WO2014087475A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2014087475A1
WO2014087475A1 PCT/JP2012/081327 JP2012081327W WO2014087475A1 WO 2014087475 A1 WO2014087475 A1 WO 2014087475A1 JP 2012081327 W JP2012081327 W JP 2012081327W WO 2014087475 A1 WO2014087475 A1 WO 2014087475A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
secondary battery
voltage
power supply
converter
Prior art date
Application number
PCT/JP2012/081327
Other languages
English (en)
French (fr)
Inventor
良昭 山田
孝幸 土屋
邦彦 肥喜里
幸一 井谷
範明 三宅
Original Assignee
ボルボ ラストバグナー アクチエボラグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ ラストバグナー アクチエボラグ filed Critical ボルボ ラストバグナー アクチエボラグ
Priority to JP2014550823A priority Critical patent/JP5899330B2/ja
Priority to PCT/JP2012/081327 priority patent/WO2014087475A1/ja
Priority to CN201280077551.7A priority patent/CN104838573B/zh
Priority to EP12889494.6A priority patent/EP2930835B1/en
Priority to US14/649,616 priority patent/US9520806B2/en
Publication of WO2014087475A1 publication Critical patent/WO2014087475A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode with means for reducing DC component from AC output voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power supply device that supplies power to a load.
  • JP 2006-345606A discloses a vehicle power supply system in which a battery and a capacitor are connected in parallel. In this power supply system, an inverter of an electric motor is driven by electric energy supplied from a capacitor and a battery.
  • the present invention has been made in view of the above-described problems, and an object thereof is to effectively use the electric energy of a capacitor.
  • a power supply device that supplies a power to a load by combining a secondary battery and a capacitor connected in parallel to the secondary battery, and connected in parallel to the secondary battery And a primary coil that stores energy by current supplied from the secondary battery, and a secondary coil that is connected in series to the capacitor and through which induced current flows by energy stored from the primary coil.
  • a power supply device comprising a converter is provided.
  • FIG. 1 is an electric circuit diagram of the power supply device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram of the power supply device according to the first embodiment of the present invention.
  • FIG. 3 is an electric circuit diagram of the power supply device according to the second embodiment of the present invention.
  • FIG. 4 is a block diagram of a power supply device according to the second embodiment of the present invention.
  • FIG. 5 is an electric circuit diagram of the power supply device according to the third embodiment of the present invention.
  • the power supply apparatus 100 supplies power to a load by combining the secondary battery 1 and the capacitor 2 connected in parallel with the secondary battery 1. This load is an inverter 50 that is supplied with power from the secondary battery 1 and the capacitor 2 and drives the motor 5.
  • the power supply apparatus 100 is applied to HEV (Hybrid Electric Vehicle: hybrid vehicle), EV (Electric Vehicle: electric vehicle), and the like.
  • the inverter 50 supplied with power from the power supply device 100 and the electric motor 5 driven by the inverter 50 will be described.
  • the electric motor 5 is a drive motor mounted on the HEV or EV.
  • the electric motor 5 is a three-phase induction motor generator driven by generating a rotating magnetic field with a three-phase alternating current.
  • the electric motor 5 includes a stator having a plurality of coils (not shown in the drawing) on the inner periphery, each of which constitutes a U phase, a V phase, and a W phase, and a rotor that has a permanent magnet and rotates on the inner periphery of the stator.
  • the stator is fixed to the vehicle body (not shown), and the rotating shaft of the rotor is connected to the wheel axle (not shown).
  • the electric motor 5 can convert electric energy into rotation of the wheel, and can convert rotation of the wheel into electric energy.
  • the inverter 50 is a voltage-current converter that generates AC power from DC power supplied from the secondary battery 1 and the capacitor 2.
  • the inverter 50 has a rated voltage of 600V and a minimum driveable voltage of 300V. This minimum voltage corresponds to the minimum voltage that can drive the load.
  • the inverter 50 converts the DC power supplied from the secondary battery 1 and the capacitor 2 into a three-layer AC consisting of a U phase, a V phase, and a W phase, which are shifted in phase by 120 degrees, and supplies them to the motor 5. To do.
  • the inverter 50 has a positive power line 51a, a negative power line 51b, a U-phase power line 51u, a V-phase power line 51v, and a W-phase power line 51w.
  • Positive power line 51 a is connected to the positive electrode of secondary battery 1 and capacitor 2.
  • the negative power line 51 b is connected to the negative electrode of the secondary battery 1 and the capacitor 2.
  • a U-phase power line 51u, a V-phase power line 51v, and a W-phase power line 51w are provided between the positive power line 51a and the negative power line 51b.
  • a smoothing capacitor 55 for smoothing the voltage of the direct current exchanged between the secondary battery 1 and the capacitor 2 and the inverter 50 is connected in parallel. .
  • the inverter 50 has IGBTs (Insulated Gate Bipolar Transistors) 53u, 54u, 53v, 54v, 53w, and 54w as six switching elements. These IGBTs 53u to 54w are diode-equipped IGBTs having rectifier diodes connected in parallel in the reverse direction.
  • IGBTs Insulated Gate Bipolar Transistors
  • IGBT 53u and IGBT 54u are provided in series with U-phase power line 51u.
  • the U-phase power line 51u is connected between the IGBT 53u and the IGBT 54u to a coil constituting the U-phase of the electric motor 5.
  • IGBT 53v and IGBT 54v are provided in series with V-phase power line 51v.
  • V-phase power line 51v is connected between the IGBT 53v and IGBT 54v to a coil constituting the V-phase of electric motor 5.
  • IGBT 53w and IGBT 54w are provided in series with W-phase power line 51w.
  • W-phase power line 51 w is connected between the IGBT 53 w and IGBT 54 w to a coil constituting the W-phase of electric motor 5.
  • the IGBTs 53u, 54u, 53v, 54v, 53w, and 54w are controlled by a motor controller (not shown), thereby generating an alternating current and driving the electric motor 5.
  • the power supply apparatus 100 includes a secondary battery 1, a capacitor 2, and an isolated DC-DC converter (hereinafter simply referred to as “DC-DC converter”) that applies a bias voltage to the capacitor 2 using electrical energy of the secondary battery 1. 30) and a controller 40 (see FIG. 2) for controlling the DC-DC converter 30.
  • DC-DC converter isolated DC-DC converter
  • the secondary battery 1 is a chemical battery such as a lithium ion secondary battery or a nickel hydride secondary battery.
  • the voltage of the secondary battery 1 is set to 600V.
  • the secondary battery 1 is provided with a secondary battery voltage detector 1 a (see FIG. 2) that detects a voltage and transmits a corresponding signal to the controller 40.
  • the capacitor 2 is an electric double layer capacitor that is connected in series and set to a desired voltage, and is connected in parallel and set to a desired storage capacity.
  • the voltage of the capacitor 2 is set to 300V.
  • the capacitor 2 is provided with a capacitor voltage detector 2a (see FIG. 2) that detects a voltage and transmits a corresponding signal to the controller 40.
