WO2014084362A1 - Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element - Google Patents

Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2014084362A1
WO2014084362A1 PCT/JP2013/082212 JP2013082212W WO2014084362A1 WO 2014084362 A1 WO2014084362 A1 WO 2014084362A1 JP 2013082212 W JP2013082212 W JP 2013082212W WO 2014084362 A1 WO2014084362 A1 WO 2014084362A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
alignment film
crystal alignment
Prior art date
Application number
PCT/JP2013/082212
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 作本
洋介 飯沼
勇歩 野口
隆夫 堀
大輝 山極
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157017195A priority Critical patent/KR102101530B1/en
Priority to CN201380062441.8A priority patent/CN104838311B/en
Priority to JP2014549924A priority patent/JP6217648B2/en
Publication of WO2014084362A1 publication Critical patent/WO2014084362A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a method for producing a liquid crystal alignment film for a photo-alignment method, a liquid crystal alignment film obtained by this production method, and a liquid crystal display device comprising the obtained liquid crystal alignment film.
  • a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
  • the most widely used liquid crystal alignment film in the industry is made of a polyamic acid formed on an electrode substrate and / or a film made of polyimide obtained by imidizing the same with a cloth such as cotton, nylon or polyester. It is produced by performing a so-called rubbing process that rubs in the direction.
  • the rubbing treatment of the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
  • the above-mentioned photo-alignment method has not only an advantage that it can be produced by a simple manufacturing process as a rubbing-less alignment treatment method, but also an IPS (In-Place-Switching) driving method and fringe field switching (hereinafter referred to as FFS).
  • FFS In-Place-Switching
  • the contrast and viewing angle characteristics of the liquid crystal display element are improved by using the liquid crystal alignment film obtained by the above-mentioned photo-alignment method compared to the liquid crystal alignment film obtained by the rubbing treatment method. Since it is possible to improve the performance of the liquid crystal display element, it is attracting attention as a promising liquid crystal alignment treatment method.
  • the liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics. In addition, it is necessary to suppress afterimages by long-term AC driving.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by the rubbing treatment method. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of an afterimage occur when a liquid crystal display element is formed.
  • the present invention relates to a method for producing a liquid crystal alignment film for a photo-alignment treatment method capable of suppressing an afterimage due to alternating current driving that occurs in a liquid crystal display element of an IPS driving method or an FFS driving method, and a liquid crystal alignment film obtained by this manufacturing method And a liquid crystal display element having the liquid crystal alignment film.
  • the present inventors applied a liquid crystal aligning agent containing a polyimide precursor having a specific structural unit or an imidized polymer of the polyimide precursor to a substrate. Irradiating the film obtained by baking with polarized radiation, then selecting at least two solvents having a specific range of boiling points, and using such at least two solvents in a specific order, It has been found that the above object can be achieved by a liquid crystal alignment film obtained by contact treatment such as immersion and then heat treatment at 150 ° C. or higher.
  • the present invention has the following gist. 1.
  • a liquid crystal aligning agent containing at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor is applied on a substrate, The film obtained by baking is irradiated with polarized radiation, then contacted with an organic solvent having a boiling point of 110 to 180 ° C., and then contacted with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. Then, a method for producing a liquid crystal alignment film, which is subjected to heat treatment at 150 ° C. or higher.
  • (X 1 is a structure represented by the following formula (XA-1).
  • Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group or alkynyl group having 2 to 6 carbon atoms, or a phenyl group. is there.
  • contact treatment is performed with a mixed solvent of an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., and then water or a boiling point of 50 2.
  • the method for producing a liquid crystal alignment film according to 1 above wherein after the contact treatment with a water-soluble organic solvent having a temperature of ⁇ 105 ° C., the heat treatment is performed at 150 ° C. or higher.
  • the organic solvent having a boiling point of 110 to 180 ° C. is represented by the following formula (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5). 3.
  • a 1 is a hydrogen atom or an acetyl group
  • a 2 is an alkyl group having 1 to 6 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • n is 1 or 2 Is an integer.
  • a 3 is an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • a 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
  • a 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms. ) 4).
  • the organic solvent having a boiling point of 110 to 180 ° C. is at least one selected from the group consisting of 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate. 4.
  • 5. The method for producing a liquid crystal alignment film according to any one of 1 to 4, wherein the water-soluble organic solvent having a boiling point of 50 to 105 ° C.
  • the liquid crystal aligning film is at least one selected from the group consisting of methanol, ethanol, 2-propanol, and acetone. . 6). Any of 1 to 5 above, wherein the mixed solvent contains an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. in a mass ratio of 95/5 to 5/95.
  • the manufacturing method of the liquid crystal aligning film as described in 2.
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2)
  • a method for producing an alignment film 9.
  • Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5): Method.
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • Y 1 is at least one type of structure selected from the structures represented by the formula (4) and the following formula (Y1-1)
  • a method for producing a membrane 11.
  • 12 12 A liquid crystal display device comprising the liquid crystal alignment film as described in 11 above.
  • the liquid crystal alignment film obtained by the present invention is a liquid crystal alignment film of an IPS drive type or FFS drive type liquid crystal display element, afterimages due to long-term alternating current drive can be reduced.
  • the reason why the problems of the present invention are solved in the liquid crystal alignment film obtained by the present invention is not necessarily clear, but according to the study by the present inventors, the following has been found.
  • a film obtained by applying and baking a liquid crystal aligning agent using a polyimide precursor of a specific structure on a substrate includes a contact treatment with an organic solvent having a boiling point of 110 to 180 ° C. and a contact treatment with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. It is necessary to carry out in this order, and it has been found that the above effect cannot be obtained by either one of the processes.
  • the liquid crystal aligning agent used in the present invention contains at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor.
  • X 1 is a structure represented by the following formula (XA-1)
  • Y 1 is a divalent organic group
  • R 1 is a hydrogen atom or an alkyl having 1 to 4 carbon atoms. It is a group.
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or An alkynyl group or a phenyl group.
  • R 3 , R 4 , R 5 , and R 6 are each independently preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and a hydrogen atom or a methyl group Is more preferable.
  • X 1 is more preferably at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2).
  • Y 1 is a divalent organic group, and its structure is not particularly limited. Since the obtained liquid crystal alignment film has high anisotropy, it is preferably at least one selected from the group consisting of structures represented by the following formulas (Y1-1) and (Y1-2).
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • Z 1 is an organic group having 2 to 10 carbon atoms
  • Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, ester bond, amide bond, thioester bond, urea bond, carbonate A bond, or a carbamate bond.
  • R 11 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group.
  • the ester bond, amide bond, and thioester bond in Z 4 , Z 5 , and Z 6 can have the same structure as the ester bond, amide bond, and thioester bond described above.
  • urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group Examples can be given.
  • carbonate bond a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the above alkyl group, alkenyl group, alkynyl group, and aryl group. Examples similar to the groups can be given.
  • R 9 and R 10 in the formula (6) are each independently a structure selected from a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. is there.
  • R 9 and R 10 is a single bond
  • R 9 or R 10 is an alkylene group, alkenylene group, alkynylene group, arylene group, or a combination of these having 2 to 10 carbon atoms.
  • the alkenylene group includes a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
  • alkynylene group examples include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • the arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
  • Y 1 contains a structure with high linearity or a rigid structure, a liquid crystal alignment film having good liquid crystal alignment can be obtained. Therefore, the structure of Z 1 can be a single bond or the following formula (A1-1) The structure of (A1-25) is more preferable.
  • the above formula (4) or the following formula (Y1-1) is particularly preferable because the removability of decomposition products by the contact treatment with the solvent is good and the liquid crystal orientation is excellent.
  • the ratio of the structural unit represented by the above formula (1) is the total of all the polymers. 60 to 100 mol% is preferable with respect to 1 mol of the structural unit. The higher the ratio of the structural unit represented by the above formula (1), the better the liquid crystal alignment film having good liquid crystal alignment, so 80-100 mol% is more preferable, and 90-100 mol% is more preferable.
  • the polymer component of the present invention may be a polyimide precursor containing a structural unit represented by the following formula (7) and the polyimide precursor.
  • R 1 is the same as defined for R 1 in the formula (1).
  • X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-1) to (X-42). From the viewpoint of availability of the compound, the structure of X 3 is preferably X-17, X-25, X-26, X-27, X-28, X-32, or X-39. Further, from the viewpoint to obtain a fast liquid crystal alignment film relaxation of the accumulated residual charge by a DC voltage, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, the structure of X 3 is X -26, X-27, X-28, X-32, X-35, or X-37 are more preferred.
  • Y 4 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 4 include structures of the following formulas (Y-1) to (Y-74).
  • Y 4 in the formula (7) is Y-8, Y-20, Y-21, Y-22, Y-28, Y-29, Y- in order to improve the solubility of the polymer component in the organic solvent. It is preferable to contain a structural unit having a structure of 30, Y-72, Y-73, or Y-74. When the ratio of the structural unit represented by the above formula (7) in the polymer component is high, the ratio of the structural unit represented by the above formula (7) is the total structure in order to reduce the liquid crystal orientation of the liquid crystal alignment film. The amount is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, based on 1 mol of the unit.
  • the polyamic acid ester can be synthesized by the following methods (1) to (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is synthesized by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. can do.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be.
  • the concentration of the polymer in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the amount of the base added is preferably 2 to 4 times mol, more preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, since it can be easily removed and a high molecular weight product can be easily obtained.
  • the organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, because the polymer hardly precipitates and a high molecular weight product is easily obtained.
  • the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent mixing of outside air. .
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component, since it can be easily removed and a high molecular weight product can be easily obtained.
  • the organic solvent include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide and the like.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • a polyamic acid is compoundable by the method shown below. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. May be used.
  • the concentration of the polymer is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used for this invention can be manufactured by imidizing the polyamic acid ester or polyamic acid which is the precursor of the said polyimide.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained.
  • the poor solvent examples include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent.
  • the molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1 mass from the point of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent used for this invention will not be specifically limited if a polymer component melt
  • N-dimethylformamide N, N-diethylformamide, N, N-dimethylacetamide
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • N-methylcaprolactam examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent used for this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the purpose is to change the electrical properties such as the dielectric constant and conductivity of the polymer other than the polymer and the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • an imidization accelerator for the purpose of efficiently imidizing the polyamic acid may be added.
  • the method for producing a liquid crystal alignment film of the present invention comprises a step of irradiating polarized radiation to a film obtained by applying a liquid crystal aligning agent to a substrate and baking it, and a film irradiated with the radiation having a boiling point of 110.
  • each process is demonstrated.
  • substrate Applying the liquid crystal aligning agent obtained as mentioned above to a board
  • the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving the liquid crystal is formed.
  • ITO Indium Tin Oxide
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used.
  • a material that reflects light such as aluminum can be used as the electrode.
  • the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
  • the drying and baking steps after applying the liquid crystal aligning agent can be selected at any temperature and time. Usually, in order to sufficiently remove the organic solvent contained, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, and then 150 to 300 ° C., preferably 200 to 250 at 5 to 120. It is fired in minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • Step of irradiating polarized radiation The film obtained in the step (1) is irradiated with polarized radiation (hereinafter also referred to as photo-alignment treatment), thereby being perpendicular to the polarization direction. Anisotropy is imparted in the direction.
  • photo-alignment treatment there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction to impart liquid crystal alignment ability.
  • the wavelength of the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used.
  • ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the temperature at which the film is irradiated with polarized radiation is preferably 10 to 100 ° C., more preferably 20 to 50 ° C.
  • Step of contact treatment using solvent The film irradiated with the radiation polarized in the step (2) is subjected to contact treatment using two specific types of solvents.
  • solvents for the contact treatment, at least two kinds of solvents: an organic solvent having a boiling point of 110 to 180 ° C., preferably 115 to 160 ° C., and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., preferably 50 to 80 ° C. Is used.
  • the use of the two types of solvents means at least the use of the two types of solvents, and also means the use of a solvent containing another solvent together with the two types of solvents.
  • a contact treatment using a solvent other than the two kinds of solvents may be performed.
  • the organic solvent having a boiling point of 110 to 180 ° C. include the following (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5): At least one organic solvent selected from the group consisting of In the formula (A-1), A 1 is a hydrogen atom or an acetyl group, A 2 is an alkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or a methyl group, and n is 1 or 2 Is an integer.
  • a 3 is an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • a 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
  • a 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms.
  • the organic solvents of the above formulas (A-1) to (A-5) are, among others, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol And at least one selected from the group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. In particular, at least one selected from the group consisting of 1-methoxy-2-propanol and ethyl lactate is preferable.
  • Preferred examples of the water or the water-soluble organic solvent having a boiling point of 50 to 105 ° C. include water, methanol, ethanol, 2-propanol, and acetone. Of these, water and 2-propanol are more preferable.
  • the contact treatment using a film irradiated with polarized radiation and two types of solvent is a treatment such that the film and the liquid are preferably in sufficient contact, such as an immersion treatment or a spraying treatment. Done.
  • a method of immersing the film in a solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be carried out at normal temperature or higher or lower by controlling the temperature of the film or solvent, but is preferably carried out at 10 to 80 ° C., more preferably 20 to 50 ° C. .
  • means for enhancing contact such as stirring and ultrasonic waves can be applied as necessary.
  • both of the contact treatments may be performed continuously, or the time may be increased. You may leave. In the latter case, it is not preferable that an excessive amount of time is left, and therefore it is preferable to carry out continuously.
  • the contact treatment is performed with a mixed solvent containing an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C.
  • the mixed solvent is an organic solvent having a boiling point of 110 to 180 ° C. It is preferable to contain the solvent and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. in a mass ratio of preferably 95/5 to 5/95, more preferably 95/5 to 50/50.
  • the process heated at 150 degreeC or more The film
  • Such heat treatment may be performed after drying the contact-treated film using a solvent.
  • the membrane is preferably dried at 80 to 150 ° C.
  • the drying time is preferably 10 seconds to 30 minutes.
  • the temperature for the heat treatment is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of the present invention may not be obtained, and if it is too long, the molecular chain may be decomposed, and therefore it is preferably 10 seconds to 30 minutes, and preferably 1 to 10 minutes. More preferred.
  • the liquid crystal display element of the present invention is a liquid crystal cell obtained by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent obtained by the production method of the present invention, and using the liquid crystal cell. It is a liquid crystal display element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the gap between the substrates are scattered on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • viscosity In the synthesis examples, the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
  • the molecular weight of the polyamic acid ester was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000,
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) (0.0. 53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • JNW-ECA500 an NMR measuring instrument
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • a liquid crystal cell having a configuration of a fringe field switching (hereinafter referred to as FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by a CVD (Chemical Vapor Deposition) method is formed as a second layer on the counter electrode of the first layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate.
  • This substrate is immersed in an organic solvent having a boiling point of 110 to 180 ° C., or a mixed solvent containing an organic solvent having a boiling point of 110 to 180 ° C. and water or an organic solvent having a boiling point of 50 to 105 ° C. for 3 minutes, and then pure water And then heated on a hot plate at 150 to 300 ° C. for 5 minutes to obtain a substrate with a liquid crystal alignment film.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • NMP was added and stirred at room temperature for 24 hours to obtain a solution of polyamic acid (PAA-2).
  • PAA-2 polyamic acid
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 511 mPa ⁇ s.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder.
  • the obtained polyimide resin powder 12.53 was taken in a 200 ml sample tube containing a stir bar, 91.89 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyimide solution (PI-1).
  • Example 1 After the liquid crystal aligning agent (AL-1) obtained in Synthesis Example 3 is filtered through a 1.0 ⁇ m filter, the prepared substrate with electrodes and a columnar shape with a height of 4 ⁇ m on which an ITO film is formed on the back surface. It apply
  • the surface of the coating film was irradiated with 0.2 J / cm 2 of 254 nm linearly polarized ultraviolet light having an extinction ratio of 26: 1 through a polarizing plate.
  • This substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 200 ° C. for 5 minutes to obtain a substrate with a liquid crystal alignment film.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.06 degrees.
  • Example 2 After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate for 3 minutes at room temperature, then immersed in pure water for 1 minute, and heated on a hot plate at 230 ° C. for 1 minute. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.04 degrees.
  • Example 3 After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a 230 ° C. hot plate for 3 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
  • Example 4 After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate for 3 minutes at room temperature, then immersed in pure water for 1 minute, and heated on a hot plate at 230 ° C. for 5 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
  • Example 5 After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a 230 ° C. hot plate for 10 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.04 degrees.
  • An FFS drive liquid crystal cell was produced in the same manner as in Example 1 except that it was immersed for 1 minute and heated on a hot plate at 230 ° C. for 5 minutes. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
  • the coating film surface was irradiated with 0.2 J / cm 2 of 254 nm linearly polarized ultraviolet light having an extinction ratio of 26: 1 through a polarizing plate.
  • This substrate was heated on a hot plate at 230 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 3.0 degrees.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can reduce afterimages caused by alternating current driving in liquid crystal display elements of the IPS driving method or the FFS driving method, and has an excellent IPS driving method or FFS driving.
  • a liquid crystal display element of the type is obtained. Therefore, it is particularly useful as a liquid crystal alignment film of an IPS driving type or FFS driving type liquid crystal display element or a liquid crystal television.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a method for producing a photoalignment liquid crystal alignment film which is capable of minimizing afterimages resulting from AC driving. Polarized radiation is applied to a film obtained by applying and sintering a liquid crystal alignment agent, which contains at least one type of polymer selected from a group comprising polyimide precursors represented by formula (1) and imidized polymers of said polyimide precursors, on a substrate. After the film has been brought into contact with an organic solvent having a boiling point of 110 to 180°C, the film is then brought into contact with water or a water-soluble organic solvent having a boiling point of 50 to 105°C before being treated with heat at 150°C or above. (X1 represents the formula (XA-1); Y1 represents a divalent organic group; R1 represents H or the like; and R3 to R6 represent H or the like.)

Description

液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
 本発明は、光配向法用の液晶配向膜の製造方法、この製造方法によって得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子に関する。 The present invention relates to a method for producing a liquid crystal alignment film for a photo-alignment method, a liquid crystal alignment film obtained by this production method, and a liquid crystal display device comprising the obtained liquid crystal alignment film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 液晶配向膜の配向過程における膜面のラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性などの種々の問題が明らかとなってきている。
In a liquid crystal display element used for a liquid crystal television, a liquid crystal display, and the like, a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
Currently, the most widely used liquid crystal alignment film in the industry is made of a polyamic acid formed on an electrode substrate and / or a film made of polyimide obtained by imidizing the same with a cloth such as cotton, nylon or polyester. It is produced by performing a so-called rubbing process that rubs in the direction.
The rubbing treatment of the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity. However, the demand for higher performance, higher definition, and larger size of liquid crystal display elements is increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have become apparent.
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 一方、ポリイミドを用いる光配向用の液晶配向膜は、他に比べて高い耐熱性を有することから、その有用性が期待されている。特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
 上記の光配向法は、ラビングレス配向処理方法として、工業的にも簡便な製造プロセスで生産できる利点があるだけでなく、IPS(In-Place-Switching)駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子においては、上記の光配向法で得られる液晶配向膜を用いることで、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるなど、液晶表示素子の性能を向上させることが可能であるため、有望な液晶配向処理方法として注目されている。
As a method for replacing the rubbing treatment, a photo-alignment method for imparting liquid crystal alignment ability by irradiating polarized radiation is known. As liquid crystal alignment treatment by the photo-alignment method, those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, those utilizing a photodecomposition reaction, and the like have been proposed (see Non-Patent Document 1).
On the other hand, a liquid crystal alignment film for photo-alignment using polyimide has high heat resistance as compared with others, and is expected to be useful. Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
The above-mentioned photo-alignment method has not only an advantage that it can be produced by a simple manufacturing process as a rubbing-less alignment treatment method, but also an IPS (In-Place-Switching) driving method and fringe field switching (hereinafter referred to as FFS). ) In the liquid crystal display element of the driving method, the contrast and viewing angle characteristics of the liquid crystal display element are improved by using the liquid crystal alignment film obtained by the above-mentioned photo-alignment method compared to the liquid crystal alignment film obtained by the rubbing treatment method. Since it is possible to improve the performance of the liquid crystal display element, it is attracting attention as a promising liquid crystal alignment treatment method.
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜としては、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する、長期交流駆動による残像の抑制が必要とされる。
 しかしながら、光配向法により得られる液晶配向膜は、ラビング処理法によるものに比べて、高分子膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと充分な液晶配向性が得られず、液晶表示素子とした場合に、残像が発生するなどの問題が発生する。
 また、光配向法により得られる液晶配向膜の異方性を高める方法として、光照射後に、光照射によって前記ポリイミドの主鎖が切断されて生成した低分子量成分を、水溶性有機溶剤による洗浄処理か、又は加熱処理することにより除去することが提案されているが、残像の抑制を解決するに至っていない(特許文献2参照)。
The liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics. In addition, it is necessary to suppress afterimages by long-term AC driving.
However, the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by the rubbing treatment method. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of an afterimage occur when a liquid crystal display element is formed.
In addition, as a method for increasing the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method, after the light irradiation, a low molecular weight component generated by cutting the main chain of the polyimide by light irradiation is washed with a water-soluble organic solvent. However, removal by heat treatment has been proposed, but the suppression of afterimage has not been solved (see Patent Document 2).
日本特開平9-297313号公報Japanese Unexamined Patent Publication No. 9-297313 日本特開2011-107266号公報Japanese Unexamined Patent Publication No. 2011-107266
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができる光配向処理法用の液晶配向膜の製造方法、この製造方法によって得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。 The present invention relates to a method for producing a liquid crystal alignment film for a photo-alignment treatment method capable of suppressing an afterimage due to alternating current driving that occurs in a liquid crystal display element of an IPS driving method or an FFS driving method, and a liquid crystal alignment film obtained by this manufacturing method And a liquid crystal display element having the liquid crystal alignment film.
 本発明者らは、上記の目的を達成するため、鋭意検討を重ねた結果、特定の構造単位を有するポリイミド前駆体、又は該ポリイミド前駆体のイミド化重合体を含む液晶配向剤を基板に塗布、焼成して得られる膜に対して、偏光された放射線を照射し、次いで、特定範囲の沸点を有する少なくとも2種類の溶剤を選び、かつかかる少なくとも2種類の溶剤を特定の順序で用いて、浸漬などの接触処理し、次いで、150℃以上で加熱処理して得られる液晶配向膜により、上記の目的を達成し得ることを見出した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors applied a liquid crystal aligning agent containing a polyimide precursor having a specific structural unit or an imidized polymer of the polyimide precursor to a substrate. Irradiating the film obtained by baking with polarized radiation, then selecting at least two solvents having a specific range of boiling points, and using such at least two solvents in a specific order, It has been found that the above object can be achieved by a liquid crystal alignment film obtained by contact treatment such as immersion and then heat treatment at 150 ° C. or higher.
 かくして、本発明は、下記を要旨とするものである。
1.下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤を基板上に塗布、焼成して得られる膜に、偏光された放射線を照射した後、沸点が110~180℃を有する有機溶剤と接触処理し、次いで、水若しくは沸点50~105℃を有する水溶性有機溶剤と接触処理した後、150℃以上で加熱処理することを特徴とする液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000007
(Xは下記式(XA-1)で表される構造である。
は2価の有機基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000008
(R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基である。)
Thus, the present invention has the following gist.
1. A liquid crystal aligning agent containing at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor is applied on a substrate, The film obtained by baking is irradiated with polarized radiation, then contacted with an organic solvent having a boiling point of 110 to 180 ° C., and then contacted with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. Then, a method for producing a liquid crystal alignment film, which is subjected to heat treatment at 150 ° C. or higher.
Figure JPOXMLDOC01-appb-C000007
(X 1 is a structure represented by the following formula (XA-1).
Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. )
Figure JPOXMLDOC01-appb-C000008
(R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group or alkynyl group having 2 to 6 carbon atoms, or a phenyl group. is there.)
2.前記偏光された放射線を照射した後、沸点が110~180℃を有する有機溶剤と、水若しくは沸点50~105℃を有する水溶性有機溶剤との混合溶剤と接触処理し、次いで、水若しくは沸点50~105℃を有する水溶性有機溶剤と接触処理した後、150℃以上で加熱処理する上記1に記載の液晶配向膜の製造方法。
3.前記沸点110~180℃を有する有機溶剤が、下記の式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種である上記1又は2に記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000009
(式(A-1)において、Aは水素原子又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。
 式(A-2)において、Aは炭素数1~4のアルキル基である。
 式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。
 式(A-4)において、A及びAはそれぞれ独立して炭素数1~4のアルキル基である。
 式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。)
4.前記沸点110~180℃を有する有機溶剤が、1-メトキシ-2-プロパノール、乳酸エチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、及び3-エトキシプロピオン酸エチルからなる群から選ばれる少なくとも1種である上記1~3のいずれかに記載の液晶配向膜の製造方法。
5.前記沸点50~105℃を有する水溶性有機溶剤が、メタノール、エタノール、2-プロパノール及びアセトンからなる群から選ばれる少なくとも1種である上記1~4のいずれかに記載の液晶配向膜の製造方法。
6.前記混合溶剤が、沸点110~180℃を有する有機溶剤と水若しくは沸点50~105℃を有する水溶性有機溶剤とを、質量比率で95/5~5/95で含む上記1~5のいずれかに記載の液晶配向膜の製造方法。
2. After the irradiation with the polarized radiation, contact treatment is performed with a mixed solvent of an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., and then water or a boiling point of 50 2. The method for producing a liquid crystal alignment film according to 1 above, wherein after the contact treatment with a water-soluble organic solvent having a temperature of ˜105 ° C., the heat treatment is performed at 150 ° C. or higher.
3. The organic solvent having a boiling point of 110 to 180 ° C. is represented by the following formula (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5). 3. The method for producing a liquid crystal alignment film according to 1 or 2, which is at least one selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000009
(In Formula (A-1), A 1 is a hydrogen atom or an acetyl group, A 2 is an alkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or a methyl group, and n is 1 or 2 Is an integer.
In the formula (A-2), A 3 is an alkyl group having 1 to 4 carbon atoms.
In the formula (A-3), R 3 and R 4 are each independently a hydrogen atom or a methyl group.
In formula (A-4), A 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
In the formula (A-5), A 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms. )
4). The organic solvent having a boiling point of 110 to 180 ° C. is at least one selected from the group consisting of 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate. 4. The method for producing a liquid crystal alignment film according to any one of 1 to 3 above.
5. 5. The method for producing a liquid crystal alignment film according to any one of 1 to 4, wherein the water-soluble organic solvent having a boiling point of 50 to 105 ° C. is at least one selected from the group consisting of methanol, ethanol, 2-propanol, and acetone. .
6). Any of 1 to 5 above, wherein the mixed solvent contains an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. in a mass ratio of 95/5 to 5/95. The manufacturing method of the liquid crystal aligning film as described in 2.
7.上記式(1)で表される構造単位を、全重合体1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から前記重合体が、前記式(1)で表される構造単位を、全重合体1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種である上記1~6のいずれかに記載の液晶配向膜の製造方法。
8.前記式(1)において、Xが下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種である前記1~7のいずれかに記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000010
9.前記式(1)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種である前記1~8のいずれかに記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000011
(式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
7). The polymer from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the above formula (1) with respect to 1 mol of the whole polymer and an imidized polymer of the polyimide precursor, At least one selected from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the formula (1) with respect to 1 mol of the whole polymer and an imidized polymer of the polyimide precursor. 7. The method for producing a liquid crystal alignment film according to any one of 1 to 6 above.
