WO2014097647A1 - Sheet-like epoxy resin composition, method for manufacturing organic el device using same, organic el device and organic el display panel - Google Patents

Sheet-like epoxy resin composition, method for manufacturing organic el device using same, organic el device and organic el display panel Download PDF

Info

Publication number
WO2014097647A1
WO2014097647A1 PCT/JP2013/007515 JP2013007515W WO2014097647A1 WO 2014097647 A1 WO2014097647 A1 WO 2014097647A1 JP 2013007515 W JP2013007515 W JP 2013007515W WO 2014097647 A1 WO2014097647 A1 WO 2014097647A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
sheet
group
resin composition
organic
Prior art date
Application number
PCT/JP2013/007515
Other languages
French (fr)
Japanese (ja)
Inventor
祐五 山本
高木 正利
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2014552947A priority Critical patent/JP6342331B2/en
Priority to CN201380066393.XA priority patent/CN104870515B/en
Publication of WO2014097647A1 publication Critical patent/WO2014097647A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a sheet-like epoxy resin composition, a method for producing an organic EL (Electro Luminescence) device using the same, an organic EL device, and an organic EL display panel.
  • an organic EL Electro Luminescence
  • optical semiconductors especially organic EL elements
  • optical semiconductors are expected to be applied to lighting devices and next-generation displays because of their low power consumption, high viewing angle, and excellent polarization characteristics.
  • an optical semiconductor such as an organic EL element has a problem that it easily deteriorates due to moisture and oxygen in the atmosphere. Therefore, the organic EL element is used after being sealed with a seal member, and a sealing material for producing a seal member with lower moisture permeability is desired.
  • a composition containing an epoxy resin containing a fluorene skeleton, a curing agent, a curing accelerator, a coupling agent and the like has been proposed (for example, see Patent Document 1).
  • the cured product of the epoxy resin composition containing a fluorene skeleton has high moisture resistance, and can effectively suppress deterioration of the organic EL element.
  • a sheet-like sealing composition containing a low molecular weight epoxy resin, a high molecular weight epoxy resin, a latent imidazole compound and a silane coupling agent has also been proposed (see, for example, Patent Documents 2 and 3).
  • These sheet-like sealing compositions can be thermocompression-bonded and transferred to the device, and the device can be sealed (surface-sealed) simply by heating and curing the epoxy resin.
  • an epoxy resin composition containing a compound represented by Zn (C n H 2n + 1 COO) 2 and an imidazole compound as a curing accelerator has been proposed as a sealant for photosensors and LEDs (for example, patents).
  • Reference 4 a composition containing a metal complex in which an amine compound and a carboxylate are coordinated to metal ions such as zinc has been proposed (for example, Patent Document 5).
  • Patent Document 5 a specific metal complex as an epoxy resin curing accelerator.
  • JP-A-2005-41925 JP 2006-179318 A Japanese Patent Application Laid-Open No. 2007-112956 Japanese Patent Laid-Open No. 10-45879 International Publication No. 2006/022899
  • the conventional sheet-like sealing compositions described in Patent Documents 2 and 3 and the like often contain a relatively high molecular weight component in order to maintain the sheet shape. For this reason, when the curing of the epoxy resin proceeds while the sheet-like sealing composition is stored, the molecular weight of the epoxy resin contained in the composition increases rapidly. When the molecular weight of the epoxy resin becomes too large, the flexibility of the sheet-like sealing composition is reduced, so when sealing an optical semiconductor such as an organic EL element using the sheet-like sealing composition, In some cases, the semiconductor cannot be sufficiently covered and sealing is insufficient.
  • composition of Patent Document 4 may not have sufficient curability.
  • composition of Patent Document 5 can be relatively improved in storage stability, but is considered to be unsuitable as a sealant because of its high viscosity.
  • Non-Patent Document 1 merely shows that a specific metal complex is combined with a low molecular weight epoxy resin, and does not indicate that it is combined with a high molecular weight epoxy resin.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a sheet-like epoxy resin composition having high storage stability and maintaining sufficient curability.
  • the present inventors have found that the above problem can be solved by combining an epoxy resin having a relatively high molecular weight for maintaining the sheet shape and a metal complex having a specific structure.
  • a sheet-like epoxy resin composition comprising a metal complex (B) containing a ligand.
  • R 1 represents an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group
  • R 2 , R 3 and R 4 each independently represent a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group
  • RB1, RB3, RB4, and RB5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group
  • RB2 represents an aliphatic hydrocarbon group, hydroxyl group, aryl-containing group or cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms
  • RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a C1-C17 heteroatom, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
  • RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms;
  • a plurality of groups selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur.
  • RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
  • a plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur.
  • RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • a plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed)
  • RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group
  • a plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur.
  • the anionic ligand has 2 or more atoms selected from the group consisting of O, S, and P and capable of binding to the metal ion, and is coordinated to the metal ion to be 3 to 7 members.
  • the tertiary amine is a compound represented by any one of the general formulas (1) to (3), and the anionic ligand is a carboxy represented by the following general formula (7A)
  • RD1 is a hydrogen group
  • RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group
  • RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group
  • a chemical shift derived from a tertiary amine is 25 in CDCl 3 of the tertiary amine alone.
  • the carboxylate compound is 2-ethylhexanoic acid, formic acid, acetic acid, butanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, benzoic acid.
  • the sheet-like epoxy resin composition according to [5] which is at least one compound selected from the group consisting of naphthenic acid.
  • the tertiary amine is 1,8-diazobicyclo [5,4,0] undec-7-ene, 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, -At least one compound selected from the group consisting of isobutyl-2-methylimidazole, 1-butylimidazole and 1,5-diazobicyclo [4,3,0] non-5-ene; 8] The sheet-like epoxy resin composition according to any one of [8].
  • the sheet-like epoxy resin composition contains the metal complex (B) in a range where the equivalent ratio of tertiary functional active functional groups / epoxy groups is 0.008 to 0.3. [1] To [9] The sheet-like epoxy resin composition according to any one of [9]. [11] The sheet-like epoxy resin composition according to any one of [1] to [10], wherein the content of the epoxy resin (A) is 55 to 95% by mass with respect to the sheet-like epoxy resin composition. object.
  • a sealing sheet comprising a layer made of the sheet-like epoxy resin composition according to any one of [1] to [11].
  • the sealing sheet according to [12] wherein the layer made of the sheet-like epoxy resin composition has a light transmittance of 90% or more at a wavelength of 550 nm at a thickness of 40 ⁇ m.
  • the sealing sheet according to any one of [12] to [14] which is used for surface sealing of an optical semiconductor.
  • the sealing sheet according to any one of [12] to [14] which is used for surface sealing of an organic EL element.
  • the sealing sheet according to any one of [12] to [14], wherein the layer made of the sheet-like epoxy resin composition has a moisture content of 0.1% by mass or less.
  • a method for producing an organic EL device comprising a step of sealing the surface of the organic EL element with a cured product of a layer made of an epoxy resin composition.
  • An organic EL device including a physical layer.
  • the organic EL element and the organic EL element are sealed, and consist of Zn, Bi, Ca, Al, Cd, La, and Zr in the spectrum measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • An organic EL display panel having the organic EL device according to [19].
  • Organic EL illumination having the organic EL device according to [19].
  • the sheet-like epoxy resin composition of the present invention is excellent in curability and storage stability. Therefore, even after the composition is stored for a certain period, the sealing conditions for the optical semiconductor such as the organic EL element can be made constant to some extent, and the manufacturing efficiency of the optical semiconductor can be increased. Moreover, since the cured product of the sheet-like epoxy resin composition of the present invention has high transparency, it can be applied to a device having a configuration in which light emission from the organic EL element is transmitted through the sealing layer.
  • the sheet-like epoxy resin composition of the present invention comprises at least a high molecular weight epoxy resin (A) and a metal complex (B).
  • the sheet-like epoxy resin composition includes a low molecular weight epoxy resin (C), a silane coupling agent (D) having an epoxy group or a functional group capable of reacting with an epoxy group, a solvent (E), and the like, as necessary. It may further contain at least one of the components.
  • the sheet-like epoxy resin composition of the present invention is preferably thermosetting.
  • Thermosetting curing accelerators are less likely to decompose during curing compared to photocurable curing accelerators.
  • the decomposition product of the thermosetting curing accelerator hardly degrades the optical element, and the transparency of the cured product of the composition is hardly impaired.
  • the metal complex (B) that can function as a curing accelerator in the present invention not only has these characteristics, but also is stable at room temperature, so that it cures at the temperature at which it is desired to react without proceeding the curing reaction during storage. It is easy to proceed the reaction. Therefore, although the sheet-like epoxy resin composition of the present invention contains a high molecular weight epoxy resin (A), it suppresses the curing reaction during storage of the epoxy resin and exhibits good storage stability. And exhibits sufficient curability when used.
  • the sheet-like epoxy resin composition of the present invention is used as a sealing sheet (surface sealing sheet), a transparent coating sheet, a transparent fill sheet, or the like; preferably as a sealing sheet (surface sealing sheet). Can be used.
  • a sealing sheet surface sealing sheet
  • the transparent fill agent refers to a material that requires transparency to fill a space between a substrate such as a touch panel and an image display device such as a liquid crystal panel.
  • the high molecular weight epoxy resin (A) contained in the sheet-like epoxy resin composition of the present invention is an epoxy resin having two or more epoxy groups in one molecule, and may have a molecular weight distribution, It may not have.
  • the high molecular weight epoxy resin (A) in the present invention is an epoxy resin having a weight average molecular weight of 2 ⁇ 10 3 to 1 ⁇ 10 5 , preferably a weight average molecular weight of 3 ⁇ 10 3 to 8 ⁇ 10 4 , More preferably, the epoxy resin is 4 ⁇ 10 3 to 6 ⁇ 10 4 .
  • the weight average molecular weight can be measured under the following conditions by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • Equipment GPC-101, manufactured by SHODEX
  • Developing solvent Tetrahydrofuran Standard polystyrene: PS-1 made by VARIAN (molecular weight 580-7,500,000), PS-2 made by VARIAN (molecular weight 580-377,400)
  • the epoxy equivalent of the high molecular weight epoxy resin (A) is preferably 500 to 1 ⁇ 10 4 g / eq from the viewpoint of setting the cross-linking density of the cured product of the sheet-like epoxy resin composition to a certain level or more. More preferably, it is ⁇ 9000 g / eq.
  • the high molecular weight epoxy resin (A) is preferably a resin containing a bisphenol skeleton in the main chain from the viewpoint of reducing the moisture permeability of the cured product of the sheet-like epoxy resin composition.
  • the high molecular weight epoxy resin (A) is particularly preferably a resin having bisphenol and epichlorohydrin as monomer components, and more preferably an oligomer having bisphenol and epichlorohydrin as monomer components.
  • all of the monomer components constituting the high molecular weight epoxy resin (A) may be bisphenol and epichlorohydrin; some of the monomer components constituting the epoxy resin may be other than bisphenol or epichlorohydrin. It may be a component (comonomer component).
  • the comonomer component include dihydric or higher polyhydric alcohols (for example, divalent phenol and glycol).
  • the high molecular weight epoxy resin (A) include a resin having a repeating structural unit represented by the following general formula (11).
  • X represents a single bond, a methylene group, an isopropylidene group, —S— or —SO 2 —.
  • the structural unit in which X in the general formula (11) is a methylene group is a bisphenol F type structural unit; the structural unit in which X is an isopropylidene group is a bisphenol A type structural unit.
  • each R 1 is independently an alkyl group having 1 to 5 carbon atoms, preferably a methyl group.
  • P is the number of substituents R 1 and is an integer of 0 to 4. From the viewpoint of heat resistance and low moisture permeability, P is preferably 0.
  • n is the number of repeating structural units represented by the general formula (11), and is an integer of 2 or more.
  • the oligomer which is a high molecular weight epoxy resin (A) includes a “bisphenol F-type repeating structural unit” in which X in the general formula (11) is a methylene group and X in the general formula (11) is an isopropylidene group. Both “bisphenol A-type repeating structural units” may be included.
  • the oligomer contains a bisphenol A-type repeating structural unit, the viscosity of the sheet-like epoxy resin composition tends to increase.
  • the oligomer contains a bisphenol F-type repeating structural unit, the steric hindrance of the oligomer tends to be small. Therefore, a plurality of phenylene groups are easily oriented, and the moisture permeability of the cured product of the sheet-like epoxy resin composition tends to be low.
  • the number of “bisphenol A-type repeating structural units” (A) and the number of “bisphenol F-type repeating structural units” (F) contained in one molecule of the oligomer is “bis” contained in one molecule.
  • the ratio of the number (F) of “Fail F-type repeating structural units”; ⁇ (F / (A + F)) ⁇ 100 ⁇ is preferably 50% or more, and more preferably 55% or more. If many “bisphenol F-type repeating structural units” are contained, the moisture permeability of the cured product of the sheet-like epoxy resin composition will be sufficiently low.
  • the content of the high molecular weight epoxy resin (A) is 100 to 2000 mass with respect to a total of 100 mass parts of the metal complex (B), low molecular weight epoxy resin (C), and silane coupling agent (D) described later. Part is preferable, 210 to 2000 parts by mass is more preferable, and 250 to 1200 parts by mass is even more preferable. If the content ratio of the high molecular weight epoxy resin (A) is below a certain level, the fluidity of the sheet-like epoxy resin composition is hardly impaired when it is pressure-bonded to a sealed member such as an optical semiconductor, and it is easy to seal. . In addition, when the content ratio of the high molecular weight epoxy resin (A) is a certain level or more, the shape retention of the sheet-like epoxy resin composition and the moisture resistance of the cured product are likely to be good.
  • the content of the high molecular weight epoxy resin (A) in the sheet-like epoxy resin composition containing the low molecular weight epoxy resin (C) described later is 100 to 100 parts by mass with respect to 100 parts by mass of the low molecular weight epoxy resin (C).
  • the amount is preferably 1500 parts by mass, more preferably 120 to 1200 parts by mass, and even more preferably 150 to 1000 parts by mass.
  • the content ratio of the high molecular weight epoxy resin (A) is 1500 parts by mass or less, the fluidity of the composition at the time of thermocompression bonding the sheet-like epoxy resin composition to the material to be sealed is likely to increase.
  • the content ratio of the high molecular weight epoxy resin (A) is 100 parts by mass or more, the shape stability of the sheet-like epoxy resin composition is likely to increase. Furthermore, the moisture permeability of the cured product tends to be low.
  • the content of the high molecular weight epoxy resin (A) is preferably 55 to 95% by mass, more preferably 55 to 92% by mass with respect to the entire sheet-like epoxy resin composition.
  • the high molecular weight epoxy resin (A) may be one type or a combination of two or more types.
  • a high molecular weight epoxy resin (A-1) having a weight average molecular weight of 1 ⁇ 10 4 or less may be combined with a high molecular weight epoxy resin (A-2) having a weight average molecular weight exceeding 1 ⁇ 10 4 .
  • Metal complex (B) contained in the sheet-like epoxy resin composition of the present invention can function as an epoxy resin curing accelerator.
  • the metal ion in the metal complex (B) may be a metal ion selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr. From the viewpoint of improving the transparency of the cured product of the sheet-like epoxy resin composition, Zn is preferable. Moreover, when a metal complex (B) contains two or more metal ions, at least one metal ion should just be a metal ion chosen from Zn, Bi, Ca, Al, Cd, La, Zr.
  • the tertiary amine in the metal complex (B) is preferably capable of forming a complex with a metal ion and not having an N—H bond in order to reduce the reactivity of the tertiary amine under storage conditions.
  • the molecular weight of the tertiary amine in the metal complex (B) is preferably 65 to 300. This is because if the molecular weight of the tertiary amine is too large, the solubility of the metal complex (B) in the sheet-like epoxy resin composition may decrease, or the catalytic activity may decrease.
  • the tertiary amine in the metal complex (B) is preferably a compound represented by any one of the following general formulas (1) to (6).
  • a conjugated electron cloud gathers on the nitrogen atoms constituting the ring, and a complex is easily formed with a metal ion.
  • the cured product layer of the sheet-like epoxy resin composition containing these compounds has a tendency to have good plasma resistance and weather resistance with little decrease in transparency and increase in haze even when plasma-treated.
  • the metal complex (B) is stabilized by making a tertiary amine complex, which is highly reactive and may cause coloring of the cured product of the resin composition, the sheet-like epoxy resin composition and its curing Difficult to color things.
  • the sheet-like epoxy resin composition of this invention can be used suitably also for the use as which transparency is calculated
  • R 2 , R 3 , and R 4 are each independently a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • R 1 is a substituent other than a hydrogen atom (an aliphatic hydrocarbon group, an aryl group, a hydroxyl group, or a cyanoethyl group).
  • R 1 is another substituent
  • the sealing layer made of a cured product of the sheet-like epoxy resin composition is transparent by being exposed to plasma or the like. This is because there is a case where the value is lowered.
  • amine compound represented by the general formula (1) examples include the following 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 1 -Butylimidazole, 1-benzyl-2-phenylimidazole, 2-phenyl-4-methylimidazole and the like are included.
  • RB1, RB3, RB4, and RB5 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • RB2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms.
  • a plurality of groups appropriately selected from RB1, RB2, RB3, RB4, and RB5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • Specific examples of the amine compound represented by the general formula (2) include the following 1,8-diazobicyclo [5,4,0] undec-7-ene.
  • RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms.
  • a plurality of groups appropriately selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (3) include the following 1,5-diazobicyclo [4,3,0] non-5-ene.
  • RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or A cyanoethyl group is shown.
  • a plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (4) examples include a compound represented by the following formula (4-1).
  • R represents a hydrogen group, —CH 3 , —OCH 3 .
  • RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, An aryl-containing group or a cyanoethyl group is shown.
  • a plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • Specific examples of the amine compound represented by the general formula (5) include a compound represented by the following formula (5-1).
  • R each independently represents a hydrogen group, —CH 3 , —OCH 3 .
  • RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Indicates. A plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. .
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (6) examples include a compound represented by the following formula (6-1).
  • the pKa of the compound represented by the general formula (4) is around 5, whereas the pKa of the compound represented by the general formula (1) is around 7,
  • the pKa of diazabicycloundecene, which is one of the compounds represented by (2), is around 12. That is, the compounds represented by the general formulas (1) and (2) tend to exhibit higher basicity than the compounds represented by the general formula (4).
  • the tertiary amine in the metal complex (B) is a compound represented by any one of the general formulas (1) to (3) because of its high basicity and good curing activity with respect to the epoxy resin. It is preferable.
  • the tertiary amine that forms a complex with the metal ion may be one type or two or more types. That is, the metal complex (B) may be a binuclear complex having a plurality of metal ions as a central metal.
  • the molar ratio of the tertiary amine to the metal ion is preferably 0.5 to 6.0, and more preferably 0.6 to 2.0.
  • the molar ratio is 0.5 or more, there are many tertiary amines coordinated to the metal complex (B), and the curability of the sheet-like epoxy resin composition tends to be good.
  • the molar ratio is 6.0 or less, since there are few tertiary amines coordinated to the metal complex (B), the storage stability of the sheet-like epoxy resin composition becomes good.
  • the molar ratio is within the above range, the balance between curability and storage stability is improved.
  • the anionic ligand in the metal complex (B) is a compound that has an acidic group having an atom selected from the group consisting of O, S, P, and halogen and coordinates or ionically bonds to a metal ion.
  • the valence of the anionic ligand is preferably smaller than the valence of the metal ion. This is because two or more anionic ligands having a valence smaller than that of the metal ion can be bonded to one metal ion and the metal complex (B) can be stabilized.
  • the molecular weight of the anionic ligand is preferably 17 to 200.
  • the molecular weight of the anionic ligand is 17 or more, as will be described later, the coordination bond distance between the metal ion and the tertiary amine tends to be small, so that the curing acceleration of the metal complex (B) is not easily impaired. it is conceivable that.
  • the molecular weight of the anionic ligand is 200 or less, since the anionic ligand is not too large, the steric hindrance does not significantly interfere with the coordination of the tertiary amine to the metal ion. It is done. As a result, it is considered that the stability of the metal complex (B) under storage conditions is not easily impaired.
  • the radius of the anionic ligand is preferably 2.0 mm or more, and more preferably 2.4 mm or more. This is to improve the curing acceleration of the metal complex (B). For example, when two anionic ligands are coordinated to a metal ion, when a tertiary amine is further coordinated to the metal ion, the bond between one anionic ligand and the metal ion and the other It is thought that the angle formed by the bond between the anionic ligand and the metal ion is narrowed and stabilized. If the radius of the anionic ligand is 2.0 mm or more, the angle formed by these bonds is difficult to narrow, so the coordination bond distance between the metal ion and the tertiary amine is likely to be small.
  • the curing acceleration of the metal complex (B) is hardly impaired. If the curing acceleration of the metal complex (B) is difficult to be impaired, the degree of curing of the surface of the cured product is likely to increase. When the degree of cure of the surface of the cured product is high, the smoothness of the surface of the cured product is unlikely to be impaired when a passivation layer or the like is formed on the surface of the cured product. Therefore, it is considered that the external haze of the cured product is unlikely to increase and the transparency is not easily impaired.
  • the upper limit of the radius of the anionic ligand can be about 200 mm.
  • the radius of the anionic ligand is 200 mm or less, it is considered that the size of the anionic ligand does not significantly prevent the tertiary amine from coordinating to the metal ion due to its steric hindrance. As a result, it is considered that the stability of the metal complex (B) under storage conditions is not easily impaired.
  • the radius of the anionic ligand can be calculated after determining the connolly volume of the anionic ligand; the radius when the connolly volume is assumed to be a true sphere volume.
  • the connolly volume of the anionic ligand can be calculated after optimizing the structure of the anionic ligand and then optimizing the structure using, for example, Material Studio 6.0 Dmol3.
  • the structure of anionic ligands can be optimized using MM2 (molecular mechanics calculation method) or PBE / DNPD4.4.
  • the connelly radius is determined by setting the connelly radius to 1.0%.
  • the radius of acetate ions For example, the case of calculating the radius of acetate ions will be described.
  • the connelly volume of acetate ions is obtained by the method described above, it is 54.8 kg.
  • the radius of the true sphere is determined to be about 2.36 cm, which can be used as the radius of acetate ions (ligands).
  • the radii of chloride ions, sulfate ions, etc. can be the ionic radii (calculated values by Shannon and Prewitt) described in the Chemistry Handbook, Basic Edition, 2nd edition (Edited by the Chemical Society of Japan).
  • the valence of the anionic ligand is smaller than that of the metal ion, and the radius of the anionic ligand is 2.0 mm or more (preferably 2.4 mm or more).
  • Anionic ligands include carboxylate compounds, 1,3-dicarbonyl compounds, dithiocarboxylic acids and their carboxylate anions, thiocarboxylic acids and their carboxylate anions, thionocarboxylic acids and their carboxylate anions, 1,3-dithiocarbonyl It can be a compound, a nitrate ion, a halogen ion or the like.
  • the carboxylate compound is preferably a compound represented by the following general formula (7A) or an anion of a carboxylate compound represented by the following general formula (7B).
  • RD1 represents a hydrogen group
  • RD2 represents a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group
  • RD2 represents a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group.
  • the hydrocarbon group having 1 to 10 carbon atoms may be an alkyl group having 1 to 10 carbon atoms or an aryl-containing group having 6 to 10 carbon atoms, and may be a linear or branched alkyl group having 1 to 7 carbon atoms. Is preferred.
  • Compound represented by the general formula (7A) is coordinated to the hydroxyl group is a metal ion represented by -ORD1; anion of a carboxylate compound represented by the general formula (7B), the O - is coordination to a metal ion In many cases.
  • Examples of the anion of the carboxylate compound represented by the general formula (7A) and the carboxylate compound represented by the general formula (7B) include an alkylcarboxylic acid having 1 to 10 carbon atoms, a carboxylate anion thereof, a carbon number of 7 To 10 aryl carboxylic acids and their carboxylate anions.
  • alkyl carboxylic acids having 1 to 10 carbon atoms examples include formic acid (see the following formula (7A-1)), acetic acid (see the following formula (7A-2)), butanoic acid, 2-ethylbutanoic acid, 2,2- Examples include dimethylbutanoic acid, 2-ethylhexanoic acid (see the following formula (7A-3)), 3-methylbutanoic acid, 2,2-dimethylpropanoic acid and the like, and formic acid, acetic acid, and 2-ethylhexanoic acid are particularly preferable.
  • aryl carboxylic acids having 7 to 10 carbon atoms include benzoic acid and naphthenic acid.
  • the 1,3-dicarbonyl compound is preferably a compound represented by the general formula (8).
  • R 5 and R 6 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like.
  • the aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like. Examples of 1,3-dicarbonyl compounds include acetylacetonate and the like.
  • dithiocarboxylic acid and its carboxylate anion examples include an alkyl dithiocarboxylic acid having 1 to 10 carbon atoms and its dithiocarboxylate anion, an aryl dithiocarboxylic acid having 7 to 15 carbon atoms and its dithiocarboxylate anion.
  • alkyl dithiocarboxylic acid having 1 to 10 carbon atoms examples include dithioformic acid, dithioacetic acid, dithiopropanoic acid, dithio-2-ethylhexanoic acid and the like.
  • Examples of the thiocarboxylic acid and its carboxylate anion include an alkylthiocarboxylic acid having 1 to 10 carbon atoms and its alkylthiocarboxylate anion, an arylthiocarboxylic acid having 7 to 15 carbon atoms and its arylthiocarboxylate anion.
  • alkylthiocarboxylic acid having 1 to 10 carbon atoms examples include thioacetic acid and thio-2-ethylhexanoic acid.
  • thionocarboxylic acid and its carboxylate anion examples include alkylthionocarboxylic acid having 1 to 10 carbon atoms and alkylthionocarboxylate anion thereof, arylthionocarboxylic acid having 7 to 15 carbon atoms and arylthionocarboxylate anion thereof. Is included.
  • alkylthionocarboxylic acid having 1 to 10 carbon atoms examples include thionoacetic acid and thiono-2-ethylhexanoic acid.
  • the 1,3-dithiocarbonyl compound is preferably a compound represented by the general formula (9).
  • R 7 and R 8 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like.
  • the aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like. Examples of nitrates ions, NO 3 - are included. Examples of halogen ions include Br 2- and the like.
  • the number of atoms (atoms capable of binding to metal ions) selected from O, S, P and halogen contained in the anionic ligand may be one or two or more.
  • An anionic ligand containing two or more atoms that can be bonded to a metal ion may be bonded to the metal ion through one atom; or may be bonded through each of two or more atoms.
  • the metal contained in the anionic ligand The number of atoms that can be bonded to ions is preferably 2 or more.
  • an anionic ligand containing two or more atoms capable of binding to a metal ion can form a 3- to 7-membered ring with the metal ion.
  • anionic ligands include the carboxylate compound represented by the aforementioned general formula (7A).
  • the carboxylate compound represented by the general formula (7A) can be bonded to a metal ion through either an oxygen atom constituting a carbonyl group or an oxygen atom adjacent to the carbonyl group.
  • the metal complex (B) includes a tertiary amine represented by any one of the above general formulas (1) to (3) and a carboxylate compound represented by the above general formula (7A). And are each a coordinated compound.
  • the tertiary amine coordinated to the metal ion may be any one of the following general formulas (1) to (3), or may be two or more.
  • the metal complex (B) is represented by the general formulas (1) to (3).
  • a complex in which two carboxylate compounds represented by general formula (7A) or anions of two carboxylate compounds represented by general formula (7B) are coordinated to metal ions It is preferable that Specifically, a metal complex represented by the following general formula (10) is preferable.
  • Me represents —CH 3
  • Et represents —C 2 H 5
  • Bu represents —C 4 H 9 .
  • the sheet-like epoxy resin composition of the present invention contains a high molecular weight epoxy resin (A).
  • A high molecular weight epoxy resin
  • the flexibility of the sheet-like epoxy resin composition is likely to be impaired, so that the metal complex (B) is a high molecular weight epoxy resin (A) during storage. That is, it is required that the sheet-like epoxy resin composition has storage stability.
  • the metal complex (B) is required to function as an epoxy resin curing accelerator.
  • the metal complex (B) has a polarity close to that of the metal complex (B) so as to be easily dissolved in an epoxy resin or the like.
  • the tertiary amine in the metal complex (B) is close in polarity to the metal complex (B) so as to be easily dissolved in an epoxy resin or the like.
  • a tertiary amine forms a complex with a metal ion should be confirmed by comparing the 1 H NMR chemical shift of the tertiary amine in the metal complex (B) with the 1 H NMR chemical shift of the tertiary amine alone. Can do. That is, the chemical shift of 1 HNMR (in CDCl 3 , 25 ° C., 270 MHz) of the tertiary amine in the metal complex (B) is changed to the chemical shift of 1 HNMR (CDCl 3 in 25 ° C., 270 MHz) of the tertiary amine alone.
  • the tertiary amine forms a complex with the metal ion by including a peak moving 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more.
  • the upper limit of the amount of peak movement is not particularly limited, but is usually about 1 ppm, and more generally 0.7 ppm in many cases.
  • the tertiary amine of the sheet-like epoxy resin composition forms a complex with a metal ion (whether the sheet-like epoxy resin composition comprising a metal complex (B)) is a sheet-like epoxy resin composition 1 It can also be confirmed by comparing the chemical shift derived from the tertiary amine among the chemical shifts of HNMR and the 1 HNMR chemical shift of the tertiary amine alone.
  • 1 HNMR of the sheet-like epoxy resin composition (in CDCl 3, 25 ° C., 270 MHz) chemical shift derived from the tertiary amine of the chemical shift of a tertiary amine alone 1 HNMR It is preferable to include a peak that moves 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more with respect to a chemical shift (in CDCl 3 , 25 ° C., 270 MHz).
  • the upper limit of the peak moving amount may be about 1 ppm, preferably about 0.7 ppm, as described above.
  • whether the tertiary amine in the sheet-like epoxy resin composition forms a complex with a metal ion depends on whether the sheet-like epoxy resin composition contains a metal complex (B). 1 and HNMR chemical shift of, can be confirmed by comparison with the metal complex (B) 1 HNMR chemical shift alone. For example, if there is a chemical shift similar to the 1 HNMR chemical shift of the metal complex (B) alone during the 1 HNMR chemical shift of the sheet-like epoxy resin composition, the sheet-like epoxy resin composition becomes the metal complex (B). Can be determined.
  • the peak moving in 1 HNMR originates from a hydrogen atom whose electronic state changes due to coordination of a tertiary amine to a metal ion.
  • a hydrogen atom is generally considered to be a hydrogen atom existing around a conjugated system containing a nitrogen atom.
  • the peak moving in 1 HNMR is often attributed to the hydrogen atom at the 4-position or 5-position.
  • Tertiary amines that do not have bulky groups around hydrogen atoms that exist around conjugated systems containing nitrogen atoms coordinate with metal ions because the nitrogen atoms contained in the conjugated system tend to approach metal ions. It is expected to be easy.
  • the content of the metal complex (B) in the sheet-like epoxy resin composition is such that the equivalent ratio of “active functional group of the metal complex (B) (tertiary amino group) / epoxy group contained in the sheet-like epoxy resin composition”. It is preferably 0.003 to 0.3, and more preferably 0.008 to 0.3. From the viewpoint of enhancing the curability of the sheet-like epoxy resin composition, the above-described equivalent ratio is more preferably 0.01 to 0.152.
  • the metal complex (B) may be composed of only one kind of metal complex or a combination of two or more kinds of metal complexes.
  • the sheet-like epoxy resin composition of the present invention preferably further contains a low molecular weight epoxy resin (C).
  • the low molecular weight epoxy resin (C) is an epoxy resin having a weight average molecular weight of 100 to 1200, and preferably an epoxy resin having a weight average molecular weight of 200 to 1,100.
  • the weight average molecular weight can be measured in the same manner as described above.
  • the low molecular weight epoxy resin (C) having a weight average molecular weight in the above range can sufficiently enhance the fluidity of the sheet-like epoxy resin composition when the sheet-like epoxy resin composition is pressure-bonded, and is a sheet for a material to be pressed.
  • the adhesion of the epoxy resin composition can be sufficiently enhanced.
  • the epoxy equivalent of the low molecular weight epoxy resin (C) is preferably 80 to 300 g / eq, and more preferably 90 to 200 g / eq.
  • the low molecular weight epoxy resin (C) is preferably a phenol type epoxy resin, more preferably a phenol type epoxy compound having a valence of 2 or more, or an oligomer containing a phenol derivative and epichlorohydrin as monomer components. preferable.
  • Examples of the bivalent or higher phenol type epoxy compound include a bisphenol type epoxy compound, a phenol novolac type epoxy compound, a cresol novolak type epoxy compound, and the like.
  • Examples of the bisphenol type epoxy compound include a compound represented by the following general formula (12).
  • X, R 1 and p in the following general formula (12) may be the same as X, R 1 and P in the general formula (11) shown in the description of the high molecular weight epoxy resin (A).
  • oligomeric phenol derivatives containing a phenol derivative and epichlorohydrin as monomer components include bisphenol, hydrogenated bisphenol, phenol novolak, cresol novolak, and the like.
  • the low molecular weight epoxy resin (C) include a bisphenol type epoxy compound or an oligomer having bisphenol and epichlorohydrin as monomer components.
  • the low molecular weight epoxy resin (C) is more preferably an oligomer having a repeating number n of 2 to 4 in the general formula (11). Such an oligomer has high affinity with the high molecular weight epoxy resin (A).
  • the repeating structural unit contained in the low molecular weight epoxy resin (C) may be the same as or different from the repeating structural unit contained in the high molecular weight epoxy resin (A).
  • the content of the low molecular weight epoxy resin (C) is 1 to 100 parts by mass with respect to 100 parts by mass in total of the high molecular weight epoxy resin (A), the metal complex (B), and the silane coupling agent (D). Yes, preferably 5 to 50 parts by mass.
  • the content ratio of the low molecular weight epoxy resin (C) is within the above range, the fluidity of the composition during thermocompression bonding of the sheet-like epoxy resin composition is sufficiently enhanced. Furthermore, the sheet-like epoxy resin composition is sufficiently cured.
  • the sheet-like epoxy resin composition of the present invention may further contain 1) a silane coupling agent having an epoxy group, or 2) a silane coupling agent having a functional group capable of reacting with an epoxy group. Reacting with an epoxy group means an addition reaction with an epoxy group.
  • a silane coupling agent for sealing an organic EL element contains a silane coupling agent (D)
  • the adhesion between the sheet-like epoxy resin composition and the substrate of the organic EL element increases.
  • the silane coupling agent having an epoxy group or having a functional group capable of reacting with the epoxy group reacts with the epoxy resin in the sheet-like epoxy resin composition. Therefore, it is also preferable from the viewpoint that the low molecular weight component hardly remains in the cured product of the sheet-like epoxy composition.
  • a silane coupling agent having an epoxy group is a silane coupling agent having an epoxy group such as a glycidyl group. Examples thereof include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxy). (Cyclohexyl) ethyltrimethoxysilane and the like.
  • Functional groups capable of reacting with epoxy groups include amino groups such as primary amino groups and secondary amino groups; carboxyl groups and the like, and groups that can be converted into functional groups capable of reacting with epoxy groups (for example, Methacryloyl group, isocyanate group, etc.).
  • Examples of the silane coupling agent having a functional group capable of reacting with such an epoxy group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropylmethyltrimethoxysilane, and the like.
  • the sheet-like epoxy resin composition of the present invention may further contain another silane coupling agent in addition to the silane coupling agent.
  • silane coupling agents include vinyltriacetoxysilane and vinyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
  • the molecular weight of the silane coupling agent is preferably 80 to 800.
  • the content of the silane coupling agent is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the sheet-like epoxy resin composition. More preferably, it is 3 to 10 parts by mass.
  • the sheet-like epoxy resin composition of the present invention may further contain a solvent (E) for uniformly mixing the aforementioned components (A) to (D).
  • the solvent (E) particularly has a function of facilitating uniform dispersion or dissolution of the high molecular weight epoxy resin (A).
  • Solvent (E) can be various organic solvents. Examples include aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethers, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, Ethers such as propylene glycol or dialkyl ether; aprotic polar solvents such as N-methylpyrrolidone, dimethylimidazolidinone and dimethylformaldehyde; esters such as ethyl acetate and butyl acetate are included.
  • a ketone solvent a solvent having a keto group
  • methyl ethyl ketone is preferable from the viewpoint that the high molecular weight epoxy resin (A) can be easily dissolved.
  • the content of the solvent (E) is preferably 50000 mass ppm or less, more preferably 30000 mass ppm or less with respect to the entire sheet-shaped epoxy resin composition of the present invention.
  • the content of the solvent (E) in the sheet-like epoxy resin composition can be measured using, for example, an IR absorption spectrum measuring apparatus (FT / IR-4100 manufactured by JASCO Corporation).
  • the sheet-like epoxy resin composition of the present invention may further contain other optional components such as resin components, fillers, modifiers, stabilizers and the like as long as the effects of the invention are not significantly impaired.
  • other resin components include polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene-styrene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based resin
  • oligomers, silicon oligomers, polysulfide oligomers and the like may contain only 1 type and may contain multiple types.
  • filler examples include glass beads, styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, and propylene polymer particles. Multiple types of fillers may be included.
  • modifiers include polymerization initiation aids, anti-aging agents, leveling agents, wettability improvers, surfactants, plasticizers, and the like. You may use these in combination of multiple types.
  • stabilizer include ultraviolet absorbers, preservatives, and antibacterial agents. A plurality of modifiers may be included.
  • the sheet-like epoxy resin composition of the present invention can be produced by any method as long as the effects of the present invention are not impaired.
  • the sheet-like epoxy resin composition of the present invention includes, for example, 1) a step of preparing the components (A) to (E), and 2) 30 ° C. or less by dissolving the components (A) to (D) in the component (E). And 3) a step of applying the resin composition varnish in a sheet form on the substrate, and 4) drying the resin composition applied in the sheet form. Through the process.
  • the components (A) to (E) may be mixed at one time, or after the component (A) is dissolved and mixed in the component (E), other components may be added and mixed.
  • the mixing method include a method of charging these components into a flask and stirring, a method of kneading with three rolls, and the like.
  • the viscosity of the varnish of the resin composition obtained in the step 2) at 25 ° C. is preferably 0.01 to 100 Pa ⁇ s.
  • the viscosity is a value measured at 25 ° C. with an E-type viscometer (RC-500 manufactured by Toki Sangyo).
  • the viscosity of the varnish of the resin composition can be adjusted by the amount of the component (E).
  • the coating method in step 3) is not particularly limited, and may be, for example, a method using screen printing, a dispenser, various coating rolls, or the like. Moreover, there is no restriction
  • the coating thickness of the mixture is appropriately selected according to the film thickness of the target sheet-like epoxy resin composition, and for example, the film thickness of the dried sheet-like epoxy resin composition is, for example, 1 to 100 ⁇ m. Set.
  • the drying temperature and drying time in the step 4) are such that the high molecular weight epoxy resin (A) and the low molecular weight epoxy resin (C) contained in the resin composition are not cured and the solvent (E) is in a desired amount.
  • the temperature and time for drying and removal are set until the following conditions are satisfied.
  • the drying temperature is, for example, 20 to 70 ° C.
  • the drying time is, for example, about 10 minutes to 3 hours.
  • an inert gas atmosphere such as a nitrogen atmosphere at 30 to 60 ° C. for about 10 minutes and then vacuum dry for about 2 hours.
  • the drying method is not particularly limited, and examples thereof include hot air drying and vacuum drying.
  • the thickness of the sheet-like epoxy resin composition of the present invention depends on its use, for example, when used as a sealing material for an optical semiconductor device, it is preferably 1 to 100 ⁇ m, for example, and 10 to 30 ⁇ m. More preferably, the thickness is 20 to 30 ⁇ m.
  • the water content of the sheet-like epoxy resin composition of the present invention is preferably 0.1% by mass or less and 0.06% by mass or less from the viewpoint of suppressing the influence of moisture on the material to be sealed. Is more preferable. This is because when the optical semiconductor such as an organic EL element is sealed with the sheet-like epoxy resin composition of the present invention, the optical semiconductor is prevented from being deteriorated by moisture.
  • the moisture content of the sheet-like epoxy resin composition is measured, for example, by measuring about 0.1 g of a sample piece of the sheet-like epoxy resin composition, heating to 150 ° C. with a Karl Fischer moisture meter, and measuring the amount of moisture generated at that time. (Solid vaporization method).
  • the sheet-like epoxy resin composition of the present invention preferably has appropriate fluidity at the thermocompression bonding temperature.
  • the sheet-like epoxy resin composition is heated and fluidized, and then the optical semiconductor such as an organic EL element or the like. This is because the surface unevenness is smoothly filled to eliminate the gap.
  • the fluidity at the time of thermocompression bonding of the sheet-like epoxy resin composition can be determined by the melting point.
  • the melting point is a temperature at which fluidity is exhibited when the sheet-like epoxy resin composition is heated, and is preferably 30 to 100 ° C., more preferably 40 to 80 ° C.
  • the melting point is less than 30 ° C.
  • the thermal transfer (thermocompression bonding) or thermosetting and sealing the fluidity of the sheet-like epoxy resin composition is too large and dripping easily occurs, and the film thickness of the cured product May be difficult to manage.
  • the melting point exceeds 100 ° C.
  • workability at the time of thermal transfer is deteriorated.
  • a gap is easily formed between the sheet-like epoxy resin composition and the material to be sealed, or the material to be sealed (for example, an organic EL element) is adversely affected by heating.
  • the melting point is 30 to 100 ° C., it is possible to suppress the formation of a gap between the sheet-like epoxy resin composition and the element and to obtain good adhesion.
  • the sheet-like epoxy resin composition of the present invention in which the melting point does not vary greatly during storage can make the conditions for sealing an optical semiconductor constant, so that the sealing of an optical semiconductor, etc. The efficiency of the process can be improved. Further, if the melting point can be maintained at a certain low temperature, the adhesion with the element and the substrate becomes good, and the water vapor barrier property at the bonding interface is hardly lowered.
  • the amount of change in the melting point after the sheet-like epoxy resin composition is produced and stored at 23 ° C. and 60 RH% for 7 days is preferably 5 ° C. or less, and more preferably 1 ° C. or less.
  • the melting point can be measured as a temperature at which the resin composition starts to melt after pressing the sheet-like epoxy resin composition (thickness 15 ⁇ m) onto a glass plate placed on a hot plate. Specifically, the sheet-like epoxy resin composition is cut into a length of about 40 mm and a width of about 5 mm to obtain a strip-shaped test piece. The sheet-like epoxy resin composition of the test piece is placed on a hot plate and brought into close contact with the heated glass plate, and then the test piece is gradually peeled from the glass plate in the direction of 180 degrees. This operation is started from a setting temperature of 35 ° C. of the hot plate, and a test piece is newly prepared every time the setting temperature is increased by 1 ° C. Let it be the melting point.
  • the curing rate of the sheet-like epoxy resin composition of the present invention is preferably high to some extent. It is for improving workability at the time of bonding with the material to be sealed. “Cure quickly” means, for example, curing within 120 minutes under heating conditions (80 to 100 ° C.).
  • Whether the sheet-like epoxy resin composition is cured can be determined by checking with a finger whether the sheet-like epoxy resin composition is cured on a hot plate and gelled. Whether or not the sheet-like epoxy resin composition has been cured is also determined from the conversion rate of the epoxy group.
  • the conversion rate of the epoxy group can be determined from the reduction rate of the epoxy group in the IR spectrum by measuring the IR spectrum of the sheet-like epoxy resin composition before the curing reaction and after the curing reaction.
  • the curability of the sheet-like epoxy resin composition can be controlled by adjusting the amount of the curing accelerator.
  • the sealing member is required to have transparency from the viewpoint of light extraction from the organic EL panel.
  • the light transmittance at a wavelength of 550 nm at a thickness of 40 ⁇ m of the sheet-like epoxy resin composition and its cured product is preferably 90% or more, and more preferably 93% or more.
  • the light transmittance of the cured product of the sheet-like epoxy resin composition can be measured by the following procedure. 1) A sheet-like epoxy resin composition having a dry thickness of 40 ⁇ m is formed on a glass plate (S9213, Matsunami Glass, thickness 1.2 mm, 76 ⁇ 52 mm). The sheet-like epoxy resin composition on the glass plate is heated in an oven at 100 ° C. for 2 hours to obtain a cured product. 2) The light transmittance at a wavelength of 550 nm of the glass plate on which the cured product of the sheet-like epoxy resin composition is formed is measured using an ultraviolet-visible light spectrophotometer (Shimadzu Corporation UV-2550). In the measurement, the light transmittance of the glass plate alone is used as the baseline. The light transmittance of the sheet-like epoxy resin composition (before curing) can be measured in the same manner except that the sheet-like epoxy resin composition of 1) above is not cured.
  • the cured epoxy resin composition such as an organic EL element is used to suppress deterioration due to moisture. It is preferable that the humidity is low. Accordingly, the moisture permeability of the cured product of the sheet-like epoxy resin composition of the present invention is preferably 60 g / m 2 ⁇ 24 h or less, and more preferably 30 g / m 2 ⁇ 24 h or less. The moisture permeability is determined by measuring a cured product of a 100 ⁇ m sheet-like epoxy resin composition under conditions of 60 ° C. and 90% RH according to JIS Z0208.
  • Tg of cured product It is preferable that Tg of the hardened
  • the Tg of the cured product can be determined from the inflection point by measuring the linear expansion coefficient under the condition of a heating rate of 5 ° C./min using TMA (TMA / SS6000 manufactured by Seiko Instruments Inc.).
  • the cured product of the sheet-like epoxy resin composition of the present invention is one kind selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr in the spectrum measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the molar ratio of nitrogen atom to 1 mol of metal atom may depend on the content of tertiary amine to metal ion in metal complex (B).
  • the metal atom is preferably Zn, and the content thereof is preferably 0.5 to 15% by mass in the cured product.
  • XPS measurement can be performed using AXIS-NOVA (manufactured by KRATOS).
  • the light source can be monochromatic A1 K ⁇ ; the diameter of the measurement area can be 100 ⁇ m.
  • the sealing sheet of the present invention includes a layer made of the sheet-like epoxy resin composition of the present invention.
  • the sealing sheet of the present invention includes a base film, a layer formed of the sheet-like epoxy resin composition of the present invention formed on the base film, and, if necessary, the sheet-like epoxy resin composition. And a protective film formed thereon.
  • the moisture content of the layer made of the sheet-like epoxy resin composition is preferably 0.1% by mass or less from the viewpoint of suppressing the influence of moisture on the sealing material, and is 0.06% by mass.
  • the following is more preferable.
  • organic EL elements are easily degraded by moisture. Therefore, when sealing an organic EL element with the sheet
  • the moisture content of the layer made of the sheet-like epoxy resin composition of the sealing sheet can be reduced by, for example, heating and drying the sealing sheet under vacuum.
  • the sheet-like epoxy resin composition When the sheet-like epoxy resin composition is used as a sealing material for an optical semiconductor device such as an organic EL element, transparency may be required for the sealing member from the viewpoint of light extraction from the organic EL panel. is there. Accordingly, the light transmittance at a wavelength of 550 nm at a thickness of 40 ⁇ m of the layer made of the sheet-like epoxy resin composition is preferably 90% or more, and more preferably 93% or more.
  • the melting point, solvent content, and thickness of the layer made of the sheet-like epoxy resin composition can also be as described above.
  • the base film or the protective film examples include known release films, preferably films having moisture barrier properties or gas barrier properties, and more preferably polyethylene terephthalate.
  • the thickness of the base film is, for example, about 50 ⁇ m from the viewpoint of having the ability to follow a sealing material such as an organic EL element.
  • the protective film is preferably laminated on a layer made of the sheet-like epoxy resin composition of the present invention. Lamination is preferably performed at about 60 ° C. using a laminator, for example.
  • the thickness of the protective film is, for example, about 20 ⁇ m.
  • the sealing sheet of the present invention may further include a gas barrier layer as necessary.
  • the gas barrier layer may be a layer that suppresses permeation of moisture or gas that deteriorates the organic EL element, such as moisture in the outside air, into the organic EL panel.
  • Such a gas barrier layer may be disposed anywhere as long as the surface is not in contact with the organic EL element, but is preferably disposed between the base film and the layer made of the sheet-like epoxy resin composition of the present invention. sell.
  • the material constituting the gas barrier layer is not particularly limited. Examples of materials constituting the gas barrier layer include Al, Cr, Ni, Cu, Zn, Si, Fe, Ti, Ag, Au, and Co; oxides of these metals; nitrides of these metals; oxynitrides of these metals Etc. are included.
  • the gas barrier layer may be composed of one kind of metal material or may be composed of two or more kinds of metal materials.
  • the gas barrier layer may be made of a resin material.
  • the gas barrier layer of the sealing sheet used for sealing the bottom emission type organic EL element is preferably a layer having a high light reflectance, for example, a layer made of Al, Cu or the like.
  • the gas barrier layer of the sealing sheet used for sealing the top emission type organic EL element is preferably a layer having high light transmittance, and is made of, for example, polyethylene terephthalate (PET), polycarbonate (PC), or the like. It can be a layer.
  • the thickness of the gas barrier layer may be about 10 to 3000 ⁇ m.
  • a sealing sheet having a gas barrier layer can be produced by forming a gas barrier layer on a substrate film and then forming a layer made of the sheet-like epoxy resin composition of the present invention.
  • the formation method of the gas barrier layer is not particularly limited, and the dry process includes various PVD methods such as vacuum deposition, sputtering, and ion plating, and the CVD method such as plasma CVD.
  • the wet process includes a plating method. , Coating methods and the like are included.
  • FIG. 1 is a view showing a preferred example of the configuration of the sealing sheet.
  • the sealing sheet 10 includes a base film 12, a layer 16 made of a sheet-like epoxy resin composition disposed on the base film 12, and a sheet-like epoxy resin composition. And a protective film 18 disposed on the layer 16.
  • FIG. 2 is a view showing another preferred example of the configuration of the sealing sheet.
  • the sealing sheet of FIG. 2 can be configured in the same manner as in FIG. 1 except that it further includes a gas barrier layer 14. That is, the sealing sheet 10 ′ includes a gas barrier layer 14 formed on the base film 12, a layer 16 made of a sheet-like epoxy resin composition disposed on the gas barrier layer 14, and a sheet-like epoxy resin composition. And a protective film 18 disposed on the layer 16 made of material.
  • sealing sheets 10 and 10 ′ are, for example, a display in which an optical semiconductor device such as an organic EL element is arranged on the layer 16 made of a sheet-like epoxy resin composition that is exposed after the protective film 18 is peeled off. It can be used by being placed in contact with the substrate.
  • an optical semiconductor device such as an organic EL element
  • the sealing sheet of the present invention is preferably stored together with a desiccant such as silica gel in order to maintain the moisture content of the layer made of the sheet-like epoxy resin composition below a certain level.
  • a desiccant such as silica gel
  • the sealing sheet of the present invention is used as a sealing member by curing a layer made of a sheet-like epoxy resin composition.
  • the material to be sealed to be sealed is not particularly limited, but for example, an optical semiconductor device is preferable.
  • optical semiconductor devices include organic EL display panels having organic EL devices and organic EL lighting; liquid crystal displays and LEDs.
  • seat for sealing of this invention is demonstrated in the example used for sealing of the organic EL element of an organic EL device.
  • the organic EL device of the present invention includes an organic EL element and a cured product layer of the sheet-like epoxy resin composition of the present invention that is in contact with and seals the organic EL element.
  • the organic EL device of the present invention includes a substrate (display substrate) on which an organic EL element is disposed, a counter substrate that is paired with the display substrate, and is disposed between the display substrate and the counter substrate. And a sealing member for sealing the EL element.
  • the sealing member may be a cured product layer of the sheet-like epoxy resin composition of the present invention.
  • the sealing member in which all or part of the space formed between the organic EL element and the sealing substrate is filled is referred to as a surface sealing type organic EL device.
  • the adhesive force between the sealing member made of the cured product of the sheet-like epoxy resin composition of the present invention and the material to be sealed is preferably 300 gf / 15 mm or more.
  • the adhesive force between the cured product and the counter substrate (glass substrate) that is the material to be sealed can be measured by the following method.
  • a sheet-like epoxy resin composition (thickness of about 15 ⁇ m) is applied and dried on the aluminum foil side of a film (product name: Alpet) obtained by bonding aluminum foil and PET.
  • the sheet-like epoxy resin composition was transferred to a glass substrate (JIS R3202 compliant glass, 100 mm ⁇ 25 mm ⁇ 2 mm) using a roll laminator (manufactured by MCK Corporation, MRK-650Y type) at a speed of 0.
  • the laminate is obtained by thermocompression bonding under the conditions of 3 m / min, air cylinder pressure 0.2 MPa, and roller temperature 90 ° C. up and down heating.
  • the obtained laminate is heated in an oven at 80 ° C. for 30 minutes to cure the sheet-like epoxy resin composition. 3) Thereafter, the laminate was cut into a width of 15 mm, and the 90 ° peel strength between the glass substrate and the cured product of the sheet-like epoxy resin composition was measured with a peel tester (device name: STROGRAPH ES, Toyo Seiki Seisakusho Co., Ltd. Manufactured, range 50 mm / min.).
  • the 90-degree peel strength is the adhesive strength.
  • FIG. 3 is a cross-sectional view schematically showing a surface-sealing type organic EL device having a top emission structure.
  • the organic EL device 20 includes a display substrate 22, an organic EL element 24, and a counter substrate (transparent substrate) 26, which are stacked in this order.
  • the periphery of the organic EL element 24 and the counter substrate (transparent) A sealing member 28 is filled between the substrate 26 and the substrate.
  • the seal member 28 in FIG. 3 is a cured product of the sheet-like epoxy resin composition of the present invention.
  • the display substrate 22 and the counter substrate 26 are usually glass substrates or resin films, and at least one of the display substrate 22 and the counter substrate 26 (here, the counter substrate 26) is a transparent glass substrate or a transparent resin film. is there.
  • transparent resin films include aromatic polyester resins such as polyethylene terephthalate.
  • the organic EL element 24 has a cathode reflective electrode layer 30 (made of aluminum, silver, etc.), an organic EL layer 32, and an anode transparent electrode layer 34 (made of ITO, IZO, etc.) laminated from the display substrate 22 side.
  • the cathode reflective electrode layer 30, the organic EL layer 32, and the anode transparent electrode layer 34 may be formed by vacuum deposition, sputtering, or the like.
  • the organic EL device using the cured product of the sheet-like epoxy resin composition of the present invention as a sealing member is produced by an arbitrary method.
  • the organic EL device of the present invention includes a step of preparing a substrate on which an organic EL element is formed; and a method of thermocompression bonding the sheet-like epoxy resin composition of the present invention to the substrate. And a step of covering the organic EL element with a layer formed by thermocompression-bonding the layer formed of the sheet-like epoxy resin composition.
  • a counter substrate (transparent substrate) 26 to be stacked may be stacked to obtain a laminated body (method (i)).
  • the substrate film may be peeled off and transferred.
  • a layer made of a sheet-like epoxy resin composition of a sealing sheet having no protective film may be directly placed on the organic EL element by a roll laminator or the like.
  • a layer composed of the sheet-like epoxy resin composition is thermocompression-bonded at, for example, 50 to 110 ° C. using a vacuum laminator device, thereby forming a layer composed of the organic EL element and the sheet-like epoxy resin composition.
  • thermocompression bonding of the display substrate 22 and the counter substrate 26 are performed.
  • the organic EL element side is preferably heated to 50 to 110 ° C. in advance, and the organic EL element and the sheet-like epoxy resin composition are bonded together.
  • the layer made of the sheet-like epoxy resin composition is completely cured at a curing temperature of 80 to 100 ° C.
  • Heat curing is preferably performed at a temperature of 80 to 100 ° C. for about 0.1 to 2 hours.
  • the temperature at the time of heat-curing shall be 100 degrees C or less in order not to give a damage to an organic EL element.
  • a passivation layer on the layer made of the sheet-like epoxy resin composition of the present invention or a cured product thereof.
  • the passivation layer is preferably an inorganic compound layer formed in a plasma environment.
  • Forming a film in a plasma environment means, for example, forming a film by a plasma CVD method, but is not particularly limited, and may be formed by a sputtering method or an evaporation method.
  • the material of the passivation layer is preferably a transparent inorganic compound, and examples thereof include silicon nitride, silicon oxide, SiONF, and SiON, but are not particularly limited.
  • the thickness of the passivation layer is preferably 0.1 to 5 ⁇ m.
  • the passivation layer may be formed in contact with the cured product layer of the sheet-like epoxy resin composition of the present invention.
  • the sheet-like epoxy resin composition of the present invention tends to hardly cause deterioration of an optical semiconductor such as an organic EL element.
  • the reason for this is not necessarily clear, but is presumed as follows. That is, if the tertiary amine contained in the composition is in a state that is easy to move, the tertiary amine and the metal constituting the charge transport layer or the light emitting layer of the organic EL element interact to change the state of the organic EL element. It is considered that the deterioration of the element is likely to occur.
  • the tertiary amine contained in the sheet-like epoxy resin composition of the present invention forms a complex with a metal ion in advance, the periphery of the tertiary amine is bulky. Therefore, it is presumed that the interaction between the tertiary amine and the charge transport layer or the light emitting layer of the organic EL element is unlikely to occur, and deterioration of the organic EL element or the like can be suppressed.
  • an organic EL element is produced by a vapor deposition method. After the composition of the present invention is pressure-bonded on the produced element, the element is sealed by thermosetting to obtain Sample 1. On the other hand, the periphery of the produced element is similarly sealed (hollow sealed) with the composition of the present invention so as not to contact the element, and sample 2 is obtained. Then, the initial light emission characteristics, life, and reliability of sample 1 and sample 2 are measured, and both are compared. If there is no difference between the two evaluation results, it can be determined that there is no deterioration of the device due to the interaction between the sheet-like epoxy resin composition and the device. Specifically, it can also be evaluated by the same method as the deterioration test method described in International Publication No. 2010/035502.
  • Metal complex (B) ⁇ Synthesis of Metal Complex (B-1)> Into a 5 L flask, 768.19 g (2.18 mol) of zinc bis (2-ethylhexoate) was added, 1500 g of isopropyl alcohol was added, and the mixture was stirred at room temperature and normal pressure at about 150 rpm. Subsequently, after confirming that zinc bis (2-ethylhexoate) was completely dissolved, 210 g (2.18 mol) of 1,2-DMZ (1,2-dimethylimidazole) was added and stirring was continued. Then, an additional 42 g (0.44 mol) of 1,2-DMZ was added and stirring was continued.
  • compositions of the obtained metal complexes (B-1) to (B-6) and the 1 HNMR peak transfer amount are summarized in Table 1.
  • the numerical values of the metal ion / anionic ligand and the tertiary amine in the column of the metal complex (B) in the table indicate the mass ratio.
  • Silane coupling agent (D) KBM-403 (3-glycidoxypropyltrimethoxysilane molecular weight 236) (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Example 1 20 parts by mass of jER4005, 40 parts by mass of jER4010, and 40 parts by mass of jER630 were added to the flask, 200 parts by mass of methyl ethyl ketone was added thereto, and the mixture was stirred and dissolved at room temperature. To this solution, 3 parts by mass of metal complex (B-1) and 1 part by mass of KBM-403 were added and stirred at room temperature to prepare an epoxy resin composition varnish.
  • the prepared varnish was coated on a base film (PET film G2 (manufactured by Teijin DuPont Films, Inc.) thickness 38 ⁇ m) with an applicator using a coating machine so that the thickness after drying was about 15 ⁇ m.
  • This film is kept in an inert oven (30 ° C.) for 10 minutes, then kept in a vacuum oven (40 ° C.) for 2 hours, and the MEK in the varnish coating film is dried and removed.
  • a layer made of a sheet-like epoxy resin composition was formed.
  • a PET film (Purex A31 manufactured by Teijin DuPont Films, Ltd.) subjected to release treatment as a protective film was subjected to thermocompression bonding on the layer made of the sheet-like epoxy resin composition to obtain a sealing sheet.
  • the protective film was peeled off as appropriate, and the surface of the layer made of the sheet-like epoxy resin composition was exposed for use.
  • Examples 2 to 7 and Comparative Examples 1 to 6 In the composition ratio (mass ratio) as shown in Table 2 or 3, a varnish of the epoxy resin composition was prepared in the same manner as in Example 1, and coated and dried to form a layer composed of the sheet-like epoxy resin composition. The sheet
  • the release-treated PET was peeled from the obtained sealing sheet, and the sheet-shaped epoxy resin composition was transferred to a glass plate (S9213, Matsunami Glass, thickness 1.2 mm, 76 ⁇ 52 mm).
  • the sheet-like epoxy resin composition transferred to the glass plate was heated in an oven at 100 ° C. for 2 hours to obtain a cured product. Compare the transparency of the glass plate before transfer with the glass plate on which the cured product of the sheet-shaped epoxy resin composition is laminated. If these transparencys are the same visually, the transparency is visually impaired. It was evaluated as x.
  • the light transmittance of the glass plate used for transferring the layer made of the sheet-like epoxy resin composition was used as a baseline.
  • the light transmittance at a wavelength of 550 nm was 90% or more, it was evaluated as ⁇ , and when it was lower than that, it was evaluated as ⁇ .
  • the base film A53 (manufactured by Teijin DuPont Films, Inc., thickness 38 ⁇ m) is coated with the varnish of the epoxy resin composition obtained in the examples and comparative examples with an applicator so that the dry thickness is 15 ⁇ m. Worked. The film was held in an inert oven (30 ° C.) for 10 minutes. Subsequently, the sheet for sealing was formed by holding in a vacuum oven (40 ° C.) for 2 hours, drying and removing MEK in the varnish coating film, and forming a layer made of the sheet-like epoxy resin composition on the base film. Got.
  • the layer made of the sheet-like epoxy resin composition of the sealing sheet is thermocompression bonded to a NaCl plate heated to around 45 ° C. on a hot plate, cooled to room temperature, and then the base film is peeled off to form a sheet
  • the layer made of the epoxy resin composition was transferred onto a NaCl plate.
  • another NaCl board was covered, and it was set as the sample for IR absorption spectrum measurement.
  • an aluminum foil having a thickness of 11 ⁇ m was used as a spacer between two NaCl plates.
  • the curability (curing rate) of the layer which consists of a sheet-like epoxy resin composition in the state of (ii) was computed from the IR absorption spectrum of the said 3 states.
  • the state (i) was set to 0% curing rate
  • the state (iii) was set to 100% curing rate.
  • the curing rate in the state (ii) was calculated by the following procedure. 1) The oxolane ring decreases with the heat curing reaction of the epoxy resin.
  • the melting point of the layer composed of the sheet-like epoxy resin composition after being stored at 23 ° C. and 60 RH% for 7 days or after 14 days was also measured in the same manner as described above.
  • the curability of the layer composed of the sheet-like epoxy resin composition indicates that the larger the numerical values in Tables 2 and 3, the higher the curability.
  • the melting point of the layer composed of the sheet-like epoxy resin composition before curing indicates that the curing due to the storage does not progress as the change due to the storage decreases.
  • Examples 1 to 7 have high curability immediately after production of the layer made of the sheet-like epoxy resin composition, and are stored at room temperature for 0 to 14 days. However, it can be seen that since the melting point of the layer made of the sheet-shaped epoxy resin composition before curing is small, both the curability and the storage stability are excellent.
  • Comparative Examples 1 and 3 to 6 although the curability immediately after production of the layer made of the sheet-like epoxy resin composition is high, the melting point is greatly increased when stored at room temperature, and the storage stability is stable compared to the Examples. It turns out that the nature is low. In Comparative Examples 2 and 7, since the melting point does not change much even when stored at room temperature, it can be seen that the storage stability is high but the curability is low.
  • the sheet-like epoxy resin composition of the present invention is excellent in curability and storage stability. Therefore, when the sheet-like epoxy resin composition of the present invention is used for sealing an optical semiconductor, for example, the manufacturing efficiency of the optical semiconductor device can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a sheet-like epoxy resin composition which has high storage stability and maintains sufficient curability. A sheet-like epoxy resin composition of the present invention contains (A) an epoxy resin which contains two or more epoxy groups in each molecule and has a weight average molecular weight of from 2 × 103 to 1 × 105 and (B) a metal complex which contains one or more kinds of metal ions selected from among Zn, Bi, Ca, Al, Cd, La and Zr, a tertiary amine that is capable of forming a complex with the metal ions and does not have an N-H bond, and an anionic ligand having a molecular weight of 17-200.

