WO2014076946A1 - Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery - Google Patents

Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery Download PDF

Info

Publication number
WO2014076946A1
WO2014076946A1 PCT/JP2013/006675 JP2013006675W WO2014076946A1 WO 2014076946 A1 WO2014076946 A1 WO 2014076946A1 JP 2013006675 W JP2013006675 W JP 2013006675W WO 2014076946 A1 WO2014076946 A1 WO 2014076946A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
metal
fluoride
aqueous solution
Prior art date
Application number
PCT/JP2013/006675
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 駒場
直明 藪内
友哉 秋山
西澤 剛
小丸 篤雄
Original Assignee
Jx日鉱日石エネルギー株式会社
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 学校法人東京理科大学 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014076946A1 publication Critical patent/WO2014076946A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery using an alkali metal and its compound as a negative electrode active material has a large discharge capacity due to the occlusion reaction of alkali metal ions into the positive electrode active material.
  • LiCoO 2 and the like are often used as the positive electrode active material of this non-aqueous electrolyte battery.
  • cobalt which is an element contained, is a rare element and is very expensive, and therefore increases the price of the battery, and the development of an inexpensive positive electrode active material to replace this is desired.
  • LiCoO 2 a nonaqueous electrolyte battery using a lithium iron composite oxide (Li x Fe y O z ) containing iron as a resource and containing abundant resources has been studied.
  • lithium iron composite oxide Li x Fe y O z
  • the battery voltage is as low as 1.5 V and the energy density is low, which leaves the problem that a practical battery cannot be obtained.
  • the charge / discharge voltage range is the voltage range only in the intercalation region that does not advance the reaction to the conversion region (from 4.5 V to 2 V in the case of a lithium ion secondary battery). However, only charging / discharging was performed.
  • FeF 3 inserts and desorbs Li, and only the reaction of FeF 3 + xLi ⁇ Li x FeF 3 is performed reversibly, and a theoretical capacity of about 230 mAh / g is obtained.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte storage battery that can obtain stable cycle characteristics when FeF 3 is used up to a conversion reaction, and a method for producing the same.
  • another object is to provide a non-aqueous electrolyte battery using the positive electrode material.
  • One embodiment of the present invention is a positive electrode material for a non-aqueous electrolyte battery.
  • the positive electrode material includes fine particles having an average particle diameter of 200 nm or less made of a metal fluoride in which a trivalent metal is substituted for FeF 3 .
  • the positive electrode material of the above aspect may be represented by the following general formula (1).
  • the manufacturing method of the positive electrode material includes a step of synthesizing a metal fluoride ammonium salt precursor by a precipitation method using a metal salt and an aqueous solution of ammonium fluoride, and firing the obtained metal fluoride ammonium salt precursor. And a process.
  • the metal salt may be a nitrate.
  • An aqueous solution containing a trivalent iron ion and one other kind of trivalent metal ion and an aqueous ammonium fluoride solution may be dropped into an alcohol in an equivalent amount to obtain a metal fluoride ammonium salt precursor.
  • the alcohol may be ethanol.
  • the concentration ratio of an aqueous solution containing trivalent iron ions, or an aqueous solution containing one other trivalent metal ion and an aqueous ammonium fluoride solution is an aqueous solution containing trivalent iron ions, or one other trivalent metal.
  • the concentration of the aqueous ammonium fluoride solution may be 0.1 to 10.
  • the step of firing the metal fluoride ammonium salt precursor may include a two-step process of firing the ammonium fluoride salt precursor at a low temperature and then firing at a higher temperature. Further, it may include a step of miniaturizing the metal fluoride obtained by firing so that the average particle size becomes 10 to 200 nm.
  • Still another embodiment of the present invention is a nonaqueous electrolyte battery.
  • the non-aqueous electrolyte battery is characterized by using the positive electrode material of any of the above-described aspects.
  • the cycle characteristics of the nonaqueous electrolyte battery can be stabilized.
  • FIG. 3 shows X-ray diffraction patterns of precursors 1 to 3 and comparative precursors 1 and 2.
  • FIG. 4 is an X-ray diffraction pattern of the positive electrode material of Example 1 and the positive electrode material of Comparative Example 1.
  • FIG. It is a SEM image (magnification x10,000) of the precursor 1 and the positive electrode material of Example 1.
  • 2 is an SEM image (magnification ⁇ 20,000) of the positive electrode material of Example 1.
  • It is a SEM image (magnification x10,000) of the positive electrode material of comparative precursor 1 and comparative example 1.
  • It is a schematic cross section which shows the structure of the coin-type nonaqueous electrolyte battery used for cycle characteristic evaluation.
  • FIG. 2 is an SEM image (magnification ⁇ 10,000) of the positive electrode material (after ball milling) of Example 1.
  • FIG. 4 is a SEM image (magnification ⁇ 10,000) of the positive electrode material of Comparative Example 1 (after ball milling). It is each X-ray diffraction pattern of the positive electrode material of Example 2 and Comparative Examples 3 and 4.
  • the inventors have obtained a metal fluoride ammonium salt precursor synthesized by a precipitation method using a metal nitrate and an aqueous solution of ammonium fluoride. Furthermore, when FeF 3 is doped with a specific element (such as Al), for example, using Fe (1-x) Al x F 3 , stable cycle characteristics can be obtained even when the conversion reaction is used.
  • a specific element such as Al
  • the positive electrode material according to the embodiment is used as a positive electrode material of a nonaqueous electrolyte battery.
  • the positive electrode material according to the embodiment has fine particles made of a metal fluoride represented by the following general formula (1), and the average particle diameter is 10 to 200 nm.
  • Fe 1-x Me x F 3 (1) (However, Me is an element that can exist as a trivalent ion in an aqueous solution, and x is 0.01 ⁇ x ⁇ 0.5.)
  • Examples of the Me element in the general formula (1) include Al.
  • the average particle diameter of the fine particles made of a metal fluoride is larger than 200 nm, it becomes difficult to use up to the conjugation reaction.
  • the average particle size of the fine particles made of metal fluoride is smaller than 10 nm, it becomes difficult to handle the material or to disperse it during preparation of the electrode mixture.
  • the positive electrode material represented by the general formula (1) can be used until the conversion reaction. Furthermore, when the positive electrode material is incorporated in a nonaqueous electrolyte battery, stable cycle characteristics can be obtained.
  • the method for producing a positive electrode material includes a step of dropping an equivalent amount of an aqueous solution containing trivalent iron ions and one other trivalent metal ion and an aqueous ammonium fluoride solution into alcohol, and the resulting fluorination ( (Iron, other metals) including a step of using ammonium salt as a precursor and firing the precursor.
  • metal salt As the metal salt, nitrate, hydroxide salt, chloride salt, metal bromide salt, metal fluoride salt and the like are preferable, and nitrate is more preferable among them.
  • ethanol isopropanol, butanol and the like
  • ethanol is most preferable.
  • the concentration ratio of an aqueous solution containing trivalent iron ions, or an aqueous solution containing one other trivalent metal ion and an aqueous ammonium fluoride solution is an aqueous solution containing trivalent iron ions, or one other trivalent metal.
  • the concentration of the aqueous ammonium fluoride solution is 0.1 to 10, preferably 1 to 8, and more preferably 2 to 6.
  • the firing step performed after obtaining the fluorinated (iron, other metal) ammonium salt precursor is obtained by firing the obtained fluorinated (iron, other metal) ammonium salt precursor at a low temperature and then firing at a higher temperature. It is preferable to include a two-stage process. By baking in two stages, a product with higher purity can be obtained.
  • the temperature in the initial step among the above-mentioned two steps is 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • the temperature in the latter stage is 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
  • the precursor (NH 4 ) 3 Fe (1-x) Me x F 3 (Me is an element that can exist as a trivalent ion in an aqueous solution) obtained by this technique is measured with a scanning electron microscope (SEM).
  • the crystallites observed have an average particle diameter of 200 to 500 nm or less.
  • the obtained precursor (microcrystal) is formed into fine particles having an average particle diameter of 10 to 200 nm (observed with a scanning electron microscope (SEM)), if necessary, by a refining technique such as a ball mill.
  • the positive electrode material thus obtained has a BET specific surface area of 8 m 2 / g or more, preferably 10 m 2 / g or more.
  • the positive electrode material represented by the above general formula (1) is manufactured.
  • the nonaqueous electrolyte storage battery has a well-known cell structure including a positive electrode, a negative electrode, a separator, and an electrolytic solution.
  • the positive electrode has an active material, a conductive material, and a binder.
  • the form of the nonaqueous electrolyte battery is not particularly limited, and can be applied to various types such as a coin type, a button type, a pouch type, a square type, or a cylindrical type having a spiral structure. Further, the size of the nonaqueous electrolyte battery is arbitrary, and may be large, small, or thin.
  • a positive electrode material represented by the above general formula (1) is used as the active material.
  • the conductive material used for the positive electrode is for ensuring the electrical conductivity of the positive electrode, and it is preferable to use a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite. it can.
  • the binder is not particularly limited as long as it plays a role of connecting the active material particles and the conductive material.
  • polytetrafluoroethylene, polyvinylidene fluoride, fluororubber, polypropylene, polyethylene, polyvinyl alcohol, polyacrylic acid, sodium polyacrylate, lithium polyacrylate, or the like can be used.
  • An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, and binders.
  • An aluminum foil or the like can be used for the positive electrode current collector.
  • the negative electrode is formed by pressing an alkali metal, which is a negative electrode active material, in the form of a sheet, like a general battery, or by pressing a sheet formed on a current collector network such as nickel or stainless steel.
  • alkali metals such as lithium, sodium, potassium, rubidium, and cesium can be used, and alloys or compounds of these alkali metals can also be used.
