WO2014080789A1 - Conductive composition for low temperature firing and solar cell - Google Patents

Conductive composition for low temperature firing and solar cell Download PDF

Info

Publication number
WO2014080789A1
WO2014080789A1 PCT/JP2013/080434 JP2013080434W WO2014080789A1 WO 2014080789 A1 WO2014080789 A1 WO 2014080789A1 JP 2013080434 W JP2013080434 W JP 2013080434W WO 2014080789 A1 WO2014080789 A1 WO 2014080789A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composition
conductive
temperature firing
low
epoxy resin
Prior art date
Application number
PCT/JP2013/080434
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 佐藤
石川 和憲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2014548519A priority Critical patent/JPWO2014080789A1/en
Priority to CN201380060257.XA priority patent/CN104798142A/en
Publication of WO2014080789A1 publication Critical patent/WO2014080789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive composition for low-temperature firing and a solar battery cell using the same as a collecting electrode.
  • conductive particles such as silver particles and binders made of thermoplastic resin (for example, acrylic resin, vinyl acetate resin, etc.) or thermosetting resin (for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.), organic
  • thermoplastic resin for example, acrylic resin, vinyl acetate resin, etc.
  • thermosetting resin for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.
  • organic A conductive paste obtained by adding and mixing a solvent, a curing agent, a catalyst, etc. is printed on a substrate (for example, a silicon substrate, an epoxy resin substrate, etc.) so as to have a predetermined pattern.
  • a substrate for example, a silicon substrate, an epoxy resin substrate, etc.
  • a method of manufacturing a solar battery cell or a printed wiring board by forming an electrode or a wiring by heating is known.
  • Patent Document 1 describes “a conductive paste composition for low-temperature firing characterized by containing silver powder, a polyimide silicone resin, and an organic solvent” ( [Claim 1]).
  • Patent Document 2 describes “a conductive paste composition comprising a silicone resin, a conductive powder, a thermosetting component, a curing agent, and a solvent.” ([Claim 1]), it is described that a specific amount of a predetermined epoxy resin or the like is blended as a thermosetting component ([Claim 3]).
  • the applicant of the present invention said that the conductive composition containing “silver powder (A), fatty acid silver salt (B), resin (C), and solvent (D),
  • the fatty acid silver salt (B) is a compound having one carboxy silver base (—COOAg) and one or two hydroxyl groups (—OH), and the content of silver oxide is the solvent (D)
  • the electrically conductive composition is 10 parts by mass or less with respect to 100 parts by mass "([Claim 1])
  • the resin (C) includes” from epoxy resin, polyester resin, silicone resin and urethane resin. " “At least one selected from the group consisting of” is described ([Claim 6]).
  • the present inventor examined a conductive composition containing an epoxy resin or a silicone resin with reference to Patent Documents 1 to 3, and found that the volume resistivity of the formed electrode or wiring (hereinafter also referred to as an electrode or the like). It is clear that contact resistance may increase when an electrode or the like is formed on a transparent conductive layer (eg, transparent conductive oxide layer (TCO)) on a substrate (eg, silicon wafer). became.
  • a transparent conductive layer eg, transparent conductive oxide layer (TCO)
  • the present invention provides a conductive composition for low-temperature firing capable of forming an electrode having a low contact resistance with respect to the transparent conductive layer while maintaining a low volume resistivity, and a solar battery cell using the same as a collecting electrode It is an issue to provide.
  • the inventors have blended indium tin oxide and / or zinc oxide as a metal oxide together with a curable resin, while maintaining a low volume resistivity, The inventors have found that an electrode having a low contact resistance with respect to the transparent conductive layer is formed, and completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the metal oxide (C) is indium tin oxide and / or zinc oxide,
  • a conductive composition for low-temperature firing which is fired at a temperature of 200 ° C. or lower.
  • the conductive composition for low-temperature firing according to any one of (1) to (6) above is used for forming a collecting electrode,
  • the solar cell which comprises a transparent conductive layer as a base layer of the said current collection electrode.
  • a conductive composition capable of forming an electrode or the like having a low contact resistance with respect to the transparent conductive layer while maintaining a low volume resistivity and the current collector electrode are used.
  • a solar battery cell can be provided.
  • an electrode having a low contact resistance with respect to the transparent conductive layer can be formed while maintaining a low volume resistivity even at low-temperature firing of 200 ° C. or lower. Therefore, the solar battery cell (especially a preferred embodiment described later) has an effect of reducing damage caused by heat, which is very useful.
  • a circuit such as an electronic circuit or an antenna can be easily and quickly produced on a material having low heat resistance such as a PET film. Useful.
  • FIG. 1 is a cross-sectional view showing a preferred embodiment of a solar battery cell.
  • the conductive composition for low-temperature firing of the present invention includes conductive particles (A), a curable resin (B), and a metal oxide (C).
  • the metal oxide (C) is indium tin oxide and / or zinc oxide, and is a conductive composition for low-temperature firing that performs firing at a temperature of 200 ° C. or lower.
  • the conductive particles (A) are mixed with indium tin oxide and / or zinc oxide as the metal oxide (C) together with the curable resin (B), thereby reducing the low volume resistivity. It becomes an electroconductive composition which can form an electrode etc. with low contact resistance with respect to a transparent conductive layer, maintaining.
  • the metal oxide (C) is close in composition to the material forming the transparent conductive layer (for example, metal oxide), and the affinity between the electrode and the transparent conductive layer is high.
  • the wettability with the transparent conductive layer is increased, so that the conductive material of the present invention containing the metal oxide (C) also in the fine texture (unevenness) structure on the surface of the substrate (for example, silicon wafer). This is thought to be due to the easy entry of the composition. This is also inferred from the fact that the contact resistance of the formed electrode and the like is increased when the metal oxide (C) is not blended, as shown in a comparative example described later.
  • the conductive particles (A), the curable resin (B), the metal oxide (C), and other components that may be optionally contained will be described in detail.
  • the conductive particles (A) used in the conductive composition of the present invention are not particularly limited, and for example, a metal material having an electrical resistivity of 20 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less can be used.
  • a metal material having an electrical resistivity of 20 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less can be used.
  • Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like.
  • One species may be used alone, or two or more species may be used in combination. Among these, silver and copper are preferable and silver is more preferable because an electrode having a lower volume resistivity can be formed.
  • an average particle diameter means the average value of the particle diameter of a metal powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus.
  • the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
  • the spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
  • the average particle diameter of the conductive particles (A) is preferably 0.7 to 5.0 ⁇ m because the printability is better.
  • the thickness is more preferably 1.0 to 3.0 ⁇ m.
  • a commercial item can be used as said electroconductive particle (A).
  • Specific examples of commercially available silver particles include AG2-1C (average particle size: 1.0 ⁇ m, manufactured by DOWA Electronics), AG4-8F (average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics), AG3- 11F (average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics), AgC-102 (average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Co., Ltd.), AgC-103 (average particle size: 1.5 ⁇ m, Fukuda) Metal foil powder industry), EHD (average particle size: 0.5 ⁇ m, Mitsui Metals), and the like.
  • the curable resin (B) used in the conductive composition of the present invention is not particularly limited as long as it is a thermosetting resin.
  • the thermosetting resin include epoxy resins, organopolysiloxanes, unsaturated polyester resins, and the like. These may be used alone or in combination of two or more. Good. Among these, the adhesion to the transparent conductive layer is good, it is possible to form an electrode or the like having a lower contact resistance, the coating film strength is increased, and the strength of the formed electrode and the like is improved, An epoxy resin and / or an organopolysiloxane described later are preferable, and an epoxy resin and an organopolysiloxane are more preferably used in combination.
  • Epoxy resin is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule, and generally has an epoxy equivalent of 90 to 2000.
  • a conventionally well-known epoxy resin can be used as such an epoxy resin.
  • epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, biphenyl type, and polyalkylene Bifunctional glycidyl ether type epoxy resins such as glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthalene ring, and epoxy compounds having a fluorene group; Polyfunctional glycidyl ether type epoxy resins such as phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type; Glycidyl ester epoxy resins of synthetic fatty acids such as dimer acid; N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyldiaminodiphenylsulfone (TGDDM), te
  • bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable from the viewpoints of curability, heat resistance, durability, and cost.
  • an epoxy resin with little curing shrinkage is preferable to use as the epoxy resin. Since a silicon wafer as a substrate is easily damaged, using an epoxy resin having a large curing shrinkage causes cracking or chipping of the wafer. In recent years, silicon wafers have been made thinner for cost reduction, and an epoxy resin with little curing shrinkage also has an effect of suppressing warpage of the wafer. Ethylene oxide and / or propylene oxide is added because it reduces curing shrinkage and has a lower volume resistivity, better adhesion to the transparent conductive layer, and an electrode with lower contact resistance. An epoxy resin is preferred.
  • the epoxy resin to which ethylene oxide and / or propylene oxide has been added is prepared by adding ethylene and / or propylene when preparing an epoxy resin by reacting bisphenol A, bisphenol F or the like with epichlorohydrin, for example. And then added (modified).
  • Commercially available products can be used as the epoxy resin to which ethylene oxide and / or propylene oxide are added. Specific examples thereof include ethylene oxide-added bisphenol A type epoxy resin (BEO-60E, manufactured by Shin Nippon Rika Co., Ltd.), propylene oxide addition.
  • Bisphenol A type epoxy resin (BPO-20E, manufactured by Shin Nippon Chemical Co., Ltd.), Propylene oxide added bisphenol A type epoxy resin (EP-4010S, manufactured by ADEKA), Propylene oxide added bisphenol A type epoxy resin (EP-4000S, ADEKA) Manufactured) and the like.
  • Another method for adjusting the curing shrinkage of the epoxy resin is to use two or more types of epoxy resins having different molecular weights in combination.
  • a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq because it has a lower volume resistivity, better adhesion to the transparent conductive layer, and can form an electrode having a lower contact resistance.
  • B1 a polyhydric alcohol glycidyl type epoxy resin
  • B3 a diluted bisphenol A type epoxy resin
  • the bisphenol A type epoxy resin (B1) is a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq. Since the epoxy equivalent of the bisphenol A type epoxy resin (B1) is in the above range, when the bisphenol A type epoxy resin (B1) is used together as described above, the curing shrinkage of the conductive composition of the present invention is suppressed, and the substrate And adhesion to the transparent conductive layer is improved. Since the volume resistivity becomes lower, the epoxy equivalent is preferably 2000 to 4000 g / eq, more preferably 2000 to 3500 g / eq.
  • the polyhydric alcohol glycidyl type epoxy resin (B2) is a polyhydric alcohol glycidyl type epoxy resin having an epoxy equivalent of 1000 g / eq or less. Since the polyhydric alcohol glycidyl type epoxy resin (B2) has an epoxy equivalent in the above range, when the polyhydric alcohol glycidyl type epoxy resin (B2) is used in combination as described above, the viscosity of the conductive composition of the present invention. Becomes good and printability becomes good.
  • the epoxy equivalent of the polyhydric alcohol-based glycidyl type epoxy resin (B2) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferably.
  • the dilution type bisphenol A type epoxy resin (B3) is a bisphenol A type epoxy resin having an epoxy equivalent of 1000 g / eq or less. The viscosity is lowered by using a reactive diluent without impairing the properties of the epoxy resin. Since the epoxy equivalent of the bisphenol A type epoxy resin (B3) is in the above range, when the bisphenol A type epoxy resin (B3) is used in combination as described above, the viscosity of the conductive composition of the present invention is improved and the printability is increased. Becomes better.
  • the epoxy equivalent of the bisphenol A type epoxy resin (B3) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferred.
  • organopolysiloxane refers to a polymer composed of one or more repeating units selected from the group consisting of the following four units.
  • R each independently represents a substituted or unsubstituted monovalent hydrocarbon group.
  • R include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group.
  • the alkenyl group include a vinyl group, a butenyl group, a pentenyl group, and an allyl group.
  • at least one of R is a vinyl group because of its high activity and high reactivity.
  • the aryl group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and the like. Among them, for the reason that the adhesion to the transparent conductive layer is good due to the ⁇ - ⁇ interaction, It is preferred that at least one of R is a phenyl group.
  • the organopolysiloxane (B) is represented by at least the above formula (S-3) because it has good adhesion to the transparent conductive layer and can form an electrode having a lower contact resistance. It is preferably a silicone resin having a T unit or a Q unit represented by the above formula (S-4), that is, a crosslinked resin.
  • the organopolysiloxane represented by following formula (1) is mentioned, for example.
  • the weight average molecular weight of the organopolysiloxane represented by the following formula (1) is preferably about 500 to 50,000.
  • R is the same as described in the above formulas (S-1) to (S-3), and X is a hydrogen atom or an alkyl group.
  • A is a positive number
  • b, c, d and e are each independently 0 or a positive number
  • b / a is a number from 0 to 10
  • c / a is a number from 0 to 0.5
  • D / (a + b + c + d) is a number from 0 to 0.3
  • e / (a + b + c + d) is a number from 0 to 0.4.
  • examples of the alkyl group as X include those described as R in the above formulas (S-1) to (S-3).
  • the content (introduction) ratio of a phenyl group or a vinyl group which is a preferable example of R in the above formula (1), is preferably 10 mol% or more, more preferably 25 mol% or more based on the total of R Is more preferably 50 mol% or more.
  • the organopolysiloxane preferably has a phenyl group and / or a vinyl group as described above, and further has an epoxy group for the reason of good adhesion to the transparent conductive layer. It is preferable.
  • R in the above formula (1) is an epoxyalkyl group such as a 2,3-epoxypropyl group, a 3,4-epoxybutyl group, a 4,5-epoxypentyl group, and the like.
  • Glycidoxyalkyl group such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3 Examples include an epoxycyclohexylalkyl group such as a 4-epoxycyclohexyl) propyl group.
  • transduces an epoxy group by making the organopolysiloxane which has a phenyl group and / or a vinyl group, and epoxysilane react is mentioned.
  • the content (introduction) ratio of the arbitrary epoxy group in R of said Formula (1) is 0.1 mol% or more and less than 20 mol% with respect to the sum total of R.
  • the following commercially available products can be used as the organopolysiloxane.
  • KR-220L weight average molecular weight: 5000, functional group: none, average molecular formula: CH 3 SiO 3/2 , manufactured by Shin-Etsu Chemical Co., Ltd.
  • 217 Flake weight average molecular weight: 2000, hydroxyl group content: 7% by weight, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.57 , manufactured by Toray Dow Corning
  • TMS217 weight average molecular weight: 2000, hydroxyl group content: 2% by weight, phenyl group content: 100 mol%, silicone resin in which the above-mentioned 217 Flakes are end-capped with a trimethylsilyl group, manufactured by Toray Dow Corning
  • SH6018 weight average molecular weight: 2000, hydroxyl group content: 6% by weight, phenyl group content: 70
  • the content of the curable resin (B) is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the conductive particles (A), and preferably 2 to 15 parts by mass. More preferably, it is 2 to 10 parts by mass.
  • the ratio thereof epoxy resin / organopolysiloxane is preferably 20/1 to 5/1, More preferably, it is 20/1 to 10/1.
  • the metal oxide (C) used in the conductive composition of the present invention is indium tin oxide and / or zinc oxide.
  • indium tin oxide refers to an inorganic compound obtained by adding several percent of tin (IV) (SnO 2 ) to indium (III) oxide (In 2 O 3 ).
  • Indium salt and tin An indium tin oxide in which tin oxide is uniformly distributed is obtained by mixing an aqueous solution of salt and a precipitation generator such as ammonia to obtain an indium-tin-containing precipitate, and then drying and firing the precipitate. Can do.
  • the average particle diameter of the metal oxide (C) is preferably 10 ⁇ m or less.
  • the average particle diameter means an average value of the particle diameter of the metal oxide, and all the metals existing at a viewing angle of 1 mm 2 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the particle diameter of the oxide can be measured and calculated from the average value.
  • it can also calculate using the specific surface area calculated
  • Average particle size 6 / ( ⁇ ⁇ S)
  • the average particle diameter of zinc oxide is preferably 10 nm or more and less than 100 nm, more preferably 20 to 40 nm, from the viewpoint of dispersibility in the conductive composition. .
  • the average particle size of indium tin oxide is preferably 10 nm or more and less than 100 nm, and preferably 20 to 60 nm, from the viewpoint of dispersibility in the conductive composition. Is more preferable.
  • the content of the metal oxide (C) has good adhesion to the transparent conductive layer, and can form an electrode having a lower contact resistance. Therefore, the conductive particles (A) The amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 5 parts by mass, and still more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass.
  • indium tin oxide when used as the material of the transparent conductive layer described later, indium tin oxide is preferably used as the metal oxide (C).
  • zinc oxide particularly GZO, AZO
  • zinc oxide it is preferable to use zinc oxide as the metal oxide (C).
  • the conductive composition of the present invention contains an epoxy resin or an organopolysiloxane having an epoxy group as the curable resin (C), it preferably contains those curing agents (D).
  • the curing agent (D) for example, a complex of boron trifluoride and an amine compound, which will be described in detail below, is preferably used.
  • a complex of boron trifluoride and an amine compound a complex of boron trifluoride and an aliphatic amine (aliphatic primary amine, aliphatic secondary amine, aliphatic tertiary amine), trifluoride
  • examples thereof include a complex of boron and an alicyclic amine, a complex of boron trifluoride and an aromatic amine, a complex of boron trifluoride and a heterocyclic amine, and the like.
  • the heterocyclic amine may be an alicyclic heterocyclic amine (hereinafter also referred to as “alicyclic heterocyclic amine”) or an aromatic heterocyclic amine (hereinafter referred to as “aromatic heterocyclic amine”).
  • aliphatic primary amine examples include methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, n-hexylamine, n-octylamine, 2 -Ethylhexylamine, laurylamine and the like.
  • aliphatic secondary amine examples include dimethylamine, diethylamine, methylethylamine, methylpropylamine, di-iso-propylamine, di-n-propylamine, ethylpropylamine, di-n-butylamine, di- Examples include iso-butylamine, dipropenylamine, chlorobutylpropylamine, di (chlorobutyl) amine, di (bromoethyl) amine and the like.
  • Specific examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tributylamine, triethanolamine and the like.
  • alicyclic amine examples include cyclohexylamine.
  • aromatic amines include benzylamine.
  • alicyclic heterocyclic amine examples include pyrrolidine, piperidine, 2-pipecoline, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, piperazine, and homopiperazine.
  • aromatic heterocyclic amine examples include pyridine, pyrrole, imidazole, pyridazine, pyrimidine, quinoline, triazine, tetrazine, isoquinoline, quinazoline, naphthyridine, pteridine, acridine, phenazine and the like.
  • the curing agent (D) has a lower volume resistivity and can form an electrode having a lower contact resistance to the transparent conductive layer, so that boron trifluoride piperidine, boron trifluoride ethylamine and trifluoride are formed.
  • a complex selected from the group consisting of boron triethanolamine is preferred.
  • the content of the curing agent (D) is lower than the volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, so that the conductive particles (A) are 100 parts by mass.
  • the amount is preferably 0.1 to 1 part by mass.
  • the conductive composition of the present invention preferably contains a solvent (E) from the viewpoint of workability such as printability.
  • the solvent (E) is not particularly limited as long as the conductive composition of the present invention can be applied onto a substrate. Specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, ⁇ -terpineol, and the like. These may be used alone or in combination of two or more.
  • the electrically conductive composition of this invention may contain additives, such as a reducing agent, as needed.
  • a reducing agent include ethylene glycols.
  • the conductive composition of the present invention is the above-mentioned conductive particle (A) 100 for the fatty acid silver salt that is an essential component of the conductive composition described in Patent Document 3 (Japanese Patent Laid-Open No. 2012-023095). It is preferable that it is less than 5 mass parts with respect to a mass part.
  • the manufacturing method of the electroconductive composition of this invention is not specifically limited,
  • the said electroconductive particle (A), the said curable resin (B), the said metal oxide (C), and the said hardening which may be contained if desired
  • the method of mixing an agent (D), the said solvent (E), etc. with a roll, a kneader, an extruder, a universal stirrer etc. is mentioned.
  • the solar battery cell of the present invention is a solar battery cell using the above-described conductive composition of the present invention as a collecting electrode.
  • an amorphous silicon layer and a transparent conductive layer are provided above and below an n-type single crystal silicon substrate, and the transparent conductive layer is used as a base layer.
  • a solar cell (for example, a heterojunction solar cell) cell in which a collecting electrode is formed on the transparent conductive layer using the conductive composition of the present invention described above can be given.
  • the solar battery cell is a solar battery cell in which single crystal silicon and amorphous silicon are hybridized and exhibits high conversion efficiency. Below, the suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
  • a solar battery cell 100 includes an n-type single crystal silicon substrate 11 and an i-type amorphous silicon layer 12a and 12b, and a p-type amorphous silicon layer 13a and an n-type amorphous silicon layer above and below it. 13b, transparent conductive layers 14a and 14b, and current collecting electrodes 15a and 15b formed using the above-described conductive composition of the present invention.
  • the n-type single crystal silicon substrate is a single crystal silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
  • the i-type amorphous silicon layer is an undoped amorphous silicon layer.
  • the p-type amorphous silicon is an amorphous silicon layer doped with an impurity imparting p-type. Impurities that give p-type are as described above.
  • the n-type amorphous silicon is an amorphous silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
  • the said collector electrode is a collector electrode formed using the electrically conductive composition of this invention mentioned above. A specific aspect of the current collecting electrode is the same as that of the front surface electrode or the back surface electrode described above.
  • Transparent conductive layer Specific examples of the material for the transparent conductive layer include single metal oxides such as zinc oxide (ZNO), tin oxide, indium oxide, and titanium oxide, indium tin oxide (ITO), indium zinc oxide, indium titanium oxide, and oxide.
  • Various metal oxides such as tin cadmium, gallium-added zinc oxide (GZO), aluminum-added zinc oxide (AZO), boron-added zinc oxide, titanium-added zinc oxide, titanium-added indium oxide, zirconium-added indium oxide, fluorine-added tin oxide And a doping type metal oxide.
  • the manufacturing method of the said photovoltaic cell is not specifically limited, For example, it can manufacture by the method etc. of Unexamined-Japanese-Patent No. 2010-34162.
  • the i-type amorphous silicon layer 12a is formed on one main surface of the n-type single crystal silicon substrate 11 by a PECVD (plasma enhanced chemical vapor deposition) method or the like.
  • a p-type amorphous silicon layer 13a is formed on the formed i-type amorphous silicon layer 12a by PECVD or the like.
  • an i-type amorphous silicon layer 12b is formed on the other main surface of the n-type single crystal silicon substrate 11 by PECVD or the like. Further, an n-type amorphous silicon layer 13b is formed on the formed i-type amorphous silicon layer 12b by PECVD or the like.
  • transparent conductive layers 14a and 14b such as ITO are formed on the p-type amorphous silicon layer 13a and the n-type amorphous silicon layer 13b by sputtering or the like.
  • the conductive composition of the present invention is applied on the formed transparent conductive layers 14a and 14b to form wirings, and the formed wirings are heat-treated to form current collecting electrodes 15a and 15b.
  • the wiring formation step is a step of forming a wiring by applying the conductive composition of the present invention on a silicon substrate.
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the heat treatment step is a step of forming a conductive wiring (electrode) by heat-treating the coating film formed in the wiring forming step. By heat-treating the wiring, the conductive particles (A) are connected to form an electrode.
  • the heat treatment temperature is not particularly limited as long as it is 200 ° C. or less, but it is preferably 150 to 200 ° C.
  • Examples 1 to 8, Comparative Example 1 The epoxy resin shown in the following Table 1 was blended so as to have the composition ratio (parts by mass) shown in the following Table 1, and these were mixed to prepare a conductive composition.
  • volume resistivity and contact resistance of each prepared conductive composition were evaluated by the following methods.
  • ITO indium oxide doped with Sn
  • AZO Al-doped ZnO
  • each prepared electrically conductive composition was apply
  • the film was dried in an oven at 200 ° C. for 30 minutes to produce a thin wire-shaped conductive film (thin wire electrode). At this time, the distance between the electrodes was 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm.
  • the resistance value between each thin wire electrode was measured using a digital multimeter (manufactured by HIOKI: 3541 RESISTANCE HiTESTER), the contact resistance was calculated by Transfer Length Method (TLM method), and the relative value with Comparative Example 1 was calculated. .
  • TLM method Transfer Length Method
  • Conductive particles Silver particles (AG4-8F, average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics)
  • Epoxy resin B1 Bisphenol A type epoxy resin (YD-019, epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Epoxy resin B2 Polyethylene glycol diglycidyl ether (polyhydric alcohol glycidyl type epoxy resin) (EX-821, epoxy equivalent: 185 g / eq, manufactured by Nagase ChemteX Corporation)
  • Epoxy resin B3 bisphenol A type epoxy resin (JER806, epoxy equivalent: 160 to 170 g / eq, manufactured by Mitsubishi Chemical Corporation)
  • Organopolysiloxane B4 217 Flake [weight average molecular weight: 2000, hydroxyl group content: 7% by weight, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.57 , Toray (Dow Corning) -Organopolysiloxane B5: 217 Flakes (manufactured by Dow Corning Toray) 100 g is added with 20 g of epoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) and reacted in toluene in the presence of acetic acid catalyst for 4 hours.
  • KBM-403 epoxysilane
  • Organopolysiloxane B6 R10330 [weight average molecular weight: 3000 to 4000, vinyl group content: 7 mol%, average molecular formula: (Me 3 SiO 1/2 ) 0.13 (SiO 4 ) 0.8 (ViMe 2 SiO 1/2 ) 0.07 , Blue Star Silicone)
  • Organopolysiloxane B7 KR-220L [weight average molecular weight: 5000, functional group: none, average molecular formula: CH 3 SiO 3/2 , manufactured by Shin-Etsu Chemical Co., Ltd.]
  • Metal oxide Indium tin oxide (average particle size: 40 nm, manufactured by Aldrich)
  • Metal oxide Zinc oxide (average particle size: 60 nm, manufactured by Honjo Chemical Co., Ltd.)
  • Curing agent Boron trifluoride piperidine (manufactured by Stella Chemifa)
  • Solvent ⁇ -terpineol (manufactured by Yasuhara Chemical)
  • Comparative Example 1 prepared without using a metal oxide had good volume resistivity but poor contact resistance.
  • Examples 1 to 8 prepared using a predetermined metal oxide together with a predetermined curable resin all maintain a low volume resistivity equivalent to that of Comparative Example 1 and also have good contact resistance.
  • ITO indium tin oxide
  • the contact resistance is lower when indium tin oxide is used as the metal oxide (C)
  • the material of the transparent conductive layer is It was found that when aluminum-added zinc oxide (AZO) was used, the contact resistance was lower when zinc oxide was used as the metal oxide (C).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The purpose of the present invention is to provide: a conductive composition for low temperature firing, which is capable of forming an electrode or the like that has low contact resistance with respect to a transparent conductive layer, while maintaining low volume resistivity; and a solar cell which uses this conductive composition for low temperature firing for a collector electrode. A conductive composition for low temperature firing according to the present invention contains (A) conductive particles, (B) a curable resin and (C) a metal oxide. The metal oxide (C) is indium tin oxide and/or zinc oxide, and firing is carried out at a temperature of 200°C or less.

