WO2014084557A1 - Silicon precursor compounds, and method for depositing thin film containing silicon using same - Google Patents

Silicon precursor compounds, and method for depositing thin film containing silicon using same Download PDF

Info

Publication number
WO2014084557A1
WO2014084557A1 PCT/KR2013/010720 KR2013010720W WO2014084557A1 WO 2014084557 A1 WO2014084557 A1 WO 2014084557A1 KR 2013010720 W KR2013010720 W KR 2013010720W WO 2014084557 A1 WO2014084557 A1 WO 2014084557A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
nhr
sicl
formula
thin film
Prior art date
Application number
PCT/KR2013/010720
Other languages
French (fr)
Korean (ko)
Inventor
한원석
고원용
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Publication of WO2014084557A1 publication Critical patent/WO2014084557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present application relates to a silicon precursor compound and a method for preparing the silicon precursor compound, a precursor composition for depositing a silicon-containing thin film containing the silicon precursor compound, and a method for depositing a silicon-containing thin film using the precursor compound.
  • Silicon-containing thin films include semiconductors such as microelectronic devices such as RAM (memory and logic chips), flat panel displays including thin film transistors (TFTs), and semiconductor technologies such as the solar field. It is used as a diffusion mask, an antioxidant film, a dielectric film, and the like. In the recent process of manufacturing such a thin film, the thin film is formed by thermal oxidation at a high temperature of 900 ° C. or higher, or by Low Pressure Chemical Deposition (LPCVD) at 700 ° C. or higher. Eliminates efficient, cost-effective production of silicon-containing thin films for the field. In particular, with the miniaturization of semiconductor devices, the necessity of lowering the process temperature is increasing.
  • LPCVD Low Pressure Chemical Deposition
  • Typical chemical vapor deposition precursors for forming a silicon-containing thin film include silane, disilane, dichlorosilane, and trichlorosilane. These precursors have a high minimum film deposition temperature, which precludes their use as precursors for semiconductor applications where low processing temperatures are required. In addition, because the xylene precursor is spontaneously ignited, highly toxic, and susceptible to corrosion, strict safety precautions are required.
  • atomic layer deposition to form a silicon-containing thin film is expected to improve the thickness uniformity and physical properties of the thin film and to lower the processing temperature, thereby improving the characteristics of the semiconductor device.
  • very effective applications are expected in the case of gate spacers, which require excellent properties and coating properties at very thin thicknesses.
  • the present application is to provide a silicon precursor compound, represented by the following formula (1) or formula (2), and a method for preparing the same:
  • R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group
  • n and m are each independently 1-3.
  • R 1 to R 4 are each independently H or C 1-5 linear or branched alkyl groups
  • x is 0 or 1
  • y 1 or 2
  • z is 0 or 2.
  • the present invention is to provide a precursor composition for silicon-containing thin film deposition comprising the silicon precursor compound.
  • the present application is to provide a method for depositing a silicon-containing thin film using the silicon precursor compound.
  • a first aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 1:
  • R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group
  • n and m are each independently 1 to 3.
  • a second aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 2:
  • R 1 to R 4 are each independently H or a C 1-5 linear or branched alkyl group
  • x is 0 or 1
  • y 1 or 2
  • z is 0 or 2.
  • the third aspect of the present application provides a method for producing a silicon precursor compound, represented by the formula (1).
  • the fourth aspect of the present application provides a method for producing a silicon precursor compound, represented by the formula (2).
  • the fifth aspect of the present application provides a precursor composition for depositing a silicon-containing thin film including the silicon precursor compound according to Formula 1 or Formula 2.
  • a sixth aspect of the present disclosure provides a method for depositing a silicon-containing thin film using the silicon precursor chemical according to Formula 1 or Formula 2.
  • silicon precursor compound according to the present invention has improved properties with high thermal stability that does not deteriorate even under continuous heating, compared to the conventional silicon precursor compound, silicon-containing thin film deposition may be performed by chemical vapor deposition or atomic layer deposition. When used as a silicon precursor.
  • thermogravimetric analysis (TGA) graph of silicon precursor compound 1 according to an embodiment of the present disclosure.
  • DSC differential scanning calorimetry
  • thermogravimetric analysis graph of the silicon precursor compound 2 according to an embodiment of the present application.
  • Figure 4 is a differential scanning calorimetry graph of the silicon precursor compound 2 according to an embodiment of the present application.
  • thermogravimetric analysis graph of the silicon precursor compound 3 is a thermogravimetric analysis graph of the silicon precursor compound 3 according to an embodiment of the present application.
  • thermogravimetric analysis graph of the silicon precursor compound 4 according to an embodiment of the present application.
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl group may include linear or branched, saturated or unsaturated C 1-5 alkyl groups, respectively, for example methyl, ethyl, propyl, butyl, pentyl or their It may be to include all possible isomers of, but may not be limited thereto.
  • n Pr in the specific compound name means n-propyl (n-Pr), i Pr means iso-propyl (i-Pr), and n Bu is n-butyl (n-Bu) I Bu means iso-butyl (iso-Bu) and t Bu means tert -butyl (t-Bu).
  • a first aspect of the present application provides a silicon precursor compound represented by the following general formula (1):
  • R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group; n and m are each independently 1 to 3.
  • the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert -butyl group , n-pentyl, iso-pentyl, neo-pentyl or tert -pentyl may include, but may not be limited thereto.
  • a second aspect of the present application provides a silicon precursor compound represented by the following general formula (2):
  • R 1 to R 4 are each independently H or a C 1-5 linear or branched alkyl group; x is 0 or 1; y is 1 or 2; z is 0 or 2.
  • the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert -butyl group , n-pentyl, iso-pentyl, neo-pentyl or tert -pentyl may include, but may not be limited thereto.
  • the silicon precursor compound according to Formula 1 or Formula 2 is (NH 2 Si (NHMe) 3 , (NH 2 Si (NHEt) 3 , (NH 2 Si (NH) n Pr) 3 , (NH 2 Si (NH) i Pr) 3 , (NH 2 Si (NH) n Bu) 3 , (NH 2 Si (NH) i Bu) 3 , (NH 2 Si (NH) t Bu) 3 , (NMe 2 Si (NHMe) 3 , (NMe 2 Si (NHEt) 3 , (NMe 2 Si (NH) n Pr) 3 , (NMe 2 Si (NH) i Pr) 3 , (NMe 2 Si (NH) n Bu) 3 , (NMe 2 Si (NH) i Bu) 3 , (NMe 2 Si (NH) i Bu) 3 , (NMe 2 Si (NH) i Bu) 3 , (NMe 2 Si (NH) i Bu) 3 , (NMe 2 Si (NH) i Bu) 3 , (NM
  • a third aspect of the present application is to react SiCl 4 and NH 2 R 2 in an organic solvent to form SiCl n (NHR 2 ) m as in Scheme 1 below; And forming a silicon compound by reacting the SiCl n (NHR 2 ) m and M (NR 1 2 ) in an organic solvent to form a silicon precursor compound of Formula 1 of the first aspect of the present application. to provide:
  • M is an alkali metal
  • R 1 , R 2 , n, and m are the same as defined above in the first aspect of the present application, respectively.
  • a fourth aspect of the present application is to react SiCl 4 and NH 2 R 4 in an organic solvent to form SiCl y (NHR 4 ) z as in Scheme 2 below; And reacting the SiCl y (NHR 2 ) z and M (R 1 NCHR 2 x CHR 2 x NR 3 ) in an organic solvent to form a silicon compound, represented by Formula 2 of the second aspect of the present application.
  • a silicon compound represented by Formula 2 of the second aspect of the present application.
  • M is an alkali metal and R 1 to R 4 , x, y, and z are each as defined above in the second aspect of the present application.
  • the fifth aspect of the present application provides a precursor composition for depositing a silicon-containing thin film including the silicon precursor compound according to Formula 1 or Formula 2, but may not be limited thereto.
  • the sixth aspect of the present disclosure provides a method of depositing a silicon-containing thin film using the silicon precursor compound according to Formula 1 or Formula 2, but may not be limited thereto.
  • the silicon-containing thin film deposition may be one deposited by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), for example, by atomic layer deposition (ALD) It may be deposited, but may not be limited thereto.
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the silicon oxide thin film and the silicon nitride thin film may be deposited by the atomic layer deposition method using the silicon precursor compound according to Chemical Formula 1 or Chemical Formula 2.
  • the silicon oxide thin film and the silicon nitride thin film are each independently a gas supply of a silicon precursor compound according to Formula 1 or Formula 2-purge gas supply-oxygen source gas supply-cycle of purge gas supply, or the formula 1 or Formula 2 And a conventional time division atomic layer deposition method and apparatus for repeating the cycle of gas supply of the silicon precursor compound-purge gas supply-nitrogen source gas supply-purge gas supply.
  • oxygen source gas examples include oxygen (O 2 ); Oxygen radicals (eg, radicals generated by O, OH, or plasma); Ozone (O 3 ); NO, N 2 O, or NO 2 ; Moisture (H 2 O) or H 2 O 2 may be used, but may not be limited thereto.
  • the nitrogen source gas may be ammonia (NH 3 ), plasma-activated ammonia, or a plasma-activated mixture of hydrogen (H 2 ) and nitrogen (N 2 ), but may not be limited thereto.
  • n-hexane n-hexane, C 6 H 14
  • the n-hexane extract was filtered through a Celite pad and a glass frit to remove the solvent under reduced pressure and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 1 represented by Formula 3 below.
  • a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition.
  • the silicon oxide thin film and the silicon nitride thin film are each independently a cycle of gas supply of the silicon precursor compound 1-purge gas supply-oxygen source gas supply-purge gas supply, or gas supply of the silicon precursor compound 1-purge gas supply -Nitrogen feed gas feed-A conventional time division atomic layer deposition method and apparatus was used which repeats the cycle of purge gas feed.
  • the oxygen source gas is oxygen (O 2 ); Oxygen radicals (eg, radicals generated by O, OH, or plasma); Ozone (O 3 ); NO, N 2 O, or NO 2 ; Moisture (H 2 O) or H 2 O 2 can be used.
  • oxygen oxygen
  • Oxygen radicals eg, radicals generated by O, OH, or plasma
  • Ozone O 3
  • NO, N 2 O, or NO 2 NO 2
  • Moisture (H 2 O) or H 2 O 2 can be used.
  • nitrogen source gas ammonia (NH 3 ), plasma-activated ammonia, or plasma-activated hydrogen (H 2 ) and nitrogen (N 2 ) may be used.
  • n-hexane n-hexane, C 6 H 14
  • the n-hexane extract was filtered through a celite pad and a glass frit, and the filtrate was removed under reduced pressure, and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 2 represented by the following formula (4).
  • a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition.
  • the silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 2 was used.
  • n-hexane n-hexane, C 6 H 14
  • the n-hexane extract was filtered through a celite pad and a glass frit, and the filtrate was removed under reduced pressure and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 3 represented by the following formula (5).
  • a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition.
  • the silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 3 was used.
  • n-hexane C 6 H 14
  • the n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate was removed under reduced pressure, and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 4 represented by the following formula (6).
  • a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition.
  • the silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 4 was used.
  • Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed to analyze the basic thermal properties of the silicon compounds 1 to 4 prepared in the above examples. At this time, the weight of each sample was taken to about 5 mg and placed in an alumina sample container and measured up to 500 °C at a temperature increase rate of 10 °C / min, the measured results are shown in Figures 1 to 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to silicon precursor compounds and method for producing said silicon precursor compounds, to precursor compounds for depositing thin film containing silicon including the silicon precursor compounds, and to a method for depositing thin film containing silicon using said precursor compounds.