  • the separator interposed between the positive electrode and the negative electrode is only required to be formed from an electrically insulating porous material.
  • a polyolefin film such as polyethylene or polypropylene, a polymer film such as polyester, polyethylene terephthalate, or polyimide, or a fiber nonwoven fabric.
  • the material may be used alone or in combination.
  • the separator may be a single layer or a multilayer (composite film). Moreover, you may contain inorganic material nanoparticles, such as a ceramic. Moreover, you may apply
  • an electrolyte that is gelled by containing a polymer compound that swells with an organic solvent and serves as a holding body that holds the nonaqueous electrolyte may be used. This is because by including a polymer compound that swells with an organic solvent, high ionic conductivity can be obtained, excellent charge / discharge efficiency can be obtained, and battery leakage can be prevented.
  • the non-aqueous electrolyte contains a polymer compound
  • the content of the polymer compound is preferably in the range of 0.1% by mass to 10% by mass.
  • the mass ratio of the nonaqueous electrolyte to the polymer compound is preferably in the range of 50: 1 to 10: 1. By setting it within this range, higher charge / discharge efficiency can be obtained.
  • the polymer compound examples include ether-based polymer compounds such as polyvinyl formal, polyethylene oxide and crosslinked products containing polyethylene oxide, ester-based polymer compounds such as polymethacrylate, acrylate-based polymer compounds, and polyvinylidene fluoride,
  • a vinylidene fluoride polymer such as a copolymer of vinylidene fluoride and hexafluoropropylene may be used.
  • a high molecular compound may be used individually by 1 type, and multiple types may be mixed and used for it.
  • the electrolytic solution is mainly composed of an organic solvent and an electrolyte salt, and a high dielectric constant solvent and a low viscosity solvent are used as the organic solvent.
  • the high dielectric constant solvent in addition to ethylene carbonate and propylene carbonate, for example, butylene carbonate, ⁇ -butyllactone, ⁇ -valerolactone, tetrahydrofuran, 1,4-dioxane, N-methyl-2-pyrrolidone, N— And methyl-2-oxazolidinone, sulfolane, 2-methylsulfolane and the like.
  • low viscosity solvent examples include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, for example, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, dimethoxyethane, methyl acetate, Examples include ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methyl propionate, ethyl propionate, methyl formate, ethyl formate, methyl butyrate, and methyl isobutyrate.
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium hexafluoroarsenate LiAsF 6
  • lithium hexafluoro antimonate LiSbF 6
  • Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloroaluminate (LiAlCl 4 ), and lithium trifluoromethanesulfonate (CF 3 SO 3 Li)
  • lithium bis (trifluoromethanesulfone) imide [(CF 3 SO 2 ) 2 NLi]
  • lithium bis (pentafluoroethanesulfone) imide [(C 2 F 5 SO 2 ) 2 NLi]
  • lithium tris (trifluoromethanesulfone) methide [(CF 3 SO 2 ) 3 CLi]
  • One electrolyte salt may be used alone, or a plurality of electrolyte salts may be mixed and used.
  • the electrolyte solution may contain various additives.
  • the additive include vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone. , Biphenyl, cyclohexylbenzene, decalin, terphenyl and the like.
  • Example 1 The concentrations shown in Table 1 Fe (NO 3) 3 ⁇ 9H 2 O aqueous solution 2.5 ml, Al (NO 3) 3 ⁇ 9H 2 O aqueous solution 2.5 ml, and 3 mol / l NH 4 F solution 5 ml
  • the precipitate was obtained by slowly dropping into 50 ml of ethanol. The resulting precipitate was filtered, washed with ethanol, dried at 80 ° C. under vacuum for 12 hours, and precursors 1 to 3 represented by (NH 4 ) 3 Fe (1-x) Al x F 6 were obtained. Obtained as shown in Table 1.
  • the obtained precursor 1 was heated at 250 ° C. for 2 hours under an argon atmosphere, and further heated at 400 ° C. for 2 hours under an argon atmosphere to obtain Fe 0.9 Al 0.1 F 3 . .
  • As a result of measuring the BET specific surface area of the obtained positive electrode material it was 11 m 2 / g.
  • the heating rate during heating was 10 ° C./min.
  • the obtained comparative precursor 1 was heated at 250 ° C. for 2 hours under an argon atmosphere, and further heated at 400 ° C. for 2 hours under an argon atmosphere to obtain FeF 3 . It was 8 m ⁇ 2 > / g as a result of measuring the BET specific surface area of the obtained positive electrode material. The heating rate during heating was 10 ° C./min.
  • FIG. 1 shows X-ray diffraction patterns of the precursors 1 to 3 and the comparative precursors 1 and 2. Moreover, about the positive electrode material of Example 1 and the positive electrode material of the comparative example 1, the X-ray-diffraction pattern was obtained using the X-ray-diffraction apparatus, respectively. In FIG. 2, each X-ray-diffraction pattern of the positive electrode material of Example 1 and the positive electrode material of the comparative example 1 is shown.
  • the diffraction lines observed in each precursor can be assigned in the space group Fm-3m, and it was confirmed that (NH 4 ) 3 Fe (1-x) Al x F 6 was obtained. It was.
  • FIG. 3 is an SEM image (magnification ⁇ 10,000) of the precursor 1 and the positive electrode material of Example 1.
  • FIG. 4 is an SEM image (magnification ⁇ 20,000) of the positive electrode material of Example 1.
  • the particle size of the precursor 1 is about 200 to 500 nm and has a smooth surface.
  • a large number of pores were observed on the surface as a result of the elimination of NH 4 F.
  • FIG. 5 is an SEM image (magnification ⁇ 10,000) of the positive electrode material of comparative precursor 1 and comparative example 1.
  • the particle diameter of the comparative precursor 1 was almost the same as that of the precursor 1, but it was observed that the positive electrode material of Comparative Example 1 obtained by firing the comparative precursor 1 was somewhat agglomerated.
  • FIG. 6 is a schematic cross-sectional view showing the structure of a coin-type non-aqueous electrolyte battery used for cycle characteristic evaluation.
  • the evaluation battery 100 is obtained by laminating a positive electrode 12 and a negative electrode 14 with a separator 15 interposed therebetween.
  • Each of the positive electrode 12, the negative electrode 14, and the separator 15 has a disk shape, and is accommodated in a space defined by the metal exterior component 11 and the exterior component 13.
  • the interiors of the exterior parts 11 and 13 are filled with an organic electrolyte, and the peripheral parts of the exterior parts 11 and 13 are sealed by caulking through a seal gasket 17.
  • a metal spring 18 and a spacer 19 are disposed between the exterior component 13 and the negative electrode 14.
  • a positive electrode using the positive electrode material of Comparative Example 1 was prepared in the same manner as the positive electrode using the positive electrode material of Example 1 except that the positive electrode material of Comparative Example 1 was used.
  • the average particle diameter of the positive electrode material of Comparative Example 1 after ball milling was approximately 100 to 200 nm (see FIG. 8), although some aggregation was observed.
  • a coin cell was manufactured using lithium metal, a polypropylene separator having a thickness of 25 micrometers, an electrolytic solution, and a positive electrode manufactured by the above method.
  • the electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a solvent in which ethylene carbonate (hereinafter abbreviated as EC) and diethyl carbonate (hereinafter abbreviated as DEC) were mixed at a volume ratio of 1: 1.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the battery characteristics of the nonaqueous electrolyte battery incorporating the positive electrode using the positive electrode material of Example 1 and the nonaqueous electrolyte battery incorporating the positive electrode using the positive electrode material of Comparative Example 1 were evaluated.
  • the battery characteristics were evaluated by a charge / discharge test at room temperature at a voltage range of 1.0 V to 4.5 V and a constant current of 40 mA / g.
  • Table 2 summarizes the initial discharge capacity and the discharge capacity retention rate after 10 cycles.
  • the initial discharge capacity was reduced by the amount replaced with electrochemically inactive Al, but the discharge capacity retention rate after 10 cycles was 75%.
  • the discharge capacity retention rate after 10 cycles was 70%, and when the positive electrode material of Example 1 was used, the positive electrode material of Comparative Example 1 was used. It was revealed that the cycle characteristics were improved as compared with the case.
  • Example 2 0.4 mol / l of Fe (NO 3) 3 ⁇ 9H 2 O aqueous solution 2.5 ml, 0.1 mol / liter Al (NO 3) 3 ⁇ 9H 2 O aqueous solution 2.5 ml, and 3 mol /
  • An ammonium fluoride precursor was synthesized in the same manner as in Example 1 using 5 ml of a liter NH 4 F aqueous solution, and then calcined to synthesize Fe 0.8 Al 0.2 F 3 .
  • the temperature increase rate at the time of baking was 1 degree-C / min.
  • Example 3 A precursor was synthesized in the same manner as in Example 1, and the obtained precursor was heated at 400 ° C. for 2 hours in an argon atmosphere to obtain Fe 0.9 Al 0.1 F 3 . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 7 m 2 / g. The heating rate during heating was 1 ° C./min.
  • Comparative Example 4 A precursor was synthesized in the same manner as in Comparative Example 1, and the obtained precursor was heated at 400 ° C. for 2 hours under an argon atmosphere to obtain FeF 3 . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 7 m 2 / g. The heating rate during heating was 1 ° C./min.
  • Example 2 and Comparative Examples 3 and 4 For the positive electrode materials of Example 2 and Comparative Examples 3 and 4, X-ray diffraction patterns were obtained using an X-ray diffractometer, respectively.
  • FIG. 9 shows X-ray diffraction patterns of Example 2 and Comparative Examples 3 and 4.
  • Example 2 Using the positive electrode material of Example 2 and Comparative Examples 3 and 4, a positive electrode and a coin-type non-aqueous electrolyte battery incorporating the positive electrode were produced in the same manner as in Example 1, and the voltage range was 1.
  • the charge / discharge test was performed at a constant current of 40 mA / g at 0 V to 4.5 V.
  • Table 3 summarizes the initial discharge capacity and the discharge capacity maintenance rate after 10 cycles.
  • the initial discharge capacity was reduced because the amount of electrochemically inactive Al substitution was larger than that of the comparative example, but the discharge capacity was maintained after 10 cycles. The rate was 99%.
  • the positive electrode materials of Comparative Examples 3 and 4 were used, the discharge capacity retention rates after 10 cycles were 47% and 45%, respectively, and when the positive electrode material of Example 2 was used, Compared with the case of using the positive electrode material, it became clear that the cycle characteristics were improved, and it was shown that the technique of firing in two stages of low temperature and high temperature was excellent.
  • the present invention can be used for a positive electrode material of a nonaqueous electrolyte battery.