Description

低温焼成用導電性組成物および太陽電池セルConductive composition for low-temperature firing and solar cell
 本発明は、低温焼成用導電性組成物およびそれを集電電極に用いた太陽電池セルに関する。 The present invention relates to a conductive composition for low-temperature firing and a solar battery cell using the same as a collecting electrode.
 従来、銀粒子などの導電性粒子に熱可塑性樹脂(例えば、アクリル樹脂、酢酸ビニル樹脂等)や熱硬化性樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂等)などからなるバインダー、有機溶剤、硬化剤、触媒等を添加し混合して得られる導電性ペースト(導電性組成物)を、基板(例えばシリコン基板、エポキシ樹脂基板など)上に所定のパターンとなるように印刷し、これらを加熱して電極や配線を形成し、太陽電池セルやプリント配線板を製造する方法が知られている。 Conventionally, conductive particles such as silver particles and binders made of thermoplastic resin (for example, acrylic resin, vinyl acetate resin, etc.) or thermosetting resin (for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.), organic A conductive paste (conductive composition) obtained by adding and mixing a solvent, a curing agent, a catalyst, etc. is printed on a substrate (for example, a silicon substrate, an epoxy resin substrate, etc.) so as to have a predetermined pattern. A method of manufacturing a solar battery cell or a printed wiring board by forming an electrode or a wiring by heating is known.
 このような導電性組成物として、例えば、特許文献1には、「銀粉末、ポリイミドシリコーン樹脂および有機溶剤を含むことを特徴とする低温焼成用導電性ペースト組成物。」が記載されている([請求項1])。
 また、特許文献2には、「シリコーン樹脂と、導電性粉末と、熱硬化性成分と、硬化剤と、溶剤とを含有することを特徴とする導電性ペースト組成物。」が記載されており([請求項1])、熱硬化性成分として、所定のエポキシ樹脂等を特定量配合することが記載されている([請求項3])。
As such a conductive composition, for example, Patent Document 1 describes “a conductive paste composition for low-temperature firing characterized by containing silver powder, a polyimide silicone resin, and an organic solvent” ( [Claim 1]).
Patent Document 2 describes “a conductive paste composition comprising a silicone resin, a conductive powder, a thermosetting component, a curing agent, and a solvent.” ([Claim 1]), it is described that a specific amount of a predetermined epoxy resin or the like is blended as a thermosetting component ([Claim 3]).
 更に、特許文献3では、本出願人により、「銀粉(A)と、脂肪酸銀塩(B)と、樹脂(C)と、溶媒(D)とを含有する導電性組成物であって、前記脂肪酸銀塩(B)が、カルボキシ銀塩基(-COOAg)を1個有し、かつ、水酸基(-OH)を1個または2個有する化合物であり、酸化銀の含有量が前記溶媒(D)100質量部に対して10質量部以下である導電性組成物。」が提案されており([請求項1])、樹脂(C)として、「エポキシ樹脂、ポリエステル樹脂、シリコーン樹脂およびウレタン樹脂からなる群から選択される少なくとも1種」が記載されている([請求項6])。 Furthermore, in Patent Document 3, the applicant of the present invention said that the conductive composition containing “silver powder (A), fatty acid silver salt (B), resin (C), and solvent (D), The fatty acid silver salt (B) is a compound having one carboxy silver base (—COOAg) and one or two hydroxyl groups (—OH), and the content of silver oxide is the solvent (D) The electrically conductive composition is 10 parts by mass or less with respect to 100 parts by mass "([Claim 1]), and the resin (C) includes" from epoxy resin, polyester resin, silicone resin and urethane resin. " "At least one selected from the group consisting of" is described ([Claim 6]).
特開2007-184153号公報JP 2007-184153 A 特開2007-224191号公報JP 2007-224191 A 特開2012-023095号公報JP 2012-023095 A
 しかしながら、本発明者が、特許文献1~3を参考にエポキシ樹脂やシリコーン樹脂を配合した導電性組成物について検討したところ、形成される電極や配線(以下、電極等ともいう)の体積抵抗率は低くなるが、基板(例えば、シリコンウエハ)上の透明導電層(例えば、透明導電酸化物層(TCO))に電極等を形成したときに、接触抵抗が高くなる場合があることが明らかとなった。 However, the present inventor examined a conductive composition containing an epoxy resin or a silicone resin with reference to Patent Documents 1 to 3, and found that the volume resistivity of the formed electrode or wiring (hereinafter also referred to as an electrode or the like). It is clear that contact resistance may increase when an electrode or the like is formed on a transparent conductive layer (eg, transparent conductive oxide layer (TCO)) on a substrate (eg, silicon wafer). became.
 そこで、本発明は、低い体積抵抗率を維持しつつ、透明導電層に対する接触抵抗の低い電極等を形成することができる低温焼成用導電性組成物およびそれを集電電極に用いた太陽電池セルを提供することを課題とする。 Accordingly, the present invention provides a conductive composition for low-temperature firing capable of forming an electrode having a low contact resistance with respect to the transparent conductive layer while maintaining a low volume resistivity, and a solar battery cell using the same as a collecting electrode It is an issue to provide.
 本発明者らは、上記課題を解決するため鋭意検討した結果、硬化性樹脂とともに、金属酸化物としてインジウム錫酸化物および/または酸化亜鉛を配合することにより、低い体積抵抗率を維持しつつ、透明導電層に対する接触抵抗の低い電極等が形成されることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the inventors have blended indium tin oxide and / or zinc oxide as a metal oxide together with a curable resin, while maintaining a low volume resistivity, The inventors have found that an electrode having a low contact resistance with respect to the transparent conductive layer is formed, and completed the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
 (1)導電性粒子(A)と、硬化性樹脂(B)と、金属酸化物(C)とを含有し、
 上記金属酸化物(C)が、インジウム錫酸化物および/または酸化亜鉛であり、
 200℃以下の温度で焼成を行う低温焼成用導電性組成物。
 (2)上記導電性粒子(A)が、銀粒子および/または銅粒子である上記(1)に記載の低温焼成用導電性組成物。
 (3)上記硬化性樹脂(B)が、エポキシ樹脂および/またはオルガノポリシロキサンである上記(1)または(2)に記載の低温焼成用導電性組成物。
 (4)上記オルガノポリシロキサンが、フェニル基および/またはビニル基を有する上記(3)に記載の低温焼成用導電性組成物。
 (5)上記硬化性樹脂(B)の含有量が、上記導電性粒子(A)100質量部に対して2~20質量部である上記(1)~(4)のいずれかに記載の低温焼成用導電性組成物。
 (6)上記金属酸化物(C)の含有量が、上記導電性粒子(A)100質量部に対して0.1~5質量部である上記(1)~(5)のいずれかに記載の低温焼成用導電性組成物。
(1) containing conductive particles (A), a curable resin (B), and a metal oxide (C);
The metal oxide (C) is indium tin oxide and / or zinc oxide,
A conductive composition for low-temperature firing, which is fired at a temperature of 200 ° C. or lower.
(2) The conductive composition for low-temperature firing according to (1), wherein the conductive particles (A) are silver particles and / or copper particles.
(3) The conductive composition for low-temperature firing according to (1) or (2) above, wherein the curable resin (B) is an epoxy resin and / or an organopolysiloxane.
(4) The conductive composition for low-temperature firing according to (3), wherein the organopolysiloxane has a phenyl group and / or a vinyl group.
(5) The low temperature according to any one of (1) to (4) above, wherein the content of the curable resin (B) is 2 to 20 parts by mass with respect to 100 parts by mass of the conductive particles (A). A conductive composition for firing.
(6) The content of the metal oxide (C) is 0.1 to 5 parts by mass with respect to 100 parts by mass of the conductive particles (A). A conductive composition for low-temperature firing.
 (7)上記(1)~(6)のいずれかに記載の低温焼成用導電性組成物を集電電極の形成に用い、
 上記集電電極の下地層として透明導電層を具備する太陽電池セル。
 (8)上記(7)に記載の太陽電池セルを用いた太陽電池モジュール。
(7) The conductive composition for low-temperature firing according to any one of (1) to (6) above is used for forming a collecting electrode,
The solar cell which comprises a transparent conductive layer as a base layer of the said current collection electrode.
(8) A solar cell module using the solar cell according to (7).
 以下に示すように、本発明によれば、低い体積抵抗率を維持しつつ、透明導電層に対する接触抵抗の低い電極等を形成することができる導電性組成物およびそれを集電電極に用いた太陽電池セルを提供することができる。
 また、本発明の低温焼成用導電性組成物を用いれば、200℃以下の低温焼成であっても、低い体積抵抗率を維持しつつ、透明導電層に対する接触抵抗の低い電極等を形成することができるため、太陽電池セル(特に後述する好適態様)への熱によるダメージを軽減できる効果も有し、非常に有用である。
 更に、本発明の低温焼成用導電性組成物を用いれば、例えばPETフィルムなどの耐熱性の低い材料上にも電子回路、アンテナ等の回路を容易かつ短時間で作製することができるため非常に有用である。
As shown below, according to the present invention, a conductive composition capable of forming an electrode or the like having a low contact resistance with respect to the transparent conductive layer while maintaining a low volume resistivity and the current collector electrode are used. A solar battery cell can be provided.
In addition, by using the conductive composition for low-temperature firing of the present invention, an electrode having a low contact resistance with respect to the transparent conductive layer can be formed while maintaining a low volume resistivity even at low-temperature firing of 200 ° C. or lower. Therefore, the solar battery cell (especially a preferred embodiment described later) has an effect of reducing damage caused by heat, which is very useful.
Furthermore, if the conductive composition for low-temperature firing of the present invention is used, a circuit such as an electronic circuit or an antenna can be easily and quickly produced on a material having low heat resistance such as a PET film. Useful.
図1は太陽電池セルの好適態様を示す断面図である。FIG. 1 is a cross-sectional view showing a preferred embodiment of a solar battery cell.
 〔導電性組成物〕
 本発明の低温焼成用導電性組成物(以下、「本発明の導電性組成物」とも略す。)は、導電性粒子(A)と、硬化性樹脂(B)と、金属酸化物(C)とを含有し、上記金属酸化物(C)がインジウム錫酸化物および/または酸化亜鉛であり、200℃以下の温度で焼成を行う低温焼成用の導電性組成物である。
[Conductive composition]
The conductive composition for low-temperature firing of the present invention (hereinafter also abbreviated as “conductive composition of the present invention”) includes conductive particles (A), a curable resin (B), and a metal oxide (C). The metal oxide (C) is indium tin oxide and / or zinc oxide, and is a conductive composition for low-temperature firing that performs firing at a temperature of 200 ° C. or lower.
 本発明においては、導電性粒子(A)に対して、硬化性樹脂(B)とともに、金属酸化物(C)としてインジウム錫酸化物および/または酸化亜鉛を配合することにより、低い体積抵抗率を維持しつつ、透明導電層に対する接触抵抗の低い電極等を形成することができる導電性組成物となる。
 これは、詳細には明らかではないが、金属酸化物(C)が、透明導電層を形成する材料(例えば金属酸化物等)と成分が近く、電極等と透明導電層との親和性が高くなり、その結果、透明導電層との濡れ性が高まることから、基板(例えば、シリコンウエハ)表面の微細なテクスチャ(凹凸)構造の中にも金属酸化物(C)を含有する本発明の導電性組成物が入り込み易くなったためと考えられる。
 このことは、後述する比較例に示すように、金属酸化物(C)を配合しない場合には、形成される電極等の接触抵抗も高くなるという事実からも推測される。
In the present invention, the conductive particles (A) are mixed with indium tin oxide and / or zinc oxide as the metal oxide (C) together with the curable resin (B), thereby reducing the low volume resistivity. It becomes an electroconductive composition which can form an electrode etc. with low contact resistance with respect to a transparent conductive layer, maintaining.
Although this is not clear in detail, the metal oxide (C) is close in composition to the material forming the transparent conductive layer (for example, metal oxide), and the affinity between the electrode and the transparent conductive layer is high. As a result, the wettability with the transparent conductive layer is increased, so that the conductive material of the present invention containing the metal oxide (C) also in the fine texture (unevenness) structure on the surface of the substrate (for example, silicon wafer). This is thought to be due to the easy entry of the composition.
This is also inferred from the fact that the contact resistance of the formed electrode and the like is increased when the metal oxide (C) is not blended, as shown in a comparative example described later.
 以下に、導電性粒子(A)、硬化性樹脂(B)および金属酸化物(C)ならびに所望により含有してもよい他の成分について詳述する。 Hereinafter, the conductive particles (A), the curable resin (B), the metal oxide (C), and other components that may be optionally contained will be described in detail.
 <導電性粒子(A)>
 本発明の導電性組成物で用いる導電性粒子(A)は特に限定されず、例えば、電気抵抗率が20×10-6Ω・cm以下の金属材料を用いることができる。
 上記金属材料としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、より低い体積抵抗率の電極等を形成することができる理由から、銀、銅であるのが好ましく、銀であるのがより好ましい。
<Conductive particles (A)>
The conductive particles (A) used in the conductive composition of the present invention are not particularly limited, and for example, a metal material having an electrical resistivity of 20 × 10 −6 Ω · cm or less can be used.
Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like. One species may be used alone, or two or more species may be used in combination.
Among these, silver and copper are preferable and silver is more preferable because an electrode having a lower volume resistivity can be formed.
 本発明においては、上記導電性粒子(A)は、印刷性が良好となる理由から、平均粒子径が0.5~10μmの金属粉末を用いるのが好ましい。
 上記金属粉末のうち、より低い体積抵抗率の電極等を形成することができる理由から、球状の銀粒子および/または銅粒子を用いるのがより好ましい。なお、銅粒子は、耐酸化性を改善する観点から、有機化合物、無機化合物、無機酸化物、銅以外の金属等で表面を改質または被覆した銅粒子を用いるのが好ましい。
 ここで、平均粒子径とは、金属粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、金属粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 また、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
In the present invention, it is preferable to use a metal powder having an average particle diameter of 0.5 to 10 μm for the conductive particles (A) because of good printability.
Among the above metal powders, it is more preferable to use spherical silver particles and / or copper particles for the reason that an electrode having a lower volume resistivity can be formed. In addition, from a viewpoint of improving oxidation resistance, it is preferable to use copper particles whose surfaces are modified or coated with an organic compound, an inorganic compound, an inorganic oxide, a metal other than copper, or the like.
Here, an average particle diameter means the average value of the particle diameter of a metal powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus. In addition, when the cross-section of the metal powder is an ellipse, the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
The spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
 また、本発明においては、上記導電性粒子(A)の平均粒子径は、印刷性がより良好となる理由から、0.7~5.0μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1.0~3.0μmであるのがより好ましい。 In the present invention, the average particle diameter of the conductive particles (A) is preferably 0.7 to 5.0 μm because the printability is better. For reasons of excellent properties, the thickness is more preferably 1.0 to 3.0 μm.
 更に、本発明においては、上記導電性粒子(A)として市販品を用いることができる。
 上記銀粒子の市販品の具体例としては、AG2-1C(平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG4-8F(平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG3-11F(平均粒子径:1.4μm、DOWAエレクトロニクス社製)、AgC-102(平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(平均粒子径:1.5μm、福田金属箔粉工業社製)、EHD(平均粒子径:0.5μm、三井金属社製)等が挙げられる。
Furthermore, in this invention, a commercial item can be used as said electroconductive particle (A).
Specific examples of commercially available silver particles include AG2-1C (average particle size: 1.0 μm, manufactured by DOWA Electronics), AG4-8F (average particle size: 2.2 μm, manufactured by DOWA Electronics), AG3- 11F (average particle size: 1.4 μm, manufactured by DOWA Electronics), AgC-102 (average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), AgC-103 (average particle size: 1.5 μm, Fukuda) Metal foil powder industry), EHD (average particle size: 0.5 μm, Mitsui Metals), and the like.
 <硬化性樹脂(B)>
 本発明の導電性組成物で用いる硬化性樹脂(B)は、熱硬化性樹脂であれば特に限定されない。
 上記熱硬化性樹脂としては、具体的には、例えば、エポキシ樹脂、オルガノポリシロキサン、不飽和ポリエステル樹脂等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができ、また、塗膜強度が高くなり、形成される電極等の強度が向上する理由から、後述するエポキシ樹脂および/またはオルガノポリシロキサンであるのが好ましく、エポキシ樹脂およびオルガノポリシロキサンを併用するのがより好ましい。
<Curable resin (B)>
The curable resin (B) used in the conductive composition of the present invention is not particularly limited as long as it is a thermosetting resin.
Specific examples of the thermosetting resin include epoxy resins, organopolysiloxanes, unsaturated polyester resins, and the like. These may be used alone or in combination of two or more. Good.
Among these, the adhesion to the transparent conductive layer is good, it is possible to form an electrode or the like having a lower contact resistance, the coating film strength is increased, and the strength of the formed electrode and the like is improved, An epoxy resin and / or an organopolysiloxane described later are preferable, and an epoxy resin and an organopolysiloxane are more preferably used in combination.
 (エポキシ樹脂)
 上記エポキシ樹脂は、1分子中に2個以上のオキシラン環(エポキシ基)を有する化合物からなる樹脂であれば特に限定されず、一般的に、エポキシ当量が90~2000のものである。
 このようなエポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。
 具体的には、例えば、ビスフェノールA型、ビスフェノールF型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型等のビスフェニル基を有するエポキシ化合物や、ポリアルキレングリコール型、アルキレングリコール型のエポキシ化合物や、ナフタレン環を有するエポキシ化合物や、フルオレン基を有するエポキシ化合物等の二官能型のグリシジルエーテル系エポキシ樹脂;
 フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の多官能型のグリシジルエーテル系エポキシ樹脂;
 ダイマー酸等の合成脂肪酸のグリシジルエステル系エポキシ樹脂;
 N,N,N′,N′-テトラグリシジルジアミノジフェニルメタン(TGDDM)、テトラグリシジルジアミノジフェニルスルホン(TGDDS)、テトラグリシジル-m-キシリレンジアミン(TGMXDA)、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、N,N-ジグリシジルアニリン、テトラグリシジル1,3-ビスアミノメチルシクロヘキサン(TG1,3-BAC)、トリグリシジルイソシアヌレート(TGIC)等のグリシジルアミン系エポキシ樹脂;
 トリシクロ〔5,2,1,02,6〕デカン環を有するエポキシ化合物、具体的には、例えば、ジシクロペンタジエンとメタクレゾール等のクレゾール類またはフェノール類を重合させた後、エピクロルヒドリンを反応させる公知の製造方法によって得ることができるエポキシ化合物;
 脂環型エポキシ樹脂;東レチオコール社製のフレップ10に代表されるエポキシ樹脂主鎖に硫黄原子を有するエポキシ樹脂;ウレタン結合を有するウレタン変性エポキシ樹脂;ポリブタジエン、液状ポリアクリロニトリル-ブタジエンゴムまたはアクリロニトリルブタジエンゴム(NBR)を含有するゴム変性エポキシ樹脂等が挙げられる。
(Epoxy resin)
The epoxy resin is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule, and generally has an epoxy equivalent of 90 to 2000.
A conventionally well-known epoxy resin can be used as such an epoxy resin.
Specifically, for example, epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, biphenyl type, and polyalkylene Bifunctional glycidyl ether type epoxy resins such as glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthalene ring, and epoxy compounds having a fluorene group;
Polyfunctional glycidyl ether type epoxy resins such as phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type;
Glycidyl ester epoxy resins of synthetic fatty acids such as dimer acid;
N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyldiaminodiphenylsulfone (TGDDS), tetraglycidyl-m-xylylenediamine (TGMXDA), triglycidyl-p-aminophenol, triglycidyl- Glycidylamine epoxy resins such as m-aminophenol, N, N-diglycidylaniline, tetraglycidyl 1,3-bisaminomethylcyclohexane (TG1,3-BAC), triglycidyl isocyanurate (TGIC);
Tricyclo [5,2,1,0 2,6] epoxy compound having a decane ring, specifically, for example, after polymerizing the cresols or phenols such as dicyclopentadiene and cresol are reacted with epichlorohydrin Epoxy compounds obtainable by known production methods;
An alicyclic epoxy resin; an epoxy resin represented by Toray Rethiokol's Flep 10 epoxy resin having a sulfur atom in the main chain; a urethane-modified epoxy resin having a urethane bond; polybutadiene, liquid polyacrylonitrile-butadiene rubber or acrylonitrile butadiene rubber Examples thereof include a rubber-modified epoxy resin containing (NBR).
 これらは1種単独で用いても、2種以上を併用してもよい。
 また、これらのうち、硬化性、耐熱性、耐久性およびコストの観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂であるのが好ましい。
These may be used alone or in combination of two or more.
Of these, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable from the viewpoints of curability, heat resistance, durability, and cost.
 本発明においては、上記エポキシ樹脂は、硬化収縮が少ないエポキシ樹脂を用いるのが好ましい。基板であるシリコンウエハは破損しやすいため、硬化収縮が大きいエポキシ樹脂を用いると、ウエハの割れや欠けの原因になる。昨今では、低コスト化のため、シリコンウエハの薄型化が進んでおり、硬化収縮の少ないエポキシ樹脂は、ウエハの反りを抑える効果も併せ持つ。
 硬化収縮を低減し、また、体積抵抗率がより低く、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができる理由から、エチレンオキシドおよび/またはプロピレンオキシドが付加されたエポキシ樹脂であるのが好ましい。
 ここで、エチレンオキシドおよび/またはプロピレンオキシドが付加されたエポキシ樹脂は、例えば、ビスフェノールA、ビスフェノールF等をエピクロロヒドリンと反応させてエポキシ樹脂を調製する際に、エチレンおよび/またはプロピレンを添加して付加(変性)することで得られる。
 エチレンオキシドおよび/またはプロピレンオキシドが付加されたエポキシ樹脂としては市販品を用いることができ、その具体例としては、エチレンオキシド付加ビスフェノールA型エポキシ樹脂(BEO-60E、新日本理化社製)、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂(BPO-20E、新日本理化社製)、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂(EP-4010S、ADEKA社製)、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂(EP-4000S、ADEKA社製)等が挙げられる。
In the present invention, it is preferable to use an epoxy resin with little curing shrinkage as the epoxy resin. Since a silicon wafer as a substrate is easily damaged, using an epoxy resin having a large curing shrinkage causes cracking or chipping of the wafer. In recent years, silicon wafers have been made thinner for cost reduction, and an epoxy resin with little curing shrinkage also has an effect of suppressing warpage of the wafer.
Ethylene oxide and / or propylene oxide is added because it reduces curing shrinkage and has a lower volume resistivity, better adhesion to the transparent conductive layer, and an electrode with lower contact resistance. An epoxy resin is preferred.
Here, the epoxy resin to which ethylene oxide and / or propylene oxide has been added is prepared by adding ethylene and / or propylene when preparing an epoxy resin by reacting bisphenol A, bisphenol F or the like with epichlorohydrin, for example. And then added (modified).
Commercially available products can be used as the epoxy resin to which ethylene oxide and / or propylene oxide are added. Specific examples thereof include ethylene oxide-added bisphenol A type epoxy resin (BEO-60E, manufactured by Shin Nippon Rika Co., Ltd.), propylene oxide addition. Bisphenol A type epoxy resin (BPO-20E, manufactured by Shin Nippon Chemical Co., Ltd.), Propylene oxide added bisphenol A type epoxy resin (EP-4010S, manufactured by ADEKA), Propylene oxide added bisphenol A type epoxy resin (EP-4000S, ADEKA) Manufactured) and the like.
 エポキシ樹脂の硬化収縮を調整する別な手法として、異なる分子量のエポキシ樹脂を2種類以上併用することが挙げられる。
 なかでも、体積抵抗率がより低く、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができる理由から、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂(B1)およびエポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂(B2)または1000g/eq以下の希釈タイプのビスフェノールA型エポキシ樹脂(B3)を併用するのが好ましい。
Another method for adjusting the curing shrinkage of the epoxy resin is to use two or more types of epoxy resins having different molecular weights in combination.
Among them, a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq because it has a lower volume resistivity, better adhesion to the transparent conductive layer, and can form an electrode having a lower contact resistance. It is preferable to use (B1) and a polyhydric alcohol glycidyl type epoxy resin (B2) having an epoxy equivalent of 1000 g / eq or less or a diluted bisphenol A type epoxy resin (B3) of 1000 g / eq or less.
  (ビスフェノールA型エポキシ樹脂(B1))
 上記ビスフェノールA型エポキシ樹脂(B1)は、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂である。
 上記ビスフェノールA型エポキシ樹脂(B1)は、エポキシ当量が上記範囲であるため、上記のとおりビスフェノールA型エポキシ樹脂(B1)を併用すると、本発明の導電性組成物の硬化収縮が抑えられ、基板や透明導電層に対する密着性が良好となる。より体積抵抗率が低くなることから、エポキシ当量は2000~4000g/eqであるのが好ましく、2000~3500g/eqであるのがより好ましい。
(Bisphenol A type epoxy resin (B1))
The bisphenol A type epoxy resin (B1) is a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq.
Since the epoxy equivalent of the bisphenol A type epoxy resin (B1) is in the above range, when the bisphenol A type epoxy resin (B1) is used together as described above, the curing shrinkage of the conductive composition of the present invention is suppressed, and the substrate And adhesion to the transparent conductive layer is improved. Since the volume resistivity becomes lower, the epoxy equivalent is preferably 2000 to 4000 g / eq, more preferably 2000 to 3500 g / eq.
  (多価アルコール系グリシジル型エポキシ樹脂(B2))
 上記多価アルコール系グリシジル型エポキシ樹脂(B2)は、エポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂である。
 上記多価アルコール系グリシジル型エポキシ樹脂(B2)は、エポキシ当量が上記範囲であるため、上記のとおり多価アルコール系グリシジル型エポキシ樹脂(B2)を併用すると、本発明の導電性組成物の粘度が良好となり、印刷性が良好となる。
 また、上記多価アルコール系グリシジル型エポキシ樹脂(B2)のエポキシ当量は、スクリーン印刷をする際の粘度が適当になる理由から、100~400g/eqであるのが好ましく、100~300g/eqであるのがより好ましい。
(Polyhydric alcohol glycidyl type epoxy resin (B2))
The polyhydric alcohol glycidyl type epoxy resin (B2) is a polyhydric alcohol glycidyl type epoxy resin having an epoxy equivalent of 1000 g / eq or less.
Since the polyhydric alcohol glycidyl type epoxy resin (B2) has an epoxy equivalent in the above range, when the polyhydric alcohol glycidyl type epoxy resin (B2) is used in combination as described above, the viscosity of the conductive composition of the present invention. Becomes good and printability becomes good.
The epoxy equivalent of the polyhydric alcohol-based glycidyl type epoxy resin (B2) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferably.
  (希釈タイプのビスフェノールA型エポキシ樹脂(B3))
 希釈タイプのビスフェノールA型エポキシ樹脂(B3)は、エポキシ当量が1000g/eq以下のビスフェノールA型エポキシ樹脂である。エポキシ樹脂の特性を損なわずに反応性希釈剤を用いて低粘度化したものである。
 上記ビスフェノールA型エポキシ樹脂(B3)は、エポキシ当量が上記範囲であるため、上記のとおりビスフェノールA型エポキシ樹脂(B3)を併用すると、本発明の導電性組成物の粘度が良好となり、印刷性が良好となる。
 また、上記ビスフェノールA型エポキシ樹脂(B3)のエポキシ当量は、スクリーン印刷をする際の粘度が適当になる理由から、100~400g/eqであるのが好ましく、100~300g/eqであるのがより好ましい。
(Dilution type bisphenol A epoxy resin (B3))
The dilution type bisphenol A type epoxy resin (B3) is a bisphenol A type epoxy resin having an epoxy equivalent of 1000 g / eq or less. The viscosity is lowered by using a reactive diluent without impairing the properties of the epoxy resin.
Since the epoxy equivalent of the bisphenol A type epoxy resin (B3) is in the above range, when the bisphenol A type epoxy resin (B3) is used in combination as described above, the viscosity of the conductive composition of the present invention is improved and the printability is increased. Becomes better.
The epoxy equivalent of the bisphenol A type epoxy resin (B3) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferred.
 (オルガノポリシロキサン)
 上記オルガノポリシロキサンは、以下に示す4つの単位からなる群より選ばれる1種以上の繰り返し単位から構成される重合体をいう。
(Organopolysiloxane)
The organopolysiloxane refers to a polymer composed of one or more repeating units selected from the group consisting of the following four units.
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 上記式(S-1)~(S-3)で表される繰返し単位中、Rは、それぞれ独立に、置換または非置換の一価の炭化水素基を表す。
 また、Rとしては、例えば、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数6~12のアリール基が挙げられる。
 上記アルキル基としては、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等が挙げられる。
 上記アルケニル基としては、具体的には、例えば、ビニル基、ブテニル基、ペンテニル基、アリル基等が挙げられ、中でも、活性が高く、反応性が高い理由から、Rの少なくとも1つがビニル基であるのが好ましい。
 上記アリール基としては、具体的には、例えば、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられ、中でも、π-π相互作用により透明導電層に対する密着性が良好となる理由から、Rの少なくとも1つがフェニル基であるのが好ましい。
In the repeating units represented by the above formulas (S-1) to (S-3), R each independently represents a substituted or unsubstituted monovalent hydrocarbon group.
Examples of R include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group.
Specific examples of the alkenyl group include a vinyl group, a butenyl group, a pentenyl group, and an allyl group. Among them, at least one of R is a vinyl group because of its high activity and high reactivity. Preferably there is.
Specific examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and the like. Among them, for the reason that the adhesion to the transparent conductive layer is good due to the π-π interaction, It is preferred that at least one of R is a phenyl group.
 本発明においては、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができる理由から、上記オルガノポリシロキサン(B)は、少なくとも上記式(S-3)で表されるT単位または上記式(S-4)で表されるQ単位を含むもの、すなわち、架橋構造を有するシリコーンレジンであるのが好ましい。 In the present invention, the organopolysiloxane (B) is represented by at least the above formula (S-3) because it has good adhesion to the transparent conductive layer and can form an electrode having a lower contact resistance. It is preferably a silicone resin having a T unit or a Q unit represented by the above formula (S-4), that is, a crosslinked resin.
 上記シリコーンレジンとしては、例えば、下記式(1)で表されるオルガノポリシロキサンが挙げられる。なお、下記式(1)で表されるオルガノポリシロキサンの重量平均分子量は、500~50000程度であるのが好ましい。
 (RSiO3/2a(R2SiO2/2b(R3SiO1/2c(SiO4/2d(XO1/2e・・・(1)
 {式中、Rは上記式(S-1)~(S-3)において説明したものと同様であり、Xは水素原子またはアルキル基である。また、aは正数であり、b、c、dおよびeはそれぞれ独立に0または正数であり、b/aは0~10の数であり、c/aは0~0.5の数であり、d/(a+b+c+d)は0~0.3の数であり、e/(a+b+c+d)は0~0.4の数である。}
As said silicone resin, the organopolysiloxane represented by following formula (1) is mentioned, for example. The weight average molecular weight of the organopolysiloxane represented by the following formula (1) is preferably about 500 to 50,000.
(RSiO 3/2 ) a (R 2 SiO 2/2 ) b (R 3 SiO 1/2 ) c (SiO 4/2 ) d (XO 1/2 ) e (1)
{Wherein R is the same as described in the above formulas (S-1) to (S-3), and X is a hydrogen atom or an alkyl group. A is a positive number, b, c, d and e are each independently 0 or a positive number, b / a is a number from 0 to 10, and c / a is a number from 0 to 0.5. D / (a + b + c + d) is a number from 0 to 0.3, and e / (a + b + c + d) is a number from 0 to 0.4. }
 上記式(1)中、Xとしてのアルキル基は、上記式(S-1)~(S-3)におけるRとして説明したものと同様のものが挙げられる。
 また、上記式(1)のRにおける好適例であるフェニル基またはビニル基の含有(導入)割合は、Rの合計に対して10モル%以上であるのが好ましく、25モル%以上であるのがより好ましく、50モル%以上であるのが更に好ましい。
In the above formula (1), examples of the alkyl group as X include those described as R in the above formulas (S-1) to (S-3).
In addition, the content (introduction) ratio of a phenyl group or a vinyl group, which is a preferable example of R in the above formula (1), is preferably 10 mol% or more, more preferably 25 mol% or more based on the total of R Is more preferably 50 mol% or more.
 本発明においては、上記オルガノポリシロキサンは、上述したようにフェニル基および/またはビニル基を有しているのが好ましく、透明導電層に対する密着性が良好となる理由から、更にエポキシ基を有しているのが好ましい。
 ここで、エポキシ基を有する態様としては、例えば、上記式(1)におけるRが、2,3-エポキシプロピル基、3,4-エポキシブチル基、4,5-エポキシペンチル基などのエポキシアルキル基;2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基などのグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基などのエポキシシクロヘキシルアルキル基である態様が挙げられる。
 他の態様としては、後述する実施例において示すように、フェニル基および/またはビニル基を有するオルガノポリシロキサンとエポキシシランとを反応させることによりエポキシ基を導入する態様が挙げられる。
 また、上記式(1)のRにおける任意のエポキシ基の含有(導入)割合は、Rの合計に対して0.1モル%以上20モル%未満であるのが好ましい。
In the present invention, the organopolysiloxane preferably has a phenyl group and / or a vinyl group as described above, and further has an epoxy group for the reason of good adhesion to the transparent conductive layer. It is preferable.
Here, as an embodiment having an epoxy group, for example, R in the above formula (1) is an epoxyalkyl group such as a 2,3-epoxypropyl group, a 3,4-epoxybutyl group, a 4,5-epoxypentyl group, and the like. Glycidoxyalkyl group such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3 Examples include an epoxycyclohexylalkyl group such as a 4-epoxycyclohexyl) propyl group.
As another aspect, as shown in the Example mentioned later, the aspect which introduce | transduces an epoxy group by making the organopolysiloxane which has a phenyl group and / or a vinyl group, and epoxysilane react is mentioned.
Moreover, it is preferable that the content (introduction) ratio of the arbitrary epoxy group in R of said Formula (1) is 0.1 mol% or more and less than 20 mol% with respect to the sum total of R.
 本発明においては、上記オルガノポリシロキサンとしては、以下に示す市販品を用いることができる。
 ・KR-220L〔重量平均分子量:5000、官能基:なし、平均分子式:CH3SiO3/2、信越化学工業社製〕
 ・217Flake〔重量平均分子量:2000、水酸基含有量:7重量%、フェニル基含有量:100モル%、平均分子式:(PhSiO3/21.0(HO1/20.57、東レ・ダウコーニング社製〕
 ・TMS217〔重量平均分子量:2000、水酸基含有量:2重量%、フェニル基含有量:100モル%、上述の217Flakeにトリメチルシリル基で末端封止処理を施したシリコーンレジン、東レ・ダウコーニング社製〕
 ・SH6018〔重量平均分子量:2000、水酸基含有量:6重量%、フェニル基含有量:70モル%、プロピル基:30モル%、平均分子式:(PhSiO3/20.7(ProSiO3/20.3(HO1/20.48、東レ・ダウコーニング社製〕
 ・SR-21〔重量平均分子量:3800、水酸基含有量:6重量%、フェニル基含有量:100モル%、平均分子式:(PhSiO3/21.0(HO1/20.48、小西化学工業社製〕
 ・SR-20〔重量平均分子量:6700、水酸基含有量:3重量%、フェニル基含有量:100モル%、平均分子式:(PhSiO3/21.0(HO1/20.24、小西化学工業社製〕
 ・R10330〔重量平均分子量:3000~4000、ビニル基含有量:7モル%、平均分子式:(Me3SiO1/20.13(SiO40.8(ViMe2SiO1/20.07、ブルースターシリコーン〕
In the present invention, the following commercially available products can be used as the organopolysiloxane.
KR-220L (weight average molecular weight: 5000, functional group: none, average molecular formula: CH 3 SiO 3/2 , manufactured by Shin-Etsu Chemical Co., Ltd.)
217 Flake (weight average molecular weight: 2000, hydroxyl group content: 7% by weight, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.57 , manufactured by Toray Dow Corning ]
TMS217 (weight average molecular weight: 2000, hydroxyl group content: 2% by weight, phenyl group content: 100 mol%, silicone resin in which the above-mentioned 217 Flakes are end-capped with a trimethylsilyl group, manufactured by Toray Dow Corning)
SH6018 [weight average molecular weight: 2000, hydroxyl group content: 6% by weight, phenyl group content: 70 mol%, propyl group: 30 mol%, average molecular formula: (PhSiO 3/2 ) 0.7 (ProSiO 3/2 ) 0.3 (HO 1/2 ) 0.48 , manufactured by Toray Dow Corning)
SR-21 [weight average molecular weight: 3800, hydroxyl group content: 6% by weight, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.48 , Konishi Chemical Co., Ltd. Made)
SR-20 [weight average molecular weight: 6700, hydroxyl group content: 3 wt%, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.24 , Konishi Chemical Co., Ltd. Made)
R10330 [weight average molecular weight: 3000 to 4000, vinyl group content: 7 mol%, average molecular formula: (Me 3 SiO 1/2 ) 0.13 (SiO 4 ) 0.8 (ViMe 2 SiO 1/2 ) 0.07 , Brewster silicone ]
 本発明においては、上記硬化性樹脂(B)の含有量は、上記導電性粒子(A)100質量部に対して2~20質量部であるのが好ましく、2~15質量部であるのがより好ましく、2~10質量部であるのがさらに好ましい。
 また、上記硬化性樹脂(B)として、上記エポキシ樹脂と上記オルガノポリシロキサンを併用する場合、これらの比率(エポキシ樹脂/オルガノポリシロキサン)は、20/1~5/1であるのが好ましく、20/1~10/1であるのがより好ましい。
In the present invention, the content of the curable resin (B) is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the conductive particles (A), and preferably 2 to 15 parts by mass. More preferably, it is 2 to 10 parts by mass.
Further, when the epoxy resin and the organopolysiloxane are used in combination as the curable resin (B), the ratio thereof (epoxy resin / organopolysiloxane) is preferably 20/1 to 5/1, More preferably, it is 20/1 to 10/1.
 <金属酸化物(C)>
 本発明の導電性組成物で用いる金属酸化物(C)は、インジウム錫酸化物および/または酸化亜鉛である。
 ここで、インジウム錫酸化物とは、酸化インジウム(III) (In23)に数%の酸化スズ(IV) (SnO2)を添加してなる無機化合物のことをいい、インジウム塩と錫塩の混合水溶液とアンモニア等の沈殿生成剤とを混合し、インジウム-錫含有沈殿を得て、次いでこれを乾燥して焼成することにより、酸化錫が均一に分布したインジウム錫酸化物を得ることができる。
<Metal oxide (C)>
The metal oxide (C) used in the conductive composition of the present invention is indium tin oxide and / or zinc oxide.
Here, indium tin oxide refers to an inorganic compound obtained by adding several percent of tin (IV) (SnO 2 ) to indium (III) oxide (In 2 O 3 ). Indium salt and tin An indium tin oxide in which tin oxide is uniformly distributed is obtained by mixing an aqueous solution of salt and a precipitation generator such as ammonia to obtain an indium-tin-containing precipitate, and then drying and firing the precipitate. Can do.
 本発明においては、上記金属酸化物(C)の平均粒子径は10μm以下であるのが好ましい。
 ここで、平均粒子径とは、金属酸化物の粒子径の平均値をいい、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて1mm2の視野角に存在する全ての金属酸化物の粒子径を測定し、その平均値から算出することができる。また、BET法から求めた比表面積と下記式(式中、Sは金属酸化物の比表面積を表し、ρは金属酸化物の密度を表す)を用いて算出することもできる。
 平均粒子径=6/(ρ×S)
In the present invention, the average particle diameter of the metal oxide (C) is preferably 10 μm or less.
Here, the average particle diameter means an average value of the particle diameter of the metal oxide, and all the metals existing at a viewing angle of 1 mm 2 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The particle diameter of the oxide can be measured and calculated from the average value. Moreover, it can also calculate using the specific surface area calculated | required from BET method and a following formula (In formula, S represents the specific surface area of a metal oxide, and (rho) represents the density of a metal oxide).
Average particle size = 6 / (ρ × S)
 上記金属酸化物(C)のうち、酸化亜鉛の平均粒子径は、導電性組成物中での分散性の観点から、10nm以上100nm未満であるのが好ましく、20~40nmであるのがより好ましい。 Among the metal oxides (C), the average particle diameter of zinc oxide is preferably 10 nm or more and less than 100 nm, more preferably 20 to 40 nm, from the viewpoint of dispersibility in the conductive composition. .
 また、上記金属酸化物(C)のうち、インジウム錫酸化物の平均粒子径は、導電性組成物中での分散性の観点から、10nm以上100nm未満であるのが好ましく、20~60nmであるのがより好ましい。 Of the above metal oxides (C), the average particle size of indium tin oxide is preferably 10 nm or more and less than 100 nm, and preferably 20 to 60 nm, from the viewpoint of dispersibility in the conductive composition. Is more preferable.
 本発明においては、上記金属酸化物(C)の含有量は、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することがでる理由から、上記導電性粒子(A)100質量部に対して0.1~5質量部であるのが好ましく、0.2~5質量部であるのがより好ましく、0.5~5質量部であるのがさらに好ましい。 In the present invention, the content of the metal oxide (C) has good adhesion to the transparent conductive layer, and can form an electrode having a lower contact resistance. Therefore, the conductive particles (A) The amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 5 parts by mass, and still more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass.
 また、本発明においては、後述する透明導電層の材料として酸化インジウムスズ(ITO)を用いる場合には、上記金属酸化物(C)としてインジウム錫酸化物を用いるのが好ましく、同様に、後述する透明導電層の材料として酸化亜鉛(特に、GZO、AZO)を用いる場合には、上記金属酸化物(C)として酸化亜鉛を用いるのが好ましい。 In the present invention, when indium tin oxide (ITO) is used as the material of the transparent conductive layer described later, indium tin oxide is preferably used as the metal oxide (C). When using zinc oxide (particularly GZO, AZO) as the material of the transparent conductive layer, it is preferable to use zinc oxide as the metal oxide (C).
 <硬化剤(D)>
 本発明の導電性組成物は、上記硬化性樹脂(C)としてエポキシ樹脂やエポキシ基を有するオルガノポリシロキサンを含有する場合、それらの硬化剤(D)を含有するのが好ましい。
 上記硬化剤(D)としては、例えば、以下に詳述する三フッ化ホウ素とアミン化合物との錯体を用いるのが好ましい。
<Curing agent (D)>
When the conductive composition of the present invention contains an epoxy resin or an organopolysiloxane having an epoxy group as the curable resin (C), it preferably contains those curing agents (D).
As the curing agent (D), for example, a complex of boron trifluoride and an amine compound, which will be described in detail below, is preferably used.
 三フッ化ホウ素とアミン化合物との錯体としては、三フッ化ホウ素と脂肪族アミン(脂肪族第1級アミン、脂肪族第2級アミン、脂肪族第3級アミン)との錯体、三フッ化ホウ素と脂環式アミンとの錯体、三フッ化ホウ素と芳香族アミンとの錯体、三フッ化ホウ素と複素環アミンとの錯体などが挙げられる。上記複素環アミンは、脂環式の複素環アミン(以下、「脂環式複素環アミン」ともいう。)であっても、芳香族の複素環アミン(以下、「芳香族複素環アミン」ともいう。)であってもよい。
 脂肪族第1級アミンの具体例としては、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、iso-ブチルアミン、sec-ブチルアミン、n-ヘキシルアミン、n-オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン等が挙げられる。脂肪族第2級アミンの具体例としては、ジメチルアミン、ジエチルアミン、メチルエチルアミン、メチルプロピルアミン、ジ-iso-プロピルアミン、ジ-n-プロピルアミン、エチルプロピルアミン、ジ-n-ブチルアミン、ジ-iso-ブチルアミン、ジプロペニルアミン、クロロブチルプロピルアミン、ジ(クロロブチル)アミン、ジ(ブロモエチル)アミン等が挙げられる。脂肪族第3級アミンの具体例としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン等が挙げられる。脂環式アミンの具体例としては、シクロヘキシルアミン等が挙げられる。芳香族アミンとしては、ベンジルアミン等が挙げられる。脂環式複素環アミンの具体例としては、ピロリジン、ピペリジン、2-ピペコリン、3-ピペコリン、4-ピペコリン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ピペラジン、ホモピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-プロピルピペラジン、N-メチルホモピペラジン、N-アセチルピペラジン、1-(クロロフェニル)ピペラジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、モルホリン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、N-アミノプロピル-2-ピペコリン、N-アミノプロピル-4-ピペコリン、1,4-ビス(アミノプロピル)ピペラジン、トリエチレンジアミン、2-メチルトリエチエレンジアミン等が挙げられる。芳香族複素環アミンの具体例としては、ピリジン、ピロール、イミダゾール、ピリダジン、ピリミジン、キノリン、トリアジン、テトラジン、イソキノリン、キナゾリン、ナフチリジン、プテリジン、アクリジン、フェナジン等が挙げられる。
As a complex of boron trifluoride and an amine compound, a complex of boron trifluoride and an aliphatic amine (aliphatic primary amine, aliphatic secondary amine, aliphatic tertiary amine), trifluoride Examples thereof include a complex of boron and an alicyclic amine, a complex of boron trifluoride and an aromatic amine, a complex of boron trifluoride and a heterocyclic amine, and the like. The heterocyclic amine may be an alicyclic heterocyclic amine (hereinafter also referred to as “alicyclic heterocyclic amine”) or an aromatic heterocyclic amine (hereinafter referred to as “aromatic heterocyclic amine”). It may be.)
Specific examples of the aliphatic primary amine include methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, n-hexylamine, n-octylamine, 2 -Ethylhexylamine, laurylamine and the like. Specific examples of the aliphatic secondary amine include dimethylamine, diethylamine, methylethylamine, methylpropylamine, di-iso-propylamine, di-n-propylamine, ethylpropylamine, di-n-butylamine, di- Examples include iso-butylamine, dipropenylamine, chlorobutylpropylamine, di (chlorobutyl) amine, di (bromoethyl) amine and the like. Specific examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tributylamine, triethanolamine and the like. Specific examples of the alicyclic amine include cyclohexylamine. Examples of aromatic amines include benzylamine. Specific examples of the alicyclic heterocyclic amine include pyrrolidine, piperidine, 2-pipecoline, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, piperazine, and homopiperazine. N-methylpiperazine, N-ethylpiperazine, N-propylpiperazine, N-methylhomopiperazine, N-acetylpiperazine, 1- (chlorophenyl) piperazine, N-aminoethylpiperidine, N-aminopropylpiperidine, N-aminoethyl Piperazine, N-aminopropylpiperazine, morpholine, N-aminoethylmorpholine, N-aminopropylmorpholine, N-aminopropyl-2-pipecholine, N-aminopropyl-4-pipecholine, 1,4-bis (aminopropyl) piperazine , Triethylenediamine , 2-methyl-triethylene Chie diamine and the like. Specific examples of the aromatic heterocyclic amine include pyridine, pyrrole, imidazole, pyridazine, pyrimidine, quinoline, triazine, tetrazine, isoquinoline, quinazoline, naphthyridine, pteridine, acridine, phenazine and the like.
 上記硬化剤(D)は、体積抵抗率がより低く、透明導電層に対する接触抵抗のより低い電極等を形成することができる理由から、三フッ化ホウ素ピペリジン、三フッ化ホウ素エチルアミンおよび三フッ化ホウ素トリエタノールアミンからなる群より選択される錯体であることが好ましい。 The curing agent (D) has a lower volume resistivity and can form an electrode having a lower contact resistance to the transparent conductive layer, so that boron trifluoride piperidine, boron trifluoride ethylamine and trifluoride are formed. A complex selected from the group consisting of boron triethanolamine is preferred.
 上記硬化剤(D)の含有量は、体積抵抗率がより低く、透明導電層に対する接触抵抗がより低い電極等を形成することができる理由から、上記導電性粒子(A)100質量部に対して0.1~1質量部であるのが好ましい。 The content of the curing agent (D) is lower than the volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, so that the conductive particles (A) are 100 parts by mass. The amount is preferably 0.1 to 1 part by mass.
 <溶媒(E)>
 本発明の導電性組成物は、印刷性等の作業性の観点から、溶媒(E)を含有するのが好ましい。
 上記溶媒(E)は、本発明の導電性組成物を基板上に塗布することができるものであれば特に限定されず、その具体例としては、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
<Solvent (E)>
The conductive composition of the present invention preferably contains a solvent (E) from the viewpoint of workability such as printability.
The solvent (E) is not particularly limited as long as the conductive composition of the present invention can be applied onto a substrate. Specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, α-terpineol, and the like. These may be used alone or in combination of two or more.
 <添加剤>
 本発明の導電性組成物は、必要に応じて、還元剤等の添加剤を含有していてもよい。
 上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
 また、本発明の導電性組成物は、特許文献3(特開2012-023095号公報)に記載された導電性組成物の必須成分である脂肪酸銀塩については、上記導電性粒子(A)100質量部に対して5質量部未満であるのが好ましい。
<Additives>
The electrically conductive composition of this invention may contain additives, such as a reducing agent, as needed.
Specific examples of the reducing agent include ethylene glycols.
In addition, the conductive composition of the present invention is the above-mentioned conductive particle (A) 100 for the fatty acid silver salt that is an essential component of the conductive composition described in Patent Document 3 (Japanese Patent Laid-Open No. 2012-023095). It is preferable that it is less than 5 mass parts with respect to a mass part.
 本発明の導電性組成物の製造方法は特に限定されず、上記導電性粒子(A)、上記硬化性樹脂(B)および上記金属酸化物(C)ならびに所望により含有していてもよい上記硬化剤(D)および上記溶媒(E)等を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。 The manufacturing method of the electroconductive composition of this invention is not specifically limited, The said electroconductive particle (A), the said curable resin (B), the said metal oxide (C), and the said hardening which may be contained if desired The method of mixing an agent (D), the said solvent (E), etc. with a roll, a kneader, an extruder, a universal stirrer etc. is mentioned.
 〔太陽電池セル〕
 本発明の太陽電池セルは、上述した本発明の導電性組成物を集電電極に用いた太陽電池セルである。
[Solar cells]
The solar battery cell of the present invention is a solar battery cell using the above-described conductive composition of the present invention as a collecting electrode.
 <太陽電池セルの好適態様>
 本発明の太陽電池セルの好適態様としては、n型単結晶シリコン基板を中心にその上下にアモルファスシリコン層および透明導電層(例えば、TCO)を具備し、上記透明導電層を下地層として、上記透明導電層上に上述した本発明の導電性組成物を用いて集電電極を形成した太陽電池(例えばヘテロ接合型太陽電池)セルが挙げられる。上記太陽電池セルは、単結晶シリコンとアモルファスシリコンとをハイブリッドした太陽電池セルであり、高い変換効率を示す。
 以下に、本発明の太陽電池セルの好適態様について図1を用いて説明する。
<Preferred embodiment of solar battery cell>
As a preferred embodiment of the solar cell of the present invention, an amorphous silicon layer and a transparent conductive layer (for example, TCO) are provided above and below an n-type single crystal silicon substrate, and the transparent conductive layer is used as a base layer. A solar cell (for example, a heterojunction solar cell) cell in which a collecting electrode is formed on the transparent conductive layer using the conductive composition of the present invention described above can be given. The solar battery cell is a solar battery cell in which single crystal silicon and amorphous silicon are hybridized and exhibits high conversion efficiency.
Below, the suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
 図1に示すように、太陽電池セル100は、n型単結晶シリコン基板11を中心に、その上下にi型アモルファスシリコン層12aおよび12b、並びに、p型アモルファスシリコン層13aおよびn型アモルファスシリコン層13b、並びに、透明導電層14aおよび14b、並びに、上述した本発明の導電性組成物を用いて形成した集電電極15aおよび15bを具備する。 As shown in FIG. 1, a solar battery cell 100 includes an n-type single crystal silicon substrate 11 and an i-type amorphous silicon layer 12a and 12b, and a p-type amorphous silicon layer 13a and an n-type amorphous silicon layer above and below it. 13b, transparent conductive layers 14a and 14b, and current collecting electrodes 15a and 15b formed using the above-described conductive composition of the present invention.
 上記n型単結晶シリコン基板は、n型を与える不純物がドープされた単結晶シリコン層である。n型を与える不純物は上述のとおりである。
 上記i型アモルファスシリコン層は、ドープされていないアモルファスシリコン層である。
 上記p型アモルファスシリコンは、p型を与える不純物がドープされたアモルファスシリコン層である。p型を与える不純物は上述のとおりである。
 上記n型アモルファスシリコンは、n型を与える不純物がドープされたアモルファスシリコン層である。n型を与える不純物は上述のとおりである。
 上記集電電極は、上述した本発明の導電性組成物を用いて形成された集電電極である。集電電極の具体的な態様は上述した表面電極または裏面電極と同じである。
The n-type single crystal silicon substrate is a single crystal silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
The i-type amorphous silicon layer is an undoped amorphous silicon layer.
The p-type amorphous silicon is an amorphous silicon layer doped with an impurity imparting p-type. Impurities that give p-type are as described above.
The n-type amorphous silicon is an amorphous silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
The said collector electrode is a collector electrode formed using the electrically conductive composition of this invention mentioned above. A specific aspect of the current collecting electrode is the same as that of the front surface electrode or the back surface electrode described above.
 (透明導電層)