  • the DC-DC converter 30 includes a primary coil 31 connected in parallel to the secondary battery 1, a secondary coil 32 connected in series to the capacitor 2, and a transformer core in which energy is stored by current flowing through the primary coil 31. 33, an IGBT 34 as a switching element provided in series with the primary coil 31, and a smoothing capacitor 35 connected in parallel to the secondary coil 32.
  • the DC-DC converter 30 is a flyback converter that adjusts the voltage output from the secondary coil 32 so that the sum of the voltage of the capacitor 2 and the voltage of the capacitor 2 becomes a set voltage.
  • the primary coil 31 is directly supplied with current from the secondary battery 1. A current flows intermittently through the primary coil 31 by switching the IGBT 34 by the controller 40. The primary coil 31 accumulates energy in the transformer core 33 by the current supplied from the secondary battery 1.
  • the transformer core 33 is magnetized by the current flowing through the primary coil 31 when the IGBT 34 is switched on. Thereby, magnetic energy is accumulated in the transformer core 33. The magnetic energy accumulated in the transformer core 33 is converted into an induced current flowing in the secondary coil 32 when the IGBT 34 is switched off.
  • the induced current flows through the secondary coil 32 due to the energy stored in the transformer core 33 from the primary coil 31.
  • An induced current having a voltage lower than that of the secondary battery 1 flows through the secondary coil 32. That is, the DC-DC converter 30 is a step-down converter.
  • the IGBT 34 is chopper-controlled by the controller 40.
  • the IGBT 34 adjusts the voltage of the induced current flowing through the secondary coil 32 by changing the duty ratio of chopper control.
  • the induced current flowing through the secondary coil 32 becomes higher as the duty ratio of the IGBT 34 becomes higher.
  • the smoothing capacitor 35 smoothes the voltage of the induced current that flows intermittently through the secondary coil 32 by the chopper control of the IGBT 34. As a result, the induced current flowing through the secondary coil 32 becomes a direct current whose voltage is substantially constant.
  • the controller 40 controls the power supply device 100.
  • the controller 40 is a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an I / O interface (input / output interface).
  • the RAM stores data in the processing of the CPU.
  • the ROM stores a CPU control program and the like in advance.
  • the I / O interface is used for input / output of information with a connected device. Control of the power supply apparatus 100 is realized by operating a CPU, a RAM, and the like according to a program stored in the ROM.
  • the controller 40 controls the DC-DC converter 30 and adjusts the voltage of the current output from the secondary coil 32 so that the sum of the voltage of the capacitor 2 and the voltage of the secondary battery 1 is the same.
  • the voltage of the current output from the secondary coil 32 corresponds to the set voltage.
  • the power supply device 100 can perform the following control.
  • the controller 40 controls the DC-DC converter 30 to step down the voltage of the secondary battery 1 to 300 V, and the capacitor from the secondary coil 32 2 is applied with a bias voltage.
  • the sum of the voltage of the capacitor 2 and the bias voltage is 600 V, which is equal to the voltage of the secondary battery 1. Therefore, the electric motor 5 can be driven by supplying power to the inverter 50 from the secondary battery 1 and the capacitor 2.
  • the controller 40 controls the DC-DC converter 30 to step down the voltage of the secondary battery 1 to a voltage higher than 300V by the voltage drop of the capacitor 2.
  • the controller 40 controls the DC-DC converter 30 to step down the voltage of the secondary battery 1 from 600V to 350V, and the secondary coil A bias voltage is applied from 32 to the capacitor 2.
  • the sum of the voltage of the capacitor 2 and the bias voltage is 600 V, which is equal to the voltage of the secondary battery 1. Therefore, also in this case, the electric motor 5 can be driven by supplying power to the inverter 50 from the secondary battery 1 and the capacitor 2.
  • the controller 40 controls the DC-DC converter 30 to apply a bias voltage close to 600 V from the secondary coil 32 to the capacitor 2 without substantially lowering the voltage of the secondary battery 1. Thereby, the sum of the voltage of the capacitor 2 and the bias voltage can be 600V. Therefore, the electric motor 5 can be driven by supplying power to the inverter 50 until the voltage of the capacitor 2 becomes substantially 0V.
  • the electric energy of the capacitor 2 is used to drive the inverter 50 even though the electric energy remains in the capacitor 2. I could't. Since the minimum voltage capable of driving the inverter 50 is 300V, the inverter 50 could not be driven using the electrical energy of the capacitor 2 when the voltage of the capacitor 2 was below 300V.
  • the DC-DC converter 30 can be controlled to apply a bias voltage from the secondary battery 1 to the capacitor 2. Therefore, even if the voltage of the capacitor 2 drops, the apparent voltage is raised by the bias voltage, so that the electric energy remaining in the capacitor 2 can be supplied to the inverter 50 and the electric motor 5 can be driven. . Therefore, the electrical energy of the capacitor 2 can be used effectively.
  • the capacitor 2 can be reduced in size and weight. Specifically, compared with a case where a capacitor of 600 V is used until it drops to 300 V, the capacitor 2 can output an equivalent electric energy with a capacity of about 25% smaller. Therefore, the weight and installation space of the capacitor 2 are reduced by about 25%, and the cost can be reduced accordingly.
  • a non-insulated DC-DC converter (hereinafter simply referred to as “DC-DC converter”) 60 capable of boosting the voltage of the secondary battery 1 and supplying current to the inverter 50 is provided. This is different from the first embodiment.
  • the power supply device 200 supplies power to the inverter 50 by combining the secondary battery 1 and the capacitor 2 connected in parallel with the secondary battery 1.
  • the power supply device 200 includes a secondary battery 1, a capacitor 2, a DC-DC converter 60 capable of boosting the voltage of the capacitor 2 and supplying current to the inverter 50, and a capacitor using the electrical energy of the secondary battery 1.
  • 2 includes a DC-DC converter 30 that applies a bias voltage to 2, and a DC-DC converter 60 and a controller 40 that controls the DC-DC converter 30 (see FIG. 4).
  • the DC-DC converter 60 boosts the voltage of the secondary battery 1 to supply power to the inverter 50, and can step down the regenerative power from the inverter 50 to charge the secondary battery 1.
  • the DC-DC converter 60 includes a reactor 61 provided downstream of the secondary battery 1, a step-down control transistor 62 provided between the reactor 61 and the upstream of the electric motor 5, and between the reactor 61 and the downstream of the electric motor 5.
  • a boost control transistor 63 provided and a smoothing capacitor 64 connected in parallel with the secondary battery 1 are provided.
  • Reactor 61 stores energy when boost control transistor 63 is on.
  • the boost control transistor 63 is turned off, the voltage input from the secondary battery 1 and the induced electromotive force due to the energy accumulated in the reactor 61 are output. Thereby, the reactor 61 can boost and output the input voltage by switching by the boost control transistor 63.
  • the boost control transistor 63 is switched by the controller 40.
  • the boost control transistor 63 is an IGBT with a diode having a rectifier diode connected in parallel in the reverse direction.
  • the step-up control transistor 63 can switch the current of the reactor 61 and step up the supply voltage supplied to the electric motor 5 by induced electromotive force.
  • the boost control transistor 63 When the boost control transistor 63 is switched on, the current from the positive electrode of the secondary battery 1 flows to the negative electrode of the secondary battery 1 via the reactor 61 and the boost control transistor 63. Energy is stored in the reactor 61 by this current loop.
  • the step-down control transistor 62 is switched by the controller 40.
  • the step-down control transistor 62 is an IGBT with a diode having a rectifier diode connected in parallel in the reverse direction.
  • the step-down control transistor 62 is capable of stepping down the charging voltage from the electric motor 5 by switching.
  • the step-down control transistor 62 steps down the electric power generated by the electric motor 5 by chopper control and charges the secondary battery 1.
  • the smoothing capacitor 64 smoothes the voltage output by the step-down control transistor 62 by performing chopper control. Thereby, the voltage at the time of charging the secondary battery 1 with the electric power generated by the electric motor 5 can be smoothed and stabilized.
  • the DC-DC converter 30 includes a primary coil 31 connected in parallel to the secondary battery 1, a secondary coil 32 connected in series to the capacitor 2, and a transformer core in which energy is stored by current flowing through the primary coil 31. 33, an IGBT 34 as a switching element provided in series with the primary coil 31, and a smoothing capacitor 35 connected in parallel to the secondary coil 32.
  • the DC-DC converter 30 is the same as that of the first embodiment. Here, a detailed description of the configuration of the DC-DC converter 30 is omitted.
  • the primary coil 31 is supplied with the current of the secondary battery 1 boosted by the DC-DC converter 60. Therefore, the magnitude of the bias voltage applied from the secondary coil 32 to the capacitor 2 is adjusted by cooperative control of the DC-DC converter 30 and the DC-DC converter 60. Therefore, the magnitude of the bias voltage applied from the secondary coil 32 to the capacitor 2 can be adjusted more finely.
  • the second embodiment described above when the voltage of the capacitor 2 drops, a bias voltage is applied from the secondary battery 1 to the capacitor 2 by cooperative control of the DC-DC converter 30 and the DC-DC converter 60. can do. Therefore, as in the first embodiment, even if the voltage of the capacitor 2 drops, the apparent voltage is raised by the bias voltage to supply the electric energy remaining in the capacitor 2 to the inverter 50. Thus, the electric motor 5 can be driven. Therefore, the electrical energy of the capacitor 2 can be used effectively.
  • the secondary battery 1 having a lower voltage than that of the first embodiment is used. Is possible. Therefore, the weight and installation space of the capacitor 2 are reduced, and the weight and installation space of the secondary battery 1 are also reduced, thereby reducing the cost accordingly.
  • the controller 40 When braking the vehicle, first, the electric energy generated by the electric motor 5 is charged in the capacitor 2. When the capacitor 2 is fully charged, the controller 40 operates the DC-DC converter 60 to step down the electric energy generated by the electric motor 5 and charge the secondary battery 1. At this time, since the voltage and current suitable for charging the secondary battery 1 can be adjusted, the secondary battery 1 can be efficiently charged.
  • the third embodiment is the same as the second embodiment in that the DC-DC converter 60 is provided, but the second embodiment is that the current from the secondary battery 1 is directly supplied to the primary coil 31. This is different from the embodiment.
  • the power supply device 300 supplies power to the inverter 50 by combining the secondary battery 1 and the capacitor 2 connected in parallel with the secondary battery 1.
  • the power supply device 300 includes a secondary battery 1, a capacitor 2, a DC-DC converter 60 capable of boosting the voltage of the capacitor 2 and supplying current to the inverter 50, and a capacitor using the electrical energy of the secondary battery 1.
  • 2 includes a DC-DC converter 30 that applies a bias voltage to 2, and a DC-DC converter 60 and a controller 40 that controls the DC-DC converter 30 (see FIG. 4).
  • the current of the secondary battery 1 is directly supplied to the primary coil 31 without passing through the DC-DC converter 60.
  • the power supply apparatus 300 can perform the following control.
  • the controller 40 When supplying power from the capacitor 2 to the inverter 50 in a state where the capacitor 2 is fully charged, the controller 40 turns off both the DC-DC converter 60 and the DC-DC converter 30. As a result, power is supplied from the capacitor 2 to the inverter 50 and the electric motor 5 is driven.
  • the controller 40 controls the DC-DC converter 30 while keeping the DC-DC converter 60 in an inoperative state, and applies a bias voltage from the secondary coil 32 to the capacitor 2.
  • the controller 40 controls the DC-DC converter 60 to be boosted while the DC-DC converter 30 is in an inoperative state. Thereby, the voltage of the secondary battery 1 can be boosted and supplied to the inverter 50 to drive the electric motor 5. At this time, it is necessary to control the DC-DC converter 60 to boost the voltage of the secondary battery 1 so as to be the same as the voltage of the capacitor 2.
  • the DC-DC converter 60 is controlled to supply power from the secondary battery 1 to the inverter 50, and the DC-DC converter 30 is controlled from the secondary coil 32.
  • a bias voltage is applied to the capacitor 2.
  • a bias voltage can be applied from the secondary battery 1 to the capacitor 2 by the DC-DC converter 30. Therefore, as in the first and second embodiments, even if the voltage of the capacitor 2 drops, the apparent voltage is raised by the bias voltage, so that the electric energy remaining in the capacitor 2 is converted into an inverter. 50 can be supplied to drive the electric motor 5. Therefore, the electrical energy of the capacitor 2 can be used effectively.
  • the supply of power to the inverter 50 from only the secondary battery 1 and the supply of power to the inverter 50 from only the capacitor 2 are possible. Both are possible.
  • the numerical values such as the voltage in the above-described embodiment are examples, and are not limited to these numerical values.
  • the power supply devices 100, 200, and 300 are controlled by the controller 40, and the inverter 50 is controlled by a motor controller (not shown). Instead of this, the power supply devices 100, 200, 300 and the inverter 50 may be controlled by a single controller.
  • Each of the IGBTs described above is an IGBT with a diode having a rectifier diode connected in parallel in the reverse direction. Instead of this, an IGBT without a built-in diode and a rectifier diode connected in parallel to the IGBT in the reverse direction may be provided separately. Instead of the IGBT, another transistor such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be used as a switching element.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電源装置は、二次電池と、前記二次電池に並列に接続されるキャパシタと、を組み合わせて負荷に電源を供給する。前記電源装置は、前記二次電池に並列に接続され前記二次電池から供給される電流によってエネルギを蓄える一次コイルと、前記キャパシタに直列に接続され前記一次コイルから蓄えられたエネルギによって誘導電流が流れる二次コイルと、を有する絶縁型DC-DCコンバータを備える。