Description

シート状エポキシ樹脂組成物、それを用いた有機ELデバイスの製造方法、有機ELデバイスおよび有機ELディスプレイパネルSheet-like epoxy resin composition, organic EL device manufacturing method using the same, organic EL device, and organic EL display panel
 本発明は、シート状エポキシ樹脂組成物、それを用いた有機EL(Electro Luminescence)デバイスの製造方法、有機ELデバイスおよび有機ELディスプレイパネルに関する。 The present invention relates to a sheet-like epoxy resin composition, a method for producing an organic EL (Electro Luminescence) device using the same, an organic EL device, and an organic EL display panel.
 光学機器の中でも、光半導体、特に有機EL素子は、低消費電力、高視野角、偏光特性の一様性に優れることから、照明装置や次世代ディスプレイへの応用が期待されている。しかし、有機EL素子を初めとする光半導体は、大気中の水分や酸素によって劣化しやすいという問題がある。そのため、有機EL素子は、シール部材で封止されて使用されており、より透湿度の低いシール部材を作製するための封止材料が切望されている。 Among optical devices, optical semiconductors, especially organic EL elements, are expected to be applied to lighting devices and next-generation displays because of their low power consumption, high viewing angle, and excellent polarization characteristics. However, an optical semiconductor such as an organic EL element has a problem that it easily deteriorates due to moisture and oxygen in the atmosphere. Therefore, the organic EL element is used after being sealed with a seal member, and a sealing material for producing a seal member with lower moisture permeability is desired.
 光学素子または電子部品の封止材料として、フルオレン骨格を含むエポキシ樹脂、硬化剤、硬化促進剤およびカップリング剤等を含む組成物が提案されている(例えば、特許文献1参照)。フルオレン骨格を含むエポキシ樹脂の組成物の硬化物は耐湿性が高く、有機EL素子の劣化を効果的に抑制することができる。しかし、素子の封止の際には、当該組成物を加熱溶融し、さらに射出成形する必要がある。そのため、封止工程が煩雑であるとの問題があった。 As a sealing material for optical elements or electronic components, a composition containing an epoxy resin containing a fluorene skeleton, a curing agent, a curing accelerator, a coupling agent and the like has been proposed (for example, see Patent Document 1). The cured product of the epoxy resin composition containing a fluorene skeleton has high moisture resistance, and can effectively suppress deterioration of the organic EL element. However, when sealing the element, it is necessary to heat and melt the composition and to perform injection molding. Therefore, there is a problem that the sealing process is complicated.
 一方、低分子量エポキシ樹脂、高分子量エポキシ樹脂、潜在性イミダゾール化合物およびシランカップリング剤を含むシート状の封止用組成物も提案されている(例えば、特許文献2および3参照)。これらのシート状の封止用組成物を、素子に熱圧着して転写し、エポキシ樹脂を加熱硬化させるだけで素子を封止(面封止)することができる。 On the other hand, a sheet-like sealing composition containing a low molecular weight epoxy resin, a high molecular weight epoxy resin, a latent imidazole compound and a silane coupling agent has also been proposed (see, for example, Patent Documents 2 and 3). These sheet-like sealing compositions can be thermocompression-bonded and transferred to the device, and the device can be sealed (surface-sealed) simply by heating and curing the epoxy resin.
 ところで、フォトセンサやLEDなどの封止剤として、Zn(C2n+1COO)で表される化合物と、イミダゾール化合物とを硬化促進剤として含むエポキシ樹脂組成物が提案されている(例えば特許文献4)。また、パウダーコーティング材として、亜鉛などの金属イオンにアミン化合物とカルボキシレートがそれぞれ配位した金属錯体を含む組成物なども提案されている(例えば特許文献5)。さらに、エポキシ樹脂の硬化促進剤として、特定の金属錯体を用いることが提案されている(例えば、非特許文献1)。 By the way, an epoxy resin composition containing a compound represented by Zn (C n H 2n + 1 COO) 2 and an imidazole compound as a curing accelerator has been proposed as a sealant for photosensors and LEDs (for example, patents). Reference 4). In addition, as a powder coating material, a composition containing a metal complex in which an amine compound and a carboxylate are coordinated to metal ions such as zinc has been proposed (for example, Patent Document 5). Further, it has been proposed to use a specific metal complex as an epoxy resin curing accelerator (for example, Non-Patent Document 1).
特開2005-41925号公報JP-A-2005-41925 特開2006-179318号公報JP 2006-179318 A 特開2007-112956号公報Japanese Patent Application Laid-Open No. 2007-112956 特開平10-45879号公報Japanese Patent Laid-Open No. 10-45879 国際公開第2006/022899号International Publication No. 2006/022899
 しかしながら、特許文献2および3等に記載の従来のシート状の封止用組成物は、シート形状を保持するために、比較的高分子量の成分を含む場合が多い。このため、シート状の封止用組成物を保管している間にエポキシ樹脂の硬化が進むと、組成物に含まれるエポキシ樹脂の分子量が急激に増加する。エポキシ樹脂の分子量が大きくなりすぎると、シート状の封止用組成物の柔軟性が低下するので、シート状の封止用組成物を用いて有機EL素子などの光半導体を封止する場合、半導体を十分に覆うことができなくなり封止が不十分になることがあった。 However, the conventional sheet-like sealing compositions described in Patent Documents 2 and 3 and the like often contain a relatively high molecular weight component in order to maintain the sheet shape. For this reason, when the curing of the epoxy resin proceeds while the sheet-like sealing composition is stored, the molecular weight of the epoxy resin contained in the composition increases rapidly. When the molecular weight of the epoxy resin becomes too large, the flexibility of the sheet-like sealing composition is reduced, so when sealing an optical semiconductor such as an organic EL element using the sheet-like sealing composition, In some cases, the semiconductor cannot be sufficiently covered and sealing is insufficient.
 また、特許文献4の組成物は、硬化性が十分でない場合があった。特許文献5の組成物は、保存安定性は比較的改善されうるが、粘度が高いと考えられるため、封止剤としては適さないと考えられる。非特許文献1では、特定の金属錯体を低分子量のエポキシ樹脂と組み合わせることが示されるに過ぎず、高分子量のエポキシ樹脂と組み合わせることは示されていない。 In addition, the composition of Patent Document 4 may not have sufficient curability. The composition of Patent Document 5 can be relatively improved in storage stability, but is considered to be unsuitable as a sealant because of its high viscosity. Non-Patent Document 1 merely shows that a specific metal complex is combined with a low molecular weight epoxy resin, and does not indicate that it is combined with a high molecular weight epoxy resin.
 本発明は、このような事情に鑑みてなされたものであり、保存安定性が高く、かつ、十分な硬化性を維持したシート状エポキシ樹脂組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a sheet-like epoxy resin composition having high storage stability and maintaining sufficient curability.
 本発明者らは、シート形状を保持するための比較的分子量が高いエポキシ樹脂と、特定の構造を有する金属錯体とを組み合わせることで、上記課題を解決できることを見出した。 The present inventors have found that the above problem can be solved by combining an epoxy resin having a relatively high molecular weight for maintaining the sheet shape and a metal complex having a specific structure.
 [1] 1分子内に2個以上のエポキシ基を有し、重量平均分子量が2×10~1×10であるエポキシ樹脂(A)と、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属イオンと、前記金属イオンと錯形成が可能であって、N-H結合を有さない3級アミンと、分子量が17~200のアニオン性配位子とを含む金属錯体(B)とを含む、シート状エポキシ樹脂組成物。
 [2] 前記アニオン性配位子の価数が前記金属イオンの価数より小さく、かつ前記アニオン性配位子の半径が2.0Å以上である、[1]に記載のシート状エポキシ樹脂組成物。
 [3] 前記3級アミンが、下記一般式(1)~(6)のいずれかで表される化合物である、[1]または[2]に記載のシート状エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
 (一般式(1)において、
 Rは、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す)
Figure JPOXMLDOC01-appb-C000002
(一般式(2)において、
 RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RB1、RB2、RB3、RB4、RB5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000003
(一般式(3)において、
 RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RC1、RC2、RC3、RC4、RC5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)において、
 RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000005
(一般式(5)において、
 RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000006
(一般式(6)において、
 RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
 RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
 [4] 前記アニオン性配位子が、O、S、Pからなる群から選ばれる、前記金属イオンに結合しうる原子を2以上有し、かつ前記金属イオンに配位して3~7員環を形成しうるものである、[1]~[3]のいずれかに記載のシート状エポキシ樹脂組成物。
 [5] 前記3級アミンが、前記一般式(1)~(3)のいずれかで表される化合物であり、かつ前記アニオン性配位子が、下記一般式(7A)で表されるカルボキシレート化合物であるか、下記一般式(7B)で表されるカルボキシレート化合物のアニオンである、[3]に記載のシート状エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(一般式(7A)において、
 RD1は、水素基であり、
 RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
Figure JPOXMLDOC01-appb-C000008
(一般式(7B)において、
 RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
 [6] 前記シート状エポキシ樹脂組成物の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトのうち3級アミンに由来する化学シフトが、前記3級アミン単独の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトに対して0.05ppm以上移動するピークを含む、[1]~[5]のいずれかに記載のシート状エポキシ樹脂組成物。
 [7] 前記金属イオンに対する前記3級アミンのモル比が、0.5~6.0である、[1]~[6]のいずれかに記載のシート状エポキシ樹脂組成物。
 [8] 前記カルボキシレート化合物が、2-エチルヘキサン酸、ギ酸、酢酸、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、安息香酸およびナフテン酸からなる群から選ばれる少なくとも1種類の化合物である、[5]に記載のシート状エポキシ樹脂組成物。
 [9] 前記3級アミンが、1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾールおよび1,5-ジアゾビシクロ[4,3,0]ノン-5-エンからなる群から選ばれる少なくとも1種類の化合物である、[1]~[8]のいずれかに記載のシート状エポキシ樹脂組成物。
 [10] 前記シート状エポキシ樹脂組成物は、前記金属錯体(B)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.3となる範囲で含む、[1]~[9]のいずれかに記載のシート状エポキシ樹脂組成物。
 [11] 前記エポキシ樹脂(A)の含有量が、前記シート状エポキシ樹脂組成物に対して55~95質量%である、[1]~[10]のいずれかに記載のシート状エポキシ樹脂組成物。
[1] An epoxy resin (A) having two or more epoxy groups in one molecule and having a weight average molecular weight of 2 × 10 3 to 1 × 10 5 , Zn, Bi, Ca, Al, Cd, La , One or more metal ions selected from the group consisting of Zr, a tertiary amine that can form a complex with the metal ions and does not have an NH bond, and an anionic coordination having a molecular weight of 17-200. A sheet-like epoxy resin composition comprising a metal complex (B) containing a ligand.
[2] The sheet-like epoxy resin composition according to [1], wherein the valence of the anionic ligand is smaller than the valence of the metal ion, and the radius of the anionic ligand is 2.0 mm or more. object.
[3] The sheet-like epoxy resin composition according to [1] or [2], wherein the tertiary amine is a compound represented by any one of the following general formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000001
(In general formula (1),
R 1 represents an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group;
R 2 , R 3 and R 4 each independently represent a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group)
Figure JPOXMLDOC01-appb-C000002
(In general formula (2),
RB1, RB3, RB4, and RB5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
RB2 represents an aliphatic hydrocarbon group, hydroxyl group, aryl-containing group or cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms;
A plurality of groups selected from RB1, RB2, RB3, RB4, and RB5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be)
Figure JPOXMLDOC01-appb-C000003
(In general formula (3),
RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a C1-C17 heteroatom, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms;
A plurality of groups selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. Also good)
Figure JPOXMLDOC01-appb-C000004
(In general formula (4),
RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
A plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. Also good)
Figure JPOXMLDOC01-appb-C000005
(In general formula (5),
RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Show;
A plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed)
Figure JPOXMLDOC01-appb-C000006
(In general formula (6),
RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
A plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. )
[4] The anionic ligand has 2 or more atoms selected from the group consisting of O, S, and P and capable of binding to the metal ion, and is coordinated to the metal ion to be 3 to 7 members. The sheet-like epoxy resin composition according to any one of [1] to [3], which is capable of forming a ring.
[5] The tertiary amine is a compound represented by any one of the general formulas (1) to (3), and the anionic ligand is a carboxy represented by the following general formula (7A) The sheet-like epoxy resin composition according to [3], which is a rate compound or an anion of a carboxylate compound represented by the following general formula (7B).
Figure JPOXMLDOC01-appb-C000007
(In general formula (7A),
RD1 is a hydrogen group,
RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group)
Figure JPOXMLDOC01-appb-C000008
(In general formula (7B),
RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group)
[6] Of the chemical shift of 1 HNMR at 25 ° C. and 270 MHz in CDCl 3 of the sheet-like epoxy resin composition, a chemical shift derived from a tertiary amine is 25 in CDCl 3 of the tertiary amine alone. The sheet-like epoxy resin composition according to any one of [1] to [5], which contains a peak that moves 0.05 ppm or more with respect to 1 HNMR chemical shift at 270 ° C.
[7] The sheet-like epoxy resin composition according to any one of [1] to [6], wherein the molar ratio of the tertiary amine to the metal ion is 0.5 to 6.0.
[8] The carboxylate compound is 2-ethylhexanoic acid, formic acid, acetic acid, butanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, benzoic acid. And the sheet-like epoxy resin composition according to [5], which is at least one compound selected from the group consisting of naphthenic acid.
[9] The tertiary amine is 1,8-diazobicyclo [5,4,0] undec-7-ene, 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, -At least one compound selected from the group consisting of isobutyl-2-methylimidazole, 1-butylimidazole and 1,5-diazobicyclo [4,3,0] non-5-ene; 8] The sheet-like epoxy resin composition according to any one of [8].
[10] The sheet-like epoxy resin composition contains the metal complex (B) in a range where the equivalent ratio of tertiary functional active functional groups / epoxy groups is 0.008 to 0.3. [1] To [9] The sheet-like epoxy resin composition according to any one of [9].
[11] The sheet-like epoxy resin composition according to any one of [1] to [10], wherein the content of the epoxy resin (A) is 55 to 95% by mass with respect to the sheet-like epoxy resin composition. object.
 [12] [1]~[11]のいずれかに記載のシート状エポキシ樹脂組成物からなる層を含む、封止用シート。
 [13] 前記シート状エポキシ樹脂組成物からなる層の、厚さ40μmにおける波長550nmにおける光線透過率が90%以上である、[12]に記載の封止用シート。
 [14] 前記シート状エポキシ樹脂組成物からなる層の少なくとも一方の面に、保護フィルムをさらに有する、[12]または[13]に記載の封止用シート。
 [15] 光半導体の面封止に用いられる、[12]~[14]のいずれかに記載の封止用シート。
 [16] 有機EL素子の面封止に用いられる、[12]~[14]のいずれかに記載の封止用シート。
 [17] 前記シート状エポキシ樹脂組成物からなる層の含水分量が0.1質量%以下である、[12]~[14]のいずれかに記載の封止用シート。
[12] A sealing sheet comprising a layer made of the sheet-like epoxy resin composition according to any one of [1] to [11].
[13] The sealing sheet according to [12], wherein the layer made of the sheet-like epoxy resin composition has a light transmittance of 90% or more at a wavelength of 550 nm at a thickness of 40 μm.
[14] The sealing sheet according to [12] or [13], further including a protective film on at least one surface of the layer made of the sheet-like epoxy resin composition.
[15] The sealing sheet according to any one of [12] to [14], which is used for surface sealing of an optical semiconductor.
[16] The sealing sheet according to any one of [12] to [14], which is used for surface sealing of an organic EL element.
[17] The sealing sheet according to any one of [12] to [14], wherein the layer made of the sheet-like epoxy resin composition has a moisture content of 0.1% by mass or less.
 [18] 有機EL素子が形成された基板を準備する工程と、前記有機EL素子を、[1]~[11]のいずれかに記載のシート状エポキシ樹脂組成物で覆う工程と、前記シート状エポキシ樹脂組成物からなる層の硬化物で、前記有機EL素子を面封止する工程とを含む、有機ELデバイスの製造方法。
 [19] 有機EL素子と、前記有機EL素子と接触しており、前記有機EL素子を面封止している[1]~[11]のいずれかに記載のシート状エポキシ樹脂組成物の硬化物層とを含む、有機ELデバイス。
 [20] 有機EL素子と、前記有機EL素子を面封止しており、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、検出される前記金属原子と前記窒素原子とのモル比が、前記金属原子:前記窒素原子=1:0.5~1:6.0であり、かつ前記金属原子の含有量が0.5~15質量%であるシート状エポキシ樹脂組成物の硬化物層とを含む、有機ELデバイス。
 [21] [19]に記載の有機ELデバイスを有する、有機ELディスプレイパネル。
 [22] [19]に記載の有機ELデバイスを有する、有機EL照明。
[18] A step of preparing a substrate on which an organic EL element is formed; a step of covering the organic EL element with the sheet-like epoxy resin composition according to any one of [1] to [11]; A method for producing an organic EL device, comprising a step of sealing the surface of the organic EL element with a cured product of a layer made of an epoxy resin composition.
[19] Curing of the sheet-like epoxy resin composition according to any one of [1] to [11], wherein the organic EL element is in contact with the organic EL element, and the organic EL element is surface-sealed. An organic EL device including a physical layer.
[20] The organic EL element and the organic EL element are sealed, and consist of Zn, Bi, Ca, Al, Cd, La, and Zr in the spectrum measured by X-ray photoelectron spectroscopy (XPS). A peak derived from one or more kinds of metal atoms selected from the group and a peak derived from a nitrogen atom are detected, and the molar ratio of the detected metal atom to the nitrogen atom is the metal atom: the nitrogen atom = 1: 0.5 to 1: 6.0, and a cured product layer of a sheet-like epoxy resin composition having a metal atom content of 0.5 to 15 mass%.
[21] An organic EL display panel having the organic EL device according to [19].
[22] Organic EL illumination having the organic EL device according to [19].
 本発明のシート状エポキシ樹脂組成物は、硬化性と保存安定性に優れている。そのため、前記組成物を一定期間保存した後でも、有機EL素子などの光半導体の封止条件をある程度一定にすることができ、光半導体の製造効率を高めることができる。また、本発明のシート状エポキシ樹脂組成物の硬化物は、透明性が高いため、有機EL素子からの発光が封止層を透過する構成のデバイスにも適用することができる。 The sheet-like epoxy resin composition of the present invention is excellent in curability and storage stability. Therefore, even after the composition is stored for a certain period, the sealing conditions for the optical semiconductor such as the organic EL element can be made constant to some extent, and the manufacturing efficiency of the optical semiconductor can be increased. Moreover, since the cured product of the sheet-like epoxy resin composition of the present invention has high transparency, it can be applied to a device having a configuration in which light emission from the organic EL element is transmitted through the sealing layer.
本発明のシート状エポキシ樹脂組成物の一例を示す断面図である。It is sectional drawing which shows an example of the sheet-like epoxy resin composition of this invention. 本発明のシート状エポキシ樹脂組成物の一例を示す断面図である。It is sectional drawing which shows an example of the sheet-like epoxy resin composition of this invention. 本発明の有機ELデバイスの一例を示す断面図である。It is sectional drawing which shows an example of the organic EL device of this invention.
 1.シート状エポキシ樹脂組成物
 本発明のシート状エポキシ樹脂組成物は、少なくとも高分子量のエポキシ樹脂(A)と、金属錯体(B)とを含む。シート状エポキシ樹脂組成物は、必要に応じて、低分子量のエポキシ樹脂(C)、エポキシ基またはエポキシ基と反応可能な官能基を有するシランカップリング剤(D)、溶剤(E)、およびその他の成分の少なくとも一以上をさらに含みうる。
1. Sheet-like epoxy resin composition The sheet-like epoxy resin composition of the present invention comprises at least a high molecular weight epoxy resin (A) and a metal complex (B). The sheet-like epoxy resin composition includes a low molecular weight epoxy resin (C), a silane coupling agent (D) having an epoxy group or a functional group capable of reacting with an epoxy group, a solvent (E), and the like, as necessary. It may further contain at least one of the components.
 本発明のシート状エポキシ樹脂組成物は、熱硬化性であることが好ましい。熱硬化性の硬化促進剤は、光硬化性の硬化促進剤と比較して、硬化時に分解しにくい。また、熱硬化性の硬化促進剤の分解物は、光学素子を劣化させ難く、組成物の硬化物の透明性も損ない難い。本発明で硬化促進剤として機能しうる金属錯体(B)は、これらの特徴を有するだけでなく、室温では安定であることから、保存時に硬化反応を進行させることなく、反応させたい温度において硬化反応を進行させやすい。従って、本発明のシート状エポキシ樹脂組成物は、高分子量のエポキシ樹脂(A)を含んでいるにも係らず、当該エポキシ樹脂の保存時の硬化反応を抑制して良好な保存安定性を示し、かつ使用時には十分な硬化性を示す。 The sheet-like epoxy resin composition of the present invention is preferably thermosetting. Thermosetting curing accelerators are less likely to decompose during curing compared to photocurable curing accelerators. In addition, the decomposition product of the thermosetting curing accelerator hardly degrades the optical element, and the transparency of the cured product of the composition is hardly impaired. The metal complex (B) that can function as a curing accelerator in the present invention not only has these characteristics, but also is stable at room temperature, so that it cures at the temperature at which it is desired to react without proceeding the curing reaction during storage. It is easy to proceed the reaction. Therefore, although the sheet-like epoxy resin composition of the present invention contains a high molecular weight epoxy resin (A), it suppresses the curing reaction during storage of the epoxy resin and exhibits good storage stability. And exhibits sufficient curability when used.
 本発明のシート状エポキシ樹脂組成物は、封止用シート(面封止用シート)、透明コート用シート、透明フィル用シートなどの用途;好ましくは封止用シート(面封止用シート)として用いられうる。以下、本発明のシート状エポキシ樹脂組成物が封止用シート(面封止用シート)として用いられる例で説明する。なお、透明フィル剤とは、例えば、タッチパネルなどの基板と液晶パネルなどの画像表示装置の間を埋める透明性が要求される材料のことをいう。 The sheet-like epoxy resin composition of the present invention is used as a sealing sheet (surface sealing sheet), a transparent coating sheet, a transparent fill sheet, or the like; preferably as a sealing sheet (surface sealing sheet). Can be used. Hereinafter, an example in which the sheet-like epoxy resin composition of the present invention is used as a sealing sheet (surface sealing sheet) will be described. The transparent fill agent refers to a material that requires transparency to fill a space between a substrate such as a touch panel and an image display device such as a liquid crystal panel.
 <高分子量のエポキシ樹脂(A)>
 本発明のシート状エポキシ樹脂組成物に含まれる高分子量のエポキシ樹脂(A)は、1分子内に2個以上のエポキシ基を有するエポキシ樹脂であり、分子量分布を有していてもよいし、有していなくてもよい。本発明における高分子量のエポキシ樹脂(A)とは、重量平均分子量が2×10~1×10であるエポキシ樹脂であり、好ましくは重量平均分子量が3×10~8×10、より好ましくは4×10~6×10であるエポキシ樹脂である。
<High molecular weight epoxy resin (A)>
The high molecular weight epoxy resin (A) contained in the sheet-like epoxy resin composition of the present invention is an epoxy resin having two or more epoxy groups in one molecule, and may have a molecular weight distribution, It may not have. The high molecular weight epoxy resin (A) in the present invention is an epoxy resin having a weight average molecular weight of 2 × 10 3 to 1 × 10 5 , preferably a weight average molecular weight of 3 × 10 3 to 8 × 10 4 , More preferably, the epoxy resin is 4 × 10 3 to 6 × 10 4 .
 上記重量平均分子量は、ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフィー(GPC)により、下記条件で測定されうる。
 装置:SHODEX製、GPC-101
 展開溶媒:テトラヒドロフラン
 標準ポリスチレン:VARIAN製PS-1(分子量580~7,500,000)、VARIAN製PS-2(分子量580~377,400)
The weight average molecular weight can be measured under the following conditions by gel permeation chromatography (GPC) using polystyrene as a standard substance.
Equipment: GPC-101, manufactured by SHODEX
Developing solvent: Tetrahydrofuran Standard polystyrene: PS-1 made by VARIAN (molecular weight 580-7,500,000), PS-2 made by VARIAN (molecular weight 580-377,400)
 高分子量のエポキシ樹脂(A)のエポキシ当量は、シート状エポキシ樹脂組成物の硬化物の架橋密度を一定以上とする観点などから、500~1×10g/eqであることが好ましく、600~9000g/eqであることがより好ましい。 The epoxy equivalent of the high molecular weight epoxy resin (A) is preferably 500 to 1 × 10 4 g / eq from the viewpoint of setting the cross-linking density of the cured product of the sheet-like epoxy resin composition to a certain level or more. More preferably, it is ˜9000 g / eq.
 高分子量のエポキシ樹脂(A)は、シート状エポキシ樹脂組成物の硬化物の透湿度を低下させる観点から、主鎖にビスフェノール骨格を含む樹脂であることが好ましい。高分子量のエポキシ樹脂(A)は、特にビスフェノールとエピクロロヒドリンとをモノマー成分とする樹脂であることが好ましく、ビスフェノールとエピクロロヒドリンとをモノマー成分とするオリゴマーであることがさらに好ましい。 The high molecular weight epoxy resin (A) is preferably a resin containing a bisphenol skeleton in the main chain from the viewpoint of reducing the moisture permeability of the cured product of the sheet-like epoxy resin composition. The high molecular weight epoxy resin (A) is particularly preferably a resin having bisphenol and epichlorohydrin as monomer components, and more preferably an oligomer having bisphenol and epichlorohydrin as monomer components.
 高分子量のエポキシ樹脂(A)を構成するモノマー成分の全てが、ビスフェノール及びエピクロロヒドリンであってもよいが;エポキシ樹脂を構成するモノマー成分の一部が、ビスフェノールまたはエピクロロヒドリン以外の成分(コモノマー成分)であってもよい。コモノマー成分の例には、2価以上の多価アルコール(例えば、2価のフェノールやグリコールなど)が含まれる。モノマー成分の一部が、ビスフェノールまたはエピクロロヒドリン以外の成分(コモノマー成分)であると、分子量が所望の範囲となりやすい。 Although all of the monomer components constituting the high molecular weight epoxy resin (A) may be bisphenol and epichlorohydrin; some of the monomer components constituting the epoxy resin may be other than bisphenol or epichlorohydrin. It may be a component (comonomer component). Examples of the comonomer component include dihydric or higher polyhydric alcohols (for example, divalent phenol and glycol). When a part of the monomer component is a component (comonomer component) other than bisphenol or epichlorohydrin, the molecular weight tends to be in a desired range.
 高分子量のエポキシ樹脂(A)の好ましい例には、下記一般式(11)で表される繰り返し構造単位を有する樹脂が含まれる。
Figure JPOXMLDOC01-appb-C000009
Preferable examples of the high molecular weight epoxy resin (A) include a resin having a repeating structural unit represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000009
 上記一般式(11)において、Xは、単結合、メチレン基、イソプロピリデン基、-S-または-SO-を表す。一般式(11)のXがメチレン基である構造単位は、ビスフェノールF型の構造単位であり;Xがイソプロピリデン基である構造単位は、ビスフェノールA型の構造単位である。 In the general formula (11), X represents a single bond, a methylene group, an isopropylidene group, —S— or —SO 2 —. The structural unit in which X in the general formula (11) is a methylene group is a bisphenol F type structural unit; the structural unit in which X is an isopropylidene group is a bisphenol A type structural unit.
 上記一般式(11)において、Rは、それぞれ独立して炭素数1~5のアルキル基であり、メチル基であることが好ましい。Pは、置換基Rの置換数であり、0~4の整数である。耐熱性や低透湿性の観点から、Pは0であることが好ましい。 In the general formula (11), each R 1 is independently an alkyl group having 1 to 5 carbon atoms, preferably a methyl group. P is the number of substituents R 1 and is an integer of 0 to 4. From the viewpoint of heat resistance and low moisture permeability, P is preferably 0.
 上記一般式(11)において、nは、一般式(11)で表される構造単位の繰り返し数であり、2以上の整数である。 In the general formula (11), n is the number of repeating structural units represented by the general formula (11), and is an integer of 2 or more.
 高分子量のエポキシ樹脂(A)であるオリゴマーは、上記一般式(11)におけるXがメチレン基である「ビスフェノールF型の繰り返し構造単位」と上記一般式(11)におけるXがイソプロピリデン基である「ビスフェノールA型の繰り返し構造単位」の両方を含んでいてもよい。オリゴマーが、ビスフェノールA型の繰り返し構造単位を含んでいると、シート状エポキシ樹脂組成物の粘度が高まりやすい。一方、オリゴマーがビスフェノールF型の繰り返し構造単位を含んでいると、オリゴマーの立体障害が小さくなりやすい。そのため、複数のフェニレン基が配向し易くなり、シート状エポキシ樹脂組成物の硬化物の透湿度が低くなりやすい。 The oligomer which is a high molecular weight epoxy resin (A) includes a “bisphenol F-type repeating structural unit” in which X in the general formula (11) is a methylene group and X in the general formula (11) is an isopropylidene group. Both “bisphenol A-type repeating structural units” may be included. When the oligomer contains a bisphenol A-type repeating structural unit, the viscosity of the sheet-like epoxy resin composition tends to increase. On the other hand, when the oligomer contains a bisphenol F-type repeating structural unit, the steric hindrance of the oligomer tends to be small. Therefore, a plurality of phenylene groups are easily oriented, and the moisture permeability of the cured product of the sheet-like epoxy resin composition tends to be low.
 上記オリゴマーの1分子中に含まれる「ビスフェノールA型の繰り返し構造単位」の個数(A)と「ビスフェノールF型の繰り返し構造単位」の個数(F)の総数に対する、1分子中に含まれる「ビスフェールF型の繰り返し構造単位」の個数(F)の割合;{(F/(A+F))×100}は、50%以上であることが好ましく、より好ましくは55%以上である。「ビスフェノールF型の繰り返し構造単位」が多く含まれると、シート状エポキシ樹脂組成物の硬化物の透湿度が十分に低くなる。 The number of “bisphenol A-type repeating structural units” (A) and the number of “bisphenol F-type repeating structural units” (F) contained in one molecule of the oligomer is “bis” contained in one molecule. The ratio of the number (F) of “Fail F-type repeating structural units”; {(F / (A + F)) × 100} is preferably 50% or more, and more preferably 55% or more. If many “bisphenol F-type repeating structural units” are contained, the moisture permeability of the cured product of the sheet-like epoxy resin composition will be sufficiently low.
 高分子量のエポキシ樹脂(A)の含有量は、後述の金属錯体(B)、低分子量のエポキシ樹脂(C)、およびシランカップリング剤(D)の合計100質量部に対して100~2000質量部であることが好ましく、210~2000質量部であることがより好ましく、250~1200質量部であることがさらに好ましい。高分子量のエポキシ樹脂(A)の含有比率が一定以下であれば、光半導体などの被封止部材に圧着する際の、シート状エポキシ樹脂組成物の流動性が損なわれにくく、封止しやすい。また、高分子量のエポキシ樹脂(A)の含有比率が一定以上であれば、シート状エポキシ樹脂組成物の形状保持性や、硬化物の耐湿性も良好となりやすい。 The content of the high molecular weight epoxy resin (A) is 100 to 2000 mass with respect to a total of 100 mass parts of the metal complex (B), low molecular weight epoxy resin (C), and silane coupling agent (D) described later. Part is preferable, 210 to 2000 parts by mass is more preferable, and 250 to 1200 parts by mass is even more preferable. If the content ratio of the high molecular weight epoxy resin (A) is below a certain level, the fluidity of the sheet-like epoxy resin composition is hardly impaired when it is pressure-bonded to a sealed member such as an optical semiconductor, and it is easy to seal. . In addition, when the content ratio of the high molecular weight epoxy resin (A) is a certain level or more, the shape retention of the sheet-like epoxy resin composition and the moisture resistance of the cured product are likely to be good.
 後述の低分子量のエポキシ樹脂(C)を含むシート状エポキシ樹脂組成物における、高分子量のエポキシ樹脂(A)の含有量は、低分子量のエポキシ樹脂(C)100質量部に対して、100~1500質量部であることが好ましく、120~1200質量部であることがより好ましく、150~1000質量部であることがさらに好ましい。高分子量のエポキシ樹脂(A)の上記含有比率が1500質量部以下であると、シート状エポキシ樹脂組成物を被封止材に熱圧着する際の組成物の流動性が高まりやすい。一方、高分子量のエポキシ樹脂(A)の上記含有比率が100質量部以上であると、シート状エポキシ樹脂組成物の形状安定性が高まりやすい。さらに、硬化物の透湿度も低くなる傾向がある。 The content of the high molecular weight epoxy resin (A) in the sheet-like epoxy resin composition containing the low molecular weight epoxy resin (C) described later is 100 to 100 parts by mass with respect to 100 parts by mass of the low molecular weight epoxy resin (C). The amount is preferably 1500 parts by mass, more preferably 120 to 1200 parts by mass, and even more preferably 150 to 1000 parts by mass. When the content ratio of the high molecular weight epoxy resin (A) is 1500 parts by mass or less, the fluidity of the composition at the time of thermocompression bonding the sheet-like epoxy resin composition to the material to be sealed is likely to increase. On the other hand, when the content ratio of the high molecular weight epoxy resin (A) is 100 parts by mass or more, the shape stability of the sheet-like epoxy resin composition is likely to increase. Furthermore, the moisture permeability of the cured product tends to be low.