Abstract

A positive electrode material for a non-aqueous electrolyte storage battery according to an embodiment of the present invention is provided with microparticles comprising a metal fluoride represented by general formula (1), namely Fe1-xMexF3 (in the formula, Me is an element which can be present as trivalent ions in an aqueous solution, and x satisfies 0.01 ≤ x ≤ 0.5). The average particle size of the microparticles is in the range 10-200 nm.

Description

正極材、正極材の製造方法、および非水電解質電池Positive electrode material, method for producing positive electrode material, and non-aqueous electrolyte battery
 本発明は、非水電解質電池の正極材に関する。 The present invention relates to a positive electrode material for a non-aqueous electrolyte battery.
 アルカリ金属およびその化合物を負極活物質とする非水電解質電池は、アルカリ金属イオンの正極活物質への吸蔵反応により、大きな放電容量が得られることから、パソコン、携帯電話等の小型化に伴い、情報関連機器、通信機器等の分野で広く用いられるに至っている。この非水電解質電池の正極活物質として、現在は、LiCoOなどが多く使用されている。ところが、含有元素であるコバルトは、希少元素であり非常に高価であることから電池の価格を押し上げる要因となっており、これに代わる安価な正極活物質の開発が望まれている。 A non-aqueous electrolyte battery using an alkali metal and its compound as a negative electrode active material has a large discharge capacity due to the occlusion reaction of alkali metal ions into the positive electrode active material. Widely used in the fields of information-related equipment and communication equipment. Currently, LiCoO 2 and the like are often used as the positive electrode active material of this non-aqueous electrolyte battery. However, cobalt, which is an element contained, is a rare element and is very expensive, and therefore increases the price of the battery, and the development of an inexpensive positive electrode active material to replace this is desired.
 従来から、LiCoOに代えて、資源として豊富にある鉄を含有するリチウム鉄複合酸化物(LiFe)を正極活物質とする非水電解質電池が検討されてきている。ところが、リチウム鉄複合酸化物を正極活物質とする場合、電池電圧が1.5Vと低く、エネルギー密度が小さいという欠点があり、実用的な電池を得られないという問題を残している。 Conventionally, in place of LiCoO 2 , a nonaqueous electrolyte battery using a lithium iron composite oxide (Li x Fe y O z ) containing iron as a resource and containing abundant resources has been studied. However, when lithium iron composite oxide is used as the positive electrode active material, the battery voltage is as low as 1.5 V and the energy density is low, which leaves the problem that a practical battery cannot be obtained.
 そこで、代替え手段として、特許文献1-3に示すような、正極活物質に構造水を含有しない結晶性のFeFを用いた非水電解質電池が考えられるに至った。 Therefore, as an alternative means, a non-aqueous electrolyte battery using crystalline FeF 3 containing no structural water as a positive electrode active material as shown in Patent Documents 1-3 has been considered.
特開平9-022698号公報Japanese Patent Laid-Open No. 9-022698 特開平9-055201号公報Japanese Patent Laid-Open No. 9-055201 特開2000-2033号公報JP 2000-2033 A 特開2010-170867号公報JP 2010-170867 A
 正極活物質であるFeFにLiイオンが挿入されると、FeFを経て、さらなるLiの挿入によりFeとLiFとに分解するコンバージョン領域まで反応が進むと考えられる。しかし、FeFはFeとFとの間の結合が強いため、コンバージョン領域までの反応は起こりにくい。また、コンバージョン領域から元のFeFを再生するのは困難であり、電池性能を低下させる原因となると考えられてきた。そのため、特許文献1-3では、充放電の電圧範囲として、コンバージョン領域まで反応を進ませないインターカレーション領域のみでの電圧範囲(リチウムイオン二次電池であれば4.5Vから2Vまで)でしか充放電をさせていなかった。この電圧範囲での充放電においては、FeFがLiを挿入・脱離して、FeF+xLi→LiFeFの反応のみが可逆的に行われ、理論容量は230mAh/g程度が得られる。 When Li ions are inserted into the positive electrode active material FeF 3 , it is considered that the reaction proceeds through FeF 3 to a conversion region where it is decomposed into Fe and LiF by further insertion of Li. However, since FeF 3 has a strong bond between Fe and F, reaction up to the conversion region hardly occurs. In addition, it is difficult to regenerate the original FeF 3 from the conversion region, which has been considered to cause a decrease in battery performance. Therefore, in Patent Documents 1-3, the charge / discharge voltage range is the voltage range only in the intercalation region that does not advance the reaction to the conversion region (from 4.5 V to 2 V in the case of a lithium ion secondary battery). However, only charging / discharging was performed. In charging / discharging in this voltage range, FeF 3 inserts and desorbs Li, and only the reaction of FeF 3 + xLi → Li x FeF 3 is performed reversibly, and a theoretical capacity of about 230 mAh / g is obtained.
 一方、コンバージョン領域まで反応させると、FeFは分解されてFe3+からFeまで電解還元されるため、理論的には700mAh/g以上の容量が得られ、二次電池の大幅な高容量化が期待される。そこで、特許文献4に示されるように、FeF3を微粒子化することにより、コンバージョン領域までの反応を利用することが検討されたが、そのサイクル特性(寿命)は満足行くものではなかった。 On the other hand, when the reaction is performed up to the conversion region, FeF 3 is decomposed and electrolytically reduced from Fe 3+ to Fe 0 , theoretically, a capacity of 700 mAh / g or more is obtained, and the secondary battery has a significantly increased capacity. There is expected. Thus, as disclosed in Patent Document 4, it has been studied to use the reaction up to the conversion region by making FeF3 into fine particles, but the cycle characteristics (life) are not satisfactory.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、FeFをコンバージョン反応まで利用した場合において、安定したサイクル特性が得られる非水電解質蓄電池用の正極材とその製造方法を提供すること、さらに該正極材を用いた非水電解質電池を提供することにある。 The present invention has been made in view of these problems, and an object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte storage battery that can obtain stable cycle characteristics when FeF 3 is used up to a conversion reaction, and a method for producing the same. In addition, another object is to provide a non-aqueous electrolyte battery using the positive electrode material.
 本発明のある態様は、非水電解質電池用の正極材である。当該正極材は、FeFに3価の金属を置換させたフッ化金属からなる平均粒径200nm以下の微粒子を含む。 One embodiment of the present invention is a positive electrode material for a non-aqueous electrolyte battery. The positive electrode material includes fine particles having an average particle diameter of 200 nm or less made of a metal fluoride in which a trivalent metal is substituted for FeF 3 .
 上記態様の正極材は、以下の一般式(1)で表されてもよい。
Fe(1-x)Al (1)
(但し、xは0.01≦x≦0.5である。)
The positive electrode material of the above aspect may be represented by the following general formula (1).
Fe (1-x) Al x F 3 (1)
(However, x is 0.01 ≦ x ≦ 0.5.)
 本発明の他の態様は、正極材の製造方法である。当該正極材の製造方法は、金属塩とフッ化アンモニウムの水溶液とを用いた沈殿法により、フッ化金属アンモニウム塩前駆体を合成する工程と、得られたフッ化金属アンモニウム塩前駆体を焼成する工程と、を備えることを特徴とする。 Another aspect of the present invention is a method for producing a positive electrode material. The manufacturing method of the positive electrode material includes a step of synthesizing a metal fluoride ammonium salt precursor by a precipitation method using a metal salt and an aqueous solution of ammonium fluoride, and firing the obtained metal fluoride ammonium salt precursor. And a process.
 上記態様の製造方法において、金属塩が硝酸塩であってもよい。3価の鉄イオンとその他1種類の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液をアルコール中に当量滴下することでフッ化金属アンモニウム塩前駆体を得てもよい。アルコールがエタノールであってもよい。3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液の濃度比は、3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液を1とした場合のフッ化アンモニウム水溶液の濃度は0.1~10であってもよい。フッ化金属アンモニウム塩前駆体を焼成する工程は、フッ化アンモニウム塩前駆体を低温で焼成した後、さらに高温で焼成する2段階の工程を有してもよい。また、焼成して得られたフッ化金属の平均粒径が10~200nmになるように微細化する工程を含んでもよい。 In the manufacturing method of the above aspect, the metal salt may be a nitrate. An aqueous solution containing a trivalent iron ion and one other kind of trivalent metal ion and an aqueous ammonium fluoride solution may be dropped into an alcohol in an equivalent amount to obtain a metal fluoride ammonium salt precursor. The alcohol may be ethanol. The concentration ratio of an aqueous solution containing trivalent iron ions, or an aqueous solution containing one other trivalent metal ion and an aqueous ammonium fluoride solution is an aqueous solution containing trivalent iron ions, or one other trivalent metal. When the aqueous solution containing ions is 1, the concentration of the aqueous ammonium fluoride solution may be 0.1 to 10. The step of firing the metal fluoride ammonium salt precursor may include a two-step process of firing the ammonium fluoride salt precursor at a low temperature and then firing at a higher temperature. Further, it may include a step of miniaturizing the metal fluoride obtained by firing so that the average particle size becomes 10 to 200 nm.
 本発明のさらに他の態様は、非水電解質電池である。当該非水電解質電池は、上述したいずれかの態様の正極材を用いたことを特徴とする。 Still another embodiment of the present invention is a nonaqueous electrolyte battery. The non-aqueous electrolyte battery is characterized by using the positive electrode material of any of the above-described aspects.
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 Note that a combination of the above-described elements as appropriate can be included in the scope of the invention for which protection by patent is sought by this patent application.
 本発明によれば、FeFをコンバージョン反応まで利用しつつ、非水電解質蓄電池のサイクル特性を安定化させることができる。 According to the present invention, while utilizing the FeF 3 to conversion reaction, the cycle characteristics of the nonaqueous electrolyte battery can be stabilized.
前駆体1~3、比較前駆体1、2の各X線回折パターンである。FIG. 3 shows X-ray diffraction patterns of precursors 1 to 3 and comparative precursors 1 and 2. FIG. 実施例1の正極材および比較例1の正極材の各X線回折パターンである。4 is an X-ray diffraction pattern of the positive electrode material of Example 1 and the positive electrode material of Comparative Example 1. FIG. 前駆体1および実施例1の正極材のSEM像(倍率×10,000)である。It is a SEM image (magnification x10,000) of the precursor 1 and the positive electrode material of Example 1. 実施例1の正極材のSEM像(倍率×20,000)である。2 is an SEM image (magnification × 20,000) of the positive electrode material of Example 1. 比較前駆体1および比較例1の正極材のSEM像(倍率×10,000)である。It is a SEM image (magnification x10,000) of the positive electrode material of comparative precursor 1 and comparative example 1. サイクル特性評価に用いたコイン型の非水電解質電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the coin-type nonaqueous electrolyte battery used for cycle characteristic evaluation. 実施例1の正極材(ボールミル粉砕後)のSEM像(倍率×10,000)である。2 is an SEM image (magnification × 10,000) of the positive electrode material (after ball milling) of Example 1. FIG. 比較例1の正極材(ボールミル粉砕後)のSEM像(倍率×10,000)である。4 is a SEM image (magnification × 10,000) of the positive electrode material of Comparative Example 1 (after ball milling). 実施例2、比較例3、4の正極材の各X線回折パターンである。It is each X-ray diffraction pattern of the positive electrode material of Example 2 and Comparative Examples 3 and 4.