8). 8. The liquid crystal according to any one of 1 to 7, wherein in the formula (1), X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2) A method for producing an alignment film.
Figure JPOXMLDOC01-appb-C000010
9. 9. The production of the liquid crystal alignment film according to any one of 1 to 8, wherein in the formula (1), Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5): Method.
Figure JPOXMLDOC01-appb-C000011
(In Formula (5), Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.)
10.前記式(1)において、Yが前記式(4)及び下記式(Y1-1)で表される構造から選ばれる少なくとも1種類の構造である前記1~9のいずれかに記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000012
11.前記1~10のいずれかに記載の液晶配向膜の製造方法によって得られる液晶配向膜。
12.前記11に記載の液晶配向膜を具備する液晶表示素子。
10. 10. The liquid crystal alignment according to any one of 1 to 9, wherein, in the formula (1), Y 1 is at least one type of structure selected from the structures represented by the formula (4) and the following formula (Y1-1) A method for producing a membrane.
Figure JPOXMLDOC01-appb-C000012
11. 11. A liquid crystal alignment film obtained by the method for producing a liquid crystal alignment film according to any one of 1 to 10 above.
12 12. A liquid crystal display device comprising the liquid crystal alignment film as described in 11 above.
 本発明によって得られる液晶配向膜を、IPS駆動方式やFFS駆動方式の液晶表示素子の液晶配向膜とした場合、長期の交流駆動による残像を低減することができる。
 本発明によって得られる液晶配向膜において、何故に本発明の課題が解決されるかについては、必ずしも明らかではないが、本発明者らの研究によると、以下のことが判明した。すなわち、後記する実施例と比較例との対比からわかるように、本発明においては、特定の構造のポリイミド前駆体を使用した液晶配向剤を基板に塗布、焼成して得られる膜に対して、偏光された放射線を照射した後に行われる、溶剤による接触処理は、沸点が110~180℃を有する有機溶剤による接触処理と、水若しくは沸点50~105℃を有する水溶性有機溶剤による接触処理とを、この順序にて行うことが必要であり、そのどちらか一方の処理では上記の効果が得られないことが判明した。
 一般に、液晶配向膜の異方性を高めること、及び/又は液晶配向膜と液晶との相互作用を高めることにより、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制できることが知られているが、本発明における場合、上記の特定の少なくとも2種類の溶剤を用いた特定の順序で行う接触処理により、その前に行われた偏光された放射線を照射する工程で生じた異物が完全に除去され、かつ、続いて行われる特定条件での加熱処理により、残存する液晶配向膜を構成する分子鎖の再配向が促進される結果、液晶配向膜の異方性が高められ、かつ、液晶配向膜と液晶との相互作用が高められるために上記の効果が達成されるものと思われる。
When the liquid crystal alignment film obtained by the present invention is a liquid crystal alignment film of an IPS drive type or FFS drive type liquid crystal display element, afterimages due to long-term alternating current drive can be reduced.
The reason why the problems of the present invention are solved in the liquid crystal alignment film obtained by the present invention is not necessarily clear, but according to the study by the present inventors, the following has been found. That is, as can be seen from the comparison between Examples and Comparative Examples described later, in the present invention, a film obtained by applying and baking a liquid crystal aligning agent using a polyimide precursor of a specific structure on a substrate, The contact treatment with the solvent, which is performed after the irradiation with the polarized radiation, includes a contact treatment with an organic solvent having a boiling point of 110 to 180 ° C. and a contact treatment with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. It is necessary to carry out in this order, and it has been found that the above effect cannot be obtained by either one of the processes.
In general, afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive system and FFS drive system are suppressed by increasing the anisotropy of the liquid crystal alignment film and / or increasing the interaction between the liquid crystal alignment film and the liquid crystal. It is known that in the case of the present invention, the contact treatment performed in a specific order using the above-mentioned specific at least two kinds of solvents is caused by the step of irradiating polarized radiation performed before that. As a result of the complete removal of foreign matter and the subsequent heat treatment under specific conditions, the reorientation of the molecular chains constituting the remaining liquid crystal alignment film is promoted, resulting in an increase in the anisotropy of the liquid crystal alignment film. In addition, since the interaction between the liquid crystal alignment film and the liquid crystal is enhanced, the above effect is considered to be achieved.
<ポリイミド及び該ポリイミドの前駆体>
 本発明で用いる液晶配向剤は、下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体を含有する。
Figure JPOXMLDOC01-appb-C000013
 式(1)において、Xは下記式(XA-1)で表される構造であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~4のアルキル基である。
Figure JPOXMLDOC01-appb-C000014
<Polyimide and precursor of the polyimide>
The liquid crystal aligning agent used in the present invention contains at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor. .
Figure JPOXMLDOC01-appb-C000013
In the formula (1), X 1 is a structure represented by the following formula (XA-1), Y 1 is a divalent organic group, R 1 is a hydrogen atom or an alkyl having 1 to 4 carbon atoms. It is a group.
Figure JPOXMLDOC01-appb-C000014
 式(XA-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基である。
 なかでも、液晶配向性の点から、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。Xは、さらに好ましくは、下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種類である。
Figure JPOXMLDOC01-appb-C000015
In the formula (XA-1), R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or An alkynyl group or a phenyl group.
Among these, from the viewpoint of liquid crystal orientation, R 3 , R 4 , R 5 , and R 6 are each independently preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and a hydrogen atom or a methyl group Is more preferable. X 1 is more preferably at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2).
Figure JPOXMLDOC01-appb-C000015
 Yは、2価の有機基であり、その構造は特に限定されるものではない。得られる液晶配向膜の異方性が高いため、下記式(Y1-1)及び(Y1-2)で表される構造からなる群から選ばれる少なくとも1種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。
 Zにおいて、エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、-C(O)NR-、-NHC(O)-、又は-NRC(O)-で表される構造を示すことができる。ここで、Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらを組み合わせた基である。
Y 1 is a divalent organic group, and its structure is not particularly limited. Since the obtained liquid crystal alignment film has high anisotropy, it is preferably at least one selected from the group consisting of structures represented by the following formulas (Y1-1) and (Y1-2).
Figure JPOXMLDOC01-appb-C000016
In Formula (5), Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
In Z 1 , the ester bond is represented by —C (O) O— or —OC (O) —. As the amide bond, a structure represented by —C (O) NH—, —C (O) NR—, —NHC (O) —, or —NRC (O) — can be shown. Here, R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms.
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 アリール基としては、例えばフェニル基が挙げられる。
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
Examples of the alkenyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH═CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
Examples of the aryl group include a phenyl group.
 チオエステル結合としては-C(O)S-、又は-SC(O)-で表される構造を示すことができる。
 Zが炭素数2~10の有機基である場合、下記式(6)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000017
 式(6)において、Z4、Z、及びZはそれぞれ独立して、単結合、-O-、-S-、-NR11-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合である。ここで、R11は、水素原子、メチル基、又はt-ブトキシカルボニル基である。
 Z、Z、及びZにおけるエステル結合、アミド結合、及びチオエステル結合については、前記のエステル結合、アミド結合、及びチオエステル結合と同様の構造を示すことができる。
As the thioester bond, a structure represented by —C (O) S— or —SC (O) — can be shown.
When Z 1 is an organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (6).
Figure JPOXMLDOC01-appb-C000017
In the formula (6), Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, ester bond, amide bond, thioester bond, urea bond, carbonate A bond, or a carbamate bond. Here, R 11 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group.
The ester bond, amide bond, and thioester bond in Z 4 , Z 5 , and Z 6 can have the same structure as the ester bond, amide bond, and thioester bond described above.
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらを組み合わせた基であり、これらの基は前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。ここで、Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらを組み合わせた基であり、これらの基は前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
As the urea bond, a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown. R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group Examples can be given.
As the carbonate bond, a structure represented by —O—C (O) —O— can be shown.
The carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—. The structure represented can be shown. Here, R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the above alkyl group, alkenyl group, alkynyl group, and aryl group. Examples similar to the groups can be given.
 式(6)中のR及びR10はそれぞれ独立して、単結合、炭素数1~10の、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基から選ばれる構造である。R及びR10の何れかが単結合の場合、R又はR10の何れかは、炭素数2~10の、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基から選ばれる構造である。
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。
R 9 and R 10 in the formula (6) are each independently a structure selected from a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. is there. When either of R 9 and R 10 is a single bond, either R 9 or R 10 is an alkylene group, alkenylene group, alkynylene group, arylene group, or a combination of these having 2 to 10 carbon atoms. The structure to be selected.
As said alkylene group, the structure remove | excluding one hydrogen atom from the said alkyl group is mentioned. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
 アルケニレン基としては、前記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。
 アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
The alkenylene group includes a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
Examples of the alkynylene group include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
 アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 Yに直線性が高い構造や剛直な構造を含有する場合、良好な液晶配向性を有する液晶配向膜が得られるため、Zの構造としては、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。
The arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
When Y 1 contains a structure with high linearity or a rigid structure, a liquid crystal alignment film having good liquid crystal alignment can be obtained. Therefore, the structure of Z 1 can be a single bond or the following formula (A1-1) The structure of (A1-25) is more preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記溶剤による接触処理による分解物の除去性が良好であり、且つ液晶配向性に優れることから、Yの構造としては、上記式(4)、又は下記式(Y1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(1)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(1)で表される構造単位の比率は、全重合体中の全構造単位1モルに対して、60~100モル%が好ましい。上記式(1)で表される構造単位の比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、80~100モル%がより好ましく、90~100モル%がさらに好ましい。
As the structure of Y 1 , the above formula (4) or the following formula (Y1-1) is particularly preferable because the removability of decomposition products by the contact treatment with the solvent is good and the liquid crystal orientation is excellent.
Figure JPOXMLDOC01-appb-C000022
In the polyimide precursor containing the structural unit represented by the above formula (1) and the imidized polymer of the polyimide precursor, the ratio of the structural unit represented by the above formula (1) is the total of all the polymers. 60 to 100 mol% is preferable with respect to 1 mol of the structural unit. The higher the ratio of the structural unit represented by the above formula (1), the better the liquid crystal alignment film having good liquid crystal alignment, so 80-100 mol% is more preferable, and 90-100 mol% is more preferable.
 本発明の重合体成分は上記式(1)で表される構造単位以外に、下記式(7)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体であってもよい。
Figure JPOXMLDOC01-appb-C000023
 式(7)において、Rは上記式(1)のRと同様の定義である。
In addition to the structural unit represented by the above formula (1), the polymer component of the present invention may be a polyimide precursor containing a structural unit represented by the following formula (7) and the polyimide precursor.
Figure JPOXMLDOC01-appb-C000023
In the formula (7), R 1 is the same as defined for R 1 in the formula (1).
 Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-1)~(X-42)の構造が挙げられる。化合物の入手性の点から、Xの構造は、X-17、X-25、X-26,X-27、X-28、X-32、又はX-39が好ましい。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという点からは、芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26,X-27、X-28、X-32、X-35、又はX-37がより好ましい。 X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-1) to (X-42). From the viewpoint of availability of the compound, the structure of X 3 is preferably X-17, X-25, X-26, X-27, X-28, X-32, or X-39. Further, from the viewpoint to obtain a fast liquid crystal alignment film relaxation of the accumulated residual charge by a DC voltage, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, the structure of X 3 is X -26, X-27, X-28, X-32, X-35, or X-37 are more preferred.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(7)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-74)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000029
In the above formula (7), Y 4 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 4 include structures of the following formulas (Y-1) to (Y-74).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 重合体成分の有機溶媒に対する溶解性に優れるために、式(7)におけるYとしては、Y-8、Y-20、Y-21、Y-22、Y-28、Y-29、Y-30、Y-72、Y-73、又はY-74の構造を有する構造単位を含有することが好ましい。
 重合体成分における上記式(7)で表される構造単位の比率が高い場合、液晶配向膜の液晶配向性を低下させるため、上記式(7)で表される構造単位の比率は、全構造単位1モルに対して0~40モル%が好ましく、0~20モル%がさらに好ましい。
Y 4 in the formula (7) is Y-8, Y-20, Y-21, Y-22, Y-28, Y-29, Y- in order to improve the solubility of the polymer component in the organic solvent. It is preferable to contain a structural unit having a structure of 30, Y-72, Y-73, or Y-74.
When the ratio of the structural unit represented by the above formula (7) in the polymer component is high, the ratio of the structural unit represented by the above formula (7) is the total structure in order to reduce the liquid crystal orientation of the liquid crystal alignment film. The amount is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, based on 1 mol of the unit.
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体がポリアミック酸エステルである場合、ポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
<Method for producing polyamic acid ester>
When the polyimide precursor used in the present invention is a polyamic acid ester, the polyamic acid ester can be synthesized by the following methods (1) to (3).
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, it is synthesized by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. can do.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~4モル当量がより好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる有機溶媒は、重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時における有機溶媒中の重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいために、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be.
The concentration of the polymer in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight product is easily obtained.
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいことから、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時における有機溶媒中の重合体濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいことから、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる有機溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The amount of the base added is preferably 2 to 4 times mol, more preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, since it can be easily removed and a high molecular weight product can be easily obtained. preferable.
The organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, γ-butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
The polymer concentration in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, because the polymer hardly precipitates and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent mixing of outside air. .
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶媒の存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When a polyamic acid is synthesized from a tetracarboxylic acid diester and a diamine The polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましく、2~2.5倍モルがより好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいことから、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。
 前記有機溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミドなどが挙げられる。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、2.0~3.0倍モルがより好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component, since it can be easily removed and a high molecular weight product can be easily obtained.
Examples of the organic solvent include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide and the like.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体がポリアミック酸である場合、ポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいことから、1~30質量%が好ましく、5~20質量%がより好ましい。
<Method for producing polyamic acid>
When the polyimide precursor used for this invention is a polyamic acid, a polyamic acid is compoundable by the method shown below.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. in view of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. May be used.
The concentration of the polymer is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight product is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
The polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained.
The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリイミドの前駆体であるポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used for this invention can be manufactured by imidizing the polyamic acid ester or polyamic acid which is the precursor of the said polyimide.
When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。
 塩基性触媒の量はアミック酸エステル基の0.5~30倍モル、好ましくは2~20倍モルである。
 得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group.
The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。
 塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。
 得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained.
Examples of the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。
 重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent.
The molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1 mass from the point of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
The organic solvent contained in the liquid crystal aligning agent used for this invention will not be specifically limited if a polymer component melt | dissolves uniformly. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明に用いられる液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。 The liquid crystal aligning agent used for this invention may contain the solvent for improving the coating-film uniformity at the time of apply | coating a liquid crystal aligning agent to a board | substrate other than the organic solvent for dissolving a polymer component. . As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol. 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoa Glycol ester and the like. Two or more of these solvents may be used in combination.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 In the liquid crystal aligning agent of the present invention, in addition to the above, the purpose is to change the electrical properties such as the dielectric constant and conductivity of the polymer other than the polymer and the liquid crystal aligning film as long as the effects of the present invention are not impaired. A dielectric or conductive material, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and a coating. When firing the film, an imidization accelerator for the purpose of efficiently imidizing the polyamic acid may be added.
<液晶配向膜の製造方法>
 本発明の液晶配向膜の製造方法は、液晶配向剤を基板に塗布し、焼成して得られた膜に対し、偏光された放射線を照射する工程と、放射線を照射した膜を、沸点が110~180℃を有する有機溶剤と接触処理し、次いで、水若しくは沸点50~105℃を有する水溶性有機溶剤と接触処理する工程と、接触処理した膜を150℃以上で加熱する工程と、を有する。以下に、各工程について説明する。
<Method for producing liquid crystal alignment film>
The method for producing a liquid crystal alignment film of the present invention comprises a step of irradiating polarized radiation to a film obtained by applying a liquid crystal aligning agent to a substrate and baking it, and a film irradiated with the radiation having a boiling point of 110. A contact treatment with an organic solvent having a temperature of ˜180 ° C., followed by a contact treatment with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., and a step of heating the contact-treated film at 150 ° C. or higher. . Below, each process is demonstrated.
(1)液晶配向剤を基板に塗布し、焼成する工程
 上記のようにして得られた液晶配向剤を基板に塗布し、乾燥し、焼成することによりポリイミド膜、又はポリイミド前駆体がイミド化した膜が得られる。
 本発明に用いられる液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 本発明に用いられる液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
(1) The process of apply | coating and baking a liquid crystal aligning agent to a board | substrate Applying the liquid crystal aligning agent obtained as mentioned above to a board | substrate, drying and baking, the polyimide film or the polyimide precursor was imidated. A membrane is obtained.
The substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving the liquid crystal is formed. In the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
Examples of the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50~120℃、好ましくは60~100℃で1~10分乾燥させ、その後150~300℃、好ましくは200~250で5~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 The drying and baking steps after applying the liquid crystal aligning agent can be selected at any temperature and time. Usually, in order to sufficiently remove the organic solvent contained, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, and then 150 to 300 ° C., preferably 200 to 250 at 5 to 120. It is fired in minutes. The thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
(2)偏光された放射線を照射する工程
 上記(1)の工程で得られた膜に、偏光された放射線を照射する(以下、光配向処理とも言う。)ことにより、偏光方向に対して垂直方向に異方性が付与される。
 光配向処理の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、液晶配向能を付与する方法が挙げられる。放射線の波長としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。
 前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。膜に偏光された放射線を照射する温度は、好ましくは10~100℃で行われ、特に20~50℃が好ましい。
(2) Step of irradiating polarized radiation The film obtained in the step (1) is irradiated with polarized radiation (hereinafter also referred to as photo-alignment treatment), thereby being perpendicular to the polarization direction. Anisotropy is imparted in the direction.
As a specific example of the photo-alignment treatment, there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction to impart liquid crystal alignment ability. As the wavelength of the radiation, ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
Dose of the radiation is preferably in the range of 1 ~ 10,000mJ / cm 2, and particularly preferably in the range of 100 ~ 5,000mJ / cm 2. The temperature at which the film is irradiated with polarized radiation is preferably 10 to 100 ° C., more preferably 20 to 50 ° C.