Description

電源装置
 本発明は、負荷に電源を供給する電源装置に関するものである。
 従来から、バッテリとキャパシタとを組み合わせて負荷に電源を供給する電源装置が用いられている。JP2006-345606Aには、バッテリとキャパシタとが並列に接続される車両用電源システムが開示されている。この電源システムでは、キャパシタとバッテリとから供給される電気エネルギによって、電動モータのインバータを駆動している。
 しかしながら、JP2006-345606Aの電源システムでは、キャパシタの電圧がインバータを駆動可能な電圧よりも低下すると、キャパシタからの電気エネルギではモータの駆動ができなくなる。また、キャパシタは、放電時に電圧が緩やかに降下する二次電池とは異なり、放電時に電圧が直線的に降下する特性を有する。そのため、キャパシタの電圧が降下すると、電気エネルギが残存しているにも関わらず、キャパシタから電気エネルギを供給してインバータを駆動することができなくなっていた。
 本発明は、上記の問題点に鑑みてなされたものであり、キャパシタの電気エネルギを有効に活用することを目的とする。
 本発明のある形態によれば、二次電池と、前記二次電池に並列に接続されるキャパシタと、を組み合わせて負荷に電源を供給する電源装置であって、前記二次電池に並列に接続され前記二次電池から供給される電流によってエネルギを蓄える一次コイルと、前記キャパシタに直列に接続され前記一次コイルから蓄えられたエネルギによって誘導電流が流れる二次コイルと、を有する絶縁型DC-DCコンバータを備える電源装置が提供される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の第一の実施の形態に係る電源装置の電気回路図である。 図2は、本発明の第一の実施の形態に係る電源装置のブロック図である。 図3は、本発明の第二の実施の形態に係る電源装置の電気回路図である。 図4は、本発明の第二の実施の形態に係る電源装置のブロック図である。 図5は、本発明の第三の実施の形態に係る電源装置の電気回路図である。
 以下、図面を参照して、本発明の実施の形態について説明する。
 (第一の実施の形態)
 以下、図1及び図2を参照して、本発明の第一の実施の形態に係る電源装置100について説明する。
 電源装置100は、二次電池1と、二次電池1と並列に接続されるキャパシタ2とを組み合わせて負荷に電源を供給するものである。この負荷は、二次電池1及びキャパシタ2から電源が供給されて電動機5を駆動するインバータ50である。電源装置100は、HEV(Hybrid Electric Vehicle:ハイブリッド車両)やEV(Electric Vehicle:電動車両)などに適用される。
 まず、電源装置100から電源が供給されるインバータ50と、インバータ50によって駆動される電動機5とについて説明する。
 電動機5は、HEVやEVに搭載される駆動用モータである。電動機5は、三相交流で回転磁界を生成して駆動される三相誘導モータジェネレータである。電動機5は、U相,V相,及びW相をそれぞれ構成する複数のコイル(図示省略)を内周に有する固定子と、永久磁石を有し固定子の内周を回転する回転子とを備える。電動機5は、固定子が車体(図示省略)に固定され、回転子の回転軸が車輪の車軸(図示省略)に連結される。電動機5は、電気エネルギを車輪の回転に変換することが可能であるとともに、車輪の回転を電気エネルギに変換することが可能である。
 インバータ50は、二次電池1とキャパシタ2とから供給された直流電力から交流電力を生成する電圧電流変換機である。インバータ50は、定格電圧が600Vであり、駆動可能な最低電圧が300Vである。この最低電圧が、負荷を駆動可能な最低電圧に該当する。
 インバータ50は、二次電池1とキャパシタ2とから供給された直流電力を、120度ずつ位相のずれたU相,V相,及びW相からなる三層の交流に変換して電動機5に供給する。
 インバータ50は、正側電力線51aと、負側電力線51bと、U相電力線51uと、V相電力線51vと、W相電力線51wとを有する。正側電力線51aは、二次電池1及びキャパシタ2の正極に接続される。負側電力線51bは、二次電池1及びキャパシタ2の負極に接続される。正側電力線51aと負側電力線51bとの間には、U相電力線51u,V相電力線51v,及びW相電力線51wが設けられる。また、正側電力線51aと負側電力線51bとの間には、二次電池1及びキャパシタ2とインバータ50との間で授受される直流電流の電圧を平滑化する平滑コンデンサ55が並列接続される。
 インバータ50は、六つのスイッチング素子としてのIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)53u,54u,53v,54v,53w,及び54wを有している。これらのIGBT53u~54wは、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。
 IGBT53uとIGBT54uとは、U相電力線51uに直列に設けられる。U相電力線51uは、IGBT53uとIGBT54uとの間が、電動機5のU相を構成するコイルに接続される。IGBT53vとIGBT54vとは、V相電力線51vに直列に設けられる。V相電力線51vは、IGBT53vとIGBT54vとの間が、電動機5のV相を構成するコイルに接続される。IGBT53wとIGBT54wとは、W相電力線51wに直列に設けられる。W相電力線51wは、IGBT53wとIGBT54wとの間が、電動機5のW相を構成するコイルに接続される。
 インバータ50は、IGBT53u,54u,53v,54v,53w,及び54wが、モータコントローラ(図示省略)によって制御されることによって、交流電流を生成して電動機5を駆動している。
 次に、電源装置100の構成について説明する。
 電源装置100は、二次電池1と、キャパシタ2と、二次電池1の電気エネルギを利用してキャパシタ2にバイアス電圧を付加する絶縁型DC-DCコンバータ(以下、単に「DC-DCコンバータ」と称する)30と、DC-DCコンバータ30を制御するコントローラ40(図2参照)とを備える。
 二次電池1は、リチウムイオン二次電池やニッケル水素二次電池などの化学電池である。ここでは、二次電池1の電圧は、600Vに設定される。二次電池1には、電圧を検出し、対応する信号をコントローラ40に送信する二次電池電圧検出器1a(図2参照)が設けられる。
 キャパシタ2は、直列に複数接続して所望の電圧に設定されるとともに、並列に複数接続して所望の蓄電容量に設定される電気二重層キャパシタである。ここでは、キャパシタ2の電圧は、300Vに設定される。キャパシタ2には、電圧を検出し、対応する信号をコントローラ40に送信するキャパシタ電圧検出器2a(図2参照)が設けられる。
 DC-DCコンバータ30は、二次電池1に並列に接続される一次コイル31と、キャパシタ2に直列に接続される二次コイル32と、一次コイル31に流れる電流によってエネルギが蓄積されるトランスコア33と、一次コイル31と直列に設けられるスイッチング素子としてのIGBT34と、二次コイル32に並列接続される平滑コンデンサ35とを有する。DC-DCコンバータ30は、キャパシタ2の電圧との合計が設定電圧となるように二次コイル32から出力される電圧を調整するフライバック式コンバータである。
 一次コイル31は、二次電池1からの電流が直接供給されるものである。一次コイル31には、コントローラ40によってIGBT34がスイッチングされることで、間歇的に電流が流れる。一次コイル31は、二次電池1から供給される電流によってトランスコア33にエネルギを蓄積する。
 トランスコア33は、IGBT34がオンに切り換えられると、一次コイル31に流れる電流によって磁化される。これにより、トランスコア33には、磁気エネルギが蓄積される。トランスコア33に蓄積された磁気エネルギは、IGBT34がオフに切り換えられると、二次コイル32に流れる誘導電流に変換される。
 二次コイル32には、一次コイル31からトランスコア33に蓄えられたエネルギによって誘導電流が流れる。二次コイル32には、二次電池1の電圧と比較して低い電圧の誘導電流が流れる。つまり、DC-DCコンバータ30は、降圧コンバータである。
 IGBT34は、コントローラ40によってチョッパ制御される。IGBT34は、チョッパ制御のデューティ比を変更することによって、二次コイル32に流れる誘導電流の電圧を調整する。二次コイル32に流れる誘導電流は、IGBT34のデューティ比が高くなるほど高電圧となる。
 平滑コンデンサ35は、IGBT34がチョッパ制御されることによって二次コイル32に間歇的に流れる誘導電流の電圧を平滑化する。これにより、二次コイル32に流れる誘導電流は、電圧が略一定の直流電流となる。
 コントローラ40(図2参照)は、電源装置100の制御を行うものである。コントローラ40は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータである。RAMは、CPUの処理におけるデータを記憶する。ROMは、CPUの制御プログラム等を予め記憶する。I/Oインターフェースは、接続された機器との情報の入出力に使用される。CPUやRAMなどを、ROMに格納されたプログラムに従って動作させることによって、電源装置100の制御が実現される。
 コントローラ40は、DC-DCコンバータ30を制御して、キャパシタ2の電圧との合計が二次電池1の電圧と同一となるように、二次コイル32から出力される電流の電圧を調整する。この二次コイル32から出力される電流の電圧が、設定電圧に該当する。これにより、電源装置100では、以下のような制御が可能となる。
 次に、電源装置100の作用について説明する。
 二次電池1とキャパシタ2とがともにフル充電されている場合には、コントローラ40は、DC-DCコンバータ30を制御して二次電池1の電圧を300Vに降圧し、二次コイル32からキャパシタ2にバイアス電圧を付加する。これにより、キャパシタ2の電圧とバイアス電圧との合計は600Vとなり、二次電池1の電圧と等しくなる。よって、二次電池1とキャパシタ2とからインバータ50に電源を供給して電動機5を駆動することができる。
 キャパシタ2からインバータ50に電源を供給して電動機5を駆動すると、キャパシタ2の電圧は比例的に降下する。このとき、コントローラ40は、DC-DCコンバータ30を制御して、二次電池1の電圧を300Vよりもキャパシタ2の電圧降下分だけ高い電圧に降圧する。
 具体的には、例えば、キャパシタ2の電圧が250Vまで降下した場合には、コントローラ40は、DC-DCコンバータ30を制御して二次電池1の電圧を600Vから350Vに降圧し、二次コイル32からキャパシタ2にバイアス電圧を付加する。これにより、キャパシタ2の電圧とバイアス電圧との合計は600Vとなり、二次電池1の電圧と等しくなる。よって、この場合にも、二次電池1とキャパシタ2とからインバータ50に電源を供給して電動機5を駆動することができる。
 そして、このまま二次電池1とキャパシタ2とによるインバータ50への電源の供給を続けると、キャパシタ2の電圧が降下して0Vに近づく。このとき、コントローラ40は、DC-DCコンバータ30を制御して、二次電池1の電圧を殆ど降下させずに、二次コイル32からキャパシタ2に600V近くのバイアス電圧を付加する。これにより、キャパシタ2の電圧とバイアス電圧との合計を600Vとすることができる。よって、キャパシタ2の電圧が略0Vとなるまで、インバータ50に電源を供給して電動機5を駆動することができる。
 従来は、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回ると、キャパシタ2内に電気エネルギが残存しているにも関わらず、キャパシタ2の電気エネルギを用いてインバータ50を駆動することはできなかった。インバータ50を駆動可能な最低電圧は300Vであるため、キャパシタ2の電圧が300Vを下回ると、キャパシタ2の電気エネルギを用いてインバータ50を駆動することはできなかった。
 これに対して、電源装置100では、キャパシタ2の電圧が降下したときには、DC-DCコンバータ30を制御して、二次電池1からキャパシタ2にバイアス電圧を付加することができる。よって、キャパシタ2の電圧が降下しても、バイアス電圧によって見かけ上の電圧を上昇させることで、キャパシタ2内に残存している電気エネルギをインバータ50に供給して電動機5を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
 また、キャパシタ2の電気エネルギを有効に活用できるため、同じ電気エネルギをインバータ50に出力するために必要なキャパシタ2の容量を小さくできる。よって、キャパシタ2の小型軽量化が可能である。具体的には、600Vのキャパシタを300Vに降下するまで使用する場合と比較すると、キャパシタ2は、約25%小さな容量で、同等の電気エネルギを出力することができる。よって、キャパシタ2の重量や設置スペースは約25%低減され、その分だけコストも削減することができる。
 以上の第一の実施の形態によれば、以下に示す効果を奏する。
 キャパシタ2の電圧が降下したときには、DC-DCコンバータ30によって、二次電池1からキャパシタ2にバイアス電圧を付加することができる。よって、キャパシタ2の電圧が降下しても、バイアス電圧によって見かけ上の電圧を上昇させることで、キャパシタ2内に残存している電気エネルギをインバータ50に供給して電動機5を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
 (第二の実施の形態)
 以下、図3及び図4を参照して、本発明の第二の実施の形態に係る電源装置200について説明する。なお、以下に示す各実施の形態では、前述した実施の形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。
 第二の実施の形態では、二次電池1の電圧を昇圧してインバータ50に電流を供給可能な非絶縁型DC-DCコンバータ(以下、単に「DC-DCコンバータ」と称する。)60を備える点で、第一の実施の形態とは相違する。
 電源装置200は、二次電池1と、二次電池1と並列に接続されるキャパシタ2とを組み合わせてインバータ50に電源を供給するものである。
 電源装置200は、二次電池1と、キャパシタ2と、キャパシタ2の電圧を昇圧してインバータ50に電流を供給可能なDC-DCコンバータ60と、二次電池1の電気エネルギを利用してキャパシタ2にバイアス電圧を付加するDC-DCコンバータ30と、DC-DCコンバータ60及びDC-DCコンバータ30を制御するコントローラ40(図4参照)とを備える。
 DC-DCコンバータ60は、二次電池1の電圧を昇圧してインバータ50に電力を供給するとともに、インバータ50からの回生電力を降圧して二次電池1に充電可能である。DC-DCコンバータ60は、二次電池1の下流に設けられるリアクトル61と、リアクトル61と電動機5の上流との間に設けられる降圧制御トランジスタ62と、リアクトル61と電動機5の下流との間に設けられる昇圧制御トランジスタ63と、二次電池1と並列に接続される平滑コンデンサ64とを備える。
 リアクトル61は、昇圧制御トランジスタ63がオンのときにエネルギを蓄積する。そして、昇圧制御トランジスタ63がオフになったときには、二次電池1から入力される電圧と、リアクトル61に蓄積されたエネルギによる誘導起電力とが出力される。これにより、リアクトル61は、昇圧制御トランジスタ63によるスイッチングによって、入力電圧を昇圧して出力することが可能である。
 昇圧制御トランジスタ63は、コントローラ40によってスイッチングされる。昇圧制御トランジスタ63は、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。昇圧制御トランジスタ63は、リアクトル61の電流をスイッチングして、電動機5へ供給される供給電圧を誘導起電力によって昇圧することが可能である。
 昇圧制御トランジスタ63がオンにスイッチングされると、二次電池1の正極からの電流は、リアクトル61と昇圧制御トランジスタ63とを経由して二次電池1の負極に流れる。この電流のループによって、リアクトル61にエネルギが蓄積される。
 降圧制御トランジスタ62は、コントローラ40によってスイッチングされる。降圧制御トランジスタ62は、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。降圧制御トランジスタ62は、スイッチングによって電動機5からの充電電圧を降圧可能なものである。降圧制御トランジスタ62は、電動機5が発電した電力を、チョッパ制御によって降圧して二次電池1に充電するものである。
 平滑コンデンサ64は、降圧制御トランジスタ62がチョッパ制御を行って出力された電圧を平滑化するものである。これにより、電動機5によって発電された電力を二次電池1に充電する際の電圧を平滑化して安定させることができる。
 DC-DCコンバータ30は、二次電池1に並列に接続される一次コイル31と、キャパシタ2に直列に接続される二次コイル32と、一次コイル31に流れる電流によってエネルギが蓄積されるトランスコア33と、一次コイル31と直列に設けられるスイッチング素子としてのIGBT34と、二次コイル32に並列接続される平滑コンデンサ35とを有する。DC-DCコンバータ30は、第一の実施の形態と同様である。ここでは、DC-DCコンバータ30の構成についての詳細な説明は省略する。
 一次コイル31には、DC-DCコンバータ60によって昇圧された二次電池1の電流が供給される。そのため、二次コイル32からキャパシタ2に付加されるバイアス電圧の大きさは、DC-DCコンバータ30とDC-DCコンバータ60との協調制御によって調整されることとなる。よって、二次コイル32からキャパシタ2に付加されるバイアス電圧の大きさをより細やかに調整することが可能である。
 以上の第二の実施の形態によれば、キャパシタ2の電圧が降下したときには、DC-DCコンバータ30とDC-DCコンバータ60との協調制御によって、二次電池1からキャパシタ2にバイアス電圧を付加することができる。よって、第一の実施の形態と同様に、キャパシタ2の電圧が降下しても、バイアス電圧によって見かけ上の電圧を上昇させることで、キャパシタ2内に残存している電気エネルギをインバータ50に供給して電動機5を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
 また、二次電池1の電圧を昇圧してインバータ50に電流を供給可能なDC-DCコンバータ60が設けられることで、第一の実施の形態と比較して電圧の低い二次電池1を使用することが可能である。したがって、キャパシタ2の重量や設置スペースが低減されるとともに、二次電池1の重量や設置スペースも低減され、その分だけコストも削減することができる。
 なお、車両の制動時には、まず、電動機5によって発電した電気エネルギをキャパシタ2に充電する。キャパシタ2が満充電となったら、コントローラ40は、DC-DCコンバータ60を作動させて、電動機5が発電する電気エネルギを降圧して二次電池1に充電する。このとき、二次電池1の充電に適した電圧及び電流に調整することができるため、二次電池1を効率よく充電することが可能である。
 (第三の実施の形態)
 以下、図5を参照して、本発明の第三の実施の形態に係る電源装置300について説明する。
 第三の実施の形態では、DC-DCコンバータ60を備える点では第二の実施の形態と共通するが、一次コイル31に二次電池1からの電流が直接供給される点で、第二の実施の形態とは相違する。
 電源装置300は、二次電池1と、二次電池1と並列に接続されるキャパシタ2とを組み合わせてインバータ50に電源を供給するものである。
 電源装置300は、二次電池1と、キャパシタ2と、キャパシタ2の電圧を昇圧してインバータ50に電流を供給可能なDC-DCコンバータ60と、二次電池1の電気エネルギを利用してキャパシタ2にバイアス電圧を付加するDC-DCコンバータ30と、DC-DCコンバータ60及びDC-DCコンバータ30を制御するコントローラ40(図4参照)とを備える。
 一次コイル31には、二次電池1の電流がDC-DCコンバータ60を介さずに直接供給される。これにより、電源装置300では、以下のような制御が可能となる。
 次に、電源装置300の作用について説明する。
 キャパシタ2がフル充電されている状態でキャパシタ2からインバータ50に電源を供給する場合には、コントローラ40は、DC-DCコンバータ60とDC-DCコンバータ30とをともに非作動状態とする。これにより、キャパシタ2からインバータ50に電源が供給されて電動機5が駆動される。
 キャパシタ2からインバータ50に電源を供給して電動機5を駆動すると、キャパシタ2の電圧は比例的に降下する。このとき、コントローラ40は、DC-DCコンバータ60を非作動状態としたまま、DC-DCコンバータ30を制御して、二次コイル32からキャパシタ2にバイアス電圧を付与する。これにより、キャパシタ2の電圧が降下しても、バイアス電圧によって見かけ上の電圧を上昇させることで、キャパシタ2内に残存している電気エネルギをインバータ50に供給して電動機5を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
 一方、二次電池1からインバータ50に電源を供給する場合には、コントローラ40は、DC-DCコンバータ30を非作動状態としたまま、DC-DCコンバータ60を昇圧制御する。これにより、二次電池1の電圧を昇圧してインバータ50に供給して電動機5を駆動することができる。なお、このとき、DC-DCコンバータ60を制御して、二次電池1の電圧がキャパシタ2の電圧と同一となるように昇圧する必要がある。
 キャパシタ2の電圧が充分に高くない場合には、DC-DCコンバータ60を制御して二次電池1からインバータ50に電源を供給するとともに、DC-DCコンバータ30を制御して二次コイル32からキャパシタ2にバイアス電圧を付与する。これにより、二次電池1からインバータ50に供給される電源がインバータ50に供給されないでキャパシタ2に充電されることが防止される。
 以上の第三の実施の形態によれば、キャパシタ2の電圧が降下したときには、DC-DCコンバータ30によって、二次電池1からキャパシタ2にバイアス電圧を付加することができる。よって、第一及び第二の実施の形態と同様に、キャパシタ2の電圧が降下しても、バイアス電圧によって見かけ上の電圧を上昇させることで、キャパシタ2内に残存している電気エネルギをインバータ50に供給して電動機5を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
 また、DC-DCコンバータ60とDC-DCコンバータ30とが設けられることで、二次電池1のみからのインバータ50への電源の供給と、キャパシタ2のみからのインバータ50への電源の供給とがともに可能となる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上述した実施の形態における電圧などの数値は例示したものであり、これらの数値に限定されるものではない。
 また、上述した実施の形態では、電源装置100,200,300はコントローラ40によって制御され、インバータ50はモータコントローラ(図示省略)によって制御される。これに代えて、電源装置100,200,300とインバータ50とを単一のコントローラによって制御するようにしてもよい。
 また、上述した各々のIGBTは、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。これに代えて、ダイオードを内蔵しないIGBTと、IGBTに逆方向に並列接続される整流ダイオードとを、それぞれ別々に設けてもよい。また、IGBTに代えて、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化膜半導体電界効果トランジスタ)などの他のトランジスタをスイッチング素子として用いてもよい。
 この発明の実施例が包含する排他的性質又は特徴は、以下のようにクレームされる。

Claims (8)

  1.  二次電池と、前記二次電池に並列に接続されるキャパシタと、を組み合わせて負荷に電源を供給する電源装置であって、
     前記二次電池に並列に接続され前記二次電池から供給される電流によってエネルギを蓄える一次コイルと、前記キャパシタに直列に接続され前記一次コイルから蓄えられたエネルギによって誘導電流が流れる二次コイルと、を有する絶縁型DC-DCコンバータを備える電源装置。
  2.  請求項1に記載の電源装置において、
     前記絶縁型DC-DCコンバータは、前記キャパシタの電圧との合計が設定電圧となるように前記二次コイルから出力される電流の電圧を調整するフライバック式コンバータである電源装置。
  3.  請求項1又は2に記載の電源装置において、
     前記一次コイルには、前記二次電池からの電流が直接供給される電源装置。
  4.  請求項3に記載の電源装置において、
     前記絶縁型DC-DCコンバータは、前記キャパシタの電圧との合計が前記二次電池の電圧と同一となるように前記二次コイルから出力する電流の電圧を調整する電源装置。
  5.  請求項1又は2に記載の電源装置において、
     前記二次電池の電圧を昇圧して前記負荷に電流を供給するとともに、前記負荷からの回生電流を降圧して前記二次電池に充電可能な非絶縁型DC-DCコンバータを更に備える電源装置。
  6.  請求項5に記載の電源装置において、
     前記一次コイルには、前記非絶縁型DC-DCコンバータによって昇圧された前記二次電池の電流が供給される電源装置。
  7.  請求項5に記載の電源装置において、
     前記一次コイルには、前記二次電池からの電流が前記非絶縁型DC-DCコンバータを介さずに直接供給される電源装置。
  8.  請求項1から7のいずれか一つに記載の電源装置において、
     前記負荷は、前記二次電池及び前記キャパシタから電源が供給されて電動機を駆動するインバータである電源装置。
PCT/JP2012/081327 2012-12-04 2012-12-04 電源装置 WO2014087475A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014550823A JP5899330B2 (ja) 2012-12-04 2012-12-04 電源装置
PCT/JP2012/081327 WO2014087475A1 (ja) 2012-12-04 2012-12-04 電源装置
CN201280077551.7A CN104838573B (zh) 2012-12-04 2012-12-04 电源装置
EP12889494.6A EP2930835B1 (en) 2012-12-04 2012-12-04 Power supply apparatus
US14/649,616 US9520806B2 (en) 2012-12-04 2012-12-04 Power supply device for supplying power to a load by combining a secondary battery and a capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081327 WO2014087475A1 (ja) 2012-12-04 2012-12-04 電源装置

Publications (1)

Publication Number Publication Date
WO2014087475A1 true WO2014087475A1 (ja) 2014-06-12

Family

ID=50882926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081327 WO2014087475A1 (ja) 2012-12-04 2012-12-04 電源装置

Country Status (5)

Country Link
US (1) US9520806B2 (ja)
EP (1) EP2930835B1 (ja)
JP (1) JP5899330B2 (ja)
CN (1) CN104838573B (ja)
WO (1) WO2014087475A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093192A (ja) * 2015-11-12 2017-05-25 三菱自動車工業株式会社 車両の電源装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862631B2 (ja) * 2013-10-08 2016-02-16 トヨタ自動車株式会社 蓄電システム
US9809119B2 (en) * 2015-01-13 2017-11-07 General Electric Company Bi-directional DC-DC power converter for a vehicle system
US10862401B2 (en) * 2018-10-26 2020-12-08 Lear Corporation Tandem DC/DC converter for a vehicle battery charger
US10989760B2 (en) * 2018-12-27 2021-04-27 Bloom Energy Corporation System and method for impedance testing DC power sources

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118974A (ja) * 2000-10-03 2002-04-19 Nec Mobile Energy Kk 電池パック
JP2003143713A (ja) * 2001-11-05 2003-05-16 Komatsu Ltd ハイブリッド電源システム
JP2006345606A (ja) 2005-06-07 2006-12-21 Toyota Motor Corp 車両用電源システムおよび車両
JP2010233419A (ja) * 2009-03-30 2010-10-14 Fuji Electric Systems Co Ltd モータ駆動装置及び電動車両
JP2010273428A (ja) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp 車両用駆動電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU44443A1 (ja) * 1962-09-27 1963-11-14
US4504896A (en) * 1981-03-18 1985-03-12 Rca Corporation Switching dc-to-dc converters
JP2004140959A (ja) * 2002-10-21 2004-05-13 Toyota Motor Corp 双方向dc−dcコンバータ
US7649335B2 (en) 2005-06-07 2010-01-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
US7990098B2 (en) * 2007-07-30 2011-08-02 GM Global Technology Operations LLC Series-coupled two-motor drive using double-ended inverter system
TW201143267A (en) * 2010-05-31 2011-12-01 Univ Nat Cheng Kung Multi-winding high step-up DC-DC converter
US8368362B2 (en) * 2010-09-02 2013-02-05 National Formosa University Boost-forward-flyback high gain converter
WO2012140746A1 (ja) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 電動車両の電源装置およびその制御方法
CN104145411B (zh) * 2012-02-23 2016-12-07 日产自动车株式会社 电源装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118974A (ja) * 2000-10-03 2002-04-19 Nec Mobile Energy Kk 電池パック
JP2003143713A (ja) * 2001-11-05 2003-05-16 Komatsu Ltd ハイブリッド電源システム
JP2006345606A (ja) 2005-06-07 2006-12-21 Toyota Motor Corp 車両用電源システムおよび車両
JP2010233419A (ja) * 2009-03-30 2010-10-14 Fuji Electric Systems Co Ltd モータ駆動装置及び電動車両
JP2010273428A (ja) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp 車両用駆動電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930835A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093192A (ja) * 2015-11-12 2017-05-25 三菱自動車工業株式会社 車両の電源装置

Also Published As

Publication number Publication date
EP2930835A1 (en) 2015-10-14
US20150326066A1 (en) 2015-11-12
JP5899330B2 (ja) 2016-04-06
CN104838573A (zh) 2015-08-12
EP2930835A4 (en) 2016-07-20
CN104838573B (zh) 2017-07-28
JPWO2014087475A1 (ja) 2017-01-05
US9520806B2 (en) 2016-12-13
EP2930835B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP5876939B2 (ja) 電源装置
US10562404B1 (en) Integrated onboard chargers for plug-in electric vehicles
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
JP6668930B2 (ja) 電力変換装置および電動車両の制御装置
JP5899330B2 (ja) 電源装置
JP6055486B2 (ja) 電源装置
JP2020010517A (ja) 充電制御装置及び充電制御システム
JP2010098851A (ja) 電動車両
JP5876940B2 (ja) 電源装置
JP6305364B2 (ja) 回転電機システム
US20210170890A1 (en) System and method for integrated battery charging and propulsion in plug-in electric vehicles
JP5293373B2 (ja) 電力制御装置および車両駆動システム
JP2010004728A (ja) 電力変換装置
JP2016123193A (ja) 電源システム、車両及び電圧制御方法
JP5947528B2 (ja) 車両用駆動装置、車両及び非接触充電システム
JPH08228443A (ja) 充電装置
JP2018133946A (ja) 電気自動車
JP2009219232A (ja) 電源装置、およびこれを用いた電源システム
WO2019130888A1 (ja) モータ制御装置
WO2019130676A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550823

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012889494

Country of ref document: EP