 発明者らは上記課題を解決すべく、鋭意検討を重ねた結果、金属硝酸塩とフッ化アンモニウムの水溶液とを用いた沈殿法により合成されたフッ化金属アンモニウム塩前駆体を焼成することにより得られた、FeFに特定の元素(Alなど)をドープした、例えば、Fe(1-x)Alを用いることにより、コンバージョン反応まで利用した場合においても安定したサイクル特性が得られることを見出し、本発明を完成するに至った。 As a result of intensive investigations to solve the above problems, the inventors have obtained a metal fluoride ammonium salt precursor synthesized by a precipitation method using a metal nitrate and an aqueous solution of ammonium fluoride. Furthermore, when FeF 3 is doped with a specific element (such as Al), for example, using Fe (1-x) Al x F 3 , stable cycle characteristics can be obtained even when the conversion reaction is used. The headline and the present invention were completed.
(正極材)
 実施の形態に係る正極材は、非水電解質電池の正極材として用いられる。実施の形態に係る正極材は下記一般式(1)で表されるフッ化金属からなる微粒子を有し、その平均粒径は、10~200nmである。
Fe1-xMe (1)
(但し、Meは水溶液中で3価のイオンとして存在可能な元素であり、xは0.01≦x≦0.5である。)
 一般式(1)におけるMeの元素としては、例えばAlなどが挙げられる。なお、フッ化金属からなる微粒子の平均粒径が200nmより大きいと、コンバンージョン反応まで利用することが難しくなる。一方、フッ化金属からなる微粒子の平均粒径が10nmより小さいと、材料としての取り扱いや電極合剤作製時に分散させることが困難となる。
(Positive electrode material)
The positive electrode material according to the embodiment is used as a positive electrode material of a nonaqueous electrolyte battery. The positive electrode material according to the embodiment has fine particles made of a metal fluoride represented by the following general formula (1), and the average particle diameter is 10 to 200 nm.
Fe 1-x Me x F 3 (1)
(However, Me is an element that can exist as a trivalent ion in an aqueous solution, and x is 0.01 ≦ x ≦ 0.5.)
Examples of the Me element in the general formula (1) include Al. In addition, when the average particle diameter of the fine particles made of a metal fluoride is larger than 200 nm, it becomes difficult to use up to the conjugation reaction. On the other hand, if the average particle size of the fine particles made of metal fluoride is smaller than 10 nm, it becomes difficult to handle the material or to disperse it during preparation of the electrode mixture.
 上記一般式(1)で表される正極材は、コンバージョン反応まで利用可能である。さらに、当該正極材を非水電解質電池に組み込んだ場合に、安定したサイクル特性を得ることができる。 The positive electrode material represented by the general formula (1) can be used until the conversion reaction. Furthermore, when the positive electrode material is incorporated in a nonaqueous electrolyte battery, stable cycle characteristics can be obtained.
(正極材の製造方法)
 実施の形態に係る正極材の製造方法は、3価の鉄イオンとその他1種類の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液をアルコール中に当量滴下する工程、得られたフッ化(鉄、その他金属)アンモニウム塩を前駆体とし、当該前駆体を焼成する工程を含む。
(Method for producing positive electrode material)
The method for producing a positive electrode material according to the embodiment includes a step of dropping an equivalent amount of an aqueous solution containing trivalent iron ions and one other trivalent metal ion and an aqueous ammonium fluoride solution into alcohol, and the resulting fluorination ( (Iron, other metals) including a step of using ammonium salt as a precursor and firing the precursor.
 金属塩としては、硝酸塩、水酸化物塩、塩化物塩、金属臭化物塩、金属フッ化物塩などが好ましいが、中でも硝酸塩がより好ましい。 As the metal salt, nitrate, hydroxide salt, chloride salt, metal bromide salt, metal fluoride salt and the like are preferable, and nitrate is more preferable among them.
 アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどが好ましく用いられるが、エタノールが最も好ましい。 As the alcohol, methanol, ethanol, propanol, isopropanol, butanol and the like are preferably used, and ethanol is most preferable.
 3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液の濃度比は、3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液を1とした場合のフッ化アンモニウム水溶液の濃度は0.1~10、好ましくは、1~8、より好ましくは2~6である。 The concentration ratio of an aqueous solution containing trivalent iron ions, or an aqueous solution containing one other trivalent metal ion and an aqueous ammonium fluoride solution is an aqueous solution containing trivalent iron ions, or one other trivalent metal. When the aqueous solution containing ions is 1, the concentration of the aqueous ammonium fluoride solution is 0.1 to 10, preferably 1 to 8, and more preferably 2 to 6.
 フッ化(鉄、その他金属)アンモニウム塩前駆体を得た後に実施される焼成工程は、得られたフッ化(鉄、その他金属)アンモニウム塩前駆体を低温で焼成した後、さらに高温で焼成する2段階の工程を含むことが好ましい。2段階で焼成することにより、より高純度の生成物を得ることができる。 The firing step performed after obtaining the fluorinated (iron, other metal) ammonium salt precursor is obtained by firing the obtained fluorinated (iron, other metal) ammonium salt precursor at a low temperature and then firing at a higher temperature. It is preferable to include a two-stage process. By baking in two stages, a product with higher purity can be obtained.
 上記2段階の工程のうち初期の工程における温度は、100℃以上、好ましくは150℃以上、より好ましくは200℃以上である。 The temperature in the initial step among the above-mentioned two steps is 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
 上記2段階の工程のうち後期の工程における温度は、250℃以上、好ましくは300℃以上、より好ましくは350℃以上である。 Of the above two-stage processes, the temperature in the latter stage is 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
 また、該手法により得られる前駆体(NHFe(1-x)Me(Meは水溶液中で3価のイオンとして存在可能な元素)は、走査型電子顕微鏡(SEM)で観測される平均粒子径が200~500nm以下の微結晶である。得られた前駆体(微結晶)は、必要に応じて、ボールミルなどの微細化技術により、平均粒径10~200nm以下(走査型電子顕微鏡(SEM)で観測)の微粒子に成形される。こうして得られた該正極材のBET比表面積は8m/g以上であり、好ましくは、10m/g以上である。 In addition, the precursor (NH 4 ) 3 Fe (1-x) Me x F 3 (Me is an element that can exist as a trivalent ion in an aqueous solution) obtained by this technique is measured with a scanning electron microscope (SEM). The crystallites observed have an average particle diameter of 200 to 500 nm or less. The obtained precursor (microcrystal) is formed into fine particles having an average particle diameter of 10 to 200 nm (observed with a scanning electron microscope (SEM)), if necessary, by a refining technique such as a ball mill. The positive electrode material thus obtained has a BET specific surface area of 8 m 2 / g or more, preferably 10 m 2 / g or more.
 以上の工程により、上記一般式(1)で示される正極材が製造される。 Through the above steps, the positive electrode material represented by the above general formula (1) is manufactured.
(非水電解質蓄電池)
 実施の形態に係る非水電解質蓄電池は、正極、負極、セパレータ、電解液を含む周知のセル構造を有する。正極は活物質、導電材および結着剤を有する。非水電解質電池の形態は特に限定されず、例えば、コイン型、ボタン型、パウチ型、角型、あるいはスパイラル構造を有する筒型などの種々のタイプに適用可能である。また、非水電解質電池の大きさも任意であり、大型、小型または薄型としてもよい。
(Non-aqueous electrolyte storage battery)
The nonaqueous electrolyte storage battery according to the embodiment has a well-known cell structure including a positive electrode, a negative electrode, a separator, and an electrolytic solution. The positive electrode has an active material, a conductive material, and a binder. The form of the nonaqueous electrolyte battery is not particularly limited, and can be applied to various types such as a coin type, a button type, a pouch type, a square type, or a cylindrical type having a spiral structure. Further, the size of the nonaqueous electrolyte battery is arbitrary, and may be large, small, or thin.
 活物質として、上記一般式(1)で示される正極材が用いられる。正極に用いる導電材は、正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種又は2種以上を混合したものを用いることができる。結着剤は、活物質粒子および導電材を繋ぎ止める役割を果たすものであれば特に限定されない。例えば、ポリテトラフルオオロエチレン、ポリフッ化ビニリデン、フッ素ゴム、ポリプロピレン、ポリエチレン、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸リチウム等を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。そして正極集電体には、アルミニウム箔等を用いることができる。 As the active material, a positive electrode material represented by the above general formula (1) is used. The conductive material used for the positive electrode is for ensuring the electrical conductivity of the positive electrode, and it is preferable to use a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite. it can. The binder is not particularly limited as long as it plays a role of connecting the active material particles and the conductive material. For example, polytetrafluoroethylene, polyvinylidene fluoride, fluororubber, polypropylene, polyethylene, polyvinyl alcohol, polyacrylic acid, sodium polyacrylate, lithium polyacrylate, or the like can be used. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, and binders. An aluminum foil or the like can be used for the positive electrode current collector.
 負極は、負極活物質であるアルカリ金属を、一般の電池のそれと同様に、シート状にして、あるいはシート状にしたものをニッケル、ステンレス等の集電体網に圧着して形成される。負極活物質としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属を用いることができ、さらにはこれらアルカリ金属の合金または化合物をも用いることができる。 The negative electrode is formed by pressing an alkali metal, which is a negative electrode active material, in the form of a sheet, like a general battery, or by pressing a sheet formed on a current collector network such as nickel or stainless steel. As the negative electrode active material, alkali metals such as lithium, sodium, potassium, rubidium, and cesium can be used, and alloys or compounds of these alkali metals can also be used.
 正極と負極との間に介在するセパレータは、電気絶縁性の多孔体から形成されていればよく、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリエチレンテレフタレート、ポリイミドなどのポリマー製の膜または繊維不織布が挙げられる。材質は、単独でもよく複数種を用いてもよい。また、セパレータは単層でもよく、多層(複合化膜)であっても良い。また、セラミックなどの無機材料ナノ粒子を含有してもよい。また、セパレータの両面にポリフッ化ビニリデン等の高分子化合物を塗布して用いてもよい。 The separator interposed between the positive electrode and the negative electrode is only required to be formed from an electrically insulating porous material. For example, a polyolefin film such as polyethylene or polypropylene, a polymer film such as polyester, polyethylene terephthalate, or polyimide, or a fiber nonwoven fabric. Is mentioned. The material may be used alone or in combination. The separator may be a single layer or a multilayer (composite film). Moreover, you may contain inorganic material nanoparticles, such as a ceramic. Moreover, you may apply | coat and use high molecular compounds, such as a polyvinylidene fluoride, on both surfaces of a separator.
 実施の形態に係る非水電解質電池では、有機溶媒により膨潤して非水電解質を保持する保持体となる高分子化合物を含むことによりゲル状となった電解質を用いてもよい。有機溶媒により膨潤する高分子化合物を含むことにより高いイオン伝導率を得ることができ、優れた充放電効率が得られると共に、電池の漏液を防止することができるからである。非水電解質に高分子化合物が含有されている場合、高分子化合物の含有量は、0.1質量%以上10質量%以下の範囲内とすることが好ましい。 In the nonaqueous electrolyte battery according to the embodiment, an electrolyte that is gelled by containing a polymer compound that swells with an organic solvent and serves as a holding body that holds the nonaqueous electrolyte may be used. This is because by including a polymer compound that swells with an organic solvent, high ionic conductivity can be obtained, excellent charge / discharge efficiency can be obtained, and battery leakage can be prevented. When the non-aqueous electrolyte contains a polymer compound, the content of the polymer compound is preferably in the range of 0.1% by mass to 10% by mass.
 また、セパレータの両面にポリフッ化ビニリデン等の高分子化合物を塗布して用いる場合は、非水電解質と高分子化合物の質量比を50:1~10:1の範囲内とすることが好ましい。この範囲内とすることにより、より高い充放電効率が得られる。 Further, when a polymer compound such as polyvinylidene fluoride is applied on both sides of the separator, the mass ratio of the nonaqueous electrolyte to the polymer compound is preferably in the range of 50: 1 to 10: 1. By setting it within this range, higher charge / discharge efficiency can be obtained.
 前記高分子化合物としては、例えば、ポリビニルホルマール、ポリエチレンオキサイド並びにポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物、およびポリフッ化ビニリデン、並びにフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ化ビニリデンの重合体が挙げられる。高分子化合物は1種を単独で用いてもよく、複数種を混合して用いてもよい。特に、高温保存時の膨潤防止効果の観点からは、ポリフッ化ビニリデンなどのフッ素系高分子化合物を用いることが望ましい。 Examples of the polymer compound include ether-based polymer compounds such as polyvinyl formal, polyethylene oxide and crosslinked products containing polyethylene oxide, ester-based polymer compounds such as polymethacrylate, acrylate-based polymer compounds, and polyvinylidene fluoride, In addition, a vinylidene fluoride polymer such as a copolymer of vinylidene fluoride and hexafluoropropylene may be used. A high molecular compound may be used individually by 1 type, and multiple types may be mixed and used for it. In particular, it is desirable to use a fluorine-based polymer compound such as polyvinylidene fluoride from the viewpoint of the effect of preventing swelling during high temperature storage.
 電解液は、主として有機溶媒と電解質塩から構成され、該有機溶媒としては高誘電率溶媒および低粘度溶媒が用いられる。 The electrolytic solution is mainly composed of an organic solvent and an electrolyte salt, and a high dielectric constant solvent and a low viscosity solvent are used as the organic solvent.
 前記高誘電率溶媒としては、エチレンカーボネート、プロピレンカーボネートの他に、例えば、ブチレンカーボネート、γ―ブチルラクトン、γ―バレロラクトン、テトラヒドロフラン、1、4-ジオキサン、N-メチル-2-ピロリドン、N-メチル-2-オキサゾリジノン、スルホラン、2-メチルスルホランなどが挙げられる。 As the high dielectric constant solvent, in addition to ethylene carbonate and propylene carbonate, for example, butylene carbonate, γ-butyllactone, γ-valerolactone, tetrahydrofuran, 1,4-dioxane, N-methyl-2-pyrrolidone, N— And methyl-2-oxazolidinone, sulfolane, 2-methylsulfolane and the like.
 前記低粘度溶媒としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートの他に例えば、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、ジメトキシエタン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、プロピオン酸メチル、プロピオン酸エチル、ギ酸メチル、ギ酸エチル、酪酸メチル、イソ酪酸メチルなどが挙げられる。
 電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化アンチモン酸リチウム(LiSbF)、過塩素酸リチウム(LiClO)および四塩化アルミニウム酸リチウム(LiAlCl)などの無機リチウム塩、並びにトリフルオロメタンスルホン酸リチウム(CFSOLi)、リチウムビス(トリフルオロメタンスルホン)イミド[(CFSONLi]、リチウムビス(ペンタフルオロエタンスルホン)イミド[(CSONLi]およびリチウムトリス(トリフルオロメタンスルホン)メチド[(CFSOCLi]などのパーフルオロアルカンスルホン酸誘導体のリチウム塩が挙げられる。電解質塩は1種を単独で用いてもよく、複数種を混合して用いてもよい。
 また、電解液には種々の添加剤が含まれても良く、添加剤としては例えば、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、ビフェニル、シクロヘキシルベンゼン、デカリン、ターフェニルなどが挙げられる。
Examples of the low viscosity solvent include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, for example, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, dimethoxyethane, methyl acetate, Examples include ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methyl propionate, ethyl propionate, methyl formate, ethyl formate, methyl butyrate, and methyl isobutyrate.
As the electrolyte salt, e.g., lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6) , Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloroaluminate (LiAlCl 4 ), and lithium trifluoromethanesulfonate (CF 3 SO 3 Li), lithium bis (trifluoromethanesulfone) imide [(CF 3 SO 2 ) 2 NLi], lithium bis (pentafluoroethanesulfone) imide [(C 2 F 5 SO 2 ) 2 NLi] and lithium tris (trifluoromethanesulfone) methide [(CF 3 SO 2 ) 3 CLi] Of perfluoroalkanesulfonic acid derivatives Lithium salts. One electrolyte salt may be used alone, or a plurality of electrolyte salts may be mixed and used.
The electrolyte solution may contain various additives. Examples of the additive include vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone. , Biphenyl, cyclohexylbenzene, decalin, terphenyl and the like.
 以下、実施例、比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
 表1に示す濃度のFe(NO・9HO水溶液 2.5ミリリットル、Al(NO・9HO水溶液 2.5ミリリットル、および3モル/リットルNHF水溶液5ミリリットルを、50ミリリットルのエタノール中へゆっくりと滴下することで沈殿物を得た。得られた沈殿物をろ過し、エタノールで洗浄、80℃、真空下にて12時間乾燥し、(NHFe(1-x)Alで表される前駆体1~3を表1の通り得た。
(Example 1)
The concentrations shown in Table 1 Fe (NO 3) 3 · 9H 2 O aqueous solution 2.5 ml, Al (NO 3) 3 · 9H 2 O aqueous solution 2.5 ml, and 3 mol / l NH 4 F solution 5 ml The precipitate was obtained by slowly dropping into 50 ml of ethanol. The resulting precipitate was filtered, washed with ethanol, dried at 80 ° C. under vacuum for 12 hours, and precursors 1 to 3 represented by (NH 4 ) 3 Fe (1-x) Al x F 6 were obtained. Obtained as shown in Table 1.
 得られた前駆体1をアルゴン雰囲気下で250℃にて2時間加熱した後、さらにアルゴン雰囲気下で400℃にて2時間加熱することにより、Fe0.9Al0.1を得た。得られた正極材のBET比表面積を測定した結果、11m/gであった。なお、加熱時の昇温速度は10℃/分とした。
Figure JPOXMLDOC01-appb-T000001
The obtained precursor 1 was heated at 250 ° C. for 2 hours under an argon atmosphere, and further heated at 400 ° C. for 2 hours under an argon atmosphere to obtain Fe 0.9 Al 0.1 F 3 . . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 11 m 2 / g. The heating rate during heating was 10 ° C./min.
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 0.5モル/リットルのFe(NO・9HO水溶液 5ミリリットル、および3モル/リットルNHF水溶液5ミリリットルを、50ミリリットルのエタノール中へゆっくりと滴下することで沈殿物を得た。得られた沈殿物をろ過し、エタノールで洗浄、80℃、真空下にて12時間乾燥し、(NHFeFで表される比較前駆体1を得た。
(Comparative Example 1)
0.5 mol / l of Fe (NO 3) 3 · 9H 2 O Aqueous Solution 5 ml and 3 mol / l NH 4 F Aqueous Solution 5 ml to obtain a precipitate by dripping slowly into 50ml ethanol It was. The obtained precipitate was filtered, washed with ethanol, dried at 80 ° C. under vacuum for 12 hours, and a comparative precursor 1 represented by (NH 4 ) 3 FeF 6 was obtained.
 得られた比較前駆体1をアルゴン雰囲気下で250℃にて2時間加熱した後、さらにアルゴン雰囲気下で400℃にて2時間加熱することにより、FeFを得た。得られた正極材のBET比表面積を測定した結果、8m/gであった。なお、加熱時の昇温速度は10℃/分とした。 The obtained comparative precursor 1 was heated at 250 ° C. for 2 hours under an argon atmosphere, and further heated at 400 ° C. for 2 hours under an argon atmosphere to obtain FeF 3 . It was 8 m < 2 > / g as a result of measuring the BET specific surface area of the obtained positive electrode material. The heating rate during heating was 10 ° C./min.
(比較例2)
 0.5モル/リットルのAl(NO・9HO水溶液 5ミリリットル、および3モル/リットルNHF水溶液5ミリリットルを、50ミリリットルのエタノール中へゆっくりと滴下することで沈殿物を得た。得られた沈殿物をろ過し、エタノールで洗浄、80℃、真空下にて12時間乾燥し、(NHAlFで表される比較前駆体2を得た。
(Comparative Example 2)
0.5 mol / liter Al (NO 3) 3 · 9H 2 O Aqueous Solution 5 ml and 3 mol / l NH 4 F Aqueous Solution 5 ml to obtain a precipitate by dripping slowly into 50ml ethanol It was. The obtained precipitate was filtered, washed with ethanol, dried at 80 ° C. under vacuum for 12 hours to obtain a comparative precursor 2 represented by (NH 4 ) 3 AlF 6 .
 前駆体1~3、比較前駆体1、2について、それぞれX線回折装置を用いてX線回折パターンを得た。図1に、前駆体1~3、比較前駆体1、2の各X線回折パターンを示す。また、実施例1の正極材および比較例1の正極材について、それぞれX線回折装置を用いてX線回折パターンを得た。図2に、実施例1の正極材および比較例1の正極材の各X線回折パターンを示す。 For the precursors 1 to 3 and the comparative precursors 1 and 2, X-ray diffraction patterns were obtained using an X-ray diffractometer, respectively. FIG. 1 shows X-ray diffraction patterns of the precursors 1 to 3 and the comparative precursors 1 and 2. Moreover, about the positive electrode material of Example 1 and the positive electrode material of the comparative example 1, the X-ray-diffraction pattern was obtained using the X-ray-diffraction apparatus, respectively. In FIG. 2, each X-ray-diffraction pattern of the positive electrode material of Example 1 and the positive electrode material of the comparative example 1 is shown.
 図1に示すように各前駆体で観察された回折線は空間群Fm-3mで帰属可能であり(NHFe(1-x)Alが得られていることが確認された。 As shown in FIG. 1, the diffraction lines observed in each precursor can be assigned in the space group Fm-3m, and it was confirmed that (NH 4 ) 3 Fe (1-x) Al x F 6 was obtained. It was.
 また、図2に示すように、前駆体1および比較前駆体1を400℃以上の温度でアルゴン雰囲気下で加熱することでFe(1-x)Al(x=0、0.1)(空間群R-3c)に帰属可能な回折線が観察された。 Also, as shown in FIG. 2, the precursor (1) and the comparative precursor (1) are heated in an argon atmosphere at a temperature of 400 ° C. or higher so that Fe (1-x) Al x F 3 (x = 0, 0.1 ) Diffraction lines that can be assigned to (space group R-3c) were observed.
 前駆体1および実施例1の正極材をSEM観察した。図3は、前駆体1および実施例1の正極材のSEM像(倍率×10,000)である。図4は、実施例1の正極材のSEM像(倍率×20,000)である。前駆体1の粒子サイズは200から500nm程度であり平滑な面を有している。一方、前駆体1を焼成して得られた実施例1の正極材の試料ではNHFが脱離した結果として表面に多数の細孔の生成が観察された。 The precursor 1 and the positive electrode material of Example 1 were observed by SEM. FIG. 3 is an SEM image (magnification × 10,000) of the precursor 1 and the positive electrode material of Example 1. FIG. 4 is an SEM image (magnification × 20,000) of the positive electrode material of Example 1. The particle size of the precursor 1 is about 200 to 500 nm and has a smooth surface. On the other hand, in the sample of the positive electrode material of Example 1 obtained by firing the precursor 1, a large number of pores were observed on the surface as a result of the elimination of NH 4 F.
 比較前駆体1および比較例1の正極材をSEM観察した。図5は、比較前駆体1および比較例1の正極材のSEM像(倍率×10,000)である。比較前駆体1の粒子径は前駆体1とほぼ同様であったが、比較前駆体1を焼成して得られた比較例1の正極材では、多少凝集していることが観測された。 The positive electrode material of Comparative Precursor 1 and Comparative Example 1 was observed by SEM. FIG. 5 is an SEM image (magnification × 10,000) of the positive electrode material of comparative precursor 1 and comparative example 1. The particle diameter of the comparative precursor 1 was almost the same as that of the precursor 1, but it was observed that the positive electrode material of Comparative Example 1 obtained by firing the comparative precursor 1 was somewhat agglomerated.
(サイクル特性評価)
 実施例1および比較例1の正極材を用いて、コイン型の非水電解質電池を作製した。図6は、サイクル特性評価に用いたコイン型の非水電解質電池の構造を示す模式断面図である。評価用の電池100は、正極12と負極14とがセパレータ15を介して積層されたものである。正極12、負極14およびセパレータ15はいずれも円板状であり、金属製の外装部品11および外装部品13によって画成される空間内に収容されている。外装部品11、13の内部は有機系電解質が満たされており、外装部品11、13の周縁部はシールガスケット17を介してかしめられることにより密閉されている。なお、外装部品13と負極14の間には金属製のバネ18とスペーサ19が配置されている。
(Cycle characteristic evaluation)
Using the positive electrode material of Example 1 and Comparative Example 1, a coin-type non-aqueous electrolyte battery was produced. FIG. 6 is a schematic cross-sectional view showing the structure of a coin-type non-aqueous electrolyte battery used for cycle characteristic evaluation. The evaluation battery 100 is obtained by laminating a positive electrode 12 and a negative electrode 14 with a separator 15 interposed therebetween. Each of the positive electrode 12, the negative electrode 14, and the separator 15 has a disk shape, and is accommodated in a space defined by the metal exterior component 11 and the exterior component 13. The interiors of the exterior parts 11 and 13 are filled with an organic electrolyte, and the peripheral parts of the exterior parts 11 and 13 are sealed by caulking through a seal gasket 17. A metal spring 18 and a spacer 19 are disposed between the exterior component 13 and the negative electrode 14.
 実施例1の正極材を用いた正極を以下のように作製した。先ず、実施例1の正極材をアセチレンブラック、およびグラファイトと混合し、ボールミルにより粉砕複合化処理を行った。これにより、実施例1の正極材の平均粒径は、約80nmとなった(図7参照)。正極材、アセチレンブラック、グラファイトの混合比は重量比で正極材:アセチレンブラック:グラファイト=70:15:5とした。さらにバインダーとしてポリアクリル酸を加え、N-メチルピロリドンを用いてスラリーを作製した。複合化試料とバインダーの混合比は、重量比で複合材料:バインダー=85:5とした。得られたスラリーをアルミ集電体に塗布して、80℃で12時間以上乾燥し正極を作製した。 A positive electrode using the positive electrode material of Example 1 was produced as follows. First, the positive electrode material of Example 1 was mixed with acetylene black and graphite, and pulverized and combined with a ball mill. Thereby, the average particle diameter of the positive electrode material of Example 1 became about 80 nm (refer FIG. 7). The mixing ratio of the positive electrode material, acetylene black, and graphite was positive electrode material: acetylene black: graphite = 70: 15: 5 in weight ratio. Further, polyacrylic acid was added as a binder, and a slurry was prepared using N-methylpyrrolidone. The mixing ratio of the composite sample and the binder was composite material: binder = 85: 5 in weight ratio. The obtained slurry was applied to an aluminum current collector and dried at 80 ° C. for 12 hours or longer to produce a positive electrode.
 比較例1の正極材を用いた正極を、比較例1の正極材を用いたことを除いて、実施例1の正極材を用いた正極と同様に作製した。ボールミル後の比較例1の正極材の平均粒径は、一部凝集も見られるが、概ね100~200nm(図8参照)であった。 A positive electrode using the positive electrode material of Comparative Example 1 was prepared in the same manner as the positive electrode using the positive electrode material of Example 1 except that the positive electrode material of Comparative Example 1 was used. The average particle diameter of the positive electrode material of Comparative Example 1 after ball milling was approximately 100 to 200 nm (see FIG. 8), although some aggregation was observed.
 負極にはリチウム金属、厚さ25マイクロメートルのポリプロピレン製のセパレータ、電解液および、上記手法により作製した正極を用いてコインセルを作製した。電解液は、エチレンカーボネート(以下、ECと略す)、ジエチルカーボネート(以下、DECと略す)をそれぞれ体積比1:1で混合した溶媒にLiPFを1モル/リットルの割合で溶解させたものを用いた。 As the negative electrode, a coin cell was manufactured using lithium metal, a polypropylene separator having a thickness of 25 micrometers, an electrolytic solution, and a positive electrode manufactured by the above method. The electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a solvent in which ethylene carbonate (hereinafter abbreviated as EC) and diethyl carbonate (hereinafter abbreviated as DEC) were mixed at a volume ratio of 1: 1. Using.
 実施例1の正極材を用いた正極が組み込まれた非水電解質電池および比較例1の正極材を用いた正極が組み込まれた非水電解質電池について電池特性の評価を行った。電池特性の評価は、室温下、電圧範囲を1.0V~4.5Vとし、40mA/gの定電流にて充放電試験にて行った。 The battery characteristics of the nonaqueous electrolyte battery incorporating the positive electrode using the positive electrode material of Example 1 and the nonaqueous electrolyte battery incorporating the positive electrode using the positive electrode material of Comparative Example 1 were evaluated. The battery characteristics were evaluated by a charge / discharge test at room temperature at a voltage range of 1.0 V to 4.5 V and a constant current of 40 mA / g.
 表2に初期放電容量と10サイクル後の放電容量維持率をまとめた。実施例1の正極材を用いた場合には、電気化学的に不活性なAlで置換した分、初期放電容量が減少したが、10サイクル後の放電容量維持率は75%となった。一方、比較例1の正極材を用いた場合には、10サイクル後の放電容量維持率は70%であり、実施例1の正極材を用いた場合に、比較例1の正極材を用いた場合に比べ、サイクル特性が改善することが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
Table 2 summarizes the initial discharge capacity and the discharge capacity retention rate after 10 cycles. When the positive electrode material of Example 1 was used, the initial discharge capacity was reduced by the amount replaced with electrochemically inactive Al, but the discharge capacity retention rate after 10 cycles was 75%. On the other hand, when the positive electrode material of Comparative Example 1 was used, the discharge capacity retention rate after 10 cycles was 70%, and when the positive electrode material of Example 1 was used, the positive electrode material of Comparative Example 1 was used. It was revealed that the cycle characteristics were improved as compared with the case.
Figure JPOXMLDOC01-appb-T000002
(実施例2)
0.4モル/リットルのFe(NO・9HO水溶液2.5ミリリットル、0.1モル/リットルのAl(NO・9HO水溶液2.5ミリリットル、および3モル/リットルNHF水溶液5ミリリットルを用いて、実施例1と同様にフッ化アンモニウム前駆体を合成し、焼成することでFe0.8Al0.2を合成した。得られた正極材のBET比表面積を測定した結果、15m/gであった。なお、焼成時の昇温速度は1℃/分とした。
(Example 2)
0.4 mol / l of Fe (NO 3) 3 · 9H 2 O aqueous solution 2.5 ml, 0.1 mol / liter Al (NO 3) 3 · 9H 2 O aqueous solution 2.5 ml, and 3 mol / An ammonium fluoride precursor was synthesized in the same manner as in Example 1 using 5 ml of a liter NH 4 F aqueous solution, and then calcined to synthesize Fe 0.8 Al 0.2 F 3 . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 15 m 2 / g. In addition, the temperature increase rate at the time of baking was 1 degree-C / min.
(比較例3)
 実施例1と同様に前駆体を合成し、得られた前駆体をアルゴン雰囲気下で400℃にて2時間加熱することにより、Fe0.9Al0.1を得た。得られた正極材のBET比表面積を測定した結果、7m/gであった。なお、加熱時の昇温速度は1℃/分とした。
(Comparative Example 3)
A precursor was synthesized in the same manner as in Example 1, and the obtained precursor was heated at 400 ° C. for 2 hours in an argon atmosphere to obtain Fe 0.9 Al 0.1 F 3 . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 7 m 2 / g. The heating rate during heating was 1 ° C./min.
(比較例4)
 比較例1と同様に前駆体を合成し、得られた前駆体をアルゴン雰囲気下で400℃にて2時間加熱することにより、FeFを得た。得られた正極材のBET比表面積を測定した結果、7m/gであった。なお、加熱時の昇温速度は1℃/分とした。
(Comparative Example 4)
A precursor was synthesized in the same manner as in Comparative Example 1, and the obtained precursor was heated at 400 ° C. for 2 hours under an argon atmosphere to obtain FeF 3 . As a result of measuring the BET specific surface area of the obtained positive electrode material, it was 7 m 2 / g. The heating rate during heating was 1 ° C./min.
 実施例2、比較例3、4の正極材について、それぞれX線回折装置を用いてX線回折パターンを得た。図9に、実施例2、比較例3、4の各X線回折パターンを示す。 For the positive electrode materials of Example 2 and Comparative Examples 3 and 4, X-ray diffraction patterns were obtained using an X-ray diffractometer, respectively. FIG. 9 shows X-ray diffraction patterns of Example 2 and Comparative Examples 3 and 4.
 実施例2、比較例3、4の正極材を用いて、実施例1と同様に正極、および該正極が組み込まれたコイン型の非水電解質電池を作製し、室温下、電圧範囲を1.0V~4.5Vとし、40mA/gの定電流にて充放電試験にて行った。 Using the positive electrode material of Example 2 and Comparative Examples 3 and 4, a positive electrode and a coin-type non-aqueous electrolyte battery incorporating the positive electrode were produced in the same manner as in Example 1, and the voltage range was 1. The charge / discharge test was performed at a constant current of 40 mA / g at 0 V to 4.5 V.
 表3に初期放電容量と10サイクル後の放電容量維持率をまとめた。実施例2の正極材を用いた場合には、電気化学的に不活性なAlで置換した量が比較例に比べて多いために、初期放電容量は減少したが、10サイクル後の放電容量維持率は99%となった。一方、比較例3、4の正極材を用いた場合には、10サイクル後の放電容量維持率はそれぞれ順に47%、45%であり、実施例2の正極材を用いた場合に、比較例の正極材を用いた場合に比べ、サイクル特性が改善することが明らかとなり、低温と高温の2段階で焼成する手法が優れていることが示された。 Table 3 summarizes the initial discharge capacity and the discharge capacity maintenance rate after 10 cycles. When the positive electrode material of Example 2 was used, the initial discharge capacity was reduced because the amount of electrochemically inactive Al substitution was larger than that of the comparative example, but the discharge capacity was maintained after 10 cycles. The rate was 99%. On the other hand, when the positive electrode materials of Comparative Examples 3 and 4 were used, the discharge capacity retention rates after 10 cycles were 47% and 45%, respectively, and when the positive electrode material of Example 2 was used, Compared with the case of using the positive electrode material, it became clear that the cycle characteristics were improved, and it was shown that the technique of firing in two stages of low temperature and high temperature was excellent.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
100 電池、11 外装部品、12 正極、13 外装部品、14 負極、15 セパレータ、17 シールガスケット、18 バネ、19 スペーサ 100 battery, 11 exterior component, 12 positive electrode, 13 exterior component, 14 negative electrode, 15 separator, 17 seal gasket, 18 spring, 19 spacer
 本発明は、非水電解質電池の正極材に利用可能である。 The present invention can be used for a positive electrode material of a nonaqueous electrolyte battery.

