WO2014083899A1 - Moistureproof film and organic electronic device obtained using same - Google Patents

Moistureproof film and organic electronic device obtained using same Download PDF

Info

Publication number
WO2014083899A1
WO2014083899A1 PCT/JP2013/072902 JP2013072902W WO2014083899A1 WO 2014083899 A1 WO2014083899 A1 WO 2014083899A1 JP 2013072902 W JP2013072902 W JP 2013072902W WO 2014083899 A1 WO2014083899 A1 WO 2014083899A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
moisture
water
layer
water vapor
Prior art date
Application number
PCT/JP2013/072902
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 田畑
根本 友幸
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2014550051A priority Critical patent/JP6269503B6/en
Publication of WO2014083899A1 publication Critical patent/WO2014083899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention is a moisture-proof film in which a water catching layer containing a carboxylic acid anhydride as an essential component is disposed between the first film and the second film, the amount of acid anhydride groups of the moisture-proof film,
  • the present invention relates to a moisture-proof film in which the water vapor permeability of the first film and the second film are in a predetermined relationship, and an organic electronic device using the moisture-proof film.
  • Organic electronic devices such as organic EL devices, organic TFT devices, organic solar cells, and electronic paper are devices that exhibit various functions by repeatedly injecting or extracting electrons and holes in an organic material. . That is, the device operating mechanism is to repeatedly perform the oxidation-reduction reaction of the organic material.
  • an organic EL element using electroluminescence (hereinafter referred to as EL) of an organic material is provided with an organic layer in which an organic charge transport layer or an organic light emitting layer is laminated between an anode and a cathode. It attracts attention as a light emitting element capable of high luminance light emission by voltage direct current drive.
  • This organic EL element is expected as a flexible display because all materials can be composed of solid.
  • the organic EL element when the organic EL element is driven for a certain period, there is a problem that light emission characteristics such as light emission luminance, light emission efficiency, and light emission uniformity are significantly deteriorated as compared with the initial case.
  • the causes of such deterioration of the light emission characteristics include oxidation of the electrode due to oxygen that has entered the organic EL element, oxidative decomposition of the organic material due to heat generation during driving, and the electrode due to moisture in the air that has entered the organic EL element. Examples thereof include oxidation and modification of organic substances.
  • the interface of the structure peels off due to the influence of oxygen and moisture, the heat generation during driving and the environment during driving are high temperature, etc.
  • the organic EL element has been sealed on both sides with a glass substrate and a cavity glass with a water-absorbing agent, and the end has been sealed with a UV curable resin or the like.
  • a sealing technique using a transparent plastic film for the purpose of making the device flexible and improving the strength and reducing the manufacturing cost by roll-to-roll manufacturing.
  • the plastic film When sealing using a plastic film, there exists a problem that the water vapor which permeate
  • a structure in which an EL layer formed on a substrate is sealed with a thin film formed by laminating an organic layer and an inorganic layer, and then sealed with a film is also included.
  • a thin film sealing there is a similar problem.
  • Patent Document 1 discloses a water vapor trap containing a hygroscopic material on a polymer film base material and a gas barrier layer made of a metal or a metal oxide formed on at least one surface of the base material by a vapor deposition method.
  • a composite film in which a layer is formed has been proposed, and it has been proposed to use metal oxides, various metal salts, and molecular sieves as hygroscopic materials.
  • Patent Document 2 proposes a gas barrier film having at least one organic layer, at least one inorganic layer, and at least one water catching layer on a base film, and an organic device using the gas barrier film.
  • a water-absorbing layer in which a hygroscopic polymer such as polyamide is dispersed in a resin has been proposed. It has been found that both Patent Document 1 and Patent Document 2 improve the barrier property by providing a water capturing layer.
  • the hygroscopic material proposed in Patent Document 1 is powdery and has a problem that the film becomes opaque because the refractive index is greatly different from that of the resin. Further, the hygroscopic polymer such as polyamide proposed in Patent Document 2 captures water by reversible physical adsorption, and has a problem that it does not have an effect of greatly improving the barrier property.
  • the present invention has been made to solve the above-described problems. Specifically, the present invention provides a moisture-proof film that is transparent and excellent in moisture resistance at low cost, and is an organic material that is less deteriorated by water vapor. An object is to provide an electronic device.
  • the inventors of the present invention capture a first film which is a conventionally known film having a water vapor transmission rate of less than 0.1 g / m 2 ⁇ day and a second film having a water vapor transmission rate equal to or higher than the first film.
  • a first film which is a conventionally known film having a water vapor transmission rate of less than 0.1 g / m 2 ⁇ day
  • a second film having a water vapor transmission rate equal to or higher than the first film.
  • the moisture-proof film when used as an organic electronic device, a low water vapor transmission rate can be maintained for a period necessary for practical use. Moreover, it confirmed that the moisture-proof film of this invention had sufficient performance to maintain the light emission characteristic of an organic electronic device, especially an organic EL element.
  • the gist of the present invention is as follows.
  • a moisture-proof film including a water catching layer, a first film, and a second film, wherein the water catching layer includes a carboxylic acid anhydride as an essential component, and the water catching layer includes the first film
  • T 2 Water vapor transmission rate of the second film measured at 40 ° C. and 90% Rh (g / m 2 ⁇ day) Indicates. )
  • a moisture-proof film constituted by laminating two or more structural units composed of the moisture-proof film according to any one of [1] to [7].
  • the moisture-proof film of the present invention can maintain a low water vapor transmission rate over a long period of time, and is transparent and inexpensive. Therefore, the organic electronic device typified by an organic EL element can be flexible, have a long life, and can reduce production costs. Contribute.
  • the moisture-proof film of the present invention has a water catching layer containing one or more carboxylic acid anhydrides.
  • the moisture-proof film of the present invention may have one water catching layer or may have two or more water catching layers.
  • the structure (composition, thickness, etc.) of the water catching layer may be the same or different.
  • the water catching layer is disposed between the first film and the second film.
  • the moisture-proof film has one water catching layer
  • the water catching layer has a configuration sandwiched between the first film and the second film.
  • the moisture-proof film has two or more water catching layers
  • the water catching layer is in contact with each of the first film and the second film.
  • the thickness of the water capturing layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more.
  • the thickness of the water capturing layer is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and further preferably 300 ⁇ m or less.
  • the water catching layer of the present invention contains one or more carboxylic acid anhydrides. That is, the carboxylic acid anhydride reacts with water that has entered from the outside of the moisture-proof film, and acts as a water trapping agent.
  • the content of the carboxylic anhydride in the water catching layer is preferably large from the viewpoint of enhancing the water catching function of the water catching layer, and is preferably small from the viewpoint of mechanical properties and moldability of the water catching layer. Since the carboxylic anhydride group reacts 1: 1 with water molecules, 18 g of water can be captured per 1 mol of the carboxylic anhydride group.
  • the content of carboxylic acid anhydride in the resin composition is 0.556 mmol / g, it can be said that the resin composition can capture about 1% by weight of water. That is, in order to satisfy the water catching capacity, the content of carboxylic acid anhydride groups in the resin composition is preferably 0.556 mmol / g or more, and more preferably 1.11 mmol / g or more.
  • the content of carboxylic acid anhydride can be determined by dissolving the resin composition in a solvent and titrating with triethylamine or the like, as described in JP-A-2010-030942.
  • the range of the content of the carboxylic acid anhydride in the water capturing layer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. From the viewpoint amount likewise of 1 m 2 per acid anhydride, preferably 10 ⁇ 500g / m 2 or more, more preferably 20 ⁇ 300g / m 2.
  • the equivalent (g / eq) of the acid anhydride group of all carboxylic acid anhydrides the amount of moisture per unit weight that can be captured increases. Therefore, from the viewpoint of increasing the amount of water captured, it is preferable that the acid anhydride group equivalent (g / eq) is small. On the other hand, it is preferable to use a carboxylic acid anhydride having a large acid anhydride group equivalent (g / eq) from the viewpoint of enhancing the compatibility with other components in the water catching agent.
  • the range of the acid anhydride group equivalent is preferably 50 to 2000 g / eq, more preferably 100 to 1000 g / eq.
  • carboxylic anhydrides examples include maleic anhydride, citraconic anhydride, itaconic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid.
  • alicyclic carboxylic acid anhydrides are preferred. By using the alicyclic carboxylic acid anhydride, the molecular weight is not lowered by reaction with water. Moreover, it can be set as the transparent resin composition with less coloring than aromatic carboxylic acid anhydride.
  • a maleic anhydride copolymer and a maleic anhydride derivative are preferable, and a Diels-Alder addition reaction product of maleic anhydride and various dienes is particularly preferable. Examples of the Diels-Alder addition reaction product of maleic anhydride and various dienes include alicyclic carboxylic acid anhydrides represented by the following formulas (1), (2), and (3).
  • the Diels-Alder addition reaction product of maleic anhydride and various dienes is required to have a double bond, but from the viewpoint of preventing coloring and reverse Diels-Alder reaction, hydrogenation, radical polymerization, You may change a double bond into a single bond by thiol reaction etc.
  • R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, a halogen atom, a sulfur atom, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, a carboxyl group, an alkoxy group) Group, a thioalkoxy group, an acylurea group to which an organic group is bonded, an alkoxycarbonyl group, an acyl group, or an acyloxy group, R 1 and R 2 may be bonded to each other to form a double bond, (A cyclic acid anhydride group may be formed.) (Wherein R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, a halogen atom, a sulfur atom, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, a carboxyl group, an alkoxy group) Group, a thioal
  • Examples of the alicyclic carboxylic acid anhydrides of the formulas (1), (2), and (3) that are easily available include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Phthalic anhydride, Endomethylenetetrahydrophthalic anhydride, Methylendomethylenetetrahydrophthalic anhydride, Methylbutethenyltetrahydrophthalic anhydride, Cyclohexanetetracarboxylic anhydride, Methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid Acid anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexanetricarboxylic acid anhydride, bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic acid anhydride And bicycl
  • the components other than the carboxylic acid anhydride include resin components such as thermoplastic resins, thermosetting resins, energy ray curable resins, catalysts, inorganic fillers, and the like.
  • resin component a resin that does not react with a carboxylic acid anhydride or a resin that has a sufficiently small number of functional groups to react in an environment without moisture is preferable. (Hereinafter, such a resin component is referred to as “non-reactive resin”.)
  • Non-reactive resin a resin that does not contain an active hydrogen group (for example, an amino group, an imino group, an isocyanate group, or a hydroxyl group) as a main component, or a resin having a sufficiently small number of active hydrogen groups is preferable.
  • an active hydrogen group for example, an amino group, an imino group, an isocyanate group, or a hydroxyl group
  • Specific examples of such a non-reactive resin include (meth) acrylate and its cured product, urethane (meth) acrylate and its cured product, epoxy resin cured product, polyvinyl ester and its copolymer, polyolefin and its Examples include copolymers, polyesters, polycarbodiimides, and copolymers thereof.
  • polycarbodiimide and a copolymer thereof it is preferable to use a cyclic carbodiimide compound described in International Publication No. 2010/072111 pamphlet or a polycarbodiimide having a high molecular weight and relatively low toxicity.
  • the content of the non-reactive resin in the water catching layer is preferably less from the viewpoint of enhancing the water catching function of the water catching layer, and more preferably from the viewpoint of mechanical properties and moldability of the water catching layer.
  • the range of the content of the non-reactive resin in the water catching layer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the resin composition of the present invention preferably contains a thiol compound, and particularly effective in combination with an acid anhydride having a double bond.
  • the mercapto group of the thiol compound undergoes an addition reaction with the double bond of the acid anhydride.
  • the reverse Diels-Alder reaction of the carboxylic acid anhydride can be prevented by changing the double bond to a single bond, and volatilization and bleed out of the carboxylic acid anhydride can be suppressed by increasing the molecular weight.
  • the thiol compound may be monofunctional, a polyfunctional thiol compound may be used.
  • the molecular weight of the carboxylic acid anhydride can be increased without curing.
  • a polyfunctional thiol compound since the content of the thiol compound can be reduced, the content of the carboxylic acid anhydride can be increased.
  • the mercapto group of the thiol compound may be primary or secondary, and is selected in consideration of reactivity, pot life, handling properties, and economic efficiency. In general, the primary thiol compound is more reactive than the secondary, and the secondary thiol compound is superior in pot life than the primary.
  • thiol compounds used in the resin composition of the present invention which are easily available, include ⁇ -mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n- Octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, stearyl-3-mercaptopropionate, dipentaerythritol hexakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercapto Propionate), trimethylolpropane tris (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate), di Antaerythritol hexakis (3-mercaptopropionate), 1,4-bis (3-mercaptobuty
  • methanedithiol 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, , 2-cyclohexanedithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,2-dimercaptopropyl methyl ether, 2,3-dimercaptopropyl methyl ether, Bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptomethylthio
  • Inorganic filler As the inorganic filler contained in the water capturing layer, aluminum oxide, zirconium oxide, tin oxide, titanium oxide, zinc oxide, silica, aerosil, clay and the like are preferable, and from the viewpoint of transparency, the particle diameter is 100 nm or less. Inorganic fillers are preferred.
  • the surface of the inorganic filler may be organic.
  • the water catching layer of the present invention can include a catalyst that promotes the reaction between the carboxylic acid anhydride and water.
  • the catalyst preferably used in the water capturing agent of the present invention include quaternary phosphonium salts, quaternary ammonium salts, tertiary amines, pyridines such as DMAP (N, N-dimethyl-4-aminopyridine), DBU ( Bicyclic amidines such as 1,8-diazabicyclo (5,4,0) undec-7-ene) and DBN (1,5-diazabicyclo (4,3,0) non-5-ene) and derivatives thereof; Amidine derivative salts, imidazoles and the like can be mentioned.
  • DMAP, DBN, DBU and derivatives and salts thereof are more preferable because they exhibit high catalytic activity even with a small amount of addition.
  • DBU salts and DBU derivative salts are sold as U-CAT series by Sun Apro Co., Ltd. and are easily available.
  • said catalyst may be used independently or may use 2 or more types together.
  • the moisture-proof film of the present invention has a structure in which a water-absorbing layer containing a carboxylic acid anhydride as an essential component is disposed between two films.
  • each of the two films is a first film.
  • the second film is called the second film, and the smaller water vapor permeability measured at 40 ° C. and 90% Rh is defined as the first film, and the larger one is defined as the second film.
  • positioned on the outer side (high humidity side) is defined as a 1st film.
  • the first film has a water vapor transmission rate measured at 40 ° C. and 90% Rh of less than 0.1 g / m 2 ⁇ day, and is equal to or lower than the water vapor transmission rate of the second film. That is, when the moisture-proof film of the present invention is used, the first film having a high barrier property is disposed on the side having a high water vapor concentration (high humidity), and the second film is disposed on the side having a low water vapor concentration. It is preferred that For example, if it is an organic EL element, a structure like FIG. 1 will be mentioned.
  • the first film of the present invention preferably includes at least one inorganic layer, and it is preferable to use polyester such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), polyimide, or the like as the base material. Even when the inorganic layer is not included, any polymer film having excellent water vapor barrier properties can be used. Examples of the polymer having excellent water vapor barrier properties include cyclic olefin polymers and cyclic olefin copolymers.
  • the thickness of the first film is small, the thickness of the water capturing layer in the total thickness of the moisture-proof film is relatively large, and the water vapor transmission rate can be kept low for a long period. On the other hand, if the thickness of the first film is large, the rigidity of the moisture-proof film surface layer is improved, so that wrinkling of the film due to bending or the like can be prevented.
  • the thickness range of the first film is preferably 10 to 500 ⁇ m, more preferably 12 to 300 ⁇ m.
  • the inorganic layer is preferably included in the first film, but may be included in the second film and / or the water capturing layer.
  • the inorganic layer is usually a thin film layer made of a metal compound.
  • a method for forming the inorganic layer any method can be used as long as it can form a target thin film.
  • vacuum film forming methods such as sputtering method, vacuum deposition method, ion plating method, plasma CVD method, and a method of coating perhydropolysilazane and converting it into a silica film.
  • the component contained in the inorganic layer is not particularly limited as long as it satisfies the above performance.
  • it is a metal oxide, metal nitride, metal carbide, metal oxynitride, or metal oxycarbide, and Si, Al, In
  • An oxide, nitride, carbide, oxynitride or oxycarbide containing one or more metals selected from Sn, Zn, Ti, Cu, Ce and Ta can be preferably used.
  • a metal oxide, nitride or oxynitride selected from Si, Al, In, Sn, Zn and Ti is preferable, and a metal oxide, nitride or oxynitride of Si or Al is particularly preferable.
  • These may contain other elements as secondary components.
  • the smoothness of the inorganic layer formed according to the present invention is preferably less than 1 nm as an average roughness (Ra value) of 1 ⁇ m square, and more preferably 0.5 nm or less.
  • the inorganic layer is formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • the thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 500 nm, preferably 10 to 200 nm per layer.
  • the inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition.
  • a top coat and / or anchor coat made of an organic substance is applied to the inorganic layer, and a laminated structure of the organic layer and the inorganic layer can be constructed.
  • organic layers and inorganic layers may be alternately stacked.
  • the water vapor transmission rate measured at 40 ° C. and 90% Rh of the second film of the present invention shows a value higher than that of the first film. That is, when the water vapor barrier property of the second film is approximately the same as that of the first film, it functions as a barrier for water molecules that have permeated through the water capturing layer, and as a result, the water capturing rate can be increased. .
  • the second film does not necessarily have a water vapor barrier property.
  • a film having a poor water vapor barrier property can be used as the second film.
  • a film having a poor water vapor barrier property examples include polyester, polyolefin, polyimide, polyamide, polyamideimide, polystyrene, poly (meth) acrylate, polycarbodiimide, polyvinyl chloride, liquid crystal polymer, and copolymers thereof.
  • the thickness of the second film is small, the thickness of the water catching layer in the total thickness of the moisture-proof film is relatively large, and the water vapor transmission rate can be kept low for a long period of time. On the other hand, if the thickness of the second film is large, the rigidity of the moisture-proof film surface layer is improved, so that wrinkling of the film due to bending or the like can be prevented.
  • the thickness range of the second film is preferably 10 to 500 ⁇ m, more preferably 12 to 300 ⁇ m.
  • the moisture-proof film of the present invention can be suitably used as an overlaminate film for organic electronic devices and the like.
  • the second film is not always necessary. Therefore, the second film may be a release film, and when the second film is a release film, the second film can be peeled off during overlaminating.
  • ⁇ X / ⁇ represents the weight of water that the moisture-proof film 1m 2 can capture with an acid anhydride, and the unit is (g-water / m 2 ).
  • ⁇ X / ⁇ T 1 represents the number of days in which the weight of water that can be captured by the moisture-proof film 1m 2 is equal to the weight of water that has permeated through the first film 1m 2 , and the unit is (day). The larger the ⁇ X / ⁇ T 1 , the longer the effect of the water capturing layer lasts.
  • ⁇ X / ⁇ T 1 is preferably as large as possible.
  • a practical range is 100 or more, and more preferably 1000 or more. That is, in Formula (3), ⁇ X / ⁇ T 1 ⁇ 100 is preferable, and ⁇ X / ⁇ T 1 ⁇ 1000 is more preferable.
  • the total light transmittance of the moisture-proof film of the present invention is preferably 75% or more.
  • the transparency is good, and it can be suitably used as an organic electronic device. From this viewpoint, it is more preferably 80% or more.
  • the moisture-proof film of the present invention is characterized in that the diffusion of water vapor does not reach a steady state over a long period of time. That is, it is necessary to measure the amount of water vapor permeated in an unsteady state for a certain period and evaluate the barrier property from the profile.
  • Appropriate evaluation device but varies depending on the T 1 and ⁇ X / ⁇ of the film, DELTAPERM (Technolox, Inc., trade name), Super Detect SKT ((Ltd.) TI, trade name), HiBarSense (Sempa System GmBH, trade name) Is mentioned.
  • the period of measurement depends on the specifications of the film and the measuring device, but in order to exclude the influence of water vapor adsorbed on the film or device, it is necessary to obtain the apparent water vapor transmission rate from the water vapor transmission amount at least after the third day of measurement. preferable.
  • the moisture-proof film of the present invention can be used by laminating two or more sheets for the purpose of further improving the water vapor barrier property.
  • the number of laminated layers is preferably 2 to 20 structural units.
  • the moisture-proof film of the present invention can be applied to various organic electronic devices that are easily affected by moisture, such as organic TFT devices, organic solar cells, and electronic paper, in addition to organic EL devices. Since the moisture-proof film of the present invention is transparent, it can be disposed on the light-emitting surface and light-receiving surface side of the element without blocking light.
  • Example 1 In a glass sample bottle, MHAC-P (trade name of Hitachi Chemical Co., Ltd., methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, equivalent weight of acid anhydride group: 178 g / eq 10 g), 1.5 g of A-TMPT (trade name of Shin-Nakamura Chemical Co., Ltd., trimethylolpropane triacrylate), and Shigamine UV-3700B (trade name of Nippon Synthetic Chemical Industry Co., Ltd., urethane acrylate). 5 g of IRGACURE 184 (trade name of BASF, 1-hydroxycyclohexyl phenyl ketone) was weighed and mixed until uniform. Next, while heating to 60 ° C. with the lid of the sample bottle closed, the sample bottle was allowed to stand until air bubbles disappeared, thereby obtaining a UV curable resin for forming a water catching layer.
  • IRGACURE 184 trade name of BASF, 1-hydroxycycl
  • Tech Barrier HX (Mitsubishi Resin Co., Ltd. trade name, thickness: 12 ⁇ m, water vapor transmission rate: 0.05 g / m 2 ⁇ day (40 ° C., 90% Rh), which is a polyester film having a silica vapor deposited film on one side. )) was fixed to a glass coating table with the silica surface facing up, and a PET film was cut out and a frame having a thickness of 100 ⁇ m was fixed with a tape.
  • Tech Barrier HX Mitsubishi Resin Co., Ltd. trade name, thickness: 12 ⁇ m, water vapor transmission rate: 0.05 g / m 2 ⁇ day (40 ° C., 90% Rh)
  • a UV curable resin for forming a water catching layer is poured into the inside of a frame having a thickness of 100 ⁇ m, and a tech barrier HX is used from above, and a rubber hand roll is used so that the silica surface is down (water catching layer side). Then, a water-absorbing layer was formed by irradiating with ultraviolet rays to obtain a moisture-proof film.
  • the layer thickness of the moisture-proof film was about 155 ⁇ m, and the thickness of the water catching layer was about 131 ⁇ m.
  • the first film is a tech barrier HX
  • the water vapor barrier property of a plastic film is evaluated by the transmittance after water vapor diffusion reaches a steady state, that is, the “water vapor permeability”.
  • the moisture-proof film of the present invention is in a steady state over a long period of time. It is characterized by not reaching. That is, it is necessary to evaluate by the amount of water vapor permeation in the unsteady state. Therefore, the water vapor transmission rate was continuously observed for 3 days, and the water vapor transmission rate was determined from the water vapor transmission rate on the third day of observation, and was set as the “apparent water vapor transmission rate”.
  • a moisture-proof film was set using DELTAPERRM (Technolox, trade name) so that the water vapor exposure side would be the first film, and after conditioning in a vacuum state for 16 hours, 40% Under conditions of 90 ° C. and 90% Rh, the amount of water vapor permeation (lower chamber pressure change) was observed for 3 days.
  • the water vapor transmission rate was calculated from the amount of water vapor transmission on the third day of observation, and used as the apparent water vapor transmission rate.
  • Total light transmittance> Using a haze meter (HDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.), the total light transmittance was determined by the transmission method.
  • One of the Tech Barriers HX has a water vapor transmission rate of 8.0 ⁇ 10 ⁇ 4 g / m 2 ⁇ day (40 ° C., 90% Rh) and a silica-deposited polyester film (thickness) having two or more inorganic layers. : 240 ⁇ m), and a moisture-proof film was produced in the same manner as in Example 1.
  • the layer thickness of the obtained moisture-proof film was about 370 ⁇ m, and the thickness of the water catching layer was 118 ⁇ m.
  • the first film is a silica-deposited polyester film having a water vapor transmission rate of 8.0 ⁇ 10 ⁇ 4 g / m 2 ⁇ day (40 ° C., 90% Rh), and the second film is a tech barrier HX. is there.
  • Example 3 One tech barrier HX of Example 1 was changed to a release PET film (thickness: 48 ⁇ m) having a water vapor transmission rate of 60 g / m 2 ⁇ day (40 ° C., 90% Rh).
  • a moisture-proof film was prepared in the same manner as described above.
  • the layer thickness of the obtained moisture-proof film was about 180 ⁇ m, and the thickness of the water catching layer was 120 ⁇ m.
  • the first film is a tech barrier HX
  • the second film is the release PET film (thickness: 48 ⁇ m).
  • the first film and the second film are the release PET film (thickness: 48 ⁇ m).
  • Example 2 A moisture-proof film was produced in the same manner as in Example 1 except that MHAC-P was replaced with purple light UV-3700B, which is a polyacrylate containing no carboxylic anhydride.
  • the layer thickness of the obtained moisture-proof film was about 150 ⁇ m, and the thickness of the water catching layer was 126 ⁇ m.
  • the first film and the second film are Tech Barrier HX (thickness: 12 ⁇ m).
  • the water catching layer of Comparative Example 2 is a hygroscopic polyacrylate and does not contain a carboxylic acid anhydride.
  • a film having a water vapor transmission rate of 0.05 g / m 2 ⁇ day was used for the first film and the second film, but the water vapor barrier property of the moisture-proof film was only slightly improved.
  • the moisture-proof film of Example 1 has the same configuration as Comparative Example 2 except that the water capturing layer contains a carboxylic acid anhydride, but its water vapor transmission rate is 6 ⁇ 10 ⁇ 4 g. / M 2 ⁇ day was extremely small. That is, it is suggested that the water capture by the carboxylic acid anhydride contributes to the improvement of the water vapor barrier property.
  • Examples 1 to 3 and Comparative Example 1 have the same water trapping layer, but the first film and the second film are different from each other.
  • T 1 of the Comparative Example 1 is a 60g / m 2 ⁇ day, since significantly greater than 0.1g / m 2 ⁇ day, ⁇ X / ⁇ T 1 is only 0.1Day. That is, since the water capturing layer is saturated immediately, it is not practical as a moisture-proof film.
  • ⁇ X / ⁇ T 1 is 100 days or more, which is a practical level as a moisture-proof film depending on applications.
  • the moisture-proof film of Example 2 shows extremely low water vapor transmission rate and ⁇ X / ⁇ T 1 is about 20 years, so that it can be expected to be used for organic electronic devices.
  • Example 3 since the second film is release PET having poor barrier properties, the apparent water vapor transmission rate is one digit larger than that in Example 1 using Techbarrier HX.
  • the release PET which is the second film, is peeled off and attached to a device or the like that has already been provided with a barrier layer, the barrier property of the device can be improved. That is, it can be preferably used as an overlaminate film for sealing.
  • the moisture-proof films of Examples 1 to 3 have a total light transmittance of 80% or more, and can be used for organic EL elements, organic solar cells, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a moistureproof film which comprises a water-trapping layer, a first film, and a second film, wherein the water-trapping layer contains a carboxylic anhydride as an essential component and has been disposed between the first film and the second film, the moistureproof film satisfying relationships (1) and (2). This moistureproof film is transparent, has excellent barrier properties, and is inexpensive. (1) T1≤T2 (2) T1<0.1 (In the relationships, T1 indicates the water vapor permeability (g/m2·day) of the first film measured at 40ºC and 90% Rh and T2 indicates the water vapor permeability (g/m2·day) of the second film measured at 40ºC and 90% Rh.)

Description

防湿フィルム及びそれを用いた有機電子デバイスMoisture-proof film and organic electronic device using the same
 本発明は、カルボン酸無水物を必須成分とする捕水層を、第1のフィルムと第2のフィルムの間に配置した防湿フィルムであって、防湿フィルムの酸無水物基の量と、第1のフィルム及び第2のフィルムの水蒸気透過率が所定の関係にあることを特徴とする防湿フィルム、及び当該防湿フィルムを用いた有機電子デバイスに関するものである。 The present invention is a moisture-proof film in which a water catching layer containing a carboxylic acid anhydride as an essential component is disposed between the first film and the second film, the amount of acid anhydride groups of the moisture-proof film, The present invention relates to a moisture-proof film in which the water vapor permeability of the first film and the second film are in a predetermined relationship, and an organic electronic device using the moisture-proof film.
 従来から有機化合物を用いた電子デバイス(素子)が開発されている。有機電子デバイス、例えば、有機ELデバイス、有機TFTデバイス、有機太陽電池、電子ペーパーは有機材料を用いて、これに電子及び正孔の注入又は取り出しを繰り返すことによって種々の機能を発現するデバイスである。すなわち、その有機材料を繰り返して酸化還元反応を行わせることをデバイス作動機構としている。 Conventionally, electronic devices (elements) using organic compounds have been developed. Organic electronic devices such as organic EL devices, organic TFT devices, organic solar cells, and electronic paper are devices that exhibit various functions by repeatedly injecting or extracting electrons and holes in an organic material. . That is, the device operating mechanism is to repeatedly perform the oxidation-reduction reaction of the organic material.
 特に、有機材料のエレクトロルミネッセンス(electroluminescence、以下ELと記す)を利用した有機EL素子は、陽極と陰極との間に有機電荷輸送層や有機発光層を積層させた有機層を設けてなり、低電圧直流駆動による高輝度発光が可能な発光素子として注目されている。またこの有機EL素子は、すべての材料を固体で構成することが可能であるため、フレキシブルディスプレーとして期待されている。 In particular, an organic EL element using electroluminescence (hereinafter referred to as EL) of an organic material is provided with an organic layer in which an organic charge transport layer or an organic light emitting layer is laminated between an anode and a cathode. It attracts attention as a light emitting element capable of high luminance light emission by voltage direct current drive. This organic EL element is expected as a flexible display because all materials can be composed of solid.
 一方で有機EL素子は、一定期間駆動した場合、発光輝度、発光効率、発光均一性等の発光特性が初期の場合に比べて著しく劣化するという問題がある。このような発光特性の劣化の原因としては、有機EL素子内に侵入した酸素による電極の酸化、駆動時の発熱による有機材料の酸化分解、有機EL素子内に侵入した空気中の水分による電極の酸化、有機物の変性等を挙げることができる。さらに、酸素や水分の影響で構造体の界面が剥離したり、駆動時の発熱や駆動時の環境が高温であったこと等が引き金となって、各構成要素の熱膨張率の違いにより構造体の界面で応力が発生し、界面が剥離する等の構造体の機械的劣化も発光特性の劣化の原因として挙げることができる。このような問題を防止するため、水分や酸素との接触を抑制する封止技術が多数検討されている。 On the other hand, when the organic EL element is driven for a certain period, there is a problem that light emission characteristics such as light emission luminance, light emission efficiency, and light emission uniformity are significantly deteriorated as compared with the initial case. The causes of such deterioration of the light emission characteristics include oxidation of the electrode due to oxygen that has entered the organic EL element, oxidative decomposition of the organic material due to heat generation during driving, and the electrode due to moisture in the air that has entered the organic EL element. Examples thereof include oxidation and modification of organic substances. Furthermore, the interface of the structure peels off due to the influence of oxygen and moisture, the heat generation during driving and the environment during driving are high temperature, etc. Mechanical deterioration of the structure such as stress generated at the interface of the body and peeling of the interface can also be cited as a cause of the deterioration of the light emission characteristics. In order to prevent such a problem, many sealing techniques for suppressing contact with moisture and oxygen have been studied.
 従来、有機EL素子はガラス基板と捕水剤を付けたキャビティガラスとで両面を封止し、端部はUV硬化樹脂等で封止してきた。しかしながら近年では、デバイスのフレキシブル化や強度向上、ロールツーロール製造による製造コスト低減を目的として、透明なプラスチックフィルムを用いた封止技術への期待が高まっている。 Conventionally, the organic EL element has been sealed on both sides with a glass substrate and a cavity glass with a water-absorbing agent, and the end has been sealed with a UV curable resin or the like. In recent years, however, there is an increasing expectation for a sealing technique using a transparent plastic film for the purpose of making the device flexible and improving the strength and reducing the manufacturing cost by roll-to-roll manufacturing.
 プラスチックフィルムを用いて封止する場合は、フィルムを透過する水蒸気が素子の劣化を引き起こすという問題がある。このため、プラスチックフィルムには極めて高い防湿性能が求められ、有機ELでは水蒸気透過率にして10-5g/m・day未満とも言われている。 When sealing using a plastic film, there exists a problem that the water vapor which permeate | transmits a film causes deterioration of an element. For this reason, the plastic film is required to have extremely high moisture-proof performance, and the organic EL is said to have a water vapor transmission rate of less than 10 −5 g / m 2 · day.
 このような防湿性の高いフィルムを得る方法としては、金属酸化物からなる無機層を、ドライ又はウエットコーティングによって何層にも設ける技術が知られているが、工程が多くなり高コストである。また、工程中でのパーティクルコントロールが困難であり、大面積の防湿フィルムを安価に量産するのは難しかった。 As a method for obtaining such a highly moisture-proof film, there is known a technique in which an inorganic layer made of a metal oxide is provided in any number of layers by dry or wet coating, but the number of steps is increased and the cost is high. In addition, it is difficult to control particles in the process, and it is difficult to mass-produce a large-area moisture-proof film at low cost.
 また、フィルムを用いた封止構造としては、基板上に形成されたEL層を有機層及び無機層を積層してなる薄膜で封止し、その上からフィルムで封止する構造も挙げられるが、このような薄膜封止の場合も同様の課題があり、水蒸気透過率10-5g/m・day未満を達成するためには、有機層及び無機層を多数積層する必要があり、高コストであった。 In addition, as a sealing structure using a film, a structure in which an EL layer formed on a substrate is sealed with a thin film formed by laminating an organic layer and an inorganic layer, and then sealed with a film is also included. In the case of such thin film sealing, there is a similar problem. In order to achieve a water vapor transmission rate of less than 10 −5 g / m 2 · day, it is necessary to laminate a large number of organic layers and inorganic layers. It was a cost.
 そこで、アクティブバリア技術と組み合わせることで、10-5g/m・day未満の水蒸気透過率を達成しようとする技術が提案されてきた。つまり、無機層を設けた防湿フィルムに捕水層を積層することで、バリア性を補うことが検討されてきた。例えば特許文献1には、高分子フィルム基材と、この基材の少なくとも片面に気相成長法により成膜された金属もしくは金属酸化物からなるガスバリア層上に、吸湿性材料を含有する水蒸気トラップ層が形成された複合フィルムが提案されており、吸湿性材料としては、金属酸化物、各種金属塩、モレキュラーシーブを用いる事が提案されている。 Therefore, a technique for achieving a water vapor transmission rate of less than 10 −5 g / m 2 · day by combining with an active barrier technique has been proposed. That is, it has been studied to supplement the barrier property by laminating a water capturing layer on a moisture-proof film provided with an inorganic layer. For example, Patent Document 1 discloses a water vapor trap containing a hygroscopic material on a polymer film base material and a gas barrier layer made of a metal or a metal oxide formed on at least one surface of the base material by a vapor deposition method. A composite film in which a layer is formed has been proposed, and it has been proposed to use metal oxides, various metal salts, and molecular sieves as hygroscopic materials.
 また、特許文献2には、基材フィルム上に少なくとも1層の有機層と、少なくとも1層の無機層と、少なくとも1層の捕水層を有するガスバリアフィルムと、それを用いた有機デバイスが提案されており、捕水層としては、ポリアミド等の吸湿性ポリマーを樹脂に分散したものが提案されている。特許文献1と特許文献2のどちらも、捕水層を設けることにより、バリア性が向上する事が見出されている。 Patent Document 2 proposes a gas barrier film having at least one organic layer, at least one inorganic layer, and at least one water catching layer on a base film, and an organic device using the gas barrier film. In addition, a water-absorbing layer in which a hygroscopic polymer such as polyamide is dispersed in a resin has been proposed. It has been found that both Patent Document 1 and Patent Document 2 improve the barrier property by providing a water capturing layer.
特開1998-329256号公報JP 1998-329256 A 特開2009-90633号公報JP 2009-90633 A
 しかしながら、特許文献1で提案されている吸湿性材料は、粉状であり、屈折率も樹脂とは大きく異なるため、フィルムが不透明になるという問題があった。また、特許文献2で提案されているポリアミド等の吸湿性ポリマーは、水を可逆的な物理吸着によって捕捉するものであり、バリア性を大幅に向上させる効果はないという課題があった。 However, the hygroscopic material proposed in Patent Document 1 is powdery and has a problem that the film becomes opaque because the refractive index is greatly different from that of the resin. Further, the hygroscopic polymer such as polyamide proposed in Patent Document 2 captures water by reversible physical adsorption, and has a problem that it does not have an effect of greatly improving the barrier property.
 本発明は、以上のような課題を解決するためになされたものであって、具体的には、透明で防湿性に優れた防湿フィルムを安価に提供すること、また、水蒸気による劣化の少ない有機電子デバイスを提供することを目的とする。 The present invention has been made to solve the above-described problems. Specifically, the present invention provides a moisture-proof film that is transparent and excellent in moisture resistance at low cost, and is an organic material that is less deteriorated by water vapor. An object is to provide an electronic device.
 本発明者らは、水蒸気透過率が0.1g/m・day未満の従来公知のフィルムである第1のフィルムと、水蒸気透過率が第1のフィルム以上である第2のフィルムとで捕水層を挟んだ構成の防湿フィルムを鋭意検討した結果、カルボン酸無水物を含んだ捕水層を用いたときに、フィルムの防湿性能が大きく向上する事を見出した。さらに、捕水層の面積当りの酸無水物基の量を、第1のフィルムの水蒸気透過率を鑑みて調整することで、捕水層が機能する期間を調整することができ、その結果、前記防湿フィルムを有機電子デバイスとして使用する際、実用上必要な期間、低い水蒸気透過率を維持することが可能であることを見出した。また、本発明の防湿フィルムは有機電子デバイス、特に有機EL素子の発光特性を維持するのに十分な性能を有していることを確認した。 The inventors of the present invention capture a first film which is a conventionally known film having a water vapor transmission rate of less than 0.1 g / m 2 · day and a second film having a water vapor transmission rate equal to or higher than the first film. As a result of intensive studies on a moisture-proof film having a structure in which an aqueous layer is sandwiched, it was found that the moisture-proof performance of the film is greatly improved when a water-capturing layer containing a carboxylic acid anhydride is used. Furthermore, by adjusting the amount of acid anhydride groups per area of the water catching layer in view of the water vapor transmission rate of the first film, the period during which the water catching layer functions can be adjusted. It has been found that when the moisture-proof film is used as an organic electronic device, a low water vapor transmission rate can be maintained for a period necessary for practical use. Moreover, it confirmed that the moisture-proof film of this invention had sufficient performance to maintain the light emission characteristic of an organic electronic device, especially an organic EL element.
 すなわち、本発明の要旨は、
 [1]捕水層、第1のフィルム、及び第2のフィルムを備える防湿フィルムであって、当該捕水層はカルボン酸無水物を必須成分として含み、当該捕水層は第1のフィルムと第2のフィルムの間に配置されており、(1)~(2)の関係式を満たす防湿フィルム。
 (1)T≦T
 (2)T<0.1
(ここで、
 T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 T:第2のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 を示す。)
That is, the gist of the present invention is as follows.
[1] A moisture-proof film including a water catching layer, a first film, and a second film, wherein the water catching layer includes a carboxylic acid anhydride as an essential component, and the water catching layer includes the first film A moisture-proof film that is disposed between the second films and satisfies the relational expressions (1) to (2).
(1) T 1 ≦ T 2
(2) T 1 <0.1
(here,
T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
T 2 : Water vapor transmission rate of the second film measured at 40 ° C. and 90% Rh (g / m 2 · day)
Indicates. )
[2]さらに、(3)の関係式を満たす[1]に記載の防湿フィルム。
 (3)βX/αT≧100
(ここで、
 T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 X:防湿フィルム1mにおける捕水層中の全カルボン酸無水物の重量(g-カルボン酸無水物/m
 α:全カルボン酸無水物の酸無水物基の当量(g-カルボン酸無水物/eq)
 β:水の当量(g/eq)
 を示す。)
[2] The moisture-proof film according to [1], further satisfying the relational expression (3).
(3) βX / αT 1 ≧ 100
(here,
T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
X: Weight of all carboxylic acid anhydrides in the water capturing layer in the moisture-proof film 1 m 2 (g-carboxylic acid anhydride / m 2 )
α: equivalent of acid anhydride group of all carboxylic acid anhydrides (g-carboxylic acid anhydride / eq)
β: equivalent of water (g / eq)
Indicates. )
[3]前記捕水層の厚みが1~1000μmである[1]又は[2]に記載の防湿フィルム。 [3] The moisture-proof film according to [1] or [2], wherein the water capturing layer has a thickness of 1 to 1000 μm.
[4]全光線透過率が75%以上である[1]~[3]の何れか1項に記載の防湿フィルム。 [4] The moisture-proof film according to any one of [1] to [3], wherein the total light transmittance is 75% or more.
[5]第1のフィルムが少なくとも1層の無機層を有する[1]~[4]の何れか1項に記載の防湿フィルム。 [5] The moisture-proof film according to any one of [1] to [4], wherein the first film has at least one inorganic layer.
[6]第2のフィルムが離型フィルムである[1]~[5]の何れか1項に記載の防湿フィルム。
[7]オーバーラミネートのフィルムとして用いられる[6]に記載の防湿フィルム。
[6] The moisture-proof film according to any one of [1] to [5], wherein the second film is a release film.
[7] The moisture-proof film according to [6], which is used as an overlaminate film.
[8][1]~[7]の何れか1項に記載の防湿フィルムからなる構造単位が2単位以上積層されて構成される防湿フィルム。 [8] A moisture-proof film constituted by laminating two or more structural units composed of the moisture-proof film according to any one of [1] to [7].
[9][1]~[8]の何れか1項に記載の防湿フィルムを用いた有機電子デバイス。
に存するものである。
[9] An organic electronic device using the moisture-proof film according to any one of [1] to [8].
It exists in
 本発明の防湿フィルムは、長期間にわたって水蒸気透過率を低く維持することができ、透明で安価であるため、有機EL素子に代表される有機電子デバイスのフレキシブル化、長寿命化、生産コスト低減に寄与する。 The moisture-proof film of the present invention can maintain a low water vapor transmission rate over a long period of time, and is transparent and inexpensive. Therefore, the organic electronic device typified by an organic EL element can be flexible, have a long life, and can reduce production costs. Contribute.
本発明の防湿フィルムを用いた有機EL素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the organic EL element using the moisture-proof film of this invention. 本発明の防湿フィルムの第2のフィルムを剥がし、オーバーラミネートフィルムとして有機EL素子を封止した場合の構造を模式的に示す断面図である。It is sectional drawing which peels the 2nd film of the moisture-proof film of this invention, and shows typically the structure at the time of sealing an organic EL element as an overlaminate film.
 以下、本発明の実施形態の例について説明するが、本発明は以下に説明する実施形態に限定されるものではない。 Hereinafter, examples of embodiments of the present invention will be described, but the present invention is not limited to the embodiments described below.
<捕水層>
 本発明の防湿フィルムはカルボン酸無水物を1種類以上含んだ捕水層を有する。本発明の防湿フィルムは、捕水層を1つ有していてもよく、また、捕水層を2つ以上有していてもよい。防湿フィルムが捕水層を2つ以上有する場合は、当該捕水層の構成(組成や厚みなど)は同じであっても異なっていてもよい。
<Water catching layer>
The moisture-proof film of the present invention has a water catching layer containing one or more carboxylic acid anhydrides. The moisture-proof film of the present invention may have one water catching layer or may have two or more water catching layers. When the moisture-proof film has two or more water catching layers, the structure (composition, thickness, etc.) of the water catching layer may be the same or different.
 本発明においては、捕水層は第1のフィルムと第2のフィルムの間に配置されている。防湿フィルムが捕水層を1つ有する場合は、捕水層は第1のフィルムと第2のフィルムに挟まれた構成を有する。防湿フィルムが捕水層を2つ以上有する場合は、第1のフィルムと第2のフィルムの夫々に捕水層が接した構成を有する。また、防湿フィルムが捕水層を2つ以上有する場合は、第1フィルムと第2フィルムに接した夫々の捕水層の間に、カルボン酸無水物を含まない層を有していてもよい。 In the present invention, the water catching layer is disposed between the first film and the second film. When the moisture-proof film has one water catching layer, the water catching layer has a configuration sandwiched between the first film and the second film. When the moisture-proof film has two or more water catching layers, the water catching layer is in contact with each of the first film and the second film. Moreover, when a moisture-proof film has two or more water catching layers, you may have a layer which does not contain a carboxylic acid anhydride between each water catching layer which contact | connected the 1st film and the 2nd film. .
 本発明において捕水層の厚みが大きければ、1m当りの酸無水物基当量も大きくなり、水蒸気透過率を長期間にわたって低く維持することができる。かかる観点から、捕水層の厚みは1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。一方で、捕水層の厚みが小さければ、防湿フィルムの柔軟性を高めることができる。かかる観点から、捕水層の厚みは1000μm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましい。 In the present invention, if the thickness of the water catching layer is large, the acid anhydride group equivalent per 1 m 2 also becomes large, and the water vapor transmission rate can be kept low over a long period of time. From this viewpoint, the thickness of the water capturing layer is preferably 1 μm or more, more preferably 5 μm or more, and further preferably 10 μm or more. On the other hand, if the thickness of the water capturing layer is small, the flexibility of the moisture-proof film can be increased. From this viewpoint, the thickness of the water capturing layer is preferably 1000 μm or less, more preferably 500 μm or less, and further preferably 300 μm or less.
<カルボン酸無水物>
 本発明の捕水層はカルボン酸無水物を1種類以上含む。すなわち、カルボン酸無水物は防湿フィルムの外部から侵入してきた水と反応し、捕水剤として作用する。捕水層に占めるカルボン酸無水物の含有量は、捕水層の捕水機能を高める観点から多い方が好ましく、捕水層の機械物性や成形性の観点からは少ない方が好ましい。
 カルボン酸無水物基は水分子と1:1で反応するため、カルボン酸無水物基1molあたり、18gの水を捕捉することができる。よって、前記樹脂組成物中のカルボン酸無水物の含有量が0.556mmol/gであれば、樹脂組成物は約1重量%の水を捕捉する事が出来るといえる。
 つまり、上記捕水容量を満たすためには、樹脂組成物中のカルボン酸無水物基の含有量が0.556mmol/g以上が好ましく、1.11mmol/g以上がより好ましい。
 カルボン酸無水物の含有量は、特開2010-030942号公報に記載のように、樹脂組成物を溶媒に溶解し、トリエチルアミン等で滴定して求めることができる。ただし、水との反応前であれば、カルボン酸無水物の添加量から理論的に求めることも出来る。
 カルボン酸無水物の分子量にもよるが、捕水層に占めるカルボン酸無水物の含有量の範囲としては、10~90重量%が好ましく、20~80重量%がより好ましい。また、1m当りの酸無水物の量も同様の観点から、10~500g/m以上が好ましく、20~300g/mがより好ましい。
<Carboxylic anhydride>
The water catching layer of the present invention contains one or more carboxylic acid anhydrides. That is, the carboxylic acid anhydride reacts with water that has entered from the outside of the moisture-proof film, and acts as a water trapping agent. The content of the carboxylic anhydride in the water catching layer is preferably large from the viewpoint of enhancing the water catching function of the water catching layer, and is preferably small from the viewpoint of mechanical properties and moldability of the water catching layer.
Since the carboxylic anhydride group reacts 1: 1 with water molecules, 18 g of water can be captured per 1 mol of the carboxylic anhydride group. Therefore, if the content of carboxylic acid anhydride in the resin composition is 0.556 mmol / g, it can be said that the resin composition can capture about 1% by weight of water.
That is, in order to satisfy the water catching capacity, the content of carboxylic acid anhydride groups in the resin composition is preferably 0.556 mmol / g or more, and more preferably 1.11 mmol / g or more.
The content of carboxylic acid anhydride can be determined by dissolving the resin composition in a solvent and titrating with triethylamine or the like, as described in JP-A-2010-030942. However, if it is before the reaction with water, it can be theoretically determined from the amount of carboxylic anhydride added.
Although depending on the molecular weight of the carboxylic acid anhydride, the range of the content of the carboxylic acid anhydride in the water capturing layer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. From the viewpoint amount likewise of 1 m 2 per acid anhydride, preferably 10 ~ 500g / m 2 or more, more preferably 20 ~ 300g / m 2.
 全カルボン酸無水物の酸無水物基の当量(g/eq)は、値が小さいほど重量当りの水分を捕捉できる量は大きくなる。よって、捕水量を増やす観点から、酸無水物基当量(g/eq)は小さい方が好ましい。一方で、捕水剤中における他の成分との相溶性を高める観点から、酸無水物基当量(g/eq)の大きいカルボン酸無水物を用いることが好ましい。酸無水物基当量の範囲としては50~2000g/eqが好ましく、100~1000g/eqがより好ましい。 As the equivalent (g / eq) of the acid anhydride group of all carboxylic acid anhydrides, the amount of moisture per unit weight that can be captured increases. Therefore, from the viewpoint of increasing the amount of water captured, it is preferable that the acid anhydride group equivalent (g / eq) is small. On the other hand, it is preferable to use a carboxylic acid anhydride having a large acid anhydride group equivalent (g / eq) from the viewpoint of enhancing the compatibility with other components in the water catching agent. The range of the acid anhydride group equivalent is preferably 50 to 2000 g / eq, more preferably 100 to 1000 g / eq.
 本発明において使用することができるカルボン酸無水物としては、例えば無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、無水フタル酸、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリストリメリテート、無水コハク酸、ドデセニル無水コハク酸、無水グルタル酸、無水アジピン酸、メチルシクロヘキセンジカルボン酸無水物、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブチテニルテトラヒドロ無水フタル酸、シクロヘキサンテトラカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサントリカルボン酸無水物、ポリアゼライン酸ポリ無水物、ポリ(メチルビニルエーテル―マレイン酸無水物)、スチレンと無水マレイン酸の共重合体、オレフィンと無水マレイン酸の共重合体、酢酸ビニル―無水マレイン酸共重合体、各種脂肪酸無水物が挙げられる。 Examples of carboxylic anhydrides that can be used in the present invention include maleic anhydride, citraconic anhydride, itaconic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid. Dianhydride, ethylene glycol bisanhydro trimellitate, glycerol tris trimellitate, succinic anhydride, dodecenyl succinic anhydride, glutaric anhydride, adipic anhydride, methylcyclohexenedicarboxylic anhydride, hexahydrophthalic anhydride, methyl hexa Hydrophthalic anhydride, Tetrahydrophthalic anhydride, Methyltetrahydrophthalic anhydride, Endomethylenetetrahydrophthalic anhydride, Methylendomethylenetetrahydrophthalic anhydride, Methylbutethenyltetrahydrophthalic anhydride, Cyclohexyl Tetracarboxylic anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, cyclohexanetricarboxylic anhydride , Polyazeline acid polyanhydride, poly (methyl vinyl ether-maleic anhydride), styrene / maleic anhydride copolymer, olefin / maleic anhydride copolymer, vinyl acetate / maleic anhydride copolymer, Examples include various fatty acid anhydrides.
 中でも脂環式カルボン酸無水物が好ましい。脂環式カルボン酸無水物を用いることで、水との反応で分子量を低下させることがない。また、芳香族カルボン酸無水物よりも着色の少ない透明な樹脂組成物とすることが出来る。
 脂環式カルボン酸無水物としては、無水マレイン酸共重合体及び、無水マレイン酸誘導体が好ましく、無水マレイン酸と各種ジエンとのDiels-Alder付加反応物が特に好ましい。このような、無水マレイン酸と各種ジエンとのDiels-Alder付加反応物としては、下記式(1)、(2)、(3)で表される脂環式カルボン酸無水物が挙げられる。通常、無水マレイン酸と各種ジエンとのDiels-Alder付加反応物は、二重結合を有して要るが、着色や逆Diels-Alder反応を防止する観点から、水素添加、ラジカル重合、エン・チオール反応等で、二重結合を単結合に変えても良い。