 上記透明導電層の材料の具体例としては、酸化亜鉛(ZNO)、酸化スズ、酸化インジウム、酸化チタンなどの単一金属酸化物、酸化インジウムスズ(ITO)、酸化インジウム亜鉛、酸化インジウムチタン、酸化スズカドミウム、などの多種金属酸化物、ガリウム添加酸化亜鉛(GZO)、アルミニウム添加酸化亜鉛(AZO)、硼素添加酸化亜鉛、チタン添加酸化亜鉛、チタン添加酸化インジウム、ジルコニウム添加酸化インジウム、フッ素添加酸化スズなどのドーピング型金属酸化物などが挙げられる。
(Transparent conductive layer)
Specific examples of the material for the transparent conductive layer include single metal oxides such as zinc oxide (ZNO), tin oxide, indium oxide, and titanium oxide, indium tin oxide (ITO), indium zinc oxide, indium titanium oxide, and oxide. Various metal oxides such as tin cadmium, gallium-added zinc oxide (GZO), aluminum-added zinc oxide (AZO), boron-added zinc oxide, titanium-added zinc oxide, titanium-added indium oxide, zirconium-added indium oxide, fluorine-added tin oxide And a doping type metal oxide.
 <太陽電池セルの製造方法>
 上記太陽電池セルの製造方法は特に限定されないが、例えば、特開2010-34162号公報に記載の方法などで製造することができる。
 具体的には、n型単結晶シリコン基板11の片方の主面上に、PECVD(plasma enhanced chemical vapor deposition)法などによって、i型アモルファスシリコン層12aを形成する。さらに、形成したi型アモルファスシリコン層12a上にPECVD法などによってp型アモルファスシリコン層13aを形成する。
 次に、n型単結晶シリコン基板11のもう一方の主面上に、PECVD法などによって、i型アモルファスシリコン層12bを形成する。さらに、形成したi型アモルファスシリコン層12b上にPECVD法などによってn型アモルファスシリコン層13bを形成する。
 次に、スパッタ法などによって、p型アモルファスシリコン層13a上およびn型アモルファスシリコン層13b上にITOなどの透明導電層14aおよび14bを形成する。
 次に、形成した透明導電層14aおよび14b上に本発明の導電性組成物を塗布して配線を形成し、さらに、形成した配線を熱処理することで集電電極15aおよび15bを形成する。
 以下に、配線を形成する工程および熱処理する工程について詳述する。
<Solar cell manufacturing method>
Although the manufacturing method of the said photovoltaic cell is not specifically limited, For example, it can manufacture by the method etc. of Unexamined-Japanese-Patent No. 2010-34162.
Specifically, the i-type amorphous silicon layer 12a is formed on one main surface of the n-type single crystal silicon substrate 11 by a PECVD (plasma enhanced chemical vapor deposition) method or the like. Further, a p-type amorphous silicon layer 13a is formed on the formed i-type amorphous silicon layer 12a by PECVD or the like.
Next, an i-type amorphous silicon layer 12b is formed on the other main surface of the n-type single crystal silicon substrate 11 by PECVD or the like. Further, an n-type amorphous silicon layer 13b is formed on the formed i-type amorphous silicon layer 12b by PECVD or the like.
Next, transparent conductive layers 14a and 14b such as ITO are formed on the p-type amorphous silicon layer 13a and the n-type amorphous silicon layer 13b by sputtering or the like.
Next, the conductive composition of the present invention is applied on the formed transparent conductive layers 14a and 14b to form wirings, and the formed wirings are heat-treated to form current collecting electrodes 15a and 15b.
Below, the process of forming wiring and the process of heat-treating will be described in detail.
 (配線形成工程)
 配線形成工程は、本発明の導電性組成物をシリコン基板上に塗布して配線を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
(Wiring formation process)
The wiring formation step is a step of forming a wiring by applying the conductive composition of the present invention on a silicon substrate.
Here, specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
 (熱処理工程)
 熱処理工程は、上記配線形成工程で形成された塗膜を熱処理して導電性の配線(電極)を形成する工程である。
 配線を熱処理することにより、導電性粒子(A)が連結され、電極が形成される。
 ここで、熱処理温度(焼成温度)は200℃以下であれば特に限定されないが、150~200℃であることが好ましい。
(Heat treatment process)
The heat treatment step is a step of forming a conductive wiring (electrode) by heat-treating the coating film formed in the wiring forming step.
By heat-treating the wiring, the conductive particles (A) are connected to form an electrode.
Here, the heat treatment temperature (firing temperature) is not particularly limited as long as it is 200 ° C. or less, but it is preferably 150 to 200 ° C.
 以下、実施例を用いて、本発明の導電性組成物について詳細に説明する。ただし、本発明はこれに限定されるものではない。 Hereinafter, the conductive composition of the present invention will be described in detail using examples. However, the present invention is not limited to this.
 (実施例1~8、比較例1)
 下記第1表に示すエポキシ樹脂等を下記第1表中に示す組成比(質量部)となるように配合し、これらを混合することにより導電性組成物を調製した。
(Examples 1 to 8, Comparative Example 1)
The epoxy resin shown in the following Table 1 was blended so as to have the composition ratio (parts by mass) shown in the following Table 1, and these were mixed to prepare a conductive composition.
 調製した各導電性組成物について、体積抵抗率および接触抵抗を以下に示す方法で評価した。 The volume resistivity and contact resistance of each prepared conductive composition were evaluated by the following methods.
 <体積抵抗率(比抵抗)>
 ソーダライムガラスの表面に、透明導電層としてITO(Snをドープした酸化インジウム)およびAZO(AlをドープしたZnO)を製膜して評価用のガラス基板を作製した。
 次いで、調製した各導電性組成物を、ガラス基板上にスクリーン印刷で塗布して、20mm×20mmのベタ塗りであるテストパターンを形成した。
 オーブンにて200℃で30分間乾燥し、導電性被膜を作製した。
 作製した各導電性被膜について、抵抗率計(ロレスターGP、三菱化学社製)を用いた4端子4探針法により体積抵抗率を評価した。結果を第1表に示す。なお、ITOを製膜したガラス基板と、AZOを製膜したガラス基板とでは、体積抵抗率は同じ値であったため、下記第1表においては、その値を示す。
<Volume resistivity (specific resistance)>
On the surface of soda lime glass, ITO (indium oxide doped with Sn) and AZO (Al doped ZnO) were formed as a transparent conductive layer to prepare a glass substrate for evaluation.
Subsequently, each prepared electrically conductive composition was apply | coated by screen printing on the glass substrate, and the test pattern which is a solid coating of 20 mm x 20 mm was formed.
It dried for 30 minutes at 200 degreeC in oven, and produced the electroconductive film.
About each produced electroconductive film, the volume resistivity was evaluated by the 4-terminal 4 probe method using the resistivity meter (Lorestar GP, Mitsubishi Chemical Corporation make). The results are shown in Table 1. In addition, since the volume resistivity was the same value with the glass substrate which formed ITO into a film, and the glass substrate which formed AZO, the value is shown in the following Table 1.
 <接触抵抗>
 まず、ソーダライムガラスの表面に、透明導電層としてITO(Snをドープした酸化インジウム)およびAZO(AlをドープしたZnO)を製膜して評価用のガラス基板を作製した。
 次いで、調製した各導電性組成物を、ガラス基板上にスクリーン印刷で塗布して、幅300um、長さ2.5cmの細線形状のテストパターンを形成した。
 オーブンにて200℃で30分間乾燥し、細線形状の導電性被膜(細線電極)を作製した。このとき、電極間の距離を1mm、2mm、3mm、4mmおよび5mmとした。
 各細線電極間の抵抗値をデジタルマルチメーター(HIOKI社製:3541 RESISTANCE HiTESTER)を用いて測定し、Transfer Length Method(TLM法)により接触抵抗を算出し、比較例1との相対値を算出した。結果を下記第1表に示す。
<Contact resistance>
First, ITO (indium oxide doped with Sn) and AZO (Al-doped ZnO) were formed as transparent conductive layers on the surface of soda lime glass to produce a glass substrate for evaluation.
Subsequently, each prepared electrically conductive composition was apply | coated by screen printing on the glass substrate, and the test pattern of the thin line shape of width 300um and length 2.5cm was formed.
The film was dried in an oven at 200 ° C. for 30 minutes to produce a thin wire-shaped conductive film (thin wire electrode). At this time, the distance between the electrodes was 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm.
The resistance value between each thin wire electrode was measured using a digital multimeter (manufactured by HIOKI: 3541 RESISTANCE HiTESTER), the contact resistance was calculated by Transfer Length Method (TLM method), and the relative value with Comparative Example 1 was calculated. . The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第1表中の各成分は、以下のものを使用した。
 ・導電性粒子:銀粒子(AG4-8F、平均粒子径:2.2μm、DOWAエレクトロニクス社製)
 ・エポキシ樹脂B1:ビスフェノールA型エポキシ樹脂(YD-019、エポキシ当量:2400~3300g/eq、新日鐵化学社製)
 ・エポキシ樹脂B2:ポリエチレングリコールジグリシジルエーテル(多価アルコール系グリシジル型エポキシ樹脂)(EX-821、エポキシ当量:185g/eq、ナガセケムテックス社製)
 ・エポキシ樹脂B3:ビスフェノールA型エポキシ樹脂(JER806、エポキシ当量:160~170g/eq、三菱化学社製)
The following were used for each component in Table 1.
Conductive particles: Silver particles (AG4-8F, average particle size: 2.2 μm, manufactured by DOWA Electronics)
Epoxy resin B1: Bisphenol A type epoxy resin (YD-019, epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
Epoxy resin B2: Polyethylene glycol diglycidyl ether (polyhydric alcohol glycidyl type epoxy resin) (EX-821, epoxy equivalent: 185 g / eq, manufactured by Nagase ChemteX Corporation)
Epoxy resin B3: bisphenol A type epoxy resin (JER806, epoxy equivalent: 160 to 170 g / eq, manufactured by Mitsubishi Chemical Corporation)
 ・オルガノポリシロキサンB4:217Flake〔重量平均分子量:2000、水酸基含有量:7重量%、フェニル基含有量:100モル%、平均分子式:(PhSiO3/21.0(HO1/20.57、東レ・ダウコーニング社製〕
 ・オルガノポリシロキサンB5:217Flake(東レ・ダウコーニング社製)100gに対して、エポキシシラン(KBM-403、信越化学社製)20gを加えて、トルエン中で酢酸触媒共存下、80℃4時間反応させて得られた合成品〔重量平均分子量:2000~3000、フェニル基含有量:90モル%、エポキシ基含有量:10モル%〕
 ・オルガノポリシロキサンB6:R10330〔重量平均分子量:3000~4000、ビニル基含有量:7モル%、平均分子式:(Me3SiO1/20.13(SiO40.8(ViMe2SiO1/20.07、ブルースターシリコーン〕
 ・オルガノポリシロキサンB7:KR-220L〔重量平均分子量:5000、官能基:なし、平均分子式:CH3SiO3/2、信越化学工業社製〕
Organopolysiloxane B4: 217 Flake [weight average molecular weight: 2000, hydroxyl group content: 7% by weight, phenyl group content: 100 mol%, average molecular formula: (PhSiO 3/2 ) 1.0 (HO 1/2 ) 0.57 , Toray (Dow Corning)
-Organopolysiloxane B5: 217 Flakes (manufactured by Dow Corning Toray) 100 g is added with 20 g of epoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) and reacted in toluene in the presence of acetic acid catalyst for 4 hours. Synthetic product (weight average molecular weight: 2000 to 3000, phenyl group content: 90 mol%, epoxy group content: 10 mol%)
Organopolysiloxane B6: R10330 [weight average molecular weight: 3000 to 4000, vinyl group content: 7 mol%, average molecular formula: (Me 3 SiO 1/2 ) 0.13 (SiO 4 ) 0.8 (ViMe 2 SiO 1/2 ) 0.07 , Blue Star Silicone)
Organopolysiloxane B7: KR-220L [weight average molecular weight: 5000, functional group: none, average molecular formula: CH 3 SiO 3/2 , manufactured by Shin-Etsu Chemical Co., Ltd.]
 ・金属酸化物:インジウム錫酸化物〔平均粒子径:40nm、アルドリッチ社製〕
 ・金属酸化物:酸化亜鉛〔平均粒子径:60nm、本荘ケミカル社製〕
 ・硬化剤:三フッ化ホウ素ピペリジン(ステラケミファ社製)
 ・溶媒:α-テルピネオール(ヤスハラケミカル社製)
Metal oxide: Indium tin oxide (average particle size: 40 nm, manufactured by Aldrich)
・ Metal oxide: Zinc oxide (average particle size: 60 nm, manufactured by Honjo Chemical Co., Ltd.)
・ Curing agent: Boron trifluoride piperidine (manufactured by Stella Chemifa)
・ Solvent: α-terpineol (manufactured by Yasuhara Chemical)
 第1表に示す結果から、金属酸化物を用いずに調製した比較例1は、体積抵抗率は良好であるが、接触抵抗が劣ることが分かった。
 これに対し、所定の硬化性樹脂とともに所定の金属酸化物を用いて調製した実施例1~8は、いずれも比較例1と同等の低い体積抵抗率を維持しつつ、接触抵抗も良好となることが分かった。
 特に、透明導電層の材料として酸化インジウムスズ(ITO)を用いた場合には、上記金属酸化物(C)としてインジウム錫酸化物を用いた方が接触抵抗が低くなり、透明導電層の材料としてアルミニウム添加酸化亜鉛(AZO)を用いた場合には、上記金属酸化物(C)として酸化亜鉛を用いた方が接触抵抗が低くなることが分かった。
From the results shown in Table 1, it was found that Comparative Example 1 prepared without using a metal oxide had good volume resistivity but poor contact resistance.
On the other hand, Examples 1 to 8 prepared using a predetermined metal oxide together with a predetermined curable resin all maintain a low volume resistivity equivalent to that of Comparative Example 1 and also have good contact resistance. I understood that.
In particular, when indium tin oxide (ITO) is used as the material of the transparent conductive layer, the contact resistance is lower when indium tin oxide is used as the metal oxide (C), and the material of the transparent conductive layer is It was found that when aluminum-added zinc oxide (AZO) was used, the contact resistance was lower when zinc oxide was used as the metal oxide (C).
 1、100 太陽電池セル
 2 n層
 3 反射防止膜
 4 表面電極
 5 p層
 6 裏面電極
 7 シリコン基板
 11 n型単結晶シリコン基板
 12a、12b i型アモルファスシリコン層
 13a p型アモルファスシリコン層
 13b n型アモルファスシリコン層
 14a、14b 透明導電層
 15a、15b 集電電極
DESCRIPTION OF SYMBOLS 1,100 Solar cell 2 N layer 3 Anti-reflective film 4 Front surface electrode 5 P layer 6 Back surface electrode 7 Silicon substrate 11 N-type single crystal silicon substrate 12a, 12b i-type amorphous silicon layer 13a p-type amorphous silicon layer 13b n-type amorphous Silicon layer 14a, 14b Transparent conductive layer 15a, 15b Current collecting electrode