Claims (10)

  1.  FeFに3価の金属を置換させたフッ化金属からなる平均粒径200nm以下の微粒子を含む非水電解質電池用の正極材。 A positive electrode material for a non-aqueous electrolyte battery comprising fine particles having an average particle diameter of 200 nm or less made of a metal fluoride in which a trivalent metal is substituted for FeF 3 .
  2.  以下の一般式(1)で表される請求項1の正極材。
    Fe(1-x)Al (1)
    (但し、xは0.01≦x≦0.5である。)
    The positive electrode material of Claim 1 represented by the following general formula (1).
    Fe (1-x) Al x F 3 (1)
    (However, x is 0.01 ≦ x ≦ 0.5.)
  3.  金属塩とフッ化アンモニウムの水溶液とを用いた沈殿法により、フッ化金属アンモニウム塩前駆体を合成する工程と、
     得られたフッ化金属アンモニウム塩前駆体を焼成する工程と、
     を備えることを特徴とする正極材の製造方法。
    A step of synthesizing a metal fluoride ammonium salt precursor by a precipitation method using a metal salt and an aqueous solution of ammonium fluoride;
    Baking the obtained metal fluoride ammonium salt precursor;
    A method for producing a positive electrode material, comprising:
  4.  金属塩が硝酸塩である請求項3に記載の正極材の製造方法。 The method for producing a positive electrode material according to claim 3, wherein the metal salt is nitrate.
  5.  3価の鉄イオンとその他1種類の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液をアルコール中に当量滴下することでフッ化金属アンモニウム塩前駆体を得る請求項3または4に記載の正極材の製造方法。 The positive electrode according to claim 3 or 4, wherein an aqueous solution containing a trivalent iron ion and one other kind of trivalent metal ion and an aqueous ammonium fluoride solution are dropped in an equivalent amount into an alcohol to obtain a metal fluoride ammonium salt precursor. A method of manufacturing the material.
  6.  アルコールがエタノールである請求項3乃至5のいずれか1項に記載の正極材の製造方法。 Alcohol is ethanol, The manufacturing method of the positive electrode material of any one of Claim 3 thru | or 5.
  7.  3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液とフッ化アンモニウム水溶液の濃度比は、3価の鉄イオンを含む水溶液、もしくはその他1種の3価の金属イオンを含む水溶液を1とした場合のフッ化アンモニウム水溶液の濃度は0.1~10である請求項5または6に記載の正極材の製造方法。 The concentration ratio of an aqueous solution containing trivalent iron ions, or an aqueous solution containing one other trivalent metal ion and an aqueous ammonium fluoride solution is an aqueous solution containing trivalent iron ions, or one other trivalent metal. The method for producing a positive electrode material according to claim 5 or 6, wherein the concentration of the aqueous ammonium fluoride solution is 0.1 to 10 when the aqueous solution containing ions is 1.
  8.  フッ化金属アンモニウム塩前駆体を焼成する工程は、フッ化アンモニウム塩前駆体を低温で焼成した後、さらに高温で焼成する2段階の工程を有する請求項3乃至7のいずれか1項に記載の正極材の製造方法。 The step of firing the metal fluoride ammonium salt precursor includes a two-step process of firing the ammonium fluoride salt precursor at a low temperature and further firing at a high temperature. Manufacturing method of positive electrode material.
  9.  焼成して得られたフッ化金属の平均粒径が10~200nmになるように微細化する工程を含む請求項3乃至8のいずれか1項に記載の正極材の製造方法。 The method for producing a positive electrode material according to any one of claims 3 to 8, further comprising a step of reducing the average particle size of the metal fluoride obtained by firing so as to be 10 to 200 nm.
  10. 請求項1または2に記載の正極材を用いた非水電解質電池。 A nonaqueous electrolyte battery using the positive electrode material according to claim 1.
PCT/JP2013/006675 2012-11-13 2013-11-13 Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery WO2014076946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-249673 2012-11-13
JP2012249673A JP2016021276A (en) 2012-11-13 2012-11-13 Positive electrode material, method for manufacturing positive electrode material, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
WO2014076946A1 true WO2014076946A1 (en) 2014-05-22

Family

ID=50730878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006675 WO2014076946A1 (en) 2012-11-13 2013-11-13 Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery

Country Status (3)

Country Link
JP (1) JP2016021276A (en)
TW (1) TW201432989A (en)
WO (1) WO2014076946A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157837A (en) * 2014-07-14 2014-11-19 宁波大学 Cu2+, Mn2+, Zr4+ and Ag+ doped ferric fluoride composite anode material and preparation method
CN104157836A (en) * 2014-07-14 2014-11-19 宁波大学 Cu<2+>, Co<2+>, Zr<4+> and Ag+ doped ferric fluoride composite anode material and preparation method
CN105336946A (en) * 2015-09-28 2016-02-17 中国船舶重工集团公司第七一二研究所 Preparation method of ferric fluoride cathode material for lithium ion battery
CN112204778A (en) * 2019-01-28 2021-01-08 松下电器产业株式会社 Active material, negative electrode active material, and fluorine ion secondary battery
CN114639827A (en) * 2022-03-29 2022-06-17 多氟多新材料股份有限公司 Preparation method of iron-based fluoride composite positive electrode material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016234A (en) * 2007-07-06 2009-01-22 Sony Corp Nonaqueous battery, and manufacturing method of nonaqueous battery
JP2010009940A (en) * 2008-06-26 2010-01-14 Denso Corp Binder for secondary batter electrode, and electrode for secondary battery and nonaqueous electrolytic solution secondary battery using the binder
JP2010170867A (en) * 2009-01-23 2010-08-05 Toyota Industries Corp Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2012505520A (en) * 2008-10-07 2012-03-01 エンビア・システムズ・インコーポレイテッド Cathode materials for lithium ion batteries with high specific discharge capacity and processes for synthesizing these materials
JP2012221670A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Magnesium secondary battery and battery system including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016234A (en) * 2007-07-06 2009-01-22 Sony Corp Nonaqueous battery, and manufacturing method of nonaqueous battery
JP2010009940A (en) * 2008-06-26 2010-01-14 Denso Corp Binder for secondary batter electrode, and electrode for secondary battery and nonaqueous electrolytic solution secondary battery using the binder
JP2012505520A (en) * 2008-10-07 2012-03-01 エンビア・システムズ・インコーポレイテッド Cathode materials for lithium ion batteries with high specific discharge capacity and processes for synthesizing these materials
JP2010170867A (en) * 2009-01-23 2010-08-05 Toyota Industries Corp Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2012221670A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Magnesium secondary battery and battery system including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOYA AKIYAMA ET AL.: "Al Chikan o Okonatta FeF3 no Gosei to Denki Kagaku Tokusei", ABSTRACTS, THE 53RD BATTERY SYMPOSIUM IN JAPAN, 13 November 2012 (2012-11-13), pages 175 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157837A (en) * 2014-07-14 2014-11-19 宁波大学 Cu2+, Mn2+, Zr4+ and Ag+ doped ferric fluoride composite anode material and preparation method
CN104157836A (en) * 2014-07-14 2014-11-19 宁波大学 Cu<2+>, Co<2+>, Zr<4+> and Ag+ doped ferric fluoride composite anode material and preparation method
CN104157836B (en) * 2014-07-14 2016-08-17 宁波大学 A kind of Cu2+, Co2+, Zr4+, Ag+doping ferric flouride composite positive pole and preparation method
CN105336946A (en) * 2015-09-28 2016-02-17 中国船舶重工集团公司第七一二研究所 Preparation method of ferric fluoride cathode material for lithium ion battery
CN112204778A (en) * 2019-01-28 2021-01-08 松下电器产业株式会社 Active material, negative electrode active material, and fluorine ion secondary battery
EP3920284A4 (en) * 2019-01-28 2022-03-23 Panasonic Corporation Active material, negative-electrode active material, and fluoride-ion secondary battery
CN112204778B (en) * 2019-01-28 2023-12-29 松下控股株式会社 Active material, negative electrode active material, and fluorine ion secondary battery
CN114639827A (en) * 2022-03-29 2022-06-17 多氟多新材料股份有限公司 Preparation method of iron-based fluoride composite positive electrode material

Also Published As

Publication number Publication date
JP2016021276A (en) 2016-02-04
TW201432989A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
EP3467929B1 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the same
CN111433962B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
EP3246982B1 (en) Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell
KR20170046066A (en) Positive Electrode Active Material Comprising Layered Lithium Metal Oxides and Positive Electrode having the Same
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2014061654A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
EP3968415A1 (en) Negative electrode active material and electrochemical device and electronic device using same
KR20170046921A (en) Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
JP5601740B2 (en) Cathode active material and lithium secondary battery including the same
KR20170045833A (en) Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
JP2022504057A (en) Negative electrode active material materials and negative electrode sheets using them, electrochemical devices and electronic devices
WO2014076946A1 (en) Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery
CN110088970B (en) Nonaqueous electrolyte secondary battery
US10164255B2 (en) Silicon material and negative electrode of secondary battery
WO2016157745A1 (en) Cathode material, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
KR101655241B1 (en) Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2022077333A1 (en) Positive electrode material, electrochemical apparatus, and electronic device
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
WO2011111227A1 (en) Electrode active material and method for producing electrode active material
CN111132933B (en) Positive electrode material for lithium secondary battery and method for producing same
CN107316984B (en) Positive electrode active material precursor, method for producing same, and positive electrode active material
EP3219678B1 (en) Silicon doping of high voltage spinel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP