WO2014085890A1 - Método de preparo de sistemas catalíticos estruturados - Google Patents

Método de preparo de sistemas catalíticos estruturados Download PDF

Info

Publication number
WO2014085890A1
WO2014085890A1 PCT/BR2013/000542 BR2013000542W WO2014085890A1 WO 2014085890 A1 WO2014085890 A1 WO 2014085890A1 BR 2013000542 W BR2013000542 W BR 2013000542W WO 2014085890 A1 WO2014085890 A1 WO 2014085890A1
Authority
WO
WIPO (PCT)
Prior art keywords
systems according
catalytic systems
preparing structured
structured catalytic
preparing
Prior art date
Application number
PCT/BR2013/000542
Other languages
English (en)
French (fr)
Inventor
Eduardo Falabella Sousa Aguiar
Alexandre De Figueiredo Costa
Luis Maria Gandia PASCUAL
Isabela Brito dos SANTOS
Maria Cruz Arzamendi MANTEROLA
Luciano Costa ALMEIDA
Mario Montes RAMÍREZ
José Antonio Odriozola GORDON
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras filed Critical Petróleo Brasileiro S.A. - Petrobras
Publication of WO2014085890A1 publication Critical patent/WO2014085890A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • B01J2219/00795Spiral-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2403Geometry of the channels
    • B01J2219/2407Square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2433Construction materials of the monoliths
    • B01J2219/2434Metals or alloys
    • B01J2219/2435Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2441Other constructional details
    • B01J2219/2444Size aspects
    • B01J2219/2446Cell density

Definitions

  • the present invention falls within the field of methods for preparing structured catalytic systems. More specifically, a preparation method wherein a metal microstructure is coated with a catalytic suspension, such catalysts being useful in the reactions involved in the GTL ("gas to liquid") process.
  • GTL gas to liquid
  • Such liquid fuels are obtained via Fischer-Tropsch synthesis, where the synthesis gas is converted into hydrocarbons, water and oxygenated products such as alcohols, aldehydes and ketones.
  • microreactors combined with structured catalysts. Because of their small size by a factor of at least 100, microreactors allow fluids to pass through thousands of capillaries, giving the chemical reaction high mixing rates through diffusion between fluids, high heat transfer and better utilization. and reduce energy consumption associated with agitation and heat exchange.
  • microreactors bring benefits in terms of increased surface / volume ratios and reduced linear and volumetric dimensions of the plant while increasing productivity.
  • microreactors have microchannels, smaller than 1 millimeter, where chemical reactions occur.
  • metal structure microchannels are coated with suspensions or suns containing active compounds, the combination of the metal structure coated with the active compound called the structured catalyst.
  • US 6,555,725 proposes the use of a monolithic catalyst for the in-situ conversion of paraffins produced in a mud bed Fischer-Tropsch process.
  • the catalytic activity of the catalyst and the coated foams was evaluated.
  • the powder catalyst produced greater conversion than the foam monoliths.
  • the monolith showed at least three times less methane. This result may be related to the ability of the monolith to favor heat dissipation outside the reactor thus avoiding the increase of hot spots, which are typical in fixed bed reactors.
  • US 2005/0244304 A1 describes the construction of a methane reforming microchannel device.
  • the microchannels were first covered by chemical vapor deposition with a layer of Ni aluminide, later oxidized to the formation of an alumina layer. Then the alumina layer was treated with a lanthanum solution and then the microchannels were coated. with an alumina sol (15 wt% alumina) and finally with a 10% platinum solution.
  • the document concludes that the uniformity of the interior of the microchannels is influenced by the way the surface forces (capillarity and adhesion) act. And when these forces surpass the gravitational forces within the channels, the obtained coating presents greater uniformity.
  • US 5,208,206 describes the coating of ⁇ - ⁇ 2 0 3 and 15% ⁇ / ⁇ - ⁇ 2 0 3 on 50 mm x 0.4 mm x 0.3 mm microchannel stainless steel plates.
  • the plates were subjected to two different adhesion tests: the first, which is known as thermal shock, is to raise the temperature to 800 ° C (10 ° C / min.) And suddenly cool to room temperature; In the second test (previously described in US Patent 5,208,206), the plate is submerged in petroleum ether and subjected to low mechanical stress produced by ultrasonic impulses for 30 minutes. The plates showed no mass loss in the thermal shock test, while the plates submitted to ultrasound had a maximum loss of 7%.
  • thermal shock is to raise the temperature to 800 ° C (10 ° C / min.) And suddenly cool to room temperature
  • the plate is submerged in petroleum ether and subjected to low mechanical stress produced by ultrasonic impulses for 30 minutes.
  • the plates showed no mass loss in the thermal shock test, while the plates submitted to ultrasound had a maximum loss of 7%.
  • the second is based on preparing the suspension only with the catalytic support, with which the structures are covered to subsequently impregnate the active phases and subject it to final calcination.
  • This duplicate only requires calcination of the active phase, but when structures are large, complex or with very small channels, It produces important heterogeneities in active phase distribution which, moreover, is difficult to detect which leads to poor catalyst yield.
  • the present invention proposes a method of preparing structured catalysts where metal microstructures are coated with catalytic suspensions, the coatings obtained being homogeneous, very adherent, and allowing the loading of the metal microstructures with the desired amount of active phase by coatings. successive.
  • Figure 1 is an alloy plate with 10 microchannels generated by tangential milling.
  • Figure 2 shows types of structured catalysts: (A) monoliths; micromonolite (B) and foam (C).
  • Figure 3 shows the sequence of preparation of a monolith or micromonolite.
  • Figure 4 shows coating images of microchannel plates with the suspension prepared by the method of the present invention.
  • Figure 5 shows the wall of the microchannel coated with the suspension useful for the method of the present invention.
  • Figure 6A is a graph of the bonded charge by number of coatings using different structures and prepared by the method of the present invention: "A" micromonolite 1, "B” micromonolite 2, “C” monolith 1, “D” monolith 2 ⁇ “foam 1,” F “foam 2,” G “welded microchannel plate and” H “microchannel plate with screw. Tack test: micromonolytes 97%, monoliths 82%, foams 80%, microchannel plates 88% .
  • Figure 6B is a graph of the bonded charge by number of deposits using different structures and prepared by the classical method, or 0542
  • micromonolyte 4 J “micromonolyte 5,” L “monolith 3,” M “monolith 4,” N “foam 3,” O “foam 4,” P “welded microchannel plate, and” Q "microchannel plate with screws.
  • Adhesion test micromonolytes 92%, monoliths 73%, foam 71%, microchannel plates 63%.
  • Figure 7 is a graph of the bonded charge by number of coatings using different suspension substrates prepared by the method of the present invention containing catalysts for methane (Ni / La-Al 2 0 3 ), methane (Pd) combustion reactions. / La-Al 2 0 3 ) and Fischer-Tropsch Synthesis (CoRe / AI 2 0 3 ), where: "A" Co-Re micromonolyte / AI 2 0 3 (97% adherence), "B” Co-Re Monolith / AI 2 0 3 (adhesion 82%), “C” Co-Re Foam / AI 2 0 3 (adhesion 80%), “D” Co-Re / AI 2 0 3 welded microchannel plate (88%), ⁇ “Co-Re / AI 2 0 3 microchannel plates with screws,” F “Ni / La-Al 2 0 3 micromonolyte (adhesion 98%),” G “Ni / La-Al monolith 2 0 3 (a
  • the present invention relates to a method of preparing structured catalytic systems involving the coating of metallic microstructures with a catalytic suspension, such systems being suitable for the reactions involved in the GTL process, such as steam reforming, combustion and Fischer synthesis. -Tropsch.
  • the metal microstructures useful for the present invention are in the form of metal alloys.
  • Such alloys can be chosen steel, nickel or aluminum alloys, among others, but the most commonly used are high aluminum ferric alloys (such as FeCralIoy, FeCralloy JA13, Aluchrom, Aluchrom YHf, Kant al AF and APM, Ugine Saoie12178 and 12179 , among others).
  • Ferric alloys undergoing treatment at high temperatures undergo a process of migration of part of aluminum to the surface, where there is the formation of an alumina shell.
  • This feature allows the use of these alloys in processes that employ very high temperatures between 1,100 ° C and 1,200 ° C, and since the oxidation of these alloys is carefully controlled they have a unique morphology of high roughness needles and plates allowing excellent anchoring of the catalytic cap.
  • alloys that are very suitable for structured catalytic systems are aluminum, which can be subjected to an electrochemical anodizing treatment that creates a highly adherent alumina coating which, under specific conditions, has a texture suitable for use as a catalytic support or a highly rough surface morphology, which allows excellent mechanical anchoring of a catalytic film.
  • the microstructures can be presented as low cell density metal monoliths (monoliths), high cell density metal monoliths (micromonoliths), meshes and foams.
  • monoliths are prepared from FeCralIoy slides with a thickness ranging from 10 pm to 100 pm, more preferably from 25 pm to 75 pm. These monoliths also have a hydraulic diameter ranging between 100 pm and 2,000 pm, more specifically between 500 pm and .000 pm and cell density ranging between 1, 4 and 48 cells / cm 2 , but densities between 4 and 20 cells are more indicated. / cm 2 .
  • Micromonolites useful for the present invention may be prepared from FeCralIoy blades or other equivalent alloy such as Aluchrom, Aluchrom YHf, FeCrAlloy JA13, Kanthal AF, Kanthal APM, Ugine Saoie 12178 and Ugine Saoie 12179, with thicknesses ranging from 10 pm to 100 pm, preferably FeCralIoy blades with thickness ranging from 25 pm to 75 pm.
  • Such mochromonolites generally have a hydraulic diameter ranging from 100 pm to 1,000 pm, with diameters ranging from 100 pm to 500 pm, and cell density ranging from 24 to 120 cells / cm 2 , more specifically 40 to 60 cells / cm 2 . cm 2 .
  • the foams for use in accordance with the method of the present invention should be cut into aluminum blocks or sheets, such foams having porosities between 1% and 99%, preferably between 50% and 98%, and pore surface densities ranging from 0, 04 and 20 pores per linear centimeter, preferably at densities between 0.4 and 8 pores per linear centimeter.
  • Microchannel plates can be prepared in many ways, such as: front or tangential milling, wire or electrode erosion, chemical stripping, screen printing or deep drawing, among others.
  • the plates used are generally 1 mm thick aluminum alloy ferritic alloy plates 20mm x 20mm.
  • Ten microchannels of 0.7 mm x 0.7 mm are longitudinally engraved on each plate, separated by a wall thickness of less than 1 mm, with 0.5 mm being preferable and 0.3 mm more preferable. the extremes two 5 mm bands without microchannels (figure 1).
  • the catalytic suspension should contain a catalyst comprising cobalt as the active metal or Fe or Ru and may also contain metallic promoters such as Re, Pd, Pt, Zr, Ti, Cr, Zn, Al, Mg, Mn, Cu or Ag, among others.
  • the catalytic suspension should contain a catalyst with Ni as the active phase, or Ru, Rh, Pd, Ir or Pt, using MgO, Mg 2 as support.
  • AI0 4 Si0 2 , Ce0 2 , Zr0 2 , TiC1 ⁇ 2 or a mixture thereof, incorporating alkaline or alkaline earth metals, or an alumina support stabilized with La, Ce or Mg, among others.
  • the catalytic suspension should contain a catalyst with Pd as active metal, or Pt, Ru, Ir, in addition to other noble metals or oxides of transition elements.
  • a catalyst with Pd as active metal or Pt, Ru, Ir, in addition to other noble metals or oxides of transition elements.
  • Pd active metal
  • Ru noble metal
  • Ir in addition to other noble metals or oxides of transition elements.
  • in an alumina support stabilized with La, Ce, Mg, among others.
  • the deposition of the catalysts comprised in the catalytic suspension on the metal microstructures represents one of the crucial phases of the method of preparing the structured catalytic systems of the present invention. Normally, what is sought is the homogeneous distribution of the catalytic material in the metal microstructure, as well as high adhesion.
  • the washcoating process is used for the catalyst deposition on the metal microstructures, all catalytic precursors being added to the metal microstructure in the form of a catalytic suspension, promoting the catalyst preparation and simultaneously coating the metal microstructure.
  • the microstructures In order to allow adequate surface coverage of the microstructures, the microstructures must be pre-treated so that the aluminum present in the alloy migrates to the surface where the alumina is oxidized in the form of a tightly adherent and rough layer, favoring the coating process and enhancing the adhesion of the catalyst film present in the catalytic suspension after drying and calcining.
  • Catalytic coating is performed by immersing the metal microstructures in a catalytic suspension. Such method usually requires the control of three fundamental parameters: immersion rate, excess suspension elimination method and solid drying / calcination.
  • Such suspensions are prepared by dissolving the active phase precursors (eg Co for Fisher-Tropsch synthesis, Ni for methane reforming or Pd for combustion) and promoters (eg Re for Fisher-Tropsch synthesis) from soluble salt catalyst (eg Co (NO 3 ) 2 -6H 2 0, Ni (NO 3 ) 2 -6H 2 0, Pd (OH) 2 and HRe0 4 ) in a solvent which may be water, ethanol acetone or a mixture thereof.
  • active phase precursors eg Co for Fisher-Tropsch synthesis, Ni for methane reforming or Pd for combustion
  • promoters eg Re for Fisher-Tropsch synthesis
  • soluble salt catalyst eg Co (NO 3 ) 2 -6H 2 0, Ni (NO 3 ) 2 -6H 2 0, Pd (OH) 2 and HRe0 4
  • a desired amount of support e.g. Al 2 0 3
  • the pH adjusted to a value away from the isoelectric point of the support to potentiate repulsions that help stabilize the suspension but without reaching values. that produce the dissolution of the support.
  • the resulting mixture is sonicated for a time of approximately 10 minutes.
  • the suspension is then subjected to stirring and a certain amount of colloidal suspension (additive) (e.g. 20% colloidal alumina solution) is slowly added.
  • colloidal suspension e.g. 20% colloidal alumina solution
  • the Colloid helps stabilize the suspension and increase the adhesion of the catalyst film once dried and calcined.
  • the suspension is kept under stirring for 24 hours prior to the overcoating step.
  • the metal microstructures are introduced into the suspension by the washcoating technique at a constant speed of 3 cm / min. remaining in this suspension for 3 minutes. They are then lifted from the suspension at this same speed. However, the structure may be submerged in the suspension at a speed which may vary from 1 cm / m 2. and 6 cm / me. being at least 1 minute submerged in the suspension and being removed from the suspension also in the same range of input speed variation.
  • Excess suspension is eliminated by centrifugation, suction or blowing via compressed air.
  • the speed used ranges from 10 rpm to 10,000 rpm for at least 1 minute, preferably from 100 rpm to 5,000 rpm for at least 2 minutes and most preferably from 200 rpm to 2,000 rpm for at least 2 minutes. ,5 minutes. If suction or blowing is chosen, a uniform air flow must be passed through all channels of the structure.
  • a warm jet stream of hot air is distributed throughout the microchannels at a temperature of 50 ° C to 120 ° C for at least 1 hour, with a preference of 60 ° C to 100 ° C. C for at least 2 hours.
  • the substrate Once the substrate has cooled, it is recoated to the desired load. At the end it calcines at the required temperature.
  • the substrate for STF has been calcined at a temperature between 150 ° C and 600 ° C for at least 2 hours, and preferably at a temperature of 250 ° C to 400 ° C for at least 4 hours.
  • the calcination is done at a higher temperature, as it ensures greater adhesion of the substrate.