Description

실리콘 전구체 화합물 및 이를 이용한 실리콘-함유 박막의 증착 방법Silicon precursor compound and deposition method of silicon-containing thin film using the same
본원은 실리콘 전구체 화합물 및 상기 실리콘 전구체 화합물의 제조 방법, 상기 실리콘 전구체 화합물를 포함하는 실리콘-함유 박막 증착용 전구체 조성물 및 상기 전구체 화합물을 이용한 실리콘-함유 박막의 증착 방법에 관한 것이다.The present application relates to a silicon precursor compound and a method for preparing the silicon precursor compound, a precursor composition for depositing a silicon-containing thin film containing the silicon precursor compound, and a method for depositing a silicon-containing thin film using the precursor compound.
실리콘-함유 박막은 램(메모리 및 로직 칩)과 같은 마이크로일렉트로닉 소자, 박막 트랜지스터(thin film transistor, TFT)들을 포함하는 평판 디스플레이(flat panel display), 및 태양열 분야와 같은 반도체 기술에, 반도체기판, 확산 마스크, 산화 방지막, 및 유전체막 등으로 이용된다. 이런 박막을 제조하는 최근의 공정에서는 900℃ 이상의 고온에서 박막을 열산화(thermal oxidation) 방법으로 형성하거나, 700℃ 이상에서 저압 화학기상증착(Low Pressure Chemical Deposition, LPCVD) 방법으로 형성하기 때문에, 다양한 분야에 대한 실리콘-함유 박막의 능률적이고, 비용 측면에서 효율적인 생산을 배제한다. 특히 반도체 소자의 초 미세화에 따라서 점점 공정온도를 낮출 필요성이 커지고 있다.Silicon-containing thin films include semiconductors such as microelectronic devices such as RAM (memory and logic chips), flat panel displays including thin film transistors (TFTs), and semiconductor technologies such as the solar field. It is used as a diffusion mask, an antioxidant film, a dielectric film, and the like. In the recent process of manufacturing such a thin film, the thin film is formed by thermal oxidation at a high temperature of 900 ° C. or higher, or by Low Pressure Chemical Deposition (LPCVD) at 700 ° C. or higher. Eliminates efficient, cost-effective production of silicon-containing thin films for the field. In particular, with the miniaturization of semiconductor devices, the necessity of lowering the process temperature is increasing.
실리콘-함유 박막을 형성하기 위한 일반적인 화학기상증착용 전구체로는 사일렌(silane), 다이사일렌(disilane), 다이클로로사일렌(dichlorosilane), 및 트리클로로사일렌(trichlorosilane) 등이 널리 알려져 있는데, 이들 전구체들은 높은 최소 필름 증착 온도를 가지므로, 저온의 공정온도가 요구되는 반도체 분야를 위한 전구체로서의 사용이 배제되고 있다. 또한, 사일렌계 전구체는 자연발화되고, 독성이 강하고, 부식되기 쉽기 때문에 엄격한 안전 예방책이 필요하다.Typical chemical vapor deposition precursors for forming a silicon-containing thin film include silane, disilane, dichlorosilane, and trichlorosilane. These precursors have a high minimum film deposition temperature, which precludes their use as precursors for semiconductor applications where low processing temperatures are required. In addition, because the xylene precursor is spontaneously ignited, highly toxic, and susceptible to corrosion, strict safety precautions are required.
실리콘-함유 박막을 형성하기 위해 원자층 증착법을 적용하면 박막의 두께 균일도 및 물성을 향상시키고 공정온도를 낮추게 되어 반도체 소자의 특성을 향상 시킬 수 있을 것으로 기대된다. 특히 매우 얇은 두께에서 우수한 물성 및 피복성이 요구되는 게이트(gate)의 스페이서(spacer)의 경우에 매우 효과적인 적용이 기대된다 [Ivo J. Raaijmakers, "Current and Future Applications of ALD in Micro-Electronics" ECS Transactions 2011, Volume 41, Issue 2, Pages 3-17]. 따라서, 기존의 저압 화학기상증착법 대신 원자층 증착법에 대한 연구가 활발히 진행되고 있으며, 이에 따라, 원자층 증착에 적합한 실리콘 전구체 화합물의 개발에도 많은 연구가 진행되고 있다.Application of atomic layer deposition to form a silicon-containing thin film is expected to improve the thickness uniformity and physical properties of the thin film and to lower the processing temperature, thereby improving the characteristics of the semiconductor device. In particular, very effective applications are expected in the case of gate spacers, which require excellent properties and coating properties at very thin thicknesses. [Ivo J. Raaijmakers, "Current and Future Applications of ALD in Micro-Electronics" ECS Transactions 2011, Volume 41, Issue 2, Pages 3-17]. Therefore, researches on atomic layer deposition instead of conventional low pressure chemical vapor deposition have been actively conducted. Accordingly, many studies have been conducted on the development of silicon precursor compounds suitable for atomic layer deposition.
이에, 본원은 하기 화학식 1 또는 화학식 2로서 표시되는, 실리콘 전구체 화합물, 및 그의 제조 방법을 제공하고자 한다:Accordingly, the present application is to provide a silicon precursor compound, represented by the following formula (1) or formula (2), and a method for preparing the same:
[화학식 1][Formula 1]
Si(NR1 2)n(NHR2)m;Si (NR 1 2 ) n (NHR 2 ) m ;
상기 화학식 1 에서,In Chemical Formula 1,
R1 및 R2 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group,
n 및 m 은, 각각 독립적으로 1 내지 3 임.n and m are each independently 1-3.
[화학식 2][Formula 2]
Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z;Si (R 1 NCHR 2 × CHR 2 × NR 3 ) y (NHR 4 ) z ;
상기 화학식 2 에서,In Chemical Formula 2,
R1 내지 R4 는, 각각 독립적으로 H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 to R 4 are each independently H or C 1-5 linear or branched alkyl groups,
x 는 0 또는 1 이고,x is 0 or 1,
y 는 1 또는 2 이고,y is 1 or 2,
z 는 0 또는 2 임.z is 0 or 2.
본원은 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 박막 증착용 전구체 조성물을 제공하고자 한다.The present invention is to provide a precursor composition for silicon-containing thin film deposition comprising the silicon precursor compound.
본원은 상기 실리콘 전구체 화합물을 이용한 실리콘-함유 박막의 증착 방법을 제공하고자 한다.The present application is to provide a method for depositing a silicon-containing thin film using the silicon precursor compound.
그러나, 본원이 해결하고자 하는 과제는 이상에서 기술한 과제로 제한되지 않으며, 기술되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problem described above, another problem that is not described will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 하기 화학식 1 로서 표시되는, 실리콘 전구체 화합물을 제공한다:A first aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Si(NR1 2)n(NHR2)m;Si (NR 1 2 ) n (NHR 2 ) m ;
상기 화학식 1 에서,In Chemical Formula 1,
R1 및 R2 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group,
n 및 m 은 각각 독립적으로 1 내지 3 임.n and m are each independently 1 to 3.
본원의 제 2 측면은, 하기 화학식 2 로서 표시되는, 실리콘 전구체 화합물을 제공한다:A second aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 2:
[화학식 2][Formula 2]
Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z;Si (R 1 NCHR 2 × CHR 2 × NR 3 ) y (NHR 4 ) z ;
상기 화학식 2 에서,In Chemical Formula 2,
R1 내지 R4 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 to R 4 are each independently H or a C 1-5 linear or branched alkyl group,
x 는 0 또는 1 이고,x is 0 or 1,
y 는 1 또는 2 이고,y is 1 or 2,
z 는 0 또는 2 임.z is 0 or 2.
본원의 제 3 측면은, 상기 화학식 1 로서 표시되는, 실리콘 전구체 화합물의 제조 방법을 제공한다.The third aspect of the present application provides a method for producing a silicon precursor compound, represented by the formula (1).
본원의 제 4 측면은, 상기 화학식 2 로서 표시되는, 실리콘 전구체 화합물의 제조 방법을 제공한다.The fourth aspect of the present application provides a method for producing a silicon precursor compound, represented by the formula (2).
본원의 제 5 측면은, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물을 포함하는 실리콘-함유 박막 증착용 전구체 조성물을 제공한다.The fifth aspect of the present application provides a precursor composition for depositing a silicon-containing thin film including the silicon precursor compound according to Formula 1 or Formula 2.
본원의 제 6 측면은, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화학물을 이용한, 실리콘-함유 박막의 증착 방법을 제공한다.A sixth aspect of the present disclosure provides a method for depositing a silicon-containing thin film using the silicon precursor chemical according to Formula 1 or Formula 2.
본원에 따른 실리콘 전구체 화합물은 종래 실리콘 전구체 화합물에 비해 지속적인 가온에도 특성이 열화되지 않는 높은 열적 안정성과 함께 개선된 성질을 가지므로, 화학기상증착법 또는 원자층 증착법에 의하여 실리콘-함유 박막 증착을 수행할 때 실리콘 전구체로서 사용될 수 있다.Since the silicon precursor compound according to the present invention has improved properties with high thermal stability that does not deteriorate even under continuous heating, compared to the conventional silicon precursor compound, silicon-containing thin film deposition may be performed by chemical vapor deposition or atomic layer deposition. When used as a silicon precursor.
