WO2014091878A1 - 燃料電池スタックとこれを用いた荷重分担方法 - Google Patents

燃料電池スタックとこれを用いた荷重分担方法 Download PDF

Info

Publication number
WO2014091878A1
WO2014091878A1 PCT/JP2013/081004 JP2013081004W WO2014091878A1 WO 2014091878 A1 WO2014091878 A1 WO 2014091878A1 JP 2013081004 W JP2013081004 W JP 2013081004W WO 2014091878 A1 WO2014091878 A1 WO 2014091878A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
fuel cell
anode
load sharing
cathode
Prior art date
Application number
PCT/JP2013/081004
Other languages
English (en)
French (fr)
Inventor
和弘 影山
屋 隆了
杉本 博美
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014551947A priority Critical patent/JP5877506B2/ja
Priority to CA2894229A priority patent/CA2894229C/en
Priority to US14/649,698 priority patent/US10297839B2/en
Priority to EP13862197.4A priority patent/EP2933863B1/en
Priority to CN201380065084.0A priority patent/CN104854749B/zh
Publication of WO2014091878A1 publication Critical patent/WO2014091878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell stack formed by stacking a plurality of fuel cells and a load sharing method using the same.
  • Patent Document 1 The fuel cell stack disclosed in Patent Document 1 is a laminate of a plurality of single cells each having a membrane electrode assembly, formed along the outer periphery of the membrane electrode assembly, and an insulating member having electrical insulation, Adhesive members that join the insulating members together are provided in adjacent single cells.
  • the above-mentioned adhesive member does not share the load acting on the anode separator and the cathode separator, and the gas diffusion layer of the anode electrode and the gas diffusion layer of the cathode electrode are anode gas or anode gas and cathode gas. Although it expands and contracts with the pulsation operation caused by the difference, it cannot be denied that the membrane electrode assembly is repeatedly stressed and damaged due to the expansion and contraction.
  • an object of the present invention is to provide a fuel cell stack that can share the compressive load in the stacking direction of the fuel cells and can release the action of the tensile load in the stacking direction, and a load sharing method using the same.
  • an anode separator and a cathode are provided on both sides of a cell frame in which a membrane electrode assembly in which a gas diffusion layer on the anode electrode side and a gas diffusion layer on the cathode electrode side are bonded on both sides is disposed.
  • the anode side load sharing for fixing the anode separator, the cell frame, and the gas diffusion layer to share the compressive load in the stacking direction of the fuel cells In a fuel cell stack in which fuel cells arranged with a separator are stacked, the anode side load sharing for fixing the anode separator, the cell frame, and the gas diffusion layer to share the compressive load in the stacking direction of the fuel cells.
  • a cathode-side load sharing member for fixing the cathode separator, the cell frame, and the gas diffusion layer to each other and sharing a compressive load in the stacking direction of the fuel cells, the anode-side load-sharing member or the cathode-side
  • the tensile load in the stacking direction of the fuel cells is applied to the load sharing member or both.
  • the anode side load sharing member and the cathode side load sharing member share the compressive load in the stacking direction of the fuel cells, and when a tensile load acts in the stacking direction of the fuel cells, the load releasing means Release the action of the tensile load.
  • the compressive load in the stacking direction of the fuel cells can be shared, and the action of the tensile load in the stacking direction is released.
  • the anode-side load sharing member and the cathode-side load sharing member share the compressive load in the fuel cell stacking direction, and when a tensile load acts in the fuel cell stacking direction, the load releasing means Therefore, the compressive load in the stacking direction of the fuel cells can be shared, and the action of the pulling load in the stacking direction can be canceled. It can prevent body damage.
  • FIG. 1 is a perspective view of a fuel cell stack according to an embodiment of the present invention. It is a disassembled perspective view of a fuel cell stack same as the above. It is an enlarged front view of the cell frame which makes a part of fuel cell. It is an enlarged front view of the separator which makes a part of fuel cell same as the above. It is the elements on larger scale which follow the II line shown in FIG. 4, and has shown the load cancellation
  • FIG. 5 is a partial cross-sectional view showing a load releasing means according to a second example and corresponding to a portion along line II shown in FIG. 4.
  • FIG. 1 is a perspective view of a fuel cell stack according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the fuel cell stack
  • FIG. 3 is an enlarged front view of a cell frame forming a part of the fuel cell.
  • It is. 4 is an enlarged front view of a separator forming a part of the fuel battery cell
  • FIG. 5 is a partially enlarged sectional view taken along line II shown in FIG. Means are shown.