Claims (8)

  1.  導電性粒子(A)と、硬化性樹脂(B)と、金属酸化物(C)とを含有し、
     前記金属酸化物(C)が、インジウム錫酸化物および/または酸化亜鉛であり、
     200℃以下の温度で焼成を行う低温焼成用導電性組成物。
    Containing conductive particles (A), a curable resin (B), and a metal oxide (C);
    The metal oxide (C) is indium tin oxide and / or zinc oxide;
    A conductive composition for low-temperature firing, which is fired at a temperature of 200 ° C. or lower.
  2.  前記導電性粒子(A)が、銀粒子および/または銅粒子である請求項1に記載の低温焼成用導電性組成物。 The conductive composition for low-temperature firing according to claim 1, wherein the conductive particles (A) are silver particles and / or copper particles.
  3.  前記硬化性樹脂(B)が、エポキシ樹脂および/またはオルガノポリシロキサンである請求項1または2に記載の低温焼成用導電性組成物。 The conductive composition for low-temperature firing according to claim 1 or 2, wherein the curable resin (B) is an epoxy resin and / or an organopolysiloxane.
  4.  前記オルガノポリシロキサンが、フェニル基および/またはビニル基を有する請求項3に記載の低温焼成用導電性組成物。 The conductive composition for low-temperature firing according to claim 3, wherein the organopolysiloxane has a phenyl group and / or a vinyl group.
  5.  前記硬化性樹脂(B)の含有量が、前記導電性粒子(A)100質量部に対して2~20質量部である請求項1~4のいずれかに記載の低温焼成用導電性組成物。 The conductive composition for low-temperature firing according to any one of claims 1 to 4, wherein the content of the curable resin (B) is 2 to 20 parts by mass with respect to 100 parts by mass of the conductive particles (A). .
  6.  前記金属酸化物(C)の含有量が、前記導電性粒子(A)100質量部に対して0.1~5質量部である請求項1~5のいずれかに記載の低温焼成用導電性組成物。 6. The conductive for low-temperature firing according to claim 1, wherein the content of the metal oxide (C) is 0.1 to 5 parts by mass with respect to 100 parts by mass of the conductive particles (A). Composition.
  7.  請求項1~6のいずれかに記載の低温焼成用導電性組成物を集電電極の形成に用い、
     前記集電電極の下地層として透明導電層を具備する太陽電池セル。
    The conductive composition for low-temperature firing according to any one of claims 1 to 6 is used for forming a collecting electrode,
    The solar cell which comprises a transparent conductive layer as a base layer of the said current collection electrode.
  8.  請求項7に記載の太陽電池セルを用いた太陽電池モジュール。 A solar battery module using the solar battery cell according to claim 7.
PCT/JP2013/080434 2012-11-20 2013-11-11 Conductive composition for low temperature firing and solar cell WO2014080789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014548519A JPWO2014080789A1 (en) 2012-11-20 2013-11-11 Conductive composition for low-temperature firing and solar cell
CN201380060257.XA CN104798142A (en) 2012-11-20 2013-11-11 Conductive composition for low temperature firing and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-254020 2012-11-20
JP2012254020 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080789A1 true WO2014080789A1 (en) 2014-05-30

Family

ID=50775972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080434 WO2014080789A1 (en) 2012-11-20 2013-11-11 Conductive composition for low temperature firing and solar cell

Country Status (5)

Country Link
JP (1) JPWO2014080789A1 (en)
KR (1) KR20150087194A (en)
CN (1) CN104798142A (en)
TW (1) TW201434989A (en)
WO (1) WO2014080789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602202B (en) * 2017-04-07 2017-10-11 國立成功大學 Highly conductive base metal or alloy low ohmic chip resistor manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007862B1 (en) * 2017-10-31 2019-08-06 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
WO2020067780A1 (en) * 2018-09-28 2020-04-02 엘지전자 주식회사 Solar cell and method for fabricating same
CN111899913B (en) * 2020-07-27 2022-07-12 上海银浆科技有限公司 Drying and sintering wide-window main grid slurry for N-type battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205395A (en) * 1994-01-11 1995-08-08 Matsushita Electric Ind Co Ltd Conductive binder
WO2012015254A2 (en) * 2010-07-30 2012-02-02 주식회사 잉크테크 Production method for a transparent conductive film and a transparent conductive film produced thereby

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599446B1 (en) * 2000-11-03 2003-07-29 General Electric Company Electrically conductive polymer composite compositions, method for making, and method for electrical conductivity enhancement
WO2002082468A1 (en) * 2001-04-06 2002-10-17 World Properties Inc. Electrically conductive silicones and method of manufacture thereof
JP4855077B2 (en) * 2006-01-06 2012-01-18 京都エレックス株式会社 Conductive paste composition for low-temperature firing and method of forming wiring pattern using the paste composition
JP4847154B2 (en) * 2006-02-24 2011-12-28 三洋電機株式会社 Conductive paste composition, solar cell using the paste composition, and solar cell module using the cell
KR101246686B1 (en) * 2010-03-19 2013-03-21 제일모직주식회사 Paste for forming electrode of solar cell and solar cell with the same
JP2012023095A (en) * 2010-07-12 2012-02-02 Yokohama Rubber Co Ltd:The Conductive composition and solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205395A (en) * 1994-01-11 1995-08-08 Matsushita Electric Ind Co Ltd Conductive binder
WO2012015254A2 (en) * 2010-07-30 2012-02-02 주식회사 잉크테크 Production method for a transparent conductive film and a transparent conductive film produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602202B (en) * 2017-04-07 2017-10-11 國立成功大學 Highly conductive base metal or alloy low ohmic chip resistor manufacturing method

Also Published As

Publication number Publication date
CN104798142A (en) 2015-07-22
JPWO2014080789A1 (en) 2017-01-05
TW201434989A (en) 2014-09-16
KR20150087194A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5304932B1 (en) Conductive composition and solar battery cell
WO2014069296A1 (en) Conductive composition and solar cell
JP5045803B2 (en) Conductive composition and solar battery cell
WO2014080789A1 (en) Conductive composition for low temperature firing and solar cell
US20190359842A1 (en) Electrically Conductive Composition
WO2016021535A1 (en) Conductive composition, solar cell, and solar cell module
JP6579108B2 (en) Conductive composition, solar battery cell and solar battery module
JP6620744B2 (en) Conductive composition for forming solar battery collecting electrode, solar battery cell and solar battery module
JP2016160415A (en) Conductive composition, solar cell, and solar cell module
JP2016030794A (en) Conductive composition, solar cell and solar cell module
WO2015118760A1 (en) Electroconductive composition, solar cell, and solar cell module
JP2016160413A (en) Conductive composition, solar cell, and solar cell module
JP2016032022A (en) Conductive composition, solar battery cell and solar battery module
WO2014203897A1 (en) Electrically conductive composition and solar cell
JP2012178456A (en) Conductive composition for solar cell collecting electrode formation and solar cell
JP2023056715A (en) Thermosetting conductive paste composition and solar cell, and solar cell module
WO2020166137A1 (en) Electroconductive composition
CN113348194A (en) Conductive composition
TW201409486A (en) Conductive composition for collector electrode of solar cell and solar cell unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857071

Country of ref document: EP

Kind code of ref document: A1