도 1 은 본원의 일 실시예에 따른 실리콘 전구체 화합물 1 의 열 무게 분석 (thermogravimetric analysis; TGA) 그래프이다.1 is a thermogravimetric analysis (TGA) graph of silicon precursor compound 1 according to an embodiment of the present disclosure.
도 2 는 본원의 일 실시예에 따른 실리콘 전구체 화합물 1 의 시차주사열량측정법 (differential scanning calorimetry; DSC) 그래프이다.2 is a differential scanning calorimetry (DSC) graph of the silicon precursor compound 1 according to an embodiment of the present disclosure.
도 3 은 본원의 일 실시예에 따른 실리콘 전구체 화합물 2 의 열 무게 분석 그래프이다.3 is a thermogravimetric analysis graph of the silicon precursor compound 2 according to an embodiment of the present application.
도 4 는 본원의 일 실시예에 따른 실리콘 전구체 화합물 2 의 시차주사열량 측정법 그래프이다.Figure 4 is a differential scanning calorimetry graph of the silicon precursor compound 2 according to an embodiment of the present application.
도 5 는 본원의 일 실시예에 따른 실리콘 전구체 화합물 3 의 열 무게 분석 그래프이다.5 is a thermogravimetric analysis graph of the silicon precursor compound 3 according to an embodiment of the present application.
도 6 은 본원의 일 실시예에 따른 실리콘 전구체 화합물 3 의 시차주사열량 측정법 그래프이다.6 is a differential scanning calorimetry graph of the silicon precursor compound 3 according to an embodiment of the present application.
도 7 은 본원의 일 실시예에 따른 실리콘 전구체 화합물 4 의 열 무게 분석 그래프이다.7 is a thermogravimetric analysis graph of the silicon precursor compound 4 according to an embodiment of the present application.
도 8 은 본원의 일 실시예에 따른 실리콘 전구체 화합물 4 의 시차주사열량 측정법 그래프이다.8 is a differential scanning calorimetry graph of the silicon precursor compound 4 according to an embodiment of the present application.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the embodiments and embodiments of the present application to be easily carried out by those of ordinary skill in the art.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다. Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, 용어 "알킬기"는, 각각, 선형 또는 분지형의, 포화 또는 불포화의 C1-5 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. Throughout this specification, the term "alkyl group" may include linear or branched, saturated or unsaturated C 1-5 alkyl groups, respectively, for example methyl, ethyl, propyl, butyl, pentyl or their It may be to include all possible isomers of, but may not be limited thereto.
본원 명세서 전체에서, 구체적인 화합물 명칭의 nPr은 n-프로필 (n-Pr)을 의미하고, iPr은 iso-프로필 (i-Pr)을 의미하며, nBu은 n-부틸 (n-Bu)을, iBu은 iso-부틸 (iso-Bu)을, tBu은 tert-부틸 (t-Bu)을 의미한다.Throughout this specification, n Pr in the specific compound name means n-propyl (n-Pr), i Pr means iso-propyl (i-Pr), and n Bu is n-butyl (n-Bu) I Bu means iso-butyl (iso-Bu) and t Bu means tert -butyl (t-Bu).
본원의 제 1 측면은, 하기 화학식 1 로서 표시되는 실리콘 전구체 화합물을 제공한다:A first aspect of the present application provides a silicon precursor compound represented by the following general formula (1):
[화학식 1][Formula 1]
Si(NR1 2)n(NHR2)m Si (NR 1 2 ) n (NHR 2 ) m
상기 화학식 1 에서,In Chemical Formula 1,
R1 및 R2 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고; n 및 m 은 각각 독립적으로 1 내지 3 임.R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group; n and m are each independently 1 to 3.
본 발명의 일 구현예에 따르면, 상기 C1-5의 선형 또는 분지형 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기 또는 tert-펜틸기를 포함할 수 있으나, 이에 제한되지 않을 수 있다.According to an embodiment of the present invention, the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert -butyl group , n-pentyl, iso-pentyl, neo-pentyl or tert -pentyl may include, but may not be limited thereto.
본원의 제 2 측면은, 하기 화학식 2 로서 표시되는 실리콘 전구체 화합물을 제공한다:A second aspect of the present application provides a silicon precursor compound represented by the following general formula (2):
[화학식 2][Formula 2]
Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z Si (R 1 NCHR 2 x CHR 2 x NR 3 ) y (NHR 4 ) z
상기 화학식 1 에서,In Chemical Formula 1,
R1 내지 R4 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고; x 는 0 또는 1 이고; y 는 1 또는 2 이고; z 는 0 또는 2 임.R 1 to R 4 are each independently H or a C 1-5 linear or branched alkyl group; x is 0 or 1; y is 1 or 2; z is 0 or 2.
본 발명의 일 구현예에 따르면, 상기 C1-5의 선형 또는 분지형 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기 또는 tert-펜틸기를 포함할 수 있으나, 이에 제한되지 않을 수 있다.According to an embodiment of the present invention, the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert -butyl group , n-pentyl, iso-pentyl, neo-pentyl or tert -pentyl may include, but may not be limited thereto.
본 발명의 일 구현예에 따르면, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물은 (NH2)Si(NHMe)3, (NH2)Si(NHEt)3, (NH2)Si(NHnPr)3, (NH2)Si(NHiPr)3, (NH2)Si(NHnBu)3, (NH2)Si(NHiBu)3, (NH2)Si(NHtBu)3, (NMe2)Si(NHMe)3, (NMe2)Si(NHEt)3, (NMe2)Si(NHnPr)3, (NMe2)Si(NHiPr)3, (NMe2)Si(NHnBu)3, (NMe2)Si(NHiBu)3, (NMe2)Si(NHtBu)3, (NEt2)Si(NHMe)3, (NEt2)Si(NHEt)3, (NEt2)Si(NHnPr)3, (NEt2)Si(NHiPr)3, (NEt2)Si(NHnBu)3, (NEt2)Si(NHiBu)3, (NEt2)Si(NHtBu)3, (NnPr2)Si(NHMe)3, (NnPr2)Si(NHEt)3, (NnPr2)Si(NHnPr)3, (NnPr2)Si(NHiPr)3, (NnPr2)Si(NHnBu)3, (NnPr2)Si(NHiBu)3, (NnPr2)Si(NHtBu)3, (NiPr2)Si(NHMe)3, (NiPr2)Si(NHEt)3, (NiPr2)Si(NHnPr)3, (NiPr2)Si(NHiPr)3, (NiPr2)Si(NHnBu)3, (NiPr2)Si(NHiBu)3, (NiPr2)Si(NHtBu)3, (NnBu2)Si(NHMe)3, (NnBu2)Si(NHEt)3, (NnBu2)Si(NHnPr)3, (NnBu2)Si(NHiPr)3, (NnBu2)Si(NHnBu)3, (NnBu2)Si(NHiBu)3, (NnBu2)Si(NHtBu)3, (NiBu2)Si(NHMe)3, (NiBu2)Si(NHEt)3, (NiBu2)Si(NHnPr)3, (NiBu2)Si(NHiPr)3, (NiBu2)Si(NHnBu)3, (NiBu2)Si(NHiBu)3, (NiBu2)Si(NHtBu)3, (NtBu2)Si(NHMe)3, (NtBu2)Si(NHEt)3, (NtBu2)Si(NHnPr)3, (NtBu2)Si(NHiPr)3, (NtBu2)Si(NHnBu)3, (NtBu2)Si(NHiBu)3, (NtBu2)Si(NHtBu)3, (NH2)2Si(NHMe)2, (NH2)2Si(NHEt)2, (NH2)2Si(NHnPr)2, (NH2)2Si(NHiPr)2, (NH2)2Si(NHnBu)2, (NH2)2Si(NHiBu)2, (NH2)2Si(NHtBu)2, (NMe2)2Si(NHMe)2, (NMe2)2Si(NHEt)2, (NMe2)2Si(NHnPr)2, (NMe2)2Si(NHiPr)2, (NMe2)2Si(NHnBu)2, (NMe2)2Si(NHiBu)2, (NMe2)2Si(NHtBu)2, (NEt2)2Si(NHMe)2, (NEt2)2Si(NHEt)2, (NEt2)2Si(NHnPr)2, (NEt2)2Si(NHiPr)2, (NEt2)2Si(NHnBu)2, (NEt2)2Si(NHiBu)2, (NEt2)2Si(NHtBu)2, (NnPr2)2Si(NHMe)2, (NnPr2)2Si(NHEt)2, (NnPr2)2Si(NHnPr)2, (NnPr2)2Si(NHiPr)2, (NnPr2)2Si(NHnBu)2, (NnPr2)2Si(NHiBu)2, (NnPr2)2Si(NHtBu)2, (NiPr2)2Si(NHMe)2, (NiPr2)2Si(NHEt)2, (NiPr2)2Si(NHnPr)2, (NiPr2)2Si(NHiPr)2, (NiPr2)2Si(NHnBu)2, (NiPr2)2Si(NHiBu)2, (NiPr2)2Si(NHtBu)2, (NnBu2)2Si(NHMe)2, (NnBu2)2Si(NHEt)2, (NnBu2)2Si(NHnPr)2, (NnBu2)2Si(NHiPr)2, (NnBu2)2Si(NHnBu)2, (NnBu2)2Si(NHiBu)2, (NnBu2)2Si(NHtBu)2, (NiBu2)2Si(NHMe)2, (NiBu2)2Si(NHEt)2, (NiBu2)2Si(NHnPr)2, (NiBu2)2Si(NHiPr)2, (NiBu2)2Si(NHnBu)2, (NiBu2)2Si(NHiBu)2, (NiBu2)2Si(NHtBu)2, (NtBu2)2Si(NHMe)2, (NtBu2)2Si(NHEt)2, (NtBu2)2Si(NHnPr)2, (NtBu2)2Si(NHiPr)2, (NtBu2)2Si(NHnBu)2, (NtBu2)2Si(NHiBu)2, (NtBu2)2Si(NHtBu)2, Si(HNCH2CH2NH)2, Si(MeNCH2CH2NMe)2, Si(EtNCH2CH2NEt)2, Si(nPrNCH2CH2NnPr)2, Si(iPrNCH2CH2NiPr)2, Si(nBuNCH2CH2NnBu)2, Si(iBuNCH2CH2NiBu)2, Si(tBuNCH2CH2NtBu)2, Si(HNCHCHNH)2, Si(MeNCHCHNMe)2, Si(EtNCHCHNEt)2, Si(nPrNCHCHNnPr)2, Si(iPrNCHCHNiPr)2, Si(nBuNCHCHNnBu)2, Si(iBuNCHCHNiBu)2, Si(tBuNCHCHNtBu)2, (HNCHCHNH)Si(HNCH2CH2NH), (MeNCHCHNMe)Si(MeNCH2CH2NMe), (EtNCHCHNEt)Si(EtNCH2CH2NEt), (nPrNCHCHNnPr)Si(nPrNCH2CH2NnPr), (iPrNCHCHNiPr)Si(iPrNCH2CH2NiPr), (nBuNCHCHNnBu)Si(nBuNCH2CH2NnBu), (iBuNCHCHNiBu)Si(iBuNCH2CH2NiBu), (tBuNCHCHNtBu)Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCH2CH2NH), (NHtBu)2Si(MeNCH2CH2NMe), (NHtBu)2Si(EtNCH2CH2NEt), (NHtBu)2Si(nPrNCH2CH2NnPr), (NHtBu)2Si(iPrNCH2CH2NiPr), (NHtBu)2Si(nBuNCH2CH2NnBu), (NHtBu)2Si(iBuNCH2CH2NiBu), (NHtBu)2Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCHCHNH), (NHtBu)2Si(MeNCHCHNMe), (NHtBu)2Si(EtNCHCHNEt), (NHtBu)2Si(nPrNCHCHNnPr), (NHtBu)2Si(iPrNCHCHNiPr), (NHtBu)2Si(nBuNCHCHNnBu), (NHtBu)2Si(iBuNCHCHNiBu), (NHtBu)2Si(tBuNCHCHNtBu), (iPrNCH2CH2NiPr)Si(NHMe)2, (iPrNCH2CH2NiPr)Si(NHEt)2, (iPrNCH2CH2NiPr)Si(NHnPr)2, (iPrNCH2CH2NiPr)Si(NHiPr)2, (iPrNCH2CH2NiPr)Si(NHnBu)2, (iPrNCH2CH2NiPr)Si(NHiBu)2, (iPrNCH2CH2NiPr)Si(NHtBu)2, (iPrNCHCHNiPr)Si(NHMe)2, (iPrNCHCHNiPr)Si(NHEt)2, (iPrNCHCHNiPr)Si(NHnPr)2, (iPrNCHCHNiPr)Si(NHiPr)2, (iPrNCHCHNiPr)Si(NHnBu)2, (iPrNCHCHNiPr)Si(NHiBu)2, 또는 (iPrNCHCHNiPr)Si(NHtBu)2 를 포함할 수 있으나, 이에 제한되지 않을 수 있다. According to an embodiment of the present invention, the silicon precursor compound according to Formula 1 or Formula 2 is (NH2Si (NHMe)3, (NH2Si (NHEt)3, (NH2Si (NH)nPr)3, (NH2Si (NH)iPr)3, (NH2Si (NH)nBu)3, (NH2Si (NH)iBu)3, (NH2Si (NH)tBu)3, (NMe2Si (NHMe)3, (NMe2Si (NHEt)3, (NMe2Si (NH)nPr)3, (NMe2Si (NH)iPr)3, (NMe2Si (NH)nBu)3, (NMe2Si (NH)iBu)3, (NMe2Si (NH)tBu)3, (NEt2Si (NHMe)3, (NEt2Si (NHEt)3, (NEt2Si (NH)nPr)3, (NEt2Si (NH)iPr)3, (NEt2Si (NH)nBu)3, (NEt2Si (NH)iBu)3, (NEt2Si (NH)tBu)3, (NnPr2Si (NHMe)3, (NnPr2Si (NHEt)3, (NnPr2Si (NH)nPr)3, (NnPr2Si (NH)iPr)3, (NnPr2Si (NH)nBu)3, (NnPr2Si (NH)iBu)3, (NnPr2Si (NH)tBu)3, (NiPr2Si (NHMe)3, (NiPr2Si (NHEt)3, (NiPr2Si (NH)nPr)3, (NiPr2Si (NH)iPr)3, (NiPr2Si (NH)nBu)3, (NiPr2Si (NH)iBu)3, (NiPr2Si (NH)tBu)3, (NnBu2Si (NHMe)3, (NnBu2Si (NHEt)3, (NnBu2Si (NH)nPr)3, (NnBu2Si (NH)iPr)3, (NnBu2Si (NH)nBu)3, (NnBu2Si (NH)iBu)3, (NnBu2Si (NH)tBu)3, (NiBu2Si (NHMe)3, (NiBu2Si (NHEt)3, (NiBu2Si (NH)nPr)3, (NiBu2Si (NH)iPr)3, (NiBu2Si (NH)nBu)3, (NiBu2Si (NH)iBu)3, (NiBu2Si (NH)tBu)3, (NtBu2Si (NHMe)3, (NtBu2Si (NHEt)3, (NtBu2Si (NH)nPr)3, (NtBu2Si (NH)iPr)3, (NtBu2Si (NH)nBu)3, (NtBu2Si (NH)iBu)3, (NtBu2Si (NH)tBu)3, (NH2)2Si (NHMe)2, (NH2)2Si (NHEt)2, (NH2)2Si (NHnPr)2, (NH2)2Si (NHiPr)2, (NH2)2Si (NHnBu)2, (NH2)2Si (NHiBu)2, (NH2)2Si (NHtBu)2, (NMe2)2Si (NHMe)2, (NMe2)2Si (NHEt)2, (NMe2)2Si (NHnPr)2, (NMe2)2Si (NHiPr)2, (NMe2)2Si (NHnBu)2, (NMe2)2Si (NHiBu)2, (NMe2)2Si (NHtBu)2, (NEt2)2Si (NHMe)2, (NEt2)2Si (NHEt)2, (NEt2)2Si (NHnPr)2, (NEt2)2Si (NHiPr)2, (NEt2)2Si (NHnBu)2, (NEt2)2Si (NHiBu)2, (NEt2)2Si (NHtBu)2, (NnPr2)2Si (NHMe)2, (NnPr2)2Si (NHEt)2, (NnPr2)2Si (NHnPr)2, (NnPr2)2Si (NHiPr)2, (NnPr2)2Si (NHnBu)2, (NnPr2)2Si (NHiBu)2, (NnPr2)2Si (NHtBu)2, (NiPr2)2Si (NHMe)2, (NiPr2)2Si (NHEt)2, (NiPr2)2Si (NHnPr)2, (NiPr2)2Si (NHiPr)2, (NiPr2)2Si (NHnBu)2, (NiPr2)2Si (NHiBu)2, (NiPr2)2Si (NHtBu)2, (NnBu2)2Si (NHMe)2, (NnBu2)2Si (NHEt)2, (NnBu2)2Si (NHnPr)2, (NnBu2)2Si (NHiPr)2, (NnBu2)2Si (NHnBu)2, (NnBu2)2Si (NHiBu)2, (NnBu2)2Si (NHtBu)2, (NiBu2)2Si (NHMe)2, (NiBu2)2Si (NHEt)2, (NiBu2)2Si (NHnPr)2, (NiBu2)2Si (NHiPr)2, (NiBu2)2Si (NHnBu)2, (NiBu2)2Si (NHiBu)2, (NiBu2)2Si (NHtBu)2, (NtBu2)2Si (NHMe)2, (NtBu2)2Si (NHEt)2, (NtBu2)2Si (NHnPr)2, (NtBu2)2Si (NHiPr)2, (NtBu2)2Si (NHnBu)2, (NtBu2)2Si (NHiBu)2, (NtBu2)2Si (NHtBu)2, Si (HNCH2CH2NH)2, Si (MeNCH2CH2NMe)2, Si (EtNCH2CH2NEt)2, Si (nPrNCH2CH2NnPr)2, Si (iPrNCH2CH2NiPr)2, Si (nBuNCH2CH2NnBu)2, Si (iBuNCH2CH2NiBu)2, Si (tBuNCH2CH2NtBu)2, Si (HNCHCHNH)2, Si (MeNCHCHNMe)2, Si (EtNCHCHNEt)2, Si (nPrNCHCHNnPr)2, Si (iPrNCHCHNiPr)2, Si (nBuNCHCHNnBu)2, Si (iBuNCHCHNiBu)2, Si (tBuNCHCHNtBu)2, (HNCHCHNH) Si (HNCH2CH2NH), (MeNCHCHNMe) Si (MeNCH)2CH2NMe), (EtNCHCHNEt) Si (EtNCH)2CH2NEt), (nPrNCHCHNnPr) Si (nPrNCH2CH2NnPr), (iPrNCHCHNiPr) Si (iPrNCH2CH2NiPr), (nBuNCHCHNnBu) Si (nBuNCH2CH2NnBu), (iBuNCHCHNiBu) Si (iBuNCH2CH2NiBu), (tBuNCHCHNtBu) Si (tBuNCH2CH2NtBu), (NHtBu)2Si (HNCH2CH2NH), (NHtBu)2Si (MeNCH2CH2NMe), (NHtBu)2Si (EtNCH2CH2NEt), (NHtBu)2Si (nPrNCH2CH2NnPr), (NHtBu)2Si (iPrNCH2CH2NiPr), (NHtBu)2Si (nBuNCH2CH2NnBu), (NHtBu)2Si (iBuNCH2CH2NiBu), (NHtBu)2Si (tBuNCH2CH2NtBu), (NHtBu)2Si (HNCHCHNH), (NHtBu)2Si (MeNCHCHNMe),(NHtBu)2Si (EtNCHCHNEt), (NHtBu)2Si (nPrNCHCHNnPr), (NHtBu)2Si (iPrNCHCHNiPr), (NHtBu)2Si (nBuNCHCHNnBu), (NHtBu)2Si (iBuNCHCHNiBu), (NHtBu)2Si (tBuNCHCHNtBu), (iPrNCH2CH2NiPr) Si (NHMe)2, (iPrNCH2CH2NiPr) Si (NHEt)2, (iPrNCH2CH2NiPr) Si (NHnPr)2, (iPrNCH2CH2NiPr) Si (NHiPr)2, (iPrNCH2CH2NiPr) Si (NHnBu)2, (iPrNCH2CH2NiPr) Si (NHiBu)2, (iPrNCH2CH2NiPr) Si (NHtBu)2, (iPrNCHCHNiPr) Si (NHMe)2, (iPrNCHCHNiPr) Si (NHEt)2, (iPrNCHCHNiPr) Si (NHnPr)2, (iPrNCHCHNiPr) Si (NHiPr)2, (iPrNCHCHNiPr) Si (NHnBu)2, (iPrNCHCHNiPr) Si (NHiBu)2, or (iPrNCHCHNiPr) Si (NHtBu)2It may include, but may not be limited thereto.
본원의 제 3 측면은, 하기 반응식 1 과 같이, SiCl4 및 NH2R2를 유기 용매 중에서 반응시켜 SiCln(NHR2)m 를 형성하는 것; 및 상기 SiCln(NHR2)m 및 M(NR1 2)을 유기 용매 중에서 반응시켜 실리콘 화합물을 형성하는 것을 포함하는, 상기 본원의 제 1 측면의 화학식 1 로서 표시되는 실리콘 전구체 화합물의 제조 방법을 제공한다:A third aspect of the present application is to react SiCl 4 and NH 2 R 2 in an organic solvent to form SiCl n (NHR 2 ) m as in Scheme 1 below; And forming a silicon compound by reacting the SiCl n (NHR 2 ) m and M (NR 1 2 ) in an organic solvent to form a silicon precursor compound of Formula 1 of the first aspect of the present application. to provide:
[반응식 1] Scheme 1
SiCl4 + 2mNH2R2 → SiCln(NHR2)m SiCl 4 + 2mNH 2 R 2 → SiCl n (NHR 2 ) m
SiCln(NHR2)m + nM(NR1 2) → Si(NR1 2)n(NHR2)m SiCl n (NHR 2 ) m + nM (NR 1 2 ) → Si (NR 1 2 ) n (NHR 2 ) m
상기 반응식 1 에서,In Scheme 1,
M 은 알칼리 금속이고; R1, R2, n, 및 m 은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.M is an alkali metal; R 1 , R 2 , n, and m are the same as defined above in the first aspect of the present application, respectively.
본원의 제 4 측면은, 하기 반응식 2 와 같이, SiCl4 및 NH2R4를 유기 용매 중에서 반응시켜 SiCly(NHR4)z 를 형성하는 것; 및 상기 SiCly(NHR2)z 및 M(R1NCHR2 xCHR2 xNR3)을 유기 용매 중에서 반응시켜 실리콘 화합물을 형성하는 것을 포함하는, 상기 본원의 제 2 측면의 화학식 2 로서 표시되는 실리콘 전구체 화합물의 제조 방법을 제공한다:A fourth aspect of the present application is to react SiCl 4 and NH 2 R 4 in an organic solvent to form SiCl y (NHR 4 ) z as in Scheme 2 below; And reacting the SiCl y (NHR 2 ) z and M (R 1 NCHR 2 x CHR 2 x NR 3 ) in an organic solvent to form a silicon compound, represented by Formula 2 of the second aspect of the present application. Provided are methods for preparing the silicon precursor compound:
[반응식 2] Scheme 2
SiCl4 + 2zNH2R2 → SiCly(NHR2)z SiCl 4 + 2zNH 2 R 2 → SiCl y (NHR 2 ) z
SiCly(NHR2)z + yM2(R1NCHR2 xCHR2 xNR3) → Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z SiCl y (NHR 2 ) z + yM 2 (R 1 NCHR 2 x CHR 2 x NR 3 ) → Si (R 1 NCHR 2 x CHR 2 x NR 3 ) y (NHR 4 ) z
상기 반응식 2 에서,In Scheme 2,
M 은 알칼리 금속이고, R1 내지 R4, x, y, 및 z 는 각각 상기 본원의 제 2 측면에서 정의된 바와 동일함.M is an alkali metal and R 1 to R 4 , x, y, and z are each as defined above in the second aspect of the present application.
본원의 제 5 측면은, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물을 포함하는 실리콘-함유 박막 증착용 전구체 조성물을 제공하나, 이에 제한되지 않을 수 있다.The fifth aspect of the present application provides a precursor composition for depositing a silicon-containing thin film including the silicon precursor compound according to Formula 1 or Formula 2, but may not be limited thereto.
본원의 제 6 측면은, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물을 이용하여, 실리콘-함유 박막을 증착시키는 방법을 제공하나, 이에 제한되지 않을 수 있다.The sixth aspect of the present disclosure provides a method of depositing a silicon-containing thin film using the silicon precursor compound according to Formula 1 or Formula 2, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 실리콘-함유 박막 증착은 유기금속 화학기상증착 (MOCVD) 또는 원자층 증착 (ALD)에 의해 증착되는 것일 수 있으며, 예를 들어, 원자층 증착 (ALD)에 의해 증착되는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the silicon-containing thin film deposition may be one deposited by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), for example, by atomic layer deposition (ALD) It may be deposited, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물을 이용하여 원자층 증착법으로 산화실리콘 박막 및 질화실리콘 박막을 증착할 수 있다. 상기 산화실리콘 박막 및 질화실리콘 박막은 각각 독립적으로, 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물의 기체 공급 - 퍼지 기체 공급 - 산소 원료 기체 공급 - 퍼지 기체 공급의 주기, 또는 상기 화학식 1 또는 화학식 2 에 따른 실리콘 전구체 화합물의 기체 공급 - 퍼지 기체 공급 - 질소 원료 기체 공급 - 퍼지 기체 공급의 주기를 반복하는 통상의 시분할 원자층 증착 방법 및 장치를 사용하여 이루어질 수 있다. 상기 산소 원료 기체로는 산소 (O2); 산소 라디칼 (예를 들어, O, OH, 또는 플라즈마에 의해 발생된 라디칼); 오존 (O3); NO, N2O, 또는 NO2; 수분 (H2O) 또는 H2O2 을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 상기 질소 원료 기체로는 암모니아 (NH3), 플라즈마로 활성화된 암모니아, 또는 플라즈마로 활성화된 수소 (H2) 및 질소 (N2)의 혼합 기체를 사용할 수 있으나, 이에 제한되지 않을 수 있다.According to the exemplary embodiment of the present application, the silicon oxide thin film and the silicon nitride thin film may be deposited by the atomic layer deposition method using the silicon precursor compound according to Chemical Formula 1 or Chemical Formula 2. The silicon oxide thin film and the silicon nitride thin film are each independently a gas supply of a silicon precursor compound according to Formula 1 or Formula 2-purge gas supply-oxygen source gas supply-cycle of purge gas supply, or the formula 1 or Formula 2 And a conventional time division atomic layer deposition method and apparatus for repeating the cycle of gas supply of the silicon precursor compound-purge gas supply-nitrogen source gas supply-purge gas supply. Examples of the oxygen source gas include oxygen (O 2 ); Oxygen radicals (eg, radicals generated by O, OH, or plasma); Ozone (O 3 ); NO, N 2 O, or NO 2 ; Moisture (H 2 O) or H 2 O 2 may be used, but may not be limited thereto. The nitrogen source gas may be ammonia (NH 3 ), plasma-activated ammonia, or a plasma-activated mixture of hydrogen (H 2 ) and nitrogen (N 2 ), but may not be limited thereto.
이하, 본원에 첨부한 도면을 참조하여 본원의 실시예를 상세히 설명하도록 한다. 그러나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, the present application may not be limited thereto.
[실시예]EXAMPLE
실시예 1: 실리콘 전구체 화합물 1Example 1 Silicon Precursor Compound 1
불꽃 건조된 1,000 mL 슐렝크 플라스크에서 SiCl4 40.0 g (0.235 mol)을 톨루엔 200 mL에 녹인 후 0℃로 유지시켰다. 이렇게 0℃를 유지하는 플라스크에, tert-부틸아민 (tert-butylamine) 75.8 g (1.036 mol)을 천천히 적가한 후 반응용액을 실온까지 천천히 승온시켜 혼합액을 제조하였다. 상기 혼합액을 15 시간 동안 실온에서 교반시켰다. 15 시간 경과한 후 상기 혼합액의 플라스크에, nBuLi 용액 (2.6 M in Hexane) 199 mL (0.518 mol)와 다이메틸아민 (dimethylamine) 23.3 g (0.518 mol)을 헥산 200 mL에 녹여 반응시켜 인시츄(in-situ) 제조한 용액을 -20℃를 유지한 채 천천히 첨가한 후 만들어진 혼합액을 실온까지 천천히 승온하였다. 상기 혼합액을 15 시간 동안 실온에서 교반한 후 반응을 완결시켰다.In a flame dried 1,000 mL Schlenk flask, 40.0 g (0.235 mol) of SiCl 4 was dissolved in 200 mL of toluene and kept at 0 ° C. Thus the flask to keep the 0 ℃, tert - butylamine were added dropwise (tert -butylamine) 75.8 g (1.036 mol) slowly and the reaction solution was prepared in the mixed solution was slowly warmed to room temperature. The mixture was stirred for 15 hours at room temperature. After 15 hours, 199 mL (0.518 mol) of n BuLi solution (2.6 M in Hexane) and 23.3 g (0.518 mol) of dimethylamine were dissolved in 200 mL of hexane to react with the flask of the mixed solution. in-situ) The prepared solution was slowly added while maintaining the temperature at -20 ° C, and the resulting mixture was slowly heated to room temperature. The mixture was stirred for 15 hours at room temperature before the reaction was completed.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 (n-hexane, C6H14) 500 mL로 추출하였다. 상기 n-헥산 추출물을 셀라이트 (Cellite) 패드와 유리 프릿 (frit)을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 3 으로서 표시되는 무색 액체의 실리콘 전구체 화합물 1 을 얻었다.After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane (n-hexane, C 6 H 14 ). The n-hexane extract was filtered through a Celite pad and a glass frit to remove the solvent under reduced pressure and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 1 represented by Formula 3 below. Got.
[화학식 3][Formula 3]
Figure PCTKR2013010720-appb-I000001
Figure PCTKR2013010720-appb-I000001
수율(yield) 44.16 g (72%); 끓는점(bp) 71℃ (0.3 torr);Yield 44.16 g (72%); Boiling point (bp) 71 ° C. (0.3 torr);
1H-NMR (400 MHz, C6D6, 25℃) δ 2.582 (s, 12H, N(CH 3)2), 1.187 (s, 18H, NH(CH 3)3), 0.571 (br, 2H, NH(CH3)3). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 2.582 (s, 12H, N (C H 3 ) 2 ), 1.187 (s, 18H, NH (C H 3 ) 3 ), 0.571 (br , 2H, N H (CH 3 ) 3 ).
상기 실리콘 전구체 화합물 1 을 이용하여 원자층 증착법으로 산화실리콘 박막 및 질화실리콘 박막을 증착하였다. 상기 산화실리콘 박막 및 질화실리콘 박막은 각각 독립적으로, 상기 실리콘 전구체 화합물 1 의 기체 공급 - 퍼지 기체 공급 - 산소 원료 기체 공급 - 퍼지 기체 공급의 주기, 또는 상기 실리콘 전구체 화합물 1의 기체 공급 - 퍼지 기체 공급 - 질소 원료 기체 공급 - 퍼지 기체 공급의 주기를 반복하는 통상의 시분할 원자층 증착 방법 및 장치를 사용하였다. 상기 산소 원료 기체로는 산소(O2); 산소 라디칼 (예를 들어, O, OH, 또는 플라즈마에 의해 발생된 라디칼); 오존(O3); NO, N2O, 또는 NO2; 수분(H2O) 또는 H2O2 을 사용할 수 있다. 상기 질소 원료 기체로는 암모니아(NH3), 플라즈마로 활성화된 암모니아, 또는 플라즈마로 활성화된 수소(H2) 및 질소(N2)의 혼합 기체를 사용할 수 있다.Using the silicon precursor compound 1, a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition. The silicon oxide thin film and the silicon nitride thin film are each independently a cycle of gas supply of the silicon precursor compound 1-purge gas supply-oxygen source gas supply-purge gas supply, or gas supply of the silicon precursor compound 1-purge gas supply -Nitrogen feed gas feed-A conventional time division atomic layer deposition method and apparatus was used which repeats the cycle of purge gas feed. The oxygen source gas is oxygen (O 2 ); Oxygen radicals (eg, radicals generated by O, OH, or plasma); Ozone (O 3 ); NO, N 2 O, or NO 2 ; Moisture (H 2 O) or H 2 O 2 can be used. As the nitrogen source gas, ammonia (NH 3 ), plasma-activated ammonia, or plasma-activated hydrogen (H 2 ) and nitrogen (N 2 ) may be used.
실시예 2: 실리콘 전구체 화합물 2Example 2: Silicon Precursor Compound 2
불꽃 건조된 1,000 mL 슐렝크 플라스크에서 SiCl4 40.0 g (0.235 mol)을 톨루엔 250 mL에 녹인 후 0℃로 유지시켰다. 이렇게 0℃를 유지하는 플라스크에, tert-부틸아민 (tert-butylamine) 113.6 g (1.554 mol)을 천천히 적가한 후 반응용액을 실온까지 천천히 승온시켜 혼합액을 제조하였다. 상기 혼합액을 3 일 동안 실온에서 교반시켰다. 3 일이 경과한 상기 혼합액 플라스크에, nBuLi 용액 (2.6 M in Hexane) 109 mL (0.283 mol)와 다이메틸아민 (dimethylamine) 12.7 g (0.283 mol)을 헥산 150 mL에 녹여 반응시켜 인시츄 제조한 용액을 -20℃를 유지한 채 천천히 첨가한 후 만들어진 혼합액을 실온까지 천천히 승온하였다. 상기 혼합액을 15 시간 동안 실온에서 교반한 후 반응을 완결시켰다.In a flame dried 1,000 mL Schlenk flask, 40.0 g (0.235 mol) of SiCl 4 was dissolved in 250 mL of toluene and kept at 0 ° C. Thus the flask to keep the 0 ℃, tert - butylamine were added dropwise (tert -butylamine) 113.6 g (1.554 mol) slowly and the reaction solution was prepared in the mixed solution was slowly warmed to room temperature. The mixture was stirred for 3 days at room temperature. After 3 days, 109 mL (0.283 mol) of n BuLi solution (2.6 M in Hexane) and 12.7 g (0.283 mol) of dimethylamine were dissolved in 150 mL of hexane to prepare an in situ. The solution was added slowly while maintaining -20 ° C, and the resulting mixture was slowly heated to room temperature. The mixture was stirred for 15 hours at room temperature before the reaction was completed.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 (n-hexane, C6H14) 500 mL로 추출하였다. 상기 n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 4 로서 표시되는 무색 액체의 실리콘 전구체 화합물 2 를 얻었다.After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane (n-hexane, C 6 H 14 ). The n-hexane extract was filtered through a celite pad and a glass frit, and the filtrate was removed under reduced pressure, and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 2 represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2013010720-appb-I000002