  • This procedure is general for all substrates (monoliths, micromonolites, foams and microchannel plates - Figures 3A, 3B, 3C).
  • the plate prior to coating, the plate is protected with a masking tape, leaving only the entry and exit zone of one direction of the microchannels uncovered. This prevents the catalyst from depositing on the outer surface of the block and in the microchannels in another direction.
  • the adhesive tape is smoothly peeled off and resists drying at 50 ° C.
  • catalytic coating Several variables influence the catalytic coating, including: solids content; particle size; isoelectric point (pH), type of additive; number of coatings; type of coating; excess elimination etc.
  • Solids Content The highest possible solids content is generally sought so that the amount of catalyst deposited by coating is as large as possible and therefore fewer coatings are required. By increasing the solids content, the viscosity also increases and the maximum amount will be given by the optimal value of this variable.
  • the relationship between solids content and viscosity depends on many factors, such as particle size, the nature of the solvent or the presence of additives. Depending on the system, the maximum solids content that can be used is between 5% and 40%. For Co / AI 2 0 3 catalysts the optimal value approaches 20%.
  • Particle size has a double role. On the one hand it has to be small enough that the suspension is stable and does not settle. However, this sedimentation also depends on solvent viscosity, presence of additives and solids content. On the other hand, a very small particle size greatly increases the viscosity of the suspension allowing for lower maximum solids contents. Therefore, the recommended particle size is usually between 1 and 10 microns for the case of the GTL catalyst.
  • the isoelectric point marks the pH value at which the surface charge of the oxides is zero. For this value, there are no repulsions between the particles by which the flocculation of the particles takes place and thus the suspension destabilization. It is therefore advisable to work with pH values sufficiently different from the isoelectric point so that there is a high repulsive potential between particles that potentiates suspension stabilization. However, one must take into account that at extreme pH, the oxides dissolve and therefore it is recommended to seek pH compromise values. Usually, values of 2 to 4 pH units above or below the isoelectric point are usually adequate.
  • the pH of the solution is adjusted with at least one acid which may be nitric, acetic or sulfuric acid.
  • Additives used in suspensions are usually of two types: inorganic colloids or high molecular weight soluble organic compounds.
  • Inorganic colloids once calcined, remain in the coating as oxides. Its role is to increase the viscosity of the suspension, which helps its suspension stability; and enhancing the adhesion of the catalyst layer after calcination. This is achieved by greater cohesion of the catalyst film (the layer does not crumble) and greater adherence of this layer with the substrate (the layer does not peel).
  • Colloidal alumina is the reference colloid since the pretreated metal substrate is coated with alumina (chemical compatibility), but depending on the nature of the support colloidal silica, titania, bohemite, cerium, zinc oxide and other materials are used. etc.
  • organic additives are more complex and as they are eliminated during calcination, they play an important role only in stabilizing the suspension, coating or drying. Its first role is the stabilization of the suspension by increasing the viscosity. However, it is sometimes said that they are viscosity modulators because they may also decrease it if it is too high for a very small particle size. They also reduce surface tension which improves substrate moisture facilitating homogeneous coating, and most importantly, reducing capillary forces during drying and preventing cracking of the catalyst film.
  • Polyvinyl alcohol, polyvinylpyrrolidone, sodium polymethacrylate or methylcellulose are typical organic additives for the formulation of catalyst suspensions.
  • the contents of additives are very variable, but range from very low values to amounts close to catalyst. That is, they range from 0.1% to 50% by weight with respect to catalyst mass.
  • a typical coating may carry between 0.1 mg / cm 2 and 0.5 mg / cm 2 metal substrate. Usual loads on metallic substrates usually range from 0.5 mg / cm 2 to 5 mg / cm 2 , although it is preferable between 1 mg / cm 2 and 2 mg / cm 2 .
  • Calcination is a fundamental step in catalyst preparation and has a multiple role. Firstly, it allows the decomposition of precursors such as nitrates, carboxylates, oxoanions, among others in their corresponding oxides. In addition, it produces the decomposition of other additives that add to the suspensions for the coating of structured substrates. Secondly, it produces catalyst stabilization as it favors the interaction between the active phase and the support, reducing its mobility against the sintered one.
  • Another aspect of the invention is a catalytic microreactor containing the structured catalytic system of the present invention wherein the constituent metal microstructures of the system are distributed in the reactor in the form of metal plates with a height of 0.5 mm to 2 mm, a width of 5 mm to 50 mm. mm, and length from 5 mm to 50 mm.
  • Such metal plates are arranged to form microchannels with a height from 200 microns to 900 microns, width from 200 microns to 900 microns and hydraulic diameter from 0.5 mm to 1 mm.
  • microchannels should be separated from each other by a wall thickness of less than 1 millimeter, preferably less than 0.5 millimeter.
  • calcination treatments must be sufficient to stabilize the system, but without forming only aluminate.
  • calcination also aims to form the catalyst film on the metallic substrate and enhance its cohesion and adhesion.
  • Example 2 Preparation of structured supports of monoliths, micromonolites and foams.
  • longitudinal channel metallic monoliths Two types were used, longitudinal channel metallic monoliths and foams.
  • longitudinal channel metal monoliths are further divided into two different types: low cell density monoliths (monoliths) and high cell density monoliths (micromonoliths).
  • the longer blades curled (Figure 3B) by means of a self-designed mechanical device consisting of two Nylon sprockets.
  • the distance between the teeth and the degree of interpenetration of the wheels defines the size of the channels (hydraulic diameter) which can vary between 100 pm and 2,000 pm, more specifically between 500 pm and 1,000 pm and the density of the teeth.
  • cells which may range from 1.4 cells / cm 2 to 48 cells / cm 2 , more specifically between 4 cells / cm 2 and 20 cells / cm 2 . Exact measurements are shown in table 1.
  • FeCrAHoy (Goodfellow) with a thickness of 50 pm and the thickness may vary between 10 pm and 100 pm, being preferable between 25 pm and 75 pm. Strips 3 cm wide and 38 cm and 47 cm long were cut. The micromonolyte cleaning and construction steps were performed in the same way as for monoliths, but using much smaller tooth curling rollers.
  • micromonoliths presented channel size (hydraulic diameter) ranging between 10 pm and 1,000 pm, more specifically between 100 pm and 500 pm and in turn the cell density which can vary between 24 cells / cm 2 and 120 cells / cm 2 , more specifically between 40 cells / cm 2 and 60 cells / cm 2 . Exact measurements are shown in table 1.
  • the monoliths and micromonolites were subjected to a heat pretreatment, which was carried out by air oxidation (calcination) for 22 hours at 900 ° C.
  • This pretreatment aims to migrate the aluminum to the surface by creating a roughly adherent, rough-coated alumina layer.
  • DUOCEL commercial aluminum foams manufactured by ERG Materials and Aerospace come in the form of large blocks or sheets of 40 mm thickness.
  • a special hollow drill with diamond wire was used to obtain the samples.
  • the drilling operation is delicate and it is important to control the speed of the drill introduction into the material.
  • the obtained foams have pore surface densities ranging from 0.04 pores / cm to 20 pores / cm, more specifically between 0.4 pores / cm and 8 pores / cm and porosity ranging from 1% to 99%, more specifically between 50 % and 98%. Exact measurements are shown in table 1.
  • the foams were pre-treated by anodizing process (1.6 M oxalic acid, 50 ° C, 40 minutes and a density of 2 A / sample) to obtain very rough alumina layers with high adhesion. .
  • microchannel plates may have a height of 0.5 mm to 2 mm; width from 5 mm to 50 mm and length from 5 mm to 50 mm, said microchannels having a height of 200 microns to 900 microns and a width of 200 microns to 900 microns and a hydraulic diameter of 0.5 millimeters to 2 millimeters.
  • Pairs of slotted and non-slotted plates were aligned to drill 4 holes by drilling with 3.2 mm diameter drills to subsequently insert M3 screw-nut pairs to maintain the holes. plates joined at later process stages (catalyst deposit).
  • Table 1 shows the main geometric characteristics of structured systems.
  • the geometrical area is fundamental because it allows to calculate the specific catalyst load (mg / cm 2 ) and thus to estimate the thickness of the catalytic coating film.
  • Hydraulic diameter and porosity controlled the pressure drop that structures produce: the smaller the hydraulic diameter and porosity, the greater the pressure drop.
  • Example 4 Preparation of a conventional suspension using the catalyst of example 1.
  • Example 5 Preparation of a suspension with the method of the present invention.
  • the catalysts were characterized by H 2 chemorption.
  • the catalyst was reduced to 350 ° C for 600 minutes with a 2 ° C / min ramp. and 30 mL / min H 2 flow, then the temperature was lowered to 100 ° C with 30 mL / min flow Ar. and held for 90 minutes at this temperature. Then the temperature was raised with a ramp of 10 ° C / min. to 350 ° C and was maintained for 60 minutes with the same air flow.
  • Table 2 shows the chemisorption results of the prepared catalysts. It is observed that the catalyst prepared by the method of the present invention, by requiring only calcination, promotes greater reducibility and larger metal area, which means dispersion and consequently smaller particle size of Co.
  • Table 2 shows the characterization results of the catalyst prepared by the conventional method (Vp) and the method of the present invention.
  • Vp the conventional method
  • Re allows a larger reduced fraction (reduction promoter) accompanied by an increase in the metal surface, which supposes a decrease in the crystal size of Co.
  • the second calcination of the catalyst prepared by the traditional method always produces a sintered metal phase and a lower reducibility. of the samples. Consequently, catalysts prepared by the method of the present invention always have better properties (metal surface, degree of reduction, dispersion and size of Co) than their counterparts prepared by the conventional method and calcined twice.
  • Example 7 Coating the structures prepared in examples 2 and 3 with suspensions prepared according to example 4 (conventional method).
  • Example 8 Covering of the structures prepared in examples 2 and 3 with suspensions prepared as per example 5.
  • the plates and screws were covered with an easily removable tape so that the covering of the structure could only occur in the microchannels. They were then tied with a small gag and introduced into the suspension at a speed of 3 cm / min., Holding them for 3 minutes and removing them at the same speed. Excess suspension was eliminated by suction method with the microchannels in the vertical direction. The structures were dried with a 50 ° C air dryer at a distance of 30 cm from the upright microchannel inlet. The tape was then peeled off and the plates weighed. This procedure was repeated until the plates reached between 1.5 cm / cm 2 and 2.0 cm / cm 2 .
  • Example 2 The structures prepared in Example 2 were coated with the suspension of Example 5 (method of the present invention). The procedure was done in the same way as in the previous example.
  • the coating procedure by both methods is very reproducible and additive when successive coatings are repeated in all geometries.
  • the first cover alone seems to carry more than successive coverings in some cases, as can be deduced by extrapolating the estimate line to cut the y-axis at the intercept.
  • Adhesion generally increases by decreasing the hydraulic diameter of the structure.
  • the adhesion obtained with the method of the present invention is always superior to that obtained with the conventional method for all tested geometries.
  • the stabilized alumina used as a support (La / Al 2 0 3 ) is prepared by adding 275 g of ⁇ - ⁇ 2 0 3 to a solution containing 131, 14 g of La (NO 3 ) 3 .6H 2 0 in 393 ml of distilled water while stirring for 4 hours and then the solvent was evaporated at 120 ° C for 24 hours. The solid was triturated and calcined at 900 ° C for 4 hours.
  • Example 11 Coating of the structures prepared in Examples 2 and 3 with the Ni / La-Al 2 0 3 and Pd / La-Al 2 0 3 suspensions. For the coating of metal substrates prepared in Example 2, they were submerged in the suspension Ni / La-Al 2 0 3 and Pd / La-Al 2 0 3l prepared in Examples 9 and 10, respectively.
  • micromonolites, monoliths and foams were submerged at a constant rate of 3 cm / min, kept submerged for 1 minute and then removed from the mixture at the same rate. Excess elimination was performed by centrifuging the structure at 500 rpm for 2.5 minutes. It was then dried at 80 ° C. This procedure was repeated until the catalyst mass reached between 1 mg / cm 2 and 2 mg / cm 2 . Then the coatings made with catalyst Ni / La-Al 2 0 3 were calcined at 900 ° C for 4 hours; The coatings made with Pd / La-Al 2 0 3 were calcined at 800 ° C for 1 hour. Due to the melting point of aluminum, foams coated with Ni / La-Al 2 0 3 and Pd / La-Al 2 0 3 catalysts were calcined at 500 ° C.
  • the plates and screws of the microchannel plates were first covered with an adhesive tape (easily removed by the washcoating process) so that the suspension coating could only occur in the microchannels. They were then attached by means of a small gag and introduced into the suspension with the vertically oriented channels at a speed of 3 cm / min. Where they were held for 3 minutes and removed at the same speed. Excess elimination was performed by suction method and then the microchannel plates were suspended and dried at an air temperature of 50 ° C with a hot air dryer at a distance of 30 cm from the microchannel inlet in vertical position. Then the strap was removed and the plates were weighed. This procedure was repeated until the plates reached between 1 cm / cm 2 and 2 cm / cm 2 .
  • Adhesion generally increases by decreasing the hydraulic diameter of the structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

A presente invengáo propóe um método de recobrimento de microestruturas metálicas com urna suspensáo catalítica para produzir sistemas catalíticos estruturados. Mais específicamente, suspensóes contendo um precursor da fase ativa de um catalisador, um promotor, suporte, e aditivos, sao utilizadas para recobrir urna microestrutura metálica formando um sistema catalítico estruturado útil em reacóes do processo GTL ("gas to liquid", como a reacáo de reforma de metano e a síntese de Fischer-Tropsch). Este método simplifica o método convencional que requer a preparacáo prévia do catalisador; reduz os tratamentos térmicos, o que é fundamental para os catalisadores envolvidos na síntese de Fischer-Tropsch, e dá lugar a recobrimentos com urna boa homogeneidade e aderéncia.

Description

MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS
ESTRUTURADOS
CAMPO DA INVENÇÃO
A presente invenção se insere no campo de métodos para o preparo de sistemas catalíticos estruturados. Mais especificamente, um método de preparo onde uma microestrutura metálica é recoberta com uma suspensão catalítica, sendo tais catalisadores úteis nas reações envolvidas no processo GTL ("gas to liquid").
ESTADO DA TÉCNICA
O aumento da demanda energética mundial, e a crescente pressão pelo controle de emissões poluentes, responsáveis por mudanças climáticas globais, tem provocado um aumento do interesse pela utilização de fontes alternativas para a produção de combustíveis, em especial o gás natural.
A descoberta de novas reservas e exploração de reservas já existentes de gás natural (GN) no mundo vem crescendo nos últimos anos sendo a conversão deste energético em gás de síntese (mistura de H2 e CO), e deste em combustíveis líquidos, denominado processo GTL (do inglês "gas to liquids") uma ótima opção para se reduzir a dependência da economia mundial em relação ao uso preponderante de óleo cru.
Tais combustíveis líquidos são obtidos via síntese de Fischer- Tropsch, onde o gás de síntese é convertido em hidrocarbonetos, água e produtos oxigenados, tais como: álcoois, aldeídos e cetonas.
Entretanto, em locais remotos ou com grandes restrições de espaço, como, por exemplo, plataformas de produção de petróleo, a instalação de unidades convencionais de GTL não é tecnicamente e nem economicamente viável.
Uma das alternativas para solucionar este problema de restrição de espaço é a utilização de microrreatores aliados a catalisadores estruturados. Os microrreatores por terem seu tamanho reduzido em um fator de pelo menos 100 permitem a passagem de fluidos por milhares de tubos capilares, conferindo à reação química, altas taxas de mistura por meio da difusão entre os fluidos, alta transferência de calor e um melhor aproveitando dos insumos, além de reduzir o consumo de energia associado à agitação e troca de calor.
Em vista disso, os microrreatores trazem benefícios quanto ao aumento da relação superfície/volume, além de terem reduzidas as dimensões lineares e volumétricas da planta industrial, enquanto aumentam a produtividade.
Tais microrreatores possuem microcanais, de dimensão menor que 1 milímetro, onde ocorrem as reações químicas. Em alguns casos, microcanais de estrutura metálica são recobertos com suspensões ou sóis contendo compostos ativos, sendo a combinação da estrutura metálica recoberta com o composto ativo denominada de catalisador estruturado.
A patente US 6,555,725 propõe o uso de um catalisador monolítico visando à conversão "in-situ" de parafinas produzidas em um processo de Fischer-Tropsch em leito de lama.
As patentes US 7,067,560 e US 7,067,561 tratam de processos químicos para a conversão de gás natural (metano) em hidrocarbonetos de cadeia longa utilizando tecnologia de microcanais. Ambos os documentos descrevem que para a etapa de reforma, a espessura dos microcanais da capa de alumina estabilizada sobre o substrato metálico é inferior a 100 μιη e para a reaçãò Fischer-Tropsch, a capa do catalisador de Co/y-AI203 sobre a superfície das folhas metálicas tem uma espessura típica de 120 μΐη - 80 μηη.
Já as patentes US 7,087,651 e US 7,109,248 mostram a produção de hidrocarbonetos de cadeia longa a partir de gás de síntese utilizando microreatores operando a altas velocidades espaciais e temperaturas acima de 230°C para evitar a formação de ceras, que poderiam ser retidas na superfície do catalisador e limitar a difusão dos reagentes, a uma baixa conversão de CO.
O pedido de patente US 2004/0147620 A1 descreve a preparação de catalisadores para a síntese Fischer-Tropsch (FT) sobre espumas de FeCrAlloy. Primeiramente, o catalisador FT foi preparado com uma solução de nitrato de cobalto II hexa-hidratado e ácido perrênico (20% em peso de Co e 4% em peso de Re) que foi utilizada para impregnar γ-ΑΙ20 sendo o produto assim obtido submetido à secagem a 100°C, por pelo menos 4 horas e calcinação a 350°C, por pelo menos 3 horas. Em seguida, preparou-se uma suspensão de catalisador e água destilada com uma relação água: catalisador igual a 2,5. A suspensão de catalisador foi moída por 24 horas antes do recobrimento das espumas. A espessura da camada de catalisador (> 20 μηι) é muito menor que as partículas dos reatores convencionais de leito fixo (> 100 μιη) ou do tipo mistura ou fluidizado (> 50 μιη). Portanto, o coeficiente de transferência de massa interna (difusional) é maior nos monólitos.
No mesmo documento, foi avaliada a atividade catalítica do catalisador e das espumas recobertas. Em geral, o catalisador em pó produziu maior conversão que os monólitos de espumas. No entanto, nas mesmas condições, o monólito apresentou pelo menos três vezes menos metano. Este resultado pode estar relacionado à capacidade do monólito em favorecer a dissipação de calor para o exterior do reator evitando assim o aumento dos pontos quentes, os quais são típicos nos reatores de leito fixo.
O pedido de patente US 2005/0244304 A1 descreve a construção de um dispositivo de microcanais para reforma de metano. Os microcanais foram recobertos primeiramente, por deposição química a vapor, com uma camada de alumineto de Ni, posteriormente oxidado para a formação de uma camada de alumina. Depois, a camada de alumina foi tratada com uma solução de lantânio e em seguida os microcanais foram recobertos com um sol de alumina (15% em peso de alumina) e finalmente com uma solução de platina a 10%. O documento permite concluir que a uniformidade do interior dos microcanais é influenciada pelo modo como as forças superficiais (capilaridade e adesão) atuam. E quando estas forças superam as forças gravitacionais no interior dos canais, o recobrimento obtido apresenta maior uniformidade.
O documento US 5,208,206 descreve o recobrimento de γ-ΑΙ203 e 15% Νϊ/γ-ΑΙ203 sobre placas de aço inoxidável com microcanais de 50 mm x 0,4 mm x 0,3 mm.
As placas foram submetidas a dois diferentes testes de aderência: o primeiro, que é conhecido como choque térmico, consiste em aumentar a temperatura até 800°C (10°C/min.) e subitamente esfriar até temperatura ambiente; no segundo teste (descrito previamente na patente US 5,208,206), a placa é submergida em éter de petróleo e submetida a baixo stress mecânico produzido por impulsos ultrassônicos durante 30 minutos. As placas não apresentaram perda de massa no teste de choque térmico, enquanto que as placas submetidas à ultrassom chegaram a ter uma perda máxima de 7%.
A informação existente sobre a preparação de catalisadores estruturados na literatura mostra a existência de duas grandes estratégias. A primeira consiste na preparação do catalisador final na forma estabilizada, por meio de uma calcinação e a preparação posterior de uma suspensão estável com a qual se recobre a estrutura metálica e se estabiliza com uma calcinação final. Esta estratégia requer, portanto, duas calcinações.
A segunda se baseia em preparar a suspensão apenas com o suporte catalítico, com o que se recobre as estruturas para, posteriormente, impregnar as fases ativas, e submetê-lo à calcinação final. Esta segunda via só requer uma calcinação da fase ativa, porém, quando as estruturas são grandes, complexas ou com canais muito pequenos, produz heterogeneidades importantes na repartição da fase ativa que, além disso, é difícil de detectar o que leva a um pobre rendimento do catalisador.
Portanto, a presente invenção propõe um método de preparo de catalisadores estruturados onde microestruturas metálicas são recobertas com suspensões catalíticas, sendo os recobrimentos obtidos homogéneos, muito aderentes, além de permitir o carregamento das microestruturas metálicas com a quantidade desejada de fase ativa por meio de recobrimentos sucessivos.
BREVE DESCRIÇÃO DAS FIGURAS
A Figura 1 é uma placa de liga metálica com 10 microcanais gerados por fresado tangencial.
A figura 2 mostra tipos de catalisadores estruturados: (A) monólitos; micromonolito (B) e espuma (C).
A Figura 3 mostra a sequência da preparação de um monólito ou micromonolito.
A Figura 4 mostra imagens de recobrimento das placas de microcanais com a suspensão preparada pelo método da presente invenção.
A Figura 5 mostra a parede do microcanal recoberta com a suspensão útil para o método da presente invenção.
A Figura 6A é um gráfico da carga aderida por número de recobrimentos, utilizando diferentes estruturas e preparados pelo método da presente invenção, sendo: "A" micromonolito 1 , "B" micromonolito 2, "C" monólito 1 , "D" monólito 2, Έ" espuma 1 , "F" espuma 2, "G" placa de microcanais soldada e "H" placa de microcanais com parafuso. Teste de aderência: micromonólitos 97%, monólitos 82%, espumas 80%, placas de microcanais 88%.
A Figura 6B é um gráfico da carga aderida por número de depósitos, utilizando diferentes estruturas e preparados pelo método clássico, ou 0542
6 seja, com uma suspensão preparada com catalisador previamente preparado, sendo: Ί" micromonólito 4, "J" micromonólito 5, "L" monólito 3, "M" monólito 4, "N" espuma 3, "O" espuma 4, "P" placa de microcanais soldada, e "Q" placa de microcanais com parafusos. Teste de aderência: micromonólitos 92%, monólitos 73%, espuma 71 %, placas de microcanais 63%.
A Figura 7 é um gráfico da carga aderida por número de recobrimentos utilizando diferentes substratos metálicos com suspensões preparadas pelo método da presente invenção contendo catalisadores para as reações de reforma de metano (Ni/La-Al203), combustão de metano (Pd/La-Al203) e Síntese de Fischer-Tropsch (CoRe/AI203), sendo: "A" micromonólito Co-Re/AI203 (aderência 97%), "B" Monólito Co-Re/AI203 (aderência 82%), "C" Espuma Co-Re/AI203 (aderência 80%), "D" placa de microcanais soldada Co-Re/AI203 (88%), Έ" placas de microcanais com parafusos Co-Re/AI203, "F" micromonólito Ni/La-Al203 (aderência 98%), "G" monólito Ni/La-Al203 (aderência 89%), Ή" espuma Ni/La-Al203 (aderência 51 %), Ί" placas de microcanais soldada Ni/La-Al203 (aderência 93%), "J" placas de microcanais com parafusos Ni/La-Al203, "L" micromonólito Pd/La-Al203 (aderência 98%), "M" monólito Pd/La-Al203 (aderência 90%), "N" espuma Pd/La-Al203 (aderência 77%), Ό" placa de microcanais soldada Pd/La-Al203 (aderência 95%), e "P" placa de microcanais soldada com parafusos Pd/La-Al203
DESCRIÇÃO DETALHADA DA INVENÇÃO
A presente invenção está relacionada com a um método de preparo de sistemas catalíticos estruturados envolvendo o recobrimento de microestruturas metálicas com uma suspensão catalítica, sendo tais sistemas adequados para as reações implicadas no processo GTL, tais como a reforma a vapor, combustão e síntese de Fischer-Tropsch.
As microestruturas metálicas úteis para a presente invenção se apresentam na forma de ligas metálicas. Tais ligas podem ser escolhidas dentre: aços, e ligas de níquel ou de alumínio, entre outras, mas as mais utilizadas são as ligas férricas com alto teor de alumínio (como FeCralIoy, FeCralloy JA13, Aluchrom, Aluchrom YHf, Kant al AF e APM, Ugine Saoie12178 e 12179, dentre outras).
As ligas férricas ao serem submetidas a tratamento a altas temperaturas sofrem um processo de migração de parte do alumínio até a superfície, onde há a formação de uma casca de alumina.
Tal característica permite a utilização destas ligas em processos que empregam temperaturas muito altas, entre 1.100°C e 1.200°C, e, em sendo a oxidação destas ligas controlada cuidadosamente, estas apresentam uma morfologia singular de agulhas e placas com alta rugosidade que permite uma excelente ancoragem da capa catalítica.
Outras ligas muito adequadas para sistemas catalíticos estruturados são as de alumínio, as quais podem ser submetidas a um tratamento de anodização eletroquímica que cria uma capa de alumina de altíssima aderência que, em condições específicas, tem uma textura adequada para uso como suporte catalítico ou uma morfologia superficial altamente rugosa, que permite uma excelente ancoragem mecânica de uma película catalítica.
Quanto à forma, as microestruturas metálicas podem se apresentar como monólitos metálicos de baixa densidade de célula (monólitos), monólitos metálicos de alta densidade de célula (micromonólitos), malhas e espumas.
Quando na forma de monólitos de canais paralelos longitudinais, estes são fabricados por rolamento de placas alternativas lisas e corrugadas, sendo o corrugado obtido pela passagem de uma lâmina de metal entre duas rodas dentadas, o que gera um corrugado com a forma dos dentes dos rolos.
Assim, dependendo da distância entre os dentes e da profundidade destes, canais de diferentes tamanhos são gerados, dando lugar a diferentes densidades superficiais de células.
Em geral, os monólitos são preparados a partir de lâminas de FeCralIoy com espessura variando entre 10 pm e 100 pm, mais preferencialmente com espessura entre 25 pm e 75 pm. Tais monólitos apresentam ainda diâmetro hidráulico variando entre 100 pm e 2.000 pm, mais especificamente entre 500 pm e .000 pm e densidade das células variando entre 1 ,4 e 48 células/cm2, porém sendo mais indicadas as densidades entre 4 e 20 células/cm2.
Os micromonólitos úteis para a presente invenção podem ser preparados a partir de laminas de FeCralIoy ou outra liga equivalente como Aluchrom, Aluchrom YHf, FeCrAlloy JA13, Kanthal AF, Kanthal APM, Ugine Saoie 12178 e Ugine Saoie 12179, com espessuras variando entre 10 pm e 100 pm, preferencialmente laminas de FeCralIoy com espessura variando entre 25 pm e 75 pm. Tais mocromonólitos possuem, geralmente, diâmetro hidráulico variando entre 100 pm e 1.000 pm, sendo preferenciais os diâmetros variando de 100 pm e 500 pm, e densidade de células variando entre 24 e 120 células/cm2, mais especificamente entre 40 e 60 células/cm2.
As espumas para uso de acordo com o método da presente invenção devem ser cortadas em blocos ou chapas de alumínio, apresentando tais espumas porosidades entre 1 % e 99%, preferencialmente entre 50% e 98%, e densidades superficiais de poro variando entre 0,04 e 20 poros por centimetro linear, com preferência por densidades entre 0,4 e 8 poros por centimetro linear.
As placas de microcanais podem ser preparadas de muitas formas, entre as quais podemos citar: fresado frontal ou tangencial, eletroerosão por fio ou por eletrodo, decapagem química, serigrafia ou "deep drawing", dentre outros.
As placas utilizadas são, em geral, placas de ligas inoxidáveis ferríticas microligadas com alumínio com espessura de 1 mm, tendo 20 mm x 20 mm. Em cada placa são gravados longitudinalmente 10 microcanais de 0,7 mm x 0,7 mm separados entre si por uma espessura de parede de menos de 1 milímetro, sendo preferível 0,5 milímetro e mais preferível ainda 0,3 milímetro, ficando em ambos os extremos duas faixas de 5 mm sem microcanais (figura 1).
Quando empregando o método da presente invenção para o preparo de sistemas catalíticos estruturados a serem empregados na síntese de Fischer-Tropsch, a suspensão catalítica deve conter um catalisador compreendendo cobalto, como metal ativo, ou ainda Fe ou Ru, podendo conter também promotores metálicos como Re, Pd, Pt, Zr, Ti, Cr, Zn, Al, Mg, Mn, Cu ou Ag, entre outros.
Já quando o objetivo é o preparo de sistemas catalíticos estruturados para reação de reforma do metano, a suspensão catalítica deve conter um catalisador tendo Ni como fase ativa, ou ainda Ru, Rh, Pd, Ir ou Pt, empregando como suporte MgO, Mg2AI04, Si02, Ce02, Zr02, TiC½ ou uma mistura dos mesmos, tendo incorporados metais alcalinos ou alcalinos terrosos, ou ainda, um suporte de alumina, estabilizado com La, Ce ou Mg, dentre outros.
Ainda, em sendo o objetivo o preparo de um sistema catalítico estruturado para reações de combustão, a suspensão catalítica deve conter um catalisador tendo Pd como metal ativo, ou ainda Pt, Ru, Ir, além de outros metais nobres ou óxidos de elementos de transição, em um suporte de alumina, estabilizado com La, Ce, Mg, dentre outros.
A deposição dos catalisadores compreendidos na suspensão catalítica sobre as microestruturas metálicas representa uma das fases cruciais do método de preparo dos sistemas catalíticos estruturados da presente invenção. Normalmente, o que se busca é a distribuição homogénea do material catalítico na microestrutura metálica, além de elevada aderência.
Na presente invenção utiliza-se o processo de "washcoating" para a deposição do catalisador sobre as microestruturas metálicas, sendo todos os precursores catalíticos adicionados a microestrutura metálica sob a forma de uma suspensão catalítica, promovendo a preparação do catalisador e simultaneamente o recobrimento da microestrutura metálica.
Para permitir o recobrimento adequado da superfície das microestruturas metálicas, esta deve ser pré-tratada de forma que o alumínio presente na liga migre para a superfície onde é oxidado a alumina em forma de uma capa de poucas micras de espessura, fortemente aderida e rugosa favorecendo o processo de recobrimento e potencializando a aderência da película de catalisador presente na suspensão catalítica depois de seco e calcinado.
O recobrimento catalítico é realizado imergindo as microestruturas metálicas em uma suspensão catalítica. Tal método exige normalmente o controle de três parâmetros fundamentais: velocidade de imersão, método de eliminação do excesso de suspensão e secagem/calcinação do sólido.
Tais suspensões são preparadas dissolvendo-se os precursores das fases ativas (por exemplo, Co para a síntese de Fisher-Tropsch, Ni para reforma do metano ou Pd para combustão) e promotores (por exemplo, Re na síntese de Fisher-Tropsch) do catalisador em forma de sal solúvel (por exemplo, Co(N03)2-6H20, Ni(N03)2-6H20, Pd(OH)2 e HRe04) em um solvente que pode ser água, etanol, acetona ou uma mistura destes.
Em seguida, acrescenta-se uma quantidade desejada de suporte (por exemplo, Al203) e ajusta-se o pH a um valor afastado do ponto isoelétrico do suporte para potencializar as repulsões que ajudam a estabilizar a suspensão mas sem chegar a valores que produzam a dissolução do suporte.
A mistura resultante é submetida à ultrassom durante um tempo de aproximadamente 10 minutos. A seguir, submete-se a suspensão à agitação e acrescenta-se lentamente uma certa quantidade de suspensão coloidal (aditivo) (por exemplo, solução de alumina coloidal a 20%). O colóide ajuda a estabilizar a suspensão e a aumentar a aderência da película de catalisador uma vez seca e calcinada. A suspensão é mantida sob agitação durante 24 horas antes da etapa de recobrimento.
As microestruturas metálicas são introduzidas na suspensão pela técnica de "washcoating" a uma velocidade constante de 3 cm/min. mantendo-se nesta suspensão durante 3 minutos. Posteriormente, são retirados da suspensão nesta mesma velocidade. No entanto a estrutura pode ser submergida na suspensão a uma velocidade que pode variar entre 1 cm/mim. e 6 cm/mim. ficando pelo menos 1 minuto submersa na suspensão e sendo retirada da suspensão também na mesma faixa de variação da velocidade de entrada.
O excesso de suspensão é eliminado por centrifugação, sucção ou sopro via ar comprimido. Optando pela centrifugação, a velocidade utilizada varia de 10 rpm a 10.000 rpm, durante pelo menos 1 minuto, sendo preferível de 100 rpm a 5.000 rpm, durante pelo menos 2 minutos e mais preferível ainda de 200 rpm a 2.000 rpm, durante pelo menos 2,5 minutos. Optando-se pela sucção ou sopro, deve-se passar uma corrente de ar uniforme por todos os canais da estrutura.
Para a secagem, utiliza-se uma corrente com jato suave de ar quente, distribuído por todo o interior dos microcanais, na temperatura entre 50°C e 120°C, durante pelo menos 1 hora, sendo preferível entre 60°C e 100°C, durante pelo menos 2 horas.
Uma vez resfriado o substrato, faz-se um novo recobrimento até alcançar a carga desejada. Ao final calcina-se à temperatura requerida.
Na presente invenção, o substrato para STF foi calcinado em uma temperatura entre 150°C e 600°C, durante pelo menos 2 horas, sendo preferível em uma temperatura de 250°C a 400°C, durante pelo menos 4 horas. Para os catalisadores com reforma e combustão que trabalham a altas temperaturas, a calcinação é feita a uma temperatura maior, pois se garante uma maior aderência do substrato. Este procedimento é geral para todos os substratos (monólitos, micromonolitos, espumas e placas de microcanais - figuras 3A, 3B, 3C). No caso das placas de microcanais, previamente ao recobrimento, protege-se a placa com uma fita adesiva ("masking tape"), deixando somente descoberta a zona de entrada e saída de uma direção dos microcanais. Desta forma, evita-se que o catalisador se deposite sobre a superfície externa do bloco e nos microcanais em outra direção. A fita adesiva é retirada, sem problemas, após o recobrimento e resiste à secagem a 50°C.
Diversas variáveis influenciam o recobrimento catalítico, dentre elas: conteúdo de sólidos; tamanho de partícula; ponto isoelétrico (pH), tipo de aditivo; número de recobrimentos; tipo de recobrimento; eliminação excesso etc.
Conteúdo em sólidos - Busca-se geralmente o maior conteúdo em sólidos possível para que a quantidade de catalisador depositado por recobrimento seja a maior possível e, portanto, sejam necessários menos recobrimentos. Ao aumentar o conteúdo em sólidos, a viscosidade também aumenta e a quantidade máxima será dada pelo valor ótimo desta variável. A relação entre conteúdo em sólidos e viscosidade depende de muitos fatores, como: o tamanho da partícula, a natureza do solvente ou a presença de aditivos. Dependendo do sistema, o conteúdo em sólidos máximo que se pode usar está compreendido entre 5% e 40%. No caso dos catalisadores de Co/AI203 o valor ótimo se aproxima dos 20%.
O tamanho de partícula tem um papel duplo. Por um lado tem que ser suficientemente pequeno para que a suspensão seja estável e não se sedimente. No entanto, esta sedimentação depende também da viscosidade do solvente, presença de aditivos e do conteúdo em sólidos. Por outro lado, um tamanho de partícula muito pequeno aumenta muito a viscosidade da suspensão o que permite conteúdos máximos de sólidos menores. Por isso, o tamanho de partícula recomendável costuma ficar entre 1 micra e 10 micra para o caso do catalisador de GTL.
O ponto isoelétrico marca o valor de pH no qual a carga superficial dos óxidos é nula. Para este valor, não existem repulsões entre as partículas pelas quais se produz a floculação das partículas e, portanto, a desestabilização da suspensão. Por isso, é recomendável trabalhar com valores de pH suficientemente diferentes do ponto isoelétrico para que exista um elevado potencial repulsivo entre partículas que potenciem a estabilização da suspensão. No entanto, tem-se que levar em conta que em pH extremos, os óxidos se dissolvem e por isso é recomendável buscar valores de compromisso do pH. Habitualmente, valores de 2 a 4 unidades de pH acima ou abaixo do ponto isoelétrico costumam ser adequados. O ajuste do pH da solução é feito com pelo menos um ácido que pode ser ácido nítrico, acético ou sulfúrico.
Os aditivos empregados nas suspensões costumam ser de dois tipos: colóides inorgânicos ou compostos orgânicos solúveis de alto peso molecular.
Os colóides inorgânicos, uma vez calcinados, ficam no recobrimento como óxidos. Seu papel é incrementar a viscosidade da suspensão, o que ajuda a estabilidade desta; e potencializar a aderência da camada de catalisador depois da calcinação. Isto se consegue por uma maior coesão da película de catalisador (a camada não se desmorona) e por uma maior aderência desta camada com o substrato (a camada não descasca).
A alumina coloidal é o colóide de referência já que o substrato metálico pré-tratado está recoberto de alumina (compatibilidade química), mas dependendo da natureza do suporte usa-se também sílica coloidal, titânia, bohemita, cério, óxido de zinco... etc.
O papel dos aditivos orgânicos (surfactantes) é mais complexo e como são eliminados durante a calcinação, tem papel importante somente na estabilização da suspensão, do recobrimento ou da secagem. Seu primeiro papel é a estabilização da suspensão pelo aumento da viscosidade. No entanto, às vezes diz-se que são moduladores da viscosidade porque podem também diminuí-la no caso de ser muito alta para um tamanho de partícula muito pequeno. Também reduzem a tensão superficial o que melhora a umidade do substrato facilitando o recobrimento homogéneo, e o mais importante, reduzindo as forças capilares durante a secagem evitando o aparecimento de fissuras na película do catalisador.
O álcool polivinílico, a polivinilpirrolidona, o polimetacrilato de sódio ou a metilcelulose são aditivos orgânicos típicos para a formulação de suspensões de catalisador. Os conteúdos de aditivos são muito variáveis, mas vão desde valores muito baixos até quantidades próximas às de catalisador. Isto é, variam de 0,1% a 50% em peso com relação à massa de catalisador.
O número de recobrimentos depende da carga desejada e da quantidade depositada em cada recobrimento. Em geral, prefere-se fazer recobrimentos finos, com pouca quantidade, que produzem resultados muito homogéneos e aderentes mesmo que isto requeira fazer muitos recobrimentos repetidos. Um recobrimento típico pode carregar entre 0,1 mg/cm2 e 0,5 mg/cm2 de substrato metálico. Cargas habituais em substratos metálicos costumam variar de 0,5 mg/cm2 a 5 mg/cm2, ainda que seja preferível entre 1 mg/cm2 e 2 mg/cm2.
A calcinação é uma etapa fundamental na preparação dos catalisadores e apresenta papel múltiplo. Em primeiro lugar permite a decomposição dos precursores como nitratos, carboxilatos, oxoânions, dentre outros nos seus óxidos correspondentes. Além disso, produz a decomposição de outros aditivos que se somam às suspensões para o recobrimento de substratos estruturados. Em segundo lugar, produz a estabilização do catalisador já que favorece a interação entre a fase ativa e o suporte, reduzindo sua mobilidade frente ao sinterizado.
No entanto, esta interação tem que ser moderada, caso contrário podem ser formados compostos de interação muito estáveis que são difíceis de ativar pela posterior redução, como no caso de catalisadores metálicos suportados. No caso dos catalisadores de Co sobre alumina, o problema da calcinação é a formação de aluminato de cobalto que se reduz a vários graus acima dos óxidos de cobalto e que, portanto não dá lugar a catalisadores ativos nas condições normais de redução necessárias para evitar o sinterizado da fase ativa.
Outro aspecto da invenção é um microrreator catalítico contendo o sistema catalítico estruturado da presente invenção onde as microestruturas metálicas constituintes do sistema estão distribuídas no reator na forma de placas de metálicas com altura de 0,5 mm a 2 mm, largura de 5 mm a 50 mm, e comprimento de 5 mm a 50 mm.
Tais placas metálicas são dispostas de modo a formarem microcanais com altura entre 200 micra a 900 micra, largura de 200 micra a 900 micra e diâmetro hidráulico de 0,5 mm a 1 mm.
Os microcanais devem estar separados entre si por uma espessura de parede de menos de 1 milímetro, preferencialmente menos de 0,5 milímetro.
Portanto, os tratamentos de calcinação têm que ser suficientes para estabilizar o sistema, mas sem formar apenas aluminato. No caso dos sistemas catalíticos estruturados, a calcinação tem também por objetivo formar o filme de catalisador sobre o substrato metálico e potenciar sua coesão e aderência.
EXEMPLOS
Exemplol : Preparação de um catalisador de Co-Re pelo método de impregnação incipiente.
200g de γ-ΑΙ2Ο3 (Espheralite SC SCS505), com tamanho de partículas de 2,5 mm, foram moídos em moinho de disco por 5 minutos alcançando um d90 = 18,7 μΐη. Determinou-se o volume de poros do suporte por impregnação com H2O até detectar o ponto de umidade incipiente (VpAI203 = 0,55 cm3/g). 20,2 g de Οο(Ν03)2·6Η20 e 0,13 g de HRe04 foram dissolvidos em 17,5 g de H20 deionizada. 8,75 g da solução de sais precursores (a metade) foram gotejadas lentamente com uma pipeta sobre 15,9 g de γ-ΑΙ203 que se homogeneizou constantemente até obter uma massa úmida muito uniforme aparentemente seca, em que as partículas do sólido começam a se aglomerar (umidade incipiente). A massa obtida foi seca durante 6 horas a 60°C sendo adicionados os outros 8,75 g da solução precursora. O catalisador preparado foi seco a 60°C por 2 horas antes da calcinação a 350°C por 6 horas. O catalisador calcinado contém 19,8% em peso de Co e 0,5% em peso de Re.
Exemplo 2: Preparação dos suportes estruturados de monólitos, micromonólitos e espumas.
Foram utilizados dois tipos de suportes estruturados, monólitos metálicos de canais longitudinais e espumas. Por sua vez, os monólitos metálicos de canais longitudinais se dividem ainda em dois tipos diferentes: monólitos de baixa densidade de célula (monólitos) e de alta densidade de célula (micromonólitos).
Os monólitos de baixa densidade de célula (monólitos, Figura 2A) foram preparados a partir de lâminas de FeCrAlIoy (Goodfellow) com espessura de 50 pm, podendo a espessura variar entre 10 pm e 100 pm, sendo preferível entre 25 pm e 75 pm. Tiras de 3 cm de largura e de 20 cm e 23 cm de comprimento foram cortadas (Figura 3A). Uma vez cortadas, as tiras foram limpas com água e sabão, clareadas com acetona e finalmente secas com ar para eliminar todas as impurezas da superfície.
As lâminas de maior comprimento se ondularam (Figura 3B) mediante dispositivo mecânico de desenho próprio composto por duas rodas dentadas de Nylon. A distância entre os dentes e o grau de interpenetração das rodas define o tamanho dos canais (diâmetro hidráulico) que pode variar entre 100 pm e 2.000 pm, mais especificamente entre 500 pm e 1.000 pm e por sua vez a densidade das células que pode variar entre 1 ,4 células/cm2 e 48 células/cm2, mais especificamente entre 4 células/cm2 e 20 células/cm2. As medidas exatas estão indicadas na tabela 1.
Para conformar o monólito tomou-se uma placa lisa e outra rugosa que foram introduzidas entre duas varetas de aço unidas em um dos lados e com um sistema de fecho no outro de maneira que as placas não pudessem se soltar (Figura 3C). Uma vez enganchadas, as placas enroscaram-se (Figura 3D) e o monólito foi preso com um fio de arame para manter o tamanho e forma da peça e dos canais (Figuras 2A e B).
Para os micromonólitos (Figura 2B), utilizaram-se lâminas de
FeCrAHoy (Goodfellow) com espessura de 50 pm podendo a espessura variar entre 10 pm e 100 pm, sendo preferível entre 25 pm e 75 pm. Cortou-se tiras de 3 cm de largura e de 38 cm e 47 cm de comprimento. As etapas de limpeza e de construção dos micromonólitos foram realizadas da mesma maneira que as descritas para os monólitos, só que usando cilindros para a ondulação com dentes muito menores.
Os micromonólitos apresentaram tamanho dos canais (diâmetro hidráulico) variando entre 10 pm e 1.000 pm, mais especificamente entre 100 pm e 500 pm e por sua vez a densidade das células que pode variar entre 24 células/cm2 e 120 células/cm2, mais especificamente entre 40 células/cm2 e 60 células/cm2. As medidas exatas estão indicadas na tabela 1.
Antes de serem recobertos, os monólitos e micromonólitos foram submetidos a um pré-tratamento térmico, que se realizou por oxidação a ar (calcinação) durante 22 horas a 900°C. Este pré-tratamento tem como objetivo migrar o alumínio para a superfície criando uma capa de alumina rugosa e fortemente aderida à superfície.
As espumas comerciais de alumínio DUOCEL fabricadas pela empresa ERG Materials and Aerospace, vêm em forma de grandes blocos ou chapas de 40 mm de espessura. Para cortar o cilindro utilizou-se um perfurador com broca oca especial com fio de diamante para obter as amostras. A operação de perfurar é delicada, sendo importante controlar a velocidade de introdução da broca no material. As espumas obtidas apresentam densidades superficiais de poro variando entre 0,04 poros/cm e 20 poros/cm, mais especificamente entre 0,4 poros/cm e 8 poros/cm e porosidade variando entre 1% e 99%, mais especificamente entre 50% e 98%. As medidas exatas estão indicadas na tabela 1.
Uma vez obtidas às espumas de 40 mm x 16 mm, estas foram submetidas a um processo de limpeza com água destilada para eliminar impurezas e restos de partículas do próprio material, seguido de acetona e posterior secagem em estufa a 60°C.
As espumas foram submetidas a um pré-tratamento realizado por processo de anodização (1 ,6 M ácido oxálico, 50°C, 40 minutos e uma densidade de 2 A/amostra), obtendo-se capas de alumina muito rugosas com uma elevada aderência.
Exemplo 3: Fabricação de Placas com microcanais.
Inicialmente, foram cortadas placas de FeCrAlloy ® de 20 mm x 20 mm x 1 mm mediante eletroerosão por fio. Posteriormente, realizaram- se 10 ranhuras de 0,7 mm x 0,7 mm, com separação de parede entre elas de menos de 1 mm, sendo preferencialmente menor que 0,5 mm, e mais preferivelmente ainda de 0,3 mm mediante técnica de fresado tangencial com fresas de disco. No entanto, as placas de microcanais podem apresentar altura de 0,5 mm a 2 mm; largura de 5 mm a 50 mm e comprimento de 5 mm a 50 mm, sendo que os ditos microcanais apresentam altura de 200 micra a 900 micra e largura de 200 micra a 900 micra e diâmetro hidráulico de 0,5 milímetro a 2 milímetros, sendo preferencialmente entre 0,5 mm e 1 mm e mais preferivelmente ainda de 0,7 mm e área geométrica do interior dos canais de 56 mm2/microcanal. Foram alinhados pares de placas com ranhuras e placas sem ranhuras para realizar 4 orifícios por perfuração com brocas de 3,2 mm de diâmetro para posteriormente introduzir pares de parafuso-porca M3 para manter as placas unidas em posteriores fases de processo (depósito do catalisador).
Figure imgf000021_0001
A tabela 1 mostra as principais características geométricas dos sistemas estruturados. A área geométrica é fundamental, pois permite calcular a carga específica de catalisador (mg/cm2) e assim estimar a espessura da película de recobrimento catalítico. O diâmetro hidráulico e a porosidade controlaram a perda de carga que as estruturas produzem: ou seja, quanto menor o diâmetro hidráulico e a porosidade, maior a perda de carga.
Exemplo 4: Preparação de uma suspensão convencional utilizando o catalisador do exemplo 1.
A suspensão foi preparada misturando 19 g de catalisador do exemplo 1 com 76 g de H20 deionizada em um pH = 4. A mistura foi submetida à ultrassom por 10 minutos. Em seguida, a suspensão foi submetida à agitação magnética sendo adicionados lentamente 5 g de solução de alumina coloidal a 20% (Nyacol AL-20). A suspensão foi mantida em agitação durante 24 horas antes da etapa de recobrimento. Exemplo 5: Preparação de uma suspensão com o método da presente invenção.
20,2 g de Co(N03)2.6H20 e 0,13 g de HRe04 foram dissolvidos em 76 g de H20 deionizada e ajustada para pH = 4 em agitação magnética. Em seguida, 14,9 g de γ-ΑΙ203 foram adicionados lentamente. A suspensão foi submetida à ultrassom por 10 minutos. Em seguida, sob baixa agitação, adicionou-se 5 g de solução de alumina coloidal a 20% (Nyacol AL-20). A suspensão foi mantida sob baixa agitação durante 24 horas antes da etapa de recobrimento. 5 g de suspensão foram secas durante 48 horas a 60°C, obtendo-se 1 g de catalisador. Em seguida, este catalisador foi moído a 400 rpm por 5 minutos em moinho de bolas e foi calcinado a 350°C por 6 horas. O catalisador final continha 19,8% em peso de Co e 0,5% em peso de Re.
Exemplo 6: Caracterização dos catalisadores.
Para efeito de comparação entre os métodos de recobrimento, os catalisadores foram caracterizados por quimissorção de H2. Na etapa de redução, o catalisador foi reduzido a 350°C por 600 minutos com rampa de 2°C/min. e fluxo de H2 de 30 mL/min., em seguida baixou-se a temperatura a 100°C com Ar com fluxo de 30 mL/min. e manteve-se por 90 minutos nesta temperatura. Em seguida, aumentou-se a temperatura com uma rampa de 10°C/min. até 350°C e foi mantida durante 60 minutos com o mesmo fluxo de Ar.
A tabela 2 mostra os resultados de quimissorção dos catalisadores preparados. Observa-se que o catalisador preparado pelo método da presente invenção, ao necessitar de apenas uma calcinação, promove uma maior redutibilidade e maior área metálica, o que significa dispersão e consequentemente, menor tamanho de partícula de Co.
Figure imgf000023_0001
A tabela 2 mostra os resultados de caracterização do catalisador preparado pelo método convencional (Vp) e pelo método da presente invenção. No caso do catalisador convencional, o mesmo foi submetido a duas calcinações, tal como ocorreria em um procedimento convencional de recobrimento. Portanto, a comparação foi realizada entre o catalisador em pó preparado pelo método tradicional (calcinado duas vezes) e o catalisador preparado pelo método da presente invenção (secado e calcinado uma vez). Esta comparação foi feita com a forma em pó, para poder realizar a caracterização por absorção de hidrogénio (absorção atómica) que permite determinar a superfície metálica, o grau de dispersão e o tamanho de partícula dos cristais de Co metálico. Por ambos os métodos, se comparam tanto os catalisadores apenas com Co como os mesmos promovidos com Re. A preparação dos catalizadores sem Re se realizou de acordo com os exemplos 1 e 5 sem incluir o composto de Re.
Os resultados mostram que, em todos os casos, a promoção com
Re permite uma maior fração reduzida (promotor da redução) acompanhada de um aumento da superfície metálica, que supõe uma diminuição do tamanho de cristal de Co. A segunda calcinação do catalisador preparado pelo método tradicional produz sempre um sinterizado da fase metálica e uma menor redutibilidade das amostras. Consequentemente, os catalisadores preparados pelo método da presente invenção apresentam sempre melhores propriedades (superfície metálica, grau de redução, dispersão e tamanho de Co) que os seus correspondentes preparados pelo método convencional e calcinados duas vezes.
Exemplo 7: Recobrimento das estruturas preparadas nos exemplos 2 e 3 com suspensões preparadas conforme exemplo 4 (método convencional).
Para o recobrimento dos substratos metálicos preparados no exemplo 2, os mesmos foram submersos na suspensão preparada no exemplo 4 a uma velocidade constante de 3 cm/min., e foram mantidos submersos durante 1 minuto e depois retirou-se na mesma velocidade. A eliminação do excesso de suspensão foi realizada centrifugando a estrutura a 800 rpm durante 5 minutos. Em seguida, foram secos a 60°C. Este procedimento foi repetido até que a massa de catalisador alcançou 450 mg sobre cada estrutura. Finalmente, foram calcinados a 350°C durante 6 horas. Os resultados da carga específica obtida em sucessivos recobrimentos com cada uma das estruturas estudadas são mostrados na Figura 6B, em que se indicam também os resultados obtidos no teste de aderência.
Exemplo 8: Recobrimento das estruturas preparadas nos exemplos 2 e 3 com suspensões preparadas conforme exemplo 5.
Primeiramente as placas e parafusos foram cobertas com uma fita adesiva (que se retira facilmente) para que o recobrimento da estrutura ocorresse unicamente nos microcanais. Em seguida, foram atadas mediante uma pequena mordaça e introduzidas na suspensão a uma velocidade de 3 cm/min., mantendo-as por 3 minutos e retirando-as à mesma velocidade. O excesso de suspensão foi eliminado através do método de sucção com os microcanais na direção vertical. As estruturas foram secas com um secador a ar na temperatura de 50°C, que se encontrava a uma distância de 30 cm da entrada dos microcanais na posição vertical. Em seguida retirou-se a fita adesiva e pesaram-se as placas. Este procedimento foi repetido até que as placas alcançaram entre 1 ,5 cm/cm2 e 2,0 cm/cm2.
Foram recobertas as estruturas preparadas no Exemplo 2 com a suspensão do Exemplo 5 (método da presente invenção). O procedimento foi feito da mesma maneira que no exemplo anterior.
Os resultados da carga específica obtida em sucessivos recobrimentos com cada uma das estruturas estudadas são mostrados na Figura 6A, onde se indica também os resultados obtidos no teste de aderência.
A análise dos resultados apresentados nas Figuras 6A e 6B permitem obter várias conclusões.
O procedimento de recobrimento por ambos os métodos é muito reproduzível e aditivo quando se repetem recobrimentos sucessivos em todas as geometrias. O primeiro recobrimento, unicamente, parece carregar mais do que os recobrimentos sucessivos em alguns casos, como pode-se deduzir pela extrapolação da reta por estimativa até cortar o eixo y no intercepto.
A carga específica que se obtém pelo recobrimento é muito parecida em quase todas as geometrias estudadas. A aderência aumenta, em general, ao diminuir o diâmetro hidráulico da estrutura.
A aderência obtida com o método da presente invenção é sempre superior àquela obtida com o método convencional para todas as geometrias testadas.
Exemplo 9: Preparação da suspensão de Ni/La/Al203
Inicialmente, a alumina estabilizada que se usou como suporte (La/Al203) é preparada adicionando 275 g de γ-ΑΙ203 a uma solução que contém 131 ,14 g de La (N03)3.6H20 em 393 ml_ de água destilada, mantendo-se em agitação por 4 horas e, em seguida, evaporou-se o solvente a 120°C por 24 horas. O sólido foi triturado e calcinado a 900°C por 4 horas.
26 g de La/Al203 foi misturado com 180 g de H20 contendo 5% em peso de PVOH por uma hora. Em seguida, adicionou-se 13,5 g de Ni(N03)2.6H20, que corresponde a 7,5% em peso de Ni. A mistura foi mantida em agitação por 30 minutos, ajustando-se o pH em torno de 4 pela adição de 1 g de HN03 a 2 M. Em seguida, adicionou-se 20 g de solução de alumina coloidal a 20% (Nyacol AL-20). Essa suspensão se manteve em agitação durante 48 horas.
Exemplo 10: Preparação da suspensão de Pd/La/Al203
30 g de La/Al203 (preparado no exemplo 9) foi misturada com 195 g de H20 (com 5% em peso de PVOH) durante 1 hora. Em seguida, adicionou-se 1 mL de uma solução de paládio a 8,3%, que corresponde a 0,25% em peso de Pd em relação ao suporte. A mistura foi mantida em agitação por 30 minutos, ajustando-se o pH em torno de 4, pela adição de 2 g de HN03. A seguir, adicionou-se 20 g de solução de alumina coloidal a 20% (Nyacol AL-20). Essa suspensão se manteve em agitação por 48 horas.
Exemplo 11 : Recobrimento das estruturas preparadas nos exemplos 2 e 3 com as suspensões de Ni/La-Al203 e Pd/La-Al203. Para o recobrimento dos substratos metálicos preparados no exemplo 2, os mesmos foram submersos nas suspensões Ni/La-Al203 e Pd/La-Al203l preparadas nos exemplos 9 e 10, respectivamente.
Os micromonólitos, monólitos e espumas foram submersos a uma velocidade constante de 3 cm/min., sendo mantidos submersos durante 1 minuto e, em seguida, foram retirados da mistura na mesma velocidade. A eliminação do excesso foi realizada centrifugando a estrutura a 500 rpm durante 2,5 minutos. Em seguida, secou-se a 80°C. Este procedimento foi repetido até que a massa de catalisador alcançou entre 1 mg/cm2 e 2 mg/cm2. Depois, os recobrimentos feitos com catalisador Ni/La-Al203 foram calcinados a 900°C durante 4 horas; os recobrimentos feitos com catalisador Pd/La-Al203 foram calcinados a 800°C durante 1 hora. Devido ao ponto de fusão do alumínio, as espumas recobertas com catalisadores de Ni/La-Al203 e Pd/La-Al203 foram calcinadas a 500°C.
As placas e parafusos das placas de microcanais, primeiramente, foram recobertos com uma fita adesiva (facilmente retirada pelo processo de "washcoating") para que o recobrimento da suspensão ocorra unicamente nos microcanais. Em seguida, foram ligadas por meio de uma pequena mordaça e foram introduzidos na suspensão com os canais orientados verticalmente a uma velocidade de 3 cm/min., onde foram mantidos por 3 minutos e retirados na mesma velocidade. A eliminação do excesso foi realizada através do método de sucção e posteriormente as placas com os microcanais foram suspensas e secas com uma temperatura de ar de 50°C, com um secador de ar quente que se encontrava a uma distância 30 cm da entrada dos microcanais em posição vertical. Em seguida, a cinta foi retirada e as placas foram pesadas. Este procedimento foi repetido até que as placas alcançaram entre 1 cm/cm2 e 2 cm/cm2. Em seguida, os recobrimentos feitos com catalisador Ni/La- Al203 foram calcinados a 900°C durante 4 horas; e os recobrimentos feitos com catalisador Pd/La-Al203 foram calcinados a 800°C durante 1 hora. Na Figura 7, mostra-se a carga específica depositada sobre as diferentes estruturas metálicas com recobrimentos sucessivos em suspensões como a da presente invenção.
A análise dos resultados apresentados na Figura 7 permite concluir: a) O procedimento de recobrimento pelo método da presente invenção é muito reproduzível e aditivo quando recobrimentos sucessivos em todas as geometrias são repetidos. O primeiro recobrimento, unicamente, parece carregar mais do que os recobrimentos sucessivos em alguns casos, como se pode deduzir pela ordenada na origem que se pode estimar. b) A carga específica que se obtém por recobrimento é muito parecida para quase todas as geometrias estudadas.
c) A aderência aumenta, em general, ao diminuir o diâmetro hidráulico da estrutura.
d) O método da presente invenção se adapta perfeitamente a todos os catalisadores estudados do processo GTL sobre todas as geometrias estudadas, o que mostra seu caráter universal para outros sistemas catalíticos.

Claims

REIVINDICAÇÕES
MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, caracterizado por compreender as etapas de: a) prover uma microestrutura metálica para o método constituída de ligas metálicas capazes de suportar temperaturas variando de 1.100°C a 1.200°C;
b) preparar a superfície das microesturas metálicas;
c) preparar uma suspensão catalítica compreendendo precursores da fase ativa de catalisador, promotores, na forma de um sal solúvel, um solvente polar, um suporte catalítico e aditivos;
d) promover o contato da microestrura metálica com a suspensão catalítica por imersão da microestrura metálica na suspensão catalítica a uma velocidade que pode variar entre 1 cm/min. e 6 cm/min. permanecendo a microestrutura metálica por pelo menos 1 minuto submersa na suspensão;
e) remover o excesso de suspensão catalítica sobre a microestrutura metálica;
f) repetir os items d) e e) até que a concentração de catalisador recobrindo a microestrutura metálica apresente atividade catalítica adequada;
g) submeter à microestrutura recoberta a calcinação.
MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado pelo fato da liga metálica ser escolhida dentre: uma liga de alumínio, FeCralIoy, ou uma liga equivalente como Aluchrom, Aluchrom YHf, FeCralIoy JA13, Kanthal AF, Kanthal APM, Ugine Saoie 12178 e Ugine Saoie 12179.
MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com as reivindicações 1 e 2, caracterizado pelo fato das microestruturas metálicas serem escolhidas dentre: monólitos metálicos de baixa densidade de célula (monólitos), monólitos metálicos de alta densidade de célula (micromonólitos), malhas e espumas.
4- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 3, caracterizado pelo fato dos monólitos serem preparados a partir de laminas de FeCralIoy com espessura variando entre 10 pm e 100 pm.
5- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 4, caracterizado pelo fato dos monólitos serem preparados a partir de laminas de FeCralIoy com espessura variando entre 25 pm e 75 pm.
6- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 5, caracterizado pelo fato dos monólitos apresentarem diâmetro hidráulico variando entre 100 pm e 2.000 pm e densidade das células variando entre 1 ,4 células/cm2 e 48 células/cm2.
7- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 6, caracterizado pelo fato dos monólitos apresentarem diâmetro hidráulico variando entre 500 pm e 1.000 pm e densidade das células variando entre 4 células/cm2 e 20 células/cm2.
8- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 3, caracterizado pelo fato dos micromonólitos serem preparados a partir de laminas de FeCralIoy ou outra liga equivalente como Aluchrom, Aluchrom YHf, FeCrAlloy JA13, Kanthal AF, Kanthal APM, Ugine Saoie 12178 e Ugine Saoie 12179, com espessuras variando entre 10 pm e 100 pm.
9- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 8, caracterizado pelo fato dos micromonólitos serem preparados a partir de laminas de FeCralloy com espessura variando entre 25 pm e 75 μιη.
10- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 9, caracterizado pelo fato dos micromonólitos apresentarem diâmetro hidráulico variando entre 100 pm e 1.000 pm e densidade das células variando entre 24 células/cm2 e 120 células/cm2.
11- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 10, caracterizado pelo fato dos micromonólitos apresentarem diâmetro hidráulico variando entre 100 pm e 500 pm e densidade das células variando entre 40 células/cm2 e 60 células/cm2.
12- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 3, caracterizado pelo fato das espumas serem cortadas em blocos ou chapas de alumínio.
13- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 12, caracterizado pelo fato das espumas apresentarem porosidades variando entre 1 % e 99% e densidades superficiais de poro variando entre 0,04 e 20 poros por centímetro linear.
14- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 13, caracterizado pelo fato das espumas apresentarem porosidades variando entre 50% e 98% e densidades superficiais de poro variando entre 0,4 e 8 poros por centímetro linear.
15- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado por a suspensão catalítica ser preparada pela dissolução dos precursores das fases ativas e dos promotores em um solvente seguido da adição de um suporte, ajuste de pH e adição de aditivos. 16- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado por a suspensão catalítica apresentar:
- um teor de sólidos de 5% a 40% em peso; e
- uma quantidade de 0,1 % a 50% em peso de aditivos em relação à massa total de catalisador.
17- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado pelo fato do solvente polar ser água, etanol, acetona ou uma mistura destes.
18- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 ou 15, caracterizado por os ditos aditivos serem colóides inorgânicos ou compostos orgânicos solúveis de alto peso molecular (surfactantes). 19- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 18, caracterizado pelo fato dos colóides inorgânicos serem alumina coloidal, sílica coloidal, titânia, bohemita, cério óxido de zinco ou uma mistura destes.
20- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 18, caracterizado pelo fato dos surfactantes serem escolhidos dentre: álcool polivinílico, polivinil pirolidona, polimetacrilato de sódio ou metilcelulose.
21- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 15, caracterizado pelo fato do pH da dita suspensão ser ajustado com ao menos um ácido.
22- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 21 , caracterizado pelo fato dos ditos ácidos serem escolhidos dentre: ácidos nítrico, acético ou sulfúrico. 23- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado por o precursor da fase ativa serem escolhidas dentre sais de Co, Fe, ou Ru.
24- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com as reivindicações 1 e 23, caracterizado por o promotor ser um metal escolhido dentre: Re, Pd, Pt, Zr, Ti, Cr, Zn, Al, Mg, Mn, Cu ou Ag.
25- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado por o precursor da fase ativa serem escolhidas dentre sais de: Ni, Ru, RH, Pd, Ir, ou Pt.
26- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com as reivindicações 1 e 25, caracterizado por o suporte ser escolhido dentre: MgO, Mg2AI04, Si02, Ce02, Zr02, Ti02 ou uma mistura dos mesmos, tendo incorporados metais alcalinos ou alcalinos terrosos, ou ainda, alumina, estabilizada com La, Ce ou Mg.
27- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado por o procursor da fase ativa serem escolhidas dentre sais de Pd, PT, Ru, ou óxidos de elementos de transição.
28- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com as reivindicações 1 e 27, caracterizado por o suporte ser alumina, estabilizada com La, CE ou Mg.
29- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado pelo fato do excesso de suspensão ser eliminado mediante técnicas de centrifugação, sucção ou sopro via ar comprimido. 30- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 29, caracterizado pelo fato da técnica de centrifugação utilizar uma velocidade de 10 rpm a 10.000 rpm, durante pelo menos 1 minuto.
31- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 29, caracterizado pelo fato da técnica de centrifugação utilizar uma velocidade de 100 rpm a 5.000 rpm, durante pelo menos 2 minutos.
32- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 29, caracterizado pelo fato da técnica de centrifugação utilizar uma velocidade de 200 rpm a 2.000 rpm, durante pelo menos 2,5 minutos.
33- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 29, caracterizado pelo fato da técnica de sucção ou sopro ser realizada na temperatura entre 50°C e 120°C, durante ao menos 1 hora.
34- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 33, caracterizado pelo fato da secagem ser realizada na temperatura entre 50°C e 120°C, durante ao menos 1 hora.
35- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 33, caracterizado pelo fato da secagem ser realizada na temperatura entre 60°C e 100°C, durante ao menos 2 horas.
36- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado pelo fato da etapa de calcinação ser realizada na temperatura entre 150°C a 600°C, durante ao menos 2 horas.
37- MÉTODO DE PREPARO DE SISTEMAS CATALÍTICOS ESTRUTURADOS, de acordo com a reivindicação 1 , caracterizado pelo fato da etapa de calcinação ser realizada na temperatura entre 250°C a 400°C, durante ao menos 4 horas.
38- MICROREATOR CATALÍTICO, caracterizado por compreender o sistema catalítico estruturado de acordo com a reivindicação 1 , estando as microestruturas metálicas distribuídas no reator na forma de placas de metálicas com as seguintes dimensões:
- altura de 0,5 mm a 2 mm;
- largura de 5 mm a 50 mm; e
- comprimento de 5 mm a 50 mm.
39- MICROREATOR CATALÍTICO, de acordo com a reivindicação 38, caracterizado por as placas metálicas serem conformadas de modo a formarem microcanais com as seguintes dimensões:
- altura de 200 micras a 900 micras;
- largura de 200 micras a 900 micras; e
- diâmetro hidráulico de 0,5 mm a 1 mm.
40- MICROREATOR CATALÍTICO, de acordo com as reivindicações 38 e 39, caracterizado por os ditos microcanais estarem separados entre si por uma espessura de parede de menos de 1 milímetro.
41- MICROREATOR CATALÍTICO, de acordo com as reivindicações 38 e 39, caracterizado por a espessura de parede entre os microcanais ser de 0,5 milímetro.
PCT/BR2013/000542 2012-12-07 2013-12-06 Método de preparo de sistemas catalíticos estruturados WO2014085890A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012031208-5A BR102012031208A2 (pt) 2012-12-07 2012-12-07 Método de preparo de sistemas catalíticos estruturados
BRBR102012031208-5 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014085890A1 true WO2014085890A1 (pt) 2014-06-12

Family

ID=50882687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000542 WO2014085890A1 (pt) 2012-12-07 2013-12-06 Método de preparo de sistemas catalíticos estruturados

Country Status (2)

Country Link
BR (1) BR102012031208A2 (pt)
WO (1) WO2014085890A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246314A (zh) * 2018-03-15 2018-07-06 上海泰坦科技股份有限公司 一种镍金纳米催化剂的制备方法
CN109603828A (zh) * 2018-12-06 2019-04-12 中国科学院山西煤炭化学研究所 一种用于费托合成的可控晶面钴催化剂及其制法和应用
CN110560166A (zh) * 2019-09-25 2019-12-13 燕山大学 一种磁性核壳结构空间限域型铂催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035152A1 (en) * 1994-06-17 1995-12-28 Engelhard Corporation Layered catalyst composite
WO2002018269A2 (en) * 2000-08-31 2002-03-07 Engelhard Corporation Process for generating hydrogen-rich gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035152A1 (en) * 1994-06-17 1995-12-28 Engelhard Corporation Layered catalyst composite
WO2002018269A2 (en) * 2000-08-31 2002-03-07 Engelhard Corporation Process for generating hydrogen-rich gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALMEIDA, LC; ET AL.: "Fischer-Tropsch synthesis in microchannels.", CHEMICAL ENGINEERING JOURNAL, vol. 167, no. ISSUES, March 2011 (2011-03-01), pages 536 - 544 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246314A (zh) * 2018-03-15 2018-07-06 上海泰坦科技股份有限公司 一种镍金纳米催化剂的制备方法
CN109603828A (zh) * 2018-12-06 2019-04-12 中国科学院山西煤炭化学研究所 一种用于费托合成的可控晶面钴催化剂及其制法和应用
CN110560166A (zh) * 2019-09-25 2019-12-13 燕山大学 一种磁性核壳结构空间限域型铂催化剂及其制备方法

Also Published As

Publication number Publication date
BR102012031208A2 (pt) 2014-09-02

Similar Documents

Publication Publication Date Title
Visconti et al. An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports
Pauletto et al. FeCrAl as a catalyst support
Meille Review on methods to deposit catalysts on structured surfaces
Almeida et al. Fischer–Tropsch synthesis in microchannels
Valentini et al. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts
AU2005229044B2 (en) Protected alloy surfaces in microchannel apparatus and catalysts, alumina supported catalysts, catalyst intermediates, and methods of forming catalysts and microchannel apparatus
CN100423839C (zh) 一种在金属基体上负载催化剂的方法
Chai et al. Free-standing NiO-MgO-Al2O3 nanosheets derived from layered double hydroxides grown onto FeCrAl-fiber as structured catalysts for dry reforming of methane
Jiang et al. Preparation and properties of a γ-Al2O3 washcoat deposited on a ceramic honeycomb
Meille et al. Deposition of γ-Al2O3 layers on structured supports for the design of new catalytic reactors
Katheria et al. Washcoating of Ni/MgAl2O4 catalyst on FeCralloy monoliths for steam reforming of methane
US20150288000A1 (en) Porous Electrolessly Deposited Coatings
Leon et al. Rotating foam stirrer reactor: effect of catalyst coating characteristics on reactor performance
JP6006237B2 (ja) 金属構造体触媒の製造方法
US20120149559A1 (en) Eggshell catalyst and methods of its preparation
BR112014032448B1 (pt) Suportes de catalisador a base de carboneto de silício recoberto de tio2 para a síntese de fischer-tropsch
Jodłowski et al. Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol–gel method
Wang et al. Microfibrous-structured Pd/AlOOH/Al-fiber for CO coupling to dimethyl oxalate: effect of morphology of AlOOH nanosheet endogenously grown on Al-fiber
WO2014085890A1 (pt) Método de preparo de sistemas catalíticos estruturados
Geerts et al. Creation of gallium acid and platinum metal sites in bifunctional zeolite hydroisomerization and hydrocracking catalysts by atomic layer deposition
Truyen et al. Catalytic coatings on stainless steel prepared by sol–gel route
JP2005152725A (ja) 触媒体およびその製造方法
US6903051B2 (en) In situ theta alumina coated monolithic catalyst supports
Wu et al. Mechanical stability of ZSM-5 zeolite washcoated cordierite monoliths
Gavrilova et al. Synthesis of membrane catalysts based on Mo 2 C

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13860424

Country of ref document: EP

Kind code of ref document: A1