 高分子量のエポキシ樹脂(A)の含有量は、シート状エポキシ樹脂組成物全体に対して55~95質量%であることが好ましく、55~92質量%であることがより好ましい。 The content of the high molecular weight epoxy resin (A) is preferably 55 to 95% by mass, more preferably 55 to 92% by mass with respect to the entire sheet-like epoxy resin composition.
 高分子量のエポキシ樹脂(A)は、一種類であってもよいし、2種類以上を組み合わせてもよい。例えば、重量平均分子量が1×10以下の高分子量のエポキシ樹脂(A-1)と重量平均分子量が1×10超の高分子量のエポキシ樹脂(A-2)とを組み合わせてもよい。エポキシ樹脂(A-1)とエポキシ樹脂(A-2)の質量比は、(A-1)/(A-2)=10/90~90/10、好ましくは10/90~40/60としうる。 The high molecular weight epoxy resin (A) may be one type or a combination of two or more types. For example, a high molecular weight epoxy resin (A-1) having a weight average molecular weight of 1 × 10 4 or less may be combined with a high molecular weight epoxy resin (A-2) having a weight average molecular weight exceeding 1 × 10 4 . The mass ratio of the epoxy resin (A-1) to the epoxy resin (A-2) is (A-1) / (A-2) = 10/90 to 90/10, preferably 10/90 to 40/60. sell.
 <金属錯体(B)>
 本発明のシート状エポキシ樹脂組成物に含まれる金属錯体(B)は、エポキシ樹脂の硬化促進剤として機能しうる。
<Metal complex (B)>
The metal complex (B) contained in the sheet-like epoxy resin composition of the present invention can function as an epoxy resin curing accelerator.
 金属錯体(B)における金属イオンは、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる金属イオンであればよい。シート状エポキシ樹脂組成物の硬化物の透明性を向上させるという観点からは、Znが好ましい。また、金属錯体(B)が2以上の金属イオンを含む場合、そのうち少なくとも1つの金属イオンが、Zn、Bi、Ca、Al、Cd、La、Zrから選ばれる金属イオンであればよい。 The metal ion in the metal complex (B) may be a metal ion selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr. From the viewpoint of improving the transparency of the cured product of the sheet-like epoxy resin composition, Zn is preferable. Moreover, when a metal complex (B) contains two or more metal ions, at least one metal ion should just be a metal ion chosen from Zn, Bi, Ca, Al, Cd, La, Zr.
 金属錯体(B)における3級アミンは、保存条件下での3級アミンの反応性を低下させるためには、金属イオンと錯体を形成でき、かつN-H結合を有しないことが好ましい。また、金属錯体(B)における3級アミンの分子量は、65~300であることが好ましい。3級アミンの分子量が大きすぎると、金属錯体(B)のシート状エポキシ樹脂組成物への溶解性が低下したり、触媒活性が低下したりすることがあるからである。 The tertiary amine in the metal complex (B) is preferably capable of forming a complex with a metal ion and not having an N—H bond in order to reduce the reactivity of the tertiary amine under storage conditions. In addition, the molecular weight of the tertiary amine in the metal complex (B) is preferably 65 to 300. This is because if the molecular weight of the tertiary amine is too large, the solubility of the metal complex (B) in the sheet-like epoxy resin composition may decrease, or the catalytic activity may decrease.
 金属錯体(B)における3級アミンは、下記一般式(1)~(6)のいずれかで表される化合物であることが好ましい。これらの化合物は、環を構成する窒素原子上に共役系の電子雲が集まり、金属イオンと安定に錯体を形成しやすいと考えられる。また、これらの化合物を含むシート状エポキシ樹脂組成物の硬化物層は、プラズマ処理されても透明性の低下やヘイズ上昇が少なく、良好なプラズマ耐性や耐候性を有する傾向がある。 The tertiary amine in the metal complex (B) is preferably a compound represented by any one of the following general formulas (1) to (6). In these compounds, it is considered that a conjugated electron cloud gathers on the nitrogen atoms constituting the ring, and a complex is easily formed with a metal ion. Moreover, the cured product layer of the sheet-like epoxy resin composition containing these compounds has a tendency to have good plasma resistance and weather resistance with little decrease in transparency and increase in haze even when plasma-treated.
 金属錯体(B)は、反応性が高く樹脂組成物の硬化物の着色の原因になることがある3級アミンを錯体にすることにより安定化しているため、シート状エポキシ樹脂組成物やその硬化物を着色しにくい。このため、本発明のシート状エポキシ樹脂組成物は、例えばトップエミッション型の有機EL素子の面封止材のように、硬化物に透明性が求められる用途にも好適に用いることができる。
Figure JPOXMLDOC01-appb-C000010
Since the metal complex (B) is stabilized by making a tertiary amine complex, which is highly reactive and may cause coloring of the cured product of the resin composition, the sheet-like epoxy resin composition and its curing Difficult to color things. For this reason, the sheet-like epoxy resin composition of this invention can be used suitably also for the use as which transparency is calculated | required, for example like the surface sealing material of a top emission type organic EL element.
Figure JPOXMLDOC01-appb-C000010
 一般式(1)において、R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基である。炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。 In the general formula (1), R 2 , R 3 , and R 4 are each independently a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
 Rは、水素原子以外の置換基(脂肪族炭化水素基、アリール基、水酸基またはシアノエチル基)である。Rが他の置換基である場合と比較して、Rが水素原子であると、シート状エポキシ樹脂組成物の硬化物からなる封止層が、プラズマなどに曝されることで透明性が低下することがあるからである。 R 1 is a substituent other than a hydrogen atom (an aliphatic hydrocarbon group, an aryl group, a hydroxyl group, or a cyanoethyl group). Compared with the case where R 1 is another substituent, when R 1 is a hydrogen atom, the sealing layer made of a cured product of the sheet-like epoxy resin composition is transparent by being exposed to plasma or the like. This is because there is a case where the value is lowered.
 一般式(1)で表されるアミン化合物の具体例には、以下の1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾールなどが含まれる。
Figure JPOXMLDOC01-appb-C000011
Specific examples of the amine compound represented by the general formula (1) include the following 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 1 -Butylimidazole, 1-benzyl-2-phenylimidazole, 2-phenyl-4-methylimidazole and the like are included.
Figure JPOXMLDOC01-appb-C000011
 一般式(2)において、RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RB1、RB2、RB3、RB4、RB5から適宜選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。 In the general formula (2), RB1, RB3, RB4, and RB5 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Indicates. RB2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms. A plurality of groups appropriately selected from RB1, RB2, RB3, RB4, and RB5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。一般式(2)で表されるアミン化合物の具体例には、以下の1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エンが含まれる。
Figure JPOXMLDOC01-appb-C000012
The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11. Specific examples of the amine compound represented by the general formula (2) include the following 1,8-diazobicyclo [5,4,0] undec-7-ene.
Figure JPOXMLDOC01-appb-C000012
 一般式(3)において、RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RC1、RC2、RC3、RC4、RC5から適宜選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。 In the general formula (3), RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Indicates. RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms. A plurality of groups appropriately selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。 The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
 一般式(3)で表されるアミン化合物の具体例には、以下の1,5-ジアゾビシクロ[4,3,0]ノン-5-エンが含まれる。
Figure JPOXMLDOC01-appb-C000013
Specific examples of the amine compound represented by the general formula (3) include the following 1,5-diazobicyclo [4,3,0] non-5-ene.
Figure JPOXMLDOC01-appb-C000013
 一般式(4)において、RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。 In the general formula (4), RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or A cyanoethyl group is shown. A plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。 The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
 一般式(4)で表されるアミン化合物の具体例には、以下の下記式(4-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000014
 式(4-1)において、Rは、水素基、-CH、-OCHを示す。
Specific examples of the amine compound represented by the general formula (4) include a compound represented by the following formula (4-1).
Figure JPOXMLDOC01-appb-C000014
In the formula (4-1), R represents a hydrogen group, —CH 3 , —OCH 3 .
 一般式(5)において、RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。 In the general formula (5), RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, An aryl-containing group or a cyanoethyl group is shown. A plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed.
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。一般式(5)で表されるアミン化合物の具体例には、以下の下記式(5-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000015
 式(5-1)において、Rは、それぞれ独立に水素基、-CH、-OCHを示す。
The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11. Specific examples of the amine compound represented by the general formula (5) include a compound represented by the following formula (5-1).
Figure JPOXMLDOC01-appb-C000015
In formula (5-1), R each independently represents a hydrogen group, —CH 3 , —OCH 3 .
 一般式(6)において、RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。 In the general formula (6), RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Indicates. A plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. .
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。 The aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms. Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group. The number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
一般式(6)で表されるアミン化合物の具体例には、以下の下記式(6-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000016
Specific examples of the amine compound represented by the general formula (6) include a compound represented by the following formula (6-1).
Figure JPOXMLDOC01-appb-C000016
 これらの3級アミンのうち、例えば一般式(4)で表される化合物のpKaは5付近であるのに対し、一般式(1)で表される化合物のpKaは7付近であり、一般式(2)で表される化合物の一つであるジアザビシクロウンデセンのpKaは12付近である。つまり、一般式(1)や(2)で表される化合物は、一般式(4)で表される化合物よりも高い塩基性を示す傾向がある。つまり、金属錯体(B)における3級アミンは、塩基性度が高く、エポキシ樹脂に対する硬化活性が良好であることから、一般式(1)~(3)のいずれかで表される化合物であることが好ましい。 Among these tertiary amines, for example, the pKa of the compound represented by the general formula (4) is around 5, whereas the pKa of the compound represented by the general formula (1) is around 7, The pKa of diazabicycloundecene, which is one of the compounds represented by (2), is around 12. That is, the compounds represented by the general formulas (1) and (2) tend to exhibit higher basicity than the compounds represented by the general formula (4). That is, the tertiary amine in the metal complex (B) is a compound represented by any one of the general formulas (1) to (3) because of its high basicity and good curing activity with respect to the epoxy resin. It is preferable.
 金属イオンと錯体を形成する3級アミンは、1種類であってもよいし、2種類以上であってもよい。即ち、金属錯体(B)は、複数の金属イオンを中心金属とする複核錯体であってもよい。 The tertiary amine that forms a complex with the metal ion may be one type or two or more types. That is, the metal complex (B) may be a binuclear complex having a plurality of metal ions as a central metal.
 金属錯体(B)における、金属イオンに対する3級アミンのモル比は、0.5~6.0であることが好ましく、さらに好ましくは0.6~2.0である。モル比が0.5以上であると、金属錯体(B)に配位する3級アミンが多く、シート状エポキシ樹脂組成物の硬化性が良好になりやすい。一方、モル比が6.0以下だと、金属錯体(B)に配位する3級アミンが少ないため、シート状エポキシ樹脂組成物の保存安定性が良好となる。モル比が前記範囲内であると、硬化性と保存安定性のバランスが良好となる。 In the metal complex (B), the molar ratio of the tertiary amine to the metal ion is preferably 0.5 to 6.0, and more preferably 0.6 to 2.0. When the molar ratio is 0.5 or more, there are many tertiary amines coordinated to the metal complex (B), and the curability of the sheet-like epoxy resin composition tends to be good. On the other hand, when the molar ratio is 6.0 or less, since there are few tertiary amines coordinated to the metal complex (B), the storage stability of the sheet-like epoxy resin composition becomes good. When the molar ratio is within the above range, the balance between curability and storage stability is improved.
 金属錯体(B)におけるアニオン性配位子は、O、S、P、ハロゲンからなる群から選ばれる原子を有する酸性基を有し、金属イオンに配位結合またはイオン結合する化合物である。 The anionic ligand in the metal complex (B) is a compound that has an acidic group having an atom selected from the group consisting of O, S, P, and halogen and coordinates or ionically bonds to a metal ion.
 アニオン性配位子の価数は、金属イオンの価数よりも小さいことが好ましい。金属イオンよりも小さい価数のアニオン性配位子は、1つの金属イオンに、2以上結合することができ、金属錯体(B)を安定化させることができるからである。 The valence of the anionic ligand is preferably smaller than the valence of the metal ion. This is because two or more anionic ligands having a valence smaller than that of the metal ion can be bonded to one metal ion and the metal complex (B) can be stabilized.
 アニオン性配位子の分子量は、17~200であることが好ましい。アニオン性配位子の分子量が17以上であると、後述するように、金属イオンと3級アミンとの配位結合距離が小さくなりやすいため、金属錯体(B)の硬化促進性が損なわれにくいと考えられる。一方、アニオン性配位子の分子量が200以下であると、アニオン性配位子が大きすぎないため、その立体障害により3級アミンが金属イオンに配位するのを著しく妨げることもないと考えられる。その結果、金属錯体(B)の保存条件下での安定性が損なわれにくいと考えられる。 The molecular weight of the anionic ligand is preferably 17 to 200. When the molecular weight of the anionic ligand is 17 or more, as will be described later, the coordination bond distance between the metal ion and the tertiary amine tends to be small, so that the curing acceleration of the metal complex (B) is not easily impaired. it is conceivable that. On the other hand, when the molecular weight of the anionic ligand is 200 or less, since the anionic ligand is not too large, the steric hindrance does not significantly interfere with the coordination of the tertiary amine to the metal ion. It is done. As a result, it is considered that the stability of the metal complex (B) under storage conditions is not easily impaired.
 アニオン性配位子の半径は、2.0Å以上であることが好ましく、2.4Å以上であることがより好ましい。金属錯体(B)の硬化促進性を良好にするためである。例えば、2つのアニオン性配位子が金属イオンに配位している場合、当該金属イオンに3級アミンがさらに配位すると、一方のアニオン性配位子と金属イオンとの結合と、他方のアニオン性配位子-金属イオンとの結合とのなす角度が狭められて安定化すると考えられる。アニオン性配位子の半径が2.0Å以上であると、これらの結合同士のなす角度が狭まりにくいため、金属イオンと3級アミンとの配位結合距離が小さくなりやすいと考えられる。その結果、金属錯体(B)の硬化促進性が損なわれにくいと考えられる。金属錯体(B)の硬化促進性が損なわれにくいと、特に硬化物の表面の硬化度が高くなりやすい。硬化物の表面の硬化度が高いと、硬化物の表面にパッシベーション層などを形成した際に、硬化物の表面の平滑性が損なわれにくい。そのため、硬化物の外部ヘイズが上昇しにくく、透明性が損なわれにくいと考えられる。 The radius of the anionic ligand is preferably 2.0 mm or more, and more preferably 2.4 mm or more. This is to improve the curing acceleration of the metal complex (B). For example, when two anionic ligands are coordinated to a metal ion, when a tertiary amine is further coordinated to the metal ion, the bond between one anionic ligand and the metal ion and the other It is thought that the angle formed by the bond between the anionic ligand and the metal ion is narrowed and stabilized. If the radius of the anionic ligand is 2.0 mm or more, the angle formed by these bonds is difficult to narrow, so the coordination bond distance between the metal ion and the tertiary amine is likely to be small. As a result, it is considered that the curing acceleration of the metal complex (B) is hardly impaired. If the curing acceleration of the metal complex (B) is difficult to be impaired, the degree of curing of the surface of the cured product is likely to increase. When the degree of cure of the surface of the cured product is high, the smoothness of the surface of the cured product is unlikely to be impaired when a passivation layer or the like is formed on the surface of the cured product. Therefore, it is considered that the external haze of the cured product is unlikely to increase and the transparency is not easily impaired.
 一方、アニオン性配位子の半径の上限は200Å程度としうる。アニオン性配位子の半径が200Å以下であると、アニオン性配位子の大きさが、その立体障害により3級アミンが金属イオンに配位するのを顕著に妨げることもないと考えられる。その結果、金属錯体(B)の保存条件下での安定性が損なわれにくいと考えられる。 On the other hand, the upper limit of the radius of the anionic ligand can be about 200 mm. When the radius of the anionic ligand is 200 mm or less, it is considered that the size of the anionic ligand does not significantly prevent the tertiary amine from coordinating to the metal ion due to its steric hindrance. As a result, it is considered that the stability of the metal complex (B) under storage conditions is not easily impaired.
 アニオン性配位子の半径は、アニオン性配位子のconnolly volumeを求めた後;connolly volumeを真球の体積と仮定したときの半径として算出することができる。アニオン性配位子のconnolly volumeは、アニオン性配位子の構造を最適化した後、例えばMaterial Studio 6.0 Dmol3を用いて構造を最適化した後に計算することができる。アニオン性配位子の構造の最適化は、MM2(分子力学計算法)や、PBE/DNP 4.4で行うことができる。このように、アニオン性配位子の構造を最適化した後、connelly radiusを1.0Åとして、connelly volumeを求める。 The radius of the anionic ligand can be calculated after determining the connolly volume of the anionic ligand; the radius when the connolly volume is assumed to be a true sphere volume. The connolly volume of the anionic ligand can be calculated after optimizing the structure of the anionic ligand and then optimizing the structure using, for example, Material Studio 6.0 Dmol3. The structure of anionic ligands can be optimized using MM2 (molecular mechanics calculation method) or PBE / DNPD4.4. Thus, after optimizing the structure of the anionic ligand, the connelly radius is determined by setting the connelly radius to 1.0%.
 例えば、酢酸イオンの半径を計算する場合について説明する。酢酸イオンのconnelly volumeを、前述の方法で求めると、54.8Åとなる。この体積を、真球の体積として仮定して前記真球の半径を求めると、約2.36Åとなり、これを酢酸イオン(配位子)の半径とすることができる。 For example, the case of calculating the radius of acetate ions will be described. When the connelly volume of acetate ions is obtained by the method described above, it is 54.8 kg. Assuming this volume as the volume of a true sphere, the radius of the true sphere is determined to be about 2.36 cm, which can be used as the radius of acetate ions (ligands).
 一方、塩化物イオンや硫酸イオンなどの半径は、化学便覧 基礎編 改訂2版(日本化学学会編)に記載のイオン半径(ShannonおよびPrewittによる計算値)とすることができる。 On the other hand, the radii of chloride ions, sulfate ions, etc. can be the ionic radii (calculated values by Shannon and Prewitt) described in the Chemistry Handbook, Basic Edition, 2nd edition (Edited by the Chemical Society of Japan).
 アニオン性配位子の価数は金属イオンの価数よりも小さく、かつアニオン性配位子の半径は2.0Å以上(好ましくは2.4Å以上)であることがより好ましい。 More preferably, the valence of the anionic ligand is smaller than that of the metal ion, and the radius of the anionic ligand is 2.0 mm or more (preferably 2.4 mm or more).
 アニオン性配位子は、カルボキシレート化合物、1,3-ジカルボニル化合物、ジチオカルボン酸やそのカルボキシレートアニオン、チオカルボン酸やそのカルボキシレートアニオン、チオノカルボン酸やそのカルボキシレートアニオン、1,3-ジチオカルボニル化合物、硝酸化物イオン、ハロゲンイオンなどでありうる。 Anionic ligands include carboxylate compounds, 1,3-dicarbonyl compounds, dithiocarboxylic acids and their carboxylate anions, thiocarboxylic acids and their carboxylate anions, thionocarboxylic acids and their carboxylate anions, 1,3-dithiocarbonyl It can be a compound, a nitrate ion, a halogen ion or the like.
 カルボキシレート化合物は、下記一般式(7A)で表される化合物であるか、または下記一般式(7B)で表されるカルボキシレート化合物のアニオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
The carboxylate compound is preferably a compound represented by the following general formula (7A) or an anion of a carboxylate compound represented by the following general formula (7B).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 一般式(7A)において、RD1は、水素基を示し;RD2は、水素基、炭素数1~10の炭化水素基または水酸基を示す。一般式(7B)において、RD2は、水素基、炭素数1~10の炭化水素基または水酸基を示す。炭素数1~10の炭化水素基は、炭素数1~10のアルキル基または炭素数6~10のアリール含有基であってよく、炭素数1~7の直鎖状ないし分岐アルキル基であることが好ましい。一般式(7A)で表される化合物は、-ORD1で表される水酸基が金属イオンに配位し;一般式(7B)で表されるカルボキシレート化合物のアニオンは、Oが金属イオンに配位している場合が多い。 In the general formula (7A), RD1 represents a hydrogen group; RD2 represents a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group. In the general formula (7B), RD2 represents a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group. The hydrocarbon group having 1 to 10 carbon atoms may be an alkyl group having 1 to 10 carbon atoms or an aryl-containing group having 6 to 10 carbon atoms, and may be a linear or branched alkyl group having 1 to 7 carbon atoms. Is preferred. Compound represented by the general formula (7A) is coordinated to the hydroxyl group is a metal ion represented by -ORD1; anion of a carboxylate compound represented by the general formula (7B), the O - is coordination to a metal ion In many cases.
 一般式(7A)で表されるカルボキシレート化合物および一般式(7B)で表されるカルボキシレート化合物のアニオンの例には、炭素数1~10のアルキルカルボン酸やそのカルボキシレートアニオン、炭素数7~10のアリールカルボン酸やそのカルボキシレートアニオンなどが含まれる。 Examples of the anion of the carboxylate compound represented by the general formula (7A) and the carboxylate compound represented by the general formula (7B) include an alkylcarboxylic acid having 1 to 10 carbon atoms, a carboxylate anion thereof, a carbon number of 7 To 10 aryl carboxylic acids and their carboxylate anions.
 炭素数1~10のアルキルカルボン酸の例には、ギ酸(下記式(7A-1)参照)、酢酸(下記式(7A-2)参照)、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、2-エチルヘキサン酸(下記式(7A-3)参照)、3-メチルブタン酸、2,2-ジメチルプロパン酸などが含まれ、特にギ酸、酢酸、2-エチルヘキサン酸が好ましい。
Figure JPOXMLDOC01-appb-C000019
Examples of alkyl carboxylic acids having 1 to 10 carbon atoms include formic acid (see the following formula (7A-1)), acetic acid (see the following formula (7A-2)), butanoic acid, 2-ethylbutanoic acid, 2,2- Examples include dimethylbutanoic acid, 2-ethylhexanoic acid (see the following formula (7A-3)), 3-methylbutanoic acid, 2,2-dimethylpropanoic acid and the like, and formic acid, acetic acid, and 2-ethylhexanoic acid are particularly preferable.
Figure JPOXMLDOC01-appb-C000019
 炭素数7~10のアリールカルボン酸の例には、安息香酸、ナフテン酸などが含まれる。 Examples of aryl carboxylic acids having 7 to 10 carbon atoms include benzoic acid and naphthenic acid.
 1,3-ジカルボニル化合物は、一般式(8)で表される化合物であることが好ましい。
 R-(C=O)-CH=C(O)-R …(8)
The 1,3-dicarbonyl compound is preferably a compound represented by the general formula (8).
R 5 — (C═O) —CH═C (O) —R 6 (8)
 一般式(8)において、RおよびRは、それぞれ独立に炭素数1~10のアルキル基または炭素数6~10のアリール基である。炭素数1~10のアルキル基は、メチル基、エチル基などでありうる。炭素数6~10のアリール基は、フェニル基、ナフチル基などでありうる。1,3-ジカルボニル化合物の例には、アセチルアセトナートなどが含まれる。 In the general formula (8), R 5 and R 6 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like. The aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like. Examples of 1,3-dicarbonyl compounds include acetylacetonate and the like.
 ジチオカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルジチオカルボン酸やそのジチオカルボキシレートアニオン、炭素数7~15のアリールジチオカルボン酸やそのジチオカルボキシレートアニオンなどが含まれる。 Examples of the dithiocarboxylic acid and its carboxylate anion include an alkyl dithiocarboxylic acid having 1 to 10 carbon atoms and its dithiocarboxylate anion, an aryl dithiocarboxylic acid having 7 to 15 carbon atoms and its dithiocarboxylate anion. .
 炭素数1~10のアルキルジチオカルボン酸の例には、ジチオギ酸、ジチオ酢酸、ジチオプロパン酸、ジチオ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000020
Examples of the alkyl dithiocarboxylic acid having 1 to 10 carbon atoms include dithioformic acid, dithioacetic acid, dithiopropanoic acid, dithio-2-ethylhexanoic acid and the like.
Figure JPOXMLDOC01-appb-C000020
 チオカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルチオカルボン酸やそのアルキルチオカルボキシレートアニオン、炭素数7~15のアリールチオカルボン酸やそのアリールチオカルボキシレートアニオンなどが含まれる。 Examples of the thiocarboxylic acid and its carboxylate anion include an alkylthiocarboxylic acid having 1 to 10 carbon atoms and its alkylthiocarboxylate anion, an arylthiocarboxylic acid having 7 to 15 carbon atoms and its arylthiocarboxylate anion.
 炭素数1~10のアルキルチオカルボン酸の例には、チオ酢酸、チオ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000021
Examples of the alkylthiocarboxylic acid having 1 to 10 carbon atoms include thioacetic acid and thio-2-ethylhexanoic acid.
Figure JPOXMLDOC01-appb-C000021
 チオノカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルチオノカルボン酸やそのアルキルチオノカルボキシレートアニオン、炭素数7~15のアリールチオノカルボン酸やそのアリールチオノカルボキシレートアニオンなどが含まれる。 Examples of thionocarboxylic acid and its carboxylate anion include alkylthionocarboxylic acid having 1 to 10 carbon atoms and alkylthionocarboxylate anion thereof, arylthionocarboxylic acid having 7 to 15 carbon atoms and arylthionocarboxylate anion thereof. Is included.
 炭素数1~10のアルキルチオノカルボン酸の例には、チオノ酢酸、チオノ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000022
Examples of the alkylthionocarboxylic acid having 1 to 10 carbon atoms include thionoacetic acid and thiono-2-ethylhexanoic acid.
Figure JPOXMLDOC01-appb-C000022
 1,3-ジチオカルボニル化合物は、一般式(9)で表される化合物であることが好ましい。
 R-(C=S)-CH=C(S)-R …(9)
The 1,3-dithiocarbonyl compound is preferably a compound represented by the general formula (9).
R 7 - (C = S) -CH = C (S) -R 8 ... (9)
 一般式(9)において、RおよびRは、それぞれ独立に炭素数1~10のアルキル基または炭素数6~10のアリール基である。炭素数1~10のアルキル基は、メチル基、エチル基などでありうる。炭素数6~10のアリール基は、フェニル基、ナフチル基などでありうる。硝酸化物イオンの例には、NO が含まれる。ハロゲンイオンの例には、Brなどが含まれる。 In the general formula (9), R 7 and R 8 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like. The aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like. Examples of nitrates ions, NO 3 - are included. Examples of halogen ions include Br 2- and the like.
 アニオン性配位子に含まれる、O、S、P、ハロゲンから選ばれる原子(金属イオンに結合しうる原子)の数は、1つであっても、2以上であってもよい。金属イオンに結合しうる原子を2以上含むアニオン性配位子は、金属イオンと1つの原子を介して結合してもよいし;2以上の原子のそれぞれを介して結合してもよい。金属イオンと環を形成して金属錯体(B)を電子的に安定化させやすく、かつ金属錯体(B)の硬化促進性を良好に維持するためには、アニオン性配位子に含まれる金属イオンと結合しうる原子の数は2以上であることが好ましい。 The number of atoms (atoms capable of binding to metal ions) selected from O, S, P and halogen contained in the anionic ligand may be one or two or more. An anionic ligand containing two or more atoms that can be bonded to a metal ion may be bonded to the metal ion through one atom; or may be bonded through each of two or more atoms. In order to easily stabilize the metal complex (B) by forming a ring with the metal ion and to maintain good curing acceleration of the metal complex (B), the metal contained in the anionic ligand The number of atoms that can be bonded to ions is preferably 2 or more.
 金属イオンと結合しうる原子を2以上含むアニオン性配位子は、金属イオンと3~7員環を形成しうることが好ましい。そのようなアニオン性配位子の好ましい例には、前述の一般式(7A)で表されるカルボキシレート化合物が含まれる。一般式(7A)で表されるカルボキシレート化合物は、カルボニル基を構成する酸素原子またはカルボニル基と隣接する酸素原子のいずれかを介して金属イオンと結合しうる。 It is preferable that an anionic ligand containing two or more atoms capable of binding to a metal ion can form a 3- to 7-membered ring with the metal ion. Preferable examples of such anionic ligands include the carboxylate compound represented by the aforementioned general formula (7A). The carboxylate compound represented by the general formula (7A) can be bonded to a metal ion through either an oxygen atom constituting a carbonyl group or an oxygen atom adjacent to the carbonyl group.
 金属錯体(B)は、金属イオンに、前述の一般式(1)~(3)のいずれかの式で表される3級アミンと、前述の一般式(7A)で表されるカルボキシレート化合物とがそれぞれ配位した化合物であることが好ましい。 The metal complex (B) includes a tertiary amine represented by any one of the above general formulas (1) to (3) and a carboxylate compound represented by the above general formula (7A). And are each a coordinated compound.
 金属イオンに配位する3級アミンは、下記一般式(1)~(3)のうちいずれか1種類であってもよいし、2種類以上であってもよい。 The tertiary amine coordinated to the metal ion may be any one of the following general formulas (1) to (3), or may be two or more.
 本発明のシート状エポキシ樹脂組成物の保存安定性を保ちつつ、有機EL素子の劣化を抑制できる温度で硬化を進めるためには、金属錯体(B)は、一般式(1)~(3)で表される2つのアミン化合物と、一般式(7A)で表される2つのカルボキシレート化合物または一般式(7B)で表される2つのカルボキシレート化合物のアニオンとが金属イオンに配位した錯体であることが好ましい。具体的には、下記一般式(10)で示される金属錯体が好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(10)において、Meは-CH、Etは-C、Buは-Cを示す。
In order to proceed with curing at a temperature at which deterioration of the organic EL device can be suppressed while maintaining the storage stability of the sheet-like epoxy resin composition of the present invention, the metal complex (B) is represented by the general formulas (1) to (3). And a complex in which two carboxylate compounds represented by general formula (7A) or anions of two carboxylate compounds represented by general formula (7B) are coordinated to metal ions It is preferable that Specifically, a metal complex represented by the following general formula (10) is preferable.
Figure JPOXMLDOC01-appb-C000023
In the general formula (10), Me represents —CH 3 , Et represents —C 2 H 5 , and Bu represents —C 4 H 9 .
 本発明のシート状エポキシ樹脂組成物は、高分子量のエポキシ樹脂(A)を含む。保存時に高分子量のエポキシ樹脂(A)の硬化が進むと、シート状エポキシ樹脂組成物の柔軟性が損なわれやすいことから、金属錯体(B)は、保存時には高分子量のエポキシ樹脂(A)などのエポキシ樹脂を硬化させないこと;即ち、シート状エポキシ樹脂組成物が保存安定性を有することが求められる。一方、シート状エポキシ樹脂組成物の使用時には、金属錯体(B)は、エポキシ樹脂の硬化促進剤として機能することが求められる。一般式(1)~(3)のいずれかで表される2つのアミン化合物と、一般式(7A)で表される2つのカルボキシレート化合物または一般式(7B)で表される2つのカルボキシレート化合物のアニオンとが金属イオンに配位した錯体である金属錯体(B)は、シート状エポキシ樹脂組成物の保存安定性を高めつつ、使用時には硬化促進剤として良好に機能することができるので、好ましい。 The sheet-like epoxy resin composition of the present invention contains a high molecular weight epoxy resin (A). As the curing of the high molecular weight epoxy resin (A) proceeds during storage, the flexibility of the sheet-like epoxy resin composition is likely to be impaired, so that the metal complex (B) is a high molecular weight epoxy resin (A) during storage. That is, it is required that the sheet-like epoxy resin composition has storage stability. On the other hand, when the sheet-like epoxy resin composition is used, the metal complex (B) is required to function as an epoxy resin curing accelerator. Two amine compounds represented by any one of general formulas (1) to (3) and two carboxylate compounds represented by general formula (7A) or two carboxylates represented by general formula (7B) Since the metal complex (B), which is a complex in which the anion of the compound is coordinated to the metal ion, can improve the storage stability of the sheet-like epoxy resin composition and can function well as a curing accelerator during use, preferable.
 金属錯体(B)は、エポキシ樹脂などに溶解しやすいように、それらとの極性が近いほうが好ましい。また、金属錯体(B)における3級アミンも、エポキシ樹脂などに溶解しやすいように、それらとの極性が近いほうが好ましい。 It is preferable that the metal complex (B) has a polarity close to that of the metal complex (B) so as to be easily dissolved in an epoxy resin or the like. In addition, it is preferable that the tertiary amine in the metal complex (B) is close in polarity to the metal complex (B) so as to be easily dissolved in an epoxy resin or the like.
 3級アミンが金属イオンと錯体を形成しているかどうかは、金属錯体(B)における3級アミンのHNMRの化学シフトと、3級アミン単独のHNMRの化学シフトとの対比によって確認することができる。即ち、金属錯体(B)における3級アミンのHNMR(CDCl中、25℃、270MHz)の化学シフトが、3級アミン単独のHNMR(CDCl中、25℃、270MHz)の化学シフトに対して0.05ppm以上、好ましくは0.1ppm以上、より好ましくは0.4ppm以上移動しているピークを含むことによって、3級アミンが金属イオンと錯体を形成していることを確認できる。ピークの移動量の上限は、特に制限されないが、通常、1ppm程度であり、より一般的には0.7ppmになる場合が多い。 Whether a tertiary amine forms a complex with a metal ion should be confirmed by comparing the 1 H NMR chemical shift of the tertiary amine in the metal complex (B) with the 1 H NMR chemical shift of the tertiary amine alone. Can do. That is, the chemical shift of 1 HNMR (in CDCl 3 , 25 ° C., 270 MHz) of the tertiary amine in the metal complex (B) is changed to the chemical shift of 1 HNMR (CDCl 3 in 25 ° C., 270 MHz) of the tertiary amine alone. On the other hand, it can be confirmed that the tertiary amine forms a complex with the metal ion by including a peak moving 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more. The upper limit of the amount of peak movement is not particularly limited, but is usually about 1 ppm, and more generally 0.7 ppm in many cases.
 シート状エポキシ樹脂組成物中の3級アミンが金属イオンと錯体を形成しているかどうか(シート状エポキシ樹脂組成物が金属錯体(B)を含むかどうか)は、シート状エポキシ樹脂組成物のHNMRの化学シフトのうち3級アミンに由来する化学シフトと、3級アミン単独のHNMRの化学シフトとの対比によっても確認することができる。その場合も、前述と同様に、シート状エポキシ樹脂組成物のHNMR(CDCl中、25℃、270MHz)の化学シフトのうち3級アミンに由来する化学シフトが、3級アミン単独のHNMR(CDCl中、25℃、270MHz)の化学シフトに対して0.05ppm以上、好ましくは0.1ppm以上、より好ましくは0.4ppm以上移動しているピークを含むことが好ましい。ピークの移動量の上限も、前述と同様に、1ppm程度、好ましくは0.7ppm程度でありうる。 Whether the tertiary amine of the sheet-like epoxy resin composition forms a complex with a metal ion (whether the sheet-like epoxy resin composition comprising a metal complex (B)) is a sheet-like epoxy resin composition 1 It can also be confirmed by comparing the chemical shift derived from the tertiary amine among the chemical shifts of HNMR and the 1 HNMR chemical shift of the tertiary amine alone. Also in this case, in the same manner as described above, 1 HNMR of the sheet-like epoxy resin composition (in CDCl 3, 25 ° C., 270 MHz) chemical shift derived from the tertiary amine of the chemical shift of a tertiary amine alone 1 HNMR It is preferable to include a peak that moves 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more with respect to a chemical shift (in CDCl 3 , 25 ° C., 270 MHz). The upper limit of the peak moving amount may be about 1 ppm, preferably about 0.7 ppm, as described above.
 あるいは、シート状エポキシ樹脂組成物中の3級アミンが金属イオンと錯体を形成しているかどうか(シート状エポキシ樹脂組成物が金属錯体(B)を含むかどうか)は、シート状エポキシ樹脂組成物のHNMRの化学シフトと、金属錯体(B)単独のHNMRの化学シフトとの対比によっても確認することができる。例えば、シート状エポキシ樹脂組成物のHNMRの化学シフト中に、金属錯体(B)単独のHNMRの化学シフトと同様の化学シフトがあれば、シート状エポキシ樹脂組成物が金属錯体(B)を含んでいると判断できる。 Alternatively, whether the tertiary amine in the sheet-like epoxy resin composition forms a complex with a metal ion (whether the sheet-like epoxy resin composition contains a metal complex (B)) depends on whether the sheet-like epoxy resin composition contains a metal complex (B). 1 and HNMR chemical shift of, can be confirmed by comparison with the metal complex (B) 1 HNMR chemical shift alone. For example, if there is a chemical shift similar to the 1 HNMR chemical shift of the metal complex (B) alone during the 1 HNMR chemical shift of the sheet-like epoxy resin composition, the sheet-like epoxy resin composition becomes the metal complex (B). Can be determined.
 HNMRにおいて移動するピークは、3級アミンが金属イオンに配位することによって電子状態が変化する水素原子に由来すると考えられる。そのような水素原子は、通常、窒素原子を含む共役系の周辺に存在する水素原子であると考えられる。例えば、3級アミンが一般式(1)で表されるイミダゾール化合物である場合、HNMRにおいて移動するピークは、4位または5位の水素原子に帰属することが多い。 It is considered that the peak moving in 1 HNMR originates from a hydrogen atom whose electronic state changes due to coordination of a tertiary amine to a metal ion. Such a hydrogen atom is generally considered to be a hydrogen atom existing around a conjugated system containing a nitrogen atom. For example, when the tertiary amine is an imidazole compound represented by the general formula (1), the peak moving in 1 HNMR is often attributed to the hydrogen atom at the 4-position or 5-position.
 窒素原子を含む共役系の周囲に存在する水素原子の周囲に嵩高い基を有していない3級アミンは、共役系に含まれる窒素原子が金属イオンに近づきやすいため、金属イオンに配位しやすいと予想される。 Tertiary amines that do not have bulky groups around hydrogen atoms that exist around conjugated systems containing nitrogen atoms coordinate with metal ions because the nitrogen atoms contained in the conjugated system tend to approach metal ions. It is expected to be easy.
 シート状エポキシ樹脂組成物における金属錯体(B)の含有量は、「金属錯体(B)の活性官能基(3級アミノ基)/シート状エポキシ樹脂組成物に含まれるエポキシ基」の当量比が0.003~0.3であることが好ましく、0.008~0.3であることがより好ましい。シート状エポキシ樹脂組成物の硬化性を高める観点からは、前述の当量比が0.01~0.152であることがさらに好ましい。金属錯体(B)は、一種の金属錯体のみで構成されてもよく、二種以上の金属錯体の組み合わせであってもよい。 The content of the metal complex (B) in the sheet-like epoxy resin composition is such that the equivalent ratio of “active functional group of the metal complex (B) (tertiary amino group) / epoxy group contained in the sheet-like epoxy resin composition”. It is preferably 0.003 to 0.3, and more preferably 0.008 to 0.3. From the viewpoint of enhancing the curability of the sheet-like epoxy resin composition, the above-described equivalent ratio is more preferably 0.01 to 0.152. The metal complex (B) may be composed of only one kind of metal complex or a combination of two or more kinds of metal complexes.
 <低分子量のエポキシ樹脂(C)>
 本発明のシート状エポキシ樹脂組成物は、低分子量のエポキシ樹脂(C)をさらに含むことが好ましい。低分子量のエポキシ樹脂(C)とは、重量平均分子量が100~1200であるエポキシ樹脂であり、好ましくは重量平均分子量が200~1100であるエポキシ樹脂である。重量平均分子量は、前述と同様に測定されうる。重量平均分子量が上記範囲である低分子量のエポキシ樹脂(C)は、シート状エポキシ樹脂組成物を圧着する際のシート状エポキシ樹脂組成物の流動性を十分に高めやすく、かつ被圧着材に対するシート状エポキシ樹脂組成物の密着性も十分に高めうる。
<Low molecular weight epoxy resin (C)>
The sheet-like epoxy resin composition of the present invention preferably further contains a low molecular weight epoxy resin (C). The low molecular weight epoxy resin (C) is an epoxy resin having a weight average molecular weight of 100 to 1200, and preferably an epoxy resin having a weight average molecular weight of 200 to 1,100. The weight average molecular weight can be measured in the same manner as described above. The low molecular weight epoxy resin (C) having a weight average molecular weight in the above range can sufficiently enhance the fluidity of the sheet-like epoxy resin composition when the sheet-like epoxy resin composition is pressure-bonded, and is a sheet for a material to be pressed. The adhesion of the epoxy resin composition can be sufficiently enhanced.
 低分子量のエポキシ樹脂(C)のエポキシ当量は、80~300g/eqであることが好ましく、90~200g/eqであることがより好ましい。 The epoxy equivalent of the low molecular weight epoxy resin (C) is preferably 80 to 300 g / eq, and more preferably 90 to 200 g / eq.
 低分子量のエポキシ樹脂(C)は、フェノール型のエポキシ樹脂であることが好ましく、2価以上のフェノール型エポキシ化合物、またはフェノール誘導体とエピクロロヒドリンとをモノマー成分として含むオリゴマーであることがより好ましい。 The low molecular weight epoxy resin (C) is preferably a phenol type epoxy resin, more preferably a phenol type epoxy compound having a valence of 2 or more, or an oligomer containing a phenol derivative and epichlorohydrin as monomer components. preferable.
 2価以上のフェノール型エポキシ化合物の例には、ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物などが含まれる。ビスフェノール型エポキシ化合物の例には、下記一般式(12)で表される化合物が含まれる。下記一般式(12)におけるX、Rおよびpは、前記高分子量のエポキシ樹脂(A)の説明で示した一般式(11)におけるX、RおよびPと同様でありうる。
Figure JPOXMLDOC01-appb-C000024
Examples of the bivalent or higher phenol type epoxy compound include a bisphenol type epoxy compound, a phenol novolac type epoxy compound, a cresol novolak type epoxy compound, and the like. Examples of the bisphenol type epoxy compound include a compound represented by the following general formula (12). X, R 1 and p in the following general formula (12) may be the same as X, R 1 and P in the general formula (11) shown in the description of the high molecular weight epoxy resin (A).
Figure JPOXMLDOC01-appb-C000024
 フェノール誘導体とエピクロロヒドリンとをモノマー成分として含むオリゴマーのフェノール誘導体の例には、ビスフェノール、水素化ビスフェノール、フェノールノボラック、クレゾールノボラック等が含まれる。 Examples of oligomeric phenol derivatives containing a phenol derivative and epichlorohydrin as monomer components include bisphenol, hydrogenated bisphenol, phenol novolak, cresol novolak, and the like.
 低分子量のエポキシ樹脂(C)の好ましい例には、ビスフェノール型エポキシ化合物、またはビスフェノールとエピクロロヒドリンとをモノマー成分とするオリゴマーが含まれる。低分子量のエポキシ樹脂(C)は、前記一般式(11)における繰り返し数nが2~4であるオリゴマーであることがより好ましい。このようなオリゴマーは、高分子量のエポキシ樹脂(A)との親和性が高い。 Preferred examples of the low molecular weight epoxy resin (C) include a bisphenol type epoxy compound or an oligomer having bisphenol and epichlorohydrin as monomer components. The low molecular weight epoxy resin (C) is more preferably an oligomer having a repeating number n of 2 to 4 in the general formula (11). Such an oligomer has high affinity with the high molecular weight epoxy resin (A).
 なお、低分子量のエポキシ樹脂(C)に含まれる繰り返し構造単位は、高分子量のエポキシ樹脂(A)に含まれる繰り返し構造単位と同じであってもよく、異なってもよい。 The repeating structural unit contained in the low molecular weight epoxy resin (C) may be the same as or different from the repeating structural unit contained in the high molecular weight epoxy resin (A).
 低分子量のエポキシ樹脂(C)の含有量は、高分子量のエポキシ樹脂(A)、金属錯体(B)、およびシランカップリング剤(D)の合計100質量部に対して1~100質量部であり、好ましくは5~50質量部である。低分子量のエポキシ樹脂(C)の含有比率が上記範囲であると、シート状エポキシ樹脂組成物を熱圧着する間の組成物の流動性が十分に高まる。さらに、シート状エポキシ樹脂組成物が十分に硬化する。 The content of the low molecular weight epoxy resin (C) is 1 to 100 parts by mass with respect to 100 parts by mass in total of the high molecular weight epoxy resin (A), the metal complex (B), and the silane coupling agent (D). Yes, preferably 5 to 50 parts by mass. When the content ratio of the low molecular weight epoxy resin (C) is within the above range, the fluidity of the composition during thermocompression bonding of the sheet-like epoxy resin composition is sufficiently enhanced. Furthermore, the sheet-like epoxy resin composition is sufficiently cured.
 <シランカップリング剤(D)>
 本発明のシート状エポキシ樹脂組成物は、1)エポキシ基を有するシランカップリング剤、または2)エポキシ基と反応可能な官能基を有するシランカップリング剤をさらに含んでいてもよい。エポキシ基と反応するとは、エポキシ基と付加反応すること等をいう。例えば、有機EL素子封止用のシート状エポキシ樹脂組成物がシランカップリング剤(D)を含んでいると、シート状エポキシ樹脂組成物と有機EL素子の基板との密着性が高まる。
<Silane coupling agent (D)>
The sheet-like epoxy resin composition of the present invention may further contain 1) a silane coupling agent having an epoxy group, or 2) a silane coupling agent having a functional group capable of reacting with an epoxy group. Reacting with an epoxy group means an addition reaction with an epoxy group. For example, when the sheet-like epoxy resin composition for sealing an organic EL element contains a silane coupling agent (D), the adhesion between the sheet-like epoxy resin composition and the substrate of the organic EL element increases.
 また、エポキシ基を有する、またはエポキシ基と反応可能な官能基を有するシランカップリング剤は、シート状エポキシ樹脂組成物中のエポキシ樹脂と反応する。そのため、シート状エポキシ組成物の硬化物中に低分子量成分が残り難い、という観点からも好ましい。 Further, the silane coupling agent having an epoxy group or having a functional group capable of reacting with the epoxy group reacts with the epoxy resin in the sheet-like epoxy resin composition. Therefore, it is also preferable from the viewpoint that the low molecular weight component hardly remains in the cured product of the sheet-like epoxy composition.
 1)エポキシ基を有するシランカップリング剤は、グリシジル基等のエポキシ基を含むシランカップリング剤であり、その例には、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが含まれる。 1) A silane coupling agent having an epoxy group is a silane coupling agent having an epoxy group such as a glycidyl group. Examples thereof include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxy). (Cyclohexyl) ethyltrimethoxysilane and the like.
 2)エポキシ基と反応可能な官能基には、1級アミノ基、2級アミノ基等のアミノ基;カルボキシル基等が含まれるほか、エポキシ基と反応可能な官能基に変換される基(例えば、メタクリロイル基、イソシアネート基など)も含まれる。このようなエポキシ基と反応可能な官能基を有するシランカップリング剤の例には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリメトキシシラン、などが含まれる。 2) Functional groups capable of reacting with epoxy groups include amino groups such as primary amino groups and secondary amino groups; carboxyl groups and the like, and groups that can be converted into functional groups capable of reacting with epoxy groups (for example, Methacryloyl group, isocyanate group, etc.). Examples of the silane coupling agent having a functional group capable of reacting with such an epoxy group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropylmethyltrimethoxysilane, and the like.
 本発明のシート状エポキシ樹脂組成物は、上記シランカップリング剤と併せて、その他のシランカップリング剤をさらに含んでもよい。その他のシランカップリング剤の例には、ビニルトリアセトキシシラン、ビニルトリメトキシシランなどが含まれる。これらのシランカップリング剤は、1種で用いてもよいし、2種以上を併用してもよい。 The sheet-like epoxy resin composition of the present invention may further contain another silane coupling agent in addition to the silane coupling agent. Examples of other silane coupling agents include vinyltriacetoxysilane and vinyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
 シランカップリング剤の分子量は、80~800であることが好ましい。シランカップリング剤の含有量は、シート状エポキシ樹脂組成物100質量部に対して、0.05~30質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~10質量部であることがさらに好ましい。 The molecular weight of the silane coupling agent is preferably 80 to 800. The content of the silane coupling agent is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the sheet-like epoxy resin composition. More preferably, it is 3 to 10 parts by mass.
 <溶剤(E)>
 本発明のシート状エポキシ樹脂組成物は、前述の(A)~(D)成分を均一に混合するための溶剤(E)をさらに含んでいてもよい。溶剤(E)は、特に高分子量のエポキシ樹脂(A)を均一に分散または溶解させやすくする機能を有する。
<Solvent (E)>
The sheet-like epoxy resin composition of the present invention may further contain a solvent (E) for uniformly mixing the aforementioned components (A) to (D). The solvent (E) particularly has a function of facilitating uniform dispersion or dissolution of the high molecular weight epoxy resin (A).
 溶剤(E)は、各種有機溶剤でありうる。その例には、トルエン、キシレン等の芳香族溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;エーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコ-ルモノアルキルエーテル、エチレングリコ-ルジアルキルエーテル、プロピレングリコールまたはジアルキルエーテル等のエーテル類;N-メチルピロリドン、ジメチルイミダゾリジノン、ジメチルフォルムアルデヒド等の非プロトン性極性溶剤;酢酸エチル、酢酸ブチル等のエステル類等が含まれる。特に、高分子量のエポキシ樹脂(A)を溶解させ易い点から、メチルエチルケトン等のケトン系溶剤(ケト基を有する溶剤)であることが好ましい。 Solvent (E) can be various organic solvents. Examples include aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethers, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, Ethers such as propylene glycol or dialkyl ether; aprotic polar solvents such as N-methylpyrrolidone, dimethylimidazolidinone and dimethylformaldehyde; esters such as ethyl acetate and butyl acetate are included. In particular, a ketone solvent (a solvent having a keto group) such as methyl ethyl ketone is preferable from the viewpoint that the high molecular weight epoxy resin (A) can be easily dissolved.
 溶剤(E)の含有量は、本発明のシート状エポキシ樹脂組成物全体に対して50000質量ppm以下であることが好ましく、30000質量ppm以下であることがより好ましい。シート状エポキシ樹脂組成物中の溶剤(E)の含有量が多いと、溶剤(E)が被封止材に影響を与える可能性がある。シート状エポキシ樹脂組成物中の溶剤(E)の含有量は、例えばIR吸収スペクトル測定装置(日本分光(株)製 FT/IR-4100)を用いて測定されうる。 The content of the solvent (E) is preferably 50000 mass ppm or less, more preferably 30000 mass ppm or less with respect to the entire sheet-shaped epoxy resin composition of the present invention. When there is much content of the solvent (E) in a sheet-like epoxy resin composition, there exists a possibility that a solvent (E) may affect a to-be-sealed material. The content of the solvent (E) in the sheet-like epoxy resin composition can be measured using, for example, an IR absorption spectrum measuring apparatus (FT / IR-4100 manufactured by JASCO Corporation).
 例えば、溶剤(E)としてメチルエチルケトン(MEK)を含む場合、溶剤(E)の含有量は、以下の方法で測定されうる。
 1)予め、ガスクロマトグラフィ/質量分析法(GC-MS)にて溶剤量を定量した標準サンプル(シート状エポキシ樹脂組成物)を準備し、この標準サンプルに対してIR吸収スペクトル測定を行う。標準サンプルのIR吸収スペクトルから、エポキシ樹脂のC=C吸収ピーク(約1609cm-1)に対する、MEKのC=O吸収ピーク(約1710cm-1)の強度比を算出する。
 2)続いて、測定サンプル(シート状エポキシ樹脂組成物)に対してIR吸収スペクトル測定を行い、エポキシ樹脂のC=C吸収ピーク(約1609cm-1)に対するMEKのC=O吸収ピーク(約1710cm-1)の強度比を算出する。
 3)標準サンプルのピーク強度比に対する、測定サンプルのピーク強度比の割合を求め、測定サンプル中に含まれる溶剤量を算出する。
For example, when methyl ethyl ketone (MEK) is included as the solvent (E), the content of the solvent (E) can be measured by the following method.
1) Prepare a standard sample (sheet epoxy resin composition) whose amount of solvent is quantified in advance by gas chromatography / mass spectrometry (GC-MS), and perform IR absorption spectrum measurement on this standard sample. From the IR absorption spectrum of the standard sample, for epoxy resins C = C absorption peak (about 1609cm -1), calculates the strength ratio of the C = O absorption peak of MEK (for approximately 1710 cm -1).
2) Subsequently, IR absorption spectrum measurement was performed on the measurement sample (sheet-like epoxy resin composition), and MEK C═O absorption peak (about 1710 cm) with respect to the C═C absorption peak (about 1609 cm −1 ) of the epoxy resin. -1 ) The intensity ratio is calculated.
3) The ratio of the peak intensity ratio of the measurement sample to the peak intensity ratio of the standard sample is obtained, and the amount of solvent contained in the measurement sample is calculated.
 <その他の任意成分(F)>
 本発明のシート状エポキシ樹脂組成物は、発明の効果を大きくは損なわない範囲で、その他樹脂成分、充填剤、改質剤、安定剤などの任意成分をさらに含んでいてもよい。他の樹脂成分の例には、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジエン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレン-ブタジエン-スチレンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコン系オリゴマー、ポリスルフィド系オリゴマー等がある。これらは1種のみが含まれてもよく、複数種が含まれてもよい。
<Other optional components (F)>
The sheet-like epoxy resin composition of the present invention may further contain other optional components such as resin components, fillers, modifiers, stabilizers and the like as long as the effects of the invention are not significantly impaired. Examples of other resin components include polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene-styrene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based resin There are oligomers, silicon oligomers, polysulfide oligomers and the like. These may contain only 1 type and may contain multiple types.
 充填剤の例には、ガラスビーズ、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子が含まれる。充填剤は、複数種が含まれてもよい。 Examples of the filler include glass beads, styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, and propylene polymer particles. Multiple types of fillers may be included.
 改質剤の例には、重合開始助剤、老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤などが含まれる。これらは、複数種を組み合わせて使用してもよい。安定剤の例には、紫外線吸収剤、防腐剤、抗菌剤が含まれる。改質剤は、複数種が含まれてもよい。 Examples of modifiers include polymerization initiation aids, anti-aging agents, leveling agents, wettability improvers, surfactants, plasticizers, and the like. You may use these in combination of multiple types. Examples of the stabilizer include ultraviolet absorbers, preservatives, and antibacterial agents. A plurality of modifiers may be included.
 本発明のシート状エポキシ樹脂組成物は、本発明の効果を損なわない限り、任意の方法で製造されうる。本発明のシート状エポキシ樹脂組成物は、例えば1)(A)~(E)成分を準備する工程と、2)(A)~(D)成分を(E)成分に溶解させて30℃以下で混合して樹脂組成物のワニスを得る工程と、3)当該樹脂組成物のワニスを、基材上にシート状に塗布する工程と、4)シート状に塗布された樹脂組成物を乾燥させる工程と、を経て得ることができる。 The sheet-like epoxy resin composition of the present invention can be produced by any method as long as the effects of the present invention are not impaired. The sheet-like epoxy resin composition of the present invention includes, for example, 1) a step of preparing the components (A) to (E), and 2) 30 ° C. or less by dissolving the components (A) to (D) in the component (E). And 3) a step of applying the resin composition varnish in a sheet form on the substrate, and 4) drying the resin composition applied in the sheet form. Through the process.
 2)の工程では、(A)~(E)成分を一度に混合してもよく、(E)成分に(A)成分を溶解および混合した後、他の成分を添加して混合してもよい。混合方法の例には、これらの成分をフラスコに装入して攪拌する方法や、三本ロールで混練する方法等が含まれる。 In the step 2), the components (A) to (E) may be mixed at one time, or after the component (A) is dissolved and mixed in the component (E), other components may be added and mixed. Good. Examples of the mixing method include a method of charging these components into a flask and stirring, a method of kneading with three rolls, and the like.
 2)の工程で得られる樹脂組成物のワニスの、25℃における粘度は0.01~100Pa・sであることが好ましい。樹脂組成物のワニスの粘度が上記範囲であると、3)工程での樹脂組成物のワニスの塗工性が高まり、シートを容易に成形することができる。上記粘度は、E型粘度計(東機産業製 RC-500)で、25℃で測定される値である。樹脂組成物のワニスの粘度は、(E)成分の量等で調整されうる。 The viscosity of the varnish of the resin composition obtained in the step 2) at 25 ° C. is preferably 0.01 to 100 Pa · s. When the viscosity of the varnish of the resin composition is within the above range, the coating property of the varnish of the resin composition in the step 3) is enhanced, and the sheet can be easily formed. The viscosity is a value measured at 25 ° C. with an E-type viscometer (RC-500 manufactured by Toki Sangyo). The viscosity of the varnish of the resin composition can be adjusted by the amount of the component (E).
 3)の工程における塗布方法は、特に限定されず、例えばスクリーン印刷、ディスペンサー、各種塗布ロールを使用する方法等でありうる。また、基材の種類に特に制限はなく、例えば公知の離型フィルム等でありうる。また、混合物の塗布厚みは、目的とするシート状エポキシ樹脂組成物の膜厚に応じて適宜選択され、例えば乾燥後のシート状エポキシ樹脂組成物の膜厚が、例えば1~100μmとなるように設定する。 The coating method in step 3) is not particularly limited, and may be, for example, a method using screen printing, a dispenser, various coating rolls, or the like. Moreover, there is no restriction | limiting in particular in the kind of base material, For example, it may be a well-known release film etc. The coating thickness of the mixture is appropriately selected according to the film thickness of the target sheet-like epoxy resin composition, and for example, the film thickness of the dried sheet-like epoxy resin composition is, for example, 1 to 100 μm. Set.
 4)の工程における乾燥温度および乾燥時間は、前記樹脂組成物に含まれる高分子量のエポキシ樹脂(A)や低分子量のエポキシ樹脂(C)が硬化せずに、溶剤(E)が所望の量以下となるまで、乾燥除去できる温度や時間とする。乾燥温度は、例えば20~70℃であり、乾燥時間は、例えば10分~3時間程度である。具体的には、塗膜を、窒素雰囲気等の不活性ガス雰囲気下、30~60℃で10分間程度乾燥した後、さらに2時間程度真空乾燥することが好ましい。このように、真空乾燥をさらに行うことで、比較的低い乾燥温度で、前記シートに含まれる溶剤や水分を除去できる。乾燥方法は、特に限定されず、例えば熱風乾燥、真空乾燥等がある。 The drying temperature and drying time in the step 4) are such that the high molecular weight epoxy resin (A) and the low molecular weight epoxy resin (C) contained in the resin composition are not cured and the solvent (E) is in a desired amount. The temperature and time for drying and removal are set until the following conditions are satisfied. The drying temperature is, for example, 20 to 70 ° C., and the drying time is, for example, about 10 minutes to 3 hours. Specifically, it is preferable to dry the coating film in an inert gas atmosphere such as a nitrogen atmosphere at 30 to 60 ° C. for about 10 minutes and then vacuum dry for about 2 hours. Thus, by further performing vacuum drying, the solvent and moisture contained in the sheet can be removed at a relatively low drying temperature. The drying method is not particularly limited, and examples thereof include hot air drying and vacuum drying.
 <シート状エポキシ樹脂組成物の物性>
 (厚み)
 本発明のシート状エポキシ樹脂組成物の厚みは、その用途にもよるが、例えば光半導体デバイスの封止材として用いられる場合、例えば1~100μmであることが好ましく、10~30μmであることがより好ましく、20~30μmであることがさらに好ましい。
<Physical properties of sheet-like epoxy resin composition>
(Thickness)
Although the thickness of the sheet-like epoxy resin composition of the present invention depends on its use, for example, when used as a sealing material for an optical semiconductor device, it is preferably 1 to 100 μm, for example, and 10 to 30 μm. More preferably, the thickness is 20 to 30 μm.
 (含水率)
 本発明のシート状エポキシ樹脂組成物の含水率は、被封止材への水分の影響を抑制する点から、0.1質量%以下であることが好ましく、0.06質量%以下であることがより好ましい。本発明のシート状エポキシ樹脂組成物で、例えば有機EL素子などの光半導体を封止する際に、光半導体が水分により劣化するのを抑制するためである。
(Moisture content)
The water content of the sheet-like epoxy resin composition of the present invention is preferably 0.1% by mass or less and 0.06% by mass or less from the viewpoint of suppressing the influence of moisture on the material to be sealed. Is more preferable. This is because when the optical semiconductor such as an organic EL element is sealed with the sheet-like epoxy resin composition of the present invention, the optical semiconductor is prevented from being deteriorated by moisture.
 シート状エポキシ樹脂組成物の含水率は、例えばシート状エポキシ樹脂組成物の試料片を約0.1g計量し、カールフィッシャー水分計にて150℃に加熱し、その際に発生する水分量を測定して求めることができる(固体気化法)。 The moisture content of the sheet-like epoxy resin composition is measured, for example, by measuring about 0.1 g of a sample piece of the sheet-like epoxy resin composition, heating to 150 ° C. with a Karl Fischer moisture meter, and measuring the amount of moisture generated at that time. (Solid vaporization method).
 (溶融点)
 本発明のシート状エポキシ樹脂組成物は、熱圧着温度において適度な流動性を有することが好ましい。本発明のシート状エポキシ樹脂組成物で、例えば有機EL素子等の光半導体を封止する際に、シート状エポキシ樹脂組成物を加熱して流動化させた上で、有機EL素子等の光半導体表面の凹凸を円滑に充填して隙間を排除するためである。
(Melting point)
The sheet-like epoxy resin composition of the present invention preferably has appropriate fluidity at the thermocompression bonding temperature. For example, when sealing an optical semiconductor such as an organic EL element with the sheet-like epoxy resin composition of the present invention, the sheet-like epoxy resin composition is heated and fluidized, and then the optical semiconductor such as an organic EL element or the like. This is because the surface unevenness is smoothly filled to eliminate the gap.
 シート状エポキシ樹脂組成物の熱圧着時の流動性は、溶融点で判断されうる。溶融点とは、シート状エポキシ樹脂組成物を加熱した際に流動性を発現する温度であり、好ましくは30~100℃であり、より好ましくは40~80℃である。 The fluidity at the time of thermocompression bonding of the sheet-like epoxy resin composition can be determined by the melting point. The melting point is a temperature at which fluidity is exhibited when the sheet-like epoxy resin composition is heated, and is preferably 30 to 100 ° C., more preferably 40 to 80 ° C.
 溶融点が30℃未満では、熱転写(熱圧着)する際または熱硬化して封止する際に、シート状エポキシ樹脂組成物の流動性が大き過ぎて垂れが生じ易くなり、硬化物の膜厚の管理が困難になる場合がある。一方、溶融点が100℃を超えると、熱転写する際の作業性が悪くなる。そのため、シート状エポキシ樹脂組成物と、被封止材との間に隙間が形成され易くなったり、加熱により被封止材(例えば有機EL素子)に悪影響を与えたりする。これに対し、溶融点が30~100℃であれば、シート状エポキシ樹脂組成物と素子との間に隙間が形成されるのを抑制し、良好な密着性を得ることができる。 When the melting point is less than 30 ° C., when the thermal transfer (thermocompression bonding) or thermosetting and sealing, the fluidity of the sheet-like epoxy resin composition is too large and dripping easily occurs, and the film thickness of the cured product May be difficult to manage. On the other hand, when the melting point exceeds 100 ° C., workability at the time of thermal transfer is deteriorated. For this reason, a gap is easily formed between the sheet-like epoxy resin composition and the material to be sealed, or the material to be sealed (for example, an organic EL element) is adversely affected by heating. On the other hand, when the melting point is 30 to 100 ° C., it is possible to suppress the formation of a gap between the sheet-like epoxy resin composition and the element and to obtain good adhesion.
 このシート状エポキシ樹脂組成物の溶融点が、保存中に大きく変動すると、その変動に合わせて、シート状エポキシ樹脂組成物を用いて光半導体などの封止をする際の温度や圧力などの条件も大きく変更しなくてはならない。これに対して、保存中に溶融点が大きく変動しない本発明のシート状エポキシ樹脂組成物は、光半導体などの封止する際の条件を一定にすることができるため、光半導体などの封止工程の効率を向上させることができる。また、溶融点をある程度低い温度に保つことができると、素子や基板との密着性が良好になり、貼り合せ界面での水蒸気バリア性が低下しにくい。例えば、シート状エポキシ樹脂組成物を製造後、23℃60RH%で7日間保存後の溶融点の変化量は、5℃以下であることが好ましく、1℃以下であることがより好ましい。 When the melting point of this sheet-shaped epoxy resin composition varies greatly during storage, conditions such as temperature and pressure when sealing an optical semiconductor using the sheet-shaped epoxy resin composition in accordance with the variation Must also be changed significantly. In contrast, the sheet-like epoxy resin composition of the present invention in which the melting point does not vary greatly during storage can make the conditions for sealing an optical semiconductor constant, so that the sealing of an optical semiconductor, etc. The efficiency of the process can be improved. Further, if the melting point can be maintained at a certain low temperature, the adhesion with the element and the substrate becomes good, and the water vapor barrier property at the bonding interface is hardly lowered. For example, the amount of change in the melting point after the sheet-like epoxy resin composition is produced and stored at 23 ° C. and 60 RH% for 7 days is preferably 5 ° C. or less, and more preferably 1 ° C. or less.
 溶融点は、ホットプレートにのせたガラス板上に、シート状エポキシ樹脂組成物(厚み15μm)を押圧した後、当該樹脂組成物が溶融し始める温度として測定されうる。具体的には、シート状エポキシ樹脂組成物を、長さ約40mm、幅約5mmに切り出して短冊状の試験片とする。この試験片のシート状エポキシ樹脂組成物を、ホットプレート上に載せて加熱したガラス板上に密着させた後、当該試験片を180度方向へ徐々にガラス板から剥離する。この操作を、ホットプレートの設定温度35℃から始め、設定温度を1℃上げる毎に試験片を新たに用意して繰り返し、剥離時にシート状エポキシ樹脂組成物の粘着剥離性が最も大きくなる温度を溶融点とする。 The melting point can be measured as a temperature at which the resin composition starts to melt after pressing the sheet-like epoxy resin composition (thickness 15 μm) onto a glass plate placed on a hot plate. Specifically, the sheet-like epoxy resin composition is cut into a length of about 40 mm and a width of about 5 mm to obtain a strip-shaped test piece. The sheet-like epoxy resin composition of the test piece is placed on a hot plate and brought into close contact with the heated glass plate, and then the test piece is gradually peeled from the glass plate in the direction of 180 degrees. This operation is started from a setting temperature of 35 ° C. of the hot plate, and a test piece is newly prepared every time the setting temperature is increased by 1 ° C. Let it be the melting point.
 (硬化性)
 本発明のシート状エポキシ樹脂組成物の硬化速度は、ある程度高いことが好ましい。被封止材と接着する際の作業性を高めるためである。速やかに硬化できるとは、例えば、加熱条件下(80~100℃)において、120分以内に硬化することをいう。
(Curable)
The curing rate of the sheet-like epoxy resin composition of the present invention is preferably high to some extent. It is for improving workability at the time of bonding with the material to be sealed. “Cure quickly” means, for example, curing within 120 minutes under heating conditions (80 to 100 ° C.).
 シート状エポキシ樹脂組成物が硬化したかどうかは、シート状エポキシ樹脂組成物をホットプレート上で硬化させ、ゲル化したかどうかを指触にて確認して判断できる。また、シート状エポキシ樹脂組成物が硬化したかどうかは、エポキシ基の転化率からも求められる。エポキシ基の転化率は、硬化反応させる前と硬化反応させた後のシート状エポキシ樹脂組成物のIRスペクトルをそれぞれ測定し、該IRスペクトルの、エポキシ基の減少率から求めることができる。シート状エポキシ樹脂組成物の硬化性は、硬化促進剤の量を調整することによって制御できる。 Whether the sheet-like epoxy resin composition is cured can be determined by checking with a finger whether the sheet-like epoxy resin composition is cured on a hot plate and gelled. Whether or not the sheet-like epoxy resin composition has been cured is also determined from the conversion rate of the epoxy group. The conversion rate of the epoxy group can be determined from the reduction rate of the epoxy group in the IR spectrum by measuring the IR spectrum of the sheet-like epoxy resin composition before the curing reaction and after the curing reaction. The curability of the sheet-like epoxy resin composition can be controlled by adjusting the amount of the curing accelerator.
 (透明性)
 本発明のシート状エポキシ樹脂組成物は、有機EL素子などの光半導体の封止材などに用いられる場合、有機ELパネルからの光取り出し性の観点から、そのシール部材には透明性が求められる場合がある。従って、シート状エポキシ樹脂組成物およびその硬化物の、厚み40μmにおける波長550nmにおける光線透過率は、いずれも90%以上であることが好ましく、93%以上であることがより好ましい。
(transparency)
When the sheet-like epoxy resin composition of the present invention is used as a sealing material for an optical semiconductor such as an organic EL element, the sealing member is required to have transparency from the viewpoint of light extraction from the organic EL panel. There is a case. Accordingly, the light transmittance at a wavelength of 550 nm at a thickness of 40 μm of the sheet-like epoxy resin composition and its cured product is preferably 90% or more, and more preferably 93% or more.
 シート状エポキシ樹脂組成物の硬化物の光線透過率は、以下の手順で測定することができる。
 1)乾燥厚みが40μmのシート状エポキシ樹脂組成物を、ガラス板(松浪硝子製S9213、厚さ1.2mm、76×52mm)に形成する。ガラス板上のシート状エポキシ樹脂組成物をオーブンで100℃2時間加熱して、硬化物とする。
 2)シート状エポキシ樹脂組成物の硬化物が形成されたガラス板の、波長550nmにおける光線透過率を、紫外可視光分光光度計(島津製作所 UV-2550)を用いて測定する。測定では、ガラス板単独の光線透過率をベースラインとする。
 (硬化前の)シート状エポキシ樹脂組成物の光線透過率は、上記1)のシート状エポキシ樹脂組成物の硬化を行わない以外は同様にして測定されうる。
The light transmittance of the cured product of the sheet-like epoxy resin composition can be measured by the following procedure.
1) A sheet-like epoxy resin composition having a dry thickness of 40 μm is formed on a glass plate (S9213, Matsunami Glass, thickness 1.2 mm, 76 × 52 mm). The sheet-like epoxy resin composition on the glass plate is heated in an oven at 100 ° C. for 2 hours to obtain a cured product.
2) The light transmittance at a wavelength of 550 nm of the glass plate on which the cured product of the sheet-like epoxy resin composition is formed is measured using an ultraviolet-visible light spectrophotometer (Shimadzu Corporation UV-2550). In the measurement, the light transmittance of the glass plate alone is used as the baseline.
The light transmittance of the sheet-like epoxy resin composition (before curing) can be measured in the same manner except that the sheet-like epoxy resin composition of 1) above is not cured.
 (硬化物の透湿度)
 本発明のシート状エポキシ樹脂組成物は、例えば有機EL素子などの光半導体の封止材として用いる場合、有機EL素子などの光半導体デバイスの水分による劣化を抑制するためなどから、硬化物の透湿度が低いことが好ましい。従って、本発明のシート状エポキシ樹脂組成物の硬化物の透湿度は、60g/m・24h以下であることが好ましく、30g/m・24h以下であることがより好ましい。透湿度は、100μmのシート状エポキシ樹脂組成物の硬化物を、JIS Z0208に準じて60℃90%RH条件で測定することにより求められる。
(Moisture permeability of cured product)
When the sheet-like epoxy resin composition of the present invention is used, for example, as a sealing material for an optical semiconductor such as an organic EL element, the cured epoxy resin composition such as an organic EL element is used to suppress deterioration due to moisture. It is preferable that the humidity is low. Accordingly, the moisture permeability of the cured product of the sheet-like epoxy resin composition of the present invention is preferably 60 g / m 2 · 24 h or less, and more preferably 30 g / m 2 · 24 h or less. The moisture permeability is determined by measuring a cured product of a 100 μm sheet-like epoxy resin composition under conditions of 60 ° C. and 90% RH according to JIS Z0208.
 (硬化物のTg)
 本発明のシート状エポキシ樹脂組成物の硬化物のTgは、80℃以上であることが好ましい。硬化物のTgは、TMA(セイコーインスツル株式会社製のTMA/SS6000)を用いて、昇温速度5℃/分の条件で線膨張係数を測定し、その変曲点から求めることができる。
(Tg of cured product)
It is preferable that Tg of the hardened | cured material of the sheet-like epoxy resin composition of this invention is 80 degreeC or more. The Tg of the cured product can be determined from the inflection point by measuring the linear expansion coefficient under the condition of a heating rate of 5 ° C./min using TMA (TMA / SS6000 manufactured by Seiko Instruments Inc.).
 (硬化物のXPS特性)
 本発明のシート状エポキシ樹脂組成物の硬化物は、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、検出される金属原子と窒素原子とのモル比が、金属原子:窒素原子=1:0.5~1:6.0であることが好ましい。金属原子1モルに対する窒素原子のモル比は、金属錯体(B)における金属イオンに対する3級アミンの含有量に依存しうる。また、金属原子はZnであることが好ましく、その含有量は硬化物中0.5~15質量%であることが好ましい。
(XPS characteristics of cured product)
The cured product of the sheet-like epoxy resin composition of the present invention is one kind selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr in the spectrum measured by X-ray photoelectron spectroscopy (XPS). The peak derived from the metal atom and the peak derived from the nitrogen atom are detected, and the detected molar ratio of the metal atom to the nitrogen atom is metal atom: nitrogen atom = 1: 0.5 to 1: 6. 0.0 is preferred. The molar ratio of nitrogen atom to 1 mol of metal atom may depend on the content of tertiary amine to metal ion in metal complex (B). The metal atom is preferably Zn, and the content thereof is preferably 0.5 to 15% by mass in the cured product.
 XPS測定は、AXIS-NOVA(KRATOS社製)を用いて行うことができる。光源は、単色化A1 Kαとし;測定領域の径は100μmとしうる。 XPS measurement can be performed using AXIS-NOVA (manufactured by KRATOS). The light source can be monochromatic A1 Kα; the diameter of the measurement area can be 100 μm.
 2.封止用シート
 本発明の封止用シートは、本発明のシート状エポキシ樹脂組成物からなる層を含む。例えば、本発明の封止用シートは、基材フィルムと、該基材フィルム上に形成された本発明のシート状エポキシ樹脂組成物からなる層と、必要に応じて該シート状エポキシ樹脂組成物上に形成された保護フィルムとを含みうる。
2. Sealing Sheet The sealing sheet of the present invention includes a layer made of the sheet-like epoxy resin composition of the present invention. For example, the sealing sheet of the present invention includes a base film, a layer formed of the sheet-like epoxy resin composition of the present invention formed on the base film, and, if necessary, the sheet-like epoxy resin composition. And a protective film formed thereon.
 シート状エポキシ樹脂組成物からなる層の含水率は、前述の通り、被封止材への水分の影響を抑制する点から、0.1質量%以下であることが好ましく、0.06質量%以下であることがより好ましい。特に、有機EL素子は水分により劣化しやすい。そのため、封止用シートで有機EL素子を封止する場合には、可能な限り、含水率を低減することが好ましい。封止用シートのシート状エポキシ樹脂組成物からなる層の含水率は、例えば封止用シートを真空下における加熱乾燥等で低減できる。 As described above, the moisture content of the layer made of the sheet-like epoxy resin composition is preferably 0.1% by mass or less from the viewpoint of suppressing the influence of moisture on the sealing material, and is 0.06% by mass. The following is more preferable. In particular, organic EL elements are easily degraded by moisture. Therefore, when sealing an organic EL element with the sheet | seat for sealing, it is preferable to reduce a moisture content as much as possible. The moisture content of the layer made of the sheet-like epoxy resin composition of the sealing sheet can be reduced by, for example, heating and drying the sealing sheet under vacuum.
 シート状エポキシ樹脂組成物は、有機EL素子などの光半導体デバイスの封止材などに用いられる場合、有機ELパネルからの光取り出し性の観点から、そのシール部材には透明性が求められる場合がある。従って、シート状エポキシ樹脂組成物からなる層の、厚み40μmにおける波長550nmにおける光線透過率は、90%以上であることが好ましく、93%以上であることがより好ましい。 When the sheet-like epoxy resin composition is used as a sealing material for an optical semiconductor device such as an organic EL element, transparency may be required for the sealing member from the viewpoint of light extraction from the organic EL panel. is there. Accordingly, the light transmittance at a wavelength of 550 nm at a thickness of 40 μm of the layer made of the sheet-like epoxy resin composition is preferably 90% or more, and more preferably 93% or more.
 シート状エポキシ樹脂組成物からなる層の溶融点、溶剤含有量および厚みも、前述の通りでありうる。 The melting point, solvent content, and thickness of the layer made of the sheet-like epoxy resin composition can also be as described above.
 基材フィルムまたは保護フィルムの例には、公知の離型フィルムが含まれ、好ましくは水分バリア性、あるいはガスバリア性を有するフィルム等であり、より好ましくはポリエチレンテレフタレートである。基材フィルムの厚さは、フィルム材質にもよるが、有機EL素子等の被封止材への追従性を有する点などから、例えば50μm程度である。 Examples of the base film or the protective film include known release films, preferably films having moisture barrier properties or gas barrier properties, and more preferably polyethylene terephthalate. Although depending on the film material, the thickness of the base film is, for example, about 50 μm from the viewpoint of having the ability to follow a sealing material such as an organic EL element.
 保護フィルムは、本発明のシート状エポキシ樹脂組成物からなる層上にラミネートされていることが好ましい。ラミネートは、例えばラミネーターを用いて60℃程度で行うことが好ましい。保護フィルムの厚さは、例えば20μm程度である。 The protective film is preferably laminated on a layer made of the sheet-like epoxy resin composition of the present invention. Lamination is preferably performed at about 60 ° C. using a laminator, for example. The thickness of the protective film is, for example, about 20 μm.
 本発明の封止用シートは、必要に応じてガスバリア層をさらに含んでいてもよい。ガスバリア層は、外気中の水分等、有機EL素子を劣化させる水分やガスの、有機ELパネル内への透過を抑制する層でありうる。このようなガスバリア層は、有機EL素子と接する面以外であれば、どこに配置されてもよいが、好ましくは基材フィルムと本発明のシート状エポキシ樹脂組成物からなる層との間に配置されうる。 The sealing sheet of the present invention may further include a gas barrier layer as necessary. The gas barrier layer may be a layer that suppresses permeation of moisture or gas that deteriorates the organic EL element, such as moisture in the outside air, into the organic EL panel. Such a gas barrier layer may be disposed anywhere as long as the surface is not in contact with the organic EL element, but is preferably disposed between the base film and the layer made of the sheet-like epoxy resin composition of the present invention. sell.
 ガスバリア層を構成する材料は、特に制限されない。ガスバリア層を構成する材料の例にはAl、Cr、Ni、Cu、Zn、Si、Fe、Ti、Ag、Au、Co;これら金属の酸化物;これら金属の窒化物;これら金属の酸化窒化物等が含まれる。ガスバリア層は、1種の金属材料で構成されてもよいし、2種以上の金属材料で構成されてもよい。また、ガスバリア層は、樹脂材料で構成されてもよい。 The material constituting the gas barrier layer is not particularly limited. Examples of materials constituting the gas barrier layer include Al, Cr, Ni, Cu, Zn, Si, Fe, Ti, Ag, Au, and Co; oxides of these metals; nitrides of these metals; oxynitrides of these metals Etc. are included. The gas barrier layer may be composed of one kind of metal material or may be composed of two or more kinds of metal materials. The gas barrier layer may be made of a resin material.
 例えば、ボトムエミッション方式の有機EL素子の封止に用いられる封止用シートのガスバリア層は、光反射率の高い層であることが好ましく、例えばAl、Cu等からなる層が好ましい。一方、トップエミッション方式の有機EL素子の封止に用いられる封止用シートのガスバリア層は、光透過率の高い層であることが好ましく、例えばポリエチレンテレフタレート(PET)、ポリカーボネート(PC)等からなる層でありうる。ガスバリア層の厚みは、10~3000μm程度でありうる。 For example, the gas barrier layer of the sealing sheet used for sealing the bottom emission type organic EL element is preferably a layer having a high light reflectance, for example, a layer made of Al, Cu or the like. On the other hand, the gas barrier layer of the sealing sheet used for sealing the top emission type organic EL element is preferably a layer having high light transmittance, and is made of, for example, polyethylene terephthalate (PET), polycarbonate (PC), or the like. It can be a layer. The thickness of the gas barrier layer may be about 10 to 3000 μm.
 ガスバリア層を有する封止用シートは、基材フィルム上にガスバリア層を形成した後、本発明のシート状エポキシ樹脂組成物からなる層を形成して製造することができる。ガスバリア層の形成方法は、特に制限されず、ドライプロセスとしては、真空蒸着、スパッタリング、イオンプレーティング等の各種PVD法と、プラズマCVD等のCVD法とが含まれ、ウエットプロセスとしては、めっき法、塗布法等が含まれる。 A sealing sheet having a gas barrier layer can be produced by forming a gas barrier layer on a substrate film and then forming a layer made of the sheet-like epoxy resin composition of the present invention. The formation method of the gas barrier layer is not particularly limited, and the dry process includes various PVD methods such as vacuum deposition, sputtering, and ion plating, and the CVD method such as plasma CVD. The wet process includes a plating method. , Coating methods and the like are included.
 図1は、封止用シートの構成の好ましい一例を示す図である。図1に示されるように、封止用シート10は、基材フィルム12と、該基材フィルム12上に配置されたシート状エポキシ樹脂組成物からなる層16と、シート状エポキシ樹脂組成物からなる層16上に配置された保護フィルム18とを有する。 FIG. 1 is a view showing a preferred example of the configuration of the sealing sheet. As shown in FIG. 1, the sealing sheet 10 includes a base film 12, a layer 16 made of a sheet-like epoxy resin composition disposed on the base film 12, and a sheet-like epoxy resin composition. And a protective film 18 disposed on the layer 16.
 図2は、封止用シートの構成の好ましい他の例を示す図である。図2の封止用シートは、ガスバリア層14をさらに含む以外は図1と同様に構成されうる。即ち、封止用シート10’は、基材フィルム12上に形成されたガスバリア層14と、該ガスバリア層14上に配置されたシート状エポキシ樹脂組成物からなる層16と、シート状エポキシ樹脂組成物からなる層16上に配置された保護フィルム18とを有する。 FIG. 2 is a view showing another preferred example of the configuration of the sealing sheet. The sealing sheet of FIG. 2 can be configured in the same manner as in FIG. 1 except that it further includes a gas barrier layer 14. That is, the sealing sheet 10 ′ includes a gas barrier layer 14 formed on the base film 12, a layer 16 made of a sheet-like epoxy resin composition disposed on the gas barrier layer 14, and a sheet-like epoxy resin composition. And a protective film 18 disposed on the layer 16 made of material.
 このような封止用シート10および10’は、例えば、保護フィルム18を剥がした後、露出するシート状エポキシ樹脂組成物からなる層16を、有機EL素子などの光半導体デバイスが配置された表示基板と接するように配置して用いることができる。 Such sealing sheets 10 and 10 ′ are, for example, a display in which an optical semiconductor device such as an organic EL element is arranged on the layer 16 made of a sheet-like epoxy resin composition that is exposed after the protective film 18 is peeled off. It can be used by being placed in contact with the substrate.
 本発明の封止用シートは、シート状エポキシ樹脂組成物からなる層の含水率を一定以下に維持するため、シリカゲル等の乾燥剤とともに保存することが好ましい。 The sealing sheet of the present invention is preferably stored together with a desiccant such as silica gel in order to maintain the moisture content of the layer made of the sheet-like epoxy resin composition below a certain level.
 3.封止用シートの用途
 本発明の封止用シートは、シート状エポキシ樹脂組成物からなる層を硬化させることによりシール部材として用いられる。シールされる対象である被封止材は、特に限定されないが、例えば光半導体デバイスが好ましい。光半導体デバイスの例には、有機ELデバイスを有する有機ELディスプレイパネルや有機EL照明;液晶ディスプレイ、LEDなどが含まれる。以下、本発明の封止用シートを、有機ELデバイスの有機EL素子の封止に用いる例で説明する。
3. Use of sealing sheet The sealing sheet of the present invention is used as a sealing member by curing a layer made of a sheet-like epoxy resin composition. The material to be sealed to be sealed is not particularly limited, but for example, an optical semiconductor device is preferable. Examples of optical semiconductor devices include organic EL display panels having organic EL devices and organic EL lighting; liquid crystal displays and LEDs. Hereinafter, the sheet | seat for sealing of this invention is demonstrated in the example used for sealing of the organic EL element of an organic EL device.
 本発明の有機ELデバイスは、有機EL素子と、当該有機EL素子と接触しており、かつそれを封止する本発明のシート状エポキシ樹脂組成物の硬化物層と、を含む。 The organic EL device of the present invention includes an organic EL element and a cured product layer of the sheet-like epoxy resin composition of the present invention that is in contact with and seals the organic EL element.
 具体的には、本発明の有機ELデバイスは、有機EL素子が配置された基板(表示基板)と、表示基板と対になる対向基板と、表示基板と対向基板との間に配置され、有機EL素子を封止するシール部材とを有する。シール部材が、本発明のシート状エポキシ樹脂組成物の硬化物層でありうる。前述の通り、シール部材が、有機EL素子と封止基板との間に形成される空間のすべてまたは一部に充填されているものを、面封止型の有機ELデバイスという。 Specifically, the organic EL device of the present invention includes a substrate (display substrate) on which an organic EL element is disposed, a counter substrate that is paired with the display substrate, and is disposed between the display substrate and the counter substrate. And a sealing member for sealing the EL element. The sealing member may be a cured product layer of the sheet-like epoxy resin composition of the present invention. As described above, the sealing member in which all or part of the space formed between the organic EL element and the sealing substrate is filled is referred to as a surface sealing type organic EL device.
 本発明のシート状エポキシ樹脂組成物の硬化物からなるシール部材と、被封止材との接着力は、300gf/15mm以上であることが好ましい。 The adhesive force between the sealing member made of the cured product of the sheet-like epoxy resin composition of the present invention and the material to be sealed is preferably 300 gf / 15 mm or more.
 硬化物と被封止材である対向基板(ガラス基板)との接着力は、以下の方法で測定されうる。
 1)アルミ箔とPETとを貼り合せたフィルム(製品名:アルペット)のアルミ箔側に、シート状エポキシ樹脂組成物(厚み約15μm)を塗工および乾燥させて形成する。このシート状エポキシ樹脂組成物を、ロールラミネーター((株)エム・シー・ケー社製、MRK-650Y型)を用いて、ガラス基板(JIS R3202準拠ガラス、100mm×25mm×2mm)に、速度0.3m/min、エアーシリンダー加圧圧力0.2MPa、ローラー温度90℃上下加熱の条件で熱圧着して、積層体を得る。
 2)得られた積層体を、オーブンにて80℃で30分間加熱し、シート状エポキシ樹脂組成物を硬化させる。
 3)その後、積層体を幅15mmに切断し、ガラス基板とシート状エポキシ樹脂組成物の硬化物との90度剥離強度を、剥離試験機(装置名:STROGRAPH E-S、株式会社東洋精機製作所製、レンジ50mm/min.)にて測定する。本発明では、この90度剥離強度を、上記接着力とする。
The adhesive force between the cured product and the counter substrate (glass substrate) that is the material to be sealed can be measured by the following method.
1) A sheet-like epoxy resin composition (thickness of about 15 μm) is applied and dried on the aluminum foil side of a film (product name: Alpet) obtained by bonding aluminum foil and PET. The sheet-like epoxy resin composition was transferred to a glass substrate (JIS R3202 compliant glass, 100 mm × 25 mm × 2 mm) using a roll laminator (manufactured by MCK Corporation, MRK-650Y type) at a speed of 0. The laminate is obtained by thermocompression bonding under the conditions of 3 m / min, air cylinder pressure 0.2 MPa, and roller temperature 90 ° C. up and down heating.
2) The obtained laminate is heated in an oven at 80 ° C. for 30 minutes to cure the sheet-like epoxy resin composition.
3) Thereafter, the laminate was cut into a width of 15 mm, and the 90 ° peel strength between the glass substrate and the cured product of the sheet-like epoxy resin composition was measured with a peel tester (device name: STROGRAPH ES, Toyo Seiki Seisakusho Co., Ltd. Manufactured, range 50 mm / min.). In the present invention, the 90-degree peel strength is the adhesive strength.
 図3は、トップエミッション構造であって、面封止型の有機ELデバイスを模式的に示す断面図である。図3に示されるように、有機ELデバイス20は、表示基板22、有機EL素子24、および対向基板(透明基板)26がこの順に積層されており、有機EL素子24の周囲と対向基板(透明基板)26との間にシール部材28が充填されている。本発明の有機ELデバイスでは、図3におけるシール部材28が、本発明のシート状エポキシ樹脂組成物の硬化物となる。 FIG. 3 is a cross-sectional view schematically showing a surface-sealing type organic EL device having a top emission structure. As shown in FIG. 3, the organic EL device 20 includes a display substrate 22, an organic EL element 24, and a counter substrate (transparent substrate) 26, which are stacked in this order. The periphery of the organic EL element 24 and the counter substrate (transparent) A sealing member 28 is filled between the substrate 26 and the substrate. In the organic EL device of the present invention, the seal member 28 in FIG. 3 is a cured product of the sheet-like epoxy resin composition of the present invention.
 表示基板22および対向基板26は、通常、ガラス基板または樹脂フィルムなどであり、表示基板22と対向基板26の少なくとも一方(ここでは、対向基板26)は、透明なガラス基板または透明な樹脂フィルムである。このような透明な樹脂フィルムの例には、ポリエチレンテレフタレート等の芳香族ポリエステル樹脂等が含まれる。 The display substrate 22 and the counter substrate 26 are usually glass substrates or resin films, and at least one of the display substrate 22 and the counter substrate 26 (here, the counter substrate 26) is a transparent glass substrate or a transparent resin film. is there. Examples of such transparent resin films include aromatic polyester resins such as polyethylene terephthalate.
 有機EL素子24は、表示基板22側から、カソード反射電極層30(アルミニウムや銀などからなる)、有機EL層32およびアノード透明電極層34(ITOやIZOなどからなる)が積層されている。カソード反射電極層30、有機EL層32およびアノード透明電極層34は、真空蒸着およびスパッタ等により成膜されてもよい。 The organic EL element 24 has a cathode reflective electrode layer 30 (made of aluminum, silver, etc.), an organic EL layer 32, and an anode transparent electrode layer 34 (made of ITO, IZO, etc.) laminated from the display substrate 22 side. The cathode reflective electrode layer 30, the organic EL layer 32, and the anode transparent electrode layer 34 may be formed by vacuum deposition, sputtering, or the like.
 本発明のシート状エポキシ樹脂組成物の硬化物をシール部材とする有機ELデバイスは、任意の方法で製造される。例えば、本発明の有機ELデバイスは、有機EL素子が形成された基板を準備する工程と;本発明のシート状エポキシ樹脂組成物を当該基板に熱圧着させるなどして、有機EL素子を本発明のシート状エポキシ樹脂組成物からなる層で覆う工程と;熱圧着させたシート状エポキシ樹脂組成物からなる層を硬化させて、有機EL素子を面封止する工程とを経て製造されうる。 The organic EL device using the cured product of the sheet-like epoxy resin composition of the present invention as a sealing member is produced by an arbitrary method. For example, the organic EL device of the present invention includes a step of preparing a substrate on which an organic EL element is formed; and a method of thermocompression bonding the sheet-like epoxy resin composition of the present invention to the substrate. And a step of covering the organic EL element with a layer formed by thermocompression-bonding the layer formed of the sheet-like epoxy resin composition.
 具体的には、1)有機EL素子24が配置された表示基板22、本発明のシート状エポキシ樹脂組成物からなる層、および対向基板(透明基板)26の積層体を得る工程、2)得られた積層体のシート状エポキシ樹脂組成物からなる層を熱圧着させる工程、3)熱圧着させたシート状エポキシ樹脂組成物からなる層を硬化させる工程、を経て製造される。各工程は、公知の方法に準じて行えばよい。 Specifically, 1) a step of obtaining a laminate of the display substrate 22 on which the organic EL element 24 is disposed, a layer made of the sheet-like epoxy resin composition of the present invention, and a counter substrate (transparent substrate) 26, and 2) obtained. It is manufactured through a step of thermocompression bonding a layer made of the sheet-like epoxy resin composition of the laminate, and a step of curing a layer made of the thermocompression-bonded sheet-like epoxy resin composition. Each step may be performed according to a known method.
 1)の工程では、有機EL素子24が配置された表示基板22上に、シート状エポキシ樹脂組成物を載置(または転写)した後;当該シート状エポキシ樹脂組成物からなる層上に、対になる対向基板(透明基板)26を重ね合わせて積層体を得てもよい((i)の方法)。 In the step 1), after placing (or transferring) the sheet-like epoxy resin composition on the display substrate 22 on which the organic EL element 24 is arranged; on the layer made of the sheet-like epoxy resin composition, A counter substrate (transparent substrate) 26 to be stacked may be stacked to obtain a laminated body (method (i)).
 この場合、保護フィルムを有する封止用シートの保護フィルムを剥がして露出したシート状エポキシ樹脂組成物からなる層を有機EL素子上に載せた後、基材フィルムを剥がして転写してもよいし;保護フィルムを有しない封止用シートのシート状エポキシ樹脂組成物からなる層を直接、有機EL素子上にロールラミネーター等により載せてもよい。 In this case, after peeling off the protective film of the sealing sheet having the protective film and placing the exposed layer of the epoxy resin composition on the organic EL element, the substrate film may be peeled off and transferred. A layer made of a sheet-like epoxy resin composition of a sealing sheet having no protective film may be directly placed on the organic EL element by a roll laminator or the like.
 あるいは、予め対向基板26上に、本発明のシート状エポキシ樹脂組成物からなる層を配置したものを用意しておき;有機EL素子24が形成された表示基板22に貼り合わせて積層体を得てもよい((ii)の方法)。この方法は、例えば封止用シートの基材(または基材フィルム)を剥ぎ取らずに、そのままシート状エポキシ樹脂組成物からなる層とともに有機ELデバイスに組み込む場合に有効である。 Or the thing which arrange | positioned beforehand the layer which consists of the sheet-like epoxy resin composition of this invention on the opposing board | substrate 26 is prepared; it bonds together to the display board 22 in which the organic EL element 24 was formed, and a laminated body is obtained. (Method (ii)). This method is effective, for example, when the substrate (or substrate film) of the sealing sheet is incorporated into an organic EL device as it is together with a layer made of a sheet-like epoxy resin composition without peeling off.
 2)の工程では、シート状エポキシ樹脂組成物からなる層を、真空ラミネーター装置を用いて、例えば50~110℃で熱圧着させることにより、有機EL素子とシート状エポキシ樹脂組成物からなる層との熱圧着、および表示基板22と対向基板26との熱圧着を行う。この際、有機EL素子側を予め50~110℃に加熱し、有機EL素子とシート状エポキシ樹脂組成物とを貼り合わせることが好ましい。 In the step 2), a layer composed of the sheet-like epoxy resin composition is thermocompression-bonded at, for example, 50 to 110 ° C. using a vacuum laminator device, thereby forming a layer composed of the organic EL element and the sheet-like epoxy resin composition. And thermocompression bonding of the display substrate 22 and the counter substrate 26 are performed. At this time, the organic EL element side is preferably heated to 50 to 110 ° C. in advance, and the organic EL element and the sheet-like epoxy resin composition are bonded together.
 3)の工程では、例えば80~100℃の硬化温度でシート状エポキシ樹脂組成物からなる層を完全硬化させる。加熱硬化は、80~100℃の温度で0.1~2時間程度行うことが好ましい。なお、加熱硬化させる際の温度を100℃以下とするのは、有機EL素子にダメージを与えないためである。 In the step 3), for example, the layer made of the sheet-like epoxy resin composition is completely cured at a curing temperature of 80 to 100 ° C. Heat curing is preferably performed at a temperature of 80 to 100 ° C. for about 0.1 to 2 hours. In addition, the temperature at the time of heat-curing shall be 100 degrees C or less in order not to give a damage to an organic EL element.
 さらに、有機EL素子への透過湿度を低下させるため、本発明のシート状エポキシ樹脂組成物からなる層またはその硬化物にパッシベーション層を形成するのも、好ましい態様である。 Furthermore, in order to reduce the permeation humidity to the organic EL element, it is also a preferable aspect to form a passivation layer on the layer made of the sheet-like epoxy resin composition of the present invention or a cured product thereof.
 パッシベーション層は、プラズマ環境下で成膜される無機化合物層であることが好ましい。プラズマ環境下で成膜するとは、例えばプラズマCVD法で成膜することをいうが、特に限定されず、スパッタ法や蒸着法で成膜してもよい。パッシベーション層の材質は、透明な無機化合物であることが好ましく、窒化ケイ素、酸化ケイ素、SiONF、SiONなどが例示されるが、特に限定されない。パッシベーション層の厚みは、0.1~5μmであることが好ましい。パッシベーション層は、本発明のシート状エポキシ樹脂組成物の硬化物層に接触させて成膜してよい。 The passivation layer is preferably an inorganic compound layer formed in a plasma environment. Forming a film in a plasma environment means, for example, forming a film by a plasma CVD method, but is not particularly limited, and may be formed by a sputtering method or an evaporation method. The material of the passivation layer is preferably a transparent inorganic compound, and examples thereof include silicon nitride, silicon oxide, SiONF, and SiON, but are not particularly limited. The thickness of the passivation layer is preferably 0.1 to 5 μm. The passivation layer may be formed in contact with the cured product layer of the sheet-like epoxy resin composition of the present invention.
 本発明のシート状エポキシ樹脂組成物は、有機EL素子などの光半導体の劣化が生じにくい傾向がある。この理由は、必ずしも明らかではないが、以下のように推測される。即ち、組成物に含まれる3級アミンが移動しやすい状態であると、3級アミンと有機EL素子の電荷輸送層や発光層を構成する金属とが相互作用して、有機EL素子の状態を変化させ、素子の劣化を生じやすいと考えられる。これに対して本発明のシート状エポキシ樹脂組成物に含まれる3級アミンは、予め金属イオンと錯体を形成しているため、3級アミンの周辺が嵩高くなっている。そのため、3級アミンと有機EL素子の電荷輸送層や発光層との相互作用が生じにくく、有機EL素子などの劣化を抑制しうると推定される。 The sheet-like epoxy resin composition of the present invention tends to hardly cause deterioration of an optical semiconductor such as an organic EL element. The reason for this is not necessarily clear, but is presumed as follows. That is, if the tertiary amine contained in the composition is in a state that is easy to move, the tertiary amine and the metal constituting the charge transport layer or the light emitting layer of the organic EL element interact to change the state of the organic EL element. It is considered that the deterioration of the element is likely to occur. On the other hand, since the tertiary amine contained in the sheet-like epoxy resin composition of the present invention forms a complex with a metal ion in advance, the periphery of the tertiary amine is bulky. Therefore, it is presumed that the interaction between the tertiary amine and the charge transport layer or the light emitting layer of the organic EL element is unlikely to occur, and deterioration of the organic EL element or the like can be suppressed.
 このような素子の劣化が生じているかどうかは、以下の方法で評価されうる。即ち、蒸着法で有機EL素子を作製する。作製した素子上に、本発明の組成物を圧着した後、熱硬化させて当該素子を封止し、サンプル1を得る。一方、作製した素子の周囲を、当該素子に接しないよう本発明の組成物で同様にして封止(中空封止)し、サンプル2を得る。そして、サンプル1とサンプル2の、初期発光特性や寿命、信頼性を測定し、両者を比較する。両者の評価結果に差がなければ、シート状エポキシ樹脂組成物と素子との相互作用に起因する素子の劣化はないと判断されうる。具体的には、国際公開第2010/035502号公報に記載の劣化試験方法と同様の方法で評価することもできる。 Whether such element deterioration has occurred can be evaluated by the following method. That is, an organic EL element is produced by a vapor deposition method. After the composition of the present invention is pressure-bonded on the produced element, the element is sealed by thermosetting to obtain Sample 1. On the other hand, the periphery of the produced element is similarly sealed (hollow sealed) with the composition of the present invention so as not to contact the element, and sample 2 is obtained. Then, the initial light emission characteristics, life, and reliability of sample 1 and sample 2 are measured, and both are compared. If there is no difference between the two evaluation results, it can be determined that there is no deterioration of the device due to the interaction between the sheet-like epoxy resin composition and the device. Specifically, it can also be evaluated by the same method as the deterioration test method described in International Publication No. 2010/035502.
 高分子量のエポキシ樹脂(A)
 <ビスフェノールF型エポキシ樹脂>
 jER4005(三菱化学(株)製):重量平均分子量7582、エポキシ当量1070g/eq
 jER4010(三菱化学(株)製):重量平均分子量39102、エポキシ当量4400g/eq
 <ビスフェノールA/ビスフェノールF型エポキシ樹脂>
 jER4275(三菱化学(株)製):重量平均分子量58287、エポキシ当量9200g/eq、(一分子内のビスフェノールF型構造単位の個数):(一分子内のビスフェノールA型構造単位の個数)=75:25
 <フェノキシ型エポキシ樹脂>
 jER1256(三菱化学(株)製):重量平均分子量58688、エポキシ当量8500g/eq
High molecular weight epoxy resin (A)
<Bisphenol F type epoxy resin>
jER4005 (Mitsubishi Chemical Corporation): weight average molecular weight 7582, epoxy equivalent 1070 g / eq
jER4010 (Mitsubishi Chemical Corporation): weight average molecular weight 39102, epoxy equivalent 4400 g / eq
<Bisphenol A / Bisphenol F type epoxy resin>
jER4275 (Mitsubishi Chemical Corporation): weight average molecular weight 58287, epoxy equivalent 9200 g / eq, (number of bisphenol F structural units in one molecule): (number of bisphenol A structural units in one molecule) = 75 : 25
<Phenoxy type epoxy resin>
jER1256 (Mitsubishi Chemical Corporation): weight average molecular weight 58688, epoxy equivalent 8500 g / eq
 金属錯体(B)
 <金属錯体(B-1)の合成>
 5Lフラスコに、亜鉛ビス(2-エチルヘキソエート)を768.19g(2.18mol)投入し、イソプロピルアルコールを1500g加えて、常温常圧下、約150rpmで撹拌した。次いで、亜鉛ビス(2-エチルヘキソエート)が完全に溶解したのを確認後、1,2-DMZ(1,2-ジメチルイミダゾール)を210g(2.18mol)加えて、撹拌を続けた。次いで、1,2-DMZを42g(0.44mol)さらに加えて、撹拌を続けた。その後、撹拌を停止し、得られた溶液を3Lのフラスコに移してエバポレーションによりイソプロピルアルコールを留去し、液状の金属錯体(B-1)を得た。金属イオンに対する3級アミンのモル比は1.2であった。
Metal complex (B)
<Synthesis of Metal Complex (B-1)>
Into a 5 L flask, 768.19 g (2.18 mol) of zinc bis (2-ethylhexoate) was added, 1500 g of isopropyl alcohol was added, and the mixture was stirred at room temperature and normal pressure at about 150 rpm. Subsequently, after confirming that zinc bis (2-ethylhexoate) was completely dissolved, 210 g (2.18 mol) of 1,2-DMZ (1,2-dimethylimidazole) was added and stirring was continued. Then, an additional 42 g (0.44 mol) of 1,2-DMZ was added and stirring was continued. Thereafter, stirring was stopped, and the resulting solution was transferred to a 3 L flask, and isopropyl alcohol was distilled off by evaporation to obtain a liquid metal complex (B-1). The molar ratio of tertiary amine to metal ions was 1.2.
 得られた金属錯体(B-1)のH NMRを測定した。
 1H NMR(270 MHz、CDCl3): δ 0.82 (t, J = 6.8 Hz, 12 H), 1.18-1.23 (m, 8 H), 1.30-1.57 (m, 8H), 2.22 (td, J = 6.9Hz, 3.0Hz, 2 H), 2.51 (s, 3.7 H), 3.57 (s, 3.7 H), 6.76(s, 1.2 H), 7.06(s, 1.2H).
1 H NMR of the obtained metal complex (B-1) was measured.
1 H NMR (270 MHz, CDCl 3 ): δ 0.82 (t, J = 6.8 Hz, 12 H), 1.18-1.23 (m, 8 H), 1.30-1.57 (m, 8H), 2.22 (td, J = 6.9Hz, 3.0Hz, 2H), 2.51 (s, 3.7H), 3.57 (s, 3.7H), 6.76 (s, 1.2H), 7.06 (s, 1.2H).
 次に、1,2-DMZ(1,2-ジメチルイミダゾール)のH NMRを測定した。
 1HNMR(270 MHz、CDCl3): δ 2.34 (s, 3 H), 3.54 (s, 3 H), 6.76 (s, 1 H), 6.85 (s, 1 H).
Next, 1 H NMR of 1,2-DMZ (1,2-dimethylimidazole) was measured.
1 HNMR (270 MHz, CDCl 3 ): δ 2.34 (s, 3 H), 3.54 (s, 3 H), 6.76 (s, 1 H), 6.85 (s, 1 H).
 金属錯体(B-1)のHNMRシフトと1,2-DMZ(1,2-ジメチルイミダゾール)のHNMRシフトの対比から、5位の水素原子に帰属するピーク(6.85→7.06)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。 From the comparison of the 1 HNMR shift of the metal complex (B-1) and the 1 HNMR shift of 1,2-DMZ (1,2-dimethylimidazole), a peak attributed to the 5-position hydrogen atom (6.85 → 7.06) ) Is moving. In the following formula, the position of the hydrogen atom belonging to the peak confirmed to move is indicated by ◯.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 <金属錯体(B-2)の合成>
 3級アミンを1B2PZ(1-ベンジル-2-フェニルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が0.2となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は金属錯体(B-1)の合成と同様にして液状の金属錯体(B-2)を得た。
<Synthesis of Metal Complex (B-2)>
The tertiary amine was changed to 1B2PZ (1-benzyl-2-phenylimidazole) and charged with 2-ethylhexanoate zinc or tertiary amine so that the molar ratio of tertiary amine to metal ion was 0.2. A liquid metal complex (B-2) was obtained in the same manner as the synthesis of the metal complex (B-1) except that the amount was changed.
 得られた金属錯体(B-2)のHNMRを測定した。
 1H NMR(270MHz、CDCl3): δ 0.82 (t, J = 7.8Hz, 12H), 1.15-1.25 (m, 8H), 1.29-1.61 (m, 8H), 2.23 (td, J =8.4, 5.7Hz,2H), 5.14 (s, 0.4H), 7.01(d, J= 1.4 Hz, 0.2H), 7.07(dd, J =6.5, 1.6Hz, 0.4H), 7.27(d, J =3.8 Hz, 0.2H), 7.33-7.45 (m, 1.2H), 7.58-7.61 (m, 2H).
1 HNMR of the obtained metal complex (B-2) was measured.
1 H NMR (270 MHz, CDCl 3 ): δ 0.82 (t, J = 7.8Hz, 12H), 1.15-1.25 (m, 8H), 1.29-1.61 (m, 8H), 2.23 (td, J = 8.4, 5.7 Hz, 2H), 5.14 (s, 0.4H), 7.01 (d, J = 1.4 Hz, 0.2H), 7.07 (dd, J = 6.5, 1.6Hz, 0.4H), 7.27 (d, J = 3.8 Hz, 0.2H), 7.33-7.45 (m, 1.2H), 7.58-7.61 (m, 2H).
 次に、1B2PZ(1-ベンジル-2-フェニルイミダゾール)のHNMRを測定した。
 1H NMR(270MHz、CDCl3):δ =  5.18  (s, 2H), 6.93 (d, J = 3.2Hz, 1H), 7.03 (dd, J= 3.2, 1.4Hz, 2 H), 7.18(d, J =3.8Hz, 1H), 7.23-7.41(m,6H),7.51-7.58 (m, 2H).
Next, 1 HNMR of 1B2PZ (1-benzyl-2-phenylimidazole) was measured.
1 H NMR (270 MHz, CDCl 3 ): δ = 5.18 (s, 2H), 6.93 (d, J = 3.2 Hz, 1H), 7.03 (dd, J = 3.2, 1.4 Hz, 2 H), 7.18 (d, J = 3.8Hz, 1H), 7.23-7.41 (m, 6H), 7.51-7.58 (m, 2H).
 金属錯体(B-2)のH NMRシフトと1B2PZ(1-ベンジル-2-フェニルイミダゾール)のHNMRシフトの対比から、5位の水素原子に帰属するピーク(7.18→7.27)、フェニル基の水素原子(7.23-7.41→7.33-7.45)、フェニル基の水素原子(7.51-7.58→7.58-7.61)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000026
Metal complex (B-2) of 1 H NMR shift and 1B2PZ from the comparison 1 HNMR shifts (1-benzyl-2-phenylimidazole), a peak attributable to 5-position of the hydrogen atom (7.18 → 7.27) The hydrogen atom of the phenyl group (7.23-7.41 → 7.33-7.45) and the hydrogen atom of the phenyl group (7.51-7.58 → 7.58-7.61) moved. It is estimated that In the following formula, the position of the hydrogen atom belonging to the peak confirmed to move is indicated by ◯.
Figure JPOXMLDOC01-appb-C000026
 <金属錯体(B-3)の合成>
 3級アミンを1BMI12(1-イソブチル-2-メチルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が0.8となるように亜鉛ビス(2-エチルヘキソエート)や3級アミンの仕込み量を変更した以外は金属錯体(B-1)と同様にして液状の金属錯体(B-3)を得た。
<Synthesis of Metal Complex (B-3)>
The tertiary amine is changed to 1BMI12 (1-isobutyl-2-methylimidazole), and zinc bis (2-ethylhexoate) or tertiary is used so that the molar ratio of tertiary amine to metal ions is 0.8. A liquid metal complex (B-3) was obtained in the same manner as the metal complex (B-1) except that the amount of amine charged was changed.
 得られた金属錯体(B-3)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3): δ 0.83 (t, J = 7.0 Hz, 12 H), 0.91 (t, J = 4.1 Hz, 3 H), 0.94 (d, J = 6.5 Hz, 3 H), 1.18-1.26 (m, 8 H), 1.26-1.58 (m, 8 H), 2.03 (qt, J = 13.5, 0.5 Hz, 1 H), 2.23 (td, J = 4.8 Hz, 1.9 Hz, 2 H), 2.50 (s, 3 H), 3.63 (d, 7.3 Hz, 2 H), 6.74 (d, J = 9.7 Hz, 1 H), 7.10 (d, J = 1.4 Hz, 1 H).
1 HNMR of the obtained metal complex (B-3) was measured.
1 H NMR (270 MHz, CDCl 3 ): δ 0.83 (t, J = 7.0 Hz, 12 H), 0.91 (t, J = 4.1 Hz, 3 H), 0.94 (d, J = 6.5 Hz, 3 H) , 1.18-1.26 (m, 8 H), 1.26-1.58 (m, 8 H), 2.03 (qt, J = 13.5, 0.5 Hz, 1 H), 2.23 (td, J = 4.8 Hz, 1.9 Hz, 2 H ), 2.50 (s, 3 H), 3.63 (d, 7.3 Hz, 2 H), 6.74 (d, J = 9.7 Hz, 1 H), 7.10 (d, J = 1.4 Hz, 1 H).
 次に、1BMI12(1-イソブチル-2-メチルイミダゾール)のH NMRを測定した。
 1H NMR(270MHz、CDCl3、標準物質TMS): δ 0.90 (t, J = 4.1 Hz, 3 H), 0.91 (d, J = 6.5 Hz, 3 H), 1.97 (qt, J = 13.5, 0.5 Hz, 1 H), 2.35 (s, 3 H), 3.61 (d, J = 7.3 Hz, 2 H), 6.77 (d, J = 1.4 Hz, 1 H), 6.87 (d, J = 1.4 Hz, 1 H).
Next, 1 H NMR of 1BMI12 (1-isobutyl-2-methylimidazole) was measured.
1 H NMR (270 MHz, CDCl 3 , standard TMS): δ 0.90 (t, J = 4.1 Hz, 3 H), 0.91 (d, J = 6.5 Hz, 3 H), 1.97 (qt, J = 13.5, 0.5 Hz, 1 H), 2.35 (s, 3 H), 3.61 (d, J = 7.3 Hz, 2 H), 6.77 (d, J = 1.4 Hz, 1 H), 6.87 (d, J = 1.4 Hz, 1 H).
 金属錯体(B-3)のHNMRシフトと1BMI12(1-イソブチル-2-メチルイミダゾール)のHNMRシフトの対比から、2位のメチル基の水素原子に帰属するピーク(2.35→2.50)と、5位の水素原子に帰属するピーク(6.87→7.10)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000027
From the comparison of the 1 H NMR shift of the metal complex (B-3) and the 1 H NMR shift of 1BMI12 (1-isobutyl-2-methylimidazole), a peak attributed to the hydrogen atom of the 2-position methyl group (2.35 → 2. 50) and the peak (6.87 → 7.10) attributed to the 5-position hydrogen atom are presumed to have moved. In the following formula, the position of the hydrogen atom belonging to the peak confirmed to move is indicated by ◯.
Figure JPOXMLDOC01-appb-C000027
 <金属錯体(B-4)の合成>
 3級アミンを1MI(1-メチルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が2.0となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は金属錯体(B-1)と同様にして液状の金属錯体(B-4)を得た。
<Synthesis of Metal Complex (B-4)>
The tertiary amine was changed to 1MI (1-methylimidazole), and the amounts of 2-ethylhexanoate zinc and tertiary amine were changed so that the molar ratio of tertiary amine to metal ion was 2.0. Except for the above, a liquid metal complex (B-4) was obtained in the same manner as the metal complex (B-1).
 得られた金属錯体(B-4)のHNMRを測定した。
 1H NMR(270MHz、CDCl3): δ = 0.89 (t, J = 7.6 Hz, 12 H), 1.22-1.30 (m, 8H), 1.42-1.67 (m, 8 H), 2.32(td, J = 6.9 Hz, 3.0 Hz, 2 H), 3.69 (s, 6 H), 6.84(s, 2 H),7.37 (s, 2 H), 8.15(s, 2 H).
1 HNMR of the obtained metal complex (B-4) was measured.
1 H NMR (270 MHz, CDCl 3 ): δ = 0.89 (t, J = 7.6 Hz, 12 H), 1.22-1.30 (m, 8H), 1.42-1.67 (m, 8 H), 2.32 (td, J = 6.9 Hz, 3.0 Hz, 2 H), 3.69 (s, 6 H), 6.84 (s, 2 H), 7.37 (s, 2 H), 8.15 (s, 2 H).
 次に、1MI(1-メチルイミダゾール)のHNMRを測定した。
 1H NMR(270MHz、CDCl3、標準物質TMS):δ= 3.66 (s, 3 H), 6.87 (s, 1 H), 7.02 (s, 1 H), 7.40 (s, 1 H).
Next, 1 HNMR of 1MI (1-methylimidazole) was measured.
1 H NMR (270 MHz, CDCl 3 , standard TMS): δ = 3.66 (s, 3 H), 6.87 (s, 1 H), 7.02 (s, 1 H), 7.40 (s, 1 H).
 金属錯体(B-4)のHNMRシフトと1MI(1-メチルイミダゾール)のHNMRシフトの対比から、2位の水素原子に帰属するピーク(7.40→8.15)と、4位の水素原子に帰属するピーク(7.02→7.37)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000028
From the comparison of the 1 H NMR shift of the metal complex (B-4) and the 1 H NMR shift of 1MI (1-methylimidazole), the peak (7.40 → 8.15) attributed to the hydrogen atom at the 2-position and the 4-position It is presumed that the peak (7.02 → 7.37) attributed to the hydrogen atom has moved. In the following formula, the position of the hydrogen atom belonging to the peak confirmed to move is indicated by ◯.
Figure JPOXMLDOC01-appb-C000028
 <金属錯体(B-5)の合成>
 1Lフラスコに、安息香酸亜鉛を61.5g(0.20mol)投入し、イソプロピルアルコールを160g加えて、常温常圧下、約150rpmで撹拌した。次いで、安息香酸亜鉛が完全に溶解したのを確認後、1,2-DMZ(1,2-ジメチルイミダゾール)を19.2g(0.20mol)加えて、撹拌を続けた。その後、撹拌を停止し、得られた溶液を1Lのフラスコに移してエバポレーションによりイソプロピルアルコールを留去し、液状の金属錯体(B-5)を得た。金属イオンに対する3級アミンのモル比は1.0であった。
<Synthesis of Metal Complex (B-5)>
To a 1 L flask, 61.5 g (0.20 mol) of zinc benzoate was added, 160 g of isopropyl alcohol was added, and the mixture was stirred at room temperature and normal pressure at about 150 rpm. Next, after confirming that the zinc benzoate was completely dissolved, 19.2 g (0.20 mol) of 1,2-DMZ (1,2-dimethylimidazole) was added and stirring was continued. Thereafter, the stirring was stopped, and the resulting solution was transferred to a 1 L flask, and isopropyl alcohol was distilled off by evaporation to obtain a liquid metal complex (B-5). The molar ratio of tertiary amine to metal ions was 1.0.
 得られた金属錯体(B-5)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3、標準物質TMS): δ 2.51 (s, 3 H), 3.72 (s, 3 H), 6.87 (s, 1 H), 6.97 (s, 1 H), 7.66-7.79 (m, 6 H), 8.21 (d, J = 0.5 Hz, 4 H).
1 HNMR of the obtained metal complex (B-5) was measured.
1 H NMR (270 MHz, CDCl 3 , reference material TMS): δ 2.51 (s, 3 H), 3.72 (s, 3 H), 6.87 (s, 1 H), 6.97 (s, 1 H), 7.66- 7.79 (m, 6 H), 8.21 (d, J = 0.5 Hz, 4 H).
 金属錯体(B-5)のHNMRシフトと1,2-DMZ(1,2-ジメチルイミダゾール)のHNMRシフトの対比から、4位の水素原子に帰属するピークと5位の水素原子に帰属するピークが、それぞれ表1に示される量だけ移動していることがわかった。 From the comparison of the 1 HNMR shift of the metal complex (B-5) and the 1 HNMR shift of 1,2-DMZ (1,2-dimethylimidazole), the peak attributed to the 4-position hydrogen atom and the 5-position hydrogen atom It was found that each peak to be moved was moved by the amount shown in Table 1.
 <金属錯体(B-6)の合成>
 1Lフラスコに、アセチルアセトナート亜鉛を52.7g(0.20mol)投入し、イソプロピルアルコールを160g加えて、常温常圧下、約150rpmで撹拌した。次いで、安息香酸亜鉛が完全に溶解したのを確認後、1,2-DMZ(1,2-ジメチルイミダゾール)を19.2g(0.20mol)加えて、撹拌を続けた。その後、撹拌を停止し、得られた溶液を1Lのフラスコに移してエバポレーションによりイソプロピルアルコールを留去し、液状の金属錯体(B-6)を得た。金属イオンに対する3級アミンのモル比は1.0であった。
<Synthesis of Metal Complex (B-6)>
To a 1 L flask, 52.7 g (0.20 mol) of acetylacetonate zinc was added, 160 g of isopropyl alcohol was added, and the mixture was stirred at room temperature and normal pressure at about 150 rpm. Next, after confirming that the zinc benzoate was completely dissolved, 19.2 g (0.20 mol) of 1,2-DMZ (1,2-dimethylimidazole) was added and stirring was continued. Thereafter, the stirring was stopped, and the resulting solution was transferred to a 1 L flask, and isopropyl alcohol was distilled off by evaporation to obtain a liquid metal complex (B-6). The molar ratio of tertiary amine to metal ions was 1.0.
 得られた金属錯体(B-6)のHNMRを測定した。
1H NMR(270 MHz、CDCl3、標準物質TMS):δ 2.24 (s, 6 H), 2.27 (s, 6 H), 2.51 (s, 3 H), 3.72 (s, 3 H), 6.19 (s, 2 H), 6.87 (s, 1 H), 6.97 (s, 1 H).
1 HNMR of the obtained metal complex (B-6) was measured.
1 H NMR (270 MHz, CDCl 3 , standard TMS): δ 2.24 (s, 6 H), 2.27 (s, 6 H), 2.51 (s, 3 H), 3.72 (s, 3 H), 6.19 ( s, 2 H), 6.87 (s, 1 H), 6.97 (s, 1 H).
 金属錯体(B-6)のHNMRシフトと1,2-DMZ(1,2-ジメチルイミダゾール)のHNMRシフトの対比から、4位の水素原子に帰属するピークと5位の水素原子に帰属するピークが、それぞれ表1に示される量だけ移動していることがわかった。 From the comparison of the 1 H NMR shift of the metal complex (B-6) and the 1 H NMR shift of 1,2-DMZ (1,2-dimethylimidazole), the peak attributed to the 4-position hydrogen atom and the 5-position hydrogen atom It was found that each peak to be moved was moved by the amount shown in Table 1.
 得られた金属錯体(B-1)~(B-6)の組成およびHNMRのピーク移動量を表1にまとめた。表中の金属錯体(B)の欄の金属イオン・アニオン性配位子および3級アミンの数値は、質量比を示す。
Figure JPOXMLDOC01-appb-T000001
The compositions of the obtained metal complexes (B-1) to (B-6) and the 1 HNMR peak transfer amount are summarized in Table 1. The numerical values of the metal ion / anionic ligand and the tertiary amine in the column of the metal complex (B) in the table indicate the mass ratio.
Figure JPOXMLDOC01-appb-T000001
 低分子量のエポキシ樹脂(C)
 <ビスフェノールF型エポキシ樹脂>
 YL983U(三菱化学(株)製):重量平均分子量398、エポキシ当量170g/eq
 jER807(三菱化学(株)製):重量平均分子量229、エポキシ当量175g/eq
 <ビスフェノールA(EO付加)型エポキシ樹脂>
 BEO-60E(新日本理化株式会社製):重量平均分子量876、エポキシ当量385g/eq
 <アミノフェノール型エポキシ樹脂>
 jER630(三菱化学(株)製):重量平均分子量124、エポキシ当量97.5g/eq
 EXA-835LV(DIC(株)):重量平均分子量210、エポキシ当量165g/eq
Low molecular weight epoxy resin (C)
<Bisphenol F type epoxy resin>
YL983U (manufactured by Mitsubishi Chemical Corporation): weight average molecular weight 398, epoxy equivalent 170 g / eq
jER807 (Mitsubishi Chemical Corporation): weight average molecular weight 229, epoxy equivalent 175 g / eq
<Bisphenol A (EO addition) type epoxy resin>
BEO-60E (manufactured by Shin Nippon Chemical Co., Ltd.): weight average molecular weight 876, epoxy equivalent 385 g / eq
<Aminophenol type epoxy resin>
jER630 (Mitsubishi Chemical Corporation): weight average molecular weight 124, epoxy equivalent 97.5 g / eq
EXA-835LV (DIC Corporation): weight average molecular weight 210, epoxy equivalent 165 g / eq
 シランカップリング剤(D)
 KBM-403(3-グリシドキシプロピルトリメトキシシラン 分子量236)(信越化学工業(株)製)
Silane coupling agent (D)
KBM-403 (3-glycidoxypropyltrimethoxysilane molecular weight 236) (manufactured by Shin-Etsu Chemical Co., Ltd.)
 溶剤(E)
 MEK(メチルエチルケトン)
Solvent (E)
MEK (methyl ethyl ketone)
 <硬化促進剤>
 フジキュア7000((株)T&K TOKA)(イミダゾール系液状硬化剤)
 2PZ-CNS-PW(四国化成工業株式会社製)(1-シアノエチル-2-フェニルイミダゾリウムトリメリテート)
 2E4MZ(四国化成工業(株)製)(2-エチル-4-メチルイミダゾール)
 1,2-DMZ(1,2-ジメチルイミダゾール)
 1B2PZ(1-ベンジル-2-フェニルイミダゾール)
 1BMI12(1-イソブチル-2-メチルイミダゾール)
<Curing accelerator>
Fuji Cure 7000 (T & K TOKA Co., Ltd.) (Imidazole-based liquid curing agent)
2PZ-CNS-PW (manufactured by Shikoku Chemicals) (1-cyanoethyl-2-phenylimidazolium trimellitate)
2E4MZ (manufactured by Shikoku Chemicals Co., Ltd.) (2-ethyl-4-methylimidazole)
1,2-DMZ (1,2-dimethylimidazole)
1B2PZ (1-benzyl-2-phenylimidazole)
1BMI12 (1-isobutyl-2-methylimidazole)
 <その他成分>
 Zn-OCTOATE 22%(DIC(株)製)(2-エチルヘキサノエート亜鉛、(C15COO)Zn)
<Other ingredients>
Zn-OCTOATE 22% (manufactured by DIC Corporation) (2-ethylhexanoate zinc, (C 7 H 15 COO) 2 Zn)
 [実施例1]
 フラスコに、20質量部のjER4005と、40質量部のjER4010と、40質量部のjER630とを投入し、これに200質量部のメチルエチルケトンを加え、室温で攪拌溶解した。この溶液に、3質量部の金属錯体(B-1)と1質量部のKBM-403とを添加して室温で攪拌し、エポキシ樹脂組成物のワニスを調製した。
[Example 1]
20 parts by mass of jER4005, 40 parts by mass of jER4010, and 40 parts by mass of jER630 were added to the flask, 200 parts by mass of methyl ethyl ketone was added thereto, and the mixture was stirred and dissolved at room temperature. To this solution, 3 parts by mass of metal complex (B-1) and 1 part by mass of KBM-403 were added and stirred at room temperature to prepare an epoxy resin composition varnish.
 調製したワニスを、塗工機を用いて、基材フィルム(PETフィルム G2(帝人デュポンフィルム株式会社製)厚み38μm)に、乾燥後厚みが約15μmとなるようにアプリケーターで塗工した。このフィルムをイナートオーブン(30℃)中で、10分間保持し、続いて真空オーブン(40℃)中で2時間保持し、ワニス塗工膜中のMEKを乾燥除去して、基材フィルム上にシート状エポキシ樹脂組成物からなる層を形成した。さらに、シート状エポキシ樹脂組成物からなる層上に、保護フィルムとして離型処理したPETフィルム(帝人デュポンフィルム社製ピューレックスA31)を熱圧着し、封止用シートを得た。なお、保護フィルムは適宜剥がし、シート状エポキシ樹脂組成物からなる層の表面を露出させて使用した。 The prepared varnish was coated on a base film (PET film G2 (manufactured by Teijin DuPont Films, Inc.) thickness 38 μm) with an applicator using a coating machine so that the thickness after drying was about 15 μm. This film is kept in an inert oven (30 ° C.) for 10 minutes, then kept in a vacuum oven (40 ° C.) for 2 hours, and the MEK in the varnish coating film is dried and removed. A layer made of a sheet-like epoxy resin composition was formed. Furthermore, a PET film (Purex A31 manufactured by Teijin DuPont Films, Ltd.) subjected to release treatment as a protective film was subjected to thermocompression bonding on the layer made of the sheet-like epoxy resin composition to obtain a sealing sheet. In addition, the protective film was peeled off as appropriate, and the surface of the layer made of the sheet-like epoxy resin composition was exposed for use.
 [実施例2~7および比較例1~6]
 表2または3に示されるような組成比率(質量比)で、エポキシ樹脂組成物のワニスを実施例1と同様に調製し、塗工および乾燥して、シート状エポキシ樹脂組成物からなる層を有する封止用シートを得た。
[Examples 2 to 7 and Comparative Examples 1 to 6]
In the composition ratio (mass ratio) as shown in Table 2 or 3, a varnish of the epoxy resin composition was prepared in the same manner as in Example 1, and coated and dried to form a layer composed of the sheet-like epoxy resin composition. The sheet | seat for sealing which has was obtained.
 [比較例7]
 (1)40重量部のEXA-835LVと、20重量部の2PZ-CNS-PWを、3本ロールを用いて均一に分散混合した。
 (2)フラスコに、60重量部のjER1256と、200重量部のMEKを入れ、室温にて攪拌溶解した。
 (3)(1)と(2)、および1重量部のKBM-403を混合し、室温で攪拌し、エポキシ樹脂組成物のワニスを調整した。
 調整したワニスは、実施例1と同様に塗工および乾燥して、シート状エポキシ樹脂組成物からなる層を有する封止用シートを得た。
[Comparative Example 7]
(1) 40 parts by weight of EXA-835LV and 20 parts by weight of 2PZ-CNS-PW were uniformly dispersed and mixed using three rolls.
(2) 60 parts by weight of jER1256 and 200 parts by weight of MEK were placed in a flask and stirred and dissolved at room temperature.
(3) (1) and (2) and 1 part by weight of KBM-403 were mixed and stirred at room temperature to prepare a varnish of the epoxy resin composition.
The adjusted varnish was applied and dried in the same manner as in Example 1 to obtain a sealing sheet having a layer made of a sheet-like epoxy resin composition.
 実施例および比較例で得られたシート状エポキシ樹脂組成物からなる層の水分含有量をカールフィッシャー法で測定したところ、実施例1~7および比較例1~6のシート状エポキシ樹脂組成物からなる層の含水率は、いずれも0.1重量%以下であった。比較例7のシート状エポキシ樹脂組成物からなる層の含水率は、0.25重量%となった。 When the moisture content of the layers comprising the sheet-like epoxy resin compositions obtained in the examples and comparative examples was measured by the Karl Fischer method, the sheet-like epoxy resin compositions of Examples 1 to 7 and Comparative Examples 1 to 6 were measured. The water content of each layer was 0.1% by weight or less. The water content of the layer made of the sheet-like epoxy resin composition of Comparative Example 7 was 0.25% by weight.
 次に、実施例および比較例で得られたシート状エポキシ樹脂組成物からなる層の透明性、硬化性および溶融点を、以下の方法で評価した。評価結果を、表2および3に示す。 Next, the transparency, curability, and melting point of the layers made of the sheet-like epoxy resin compositions obtained in Examples and Comparative Examples were evaluated by the following methods. The evaluation results are shown in Tables 2 and 3.
 (1)透明性(目視評価)
 実施例または比較例で調製したエポキシ樹脂組成物のワニスを用いて、離型処理されたPETフィルム(帝人デュポンフィルム社製ピューレックスA53、38μm)上に、乾燥厚みが約40μmになるように塗工し、真空下40℃で2時間乾燥させて、離型処理されたPETフィルム上に、室温(約25℃)において固形のシート状エポキシ樹脂組成物からなる層を形成した。さらに、シート状エポキシ樹脂組成物からなる層上に、保護フィルムとして離型処理したPETフィルム(帝人デュポンフィルム社製ピューレックスA31)を熱圧着し、封止用シートを得た。
(1) Transparency (visual evaluation)
Using the varnish of the epoxy resin composition prepared in the examples or comparative examples, it was applied onto a release-treated PET film (Purex A53, Teijin DuPont Film Co., Ltd., 38 μm) to a dry thickness of about 40 μm. And dried for 2 hours at 40 ° C. under vacuum to form a layer made of a solid sheet-like epoxy resin composition at room temperature (about 25 ° C.) on the release-treated PET film. Furthermore, a PET film (Purex A31 manufactured by Teijin DuPont Films, Ltd.) subjected to release treatment as a protective film was subjected to thermocompression bonding on the layer made of the sheet-like epoxy resin composition to obtain a sealing sheet.
 得られた封止用シートから離型処理したPETを剥離し、ガラス板(松浪硝子製S9213、厚さ1.2mm、76×52mm)にシート状エポキシ樹脂組成物を転写した。ガラス板に転写したシート状エポキシ樹脂組成物を、オーブンで100℃2時間加熱して、硬化物とした。転写前のガラス板と、シート状エポキシ樹脂組成物の硬化物が積層されたガラス板との透明性を比較し、これらの透明性が目視で同じならば○、透明性が目視で低下していれば×と評価した。 The release-treated PET was peeled from the obtained sealing sheet, and the sheet-shaped epoxy resin composition was transferred to a glass plate (S9213, Matsunami Glass, thickness 1.2 mm, 76 × 52 mm). The sheet-like epoxy resin composition transferred to the glass plate was heated in an oven at 100 ° C. for 2 hours to obtain a cured product. Compare the transparency of the glass plate before transfer with the glass plate on which the cured product of the sheet-shaped epoxy resin composition is laminated. If these transparencys are the same visually, the transparency is visually impaired. It was evaluated as x.
 (2)透明性(光線透過率測定)
 上記(1)の透明性の評価と同様にして作製した封止用シートから離型処理したPETを剥離し、ガラス板(松浪硝子製S9213、厚さ1.2mm、76×52mm)にシート状エポキシ樹脂組成物からなる層を転写した。ガラス板に転写したシート状エポキシ樹脂組成物からなる層をオーブンで100℃2時間加熱して、硬化物を得た。ガラス板上のシート状エポキシ樹脂組成物について、硬化前後の波長550nmにおける光線透過率を、紫外可視光分光光度計(島津製作所 UV-2550)を用いて測定した。なお、シート状エポキシ樹脂組成物からなる層を転写するのに用いたガラス板の光線透過率をベースラインとした。波長550nmの光線透過率が90%以上であれば○、それを下回る場合は×と評価した。
(2) Transparency (light transmittance measurement)
The release-treated PET is peeled from the sealing sheet produced in the same manner as the transparency evaluation in (1) above, and the sheet is formed on a glass plate (S9213, Matsunami Glass, thickness 1.2 mm, 76 × 52 mm). A layer made of the epoxy resin composition was transferred. The layer made of the sheet-like epoxy resin composition transferred to the glass plate was heated in an oven at 100 ° C. for 2 hours to obtain a cured product. About the sheet-like epoxy resin composition on a glass plate, the light transmittance in wavelength 550nm before and behind hardening was measured using the ultraviolet visible light spectrophotometer (Shimadzu Corporation UV-2550). In addition, the light transmittance of the glass plate used for transferring the layer made of the sheet-like epoxy resin composition was used as a baseline. When the light transmittance at a wavelength of 550 nm was 90% or more, it was evaluated as ◯, and when it was lower than that, it was evaluated as ×.
 (3)硬化性
 基材フィルムA53(帝人デュポンフィルム株式会社製、厚み38μm)に、実施例および比較例で得られたエポキシ樹脂組成物のワニスを、乾燥厚みが15μmとなるようにアプリケーターで塗工した。このフィルムを、イナートオーブン(30℃)中で10分間保持した。続いて真空オーブン(40℃)中で2時間保持し、ワニス塗工膜中のMEKを乾燥除去して、基材フィルム上にシート状エポキシ樹脂組成物からなる層が形成された封止用シートを得た。
(3) Curability The base film A53 (manufactured by Teijin DuPont Films, Inc., thickness 38 μm) is coated with the varnish of the epoxy resin composition obtained in the examples and comparative examples with an applicator so that the dry thickness is 15 μm. Worked. The film was held in an inert oven (30 ° C.) for 10 minutes. Subsequently, the sheet for sealing was formed by holding in a vacuum oven (40 ° C.) for 2 hours, drying and removing MEK in the varnish coating film, and forming a layer made of the sheet-like epoxy resin composition on the base film. Got.
 その後、封止用シートのシート状エポキシ樹脂組成物からなる層を、ホットプレート上で45℃前後に加熱したNaCl板に熱圧着し、室温に冷却した後、基材フィルムを剥がして、シート状エポキシ樹脂組成物からなる層をNaCl板上に転写した。転写されたシート状エポキシ樹脂組成物からなる層上に、別のNaCl板を被せて、IR吸収スペクトル測定用のサンプルとした。この際、2枚のNaCl板間のスペーサーとして、厚み11μmのアルミ箔を使用した。 Thereafter, the layer made of the sheet-like epoxy resin composition of the sealing sheet is thermocompression bonded to a NaCl plate heated to around 45 ° C. on a hot plate, cooled to room temperature, and then the base film is peeled off to form a sheet The layer made of the epoxy resin composition was transferred onto a NaCl plate. On the layer which consists of the transferred sheet-like epoxy resin composition, another NaCl board was covered, and it was set as the sample for IR absorption spectrum measurement. At this time, an aluminum foil having a thickness of 11 μm was used as a spacer between two NaCl plates.
 IR吸収スペクトル測定装置として、日本分光社製 FT/IR-4100を用い、下記3つの状態のシート状エポキシ樹脂組成物からなる層のIR吸収スペクトルをそれぞれ測定した。
 (i)NaCl板で挟みこんだ直後のシート状エポキシ樹脂組成物
 (ii)オーブンで100℃2時間加熱した後のシート状エポキシ樹脂組成物
 (iii)終了後、さらにオーブンで150℃2時間加熱した後のシート状エポキシ樹脂組成物
As an IR absorption spectrum measuring apparatus, FT / IR-4100 manufactured by JASCO Corporation was used, and IR absorption spectra of the layers composed of the sheet-like epoxy resin composition in the following three states were measured.
(I) Sheet-like epoxy resin composition immediately after being sandwiched between NaCl plates (ii) Sheet-like epoxy resin composition after heating in an oven at 100 ° C. for 2 hours (iii) After completion, further heating in an oven at 150 ° C. for 2 hours Sheet-like epoxy resin composition after
 そして、上記3つ状態のIR吸収スペクトルから、(ii)の状態におけるシート状エポキシ樹脂組成物からなる層の硬化性(硬化率)を算出した。算出にあたって、上記(i)の状態を硬化率0%、(iii)の状態を硬化率100%とした。具体的には、以下の手順で、(ii)の状態における硬化率を算出した。
 1)エポキシ樹脂の加熱硬化反応に伴って、オキソラン環が減少する。そこで、(i)、(ii)、(iii)のそれぞれにおいて、ベンゼン環の特性吸収(約1609cm-1)を内部標準とした、オキソラン環の特性吸収(約910cm-1)の比強度を算出した。
 2)その後、(i)から(iii)までの比強度の変化量に対する、(i)から(ii)までの比強度の変化量の割合を算出し、(ii)の状態における硬化率とした。
And the curability (curing rate) of the layer which consists of a sheet-like epoxy resin composition in the state of (ii) was computed from the IR absorption spectrum of the said 3 states. In the calculation, the state (i) was set to 0% curing rate, and the state (iii) was set to 100% curing rate. Specifically, the curing rate in the state (ii) was calculated by the following procedure.
1) The oxolane ring decreases with the heat curing reaction of the epoxy resin. Therefore, (i), calculating the specific strength (ii), in each of (iii), the characteristic absorption of the benzene ring (about 1609cm -1) as an internal standard, characteristic absorption of oxolane ring (about 910 cm -1) did.
2) Thereafter, the ratio of the amount of change in specific intensity from (i) to (ii) to the amount of change in specific intensity from (i) to (iii) was calculated, and the curing rate in the state of (ii) was obtained. .
 (4)溶融点
 実施例または比較例で得られた封止用シートを乾燥させた後、長さ約40mm、幅約5mmに切り出して短冊状の試験片を得た。この試験片のシート状エポキシ樹脂組成物からなる層を、ホットプレート上に載せられて加熱されたガラス板上に密着させた後、当該試験片を180度方向へ徐々にガラス板から剥離した。この操作を、ホットプレートの設定温度35℃から始め、設定温度を1℃上げる毎に短冊状の試験片を新たに用意して繰り返し、剥離時にシート状エポキシ樹脂組成物からなる層の粘着剥離性が最も大きくなる温度を、溶融点とした。
(4) Melting point After the sealing sheet obtained in the example or the comparative example was dried, it was cut into a length of about 40 mm and a width of about 5 mm to obtain a strip-shaped test piece. After the layer made of the sheet-like epoxy resin composition of this test piece was placed on a hot plate and brought into close contact with the heated glass plate, the test piece was gradually peeled off from the glass plate in the direction of 180 degrees. This operation is started at a preset temperature of 35 ° C. for the hot plate, and a strip-shaped test piece is newly prepared every time the set temperature is increased by 1 ° C. The temperature at which the temperature became maximum was taken as the melting point.
 23℃60RH%で7日間保存後または14日間保存後のシート状エポキシ樹脂組成物からなる層の溶融点も、前述と同様にして測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
The melting point of the layer composed of the sheet-like epoxy resin composition after being stored at 23 ° C. and 60 RH% for 7 days or after 14 days was also measured in the same manner as described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 シート状エポキシ樹脂組成物からなる層の硬化性は、表2および3の数値が大きいほど硬化性が高いことを表す。硬化前のシート状エポキシ樹脂組成物からなる層の溶融点は、保存による変化が少ないほど、保存による硬化が進んでいないことを表す。 The curability of the layer composed of the sheet-like epoxy resin composition indicates that the larger the numerical values in Tables 2 and 3, the higher the curability. The melting point of the layer composed of the sheet-like epoxy resin composition before curing indicates that the curing due to the storage does not progress as the change due to the storage decreases.
 実施例1~7と比較例1~7を対比すると、実施例1~7は、シート状エポキシ樹脂組成物からなる層の製造直後の硬化性が高く、かつ0~14日間、常温で保存しても硬化前のシート状エポキシ樹脂組成物からなる層の溶融点の変動は少ないことから、硬化性と保存安定性の両方に優れることがわかる。 Comparing Examples 1 to 7 and Comparative Examples 1 to 7, Examples 1 to 7 have high curability immediately after production of the layer made of the sheet-like epoxy resin composition, and are stored at room temperature for 0 to 14 days. However, it can be seen that since the melting point of the layer made of the sheet-shaped epoxy resin composition before curing is small, both the curability and the storage stability are excellent.
 一方、比較例1および3~6は、シート状エポキシ樹脂組成物からなる層の製造直後の硬化性は高いものの、常温で保存すると溶融点が大きく増加しており、実施例に比べて保存安定性が低いことがわかる。また、比較例2および7は、常温で保存しても溶融点があまり変化していないため、保存安定性は高いが、硬化性が低いことがわかる。 On the other hand, in Comparative Examples 1 and 3 to 6, although the curability immediately after production of the layer made of the sheet-like epoxy resin composition is high, the melting point is greatly increased when stored at room temperature, and the storage stability is stable compared to the Examples. It turns out that the nature is low. In Comparative Examples 2 and 7, since the melting point does not change much even when stored at room temperature, it can be seen that the storage stability is high but the curability is low.
 本出願は、2012年12月21日出願の特願2012-279261に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2012-279261 filed on Dec. 21, 2012. The contents described in the application specification and the drawings are all incorporated herein.
 本発明のシート状エポキシ樹脂組成物は、硬化性と保存安定性に優れている。そのため、本発明のシート状エポキシ樹脂組成物を、例えば光半導体の封止などに用いた際に、光半導体デバイスの製造効率などを高めることができる。 The sheet-like epoxy resin composition of the present invention is excellent in curability and storage stability. Therefore, when the sheet-like epoxy resin composition of the present invention is used for sealing an optical semiconductor, for example, the manufacturing efficiency of the optical semiconductor device can be increased.
 10、10’ 封止用シート
 12 基材フィルム
 14 ガスバリア層
 16 シート状エポキシ樹脂組成物からなる層
 18 保護フィルム
 20 有機ELデバイス
 22 表示基板
 24 有機EL素子
 26 対向基板(透明基板)
 28 シール部材
 30 カソード反射電極層
 32 有機EL層
 34 アノード透明電極層
DESCRIPTION OF SYMBOLS 10, 10 'Sealing sheet 12 Base film 14 Gas barrier layer 16 Layer made of sheet-shaped epoxy resin composition 18 Protective film 20 Organic EL device 22 Display substrate 24 Organic EL element 26 Counter substrate (transparent substrate)
28 Sealing member 30 Cathode reflective electrode layer 32 Organic EL layer 34 Anode transparent electrode layer

Claims (22)

  1.  1分子内に2個以上のエポキシ基を有し、重量平均分子量が2×10~1×10であるエポキシ樹脂(A)と、
     Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属イオンと、前記金属イオンと錯形成が可能であって、N-H結合を有さない3級アミンと、分子量が17~200のアニオン性配位子とを含む金属錯体(B)とを含む、シート状エポキシ樹脂組成物。
    An epoxy resin (A) having two or more epoxy groups in one molecule and having a weight average molecular weight of 2 × 10 3 to 1 × 10 5 ;
    A tertiary amine that can form a complex with one or more metal ions selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr, and has no NH bond. And a metal complex (B) containing an anionic ligand having a molecular weight of 17 to 200, and a sheet-like epoxy resin composition.
  2.  前記アニオン性配位子の価数が前記金属イオンの価数より小さく、かつ
     前記アニオン性配位子の半径が2.0Å以上である、請求項1に記載のシート状エポキシ樹脂組成物。
    The sheet-like epoxy resin composition according to claim 1, wherein the valence of the anionic ligand is smaller than the valence of the metal ion, and the radius of the anionic ligand is 2.0 or more.
  3.  前記3級アミンが、下記一般式(1)~(6)のいずれかで表される化合物である、請求項1に記載のシート状エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000029
    (一般式(1)において、
     Rは、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す)
    Figure JPOXMLDOC01-appb-C000030
    (一般式(2)において、
     RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RB1、RB2、RB3、RB4、RB5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000031
    (一般式(3)において、
     RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RC1、RC2、RC3、RC4、RC5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000032
    (一般式(4)において、
     RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000033
    (一般式(5)において、
     RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000034
    (一般式(6)において、
     RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    The sheet-like epoxy resin composition according to claim 1, wherein the tertiary amine is a compound represented by any one of the following general formulas (1) to (6).
    Figure JPOXMLDOC01-appb-C000029
    (In general formula (1),
    R 1 represents an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group;
    R 2 , R 3 and R 4 each independently represent a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group)
    Figure JPOXMLDOC01-appb-C000030
    (In general formula (2),
    RB1, RB3, RB4, and RB5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
    RB2 represents an aliphatic hydrocarbon group, hydroxyl group, aryl-containing group or cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms;
    A plurality of groups selected from RB1, RB2, RB3, RB4, and RB5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be)
    Figure JPOXMLDOC01-appb-C000031
    (In general formula (3),
    RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a C1-C17 heteroatom, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
    RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms;
    A plurality of groups selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. Also good)
    Figure JPOXMLDOC01-appb-C000032
    (In general formula (4),
    RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
    A plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. Also good)
    Figure JPOXMLDOC01-appb-C000033
    (In general formula (5),
    RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Show;
    A plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed)
    Figure JPOXMLDOC01-appb-C000034
    (In general formula (6),
    RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group;
    A plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. )
  4.  前記アニオン性配位子が、O、S、Pからなる群から選ばれる、前記金属イオンに結合しうる原子を2以上有し、かつ前記金属イオンに配位して3~7員環を形成しうるものである、請求項1に記載のシート状エポキシ樹脂組成物。 The anionic ligand has two or more atoms selected from the group consisting of O, S, and P and capable of binding to the metal ion, and coordinates to the metal ion to form a 3- to 7-membered ring The sheet-like epoxy resin composition according to claim 1, which can be used.
  5.  前記3級アミンが、前記一般式(1)~(3)のいずれかで表される化合物であり、かつ前記アニオン性配位子が、下記一般式(7A)で表されるカルボキシレート化合物であるか、下記一般式(7B)で表されるカルボキシレート化合物のアニオンである、請求項3に記載のシート状エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000035
    (一般式(7A)において、
     RD1は、水素基であり、
     RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
    Figure JPOXMLDOC01-appb-C000036
    (一般式(7B)において、
     RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
    The tertiary amine is a compound represented by any one of the general formulas (1) to (3), and the anionic ligand is a carboxylate compound represented by the following general formula (7A) The sheet-like epoxy resin composition according to claim 3, which is an anion of a carboxylate compound represented by the following general formula (7B).
    Figure JPOXMLDOC01-appb-C000035
    (In general formula (7A),
    RD1 is a hydrogen group,
    RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group)
    Figure JPOXMLDOC01-appb-C000036
    (In general formula (7B),
    RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group)
  6.  前記シート状エポキシ樹脂組成物の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトのうち3級アミンに由来する化学シフトが、前記3級アミン単独の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトに対して0.05ppm以上移動するピークを含む、請求項1に記載のシート状エポキシ樹脂組成物。 Of the chemical shift of 1 HNMR at 25 ° C. and 270 MHz in CDCl 3 of the sheet-like epoxy resin composition, the chemical shift derived from a tertiary amine is 25 ° C. and 270 MHz in CDCl 3 of the tertiary amine alone. The sheet-like epoxy resin composition of Claim 1 containing the peak which moves 0.05 ppm or more with respect to the chemical shift of 1 HNMR in.
  7.  前記金属イオンに対する前記3級アミンのモル比が、0.5~6.0である、請求項1に記載のシート状エポキシ樹脂組成物。 The sheet-like epoxy resin composition according to claim 1, wherein a molar ratio of the tertiary amine to the metal ions is 0.5 to 6.0.
  8.  前記カルボキシレート化合物が、2-エチルヘキサン酸、ギ酸、酢酸、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、安息香酸およびナフテン酸からなる群から選ばれる少なくとも1種類の化合物である、請求項5に記載のシート状エポキシ樹脂組成物。 The carboxylate compound is 2-ethylhexanoic acid, formic acid, acetic acid, butanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, benzoic acid and naphthenic acid. The sheet-like epoxy resin composition according to claim 5, which is at least one compound selected from the group consisting of:
  9.  前記3級アミンが、1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾールおよび1,5-ジアゾビシクロ[4,3,0]ノン-5-エンからなる群から選ばれる少なくとも1種類の化合物である、請求項1に記載のシート状エポキシ樹脂組成物。 The tertiary amine is 1,8-diazobicyclo [5,4,0] undec-7-ene, 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-isobutyl- 2. The sheet form according to claim 1, which is at least one compound selected from the group consisting of 2-methylimidazole, 1-butylimidazole and 1,5-diazobicyclo [4,3,0] non-5-ene. Epoxy resin composition.
  10.  前記シート状エポキシ樹脂組成物は、前記金属錯体(B)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.3となる範囲で含む、請求項1に記載のシート状エポキシ樹脂組成物。 The sheet-like epoxy resin composition according to claim 1, wherein the metal complex (B) contains the active functional group / epoxy group equivalent ratio of tertiary amine in a range of 0.008 to 0.3. Sheet-like epoxy resin composition.
  11.  前記エポキシ樹脂(A)の含有量が、前記シート状エポキシ樹脂組成物に対して55~95質量%である、請求項1に記載のシート状エポキシ樹脂組成物。 The sheet-like epoxy resin composition according to claim 1, wherein the content of the epoxy resin (A) is 55 to 95% by mass with respect to the sheet-like epoxy resin composition.
  12.  請求項1に記載のシート状エポキシ樹脂組成物からなる層を含む、封止用シート。 A sealing sheet comprising a layer made of the sheet-like epoxy resin composition according to claim 1.
  13.  前記シート状エポキシ樹脂組成物からなる層の、厚さ40μmにおける波長550nmにおける光線透過率が90%以上である、請求項12に記載の封止用シート。 The sealing sheet according to claim 12, wherein the layer made of the sheet-like epoxy resin composition has a light transmittance of 90% or more at a wavelength of 550 nm at a thickness of 40 µm.
  14.  前記シート状エポキシ樹脂組成物からなる層の少なくとも一方の面に、保護フィルムをさらに有する、請求項12に記載の封止用シート。 The sealing sheet according to claim 12, further comprising a protective film on at least one surface of the layer made of the sheet-like epoxy resin composition.
  15.  光半導体の面封止に用いられる、請求項12に記載の封止用シート。 The sealing sheet according to claim 12, which is used for optical semiconductor surface sealing.
  16.  有機EL素子の面封止に用いられる、請求項12に記載の封止用シート。 The sheet | seat for sealing of Claim 12 used for the surface sealing of an organic EL element.
  17.  前記シート状エポキシ樹脂組成物からなる層の含水分量が0.1質量%以下である、請求項12に記載の封止用シート。 The sealing sheet according to claim 12, wherein the moisture content of the layer made of the sheet-like epoxy resin composition is 0.1% by mass or less.
  18.  有機EL素子が形成された基板を準備する工程と、
     前記有機EL素子を、請求項1に記載のシート状エポキシ樹脂組成物からなる層で覆う工程と、
     前記シート状エポキシ樹脂組成物からなる層の硬化物で、前記有機EL素子を面封止する工程とを含む、有機ELデバイスの製造方法。
    Preparing a substrate on which an organic EL element is formed;
    Covering the organic EL element with a layer made of the sheet-like epoxy resin composition according to claim 1;
    And a step of sealing the surface of the organic EL element with a cured product of a layer made of the sheet-like epoxy resin composition.
  19.  有機EL素子と、
     前記有機EL素子と接触しており、前記有機EL素子を面封止している請求項1に記載のシート状エポキシ樹脂組成物の硬化物層とを含む、有機ELデバイス。
    An organic EL element;
    An organic EL device comprising: a cured layer of the sheet-like epoxy resin composition according to claim 1, which is in contact with the organic EL element and seals the organic EL element.
  20.  有機EL素子と、
     前記有機EL素子を面封止しており、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、検出される前記金属原子と前記窒素原子とのモル比が、前記金属原子:前記窒素原子=1:0.5~1:6.0であり、かつ前記金属原子の含有量が0.5~15質量%であるシート状エポキシ樹脂組成物の硬化物層と、を含む、有機ELデバイス。
    An organic EL element;
    The organic EL element is surface-sealed, and in a spectrum measured by X-ray photoelectron spectroscopy (XPS), one or more kinds selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr A peak derived from a metal atom and a peak derived from a nitrogen atom are detected, and the detected molar ratio of the metal atom to the nitrogen atom is such that the metal atom: the nitrogen atom = 1: 0.5-1 And a cured layer of a sheet-like epoxy resin composition having a metal atom content of 6.0 to 15% by mass and an organic EL device.
  21.  請求項19に記載の有機ELデバイスを有する、有機ELディスプレイパネル。 An organic EL display panel comprising the organic EL device according to claim 19.
  22.  請求項19に記載の有機ELデバイスを有する、有機EL照明。
     
     
     
    An organic EL illumination comprising the organic EL device according to claim 19.


PCT/JP2013/007515 2012-12-21 2013-12-20 Sheet-like epoxy resin composition, method for manufacturing organic el device using same, organic el device and organic el display panel WO2014097647A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014552947A JP6342331B2 (en) 2012-12-21 2013-12-20 Sheet for sealing surface of organic EL element, method for producing organic EL device using the same, organic EL device, and organic EL display panel
CN201380066393.XA CN104870515B (en) 2012-12-21 2013-12-20 Sheet type epoxy composition, the manufacture method using its organic EL device, organic EL device and organic EL display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-279261 2012-12-21
JP2012279261 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097647A1 true WO2014097647A1 (en) 2014-06-26

Family

ID=50978005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007515 WO2014097647A1 (en) 2012-12-21 2013-12-20 Sheet-like epoxy resin composition, method for manufacturing organic el device using same, organic el device and organic el display panel

Country Status (4)

Country Link
JP (1) JP6342331B2 (en)
CN (1) CN104870515B (en)
TW (1) TWI600702B (en)
WO (1) WO2014097647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066607A (en) * 2014-09-18 2016-04-28 株式会社半導体エネルギー研究所 Exfoliation method, light-emitting device, module and electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020170638A1 (en) * 2019-02-21 2020-08-27
KR102658294B1 (en) * 2019-09-09 2024-04-16 주식회사 두산 Encapsulation sheet and semiconductor device having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060247341A1 (en) * 2004-08-12 2006-11-02 Bing Hsieh Organometallic compositions and coating compositions
WO2010119706A1 (en) * 2009-04-17 2010-10-21 三井化学株式会社 Sealing composite and sealing sheet
WO2012176472A1 (en) * 2011-06-23 2012-12-27 三井化学株式会社 Surface sealant for optical semiconductor, method for manufacturing organic el device using same, organic el device, and organic el display panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304354B1 (en) * 2000-07-25 2007-01-24 Mitsui Chemicals, Inc. Curable composition and uses thereof
JP5685074B2 (en) * 2009-12-28 2015-03-18 大日本印刷株式会社 Optical film, optical film manufacturing method, polarizing plate, display panel, and display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060247341A1 (en) * 2004-08-12 2006-11-02 Bing Hsieh Organometallic compositions and coating compositions
WO2010119706A1 (en) * 2009-04-17 2010-10-21 三井化学株式会社 Sealing composite and sealing sheet
WO2012176472A1 (en) * 2011-06-23 2012-12-27 三井化学株式会社 Surface sealant for optical semiconductor, method for manufacturing organic el device using same, organic el device, and organic el display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066607A (en) * 2014-09-18 2016-04-28 株式会社半導体エネルギー研究所 Exfoliation method, light-emitting device, module and electronic apparatus

Also Published As

Publication number Publication date
JPWO2014097647A1 (en) 2017-01-12
TW201430047A (en) 2014-08-01
CN104870515A (en) 2015-08-26
CN104870515B (en) 2017-07-07
JP6342331B2 (en) 2018-06-13
TWI600702B (en) 2017-10-01

Similar Documents

Publication Publication Date Title
KR101604896B1 (en) Surface sealant for optical semiconductor, method for manufacturing organic el device using same, organic el device, and organic el display panel
JP6129154B2 (en) Optical device surface sealing composition, optical device surface sealing sheet, display, and display manufacturing method
JP5696038B2 (en) Sealing composition and sealing sheet
CN103946998B (en) For encapsulating the light curable pressure sensitive adhesive films of organic electronic device, organic electronic device and its method for packing
TWI622603B (en) Surface encapsulating agent for organic el element, organic el device using the same and manufacturing method thereof, cured object and organic el panel
EP2236539B1 (en) Polymerizable epoxy composition, and sealing material composition comprising the same
JP6010838B2 (en) Adhesive film and organic electronic device sealing method using the same
WO2013027389A1 (en) Sheet-shaped epoxy resin composition, and sealing sheet containing same
JP5577667B2 (en) Resin composition
JP2012082266A (en) Sealing composition, and sealing sheet using the same
JP2013157228A (en) Organic el device, and manufacturing method therefor
JP6342331B2 (en) Sheet for sealing surface of organic EL element, method for producing organic EL device using the same, organic EL device, and organic EL display panel
JP6572887B2 (en) Manufacturing method of sealing body
JP7268596B2 (en) Encapsulation manufacturing method
JP2011099031A (en) Adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863774

Country of ref document: EP

Kind code of ref document: A1