(3)溶剤を用いた接触処理する工程
 上記(2)の工程で偏光された放射線を照射した膜は、特定の2種類の溶剤を用いて接触処理される。接触処理には、沸点110~180℃、好ましくは115~160℃を有する有機溶剤、及び、水若しくは沸点50~105℃、好ましくは50~80℃を有する水溶性有機溶剤の少なくとも2種類の溶剤が使用される。
 なお、かかる2種類の溶剤を用いるとは、少なくとも、このそれぞれの2種類の溶剤を用いる意味であり、この2種類の溶剤とともに他の溶剤を含む溶剤を使用する場合も意味するものである。さらに、かかる2種類の溶剤との接触処理に加えて、かかる2種類以外の他の溶剤を用いた接触処理を行っても良い。
 上記の沸点110~180℃を有する有機溶剤としては、下記の(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶剤が好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(A-1)において、Aは水素原子、又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。
 式(A-2)において、Aは炭素数1~4のアルキル基である。
 式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。
 式(A-4)において、A及びAはそれぞれ独立して、炭素数1~4のアルキル基である。
 式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。
 上記式(A-1)~式(A-5)の有機溶剤は、なかでも、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルからなる群から選ばれる少なくとも1種が好ましい。特に、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種が好ましい。
 また、上記の水若しくは沸点50~105℃を有する水溶性有機溶剤の好ましい例としては、水、メタノール、エタノール、2-プロパノール、アセトンが挙げられる。なかでも、水、2-プロパノールがより好ましい。
(3) Step of contact treatment using solvent The film irradiated with the radiation polarized in the step (2) is subjected to contact treatment using two specific types of solvents. For the contact treatment, at least two kinds of solvents: an organic solvent having a boiling point of 110 to 180 ° C., preferably 115 to 160 ° C., and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., preferably 50 to 80 ° C. Is used.
The use of the two types of solvents means at least the use of the two types of solvents, and also means the use of a solvent containing another solvent together with the two types of solvents. Furthermore, in addition to the contact treatment with the two kinds of solvents, a contact treatment using a solvent other than the two kinds of solvents may be performed.
Examples of the organic solvent having a boiling point of 110 to 180 ° C. include the following (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5): At least one organic solvent selected from the group consisting of
Figure JPOXMLDOC01-appb-C000034
In the formula (A-1), A 1 is a hydrogen atom or an acetyl group, A 2 is an alkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or a methyl group, and n is 1 or 2 Is an integer.
In the formula (A-2), A 3 is an alkyl group having 1 to 4 carbon atoms.
In the formula (A-3), R 3 and R 4 are each independently a hydrogen atom or a methyl group.
In formula (A-4), A 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
In the formula (A-5), A 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms.
The organic solvents of the above formulas (A-1) to (A-5) are, among others, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol And at least one selected from the group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. In particular, at least one selected from the group consisting of 1-methoxy-2-propanol and ethyl lactate is preferable.
Preferred examples of the water or the water-soluble organic solvent having a boiling point of 50 to 105 ° C. include water, methanol, ethanol, 2-propanol, and acetone. Of these, water and 2-propanol are more preferable.
 本発明において、偏光された放射線を照射した膜と2種類の溶剤を用いた接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、溶剤中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は、膜や溶剤の温度を制御することにより、常温、それ以上若しくはそれ以下の温度で実施してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて、撹拌や超音波などの接触を高める手段を施すことができる。 In the present invention, the contact treatment using a film irradiated with polarized radiation and two types of solvent is a treatment such that the film and the liquid are preferably in sufficient contact, such as an immersion treatment or a spraying treatment. Done. Among them, a method of immersing the film in a solvent, preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable. The contact treatment may be carried out at normal temperature or higher or lower by controlling the temperature of the film or solvent, but is preferably carried out at 10 to 80 ° C., more preferably 20 to 50 ° C. . In addition, means for enhancing contact such as stirring and ultrasonic waves can be applied as necessary.
 上記沸点110~180℃を有する有機溶剤、次いで水若しくは沸点50~105℃を有する水溶性有機溶剤と順次接触処理する場合、両者の接触処理は、連続的に行ってもよいし、又は時間をおいて行ってもよい。後者の場合には、過度の時間を置き過ぎると好ましくはないので、連続的に行うのが好ましい。
 一方、沸点110~180℃を有する有機溶剤と、水若しくは沸点50~105℃を有する水溶性有機溶剤とを含む混合溶剤により接触処理する場合、かかる混合溶剤は、沸点110~180℃を有する有機溶剤と、水若しくは沸点50~105℃を有する水溶性有機溶剤とを、質量比率で好ましくは95/5~5/95、より好ましくは95/5~50/50で含むのが好適である。
When the contact treatment is sequentially performed with the organic solvent having a boiling point of 110 to 180 ° C., followed by water or the water-soluble organic solvent having a boiling point of 50 to 105 ° C., both of the contact treatments may be performed continuously, or the time may be increased. You may leave. In the latter case, it is not preferable that an excessive amount of time is left, and therefore it is preferable to carry out continuously.
On the other hand, when the contact treatment is performed with a mixed solvent containing an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., the mixed solvent is an organic solvent having a boiling point of 110 to 180 ° C. It is preferable to contain the solvent and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. in a mass ratio of preferably 95/5 to 5/95, more preferably 95/5 to 50/50.
(4)150℃以上で加熱する工程
 2種類の溶剤を用いて接触処理をした膜は、次いで、温度150℃以上で加熱処理される。かかる加熱処理は、溶剤を用いた接触処理した膜を乾燥した後に行ってもよい。膜の乾燥は、80~150℃が好ましい。乾燥時間は10秒~30分が好ましい。
 加熱処理の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると本発明の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1~10分がより好ましい。
(4) The process heated at 150 degreeC or more The film | membrane which contact-processed using two types of solvents is then heat-processed at the temperature of 150 degreeC or more. Such heat treatment may be performed after drying the contact-treated film using a solvent. The membrane is preferably dried at 80 to 150 ° C. The drying time is preferably 10 seconds to 30 minutes.
The temperature for the heat treatment is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C.
If the heating time is too short, the effect of the present invention may not be obtained, and if it is too long, the molecular chain may be decomposed, and therefore it is preferably 10 seconds to 30 minutes, and preferably 1 to 10 minutes. More preferred.
<液晶表示素子>
 本発明の液晶表示素子は、本発明の製造方法によって得られ液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal cell obtained by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent obtained by the production method of the present invention, and using the liquid crystal cell. It is a liquid crystal display element.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン(Common)電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント(Segment)電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。
 次に、一方の基板に他方の基板を、互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくのが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate.
Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealing material. In addition, it is preferable that spacers for controlling the gap between the substrates are scattered on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 この液晶表示素子は、液晶配向膜として本発明により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
Next, a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
Since this liquid crystal display element uses the liquid crystal alignment film obtained by the present invention as the liquid crystal alignment film, it has excellent afterimage characteristics, and can be suitably used for a large-screen, high-definition liquid crystal television. is there.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
IPA:2-プロパノール
DA-2:下記式(DA-2)(Boc基はt-ブトキシカルボニル基を表す)
添加剤A:N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン 
Figure JPOXMLDOC01-appb-C000035
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
The abbreviations of the compounds used in the examples and comparative examples, and the measuring methods of the respective properties are as follows.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: Butyl cellosolve IPA: 2-propanol DA-2: Formula (DA-2) below (Boc group represents t-butoxycarbonyl group)
Additive A: N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine
Figure JPOXMLDOC01-appb-C000035
 以下に、粘度、分子量、イミド化率、液晶セル作製、及び長期交流駆動による残像評価の方法を示す。
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 ポリアミック酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
Hereinafter, methods for evaluating afterimages by viscosity, molecular weight, imidization rate, liquid crystal cell production, and long-term alternating current driving are shown.
[viscosity]
In the synthesis examples, the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
[Molecular weight]
The molecular weight of the polyamic acid ester was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Separately performed on two of the mixed samples.
[イミド化率の測定]
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) (0.0. 53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)モード液晶表示素子の構成を備えた液晶セルを作製する。
 始めに電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD(Chemical Vapor Deposition)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (hereinafter referred to as FFS) mode liquid crystal display element is manufactured.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. A SiN (silicon nitride) film formed by a CVD (Chemical Vapor Deposition) method is formed as a second layer on the counter electrode of the first layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、沸点110~180℃を有する有機溶剤、又は沸点110~180℃を有する有機溶剤と水若しくは沸点50~105℃を有する有機溶剤とを含む混合溶剤に3分間浸漬させ、次いで純水に1分間浸漬させ、150~300℃のホットプレート上で5分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after the obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface. It was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate. This substrate is immersed in an organic solvent having a boiling point of 110 to 180 ° C., or a mixed solvent containing an organic solvent having a boiling point of 110 to 180 ° C. and water or an organic solvent having a boiling point of 50 to 105 ° C. for 3 minutes, and then pure water And then heated on a hot plate at 150 to 300 ° C. for 5 minutes to obtain a substrate with a liquid crystal alignment film. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
[長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared.
Using this liquid crystal cell, an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell.
(合成例1)
 撹拌装置付き及び窒素導入管付きの3000mL四つ口フラスコに、1,2-ビス(4-アミノフェノキシ)エタンを124.60g(510mmol)、及びDA-2を0.95g(90.0mmol)取り、NMPを2236g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を130.06g(580.2mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は511mPa・sであった。また、このポリアミック酸の分子量はMn=19100、Mw=46880であった。
(Synthesis Example 1)
In a 3000 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 124.60 g (510 mmol) of 1,2-bis (4-aminophenoxy) ethane and 0.95 g (90.0 mmol) of DA-2 were added. , 2236 g of NMP was added and stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 130.06 g (580.2 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 10% by mass. NMP was added and stirred at room temperature for 24 hours to obtain a solution of polyamic acid (PAA-2). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 511 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 19100 and Mw = 46880.
(合成例2)
 撹拌装置付き及び窒素導入管付きの500ml四つ口フラスコに得られたポリアミック酸溶液(PAA-2)を200g取り、NMPを85.68g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を22.22g、及びピリジンを6.86g加えて、50℃で3時間加熱し、化学イミド化を行った。得られた反応液を1100gのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、1100gのメタノールで3回洗浄し、200gのメタノールで2回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。
 このポリイミド樹脂粉末のイミド化率は、68%、分子量はMn=9155、Mw=21430であった。
 撹拌子を入れた200mlサンプル管に、得られたポリイミド樹脂粉末12.53を取り、NMPを91.89g加え、室温で24時間撹拌し溶解させて、ポリイミド溶液(PI-1)を得た。
(Synthesis Example 2)
200 g of the polyamic acid solution (PAA-2) obtained in a 500 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube was taken, 85.68 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 22.22 g of acetic anhydride and 6.86 g of pyridine were added and heated at 50 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was added to 1100 g of methanol while stirring, and the deposited precipitate was collected by filtration, subsequently washed 3 times with 1100 g of methanol, and twice with 200 g of methanol. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder.
The imidation ratio of this polyimide resin powder was 68%, the molecular weight was Mn = 9155, and Mw = 2430.
The obtained polyimide resin powder 12.53 was taken in a 200 ml sample tube containing a stir bar, 91.89 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyimide solution (PI-1).
(合成例3)
 撹拌子を入れた200mLサンプル管に、合成例2で得られたポリイミド溶液(PI-1)を59.59g取り、0.3質量%の3-グリシドキシプロピルメチルジエトキシシランのNMP溶液を7.17g、NMPを11.26g、BCSを26.0g、及び添加剤Aを2.08g加え、マグネチックスターラーで30分間撹拌し液晶配向剤(AL-1)を得た。
(Synthesis Example 3)
In a 200 mL sample tube containing a stir bar, 59.59 g of the polyimide solution (PI-1) obtained in Synthesis Example 2 was taken, and 0.3 mass% of an NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added. 7.17 g, 11.26 g of NMP, 26.0 g of BCS, and 2.08 g of additive A were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (AL-1).
<実施例1>
 合成例3で得られた液晶配向剤(AL-1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。室温(25℃)で、この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.2J/cm照射した。この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、200℃のホットプレート上で5分間加熱して、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.06度であった。
<Example 1>
After the liquid crystal aligning agent (AL-1) obtained in Synthesis Example 3 is filtered through a 1.0 μm filter, the prepared substrate with electrodes and a columnar shape with a height of 4 μm on which an ITO film is formed on the back surface. It apply | coated by spin coat application | coating to the glass substrate which has a spacer. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. At room temperature (25 ° C.), the surface of the coating film was irradiated with 0.2 J / cm 2 of 254 nm linearly polarized ultraviolet light having an extinction ratio of 26: 1 through a polarizing plate. This substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 200 ° C. for 5 minutes to obtain a substrate with a liquid crystal alignment film. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.06 degrees.
<実施例2>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で1分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.04度であった。
<実施例3>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で3分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.03度であった。
<実施例4>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.03度であった。
<実施例5>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で10分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.04度であった。
<実施例6>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチルとIPAの混合溶媒(質量比:乳酸エチル/IPA=50/50)中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.03度であった。
<Example 2>
After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate for 3 minutes at room temperature, then immersed in pure water for 1 minute, and heated on a hot plate at 230 ° C. for 1 minute. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.04 degrees.
<Example 3>
After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a 230 ° C. hot plate for 3 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
<Example 4>
After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate for 3 minutes at room temperature, then immersed in pure water for 1 minute, and heated on a hot plate at 230 ° C. for 5 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
<Example 5>
After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on a 230 ° C. hot plate for 10 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.04 degrees.
<Example 6>
After irradiating the coating film surface of the substrate with polarized ultraviolet rays, the substrate was immersed in a mixed solvent of ethyl lactate and IPA (mass ratio: ethyl lactate / IPA = 50/50) at room temperature for 3 minutes, and then immersed in pure water. An FFS drive liquid crystal cell was produced in the same manner as in Example 1 except that it was immersed for 1 minute and heated on a hot plate at 230 ° C. for 5 minutes. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.03 degrees.
<実施例7>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチルと純水の混合溶媒(質量比:乳酸エチル/純水=85/15)中に、20℃で3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.09度であった。
<Example 7>
After irradiating the coating film surface of the substrate with polarized ultraviolet rays, the substrate was immersed in a mixed solvent of ethyl lactate and pure water (mass ratio: ethyl lactate / pure water = 85/15) at 20 ° C. for 3 minutes, Next, an FFS drive liquid crystal cell was produced in the same manner as in Example 1 except that it was immersed in pure water for 1 minute and heated on a hot plate at 230 ° C. for 5 minutes. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.09 degrees.
<比較例1>
 合成例3で得られた液晶配向剤(AL-1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。塗布後の基板を80℃のホットプレート上で5分間加熱した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。室温において、この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.2J/cm照射した。この基板を、230℃のホットプレート上で20分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、3.0度であった。
<Comparative Example 1>
After the liquid crystal aligning agent (AL-1) obtained in Synthesis Example 3 is filtered through a 1.0 μm filter, the prepared substrate with electrodes and a columnar shape with a height of 4 μm on which an ITO film is formed on the back surface. It apply | coated by spin coat application | coating to the glass substrate which has a spacer. The coated substrate was heated on a hot plate at 80 ° C. for 5 minutes, and then baked for 20 minutes in a hot air circulation oven at 230 ° C. to form a coating film having a thickness of 100 nm. At room temperature, the coating film surface was irradiated with 0.2 J / cm 2 of 254 nm linearly polarized ultraviolet light having an extinction ratio of 26: 1 through a polarizing plate. This substrate was heated on a hot plate at 230 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 3.0 degrees.
<比較例2>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチル中に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.10度であった。
<Comparative Example 2>
After irradiating polarized ultraviolet rays to the coating surface of the substrate, this substrate was immersed in ethyl lactate at room temperature for 3 minutes, then immersed in pure water for 1 minute, and heated on an 80 ° C. hot plate for 5 minutes. Then, an FFS drive liquid crystal cell was produced by the same method as in Example 1. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.10 degrees.
<比較例3>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチルとIPAの混合溶媒(質量比:乳酸エチル/IPA=50/50)に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.12度であった。
<Comparative Example 3>
After irradiating the coating film surface of the substrate with polarized ultraviolet rays, the substrate was immersed in a mixed solvent of ethyl lactate and IPA (mass ratio: ethyl lactate / IPA = 50/50) for 3 minutes at room temperature, and then immersed in pure water. An FFS drive liquid crystal cell was produced in the same manner as in Example 1 except that it was immersed for 5 minutes and heated on an 80 ° C. hot plate for 5 minutes. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.12 degrees.
<比較例4>
 基板の塗膜面に偏光紫外線を照射した後、この基板を、乳酸エチルと純水の混合溶媒(質量比:乳酸エチル/純水=85/15)に室温で3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間加熱した以外は、実施例1と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.48度であった。
<Comparative example 4>
After irradiating the coating film surface of the substrate with polarized ultraviolet rays, the substrate was immersed in a mixed solvent of ethyl lactate and pure water (mass ratio: ethyl lactate / pure water = 85/15) at room temperature for 3 minutes, and then pure water The FFS drive liquid crystal cell was manufactured in the same manner as in Example 1 except that the sample was immersed in the substrate for 1 minute and heated on a hot plate at 80 ° C. for 5 minutes. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.48 degrees.
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。よって、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2012年11月30日に出願された日本特許出願2012-263386号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can reduce afterimages caused by alternating current driving in liquid crystal display elements of the IPS driving method or the FFS driving method, and has an excellent IPS driving method or FFS driving. A liquid crystal display element of the type is obtained. Therefore, it is particularly useful as a liquid crystal alignment film of an IPS driving type or FFS driving type liquid crystal display element or a liquid crystal television.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-263386 filed on November 30, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (12)

  1.  下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤を基板上に塗布、焼成して得られる膜に、偏光された放射線を照射した後、沸点が110~180℃を有する有機溶剤と接触処理し、次いで、水若しくは沸点50~105℃を有する水溶性有機溶剤と接触処理した後、150℃以上で加熱処理することを特徴とする液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、下記式(XA-1)で表される構造である。
    は2価の有機基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基である。)
    A liquid crystal aligning agent containing at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor is applied on a substrate, The film obtained by baking is irradiated with polarized radiation, then contacted with an organic solvent having a boiling point of 110 to 180 ° C., and then contacted with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. Then, a method for producing a liquid crystal alignment film, which is subjected to heat treatment at 150 ° C. or higher.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 is a structure represented by the following formula (XA-1).
    Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. )
    Figure JPOXMLDOC01-appb-C000002
    (R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group or alkynyl group having 2 to 6 carbon atoms, or a phenyl group. .)
  2.  前記偏光された放射線を照射した後、沸点が110~180℃を有する有機溶剤と、水若しくは沸点50~105℃を有する水溶性有機溶剤との混合溶剤と接触処理し、次いで、水若しくは沸点50~105℃を有する水溶性有機溶剤と接触処理した後、150℃以上で加熱処理する請求項1に記載の液晶配向膜の製造方法。 After the irradiation with the polarized radiation, contact treatment is performed with a mixed solvent of an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., and then water or a boiling point of 50 The method for producing a liquid crystal alignment film according to claim 1, wherein after the contact treatment with a water-soluble organic solvent having a temperature of ˜105 ° C., the heat treatment is performed at 150 ° C. or higher.
  3.  前記沸点110~180℃を有する有機溶剤が、下記の式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種である請求項1又は2に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(A-1)において、Aは水素原子又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。
     式(A-2)において、Aは炭素数1~4のアルキル基である。
     式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。
     式(A-4)において、A及びAはそれぞれ独立して、炭素数1~4のアルキル基である。
     式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。)
    The organic solvent having a boiling point of 110 to 180 ° C. is represented by the following formula (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5). The method for producing a liquid crystal alignment film according to claim 1, wherein the liquid crystal alignment film is at least one selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (A-1), A 1 is a hydrogen atom or an acetyl group, A 2 is an alkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or a methyl group, and n is 1 or 2 Is an integer.
    In the formula (A-2), A 3 is an alkyl group having 1 to 4 carbon atoms.
    In the formula (A-3), R 3 and R 4 are each independently a hydrogen atom or a methyl group.
    In formula (A-4), A 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
    In the formula (A-5), A 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms. )
  4.  前記沸点110~180℃を有する有機溶剤が、1-メトキシ-2-プロパノール、乳酸エチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、及び3-エトキシプロピオン酸エチルからなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の液晶配向膜の製造方法。 The organic solvent having a boiling point of 110 to 180 ° C. is at least one selected from the group consisting of 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate. The method for producing a liquid crystal alignment film according to any one of claims 1 to 3.
  5.  前記沸点50~105℃を有する水溶性有機溶剤が、メタノール、エタノール、2-プロパノール及びアセトンからなる群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の液晶配向膜の製造方法。 5. The liquid crystal alignment film production according to claim 1, wherein the water-soluble organic solvent having a boiling point of 50 to 105 ° C. is at least one selected from the group consisting of methanol, ethanol, 2-propanol and acetone. Method.
  6.  前記混合溶剤が、沸点110~180℃を有する有機溶剤と、水若しくは沸点50~105℃を有する水溶性有機溶剤とを、質量比率で95/5~5/95で含む請求項2~5のいずれかに記載の液晶配向膜の製造方法。 6. The mixed solvent according to claim 2, wherein the mixed solvent contains an organic solvent having a boiling point of 110 to 180 ° C. and water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C. in a mass ratio of 95/5 to 5/95. The manufacturing method of the liquid crystal aligning film in any one.
  7.  上記式(1)で表される構造単位を、全重合体1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種である請求項1~6のいずれかに記載の液晶配向膜の製造方法。 At least one selected from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the above formula (1) with respect to 1 mol of the whole polymer and an imidized polymer of the polyimide precursor. The method for producing a liquid crystal alignment film according to any one of claims 1 to 6.
  8.  上記式(1)において、Xが下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種である請求項1~7のいずれかに記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    8. The formula (1), wherein X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2): A method for producing a liquid crystal alignment film.
    Figure JPOXMLDOC01-appb-C000004
  9.  上記式(1)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種である請求項1~8のいずれかに記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
    9. The liquid crystal alignment film according to claim 1, wherein in the formula (1), Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5). Production method.
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (5), Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.)
  10.  上記式(1)において、Yが前記式(4)及び下記式(Y1-1)で表される構造から選ばれる少なくとも1種類の構造である請求項1~9のいずれかに記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    10. The liquid crystal according to claim 1 , wherein in the formula (1), Y 1 is at least one structure selected from the structures represented by the formula (4) and the following formula (Y1-1). A method for producing an alignment film.
    Figure JPOXMLDOC01-appb-C000006
  11.  請求項1~10のいずれかに記載の液晶配向膜の製造方法によって得られる液晶配向膜。 A liquid crystal alignment film obtained by the method for producing a liquid crystal alignment film according to any one of claims 1 to 10.
  12.  請求項11に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 11.
PCT/JP2013/082212 2012-11-30 2013-11-29 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element WO2014084362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157017195A KR102101530B1 (en) 2012-11-30 2013-11-29 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN201380062441.8A CN104838311B (en) 2012-11-30 2013-11-29 Manufacture method, liquid crystal orientation film and the liquid crystal display cells of liquid crystal orientation film
JP2014549924A JP6217648B2 (en) 2012-11-30 2013-11-29 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263386 2012-11-30
JP2012-263386 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084362A1 true WO2014084362A1 (en) 2014-06-05

Family

ID=50827990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082212 WO2014084362A1 (en) 2012-11-30 2013-11-29 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6217648B2 (en)
KR (1) KR102101530B1 (en)
CN (1) CN104838311B (en)
TW (1) TWI597305B (en)
WO (1) WO2014084362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170123234A (en) 2016-04-28 2017-11-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal device, polymer, and compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101453A (en) * 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
CN110325903B (en) * 2016-12-21 2023-01-06 日产化学株式会社 Method for producing liquid crystal alignment film, and liquid crystal display element
KR102176161B1 (en) 2019-07-23 2020-11-09 주식회사 옵티팜 PERV EnvC- GGTA1/CMAH/iGb3s/β4GalNT2 quadra gene knock-out and human CD46 and TBM expression transgenic pigs for xenotransplantation, and producing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282081A (en) * 1993-03-26 1994-10-07 Asahi Chem Ind Co Ltd Method for forming pattern
JPH11183907A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Liquid crystal display element and manufacture thereof
US20070148369A1 (en) * 2005-12-26 2007-06-28 Aki Sakai Liquid crystal display device
WO2012056815A1 (en) * 2010-10-28 2012-05-03 Jsr株式会社 Process for producing liquid crystal alignment film, and liquid crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858195B2 (en) * 1993-03-26 1999-02-17 小糸工業株式会社 Camera with shutter synchronized LED emitter
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JPH11125812A (en) * 1997-10-22 1999-05-11 Sumitomo Bakelite Co Ltd Insulating agent for active matrix liquid crystal display element
JP4171543B2 (en) * 1998-09-03 2008-10-22 日産化学工業株式会社 Polyimide precursor, polyimide, and alignment treatment agent for liquid crystal cell
JP4222125B2 (en) 2002-06-25 2009-02-12 チッソ株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP5003682B2 (en) * 2006-07-28 2012-08-15 日産化学工業株式会社 Liquid crystal alignment treatment agent and liquid crystal display element using the same
KR101536028B1 (en) * 2008-01-11 2015-07-10 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent and liquid crystal display device using the same
KR101613756B1 (en) 2008-10-29 2016-04-19 닛산 가가쿠 고교 가부시키 가이샤 Diamine, polyimide, liquid crystal aligning agent, and liquid crystal alignment film
JP5654228B2 (en) 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ Liquid crystal display device and method of manufacturing liquid crystal display device
JPWO2011115079A1 (en) 2010-03-15 2013-06-27 日産化学工業株式会社 Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282081A (en) * 1993-03-26 1994-10-07 Asahi Chem Ind Co Ltd Method for forming pattern
JPH11183907A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Liquid crystal display element and manufacture thereof
US20070148369A1 (en) * 2005-12-26 2007-06-28 Aki Sakai Liquid crystal display device
CN1991525A (en) * 2005-12-26 2007-07-04 株式会社日立显示器 Liquid crystal display device
JP2007199681A (en) * 2005-12-26 2007-08-09 Hitachi Displays Ltd Liquid crystal display device
WO2012056815A1 (en) * 2010-10-28 2012-05-03 Jsr株式会社 Process for producing liquid crystal alignment film, and liquid crystal display element
TW201221561A (en) * 2010-10-28 2012-06-01 Jsr Corp Method for producing liquid crystal alignment film, and liquid crystal display device
KR20130020692A (en) * 2010-10-28 2013-02-27 제이에스알 가부시끼가이샤 Process for producing liquid crystal alignment film, and liquid crystal display element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIYOAKI USAMI ET AL.: "CHANGE OF IN -PLANE ANISOTROPY OF UV IRRADIATED POLYIMIDE FILMS CAUSED BY WASHING TREATMENT", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 400, no. ISSUE, 2003, pages 71 - 78 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170123234A (en) 2016-04-28 2017-11-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal device, polymer, and compound

Also Published As

Publication number Publication date
TW201439150A (en) 2014-10-16
JPWO2014084362A1 (en) 2017-01-05
CN104838311A (en) 2015-08-12
JP6217648B2 (en) 2017-10-25
CN104838311B (en) 2017-12-19
KR20150092205A (en) 2015-08-12
KR102101530B1 (en) 2020-04-16
TWI597305B (en) 2017-09-01

Similar Documents

Publication Publication Date Title
JP6056759B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
JP6102745B2 (en) Method for producing liquid crystal alignment film
JP6083379B2 (en) Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
WO2015050133A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JP7239872B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6274407B2 (en) Method for manufacturing liquid crystal display element for driving horizontal electric field
JP6217648B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2019101195A (en) Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017195

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13858627

Country of ref document: EP

Kind code of ref document: A1