  • a fuel cell stack A includes fuel cell modules M and M and a seal plate P1 stacked between a pair of end plates 10 and 11, and The fuel cell modules M and M and the seal plate P1 are clamped by the end plates 10 and 11, and are fastened by the fastening plates 12 and 13 and the reinforcing plates 14 and 15.
  • the cell module M is formed by stacking the required number of fuel cells 20 and the outer wall surface of the cell module M is molded with an adhesive layer. As a result, water intrusion into the cell module M is prevented and electrical insulation is achieved.
  • the anode and cathode are formed so as to partition and form gas flow passages F1 and F2 (see FIG. 5) for allowing two different types of power generation gas to circulate on both sides of the cell frame 21, respectively.
  • Separators 25A and 25B are provided.
  • “Two types of power generation gas” are a hydrogen-containing gas and an oxygen-containing gas.
  • the cell frame 21 is made of resin.
  • the cell frame 21 has a horizontal rectangle in a front view as viewed from the stacking direction ⁇ of the fuel cells 20 and has a constant plate thickness. Formed.
  • a membrane electrode assembly 22 is disposed at the center of the cell frame 21, and manifold portions ML and MR are disposed on both sides (both ends) of the membrane electrode assembly 22.
  • the membrane electrode assembly 22 is also referred to as MEA (Membrane Electrode Assembly).
  • MEA Membrane Electrode Assembly
  • the gas diffusion layer 24 on the fuel electrode side and the gas diffusion layer on the oxidant electrode side are formed on both surfaces of the electrolyte membrane 23 made of a solid polymer. 26 are arranged.
  • the manifold parts ML and MR are used for flowing in and out of hydrogen-containing gas, oxygen-containing gas and cooling fluid, respectively. Between the manifold parts ML and MR and the membrane electrode assembly 22, hydrogen is contained. Diffuser regions D1 and D1, which are gas or oxygen-containing gas flow regions, are formed.
  • the cooling fluid shown in this embodiment is “water”.
  • the manifold portion ML on one side includes manifold holes M1 to M3. These manifold holes M1 to M3 are for hydrogen-containing gas supply (M1), cooling fluid supply (M2), and oxygen-containing gas supply (M3), and form respective flow paths in the stacking direction ⁇ . Yes.
  • the other manifold portion MR is composed of manifold holes M4 to M6.
  • the manifold holes M4 to M6 are for oxygen-containing gas discharge (M4), cooling fluid discharge (M5) and hydrogen-containing gas discharge (M6), and form respective flow paths in the stacking direction ⁇ . Yes. It should be noted that a part or all of the supply and discharge may be in a reverse positional relationship.
  • the diffuser region D1 is formed on both surfaces of the cell frame 21 between the membrane electrode assembly 22 and the manifold portion ML and between the membrane electrode assembly 22 and the manifold portion MR.
  • a plurality of rectifying projections 9 having the same shape and the same size in the shape of a truncated cone are arranged in two rows at a predetermined interval.
  • the cell frame 21 is formed so that the adhesive seal 7 continues endlessly along the outer edge portion and surrounds the manifold holes M1, M2, M5, and M6.
  • the anode and cathode separators 25 ⁇ / b> A and 25 ⁇ / b> B are each formed by press-molding a metal plate such as stainless steel, and are formed in a horizontal rectangle having approximately the same size as the cell frame 21 described above.
  • anode / cathode separators 25A and 25B are provided with irregularities formed in the central portion facing the membrane electrode assembly 22 in the longitudinal direction, and the flow path forming portions 25a and 25b continuous in the longitudinal direction.
  • manifold holes M1 to M6 of the cell frame 21 described above manifold holes M1 to M6 having the same shape and size are formed to face each other (see FIG. 4).
  • the area where the flow path forming portions 25a and 25b are formed is the active area c.
  • a plurality of protrusions 8 having the same shape and the same size in the shape of a truncated cone are arranged in a lattice pattern at a required interval.
  • the fuel cell 20 having the above-described configuration has the anode side load sharing member 30, the cathode side load sharing member 40, and the load releasing means 50 shown in FIG.
  • the anode side load sharing member 30 is used to share the compressive load in the stacking direction ⁇ of the fuel cell 20 by bonding and fixing the anode separator 25A and the gas diffusion layer 24 to each other.
  • silicon-based, epoxy-based, olefin It consists of an adhesive.
  • the anode side load sharing member 30 is formed to have a required thickness and a width W that covers a required region including the joint portion a between the cell frame 21 and the gas diffusion layer 24.
  • the cathode side load sharing member 40 is formed of the same material and shape as the anode side load sharing member 30 described above.
  • the cathode separator 25B and the gas diffusion layer 26 are bonded and fixed to each other in the stacking direction of the fuel cells 20. This is for sharing the compressive load at ⁇ .
