のタッチパネル用透明電極30を用いたタッチパネルについて説明する。図11~13に、本実施形態のタッチパネルの構成を示す。なお、本例のタッチパネルでは、1層のタッチパネル用透明電極を用いる構成について説明する。
<6. Touch panel (sixth embodiment: configuration in which a conductive layer is provided on one side of a transparent substrate)>
Next, a sixth embodiment of the present invention will be described. 6th Embodiment demonstrates the touchscreen using the transparent electrode 30 for touchscreens of the above-mentioned 3rd Embodiment. 11 to 13 show the configuration of the touch panel of this embodiment. Note that in the touch panel of this example, a configuration using a single-layer transparent electrode for a touch panel will be described.
[タッチパネルの構成]
 図11は、本実施形態のタッチパネルに用いられる、タッチパネル用透明電極の電極構成、及び、電極部分の平面配置を示す平面図である。図12は、タッチパネル用透明電極の電極部分の拡大図である。また、図13は、図11及び図12に示すB-B断面に相当する、本実施形態のタッチパネルの断面模式図である。
 なお、第6実施形態のタッチパネルの構成は、図4に示すタッチパネルの構成において、使用するタッチパネル用透明電極を1層とすることを除き同様の構成である。このため、上述の実施形態のタッチパネルと同様の構成には同様の符号を付し、重複する説明は省略する。
[Configuration of touch panel]
FIG. 11 is a plan view showing an electrode configuration of a transparent electrode for a touch panel used in the touch panel of the present embodiment and a planar arrangement of electrode portions. FIG. 12 is an enlarged view of an electrode portion of the transparent electrode for a touch panel. FIG. 13 is a schematic cross-sectional view of the touch panel of the present embodiment, corresponding to the BB cross-section shown in FIGS. 11 and 12.
The configuration of the touch panel of the sixth embodiment is the same as that of the touch panel configuration shown in FIG. 4 except that the touch panel transparent electrode to be used is a single layer. For this reason, the same code | symbol is attached | subjected to the structure similar to the touch panel of the above-mentioned embodiment, and the overlapping description is abbreviate | omitted.
 図11に示すタッチパネル60は、基板61の同一平面上に、y電極パターンy1,y2,・・・を有する第1導電層62と、x電極パターンx1,x2,・・・を有する第2導電層63とを有する構成である。なお、図11では、基板61上に形成される第1導電層62及び第2導電層63のみを示し、他のチタン含有層や高屈折率層の構成については図示を省略している。 The touch panel 60 shown in FIG. 11 has a first conductive layer 62 having y electrode patterns y1, y2,... And a second conductive having x electrode patterns x1, x2,. A layer 63. In FIG. 11, only the first conductive layer 62 and the second conductive layer 63 formed on the substrate 61 are shown, and the illustration of other titanium-containing layers and high refractive index layers is omitted.
 すなわち、タッチパネル60は、図13に示すように、基板61と、基板61上に順に積層された、第2高屈折率層67、チタン含有層66、第1導電層62、第2導電層63、層間絶縁膜65、接続電極64及び第1高屈折率層68と、前面板47とを備える。
 第1導電層62と第2導電層63とは、同一層に形成されている。また、第1導電層62及び第2導電層63は、第1導電層62及び第2導電層63と同じパターンに形成されたチタン含有層66に隣接して形成されている。
That is, as shown in FIG. 13, the touch panel 60 includes a substrate 61 and a second high refractive index layer 67, a titanium-containing layer 66, a first conductive layer 62, and a second conductive layer 63 that are sequentially stacked on the substrate 61. , An interlayer insulating film 65, a connection electrode 64, a first high refractive index layer 68, and a front plate 47.
The first conductive layer 62 and the second conductive layer 63 are formed in the same layer. The first conductive layer 62 and the second conductive layer 63 are formed adjacent to the titanium-containing layer 66 formed in the same pattern as the first conductive layer 62 and the second conductive layer 63.
 また、第1導電層62及び第2導電層63は、互いに絶縁状態を保って設けられたx電極パターンx1,x2,・・・とy電極パターンy1,y2,・・・とを有する。
 x電極パターンは、間隔を保ってマトリクス状に配列されたひし形パターンと、このひし形パターンの頂点付近から直線状にx方向に設けられ、隣接するひし形パターン同士をx方向に接続する連結部を有している。
The first conductive layer 62 and the second conductive layer 63 have x electrode patterns x1, x2,... And y electrode patterns y1, y2,.
The x electrode pattern has a rhombus pattern arranged in a matrix at intervals and a connecting portion that is provided in the x direction linearly from the vicinity of the apex of the rhombus pattern and connects adjacent rhombus patterns in the x direction. is doing.
 y電極パターンは、マトリクス状に配列されたひし形パターンと、このひし形パターンの頂点付近から直線状にy方向に設けられ、隣接するひし形パターン同士をy方向に接続する連結部とを有している。このy方向の連結部は、層間絶縁膜65を介してx方向の連結部上に設けられた接続電極64により構成されている。層間絶縁膜65は、第2導電層63のx方向の連結部上を覆う位置に設けられている。そして、接続電極64の端部が、ひし形パターンの頂点付近に接続されて、第1導電層62によるy電極パターンが構成されている。 The y electrode pattern has a rhombus pattern arranged in a matrix and a connecting portion that is provided in the y direction linearly from the vicinity of the apex of the rhombus pattern and connects adjacent rhombus patterns in the y direction. . The connecting portion in the y direction is constituted by a connection electrode 64 provided on the connecting portion in the x direction via the interlayer insulating film 65. The interlayer insulating film 65 is provided at a position covering the connecting portion in the x direction of the second conductive layer 63. And the edge part of the connection electrode 64 is connected to the vertex vicinity of a rhombus pattern, and the y electrode pattern by the 1st conductive layer 62 is comprised.
[基板等]
 基板61、チタン含有層66、第1高屈折率層68、及び、第2高屈折率層67は、それぞれ上述のタッチパネル用透明電極の実施形態で説明した各構成と同様の構成とすることができる。また、チタン含有層66は、一例として、第1導電層62及び第2導電層63と同一形状にパターニングされているが、x電極パターンとy電極パターンとの絶縁を確保できる構成であれば他のパターンとすることもできる。
[Substrate]
The substrate 61, the titanium-containing layer 66, the first high-refractive index layer 68, and the second high-refractive index layer 67 may have the same configuration as that described in the above-described embodiment of the transparent electrode for touch panel. it can. Further, as an example, the titanium-containing layer 66 is patterned in the same shape as the first conductive layer 62 and the second conductive layer 63, but any other configuration can be used as long as the insulation between the x electrode pattern and the y electrode pattern can be secured. The pattern can also be
[第1導電層、第2導電層]
 第1導電層62及び第2導電層63は、上述のタッチパネル用透明電極の実施形態で説明した導電層であり、チタン含有層66上においてパターニングされた複数のx電極パターンx1,x2,・・・と複数のy電極パターンy1,y2,・・・とを有して構成されている。
[First conductive layer, second conductive layer]
The first conductive layer 62 and the second conductive layer 63 are the conductive layers described in the embodiment of the transparent electrode for a touch panel described above, and a plurality of x electrode patterns x1, x2,. And a plurality of y electrode patterns y1, y2,...
 y電極パターンは、x電極パターンx1,x2,・・・と重なることなく絶縁状態を保てる程度の間隔を有して配置される。これにより、x電極パターンx1,x2,・・・とy電極パターンy1,y2,・・・とは、絶縁性が確保された状態となっている。またy電極パターンは、x電極パターンx1,x2,・・・と絶縁状態を保てる程度の間隔を有する範囲内で、できるだけ大きな範囲を占める形状となっている。これにより、基板61の中央部の領域においては、x電極パターンx1,x2,・・・及びy電極パターンy1,y2,・・・が視認され難い構成となっている。 The y electrode patterns are arranged with an interval enough to maintain an insulating state without overlapping with the x electrode patterns x1, x2,. Accordingly, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. In addition, the y electrode pattern has a shape that occupies as large a range as possible within a range having an interval sufficient to maintain an insulation state with the x electrode patterns x1, x2,. Thus, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,.
 また、各x電極パターンx1,x2,・・・及び各y電極パターンy1,y2,・・・には、上述のタッチパネルの各実施形態と同様に、それぞれの端部にx配線69x又はy配線69yが接続されている。 In addition, each x electrode pattern x1, x2,... And each y electrode pattern y1, y2,... Has an x wiring 69x or y wiring at each end, as in the embodiments of the touch panel described above. 69y is connected.
[層間絶縁膜、接続電極]
 接続電極64は、各y電極パターンを構成する、例えばひし形のy電極パターンの頂点付近において、各y電極パターンをy方向に直線状に連結する。接続電極64は、x電極パターンx1,x2,・・・のひし形のパターンの連結部と平面視的に交差する各位置に配置される。これらの交差部分において、層間絶縁膜65がx電極パターンx1,x2,・・・のひし形のパターンの連結部を覆い、接続電極64がx電極パターンx1,x2,・・・上に層間絶縁膜65を介して積層されている。従って、x電極パターンx1,x2,・・・とy電極パターンy1,y2,・・・との絶縁性が確保された状態となっている。なお、接続電極64には、銀等の一般的な電極材料、又はITO等の光透過性を有する電極材料を用いればよい。タッチパネル60を介しての下地の表示画像の視認性の観点から、好ましくは、第1導電層62及び第2導電層63と同様に、Agを主成分として光透過性を有する電極材料を用いる。
[Interlayer insulation film, connection electrode]
The connection electrode 64 linearly connects each y electrode pattern in the y direction in the vicinity of the apex of the rhombic y electrode pattern, which constitutes each y electrode pattern. The connection electrode 64 is disposed at each position where the connection electrode 64 intersects the connecting portion of the rhombic pattern of the x electrode patterns x1, x2,. At these intersections, the interlayer insulating film 65 covers the connecting portions of the rhombic patterns of the x electrode patterns x1, x2,..., And the connection electrodes 64 are on the interlayer insulating film on the x electrode patterns x1, x2,. 65 are stacked. Therefore, the insulation between the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. Note that the connection electrode 64 may be made of a general electrode material such as silver or a light-transmissive electrode material such as ITO. From the viewpoint of the visibility of the underlying display image through the touch panel 60, preferably, an electrode material having light transmissivity and containing Ag as a main component is used similarly to the first conductive layer 62 and the second conductive layer 63.
 なお、本例では、接続電極64が第1導電層62及び第2導電層63の上層に設けられた例を説明したが、接続電極64は第1導電層62及び第2導電層63の下層に設けられてもよい。この際、接続電極64は、上述の例と同様に、x電極パターンx1,x2,・・・のひし形のパターンを連結する部分と平面視的に交差する各位置に配置される。これらの交差する各位置において、接続電極64とx電極パターンx1,x2,・・・のひし形のパターンの連結部との間には、少なくとも層間絶縁層が挟持される。従って、接続電極64が第1導電層62及び第2導電層63の下層に設けられた例においても、上述の例と同様に、x電極パターンx1,x2,・・・とy電極パターンy1,y2,・・・との絶縁性が確保される。 In this example, the example in which the connection electrode 64 is provided above the first conductive layer 62 and the second conductive layer 63 has been described. However, the connection electrode 64 is a layer below the first conductive layer 62 and the second conductive layer 63. May be provided. At this time, the connection electrode 64 is arranged at each position intersecting in plan view with a portion connecting the rhombus patterns of the x electrode patterns x1, x2,. At each of these intersecting positions, at least an interlayer insulating layer is sandwiched between the connection electrode 64 and the connecting portion of the rhombic pattern of the x electrode patterns x1, x2,. Therefore, even in the example in which the connection electrode 64 is provided below the first conductive layer 62 and the second conductive layer 63, the x electrode patterns x1, x2,. Insulation with y2,... is ensured.
[タッチパネルの効果]
 上述のタッチパネル60は、光透過性と共に充分な導電性を備える上述の第3実施形態において説明したタッチパネル用透明電極を用いたことにより、上述の実施形態のタッチパネルと同様に大型化が可能であり、タッチパネル60を介した表示画像の視認性の劣化を防止できる。
[Effect of touch panel]
The above-described touch panel 60 can be enlarged in the same manner as the touch panel of the above-described embodiment by using the transparent electrode for a touch panel described in the above-described third embodiment, which has sufficient conductivity as well as light transmittance. The deterioration of the visibility of the display image via the touch panel 60 can be prevented.
 なお、本発明のタッチパネルは、上述した実施形態及び変形例の構成に限定されることはなく、タッチパネル用透明電極を用いた構成であれば、広く適用可能である。例えば、投影型静電容量式のタッチパネルであれば、x電極パターンx1,x2,・・・、及びこれらに直交して配置されたy電極パターンy1,y2,・・・が、絶縁性を保って配置されればよく、パターン形状が限定されることはない。また、タッチパネルは、べた膜状の導電層を備えた2枚のタッチパネル用透明電極を、スペーサを挟んで配置した抵抗膜式であってもよく、表面型静電容量式であってもよい。 Note that the touch panel of the present invention is not limited to the configurations of the above-described embodiments and modifications, and can be widely applied as long as the configuration uses a transparent electrode for a touch panel. For example, in the case of a projected capacitive touch panel, the x electrode patterns x1, x2,... And the y electrode patterns y1, y2,. The pattern shape is not limited. The touch panel may be a resistance film type in which two transparent electrodes for a touch panel provided with a solid film-like conductive layer are arranged with a spacer interposed therebetween, or may be a surface type capacitive type.
〈7.表示装置(第7実施形態:タッチパネルを用いた構成)〉
 次に、本発明の第7実施形態について説明する。第7実施形態は、上述の実施形態のタッチパネルを用いた表示装置について説明する。図14に、本実施形態の表示装置の構成の斜視図を示す。
<7. Display Device (Seventh Embodiment: Configuration Using Touch Panel)>
Next, a seventh embodiment of the present invention will be described. 7th Embodiment demonstrates the display apparatus using the touchscreen of the above-mentioned embodiment. FIG. 14 is a perspective view of the configuration of the display device of this embodiment.
[タッチパネルを用いた構成]
 図14に示す表示装置70は、表示パネル72の表示面上に、タッチパネル71を設けた情報入力機能付きの表示装置である。表示装置70のタッチパネル71には、上述の実施形態及び変形例のタッチパネルを適用することができる。
[Configuration using touch panel]
A display device 70 shown in FIG. 14 is a display device with an information input function in which a touch panel 71 is provided on the display surface of the display panel 72. The touch panel 71 of the display device 70 can be applied with the touch panel of the above-described embodiment and modification.
 表示パネル72は特に限定されず、例えば、液晶表示パネル、有機電界発光素子を用いた表示パネル等の平面型の表示パネルや、CRT(Cathode Ray Tube)ディスプレイを用いることができる。また、表示パネル72は、動画を表示する表示パネルに限定されることはなく、静止画用の表示パネルであってもよい。 The display panel 72 is not particularly limited, and for example, a flat display panel such as a liquid crystal display panel or a display panel using an organic electroluminescent element, or a CRT (Cathode Ray Ray Tube) display can be used. Further, the display panel 72 is not limited to a display panel that displays a moving image, and may be a display panel for a still image.
 表示パネル72では、画像の表示面上に表示面を覆う状態でタッチパネル71が重ねて配置されている。また、タッチパネル71と表示パネル72とは、必要に応じてさらに枠状のケース部材73に収容されている。さらに、ケース部材73にさらに透明板材からなる前面板がもうけられていてもよい。 In the display panel 72, a touch panel 71 is arranged so as to cover the display surface on the image display surface. The touch panel 71 and the display panel 72 are further accommodated in a frame-shaped case member 73 as necessary. Furthermore, a front plate made of a transparent plate material may be provided on the case member 73.
 表示装置70では、ユーザがタッチパネル71を介して表示パネル72で表示された表示画像の一部に接触することにより、接触部分の位置情報をタッチパネル71に入力することができる。 In the display device 70, when the user contacts a part of the display image displayed on the display panel 72 via the touch panel 71, the position information of the contact portion can be input to the touch panel 71.
[表示装置の効果]
 本実施形態の表示装置70によれば、上述した実施形態及び各変形例のタッチパネル71を用いることにより、薄型化及び大型化が可能である。
[Effect of display device]
According to the display device 70 of the present embodiment, it is possible to reduce the thickness and increase the size by using the touch panel 71 of the above-described embodiment and each modification.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[タッチパネル用透明電極の作製]
 試料101~124の各タッチパネル用透明電極(以下、透明電極と称する)を、面積が5cm×5cmとなるように透明基板上に作製した。透明基板としては、ポリエチレンテレフタレート(PET)基板(試料101~118、試料120~124)とガラス基板(試料119)を用意した。下記表1に、試料101~124の各透明電極における各層の構成を示した。以下に、試料101~124の各透明電極の作製手順を説明する。
[Production of transparent electrode for touch panel]
Transparent electrodes for touch panels (hereinafter referred to as transparent electrodes) of Samples 101 to 124 were produced on a transparent substrate so as to have an area of 5 cm × 5 cm. As the transparent substrate, a polyethylene terephthalate (PET) substrate (samples 101 to 118, samples 120 to 124) and a glass substrate (sample 119) were prepared. Table 1 below shows the configuration of each layer in each of the transparent electrodes of Samples 101 to 124. Hereinafter, a procedure for manufacturing each of the transparent electrodes of the samples 101 to 124 will be described.
[試料101の透明電極の作製]
 ポリエチレンテレフタレート(PET)製の透明基板の一主面上に、ITO膜(厚さ100nm)をスパッタ法によって形成した。これにより、ITO膜を導電層とした単層構造の透明電極を作製した。
[Preparation of transparent electrode of sample 101]
An ITO film (thickness: 100 nm) was formed on one main surface of a transparent substrate made of polyethylene terephthalate (PET) by a sputtering method. Thereby, a transparent electrode having a single layer structure using an ITO film as a conductive layer was produced.
[試料102~104の透明電極の作製]
 試料102~104のそれぞれにおいて、PET製の透明基板の一主面上に、銀ナノワイヤーを用いた導電層を塗布法によって形成した。これにより銀ナノワイヤーを用いた導電層のみの単層構造の透明電極を作製した。この際、銀ナノワイヤーの分散液を塗布し、乾燥処理した後の厚さが、試料102では50nm、試料103では100nm、試料104では150nmとなるように銀ナノワイヤー分散液の塗布厚を調整した。
[Preparation of transparent electrodes of samples 102 to 104]
In each of samples 102 to 104, a conductive layer using silver nanowires was formed on one main surface of a transparent substrate made of PET by a coating method. This produced the transparent electrode of the single layer structure of only the conductive layer using silver nanowire. At this time, the coating thickness of the silver nanowire dispersion was adjusted so that the thickness after applying the silver nanowire dispersion and drying was 50 nm for sample 102, 100 nm for sample 103, and 150 nm for sample 104. did.
[試料105~107の透明電極の作製]
 試料105~107のそれぞれにおいて、PET製の透明基板の一主面上に、蒸着法によって銀(Ag)からなる導電層を、表1に示す各厚さに形成した。これにより、銀を導電層に用いた単層構造の透明電極を作製した。この際、透明基板を市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で、銀からなる導電層を、試料105では6nm、試料106では8nm、試料107では15nmの厚さで形成した。
[Preparation of transparent electrodes for samples 105 to 107]
In each of Samples 105 to 107, a conductive layer made of silver (Ag) was formed on one main surface of a transparent substrate made of PET to a thickness shown in Table 1 by vapor deposition. Thereby, a transparent electrode having a single layer structure using silver as a conductive layer was produced. At this time, the transparent substrate was fixed to a base material holder of a commercially available vacuum deposition apparatus and attached to a vacuum tank of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber. Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, the resistance heating boat was energized and heated, and the conductive layer made of silver was sampled at a deposition rate of 0.1 nm / second to 0.2 nm / second. The thickness was 6 nm for 105, 8 nm for sample 106, and 15 nm for sample 107.
[試料108~110の透明電極の作製]
 試料108~110のそれぞれにおいて、PET製の透明基板の一主面上に、酸化チタン(TiO)からなる高屈折率層を30nmの厚さで形成し、この上部に銀からなる導電層を、表1に示す各厚さに形成した。これにより、高屈折率層とこの上部の導電層との積層構造からなる透明電極を作製した。
[Preparation of transparent electrodes of samples 108 to 110]
In each of the samples 108 to 110, a high refractive index layer made of titanium oxide (TiO 2 ) is formed with a thickness of 30 nm on one main surface of a transparent substrate made of PET, and a conductive layer made of silver is formed thereon. Each thickness shown in Table 1 was formed. Thus, a transparent electrode having a laminated structure of the high refractive index layer and the upper conductive layer was produced.
 この際、PET製の透明基板を市販の電子ビーム蒸着装置の基材ホルダーに固定し、酸化チタン(TiO)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽に取り付けた。 At this time, a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium oxide (TiO 2 ) is put into a heating boat, and these substrate holder and the heating boat are connected to a vacuum of the electron beam evaporation apparatus. Attached to the tank. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、酸化チタンの入った加熱ボートに電子ビームを照射して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で透明基板上に厚さ30nmの酸化チタンからなる高屈折率層を設けた。 Next, the vacuum chamber of the electron beam evaporation apparatus is depressurized to 4 × 10 −4 Pa, and then heated by irradiating an electron beam to a heating boat containing titanium oxide, and the deposition rate is 0.1 nm / second to 0.2 nm. A high refractive index layer made of titanium oxide having a thickness of 30 nm was provided on the transparent substrate at a rate of / sec.
 次に、高屈折率層まで形成した透明基板を真空のまま真空蒸着装置の真空槽に移し、当該真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で、銀からなる導電層を、試料108では6nm、試料109では8nm、試料110では15nmの厚さで形成した。 Next, the transparent substrate formed up to the high refractive index layer is transferred to a vacuum chamber of a vacuum evaporation apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 × 10 −4 Pa, and then a resistance heating boat containing silver is energized. And heated. Thus, a conductive layer made of silver was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second with a thickness of 6 nm for sample 108, 8 nm for sample 109, and 15 nm for sample 110.
[試料111の透明電極の作製]
 以下のようにして、PET製の透明基板上に、二酸化チタン(TiO)からなる高屈折率層を30nmの厚さで形成し、この上部にチタンからなるチタン含有層を0.1nmの厚さで形成し、さらに銀からなる導電層を8nmの厚さで形成した。
[Preparation of transparent electrode of sample 111]
As described below, a high refractive index layer made of titanium dioxide (TiO 2 ) is formed on a PET transparent substrate with a thickness of 30 nm, and a titanium-containing layer made of titanium is formed thereon with a thickness of 0.1 nm. Then, a conductive layer made of silver was formed to a thickness of 8 nm.
 先ず、PET製の透明基板を市販の電子ビーム蒸着装置の基材ホルダーに固定し、二酸化チタン(TiO)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。次に、チタン(Ti)のターゲットをスパッタリング装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽に取り付けた。 First, a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium dioxide (TiO 2 ) is put into a heating boat, and these substrate holder and heating boat are connected to a vacuum chamber of the electron beam evaporation apparatus. Attached to. Next, a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、二酸化チタンの入った加熱ボートに電子ビームを照射し加熱して、蒸着速度0.1nm/秒~0.2nm/秒で基板上に厚さ30nmの二酸化チタンからなる高屈折率層を設けた。 Next, the vacuum chamber of the electron beam vapor deposition apparatus is depressurized to 4 × 10 −4 Pa, and then heated by irradiating an electron beam onto a heating boat containing titanium dioxide, and the deposition rate is 0.1 nm / second to 0.2 nm. A high refractive index layer made of titanium dioxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
 続いて、高屈折率層まで形成した基板を真空のままスパッタリング装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、チタンのターゲットに電圧を印加し、高屈折率層上にチタンからなるチタン含有層を0.1nmの厚さで設けた。 Subsequently, the substrate formed up to the high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then a voltage was applied to the titanium target, A titanium-containing layer made of titanium was provided on top with a thickness of 0.1 nm.
 次に、チタン含有層まで形成した基材を真空のまま真空蒸着装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で膜厚8nmの銀からなる導電層を形成した。 Next, the base material formed up to the titanium-containing layer is transferred to a vacuum chamber of a vacuum deposition apparatus while being vacuumed, and the vacuum chamber is depressurized to 4 × 10 −4 Pa, and then heated by energizing a resistance heating boat containing silver. did. As a result, a conductive layer made of silver having a film thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
[試料112~114の透明電極の作製]
 チタン含有層を表1に示す厚さ(1nm、5nm、10nm)にそれぞれ変更した以外は、上記試料111と同様の手順で試料112~114の各透明電極を得た。
[Preparation of transparent electrodes of samples 112 to 114]
Transparent electrodes of Samples 112 to 114 were obtained in the same procedure as Sample 111 except that the titanium-containing layer was changed to the thicknesses (1 nm, 5 nm, and 10 nm) shown in Table 1, respectively.
[試料115の透明電極の作製]
 チタン含有層に用いる材料を、TiAl合金(組成比Ti:Al=1:1)とした以外は、上記試料112と同様の手順で試料115の各透明電極を得た。
[Preparation of transparent electrode of sample 115]
Each transparent electrode of Sample 115 was obtained in the same procedure as Sample 112 except that the material used for the titanium-containing layer was a TiAl alloy (composition ratio Ti: Al = 1: 1).
[試料116の透明電極の作製]
 チタン含有層に用いる材料を、マグネリ相チタン酸化物(Ti2n-1)とした以外は、上記試料112と同様の手順で試料116の各透明電極を得た。
[Preparation of transparent electrode of sample 116]
Each transparent electrode of Sample 116 was obtained in the same procedure as Sample 112, except that the material used for the titanium-containing layer was magnetic phase titanium oxide (Ti n O 2n-1 ).
[試料117の透明電極の作製]
 チタン含有層に用いる材料を、三酸化二チタン(Ti)とした以外は、上記試料112と同様の手順で試料117の各透明電極を得た。
[Preparation of transparent electrode of sample 117]
Each transparent electrode of Sample 117 was obtained in the same procedure as Sample 112 except that the material used for the titanium-containing layer was dititanium trioxide (Ti 2 O 3 ).
[試料118の透明電極の作製]
 チタン含有層に用いる材料を、窒化チタン(TiN)とした以外は、上記試料112と同様の手順で試料118の各透明電極を得た。
[Preparation of transparent electrode of sample 118]
Each transparent electrode of Sample 118 was obtained in the same procedure as Sample 112, except that the material used for the titanium-containing layer was titanium nitride (TiN).
[試料119の透明電極の作製]
 以下のようにして、無アルカリガラス製の透明基板上に、二酸化チタン(TiO)からなる高屈折率層を30nmの厚さで形成し、この上部にチタンからなるチタン含有層を1nmの厚さで形成し、さらに銀からなる導電層を8nmの厚さで形成した。
[Preparation of transparent electrode of sample 119]
A high refractive index layer made of titanium dioxide (TiO 2 ) is formed with a thickness of 30 nm on a transparent substrate made of alkali-free glass as follows, and a titanium-containing layer made of titanium is formed thereon with a thickness of 1 nm. Then, a conductive layer made of silver was formed to a thickness of 8 nm.
 先ず、無アルカリガラス製の透明基板を市販の電子ビーム蒸着装置の基材ホルダーに固定し、二酸化チタン(TiO)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。次に、チタン(Ti)のターゲットをスパッタリング装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽に取り付けた。 First, a transparent substrate made of alkali-free glass is fixed to a base material holder of a commercially available electron beam evaporation apparatus, titanium dioxide (TiO 2 ) is put into a heating boat, and these substrate holder and the heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber. Next, a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、二酸化チタンの入った加熱ボートに電子ビームを照射し加熱して、蒸着速度0.1nm/秒~0.2nm/秒で基板上に厚さ30nmの二酸化チタンからなる高屈折率層を設けた。 Next, the vacuum chamber of the electron beam vapor deposition apparatus is depressurized to 4 × 10 −4 Pa, and then heated by irradiating an electron beam onto a heating boat containing titanium dioxide, and the deposition rate is 0.1 nm / second to 0.2 nm. A high refractive index layer made of titanium dioxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
 続いて、高屈折率層まで形成した基板を真空のままスパッタリング装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、チタンのターゲットに電圧を印加し、高屈折率層上にチタンからなるチタン含有層を1nmの厚さで設けた。 Subsequently, the substrate formed up to the high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then a voltage was applied to the titanium target, A titanium-containing layer made of titanium was provided on top with a thickness of 1 nm.
 次に、チタン含有層まで成膜した基材を真空のまま真空蒸着装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で膜厚8nmの銀からなる導電層を形成した。 Next, the base material on which the titanium-containing layer was formed was transferred to a vacuum chamber of a vacuum evaporation apparatus while being vacuumed, and the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then a resistance heating boat containing silver was energized. Heated. As a result, a conductive layer made of silver having a film thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
[試料120の透明電極の作製]
 高屈折率層に用いる材料を酸化ニオブ(Nb)とした以外は、上記試料112と同様の手順で試料120の各透明電極を得た。
[Preparation of transparent electrode of sample 120]
Each transparent electrode of the sample 120 was obtained in the same procedure as the sample 112 except that the material used for the high refractive index layer was niobium oxide (Nb 2 O 5 ).
[試料121の透明電極の作製]
 高屈折率層に用いる材料を酸化タンタル(Ta)とした以外は、上記試料112と同様の手順で試料121の各透明電極を得た。
[Preparation of transparent electrode of sample 121]
Each transparent electrode of Sample 121 was obtained in the same procedure as Sample 112 except that the material used for the high refractive index layer was tantalum oxide (Ta 2 O 5 ).
[試料122の透明電極の作製]
 高屈折率層に用いる材料を酸化セリウム(CeO)とした以外は、上記試料112と同様の手順で試料122の各透明電極を得た。
[Preparation of transparent electrode of sample 122]
Each transparent electrode of Sample 122 was obtained in the same procedure as Sample 112 except that the material used for the high refractive index layer was cerium oxide (CeO 2 ).
[試料123の透明電極の作製]
 以下のようにして、PET製の透明基板の一主面上に、チタンからなるチタン含有層を1nmの厚さで形成し、この上部に銀からなる導電層を8nmの厚さで形成した。
[Preparation of transparent electrode of sample 123]
In the following manner, a titanium-containing layer made of titanium was formed with a thickness of 1 nm on one main surface of a transparent substrate made of PET, and a conductive layer made of silver was formed thereon with a thickness of 8 nm.
 先ず、PET製の透明基板を市販のスパッタリング装置の基材ホルダーに固定し、チタン(Ti)のターゲットをスパッタリング装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽に取り付けた。 First, a transparent substrate made of PET was fixed to a base material holder of a commercially available sputtering apparatus, and a titanium (Ti) target was attached to a vacuum chamber of the sputtering apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
 次に、スパッタリング装置の真空槽を4×10-4Paまで減圧した後、チタンのターゲットに電圧を印加し、透明基板上にチタンからなるチタン含有層を1nmの厚さで設けた。 Next, after the pressure in the vacuum chamber of the sputtering apparatus was reduced to 4 × 10 −4 Pa, a voltage was applied to the titanium target, and a titanium-containing layer made of titanium having a thickness of 1 nm was provided on the transparent substrate.
 次に、チタン含有層まで形成した基板を、真空蒸着装置の真空槽に移し、真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる導電層を形成した。 Next, the substrate formed up to the titanium-containing layer was transferred to a vacuum chamber of a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing a resistance heating boat containing silver. As a result, a conductive layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
[試料124の透明電極の作製]
 以下のようにして、PET製の透明基板上に、酸化ニオブ(Nb)からなる第2高屈折率層を30nmの厚さで形成し、この上部にチタンからなるチタン含有層を1nmの厚さで形成し、チタン含有層上に銀からなる導電層を8nmの厚さで形成し、さらに、導電層上に酸化ニオブ(Nb)からなる第1高屈折率層を30nmの厚さで形成した。
[Preparation of transparent electrode of sample 124]
A second high refractive index layer made of niobium oxide (Nb 2 O 5 ) is formed on a transparent substrate made of PET in the following manner with a thickness of 30 nm, and a titanium-containing layer made of titanium is formed on the upper portion by 1 nm. The conductive layer made of silver is formed with a thickness of 8 nm on the titanium-containing layer, and the first high refractive index layer made of niobium oxide (Nb 2 O 5 ) is further formed on the conductive layer with a thickness of 30 nm. The thickness was formed.
 先ず、PET製の透明基板を市販の電子ビーム蒸着装置の基材ホルダーに固定し、酸化ニオブ(Nb)を加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを電子ビーム蒸着装置の真空槽に取り付けた。次に、チタン(Ti)のターゲットをスパッタリング装置の真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽に取り付けた。 First, a transparent substrate made of PET is fixed to a base material holder of a commercially available electron beam evaporation apparatus, niobium oxide (Nb 2 O 5 ) is placed in a heating boat, and these substrate holder and heating boat are connected to the electron beam evaporation apparatus. Attached to a vacuum chamber. Next, a titanium (Ti) target was attached to the vacuum chamber of the sputtering apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached to the vacuum chamber of the vacuum evaporation system.
 次に、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、酸化ニオブの入った加熱ボートに電子ビームを照射し加熱して、蒸着速度0.1nm/秒~0.2nm/秒で基板上に厚さ30nmの酸化ニオブからなる第2高屈折率層を設けた。 Next, after reducing the vacuum chamber of the electron beam evaporation apparatus to 4 × 10 −4 Pa, the heating boat containing niobium oxide is heated by irradiating the electron beam with a deposition rate of 0.1 nm / second to 0.2 nm. A second high refractive index layer made of niobium oxide having a thickness of 30 nm was provided on the substrate at a rate of / sec.
 続いて、第2高屈折率層まで形成した基板を真空のままスパッタリング装置の真空槽に移し、スパッタリング装置の真空槽を4×10-4Paまで減圧した後、チタンのターゲットに電圧を印加し、透明基板上にチタンからなるチタン含有層を1nmの厚さで設けた。 Subsequently, the substrate formed up to the second high refractive index layer was transferred to the vacuum chamber of the sputtering apparatus while being vacuumed, and after the pressure of the sputtering apparatus was reduced to 4 × 10 −4 Pa, a voltage was applied to the titanium target. A titanium-containing layer made of titanium was provided on the transparent substrate with a thickness of 1 nm.
 次に、チタン含有層まで形成した基板を真空蒸着装置の真空槽に移し、真空蒸着装置の真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる導電層を形成した。 Next, the substrate on which the titanium-containing layer has been formed is transferred to a vacuum chamber of a vacuum deposition apparatus, the vacuum chamber of the vacuum deposition apparatus is depressurized to 4 × 10 −4 Pa, and then heated by energizing a resistance heating boat containing silver. did. As a result, a conductive layer made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
 次に、導電層まで形成した基板を電子ビーム蒸着装置の真空槽に移し、電子ビーム蒸着装置の真空槽を4×10-4Paまで減圧した後、酸化ニオブの入った加熱ボートに電子ビームを照射し加熱して、蒸着速度0.1nm/秒~0.2nm/秒で導電層上に厚さ30nmの酸化ニオブからなる第1高屈折率層を設けた。 Next, the substrate on which the conductive layer has been formed is transferred to a vacuum chamber of an electron beam vapor deposition device, and the vacuum chamber of the electron beam vapor deposition device is depressurized to 4 × 10 −4 Pa. Irradiation and heating were performed, and a first high refractive index layer made of niobium oxide having a thickness of 30 nm was provided on the conductive layer at a deposition rate of 0.1 nm / second to 0.2 nm / second.
[実施例の各試料の評価]
 上記方法により作製した試料101~124の各透明電極について、文字の視認性、シート抵抗(面抵抗)を測定した。
 文字の視認性は、文字を表した画像の上部に透明電極が形成された透明基板を重ね合わせ、これらを介しての文字の見えやすさを5段階評価した。5段階評価は、透明電極の電極面に対する方線方向を0°として0°と45°の2つの角度から行い、これを平均した。これらの評価結果を下記表1に合わせて示す。
 シート抵抗の測定は、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で行った。
 結果を下記表1に合わせて示す。
[Evaluation of Samples in Examples]
Character visibility and sheet resistance (sheet resistance) were measured for each of the transparent electrodes of Samples 101 to 124 produced by the above method.
Visibility of characters was evaluated by evaluating the visibility of the characters through five levels by superimposing a transparent substrate on which a transparent electrode was formed on the image representing the characters. The five-level evaluation was performed from two angles of 0 ° and 45 ° with the direction of the direction of the transparent electrode with respect to the electrode surface being 0 °, and this was averaged. These evaluation results are shown in Table 1 below.
The sheet resistance was measured using a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation) by a 4-terminal 4-probe method constant current application method.
The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
[実施例の評価結果]
 表1に示す結果から、導電層にAgを用いずに、ITOを用いた単層構造の試料101の透明電極は、100nmの厚膜でありながらも、シート抵抗が非常に高いことがわかる。また、銀ナノワイヤーを用いた単層構造の試料102~104の透明電極では、厚さに対するシート抵抗の値が高く、さらに最もシート抵抗が低い試料104では、光散乱のために文字の視認性が1.5と極めて低い。
[Evaluation results of Examples]
From the results shown in Table 1, it can be seen that the transparent electrode of the sample 101 having a single layer structure using ITO without using Ag for the conductive layer has a very high sheet resistance even though it is a thick film of 100 nm. In addition, the transparent electrodes of the samples 102 to 104 having a single-layer structure using silver nanowires have a high sheet resistance value with respect to the thickness, and the sample 104 with the lowest sheet resistance has a character visibility due to light scattering. Is as low as 1.5.
 また、チタン含有層を有していない試料105~110は、視認性が低いことがわかる。これらは、チタン含有層を備えていないことにより、導電層を構成するAgの凝集が起き、導電層の均一性が低下したためである。また、この試料105~110では、Agの凝集により抵抗値が大きく、導電層を15nmと厚く形成した試料107と試料110以外は、抵抗値が測定できなかった。また、試料107と試料110では、導電層が15nmと厚いため、視認性が他の試料よりも低下している。 It can also be seen that the samples 105 to 110 having no titanium-containing layer have low visibility. These are because the aggregation of Ag constituting the conductive layer occurs due to the absence of the titanium-containing layer, and the uniformity of the conductive layer is lowered. In addition, the resistance values of Samples 105 to 110 were large due to Ag aggregation, and the resistance values could not be measured except for Sample 107 and Sample 110 in which the conductive layer was formed as thick as 15 nm. Moreover, in the sample 107 and the sample 110, since the conductive layer is as thick as 15 nm, the visibility is lower than the other samples.
 チタン含有層を形成し、さらに高屈折率層としてTiOを形成した試料111~114は、チタン含有層を形成していないことを除いて同じ条件で形成された試料109に比べて、面抵抗及び視認性が向上している。
 この結果から、チタン含有層に接してAg導電層が形成されることにより、導電層を構成するAgの凝集が抑制され、薄く均一性の高い導電層が形成されたことがわかる。
Samples 111 to 114 in which a titanium-containing layer was formed and TiO 2 was further formed as a high refractive index layer had a surface resistance higher than that of sample 109 formed under the same conditions except that a titanium-containing layer was not formed. And visibility is improved.
From this result, it can be seen that by forming the Ag conductive layer in contact with the titanium-containing layer, aggregation of Ag constituting the conductive layer was suppressed, and a thin and highly uniform conductive layer was formed.
 また、試料111~114において、チタン含有層の厚さが大きくなるほど、視認性が向上し、面抵抗が低下している。この結果から、チタン含有層は10nm以下であれば、チタン含有層の厚さが大きいほど、このチタン含有層上に形成される導電層の均一性が高くなり、視認性及び導電性の高い透明電極を形成することができる。 Further, in the samples 111 to 114, as the thickness of the titanium-containing layer is increased, the visibility is improved and the sheet resistance is decreased. From this result, if the titanium-containing layer is 10 nm or less, the greater the thickness of the titanium-containing layer, the higher the uniformity of the conductive layer formed on the titanium-containing layer, and the transparent with high visibility and conductivity. An electrode can be formed.
 チタン含有層として、TiAl、マグネリ相チタン酸化物(Ti2n-1)、三酸化二チタン(Ti)、又は、窒化チタン(TiN)を用いた試料115~118においても、チタン含有層を除いて同じ構成の試料112に比べて、視認性及び抵抗値が劣るものの、十分に良好な結果が得られた。 In the samples 115 to 118 using TiAl, a magneto-phase titanium oxide (Ti n O 2n-1 ), dititanium trioxide (Ti 2 O 3 ), or titanium nitride (TiN) as the titanium-containing layer, titanium is also used. Although the visibility and the resistance value were inferior to those of the sample 112 having the same configuration except for the containing layer, sufficiently good results were obtained.
 また、この結果から、チタン酸化物を用いた試料116,117の透明電極は、視認性が4.1,4.0、シート抵抗値が11.5,12.1であり、試料112や試料115、試料118に比べると、視認性及び抵抗値が低下している。これは、チタン含有層が銀原子と結合しにくい酸素原子を含んでおり、チタン含有層上の電極層を構成する銀の膜質が低下するためと考えられる。このため、チタン含有層としては、酸素含有量が少ない材料を用いることが好ましい。 Further, from this result, the transparent electrodes of the samples 116 and 117 using titanium oxide have a visibility of 4.1 and 4.0 and a sheet resistance value of 11.5 and 12.1, respectively. Compared with 115 and sample 118, the visibility and the resistance value are lowered. This is presumably because the titanium-containing layer contains oxygen atoms that are difficult to bond with silver atoms, and the film quality of silver constituting the electrode layer on the titanium-containing layer is deteriorated. For this reason, it is preferable to use a material with a low oxygen content for the titanium-containing layer.
 同様に、高屈折率層としたNb、Ta、又は、CeOを用いた試料120~122においても、高屈折率層を除いて同じ構成の試料112に比べて、視認性及び抵抗値が劣るものの、十分に良好な結果が得られた。 Similarly, the samples 120 to 122 using Nb 2 O 5 , Ta 2 O 5 , or CeO 2 as the high refractive index layer are visually recognized as compared with the sample 112 having the same configuration except for the high refractive index layer. Although the properties and resistance values were inferior, sufficiently good results were obtained.
 基板としてガラス基板を用いた試料119においても、試料112と同程度の結果が得られていることから、透明電極の基材としては、樹脂フィルムと同様にガラス基板を用いることができる。 Also in the sample 119 using a glass substrate as the substrate, the same result as that of the sample 112 is obtained, so that the glass substrate can be used as the base material of the transparent electrode in the same manner as the resin film.
 高屈折率層が設けられていない試料123は、高屈折率層を有することを除き同じ構成の試料112に比べて、視認性が劣るものの、十分に良好な結果が得られた。また、この結果から、高屈折率層を有することにより、透明電極の視認性が向上することがわかる。 The sample 123 in which the high refractive index layer is not provided has a sufficiently good result, although the visibility is inferior to that of the sample 112 having the same configuration except that the high refractive index layer is provided. Moreover, it turns out that the visibility of a transparent electrode improves by having a high refractive index layer from this result.
 高屈折率層を2層形成し、導電層とチタン含有層とを第1高屈折率層と第2高屈折率層で挟んだ構成の試料124では、高屈折率層を1層設けた構成の試料120に比べて視認性が向上している。この結果から、導電層とチタン含有層の構成の上下に高屈折率層を設け、導電層を高屈折率層で挟む構成とすることにより、透明電極の視認性が向上することがわかる。 In the sample 124 having a configuration in which two high refractive index layers are formed and a conductive layer and a titanium-containing layer are sandwiched between the first high refractive index layer and the second high refractive index layer, one high refractive index layer is provided. Visibility is improved as compared with the sample 120. From this result, it is understood that the visibility of the transparent electrode is improved by providing a high refractive index layer above and below the configuration of the conductive layer and the titanium-containing layer and sandwiching the conductive layer between the high refractive index layers.
 以上の結果から、本発明の構成のタッチパネル用透明電極によれば、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。さらに、均一な導電層が形成されることにより、光散乱を抑制することができ、下地となる表示画像等の視認性が向上することが確認された。特に、導電層とチタン含有層とを高屈折率層で挟んだ構成、つまり、導電層に対して光の入射側と射出側との両側に高屈折率層を形成した構成とすることにより、透明電極の視認性がさらに向上することが確認された。 From the above results, it was confirmed that according to the transparent electrode for a touch panel of the configuration of the present invention, an electrode film (that is, a transparent electrode) having a low resistance although being a thin film was obtained in order to obtain light transmittance. Furthermore, it was confirmed that the formation of a uniform conductive layer can suppress light scattering and improve the visibility of a display image or the like as a base. In particular, by having a configuration in which the conductive layer and the titanium-containing layer are sandwiched between high refractive index layers, that is, a configuration in which a high refractive index layer is formed on both the incident side and the emission side of the conductive layer, It was confirmed that the visibility of the transparent electrode was further improved.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,20,30・・・タッチパネル用透明電極、11・・・透明基板、12,66・・・チタン含有層、13・・・導電層、14・・・保護層、24・・・高屈折率層、34,53,67・・・第2高屈折率層、35,54,68・・・第1高屈折率層、40,40A,50,50A,60,71・・・タッチパネル、41,41A・・・第1タッチパネル用透明電極、42,42A・・・第2タッチパネル用透明電極、43・・・第1基板、44,62・・・第1導電層、45・・・第2基板、46,63・・・第2導電層、47・・・前面板、49x,69x・・・x配線、49y,69y・・・y配線、51・・・第1チタン含有層、52・・・第2チタン含有層、55・・・第4高屈折率層、56・・・第3高屈折率層、57,61・・・基板、64・・・接続電極、65・・・層間絶縁膜、70・・・表示装置、72・・・表示パネル、73・・・ケース部材、x1・・・x電極パターン、y1・・・y電極パターン 10, 20, 30 ... transparent electrode for touch panel, 11 ... transparent substrate, 12, 66 ... titanium-containing layer, 13 ... conductive layer, 14 ... protective layer, 24 ... high refraction Index layer, 34, 53, 67 ... second high refractive index layer, 35, 54, 68 ... first high refractive index layer, 40, 40A, 50, 50A, 60, 71 ... touch panel, 41 , 41A ... transparent electrode for first touch panel, 42, 42A ... transparent electrode for second touch panel, 43 ... first substrate, 44, 62 ... first conductive layer, 45 ... second. Substrate, 46, 63 ... second conductive layer, 47 ... front plate, 49x, 69x ... x wiring, 49y, 69y ... y wiring, 51 ... first titanium-containing layer, 52. ..Second titanium-containing layer, 55... 4th high refractive index layer, 56. DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 64 ... Connection electrode, 65 ... Interlayer insulation film, 70 ... Display apparatus, 72 ... Display panel, 73 ... Case member, x1 ... x electrode pattern, y1 ... y electrode pattern

Claims (10)

  1.  チタン含有層と、
     前記チタン含有層に隣接して設けられた銀を主成分とする導電層と、を備える
     タッチパネル用透明電極。
    A titanium-containing layer;
    A transparent electrode for a touch panel, comprising: a conductive layer mainly composed of silver provided adjacent to the titanium-containing layer.
  2.  前記導電層の厚さが15nm以下である請求項1に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 1, wherein the conductive layer has a thickness of 15 nm or less.
  3.  前記チタン含有層の厚さが5nm以下である請求項1に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 1, wherein the titanium-containing layer has a thickness of 5 nm or less.
  4.  前記導電層との間に前記チタン含有層を狭持して設けられた高屈折率層を備える請求項1に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 1, further comprising a high refractive index layer provided with the titanium-containing layer sandwiched between the conductive layer.
  5.  前記導電層と前記チタン含有層とが、高屈折率層により挟持されている請求項4に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 4, wherein the conductive layer and the titanium-containing layer are sandwiched by a high refractive index layer.
  6.  前記高屈折率層が、二酸化チタン又は酸化ニオブから構成されている請求項4に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 4, wherein the high refractive index layer is composed of titanium dioxide or niobium oxide.
  7.  前記導電層上に保護層を備える請求項1に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 1, further comprising a protective layer on the conductive layer.
  8.  前記導電層がパターニングされている請求項1に記載のタッチパネル用透明電極。 The transparent electrode for a touch panel according to claim 1, wherein the conductive layer is patterned.
  9.  請求項1に記載のタッチパネル用透明電極を備える
     タッチパネル。
    A touch panel comprising the transparent electrode for a touch panel according to claim 1.
  10.  請求項9に記載のタッチパネルと、
     前記タッチパネルに重ねて配置された表示パネルと、を備える
     表示装置。
    A touch panel according to claim 9;
    A display panel disposed on the touch panel.
PCT/JP2013/081435 2012-12-18 2013-11-21 Transparent electrode for touch panel, touch panel, and display device WO2014097818A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553037A JPWO2014097818A1 (en) 2012-12-18 2013-11-21 Transparent electrode for touch panel, touch panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012275929 2012-12-18
JP2012-275929 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014097818A1 true WO2014097818A1 (en) 2014-06-26

Family

ID=50978161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081435 WO2014097818A1 (en) 2012-12-18 2013-11-21 Transparent electrode for touch panel, touch panel, and display device

Country Status (2)

Country Link
JP (1) JPWO2014097818A1 (en)
WO (1) WO2014097818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153963A (en) * 2015-02-20 2016-08-25 大日本印刷株式会社 Touch panel
US12014011B2 (en) 2017-12-25 2024-06-18 Dai Nippon Printing Co., Ltd. Conductive film, sensor, touch panel, image display device, and conductive film with protection film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252625A (en) * 1990-03-02 1991-11-11 Teijin Ltd Electrode substrate for liquid crystal display panel
JP2010157497A (en) * 2008-12-02 2010-07-15 Geomatec Co Ltd Substrate with transparent conductive film and method of manufacturing the same
JP2011070536A (en) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd Electrode film for touch panel and touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252625A (en) * 1990-03-02 1991-11-11 Teijin Ltd Electrode substrate for liquid crystal display panel
JP2010157497A (en) * 2008-12-02 2010-07-15 Geomatec Co Ltd Substrate with transparent conductive film and method of manufacturing the same
JP2011070536A (en) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd Electrode film for touch panel and touch panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153963A (en) * 2015-02-20 2016-08-25 大日本印刷株式会社 Touch panel
US12014011B2 (en) 2017-12-25 2024-06-18 Dai Nippon Printing Co., Ltd. Conductive film, sensor, touch panel, image display device, and conductive film with protection film

Also Published As

Publication number Publication date
JPWO2014097818A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5946847B2 (en) Touch panel and manufacturing method thereof
JP5997146B2 (en) Touch panel
JP2015529899A (en) Sensor panel including antireflection layer and method of manufacturing the same
US20120057237A1 (en) Electrode film and coordinate detecting apparatus
KR101879220B1 (en) Transparent electrode pattern structure and touch screen panel having the same
JP2016506574A (en) Touch panel including antireflection layer and manufacturing method thereof
KR101865685B1 (en) Transparent electrode pattern structure and touch screen panel having the same
TWI581162B (en) Transparent conductive film, transparent conductive film manufacturing method and touch panel
JP6043264B2 (en) Electrode used for input device
KR102077548B1 (en) Transparent electrode pattern structure and touch screen panel having the same
KR101241632B1 (en) Method for manufacturing touch panel
WO2014097818A1 (en) Transparent electrode for touch panel, touch panel, and display device
WO2014098013A1 (en) Transparent electrode for touch panel, touch panel, and display device
KR20120084205A (en) Touch panel
KR101114028B1 (en) Touch panel
WO2014087847A1 (en) Transparent electrode for touch panel, touch panel, and display device
KR101199047B1 (en) Touch panel and method for manufacturing the same
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
WO2014181538A1 (en) Transparent conductor and method for producing same
JP2015122253A (en) Transparent electrode, method of producing transparent electrode and electronic device
TWI623873B (en) Transparent electrode laminate and touch screen panel including the same
CN106255945B (en) Touch panel, the manufacturing method of touch panel and optical thin film
KR20140079073A (en) Touch panel with anti reflection layer and manufacturing method thereof
KR101570768B1 (en) Touch screen pannel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865144

Country of ref document: EP

Kind code of ref document: A1