Figure PCTKR2013010720-appb-I000002
수율 46.87 g (69%); 끓는점 74℃ (0.3 torr);Yield 46.87 g (69%); Boiling point 74 ° C. (0.3 torr);
1H-NMR (400 MHz, C6D6, 25℃) δ 2.587 (s, 6H, N(CH 3)2), 1.257 (s, 27H, NH(CH 3)3), 0.488 (br, 3H, NH(CH3)3). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 2.587 (s, 6H, N (C H 3 ) 2 ), 1.257 (s, 27H, NH (C H 3 ) 3 ), 0.488 (br , 3H, N H (CH 3 ) 3 ).
상기 실리콘 전구체 화합물 2 를 이용하여 원자층 증착법으로 산화실리콘 박막 및 질화실리콘 박막을 증착하였다. 상기 산화실리콘 박막 및 질화실리콘 박막은 실리콘 전구체 화합물 2 를 사용하는 것을 제외하고는 실시예 1 의 실리콘-함유 박막의 증착 방법과 동일하게 진행하였다. Using the silicon precursor compound 2, a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition. The silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 2 was used.
실시예 3: 실리콘 전구체 화합물 3Example 3: Silicon Precursor Compound 3
불꽃 건조된 1,000 mL 슐렝크 플라스크에서 SiCl4 40.0 g (0.235 mol)을 톨루엔 200 mL에 녹인 후 0℃로 유지시켰다. 이렇게 0℃를 유지하는 플라스크에, tert-부틸아민 (tert-butylamine) 75.8 g (1.036 mol)을 천천히 적가한 후 반응용액을 실온까지 천천히 승온시켜 혼합액을 제조하였다. 상기 혼합액을 15 시간 동안 실온에서 교반시켰다. 15 시간 경과한 상기 혼합액 플라스크에, nBuLi 용액 (2.6M in Hexane) 217 mL (0.565 mol)와 N,N'-다이아이소프로필에틸렌다이아민 (N,N'-diisopropylethylenediamine) 40.8 g (0.283 mol)을 헥산 200 mL에 녹여 반응시켜 인시츄 제조한 용액을 -20℃를 유지한 채 천천히 첨가한 후 만들어진 혼합액을 실온까지 천천히 승온하였다. 상기 혼합액을 15 시간 동안 실온에서 교반한 후 반응을 완결시켰다.In a flame dried 1,000 mL Schlenk flask, 40.0 g (0.235 mol) of SiCl 4 was dissolved in 200 mL of toluene and kept at 0 ° C. Thus the flask to keep the 0 ℃, tert - butylamine were added dropwise (tert -butylamine) 75.8 g (1.036 mol) slowly and the reaction solution was prepared in the mixed solution was slowly warmed to room temperature. The mixture was stirred for 15 hours at room temperature. In the mixed flask after 15 hours, 217 mL (0.565 mol) of n BuLi solution (2.6M in Hexane) and 40.8 g (0.283 mol) of N, N'-diisopropylethylenediamine Was dissolved in 200 mL of hexane and reacted. The solution prepared in situ was slowly added while maintaining the temperature at -20 ° C, and the resulting mixture was slowly heated to room temperature. The mixture was stirred for 15 hours at room temperature before the reaction was completed.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 (n-hexane, C6H14) 500 mL로 추출하였다. 상기 n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 5 로서 표시되는 무색 액체의 실리콘 전구체 화합물 3 을 얻었다.After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane (n-hexane, C 6 H 14 ). The n-hexane extract was filtered through a celite pad and a glass frit, and the filtrate was removed under reduced pressure and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 3 represented by the following formula (5).
[화학식 5][Formula 5]
Figure PCTKR2013010720-appb-I000003
Figure PCTKR2013010720-appb-I000003
수율 41.48 g (56%); 끓는점 102℃ (0.3 torr);Yield 41.48 g (56%); Boiling point 102 ° C. (0.3 torr);
1H-NMR (400 MHz, C6D6, 25℃) δ 3.295 (m, 2H, NCH(CH3)2), 2.895 (s, 4H, NCH2), 1.264 (s, 12H, NCH(CH3)2), 1.243 (s, 18H, NH(CH3)3), 0.450 (br, 2H, NH(CH3)3). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 3.295 (m, 2H, NCH (CH 3 ) 2 ), 2.895 (s, 4H, NCH 2 ), 1.264 (s, 12H, NCH (CH 3 ) 2 ), 1.243 (s, 18H, NH (CH 3 ) 3 ), 0.450 (br, 2H, NH (CH 3 ) 3 ).
상기 실리콘 전구체 화합물 3 을 이용하여 원자층 증착법으로 산화실리콘 박막 및 질화실리콘 박막을 증착하였다. 상기 산화실리콘 박막 및 질화실리콘 박막은 실리콘 전구체 화합물 3 을 사용하는 것을 제외하고는 실시예 1 의 실리콘-함유 박막의 증착 방법과 동일하게 진행하였다. Using the silicon precursor compound 3, a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition. The silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 3 was used.
실시예 4: 실리콘 전구체 화합물 4Example 4: Silicon Precursor Compound 4
불꽃 건조된 1,000 mL 슐렝크 플라스크에서 SiCl4 40.0 g (0.235 mol)을 헥산 200 mL에 녹인 후 0℃로 유지시켰다. 이렇게 0℃를 유지하는 플라스크에, nBuLi 용액 (2.6 M in Hexane) 380 mL (0.989 mol)와 N,N'-다이아이소프로필에틸렌다이아민 (N,N'-diisopropylethylenediamine) 71.3 g (0.494 mol)을 헥산 200 mL에 녹여 반응시켜 인시츄 제조한 용액을 천천히 첨가한 후 만들어진 혼합액을 실온까지 천천히 승온하였다. 상기 혼합액을 15 시간 동안 실온에서 교반한 후 반응을 완결시켰다.In a flame dried 1,000 mL Schlenk flask, 40.0 g (0.235 mol) of SiCl 4 was dissolved in 200 mL of hexane and kept at 0 ° C. In a flask maintained at 0 ° C., 380 mL (0.989 mol) of n BuLi solution (2.6 M in Hexane) and 71.3 g (0.494 mol) of N, N′-diisopropylethylenediamine The solution was dissolved in 200 mL of hexane and slowly added to the solution prepared in situ, and then the resulting mixture was slowly heated to room temperature. The mixture was stirred for 15 hours at room temperature before the reaction was completed.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 (n-hexane, C6H14) 500 mL로 추출하였다. 상기 n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 6 으로서 표시되는 무색 액체의 실리콘 전구체 화합물 4 를 얻었다.After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane (n-hexane, C 6 H 14 ). The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate was removed under reduced pressure, and distilled under reduced pressure to obtain a colorless liquid silicone precursor compound 4 represented by the following formula (6).
[화학식 6][Formula 6]
Figure PCTKR2013010720-appb-I000004
Figure PCTKR2013010720-appb-I000004
수율 27.96 g, (38%); 끓는점 112℃ (0.3 torr);Yield 27.96 g, (38%); Boiling point 112 ° C. (0.3 torr);
1H-NMR (400 MHz, C6D6, 25℃) δ 3.143 (m, 4H, NCH(CH3)2), 2.891 (s, 8H, NCH2), 1.164 (s, 24H, NCH(CH3)2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 3.143 (m, 4H, NCH (CH 3 ) 2 ), 2.891 (s, 8H, NCH 2 ), 1.164 (s, 24H, NCH (CH 3 ) 2 ).
상기 실리콘 전구체 화합물 4 를 이용하여 원자층 증착법으로 산화실리콘 박막 및 질화실리콘 박막을 증착하였다. 상기 산화실리콘 박막 및 질화실리콘 박막은 실리콘 전구체 화합물 4 를 사용하는 것을 제외하고는 실시예 1 의 실리콘-함유 박막의 증착 방법과 동일하게 진행하였다. Using the silicon precursor compound 4, a silicon oxide thin film and a silicon nitride thin film were deposited by atomic layer deposition. The silicon oxide thin film and the silicon nitride thin film were processed in the same manner as the deposition method of the silicon-containing thin film of Example 1, except that the silicon precursor compound 4 was used.
실험예 1 : 열 무게 분석 및 시차주사열량 측정법 시험Experimental Example 1 Thermogravimetric Analysis and Differential Scanning Calorimetry Test
상기한 실시예에서 제조한 실리콘 화합물 1 내지 4의 기초 열적 특성을 분석하기 위하여 열 무게 분석 (TGA) 및 시차주사열량 측정법 (DSC) 시험을 실시하였다. 이때 각 샘플의 무게를 약 5 mg 취하여 알루미나 시료용기에 넣은 후 10℃/min의 승온 속도로 500℃까지 측정하였고, 측정된 결과를 도 1 내지 도 8에 나타내었다.Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed to analyze the basic thermal properties of the silicon compounds 1 to 4 prepared in the above examples. At this time, the weight of each sample was taken to about 5 mg and placed in an alumina sample container and measured up to 500 ℃ at a temperature increase rate of 10 ℃ / min, the measured results are shown in Figures 1 to 8.
도 1 내지 도 8 에서 확인할 수 있듯이 본 발명의 실리콘 전구체 화합물은 TGA 그래프에서 모두 100℃ 내지 200℃에서 급격한 질량 감소가 일어나며, T1/2 (온도에 따른 무게 감소에서 원래 시료의 1/2 무게에 도달할 때에 해당하는 온도)은 각각 152℃, 167℃, 190℃ 및 200℃였다. 또한, DSC 그래프에서 실리콘 전구체 화합물 3 및 4는 모두 489℃에서 화합물의 분해에 따른 흡열 봉우리를 보여준다.As can be seen in Figures 1 to 8 all of the silicon precursor compounds of the present invention in the TGA graph occurs a sudden mass loss at 100 ℃ to 200 ℃, T 1/2 (weight loss of the original sample at the weight decrease with temperature) And the temperature corresponding to when the temperature was reached to 152 ° C, 167 ° C, 190 ° C and 200 ° C, respectively. In addition, both silicon precursor compounds 3 and 4 in the DSC graph show endothermic peaks following decomposition of the compound at 489 ° C.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. .

Claims (8)

  1. 하기 화학식 1 로서 표시되는, 실리콘 전구체 화합물:Silicon precursor compounds, represented by the following general formula (1):
    [화학식 1][Formula 1]
    Si(NR1 2)n(NHR2)m Si (NR 1 2 ) n (NHR 2 ) m
    상기 화학식 1 에서,In Chemical Formula 1,
    R1 및 R2 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 and R 2 are each independently H or a C 1-5 linear or branched alkyl group,
    n 및 m 은 각각 독립적으로 1 내지 3임.n and m are each independently 1 to 3.
  2. 하기 화학식 2 로서 표시되는, 실리콘 전구체 화합물:Silicon precursor compound, represented by the following formula (2):
    [화학식 2][Formula 2]
    Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z Si (R 1 NCHR 2 x CHR 2 x NR 3 ) y (NHR 4 ) z
    상기 화학식 2 에서,In Chemical Formula 2,
    R1 내지 R4 는, 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기이고,R 1 to R 4 are each independently H or a C 1-5 linear or branched alkyl group,
    x 는 0 또는 1 이고,x is 0 or 1,
    y 는 1 또는 2 이고,y is 1 or 2,
    z 는 0 또는 2 임.z is 0 or 2.
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 C1-5의 선형 또는 분지형 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기 또는 tert-펜틸기를 포함하는 것인, 실리콘 전구체 화합물.The C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert -butyl group, n-pentyl group, iso-pen Silicon precursor compound, including a tilyl group, neo-pentyl group or tert -pentyl group.
  4. 하기 반응식 1 에 의하여, SiCl4 및 NH2R2를 유기 용매 중에서 반응시켜 SiCln(NHR2)m 를 형성하는 것; 및By following Scheme 1, SiCl 4 and NH 2 R 2 are reacted in an organic solvent to form SiCl n (NHR 2 ) m ; And
    상기 SiCln(NHR2)m 및 M(NR1 2)을 유기 용매 중에서 반응시켜 실리콘 화합물을 형성하는 것Reacting SiCl n (NHR 2 ) m and M (NR 1 2 ) in an organic solvent to form a silicon compound
    을 포함하는, 제 1 항에 따른 화학식 1 로서 표시되는 실리콘 전구체 화합물의 제조 방법:Method for producing a silicon precursor compound represented by formula 1 according to claim 1, comprising:
    [반응식 1]Scheme 1
    SiCl4 + 2mNH2R2 → SiCln(NHR2)m,SiCl 4 + 2mNH 2 R 2 → SiCl n (NHR 2 ) m ,
    SiCln(NHR2)m + nM(NR1 2) → Si(NR1 2)n(NHR2)m SiCl n (NHR 2 ) m + nM (NR 1 2 ) → Si (NR 1 2 ) n (NHR 2 ) m
    상기 반응식 1 에서,In Scheme 1,
    M 은 알칼리 금속이고,M is an alkali metal,
    R1, R2, n, 및 m 은 각각 제 1 항에서 정의된 바와 동일함.R 1 , R 2 , n, and m are the same as defined in claim 1, respectively.
  5. 하기 반응식 2 에 의하여, SiCl4 및 NH2R4를 유기 용매 중에서 반응시켜 SiCly(NHR4)z 를 형성하는 것; 및By following Scheme 2, SiCl 4 and NH 2 R 4 are reacted in an organic solvent to form SiCl y (NHR 4 ) z ; And
    상기 SiCly(NHR2)z 및 M(R1NCHR2 xCHR2 xNR3)을 유기 용매 중에서 반응시켜 실리콘 화합물을 형성하는 것Reacting SiCl y (NHR 2 ) z and M (R 1 NCHR 2 × CHR 2 × NR 3 ) in an organic solvent to form a silicon compound
    을 포함하는, 제 2 항에 따른 화학식 2 로서 표시되는 실리콘 전구체 화합물의 제조 방법:Method for producing a silicon precursor compound represented by formula 2 according to claim 2, comprising:
    [반응식 2]Scheme 2
    SiCl4 + 2zNH2R2 → SiCly(NHR2)z,SiCl 4 + 2zNH 2 R 2 → SiCl y (NHR 2 ) z ,
    SiCly(NHR2)z + yM2(R1NCHR2 xCHR2 xNR3) → Si(R1NCHR2 xCHR2 xNR3)y(NHR4)z SiCl y (NHR 2 ) z + yM 2 (R 1 NCHR 2 x CHR 2 x NR 3 ) → Si (R 1 NCHR 2 x CHR 2 x NR 3 ) y (NHR 4 ) z
    상기 반응식 2 에서,In Scheme 2,
    M 은 알칼리 금속이고,M is an alkali metal,
    R1 내지 R4, x, y, 및 z 는 각각 제 2 항에서 정의된 바와 동일함.R 1 to R 4 , x, y, and z are the same as defined in claim 2, respectively.
  6. 제 1 항 또는 제 2 항에 따른 실리콘 전구체 화합물을 포함하는, 실리콘-함유 박막 증착용 전구체 조성물.A precursor composition for depositing a silicon-containing thin film, comprising the silicon precursor compound according to claim 1.
  7. 제 1 항 또는 제 2 항에 따른 실리콘 전구체 화합물을 이용하는, 실리콘-함유 박막의 증착 방법.A method of depositing a silicon-containing thin film, using the silicon precursor compound according to claim 1.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 박막을 증착하는 것은 유기금속 화학기상증착법 (MOCVD), 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것인, 실리콘-함유 박막의 증착 방법.Depositing the thin film comprises organometallic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
PCT/KR2013/010720 2012-11-27 2013-11-25 Silicon precursor compounds, and method for depositing thin film containing silicon using same WO2014084557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120135483A KR20140067786A (en) 2012-11-27 2012-11-27 Silicon precursors, and depositing method of silicon-containing thin film
KR10-2012-0135483 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084557A1 true WO2014084557A1 (en) 2014-06-05

Family

ID=50828127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010720 WO2014084557A1 (en) 2012-11-27 2013-11-25 Silicon precursor compounds, and method for depositing thin film containing silicon using same

Country Status (2)

Country Link
KR (1) KR20140067786A (en)
WO (1) WO2014084557A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813416A (en) * 2019-09-25 2021-05-18 秀博瑞殷株式公社 Method for producing thin film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787204B1 (en) * 2015-11-23 2017-10-18 주식회사 한솔케미칼 Organic metal precursor compound for atomic layer deposition and ald deposition using the same
KR102347201B1 (en) * 2017-10-25 2022-01-04 한국화학연구원 Silicone aminoamide imide compounds, preparation method thereof and process for the formation of thin film using the same
KR102157137B1 (en) 2018-11-30 2020-09-17 주식회사 한솔케미칼 Silicon precursor and fabrication method of silicon-containing thin film using the same
WO2020111405A1 (en) * 2018-11-30 2020-06-04 주식회사 한솔케미칼 Silicon precursor and method for manufacturing silicon-containing thin film using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064439A (en) * 2004-09-28 2007-06-20 프랙스에어 테크놀로지, 인코포레이티드 Organometallic precursor compounds
KR20090075837A (en) * 2006-09-28 2009-07-09 프랙스에어 테크놀로지, 인코포레이티드 Heteroleptic organometallic compounds
KR20100016477A (en) * 2007-04-12 2010-02-12 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Zirconium, hafnuim, titanium, and silicon precursors for ald/cvd
US7932413B2 (en) * 2005-05-16 2011-04-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
KR20120053454A (en) * 2010-11-17 2012-05-25 주식회사 유피케미칼 Deposition method of thin film using silicon precursor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064439A (en) * 2004-09-28 2007-06-20 프랙스에어 테크놀로지, 인코포레이티드 Organometallic precursor compounds
US7932413B2 (en) * 2005-05-16 2011-04-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
KR20090075837A (en) * 2006-09-28 2009-07-09 프랙스에어 테크놀로지, 인코포레이티드 Heteroleptic organometallic compounds
KR20100016477A (en) * 2007-04-12 2010-02-12 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Zirconium, hafnuim, titanium, and silicon precursors for ald/cvd
KR20120053454A (en) * 2010-11-17 2012-05-25 주식회사 유피케미칼 Deposition method of thin film using silicon precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813416A (en) * 2019-09-25 2021-05-18 秀博瑞殷株式公社 Method for producing thin film

Also Published As

Publication number Publication date
KR20140067786A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2014084557A1 (en) Silicon precursor compounds, and method for depositing thin film containing silicon using same
WO2015105337A1 (en) Novel trisilyl amine derivative, method for preparing the same and silicon-containing thin film using the same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2015190749A1 (en) Novel amino-silyl amine compound and the manufacturing method of dielectric film containing si-n bond by using atomic layer deposition
WO2019103500A1 (en) Composition for deposition of silicon-containing thin film, and method for manufacturing silicon-containing thin film by using same
WO2006136584A8 (en) Method of forming a high dielectric constant film and method of forming a semiconductor device
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2015130108A1 (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using same
WO2017014399A1 (en) Tungsten precursor, and method for depositing tungsten-containing film comprising same
WO2008038255A1 (en) Silicon precursors and method for low temperature cvd of silicon-containing films
WO2017135715A1 (en) Group 4 metal element-containing compound, method for preparing same, precursor composition containing same for film deposition, and method for depositing film using same
WO2016133365A1 (en) Aluminum compound and method for forming aluminum-containing film using same
WO2019066179A1 (en) Vapor deposition precursor having excellent thermal stability and reactivity and preparing method therefor
WO2022025332A1 (en) Cobalt compound, precursor composition including same, and method for preparing thin film using same
WO2022139535A1 (en) Thin film forming method using top-surface modifier
WO2017082541A1 (en) Metal precursor, manufacturing method therefor, and method for forming thin film by using same
WO2014073892A1 (en) Method for manufacturing silicon-containing thin film
WO2018182305A1 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
WO2018062590A1 (en) Organometallic precursor compound for vapor deposition for forming oxide thin film and method for manufacturing same
WO2018182318A1 (en) Composition for depositing silicon-containing thin film and method for manufacturing silicon-containing thin film using the same
WO2015141956A1 (en) Precursor compound, and method for depositing thin film and method for depositing amorphous silicon film by using same
WO2021060677A2 (en) Aminosilane compound, and silicon-containing thin film deposition composition comprising same
WO2021086006A1 (en) Indium precursor compound, method for manufacturing thin film by using same, and substrate manufactured from same.
WO2024049037A1 (en) Novel amidinate ligand, and thin film formation precursor comprising ligand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858369

Country of ref document: EP

Kind code of ref document: A1