Figure JPOXMLDOC01-appb-C000001

(式中、R及びRは、同一又は異なっていてもよく、各々独立に、水素原子、ハロゲン原子、硫黄原子、アルキル基、アリール基、シクロアルキル基、複素環基、カルボキシル基、アルコキシ基、チオアルコキシ基、有機基が結合したアシルウレア基、アルコキシカルボニル基、アシル基、又はアシルオキシ基を示し、R及びRは互いに結合して二重結合を形成してもよく、第2の環状酸無水物基を形成しても良い。)
Figure JPOXMLDOC01-appb-C000002

(式中、R及びRは、同一又は異なっていてもよく、各々独立に、水素原子、ハロゲン原子、硫黄原子、アルキル基、アリール基、シクロアルキル基、複素環基、カルボキシル基、アルコキシ基、チオアルコキシ基、有機基が結合したアシルウレア基、アルコキシカルボニル基、アシル基、又はアシルオキシ基を示し、R及びRは互いに結合して二重結合を形成してもよく、第2の環状酸無水物基を形成しても良い。)
Figure JPOXMLDOC01-appb-C000003

(式中、R及びRは、同一又は異なっていてもよく、各々独立に、水素原子、ハロゲン原子、硫黄原子、アルキル基、アリール基、シクロアルキル基、複素環基、カルボキシル基、アルコキシ基、チオアルコキシ基、有機基が結合したアシルウレア基、アルコキシカルボニル基、アシル基、又はアシルオキシ基を示し、R及びRは互いに結合して二重結合を形成してもよく、第2の環状酸無水物基を形成しても良い。)
Of these, alicyclic carboxylic acid anhydrides are preferred. By using the alicyclic carboxylic acid anhydride, the molecular weight is not lowered by reaction with water. Moreover, it can be set as the transparent resin composition with less coloring than aromatic carboxylic acid anhydride.
As the alicyclic carboxylic acid anhydride, a maleic anhydride copolymer and a maleic anhydride derivative are preferable, and a Diels-Alder addition reaction product of maleic anhydride and various dienes is particularly preferable. Examples of the Diels-Alder addition reaction product of maleic anhydride and various dienes include alicyclic carboxylic acid anhydrides represented by the following formulas (1), (2), and (3). Usually, the Diels-Alder addition reaction product of maleic anhydride and various dienes is required to have a double bond, but from the viewpoint of preventing coloring and reverse Diels-Alder reaction, hydrogenation, radical polymerization, You may change a double bond into a single bond by thiol reaction etc.

Figure JPOXMLDOC01-appb-C000001

(Wherein R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, a halogen atom, a sulfur atom, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, a carboxyl group, an alkoxy group) Group, a thioalkoxy group, an acylurea group to which an organic group is bonded, an alkoxycarbonyl group, an acyl group, or an acyloxy group, R 1 and R 2 may be bonded to each other to form a double bond, (A cyclic acid anhydride group may be formed.)
Figure JPOXMLDOC01-appb-C000002

(Wherein R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, a halogen atom, a sulfur atom, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, a carboxyl group, an alkoxy group) Group, a thioalkoxy group, an acylurea group to which an organic group is bonded, an alkoxycarbonyl group, an acyl group, or an acyloxy group, R 1 and R 2 may be bonded to each other to form a double bond, (A cyclic acid anhydride group may be formed.)
Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom, a halogen atom, a sulfur atom, an alkyl group, an aryl group, a cycloalkyl group, a heterocyclic group, a carboxyl group, an alkoxy group) Group, a thioalkoxy group, an acylurea group to which an organic group is bonded, an alkoxycarbonyl group, an acyl group, or an acyloxy group, R 1 and R 2 may be bonded to each other to form a double bond, (A cyclic acid anhydride group may be formed.)
 式(1)、(2)、(3)の脂環式カルボン酸無水物で、入手が容易であるものとしては、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブチテニルテトラヒドロ無水フタル酸、シクロヘキサンテトラカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサントリカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、及びビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物が挙げられる。 Examples of the alicyclic carboxylic acid anhydrides of the formulas (1), (2), and (3) that are easily available include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Phthalic anhydride, Endomethylenetetrahydrophthalic anhydride, Methylendomethylenetetrahydrophthalic anhydride, Methylbutethenyltetrahydrophthalic anhydride, Cyclohexanetetracarboxylic anhydride, Methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid Acid anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexanetricarboxylic acid anhydride, bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic acid anhydride And bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracar Phosphate dianhydride.
<捕水層におけるその他の成分>
 本発明の捕水層において、カルボン酸無水物以外の成分としては、熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化性樹脂等の樹脂成分の他、触媒、無機フィラー等が挙げられる。樹脂成分としては、水分の無い環境下で、カルボン酸無水物と反応しない樹脂、又は反応する官能基が十分に少ない樹脂が好ましい。(以下、このような樹脂成分を「非反応性樹脂」と称す。)
<Other components in the water catchment layer>
In the water catching layer of the present invention, the components other than the carboxylic acid anhydride include resin components such as thermoplastic resins, thermosetting resins, energy ray curable resins, catalysts, inorganic fillers, and the like. As the resin component, a resin that does not react with a carboxylic acid anhydride or a resin that has a sufficiently small number of functional groups to react in an environment without moisture is preferable. (Hereinafter, such a resin component is referred to as “non-reactive resin”.)
(非反応性樹脂)
 このような非反応性樹脂としては、主成分として活性水素基(例えばアミノ基、イミノ基、イソシアネート基、水酸基)を含まない樹脂、又は、活性水素基が十分に少ない樹脂が好ましい。このような非反応性樹脂としては、具体的には、(メタ)アクリレートとその硬化物、ウレタン(メタ)アクリレートとその硬化物、エポキシ樹脂硬化物、ポリビニルエステル及びその共重合体、ポリオレフィン及びその共重合体、ポリエステル、ポリカルボジイミド及びその共重合体が挙げられる。ポリカルボジイミド及びその共重合体を用いる場合、国際公開第2010/071211号パンフレットに記載されている環状カルボジイミド化合物や、高分子量で比較的毒性の低いポリカルボジイミドを用いることが好ましい。
(Non-reactive resin)
As such a non-reactive resin, a resin that does not contain an active hydrogen group (for example, an amino group, an imino group, an isocyanate group, or a hydroxyl group) as a main component, or a resin having a sufficiently small number of active hydrogen groups is preferable. Specific examples of such a non-reactive resin include (meth) acrylate and its cured product, urethane (meth) acrylate and its cured product, epoxy resin cured product, polyvinyl ester and its copolymer, polyolefin and its Examples include copolymers, polyesters, polycarbodiimides, and copolymers thereof. When using polycarbodiimide and a copolymer thereof, it is preferable to use a cyclic carbodiimide compound described in International Publication No. 2010/072111 pamphlet or a polycarbodiimide having a high molecular weight and relatively low toxicity.
 捕水層に占める非反応性樹脂の含有量は、捕水層の捕水機能を高める観点から少ない方が好ましく、捕水層の機械物性や成形性の観点からは多い方が好ましい。捕水層に占める非反応性樹脂の含有量の範囲としては、10~90重量%が好ましく、20~80重量%が更に好ましい。 The content of the non-reactive resin in the water catching layer is preferably less from the viewpoint of enhancing the water catching function of the water catching layer, and more preferably from the viewpoint of mechanical properties and moldability of the water catching layer. The range of the content of the non-reactive resin in the water catching layer is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
(チオール化合物)
 本発明の樹脂組成物は、チオール化合物を含有することが好ましく、特に、二重結合を有する酸無水物と併用することが有効である。チオール化合物のメルカプト基は、酸無水物の二重結合と付加反応する。このように、二重結合が単結合に変化することでカルボン酸無水物の逆Diels-Alder反応を防止でき、分子量が増加することで、カルボン酸無水物の揮発やブリードアウトを抑制できる。
 チオール化合物は単官能でも良いが、多官能のチオール化合物を用いても良い。単官能のチオール化合物を用いた場合、硬化させることなくカルボン酸無水物の分子量を増加させることができる。一方、多官能のチオール化合物を用いた場合、チオール化合物の含有量が小さくできるため、カルボン酸無水物の含有量を高めることができる。
 チオール化合物のメルカプト基は1級でも2級でも良く、反応性、ポットライフ、ハンドリング性、そして経済性を考慮して選定される。一般に、1級のチオール化合物は2級よりも反応性が良好であり、2級のチオール化合物は1級よりもポットライフに優れる。
 本発明の樹脂組成物に用いられるチオール化合物として好ましく、入手が容易なものとしては、β-メルカプトプロピオン酸、メチル-3-メルカプトプロピオネート、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート、メトキシブチル-3-メルカプトプロピオネート、ステアリル-3-メルカプトプロピオネート、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)が挙げられ、1級のものはSC有機化学株式会社、2級のものは昭和電工株式会社より入手できる。
 上記以外にもメタンジチオール、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,2-シクロヘキサンジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メチルシクロヘキサン-2,3-ジチオール、1,2-ジメルカプトプロピルメチルエーテル、2,3-ジメルカプトプロピルメチルエーテル、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,3-ビス(メルカプトメチルチオ)プロパン、1,3-ビス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプト-1,4-ジチアン等の脂肪族チオール化合物;
 エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコール(2-メルカプトアセテート)、ジエチレングリコール(3-メルカプトプロピオネート)、2,3-ジメルカプト-1-プロパノール(3-メルカプトプロピオネート)、3-メルカプト-1,2-プロパンジオールビス(2-メルカプトアセテート)、3-メルカプト-1,2-プロパンジオールジ(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトール(3-メルカプトプロピオネート)、グリセリントリス(2-メルカプトアセテート)、グリセリントリス(3-メルカプトプロピオネート)、1,4-シクロヘキサンジオールビス(2-メルカプトアセテート)、1,4-シクロヘキサンジオールビス(3-メルカプトプロピオネート)、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィド(2-メルカプトアセテート)、ヒドロキシエチルスルフィド(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィド(2-メルカプトアセテート)、ヒドロキシメチルジスルフィド(3-メルカプトプロピオネート)、チオグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)等、エステル結合を含む脂肪族チオール化合物;
 1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(メルカプトエチル)ベンゼン、1,3,5-トリス(メルカプトエチル)ベンゼン、1,2,4-トリス(メルカプトエチル)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(メルカプトエチル)ベンゼン、2,2'-ジメルカプトビフェニル、4,4'-ジメルカプトビフェニル等の芳香族チオール化合物等が使用できる。
(Thiol compound)
The resin composition of the present invention preferably contains a thiol compound, and particularly effective in combination with an acid anhydride having a double bond. The mercapto group of the thiol compound undergoes an addition reaction with the double bond of the acid anhydride. Thus, the reverse Diels-Alder reaction of the carboxylic acid anhydride can be prevented by changing the double bond to a single bond, and volatilization and bleed out of the carboxylic acid anhydride can be suppressed by increasing the molecular weight.
Although the thiol compound may be monofunctional, a polyfunctional thiol compound may be used. When a monofunctional thiol compound is used, the molecular weight of the carboxylic acid anhydride can be increased without curing. On the other hand, when a polyfunctional thiol compound is used, since the content of the thiol compound can be reduced, the content of the carboxylic acid anhydride can be increased.
The mercapto group of the thiol compound may be primary or secondary, and is selected in consideration of reactivity, pot life, handling properties, and economic efficiency. In general, the primary thiol compound is more reactive than the secondary, and the secondary thiol compound is superior in pot life than the primary.
Preferred examples of thiol compounds used in the resin composition of the present invention, which are easily available, include β-mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n- Octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, stearyl-3-mercaptopropionate, dipentaerythritol hexakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercapto Propionate), trimethylolpropane tris (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate), di Antaerythritol hexakis (3-mercaptopropionate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5 -Triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate) SC Organic Chemical Co., Ltd., grade 2 can be obtained from Showa Denko Co., Ltd.
In addition to the above, methanedithiol, 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, , 2-cyclohexanedithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,2-dimercaptopropyl methyl ether, 2,3-dimercaptopropyl methyl ether, Bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptomethylthio) methane Bis (2-mercaptoethylthio) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2-bis (2-mercaptoethylthio) ethane, 1,3-bis (mercaptomethylthio) propane, 1,3- Bis (2-mercaptoethylthio) propane, 1,2,3-tris (mercaptomethylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3-mercapto Propylthio) propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,1 Dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2 -Bis (mercaptomethylthio) ethyl) -1,3-dithietane, tetrakis (mercaptomethylthiomethyl) methane, tetrakis (2-mercaptoethylthiomethyl) methane, bis (2,3-dimercaptopropyl) sulfide, 2,5- Aliphatic thiol compounds such as dimercapto-1,4-dithiane;
Ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), diethylene glycol (2-mercaptoacetate), diethylene glycol (3-mercaptopropionate), 2,3-dimercapto-1-propanol ( 3-mercaptopropionate), 3-mercapto-1,2-propanediol bis (2-mercaptoacetate), 3-mercapto-1,2-propanediol di (3-mercaptopropionate), trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethanetris (3-mercaptopropionate) , Pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol (3-mercaptopropionate), glycerol tris (2-mercaptoacetate), glycerol tris (3-mercaptopropionate), 1,4-cyclohexanediol bis ( 2-mercaptoacetate), 1,4-cyclohexanediol bis (3-mercaptopropionate), hydroxymethyl sulfide bis (2-mercaptoacetate), hydroxymethyl sulfide bis (3-mercaptopropionate), hydroxyethyl sulfide ( 2-mercaptoacetate), hydroxyethyl sulfide (3-mercaptopropionate), hydroxymethyl disulfide (2-mercaptoacetate), hydroxymethyldisulfur I de (3-mercaptopropionate), thioglycolic acid bis (2-mercaptoethyl ester), thiodipropionic acid bis (2-mercaptoethyl ester) and the like, aliphatic thiol compound containing an ester bond;
1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 1,2- Bis (mercaptoethyl) benzene, 1,4-bis (mercaptoethyl) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5-trimercaptobenzene, 1, 2,3-tris (mercaptomethyl) benzene, 1,2,4-tris (mercaptomethyl) benzene, 1,3,5-tris (mercaptomethyl) benzene, 1,2,3-tris (mercaptoethyl) benzene, 1,3,5-tris (mercaptoethyl) benzene, 1,2,4-tris (mercaptoethyl) benzene, 2,5-tolu Dithiol, 3,4-toluenedithiol, 1,4-naphthalenedithiol, 1,5-naphthalenedithiol, 2,6-naphthalenedithiol, 2,7-naphthalenedithiol, 1,2,3,4-tetramercaptobenzene, , 2,3,5-tetramercaptobenzene, 1,2,4,5-tetramercaptobenzene, 1,2,3,4-tetrakis (mercaptomethyl) benzene, 1,2,3,5-tetrakis (mercaptomethyl) ) Benzene, 1,2,4,5-tetrakis (mercaptomethyl) benzene, 1,2,3,4-tetrakis (mercaptoethyl) benzene, 1,2,3,5-tetrakis (mercaptoethyl) benzene, 2,4,5-tetrakis (mercaptoethyl) benzene, 2,2'-dimercaptobiphenyl, 4,4'- Aromatic thiol compounds such as dimercaptobiphenyl can be used.
(無機フィラー)
 また、捕水層に含まれる無機フィラーとしては、酸化アルミニウム、酸化ジルコニウム、酸化スズ、酸化チタン、酸化亜鉛、シリカ、アエロジル、クレー等が好ましく、透明性の観点から、中でも粒子径が100nm以下の無機フィラーが好ましい。また、無機フィラーは表面が有機化されていても良い。
(Inorganic filler)
Moreover, as the inorganic filler contained in the water capturing layer, aluminum oxide, zirconium oxide, tin oxide, titanium oxide, zinc oxide, silica, aerosil, clay and the like are preferable, and from the viewpoint of transparency, the particle diameter is 100 nm or less. Inorganic fillers are preferred. The surface of the inorganic filler may be organic.
(触媒)
 また、本発明の捕水層は、カルボン酸無水物と水との反応を促進する触媒を含むことができる。本発明の捕水剤に好ましく用いられる触媒としては、例えば、4級ホスホニウム塩、4級アンモニウム塩、3級アミン、DMAP(N,N-ジメチル-4-アミノピリジン)などのピリジン類、DBU(1,8-ジアザビシクロ(5,4,0)ウンデカ-7-エン)、DBN(1,5-ジアザビシクロ(4,3,0)ノナ-5-エン)などの双環式アミジン類とその誘導体、アミジン誘導体塩、イミダゾール類などが挙げられる。しかしながら、触媒活性があり、着色がないものであれば、これらに限定されない。
 特に、DMAP、DBN、DBUとこれらの誘導体及び塩は、少量の添加量でも高い触媒活性を示すのでより好ましい。中でも、DBU塩及びDBU誘導体塩は、サンアプロ株式会社よりU-CATシリーズとして販売されており、容易に入手可能である。
 本発明において、上記の触媒は単独で用いても2種以上を併用してもよい。
(catalyst)
In addition, the water catching layer of the present invention can include a catalyst that promotes the reaction between the carboxylic acid anhydride and water. Examples of the catalyst preferably used in the water capturing agent of the present invention include quaternary phosphonium salts, quaternary ammonium salts, tertiary amines, pyridines such as DMAP (N, N-dimethyl-4-aminopyridine), DBU ( Bicyclic amidines such as 1,8-diazabicyclo (5,4,0) undec-7-ene) and DBN (1,5-diazabicyclo (4,3,0) non-5-ene) and derivatives thereof; Amidine derivative salts, imidazoles and the like can be mentioned. However, it is not limited to these as long as it has catalytic activity and is not colored.
In particular, DMAP, DBN, DBU and derivatives and salts thereof are more preferable because they exhibit high catalytic activity even with a small amount of addition. Among them, DBU salts and DBU derivative salts are sold as U-CAT series by Sun Apro Co., Ltd. and are easily available.
In this invention, said catalyst may be used independently or may use 2 or more types together.
<第1のフィルムと第2のフィルムの定義>
 本発明の防湿フィルムは、カルボン酸無水物を必須成分として含む捕水層が2枚のフィルムの間に配置された構成であり、本発明においては、これら2枚のフィルムをそれぞれ第1のフィルム、第2のフィルムと称し、40℃、90%Rhで測定した水蒸気透過率が小さい方を第1のフィルム、大きい方を第2のフィルムと定義する。また、2枚のフィルムの水蒸気透過率が同等である場合は、外側(高湿度側)に配置されるフィルムを第1のフィルムと定義する。
<Definition of first film and second film>
The moisture-proof film of the present invention has a structure in which a water-absorbing layer containing a carboxylic acid anhydride as an essential component is disposed between two films. In the present invention, each of the two films is a first film. The second film is called the second film, and the smaller water vapor permeability measured at 40 ° C. and 90% Rh is defined as the first film, and the larger one is defined as the second film. Moreover, when the water vapor transmission rate of two films is equivalent, the film arrange | positioned on the outer side (high humidity side) is defined as a 1st film.
<第1のフィルム>
 本発明において第1のフィルムは40℃、90%Rhで測定した水蒸気透過率が0.1g/m・day未満であり、第2のフィルムの水蒸気透過率以下である。つまり、本発明の防湿フィルムを使用する際は、水蒸気濃度の高い(高湿度)側に、バリア性の高い第1のフィルム、水蒸気濃度の低い側に、第2のフィルムが面するように配置されることが好ましい。例えば有機EL素子であれば、図1の様な構成が挙げられる。
<First film>
In the present invention, the first film has a water vapor transmission rate measured at 40 ° C. and 90% Rh of less than 0.1 g / m 2 · day, and is equal to or lower than the water vapor transmission rate of the second film. That is, when the moisture-proof film of the present invention is used, the first film having a high barrier property is disposed on the side having a high water vapor concentration (high humidity), and the second film is disposed on the side having a low water vapor concentration. It is preferred that For example, if it is an organic EL element, a structure like FIG. 1 will be mentioned.
 本発明の第1のフィルムは、少なくとも1層の無機層を含むことが好ましく、基材としてはPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)といったポリエステル、ポリイミド等を用いることが好ましい。また、無機層を含まない場合でも、水蒸気バリア性の優れたポリマーのフィルムであれば、使用することができる。水蒸気バリア性の優れたポリマーとしては、環状オレフィンポリマー、環状オレフィンコポリマー等が挙げられる。 The first film of the present invention preferably includes at least one inorganic layer, and it is preferable to use polyester such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), polyimide, or the like as the base material. Even when the inorganic layer is not included, any polymer film having excellent water vapor barrier properties can be used. Examples of the polymer having excellent water vapor barrier properties include cyclic olefin polymers and cyclic olefin copolymers.
 第1のフィルムは、厚みが小さければ、防湿フィルムの総厚みに占める捕水層の厚みが相対的に大きくなり、水蒸気透過率を長期間にわたって低く維持することができる。一方で、第1のフィルムの厚みが大きければ、防湿フィルム表層の剛性が向上するので、曲げなどによるフィルムのシワを防止することができる。第1のフィルムの厚みの範囲は10~500μmが好ましく、12~300μmがより好ましい。 If the thickness of the first film is small, the thickness of the water capturing layer in the total thickness of the moisture-proof film is relatively large, and the water vapor transmission rate can be kept low for a long period. On the other hand, if the thickness of the first film is large, the rigidity of the moisture-proof film surface layer is improved, so that wrinkling of the film due to bending or the like can be prevented. The thickness range of the first film is preferably 10 to 500 μm, more preferably 12 to 300 μm.
(無機層)
 無機層は第1のフィルムに好ましく含まれるが、第2のフィルム及び/又は捕水層に含まれても良い。
(Inorganic layer)
The inorganic layer is preferably included in the first film, but may be included in the second film and / or the water capturing layer.
 無機層は通常、金属化合物からなる薄膜の層である。無機層の形成方法は、目的の薄膜を形成できる方法であればいかなる方法でも用いることができる。例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などの真空製膜法や、パーヒドロポリシラザンをコーティングし、シリカ膜に転化する方法がある。 The inorganic layer is usually a thin film layer made of a metal compound. As a method for forming the inorganic layer, any method can be used as long as it can form a target thin film. For example, there are vacuum film forming methods such as sputtering method, vacuum deposition method, ion plating method, plasma CVD method, and a method of coating perhydropolysilazane and converting it into a silica film.
 無機層に含まれる成分は、上記性能を満たすものであれば特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸化窒化物または金属酸化炭化物であり、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸化窒化物または酸化炭化物などを好ましく用いることができる。これらの中でも、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸化窒化物が好ましく、特にSiまたはAlの金属酸化物、窒化物または酸化窒化物が好ましい。これらは、副次的な成分として他の元素を含有してもよい。 The component contained in the inorganic layer is not particularly limited as long as it satisfies the above performance. For example, it is a metal oxide, metal nitride, metal carbide, metal oxynitride, or metal oxycarbide, and Si, Al, In An oxide, nitride, carbide, oxynitride or oxycarbide containing one or more metals selected from Sn, Zn, Ti, Cu, Ce and Ta can be preferably used. Among these, a metal oxide, nitride or oxynitride selected from Si, Al, In, Sn, Zn and Ti is preferable, and a metal oxide, nitride or oxynitride of Si or Al is particularly preferable. These may contain other elements as secondary components.
 本発明により形成される無機層の平滑性は、1μm角の平均粗さ(Ra値)として1nm未満であることが好ましく、0.5nm以下がより好ましい。 The smoothness of the inorganic layer formed according to the present invention is preferably less than 1 nm as an average roughness (Ra value) of 1 μm square, and more preferably 0.5 nm or less.
 無機層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。 It is preferable that the inorganic layer is formed in a clean room. The degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
 無機層の厚みに関しては特に限定されないが、1層につき、通常、5~500nmの範囲内であり、好ましくは10~200nmである。無機層は複数のサブレイヤーから成る積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。 The thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 500 nm, preferably 10 to 200 nm per layer. The inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition.
(有機層と無機層の積層)
 第1のフィルムにおいて、無機層に有機物からなるトップコート及び/又はアンカーコートを施し、有機層と無機層の積層構造を構築することができる。より高いバリア性を発揮するために、有機層と無機層を交互に積層しても良い。
(Lamination of organic and inorganic layers)
In the first film, a top coat and / or anchor coat made of an organic substance is applied to the inorganic layer, and a laminated structure of the organic layer and the inorganic layer can be constructed. In order to exhibit higher barrier properties, organic layers and inorganic layers may be alternately stacked.
<第2のフィルム>
 本発明の第2のフィルムの40℃、90%Rhで測定した水蒸気透過率は、第1のフィルム以上の値を示す。つまり、第2のフィルムの水蒸気バリア性が、第1のフィルムと同程度である場合は、捕水層を透過してきた水分子の障壁として機能し、結果として水の捕捉率を高めることが出来る。ただし、図2の様に、既に有機/無機層が形成されたデバイスに、本発明の防湿フィルムを貼り付けて使用する場合は、第2のフィルムには必ずしも水蒸気バリア性は必要でない。
<Second film>
The water vapor transmission rate measured at 40 ° C. and 90% Rh of the second film of the present invention shows a value higher than that of the first film. That is, when the water vapor barrier property of the second film is approximately the same as that of the first film, it functions as a barrier for water molecules that have permeated through the water capturing layer, and as a result, the water capturing rate can be increased. . However, as shown in FIG. 2, when the moisture-proof film of the present invention is attached to a device on which an organic / inorganic layer has already been formed, the second film does not necessarily have a water vapor barrier property.
 よって、第2のフィルムとしては、第1のフィルムと同様の水蒸気バリア性を備えたフィルム以外にも、あえて水蒸気バリア性の乏しいフィルムを用いることも可能である。このようなフィルムとしては、ポリエステル、ポリオレフィン、ポリイミド、ポリアミド、ポリアミドイミド、ポリスチレン、ポリ(メタ)アクリレート、ポリカルボジイミド、ポリ塩化ビニル、液晶ポリマー及び、これらの共重合体が挙げられる。 Therefore, as the second film, besides the film having the same water vapor barrier property as that of the first film, a film having a poor water vapor barrier property can be used. Examples of such a film include polyester, polyolefin, polyimide, polyamide, polyamideimide, polystyrene, poly (meth) acrylate, polycarbodiimide, polyvinyl chloride, liquid crystal polymer, and copolymers thereof.
 第2のフィルムは、厚みが小さければ、防湿フィルムの総厚みに占める捕水層の厚みが相対的に大きくなり、水蒸気透過率を長期間にわたって低く維持することができる。一方で、第2のフィルムの厚みが大きければ、防湿フィルム表層の剛性が向上するので、曲げなどによるフィルムのシワを防止することができる。第2のフィルムの厚みの範囲は10~500μmが好ましく、12~300μmがより好ましい。 If the thickness of the second film is small, the thickness of the water catching layer in the total thickness of the moisture-proof film is relatively large, and the water vapor transmission rate can be kept low for a long period of time. On the other hand, if the thickness of the second film is large, the rigidity of the moisture-proof film surface layer is improved, so that wrinkling of the film due to bending or the like can be prevented. The thickness range of the second film is preferably 10 to 500 μm, more preferably 12 to 300 μm.
 本発明の防湿フィルムは有機電子デバイス等のオーバーラミネートフィルムとして好適に用いることができる。本発明の防湿フィルムをオーバーラミネートに用いる場合、第2のフィルムは必ずしも必要とは限らない。従って、第2のフィルムは離型フィルムでも良く、第2のフィルムが離型フィルムの場合は、オーバーラミネート時に第2のフィルムを剥がして使用することができる。 The moisture-proof film of the present invention can be suitably used as an overlaminate film for organic electronic devices and the like. When the moisture-proof film of the present invention is used for overlaminate, the second film is not always necessary. Therefore, the second film may be a release film, and when the second film is a release film, the second film can be peeled off during overlaminating.
<第1のフィルムと第2のフィルムの関係>
 前記の通り、第1のフィルムと第2のフィルムの間には以下の関係式(1)~(2)が成立する。
 (1)T≦T
 (2)T<0.1
(ここで、
 T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 T:第2のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 を示す。)
<Relationship between first film and second film>
As described above, the following relational expressions (1) to (2) are established between the first film and the second film.
(1) T 1 ≦ T 2
(2) T 1 <0.1
(here,
T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
T 2 : Water vapor transmission rate of the second film measured at 40 ° C. and 90% Rh (g / m 2 · day)
Indicates. )
<捕水層と第1のフィルムの関係>
 本発明の防湿フィルムは、捕水層と第1のフィルムの間に、以下の関係式(3)が成立することが好ましい。
 (3)βX/αT≧100
(ここで、
 T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
 X:防湿フィルム1mにおける捕水層中のカルボン酸無水物の重量(g-カルボン酸無水物/m
 α:全カルボン酸無水物の酸無水物基の当量(g-カルボン酸無水物/eq)
 β:水の当量(g/eq)
 を示す。)
<Relationship between water catching layer and first film>
In the moisture-proof film of the present invention, the following relational expression (3) is preferably established between the water catching layer and the first film.
(3) βX / αT 1 ≧ 100
(here,
T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
X: Weight of carboxylic acid anhydride in the water capturing layer in the moisture-proof film 1 m 2 (g-carboxylic acid anhydride / m 2 )
α: equivalent of acid anhydride group of all carboxylic acid anhydrides (g-carboxylic acid anhydride / eq)
β: equivalent of water (g / eq)
Indicates. )
 すなわち、βX/αは防湿フィルム1mが酸無水物で捕捉できる水の重量を表しており、単位は(g-水/m)である。また、βX/αTは、防湿フィルム1mが捕捉できる水の重量と、第1のフィルム1mを透過してきた水の重量が等しくなる日数を表しており、単位は(day)である。βX/αTが大きいほど、捕水層の効果が長期間続くことになる。 That is, βX / α represents the weight of water that the moisture-proof film 1m 2 can capture with an acid anhydride, and the unit is (g-water / m 2 ). ΒX / αT 1 represents the number of days in which the weight of water that can be captured by the moisture-proof film 1m 2 is equal to the weight of water that has permeated through the first film 1m 2 , and the unit is (day). The larger the βX / αT 1 , the longer the effect of the water capturing layer lasts.
 βX/αTは大きい程好ましく、実用的な範囲としては100以上であり、1000以上であることがより好ましい。つまり、式(3)はβX/αT≧100が好ましく、βX/αT≧1000がより好ましい。 βX / αT 1 is preferably as large as possible. A practical range is 100 or more, and more preferably 1000 or more. That is, in Formula (3), βX / αT 1 ≧ 100 is preferable, and βX / αT 1 ≧ 1000 is more preferable.
<防湿フィルムの透明性>
 本発明の防湿フィルムの全光線透過率は75%以上であることが好ましい。全光線透過率が75%以上であれば、透明性が良好であり、有機電子デバイスとして好適に用いることができる。かかる観点から、80%以上であることがより好ましい。
<Transparency of moisture-proof film>
The total light transmittance of the moisture-proof film of the present invention is preferably 75% or more. When the total light transmittance is 75% or more, the transparency is good, and it can be suitably used as an organic electronic device. From this viewpoint, it is more preferably 80% or more.
<防湿フィルムの見かけの水蒸気透過率>
 本発明の防湿フィルムは長期間に渡って、水蒸気の拡散が定常状態に達しないことを特徴とする。つまり、非定常状態での水蒸気透過量を一定期間測定し、そのプロファイルからバリア性を評価する必要がある。適切な評価装置は、フィルムのTやβX/αによって異なるが、DELTAPERM(Technolox社、商品名)、スーパーディテクトSKT((株)TI、商品名)、HiBarSense(Sempa System GmBH、商品名)等が挙げられる。測定する期間はフィルムの仕様や測定装置によるが、フィルムや装置に吸着していた水蒸気の影響を除外するために、少なくとも測定3日目以降の水蒸気透過量から見かけの水蒸気透過率を求めるのが好ましい。
<Apparent water vapor permeability of moisture-proof film>
The moisture-proof film of the present invention is characterized in that the diffusion of water vapor does not reach a steady state over a long period of time. That is, it is necessary to measure the amount of water vapor permeated in an unsteady state for a certain period and evaluate the barrier property from the profile. Appropriate evaluation device, but varies depending on the T 1 and βX / α of the film, DELTAPERM (Technolox, Inc., trade name), Super Detect SKT ((Ltd.) TI, trade name), HiBarSense (Sempa System GmBH, trade name) Is mentioned. The period of measurement depends on the specifications of the film and the measuring device, but in order to exclude the influence of water vapor adsorbed on the film or device, it is necessary to obtain the apparent water vapor transmission rate from the water vapor transmission amount at least after the third day of measurement. preferable.
<利用方法>
 本発明の防湿フィルムは、更なる水蒸気バリア性向上を目的として、2枚以上を積層して用いることができる。本発明の防湿フィルムを構造単位としたとき、積層数は2~20構造単位であることが好ましい。
<How to use>
The moisture-proof film of the present invention can be used by laminating two or more sheets for the purpose of further improving the water vapor barrier property. When the moisture-proof film of the present invention is a structural unit, the number of laminated layers is preferably 2 to 20 structural units.
 本発明の防湿フィルムは、有機ELデバイス以外にも、有機TFTデバイス、有機太陽電池、電子ペーパーといった水分の影響を受けやすい各種有機電子デバイスに適用することができる。本発明の防湿フィルムは透明であるため、光をさえぎることなく素子の発光面、受光面側に配置することができる。 The moisture-proof film of the present invention can be applied to various organic electronic devices that are easily affected by moisture, such as organic TFT devices, organic solar cells, and electronic paper, in addition to organic EL devices. Since the moisture-proof film of the present invention is transparent, it can be disposed on the light-emitting surface and light-receiving surface side of the element without blocking light.
 以下、本発明を実施例、比較例に基づき具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
<実施例1>
 ガラスサンプル瓶に、MHAC-P(日立化成工業(株)商品名、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、酸無水物基の当量:178g/eq)を10g、A-TMPT(新中村化学工業(株)商品名、トリメチロールプロパントリアクリレート)を1.5g、紫光UV-3700B(日本合成化学工業(株)商品名、ウレタンアクリレート)を12.5g、IRGACURE 184(BASF社商品名、1-ヒドロキシシクロヘキシルフェニルケトン)を0.2g計量し、これらを均一になるまで混合した。次に、サンプル瓶の蓋を閉めた状態で60℃に加温しながら、気泡が無くなるまで静置することで、捕水層形成用のUV硬化樹脂を得た。
<Example 1>
In a glass sample bottle, MHAC-P (trade name of Hitachi Chemical Co., Ltd., methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, equivalent weight of acid anhydride group: 178 g / eq 10 g), 1.5 g of A-TMPT (trade name of Shin-Nakamura Chemical Co., Ltd., trimethylolpropane triacrylate), and Shigamine UV-3700B (trade name of Nippon Synthetic Chemical Industry Co., Ltd., urethane acrylate). 5 g of IRGACURE 184 (trade name of BASF, 1-hydroxycyclohexyl phenyl ketone) was weighed and mixed until uniform. Next, while heating to 60 ° C. with the lid of the sample bottle closed, the sample bottle was allowed to stand until air bubbles disappeared, thereby obtaining a UV curable resin for forming a water catching layer.
 続いて、片面にシリカ蒸着膜を形成したポリエステルフィルムであるテックバリアHX(三菱樹脂(株)商品名、厚み:12μm、水蒸気透過率:0.05g/m・day(40℃,90%Rh))を、シリカ面を上にしてガラスコート台に固定し、さらにその上にPETフィルムを切り抜いて作製した厚み100μmの枠をテープで固定した。厚み100μmの枠の内側に、捕水層形成用のUV硬化樹脂を流し込み、その上からテックバリアHXを、シリカ面が下(捕水層側)になるように、ゴム製のハンドロールを用いて貼り合わせ、紫外線を照射することで捕水層を形成し防湿フィルムを得た。 Subsequently, Tech Barrier HX (Mitsubishi Resin Co., Ltd. trade name, thickness: 12 μm, water vapor transmission rate: 0.05 g / m 2 · day (40 ° C., 90% Rh), which is a polyester film having a silica vapor deposited film on one side. )) Was fixed to a glass coating table with the silica surface facing up, and a PET film was cut out and a frame having a thickness of 100 μm was fixed with a tape. A UV curable resin for forming a water catching layer is poured into the inside of a frame having a thickness of 100 μm, and a tech barrier HX is used from above, and a rubber hand roll is used so that the silica surface is down (water catching layer side). Then, a water-absorbing layer was formed by irradiating with ultraviolet rays to obtain a moisture-proof film.
 得られた防湿フィルムの厚みを測定した結果、防湿フィルムの層厚みは約155μmであり、捕水層の厚みは約131μmであった。 As a result of measuring the thickness of the obtained moisture-proof film, the layer thickness of the moisture-proof film was about 155 μm, and the thickness of the water catching layer was about 131 μm.
 ここで、第1のフィルムはテックバリアHXであり、第2のフィルムもテックバリアHXである。
つまり、
 T<0.1
 T=T=0.05g-水/m・day
である。
Here, the first film is a tech barrier HX, and the second film is also a tech barrier HX.
That means
T 1 <0.1
T 1 = T 2 = 0.05 g-water / m 2 · day
It is.
また、
 X=63.9g-カルボン酸無水物/m
  (捕水層の比重(1.18g/ml)から計算した)
 α=178g-カルボン酸無水物/eq
 β=18g-水/eq
であり、
 βX/α=6.46g-水/m
 βX/αT=129.2day
であった。
Also,
X = 63.9 g-carboxylic anhydride / m 2
(Calculated from the specific gravity of the water catching layer (1.18 g / ml))
α = 178 g-carboxylic anhydride / eq
β = 18 g-water / eq
And
βX / α = 6.46 g-water / m 2
βX / αT 1 = 129.2 day
Met.
<見かけの水蒸気透過率>
 一般にプラスチックフィルムの水蒸気バリア性評価は、水蒸気拡散が定常状態に達した後の透過率、つまり、「水蒸気透過率」にて評価するが、本発明の防湿フィルムは長期間に渡って、定常状態に達しないことを特徴とする。つまり、非定常状態での水蒸気透過量にて評価する必要がある。そこで、水蒸気透過量を連続的に3日間観測し続け、観測3日目の水蒸気透過量から水蒸気透過率を求め、「見かけの水蒸気透過率」とした。
 見かけの水蒸気透過率の測定にはDELTAPERM(Technolox社、商品名)を用いた、水蒸気曝露側が第1のフィルムとなるように防湿フィルムをセットし、真空状態でコンディショニングを16時間行った後、40℃,90%Rhの条件で、水蒸気透過量(下室の圧力変化)を3日間観測した。観測3日目の水蒸気透過量から水蒸気透過率を計算し、見かけの水蒸気透過率とした。
<Apparent water vapor transmission rate>
In general, the water vapor barrier property of a plastic film is evaluated by the transmittance after water vapor diffusion reaches a steady state, that is, the “water vapor permeability”. The moisture-proof film of the present invention is in a steady state over a long period of time. It is characterized by not reaching. That is, it is necessary to evaluate by the amount of water vapor permeation in the unsteady state. Therefore, the water vapor transmission rate was continuously observed for 3 days, and the water vapor transmission rate was determined from the water vapor transmission rate on the third day of observation, and was set as the “apparent water vapor transmission rate”.
For the measurement of the apparent water vapor transmission rate, a moisture-proof film was set using DELTAPERRM (Technolox, trade name) so that the water vapor exposure side would be the first film, and after conditioning in a vacuum state for 16 hours, 40% Under conditions of 90 ° C. and 90% Rh, the amount of water vapor permeation (lower chamber pressure change) was observed for 3 days. The water vapor transmission rate was calculated from the amount of water vapor transmission on the third day of observation, and used as the apparent water vapor transmission rate.
<全光線透過率>
 ヘイズメーター(日本電色工業製 HDH2000)を使用し、透過法にて全光線透過率を求めた。
<Total light transmittance>
Using a haze meter (HDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.), the total light transmittance was determined by the transmission method.
<実施例2>
 テックバリアHXのうち1枚を、水蒸気透過率が8.0×10-4g/m・day(40℃,90%Rh)であり、無機層を2層以上有するシリカ蒸着ポリエステルフィルム(厚み:240μm)に変更して、実施例1と同様に防湿フィルムを作製した。得られた防湿フィルムの層厚みは約370μmであり、捕水層の厚みは118μmであった。
<Example 2>
One of the Tech Barriers HX has a water vapor transmission rate of 8.0 × 10 −4 g / m 2 · day (40 ° C., 90% Rh) and a silica-deposited polyester film (thickness) having two or more inorganic layers. : 240 μm), and a moisture-proof film was produced in the same manner as in Example 1. The layer thickness of the obtained moisture-proof film was about 370 μm, and the thickness of the water catching layer was 118 μm.
 ここで、第1のフィルムは水蒸気透過率が8.0×10-4g/m・day(40℃,90%Rh)のシリカ蒸着ポリエステルフィルムであり、第2のフィルムはテックバリアHXである。 Here, the first film is a silica-deposited polyester film having a water vapor transmission rate of 8.0 × 10 −4 g / m 2 · day (40 ° C., 90% Rh), and the second film is a tech barrier HX. is there.
 T<0.1
 T<T
である。
T 1 <0.1
T 1 <T 2
It is.
また、
 X=57.5g-カルボン酸無水物/m
  (捕水層の比重(1.18g/ml)から計算した)
 α=178g-カルボン酸無水物/eq
 β=18g-水/eq
であり、
 βX/α=5.82g-水/m
 βX/αT=7273.0day
であった。
Also,
X = 57.5 g-carboxylic anhydride / m 2
(Calculated from the specific gravity of the water catching layer (1.18 g / ml))
α = 178 g-carboxylic anhydride / eq
β = 18 g-water / eq
And
βX / α = 5.82 g-water / m 2
βX / αT 1 = 7273.0 day
Met.
<見かけの水蒸気透過率>
 水蒸気曝露側が第1のフィルムとなるように防湿フィルムをセットし、実施例1と同様に見かけの水蒸気透過率を測定した。観測3日目のデータから見かけの水蒸気透過率を表1に示すが、観測4日目以降も水蒸気透過率は下がり続けていた。
<Apparent water vapor transmission rate>
The moisture-proof film was set so that the water vapor exposure side would be the first film, and the apparent water vapor transmission rate was measured in the same manner as in Example 1. The apparent water vapor transmission rate is shown in Table 1 from the data on the third observation day. The water vapor transmission rate continued to decrease after the fourth observation day.
<全光線透過率>
 実施例1と同様に測定を行った。
<Total light transmittance>
Measurements were performed in the same manner as in Example 1.
<実施例3>
 実施例1のテックバリアHXの1枚を、水蒸気透過率が60g/m・day(40℃,90%Rh)である、離型PETフィルム(厚み:48μm)に変更して、実施例1と同様に防湿フィルムを作製した。得られた防湿フィルムの層厚みは約180μmであり、捕水層の厚みは120μmであった。
<Example 3>
One tech barrier HX of Example 1 was changed to a release PET film (thickness: 48 μm) having a water vapor transmission rate of 60 g / m 2 · day (40 ° C., 90% Rh). A moisture-proof film was prepared in the same manner as described above. The layer thickness of the obtained moisture-proof film was about 180 μm, and the thickness of the water catching layer was 120 μm.
 ここで、第1のフィルムはテックバリアHXであり、第2のフィルムは前記離型PETフィルム(厚み:48μm)である。 Here, the first film is a tech barrier HX, and the second film is the release PET film (thickness: 48 μm).
 T<0.1
 T<T
である。
T 1 <0.1
T 1 <T 2
It is.
また、
 X=58.5g-カルボン酸無水物/m
  (捕水層の比重(1.18g/ml)から計算した)
 α=178g-カルボン酸無水物/eq
 β=18g-水/eq
であり、
 βX/α=5.92g-水/m
 βX/αT=118.3day
であった。
Also,
X = 58.5 g-carboxylic anhydride / m 2
(Calculated from the specific gravity of the water catching layer (1.18 g / ml))
α = 178 g-carboxylic anhydride / eq
β = 18 g-water / eq
And
βX / α = 5.92 g-water / m 2
βX / αT 1 = 118.3 day
Met.
<見かけの水蒸気透過率>
 水蒸気曝露側が第1のフィルムとなるように防湿フィルムをセットし、実施例1と同様に見かけの水蒸気透過率を測定した。
<Apparent water vapor transmission rate>
The moisture-proof film was set so that the water vapor exposure side would be the first film, and the apparent water vapor transmission rate was measured in the same manner as in Example 1.
<全光線透過率>
 実施例1と同様に測定を行った。
<Total light transmittance>
Measurements were performed in the same manner as in Example 1.
<比較例1>
 テックバリアHXを2枚とも、水蒸気透過率が60g/m・day(40℃,90%Rh)である、離型PETフィルム(厚み:48μm)に変更して、実施例1と同様に防湿フィルムを作製した。得られた防湿フィルムの層厚みは約200μmであり、捕水層の厚みは104μmであった。
<Comparative Example 1>
Both tech barriers HX were changed to a release PET film (thickness: 48 μm) having a water vapor transmission rate of 60 g / m 2 · day (40 ° C., 90% Rh), and moisture-proof as in Example 1. A film was prepared. The layer thickness of the obtained moisture-proof film was about 200 μm, and the thickness of the water catching layer was 104 μm.
 ここで、第1のフィルム及び第2のフィルムは前記離型PETフィルム(厚み:48μm)である。 Here, the first film and the second film are the release PET film (thickness: 48 μm).
 T>0.1
 T≒T
である。
T 1 > 0.1
T 1 ≈ T 2
It is.
また、
 X=50.7g-カルボン酸無水物/m
  (捕水層の比重(1.18g/ml)から計算した)
 α=178g-カルボン酸無水物/eq
 β=18g-水/eq
であり、
 βX/α=5.13g-水/m
 βX/αT=0.1day
であった。
Also,
X = 50.7 g-carboxylic anhydride / m 2
(Calculated from the specific gravity of the water catching layer (1.18 g / ml))
α = 178 g-carboxylic anhydride / eq
β = 18 g-water / eq
And
βX / α = 5.13 g-water / m 2
βX / αT 1 = 0.1 day
Met.
<見かけの水蒸気透過率>
 実施例1と同様に見かけの水蒸気透過率を測定した。
<Apparent water vapor transmission rate>
The apparent water vapor transmission rate was measured in the same manner as in Example 1.
<全光線透過率>
 実施例1と同様に測定を行った。
<Total light transmittance>
Measurements were performed in the same manner as in Example 1.
<比較例2>
 MHAC-Pを、カルボン酸無水物を含まないポリアクリレートである紫光UV-3700Bに置き換えた以外は実施例1と同様に防湿フィルムを作製した。得られた防湿フィルムの層厚みは約150μmであり、捕水層の厚みは126μmであった。
<Comparative Example 2>
A moisture-proof film was produced in the same manner as in Example 1 except that MHAC-P was replaced with purple light UV-3700B, which is a polyacrylate containing no carboxylic anhydride. The layer thickness of the obtained moisture-proof film was about 150 μm, and the thickness of the water catching layer was 126 μm.
 ここで、第1のフィルム及び第2のフィルムはテックバリアHX(厚み:12μm)である。 Here, the first film and the second film are Tech Barrier HX (thickness: 12 μm).
 T<0.1
 T=T=0.05g-水/m・day
である。
T 1 <0.1
T 1 = T 2 = 0.05 g-water / m 2 · day
It is.
また、
 X=0g-カルボン酸無水物/m
  (捕水層の比重(1.18g/ml)から計算した)
であり、
 βX/α=0g-水/m
 βX/αT=0day
であった。
Also,
X = 0 g-carboxylic anhydride / m 2
(Calculated from the specific gravity of the water catching layer (1.18 g / ml))
And
βX / α = 0 g-water / m 2
βX / αT 1 = 0 day
Met.
<見かけの水蒸気透過率>
 実施例1と同様に測定した。比較例2は捕水層を含まないため、観測後24時間後には定常状態に達していた。
<Apparent water vapor transmission rate>
Measurement was performed in the same manner as in Example 1. Since Comparative Example 2 did not include a water catchment layer, it reached a steady state 24 hours after observation.
<全光線透過率>
 実施例1と同様に測定を行った。
<Total light transmittance>
Measurements were performed in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例2の捕水層は吸湿性ポリアクリレートであり、カルボン酸無水物を含まない。第1のフィルム及び第2のフィルムに、水蒸気透過率が0.05g/m・dayのフィルムを用いているが、防湿フィルムの水蒸気バリア性は若干向上しただけであった。 The water catching layer of Comparative Example 2 is a hygroscopic polyacrylate and does not contain a carboxylic acid anhydride. A film having a water vapor transmission rate of 0.05 g / m 2 · day was used for the first film and the second film, but the water vapor barrier property of the moisture-proof film was only slightly improved.
 これに対して、実施例1の防湿フィルムは、捕水層にカルボン酸無水物を含有している事以外は比較例2と同じ構成であるが、その水蒸気透過率は6×10-4g/m・dayと極めて小さかった。つまり、カルボン酸無水物による水の捕捉が、水蒸気バリア性の向上に寄与していることが示唆される。 On the other hand, the moisture-proof film of Example 1 has the same configuration as Comparative Example 2 except that the water capturing layer contains a carboxylic acid anhydride, but its water vapor transmission rate is 6 × 10 −4 g. / M 2 · day was extremely small. That is, it is suggested that the water capture by the carboxylic acid anhydride contributes to the improvement of the water vapor barrier property.
 実施例1~3及び比較例1は捕水層が同じであるが、第1のフィルム及び第2のフィルムがそれぞれ異なる。比較例1のTは60g/m・dayであり、0.1g/m・dayよりもかなり大きいため、βX/αTは0.1dayしかない。つまり、捕水層がすぐに飽和してしまうため、防湿フィルムとしては実用性に乏しい。 Examples 1 to 3 and Comparative Example 1 have the same water trapping layer, but the first film and the second film are different from each other. T 1 of the Comparative Example 1 is a 60g / m 2 · day, since significantly greater than 0.1g / m 2 · day, βX / αT 1 is only 0.1Day. That is, since the water capturing layer is saturated immediately, it is not practical as a moisture-proof film.
 一方で、実施例1~3はβX/αTが100day以上であり、用途によっては防湿フィルムとして実用可能なレベルである。特に実施例2の防湿フィルムは、極めて小さい水蒸気透過率を示し、βX/αTは約20年もあることから、有機電子デバイスへの用途展開が期待できる。 On the other hand, in Examples 1 to 3, βX / αT 1 is 100 days or more, which is a practical level as a moisture-proof film depending on applications. In particular, the moisture-proof film of Example 2 shows extremely low water vapor transmission rate and βX / αT 1 is about 20 years, so that it can be expected to be used for organic electronic devices.
 実施例3は第2のフィルムがバリア性の乏しい離型PETであるので、テックバリアHXを用いた実施例1よりも、見かけの水蒸気透過率は1ケタ大きくなっている。しかしながら、第2のフィルムである離型PETを剥がし、すでにバリア層を設けたデバイス等へ貼り付けて使用すれば、そのデバイスのバリア性を向上することが出来る。つまり、封止用のオーバーラミネートフィルムとして好ましく使用する事が出来る。 In Example 3, since the second film is release PET having poor barrier properties, the apparent water vapor transmission rate is one digit larger than that in Example 1 using Techbarrier HX. However, if the release PET, which is the second film, is peeled off and attached to a device or the like that has already been provided with a barrier layer, the barrier property of the device can be improved. That is, it can be preferably used as an overlaminate film for sealing.
 また、実施例1~3の防湿フィルムは、全光線透過率が80%以上であり、有機EL素子、有機太陽電池等へ使用することが出来る。 In addition, the moisture-proof films of Examples 1 to 3 have a total light transmittance of 80% or more, and can be used for organic EL elements, organic solar cells, and the like.
1 第1のフィルム
2 捕水層
3 第2のフィルム
4 UV端部封止材
5 封止材(充填材)
6 有機/無機層
7 EL層
8 基板
1 First film
2 Water catchment layer
3 Second film
4 UV edge sealant
5 Sealing material (filler)
6 Organic / inorganic layer
7 EL layer
8 Board

Claims (9)

  1.  捕水層、第1のフィルム、及び第2のフィルムを備える防湿フィルムであって、当該捕水層はカルボン酸無水物を必須成分として含み、当該捕水層は第1のフィルムと第2のフィルムの間に配置されており、(1)~(2)の関係式を満たす防湿フィルム。
     (1)T≦T
     (2)T<0.1
    (ここで、
     T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
     T:第2のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
     を示す。)
    A moisture-proof film comprising a water catching layer, a first film, and a second film, wherein the water catching layer contains a carboxylic acid anhydride as an essential component, and the water catching layer comprises the first film and the second film. A moisture-proof film disposed between the films and satisfying the relational expressions (1) to (2).
    (1) T 1 ≦ T 2
    (2) T 1 <0.1
    (here,
    T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
    T 2 : Water vapor transmission rate of the second film measured at 40 ° C. and 90% Rh (g / m 2 · day)
    Indicates. )
  2.  さらに、(3)の関係式を満たす請求項1に記載の防湿フィルム。
     (3)βX/αT≧100
    (ここで、
     T:第1のフィルムの40℃,90%Rhで測定した水蒸気透過率(g/m・day)
     X:防湿フィルム1mにおける捕水層中の全カルボン酸無水物の重量(g-カルボン酸無水物/m
     α:全カルボン酸無水物の酸無水物基の当量(g-カルボン酸無水物/eq)
     β:水の当量(g/eq)
     を示す。)
    Furthermore, the moisture-proof film of Claim 1 which satisfy | fills the relational expression of (3).
    (3) βX / αT 1 ≧ 100
    (here,
    T 1 : Water vapor transmission rate of the first film measured at 40 ° C. and 90% Rh (g / m 2 · day)
    X: Weight of all carboxylic acid anhydrides in the water capturing layer in the moisture-proof film 1 m 2 (g-carboxylic acid anhydride / m 2 )
    α: equivalent of acid anhydride group of all carboxylic acid anhydrides (g-carboxylic acid anhydride / eq)
    β: equivalent of water (g / eq)
    Indicates. )
  3.  前記捕水層の厚みが1~1000μmである請求項1又は2に記載の防湿フィルム。 The moisture-proof film according to claim 1 or 2, wherein the water-collecting layer has a thickness of 1 to 1000 µm.
  4.  全光線透過率が75%以上である請求項1~3の何れか1項に記載の防湿フィルム。 The moisture-proof film according to any one of claims 1 to 3, wherein the total light transmittance is 75% or more.
  5.  前記第1のフィルムが少なくとも1層の無機層を有する請求項1~4の何れか1項に記載の防湿フィルム。 The moisture-proof film according to any one of claims 1 to 4, wherein the first film has at least one inorganic layer.
  6.  前記第2のフィルムが離型フィルムである請求項1~5の何れか1項に記載の防湿フィルム。 The moisture-proof film according to any one of claims 1 to 5, wherein the second film is a release film.
  7.  オーバーラミネートのフィルムとして用いられる請求項6に記載の防湿フィルム。 The moisture-proof film according to claim 6, which is used as an overlaminate film.
  8.  請求項1~7の何れか1項に記載の防湿フィルムからなる構造単位が2単位以上積層されて構成される防湿フィルム。 A moisture-proof film constituted by laminating two or more structural units comprising the moisture-proof film according to any one of claims 1 to 7.
  9.  請求項1~8の何れか1項に記載の防湿フィルムを用いた有機電子デバイス。 An organic electronic device using the moisture-proof film according to any one of claims 1 to 8.
PCT/JP2013/072902 2012-11-30 2013-08-27 Moistureproof film and organic electronic device obtained using same WO2014083899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014550051A JP6269503B6 (en) 2012-11-30 2013-08-27 Moisture-proof film and organic electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-261966 2012-11-30
JP2012261966 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083899A1 true WO2014083899A1 (en) 2014-06-05

Family

ID=50827552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072902 WO2014083899A1 (en) 2012-11-30 2013-08-27 Moistureproof film and organic electronic device obtained using same

Country Status (2)

Country Link
JP (1) JP6269503B6 (en)
WO (1) WO2014083899A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006343A1 (en) * 2014-07-07 2017-04-27 富士フイルム株式会社 Sealed laminate and organic electronic device
WO2019189805A1 (en) * 2018-03-29 2019-10-03 東洋製罐グループホールディングス株式会社 Moisture-barrier laminate
KR20190133727A (en) * 2017-03-29 2019-12-03 아지노모토 가부시키가이샤 Envelope Sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264949A (en) * 1986-05-13 1987-11-17 昭和電工株式会社 Multilayer laminate
JPH02179742A (en) * 1988-12-29 1990-07-12 Toyo Seikan Kaisha Ltd Plastic laminated structural body superior in resistance to permeability to water vapor
JPH08197692A (en) * 1995-01-30 1996-08-06 Dainippon Printing Co Ltd Gas barrier laminating material
JP2004210392A (en) * 2003-01-09 2004-07-29 Toppan Printing Co Ltd Moisture absorbing packaging container
JP2010221716A (en) * 2010-05-28 2010-10-07 Fujifilm Corp Steam barrier film
WO2011016408A1 (en) * 2009-08-05 2011-02-10 味の素株式会社 Film
JP2011161778A (en) * 2010-02-09 2011-08-25 Dainippon Printing Co Ltd Moisture-proof laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027204A (en) * 2004-07-21 2006-02-02 Toppan Printing Co Ltd Water-absorbent film and packaging material using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264949A (en) * 1986-05-13 1987-11-17 昭和電工株式会社 Multilayer laminate
JPH02179742A (en) * 1988-12-29 1990-07-12 Toyo Seikan Kaisha Ltd Plastic laminated structural body superior in resistance to permeability to water vapor
JPH08197692A (en) * 1995-01-30 1996-08-06 Dainippon Printing Co Ltd Gas barrier laminating material
JP2004210392A (en) * 2003-01-09 2004-07-29 Toppan Printing Co Ltd Moisture absorbing packaging container
WO2011016408A1 (en) * 2009-08-05 2011-02-10 味の素株式会社 Film
TW201208169A (en) * 2009-08-05 2012-02-16 Ajinomoto Kk Film
KR20120039753A (en) * 2009-08-05 2012-04-25 아지노모토 가부시키가이샤 Film
JP2011161778A (en) * 2010-02-09 2011-08-25 Dainippon Printing Co Ltd Moisture-proof laminate
JP2010221716A (en) * 2010-05-28 2010-10-07 Fujifilm Corp Steam barrier film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006343A1 (en) * 2014-07-07 2017-04-27 富士フイルム株式会社 Sealed laminate and organic electronic device
KR20190133727A (en) * 2017-03-29 2019-12-03 아지노모토 가부시키가이샤 Envelope Sheet
JPWO2018181426A1 (en) * 2017-03-29 2020-02-06 味の素株式会社 Sealing sheet
JP7283381B2 (en) 2017-03-29 2023-05-30 味の素株式会社 Sealing sheet
KR102579970B1 (en) * 2017-03-29 2023-09-20 아지노모토 가부시키가이샤 Bag sheet
WO2019189805A1 (en) * 2018-03-29 2019-10-03 東洋製罐グループホールディングス株式会社 Moisture-barrier laminate
JP2019171771A (en) * 2018-03-29 2019-10-10 東洋製罐グループホールディングス株式会社 Moisture content barrier laminate
KR20200138313A (en) * 2018-03-29 2020-12-09 도요세이칸 그룹 홀딩스 가부시키가이샤 Moisture barrier laminate
JP7110668B2 (en) 2018-03-29 2022-08-02 東洋製罐グループホールディングス株式会社 Moisture barrier laminate
US11565508B2 (en) 2018-03-29 2023-01-31 Toyo Seikan Group Holdings, Ltd. Moisture barrier laminate
KR102501001B1 (en) 2018-03-29 2023-02-17 도요세이칸 그룹 홀딩스 가부시키가이샤 Moisture barrier laminate

Also Published As

Publication number Publication date
JP6269503B2 (en) 2018-01-31
JP6269503B6 (en) 2018-06-27
JPWO2014083899A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN103309162B (en) Photocurable composition and the packaging system including the barrier layer containing it
TWI603963B (en) Energy ray curable type resin composition and cured product thereof
KR101745572B1 (en) Transparent barrier laminates
JP6276839B2 (en) Polyimide cover substrate
US9013049B2 (en) Surface sealant for optical semiconductor, method for manufacturing organic EL device, organic EL device and organic EL display panel using the same
JP6010838B2 (en) Adhesive film and organic electronic device sealing method using the same
JP6269503B6 (en) Moisture-proof film and organic electronic device using the same
WO2015027393A1 (en) Curable composition and use for electronic device
JP6728982B2 (en) Method for manufacturing glass laminate
US20130236713A1 (en) Transparent flexible film and method for manufacturing thereof
US20200002465A1 (en) Resin composition, molded article, laminate, coating material, and adhesive
JP6340760B2 (en) Water trapping agent, organic electronic device and organic EL device using the same
JPWO2014083899A6 (en) Moisture-proof film and organic electronic device using the same
JP2013075413A (en) Laminated gas barrier film
KR101377840B1 (en) Composition for forming sealing film for e-paper and the sealing film using the composition
US11015013B2 (en) Resin composition, molded body, laminate, gas barrier material, coating material, and adhesive
KR101615050B1 (en) Polymerizable composition and application for same
WO2014083845A1 (en) Resin composition, and cured product (3) thereof
JP2016108512A (en) Resin composition for organic el element, surface sealing agent and organic el device using the same
TW201350556A (en) Composite system for encapsulating electronic device
JP5549448B2 (en) Barrier film, method for producing barrier film, and organic electronic device
TWI600702B (en) Sheet-like epoxy resin composition for face sealing organic el component, method of manufacturing organic el device using the same,organic el device, organic el display panel and organic el lighting
KR20120140394A (en) Adhesive composition for encapsulating an organic electronic element
KR20140073268A (en) Thin film encapsulation for organic electronic device, encapsulation products for organic electronic device containing the same and encapsulating method of organic electronic device
KR20140073714A (en) Thin film encapsulation for organic electronic device, encapsulation products for organic electronic device containing the same and encapsulating method of organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858040

Country of ref document: EP

Kind code of ref document: A1