  • the load releasing means 50 is interposed between the cathode side load sharing member 40 and the cell frame 21 and the gas diffusion layer 26. That is, the load releasing means 50 is disposed across the cell frame 21 and the gas diffusion layer 26 and releases the action of the tensile load in the stacking direction of the fuel cells 20.
  • the load releasing means 50 shown in the present embodiment is an adhesive pretreatment agent applied to the cathode side load sharing member 40.
  • the load releasing means 50, the anode side load sharing member 30, and the cathode side load sharing member 40 are disposed along both long edges of the active area c. That is, by forming the load releasing means 50, the adhesive force between the anode side load sharing member 30, the cell frame 21 and the gas diffusion layer 24 is relatively improved. Thereby, for example, when the gas diffusion layers 24 and 26 described above swell, the cathode side load sharing member 40 having a relatively weak adhesive force, the cell frame 21 and the gas diffusion layer 26 are separated from each other, and the tensile load in the stacking direction ⁇ is separated. The action of is released. Thereby, damage to membrane electrode assembly 22, cell frame 21, etc. can be prevented.
  • FIG. 6A is a diagram showing the relationship between the displacement of the membrane electrode assembly and the anode / cathode side load sharing member
  • FIG. 6B is the stress generated in the membrane electrode assembly and the presence / absence of the anode / cathode side load sharing member
  • (C) is a figure which shows the relationship between the repeated bending stress added to a membrane electrode assembly, and the number of repetitions.
  • the membrane electrode assembly is represented as “MEA-ASSY”
  • the presence / absence of the anode / cathode side load sharing member is represented by “present” and “none”.
  • FIG. 7 is a partial cross-sectional view corresponding to a portion along line II shown in FIG. 4 showing the load releasing means according to the second example.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the load releasing means 60 includes the anode side load sharing member 30 and the anode separator 25A, the anode side load sharing member 30, the cell frame 21, and the gas diffusion layer 24, and the cathode separator 25B.
  • the adhesive pretreatment agents 60a to 60c are applied between the cathode side load sharing member 40. Even in the load release means 60, the load release means 60 is disposed across the cell frame 21 and the gas diffusion layer 24 to release the action of the tensile load in the stacking direction of the fuel cells 20.
  • adhesion pretreatment agents 60a to 60c By forming the adhesion pretreatment agents 60a to 60c, adhesion between the anode separator 25A and the cell frame 21 and the gas diffusion layer 24 and adhesion between the cell frame 21 and the gas diffusion layer 24 and the anode side load sharing member 30 are achieved.
  • the force and the adhesive force between the cathode separator 25B and the cathode side load sharing member 40 are improved. Thereby, for example, when the gas diffusion layers 24 and 26 described above swell, the cathode side load sharing member 40 having a relatively weak adhesive force, the cathode separator 25B, and the gas diffusion layer 25 are separated from each other, and the membrane electrode assembly 22 and the cell are separated. Damage to the frame 21 and the like can be prevented.
  • the load releasing means 70 may be UV, corona, Surface treatment 80 such as plasma treatment and surface roughening by blasting or the like may be performed. Also in this case, for example, when the gas diffusion layers 24 and 26 described above swell, the cathode side load sharing member 40, the cathode separator 25B, and the gas diffusion layer 26 having relatively weak adhesive force are separated from each other, and the membrane electrode assembly 22 is separated. In addition, damage to the cell frame 21 and the like can be prevented.
  • the anode separator 25A, the cell frame 21 and the gas diffusion layers 24 and 26 are fixed to each other by the anode side load sharing member 30, and the fuel cell 20 is compressed in the stacking direction.
  • the cathode side load sharing member 40 fixes the cathode separator 25B, the cell frame 21 and the gas diffusion layers 24 and 26 to each other to share the compressive load in the stacking direction of the fuel cells 20, and the anode side load
  • the load releasing means 50, 60, 70, 80 provided on the sharing member 30 or the cathode side load sharing member 40 or both of them release the action of the tensile load in the stacking direction of the fuel cells 20. is there.
  • the present invention is not limited to the above-described embodiments, and the following modifications can be made.
  • the anode side load sharing member 30 and / or the cathode side load sharing member 40 has a load releasing means for releasing the action of the tensile load in the stacking direction ⁇ of the fuel cells 20. Any configuration may be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 上記アノードセパレータ25A、セルフレーム21及びガス拡散層24を互いに固定して燃料電池セル20の積層方向における圧縮荷重を分担するためのアノード側荷重分担部材30と、カソードセパレータ25B、セルフレーム21及びガス拡散層26を互いに固定して燃料電池セル20の積層方向αにおける圧縮荷重を分担するためのカソード側荷重分担部材40とを有し、上記アノード側荷重分担部材30又はカソード側荷重分担部材40若しくはそれら双方に、燃料電池セル20の積層方向αにおける引っ張り荷重の作用を解除する荷重解除手段50とを設けている。

Description

燃料電池スタックとこれを用いた荷重分担方法
 本発明は、複数の燃料電池セルを積層させてなる燃料電池スタックとこれを用いた荷重分担方法に関する。
 この種の従来技術として、特許文献1に開示されたものがある。
 特許文献1に開示された燃料電池スタックは、膜電極接合体を有する単セルを複数積層したものであり、その膜電極接合体の外周に沿って形成され、電気絶縁性を有する絶縁部材と、隣接する単セルにおいて前記絶縁部材同士を接合する接着部材を備えている。
日本国特開2010-123377号公報
 上記の特許文献1に記載の燃料電池スタックにおいては、接着部材によって絶縁部材同士を接合しているので、積層方向の燃料電池スタック変位に絶縁部材が追従するように接着部材を変形させ、これにより絶縁部材に亀裂が生じるのを抑制できる。
 しかしながら、上記した接着部材は、アノードセパレータとカソードセパレータに作用する荷重を分担するものではなく、また、アノード電極のガス拡散層やカソード電極のガス拡散層は、アノードガス、またはアノードガスとカソードガスの差により生ずる脈動運転に伴って膨縮するものであるが、この膨縮に伴い膜電極接合体に繰り返し応力が作用して破損等が生じる可能性を否定することが出来ない。
 そこで本発明は、燃料電池セルの積層方向の圧縮荷重を分担でき、かつ、当該積層方向における引っ張り荷重の作用を解除できる燃料電池スタックとこれを用いた荷重分担方法の提供を目的としている。
 上記課題を解決するための本発明は、アノード極側のガス拡散層及びカソード極側のガス拡散層を両面に接合した膜電極接合体を配設したセルフレームの両面側に、アノードセパレータとカソードセパレータとを配した燃料電池セルを積層させた燃料電池スタックにおいて、上記アノードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担するためのアノード側荷重分担部材と、カソードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担するためのカソード側荷重分担部材とを有し、上記アノード側荷重分担部材又はカソード側荷重分担部材若しくはそれら双方に、燃料電池セルの積層方向における引っ張り荷重の作用を解除する荷重解除手段を設けたことを特徴としている。
 この構成においては、アノード側荷重分担部材とカソード側荷重分担部材とにより、燃料電池セルの積層方向における圧縮荷重を分担し、燃料電池セルの積層方向における引っ張り荷重が作用したときには、荷重解除手段によって、引っ張り荷重が作用することを解除する。これにより、燃料電池セルの積層方向の圧縮荷重を分担でき、かつ、当該積層方向における引っ張り荷重の作用を解除している。
 本発明によれば、アノード側荷重分担部材とカソード側荷重分担部材とにより、燃料電池セルの積層方向における圧縮荷重を分担し、燃料電池セルの積層方向における引っ張り荷重が作用したときには、荷重解除手段によって引っ張り荷重が作用することを解除しているので、燃料電池セルの積層方向における圧縮荷重を分担でき、かつ、当該積層方向における引っ張り荷重の作用を解除することができ、これにより、膜電極接合体の破損等を防ぐことができる。
本発明の一実施形態に係る燃料電池スタックの斜視図である。 同上の燃料電池スタックの分解斜視図である。 燃料電池セルの一部をなすセルフレームの拡大正面図である。 同上の燃料電池セルの一部をなすセパレータの拡大正面図である。 図4に示すI‐I線に沿う部分拡大断面図であり、第一の例に係る荷重解除手段を示している。 (A)は、膜電極接合体の変位とアノード,カソード側荷重分担部材の関係を示す図、(B)は、膜電極接合体に生ずる応力とアノード,カソード側荷重分担部材の有無との関係を示す図、(C)は、膜電極接合体に加わる繰り返し曲げ応力と繰り返し数との関係を示す図である。 第二の例に係る荷重解除手段を示すものであり、図4に示すI‐I線に沿う部分に相当する部分断面図である。
 以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る燃料電池スタックの斜視図、図2は、その燃料電池スタックの分解斜視図、図3は、燃料電池セルの一部をなすセルフレームの拡大正面図である。また、図4は、その燃料電池セルの一部をなすセパレータの拡大正面図、図5は、図4に示すI‐I線に沿う部分拡大断面図であり、第一の例に係る荷重解除手段を示している。
<第1実施例>
 本発明の一実施形態に係る燃料電池スタックAは、図1,2に示すように、一対のエンドプレート10,11間に、燃料電池モジュールM,M、シールプレートP1を積層させ、かつ、それらのエンドプレート10,11により、それら燃料電池モジュールM,M、シールプレートP1を挟圧するようにして締結板12,13及び補強板14,15によって締結した構成のものである。
 上記のセルモジュールMは、所要の枚数からなる燃料電池セル20を積層させたものであり、また、そのセルモジュールMの外壁面を接着剤層によってモールドしている。これにより、セルモジュールM内部への浸水を防止するとともに電気的な絶縁を図っている。
 上記した燃料電池セル20は、セルフレーム21の両面側に、それぞれ異なる二種類の発電用ガスを流通させるためのガス流通路F1,F2(図5参照)を区画形成するようにしてアノード,カソードセパレータ25A,25Bを配設したものである。
 「二種類の発電用ガス」は、水素含有ガスと酸素含有ガスである。
 セルフレーム21は樹脂製のものであり、本実施形態においては、図3に示すように、燃料電池セル20の積層方向αから見た正面視において横長方形にし、かつ、一定の板厚にして形成したものである。
 上記セルフレーム21の中央部分には膜電極接合体22が、また、その膜電極接合体22の両側(両端部)にはマニホールド部ML,MRが配設されている。
 膜電極接合体22は、MEA(Membrane Electrode Assembly)とも呼称されるものであり、例えば固体高分子から成る電解質膜23の両面に燃料極側のガス拡散層24及び酸化剤極側のガス拡散層26をそれぞれ配置した構造を有している。
 上記マニホールド部ML,MRは、それぞれ水素含有ガス、酸素含有ガス及び冷却流体の流出入を行なうためのものであり、それらマニホールド部ML,MRと膜電極接合体22との間には、水素含有ガス又は酸素含有ガスの流通領域であるディフューザ領域D1,D1が形成されている。
 本実施形態において示す冷却流体は「水」である。
 一側部のマニホールド部MLはマニホールド孔M1~M3からなる。
 それらマニホールド孔M1~M3は、水素含有ガス供給用(M1)、冷却流体供給用(M2)及び酸素含有ガス供給用(M3)のものであり、上記積層方向αにそれぞれの流通路をなしている。
 他方のマニホールド部MRはマニホールド孔M4~M6からなる。
 各マニホールド孔M4~M6は、酸素含有ガス排出用(M4)、冷却流体排出用(M5)及び水素含有ガス排出用(M6)のものであり、上記積層方向αにそれぞれの流通路をなしている。なお、供給用のものと排出用のものは一部又は全部が逆の位置関係でもよい。
 ディフューザ領域D1は、膜電極接合体22とマニホールド部MLとの間及びその膜電極接合体22とマニホールド部MRとの間であって、セルフレーム21の両面にそれぞれ形成されている。
 このディフューザ領域D1には、互いに同形同大の円錐台形にした整流のための複数の突起9が所要の間隔にして2列にして配列されている。
 セルフレーム21には、外縁部に沿って接着シール7が全周にわたり無端状に連続させ、かつ、マニホールド孔M1,M2、M5,M6をそれぞれ囲繞するように形成されている。
 アノード,カソードセパレータ25A,25Bは、それぞれステンレス等の金属板をプレス成形したものであり、上記したセルフレーム21とほぼ同じ大きさの横長方形にして形成されている。
 これらのアノード,カソードセパレータ25A,25Bは、上記した膜電極接合体22に対向する中央部分に、長手方向に連続した流路形成部25a,25bが凹凸形成されているとともに、両端部には、上記したセルフレーム21の各マニホールド孔M1~M6と対向して、それらと同形同大のマニホールド孔M1~M6が互いに対向して形成されている(図4参照)。
 本実施形態においては、流路形成部25a,25bを形成した領域がアクティブエリアcである。
 マニホールド部MLと流路形成部25a(25b)のガス流入端部との間、及びマニホールド部MRと流路形成部25a(25b)のガス流出端部との間には、ディフューザ領域D2,D2が形成されている。
 このディフューザ領域D2には、互いに同形同大の円錐台形にした複数の突起8が所要の間隔にして格子状に配列されている。
 上述した構成からなる燃料電池セル20には、図5に示すアノード側荷重分担部材30、カソード側荷重分担部材40及び荷重解除手段50を有している。
 アノード側荷重分担部材30は、アノードセパレータ25A及びガス拡散層24を互いに接着固定して燃料電池セル20の積層方向αにおける圧縮荷重を分担するためのものであり、例えばシリコン系,エポキシ系,オレフィン系の接着剤からなる。
 このアノード側荷重分担部材30は、所要の厚みにし、かつ、セルフレーム21とガス拡散層24の接合部分aを含む所要の領域を覆う幅Wにして形成されている。
 カソード側荷重分担部材40は、上記したアノード側荷重分担部材30と同様の材質及び形状にして形成されており、カソードセパレータ25B及びガス拡散層26を互いに接着固定して燃料電池セル20の積層方向αにおける圧縮荷重を分担するためのものである。
 荷重解除手段50は、上記したカソード側荷重分担部材40と、セルフレーム21及びガス拡散層26との間に介挿形成されている。つまり、荷重解除手段50は、セルフレーム21とガス拡散層26とに跨って配置され、燃料電池セル20の積層方向における引っ張り荷重の作用を解除する。
 本実施形態において示す荷重解除手段50は、カソード側荷重分担部材40に塗布した接着前処理剤である。
 本実施形態においては、上記したアクティブエリアcの両長辺縁に沿って、上記した荷重解除手段50、アノード側荷重分担部材30及びカソード側荷重分担部材40を配設している。
 すなわち、荷重解除手段50を形成することにより、アノード側荷重分担部材30とセルフレーム21及びガス拡散層24との接着力が比較的向上する。これにより、例えば上記したガス拡散層24,26が膨潤したときには、接着力が比較的弱いカソード側荷重分担部材40とセルフレーム21及びガス拡散層26とが離反し、上記積層方向αにおける引っ張り荷重の作用を解除している。
 これにより、膜電極接合体22やセルフレーム21等の破損を防ぐことができる。
 図6(A)は、膜電極接合体の変位とアノード,カソード側荷重分担部材の関係を示す図、(B)は、膜電極接合体に生ずる応力とアノード,カソード側荷重分担部材の有無との関係を示す図、(C)は、膜電極接合体に加わる繰り返し曲げ応力と繰り返し数との関係を示す図である。なお、図6においては、膜電極接合体を「MEA‐ASSY」と表記し、また、アノード,カソード側荷重分担部材の有り無しを「有」,「無」で示している。
 図6(A)から明らかなように、アノード,カソード側荷重分担部材30,40を設けることにより、膜電極接合体22の変位が抑えられている。また、同図(B)から明らかなように、アノード,カソード側荷重分担部材30,40を設けたときには、膜電極接合体22に発生する応力が低減している。
 また、同図(C)から明らかなように、アノード,カソード側荷重分担部材30,40を設けたときに、繰り返し回数、すなわち寿命が著しく伸びている。
<第2実施例>
 図7は、第二の例に係る荷重解除手段を示す図4に示すI‐I線に沿う部分に相当する部分断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 第二の例に係る荷重解除手段60は、アノード側荷重分担部材30とアノードセパレータ25Aとの間、アノード側荷重分担部材30とセルフレーム21とガス拡散層24との間、及びカソードセパレータ25Bとカソード側荷重分担部材40との間に、接着前処理剤60a~60cを塗布したものである。この荷重解除手段60にあっても、セルフレーム21とガス拡散層24とに跨って配置され、燃料電池セル20の積層方向における引っ張り荷重の作用を解除する。
 上記した接着前処理剤60a~60cを形成することにより、アノードセパレータ25Aとセルフレーム21及びガス拡散層24との接着力、セルフレーム21及びガス拡散層24とアノード側荷重分担部材30との接着力、並びにカソードセパレータ25Bとカソード側荷重分担部材40との接着力がそれぞれ向上する。
 これにより、例えば上記したガス拡散層24,26が膨潤したときには、接着力が比較的弱いカソード側荷重分担部材40とカソードセパレータ25B及びガス拡散層25とが離反し、膜電極接合体22やセルフレーム21等の破損を防ぐことができる。
 なお、図7においては、接着前処理剤60a~60cを塗布したものを例として説明したが、それら接着前処理剤に換えて、第三の例に係る荷重解除手段70として、UV,コロナ,プラズマ処理、及びブラスト等による表面粗し等の表面処理80を行うようにしてもよい。
 この場合にも、例えば上記したガス拡散層24,26が膨潤したときには、接着力が比較的弱いカソード側荷重分担部材40とカソードセパレータ25B及びガス拡散層26とが離反し、膜電極接合体22やセルフレーム21等の破損を防ぐことができる。
 上記した燃料電池スタックを用いた荷重分担方法は、上記アノード側荷重分担部材30により、アノードセパレータ25A、セルフレーム21及びガス拡散層24,26を互いに固定して燃料電池セル20の積層方向における圧縮荷重を分担し、カソード側荷重分担部材40により、カソードセパレータ25B、セルフレーム21及びガス拡散層24,26を互いに固定して燃料電池セル20の積層方向における圧縮荷重を分担し、上記アノード側荷重分担部材30又はカソード側荷重分担部材40若しくはそれら双方に設けた荷重解除手段50,60,70,80により、燃料電池セル20の積層方向における引っ張り荷重の作用を解除することを特徴としたものである。
 なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
 以上詳細に説明したが、要するに、上記したアノード側荷重分担部材30又はカソード側荷重分担部材40若しくはそれら双方に、燃料電池セル20の積層方向αにおける引っ張り荷重の作用を解除する荷重解除手段を有する構成であればよい。
 具体的には、アノード側荷重分担部材30とアノードセパレータ25Aとの間又はアノード側荷重分担部材30とセルフレーム21とガス拡散層24との間と、セルフレーム21及びガス拡散層25とカソード側荷重分担部材40との間又はカソードセパレータ25Bとカソード側荷重分担部材40との間に塗布した荷重解除手段の組み合わせである。
 20       燃料電池セル
 21       セルフレーム
 22       膜電極接合体
 24,26    ガス拡散層
 25A      アノードセパレータ
 25B      カソードセパレータ
 30       アノード側荷重分担部材
 40       カソード側荷重分担部材
 50       第一の例に係る荷重解除手段
 60       第二の例に係る荷重解除手段
 60a~60c  前処理剤 
 70       第三の例に係る荷重解除手段
 80       表面処理
 A        燃料電池スタック
 c        アクティブエリア

Claims (8)

  1.  アノード極側のガス拡散層及びカソード極側のガス拡散層を両面に接合した電解質膜を配設したセルフレームの両面側に、アノードセパレータとカソードセパレータとを配した燃料電池セルを積層させた燃料電池スタックにおいて、
     上記アノードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担するためのアノード側荷重分担部材と、
     カソードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担するためのカソード側荷重分担部材とを有し、
     上記アノード側荷重分担部材又はカソード側荷重分担部材若しくはそれら双方に、燃料電池セルの積層方向における引っ張り荷重の作用を解除する荷重解除手段を設けたことを特徴とする燃料電池スタック。
  2.  荷重解除手段は、セルフーレムとガス拡散層とに跨って配置され、燃料電池セルの積層方向における引っ張り荷重の作用を解除することを特徴とする請求項1に記載の燃料電池スタック。
  3.  荷重解除手段は、アノード側荷重分担部材又はカソード側荷重分担部材若しくはそれら双方であって、燃料電池セルの積層方向における引っ張り荷重の作用を解除する部分に塗布された接着前処理剤である請求項1又は2に記載の燃料電池スタック。
  4.  接着前処理剤はプライマーである請求項3に記載の燃料電池スタック。
  5.  荷重解除手段として表面処理をしている請求項1に記載の燃料電池スタック。
  6.  表面処理は、UV,コロナ,プラズマ処理又はブラストによる表面粗しによるものである請求項5に記載の燃料電池スタック。
  7.  荷重解除手段、アノード側荷重分担部材及びカソード側荷重分担部材をアクティブエリアの長辺縁に沿って配設している請求項1~6のいずれか1項に記載の燃料電池スタック。
  8.  請求項1~7のいずれか1項に記載の燃料電池スタックを用いた荷重分担方法において、
     上記アノード側荷重分担部材により、アノードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担し、
     カソード側荷重分担部材により、カソードセパレータ、セルフレーム及びガス拡散層を互いに固定して燃料電池セルの積層方向における圧縮荷重を分担し、
     上記アノード側荷重分担部材又はカソード側荷重分担部材若しくはそれら双方に設けた荷重解除手段により、燃料電池セルの積層方向における引っ張り荷重の作用を解除することを特徴とする燃料電池スタックを用いた荷重分担方法。
PCT/JP2013/081004 2012-12-13 2013-11-18 燃料電池スタックとこれを用いた荷重分担方法 WO2014091878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014551947A JP5877506B2 (ja) 2012-12-13 2013-11-18 燃料電池スタックとこれを用いた荷重分担方法
CA2894229A CA2894229C (en) 2012-12-13 2013-11-18 Fuel cell stack and load bearing method involving use of fuel cell stack
US14/649,698 US10297839B2 (en) 2012-12-13 2013-11-18 Fuel cell stack and load bearing method involving use of fuel cell stack
EP13862197.4A EP2933863B1 (en) 2012-12-13 2013-11-18 Fuel cell stack and load distribution method involving use of fuel cell stack
CN201380065084.0A CN104854749B (zh) 2012-12-13 2013-11-18 燃料电池堆及使用了该燃料电池堆的载荷分担方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012272237 2012-12-13
JP2012-272237 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014091878A1 true WO2014091878A1 (ja) 2014-06-19

Family

ID=50934174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081004 WO2014091878A1 (ja) 2012-12-13 2013-11-18 燃料電池スタックとこれを用いた荷重分担方法

Country Status (6)

Country Link
US (1) US10297839B2 (ja)
EP (1) EP2933863B1 (ja)
JP (1) JP5877506B2 (ja)
CN (1) CN104854749B (ja)
CA (1) CA2894229C (ja)
WO (1) WO2014091878A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226317A (zh) * 2014-06-25 2016-01-06 丰田自动车株式会社 燃料电池组装方法和燃料电池组装设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830707B (zh) * 2019-02-22 2020-01-17 鸿基创能科技(广州)有限公司 一种提高粘接性能的方法和膜电极及膜电极的制备方法
EP4181245A1 (en) * 2021-11-12 2023-05-17 AVL List GmbH Frame device for a fuel stack and fuel cell device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287487A (ja) * 2006-04-17 2007-11-01 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2010123377A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd 燃料電池スタック
WO2011013313A1 (ja) * 2009-07-27 2011-02-03 パナソニック株式会社 高分子型燃料電池スタックおよび高分子型燃料電池用セパレータ対
JP2012243412A (ja) * 2011-05-16 2012-12-10 Nissan Motor Co Ltd 燃料電池スタック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779345B2 (ja) * 2003-12-26 2011-09-28 トヨタ自動車株式会社 燃料電池分解方法
JP4936095B2 (ja) * 2005-03-01 2012-05-23 トヨタ自動車株式会社 燃料電池スタック
JP5087863B2 (ja) * 2006-06-09 2012-12-05 トヨタ自動車株式会社 燃料電池
CN100583494C (zh) * 2006-09-05 2010-01-20 上海神力科技有限公司 燃料电池密封组件结构
JP5790083B2 (ja) * 2011-03-31 2015-10-07 日産自動車株式会社 燃料電池セル
JP5790088B2 (ja) * 2011-03-31 2015-10-07 日産自動車株式会社 燃料電池セル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287487A (ja) * 2006-04-17 2007-11-01 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2010123377A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd 燃料電池スタック
WO2011013313A1 (ja) * 2009-07-27 2011-02-03 パナソニック株式会社 高分子型燃料電池スタックおよび高分子型燃料電池用セパレータ対
JP2012243412A (ja) * 2011-05-16 2012-12-10 Nissan Motor Co Ltd 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933863A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226317A (zh) * 2014-06-25 2016-01-06 丰田自动车株式会社 燃料电池组装方法和燃料电池组装设备
CN105226317B (zh) * 2014-06-25 2017-09-26 丰田自动车株式会社 燃料电池组装方法和燃料电池组装设备

Also Published As

Publication number Publication date
US10297839B2 (en) 2019-05-21
EP2933863B1 (en) 2017-01-11
CN104854749B (zh) 2016-08-24
CN104854749A (zh) 2015-08-19
JP5877506B2 (ja) 2016-03-08
EP2933863A1 (en) 2015-10-21
EP2933863A4 (en) 2016-03-09
JPWO2014091878A1 (ja) 2017-01-05
CA2894229A1 (en) 2014-06-19
US20150325875A1 (en) 2015-11-12
CA2894229C (en) 2015-10-13

Similar Documents

Publication Publication Date Title
CA2599533C (en) Fuel cell stack
JP4747486B2 (ja) 燃料電池
JP5412804B2 (ja) 燃料電池スタック
WO2011114811A1 (ja) 燃料電池セル
US20090004540A1 (en) Fuel Cell and Laminate
JP6112373B2 (ja) 絶縁構造体、燃料電池及び燃料電池スタック
WO2014068854A1 (ja) セルモジュール、および、燃料電池スタック
JP5688682B2 (ja) 燃料電池スタック
JP5877506B2 (ja) 燃料電池スタックとこれを用いた荷重分担方法
US10707497B2 (en) Fuel cell
JP5786419B2 (ja) 燃料電池セル
JP2009070674A (ja) 燃料電池スタック
KR102173663B1 (ko) 연료 전지 셀
JP2007193970A (ja) 燃料電池
JP2006302702A (ja) セパレータのシール構造およびシール付きセパレータの製造方法
JP5741920B2 (ja) 燃料電池セル
WO2013012026A1 (ja) 燃料電池用ガスケット
JP2010040169A (ja) 燃料電池および燃料電池の製造方法
JP2007273113A (ja) マルチセルモジュールおよび燃料電池スタック
JP5740214B2 (ja) 燃料電池
JP2012049147A (ja) 燃料電池スタック
JP6756294B2 (ja) 燃料電池スタックおよび燃料電池スタックの製造方法
JP2009016067A (ja) セパレータ及び燃料電池
JP6395121B2 (ja) 燃料電池スタック
JP5242189B2 (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551947

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013862197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013862197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14649698

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2894229

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE