WO2014076839A1 - Storage battery voltage leveling device and storage battery state monitoring system - Google Patents

Storage battery voltage leveling device and storage battery state monitoring system Download PDF

Info

Publication number
WO2014076839A1
WO2014076839A1 PCT/JP2012/079947 JP2012079947W WO2014076839A1 WO 2014076839 A1 WO2014076839 A1 WO 2014076839A1 JP 2012079947 W JP2012079947 W JP 2012079947W WO 2014076839 A1 WO2014076839 A1 WO 2014076839A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
voltage
internal resistance
storage
power supply
Prior art date
Application number
PCT/JP2012/079947
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 向谷
真也 水杉
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to PCT/JP2012/079947 priority Critical patent/WO2014076839A1/en
Priority to JP2014546826A priority patent/JPWO2014076839A1/en
Publication of WO2014076839A1 publication Critical patent/WO2014076839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for controlling the state of a storage battery, and more particularly to a technique that is effective when applied to a storage battery voltage leveling device and a storage battery state monitoring system that suppress voltage variations for a plurality of storage batteries used in a power supply system. is there.
  • UPS Uninterruptible Power Supply: Uninterruptible power supply
  • a UPS has a storage battery that stores electric power to be supplied to a load in an emergency or the like, and some UPS has a plurality of storage batteries.
  • a self-supporting power source or as a power leveling mechanism for example, a generator or charger using natural energy such as a solar battery or wind power generation, a storage battery, and a control system for these are combined.
  • a configured power system is being used.
  • these power supply systems may be operated while taking in and out a normal commercial power supply as in the so-called system linkage.
  • smart grids if the electricity generated is backflowed into the system, or the load on the system is reduced and the capacity of the storage battery is reduced, the surplus of the system In many cases, power is stored in a storage battery to improve the efficiency of energy supply as a whole.
  • Patent Document 1 discloses a battery state measurement unit, a SOC (State Of Charge) model, information measured by a battery state measurement unit, and SOC in a lead storage battery system.
  • SOC State Of Charge
  • An SOC estimation unit that estimates the SOC from the model information, an SOC transition DB that records the transition state of the SOC of the lead storage battery, and an SOC transition history management that records the estimated SOC value in the SOC transition DB and examines the SOC transition state ,
  • An equal charge information output unit and an equal charge control unit that performs equal charge of lead-acid batteries according to the plan determined by the optimum charge optimal plan unit shall be provided. Therefore, the lead-acid battery life can be extended by changing the interval of the lead-acid battery equal charge according to the usage status of the lead-acid battery (change in SOC). Is also described as a technology that predominates.
  • the storage battery used in the power supply system as described above is generally a lead storage battery, and unlike a lithium ion battery, does not use a cell controller that controls the cell voltage. Therefore, when there is a capacity difference for each cell or when an abnormality occurs in the voltage during charging, the voltage of individual cells cannot be balanced by the monitoring device or control device connected to the entire storage battery. It may affect the entire system, such as premature battery deterioration.
  • a monitoring / control device or the like is connected to the power supply system or its storage battery to partially balance the state of the storage battery voltage or the like.
  • a harness-type monitoring device has been conventionally used from the viewpoint of reliability.
  • the storage battery chassis is grounded, so if the measurement / recording device line that operates with a separate power source touches the base, problems such as short circuit, smoke, and fire may occur due to insulation breakdown. It is necessary to take measures such as inserting a fuse.
  • an object of the present invention is to provide a storage battery voltage leveling device and a storage battery state monitoring system that suppress variations in voltage between storage batteries in a power supply system having a plurality of lead storage batteries that are always connected to a device.
  • a storage battery voltage leveling device leveles a voltage of each storage battery with respect to a power supply device that is always connected to a device and includes a battery pack in which a plurality of storage batteries are connected in series.
  • a storage battery voltage leveling device that is connected in parallel to a part of the storage batteries connected in series, a temperature measuring unit that measures the temperature of the connected storage battery, and a voltage of the storage battery
  • a storage battery voltage leveling device in a power supply system having a plurality of lead storage batteries that are always connected to a device, a storage battery voltage leveling device and a storage battery state monitoring system that suppress variations in voltage between storage batteries. Can be realized.
  • a storage battery used in a power supply system such as a UPS or a self-contained power supply using natural energy is generally a lead storage battery, and unlike a lithium ion battery, does not use a cell controller that controls the cell voltage. Therefore, when there is a capacity difference for each cell or when an abnormality occurs in the voltage during charging, the voltage of individual cells cannot be balanced by the monitoring device or control device connected to the entire storage battery. It may affect the entire system, such as premature battery deterioration.
  • a storage battery voltage leveling device (hereinafter sometimes referred to as “balancer”) is always connected to a part of a plurality of series storage batteries connected to a device.
  • balancer a storage battery voltage leveling device
  • FIG. 1 is a diagram showing an outline of a configuration example of a power supply system to which a storage battery voltage leveling device according to Embodiment 1 of the present invention is connected.
  • the power supply system includes, for example, one or more power supply devices 40 each including an assembled battery including a plurality of storage batteries 41 connected in series (for example, a VRLA (Valve-Regulated-Lead-Acid: control valve type) battery).
  • Each power supply device 40 is connected with a control / power supply device 50 for controlling the operation of the power supply device 40.
  • the control / power supply device 50 is a control device configured to include, for example, a power control device (Power Conditioning System: PCS), a power supply device such as an uninterruptible power supply (UPS), or a DC power supply device. Control is performed to switch between supplying electric power to a load such as a device or system that uses 40 from the storage battery 41 or from a power generation facility 70 or an electric power system 80 described later. Further, surplus power from the power generation facility 70 is supplied to the power supply device 40 to charge the storage battery 41 or to control the reverse power flow to the commercial power system 80.
  • PCS Power Conditioning System
  • UPS uninterruptible power supply
  • DC power supply device DC power supply device
  • the power generation facility 70 includes a power generation device using natural energy such as a solar power generation device (solar cell) or a wind power generation device, and is a power generation facility that can generate power independently without supplying artificial energy.
  • the power system 80 is a commercial power supply system. In the present embodiment, as a power supply source to the storage battery 41, the power generation facility 70 and the power system 80 are provided and can be switched and used by the control / power supply device 50. Only one configuration may be used.
  • a storage battery voltage leveling device (balancer) 30 is connected to the storage battery 41 in parallel.
  • the balancer 30 is connected to all the storage batteries 41 connected in series in the power supply device 40.
  • the balancer 30 causes a current to flow (functions) only for a short time during operation, but interferes with the power supply when all the elements operate simultaneously, and therefore does not affect the power supply operation (for example, 1/3 or less of the total number of batteries) ) Can be added at the same time to reduce the influence on the operation of the power supply device 40. Further, there is no problem even if a plurality of cells are connected in series instead of one battery.
  • FIG. 2 is a diagram showing an outline of a configuration example of the storage battery voltage leveling device (balancer) 30.
  • the balancer 30 is connected to the storage battery 41 in parallel and operates independently, absorbs the energy of the storage battery 41 in a state where the voltage is high, and changes the voltage and the state of the battery with the other storage battery 41.
  • the leveling device includes, for example, various units such as a measurement control unit 31, a voltage measurement unit 33, and a partial discharge unit 38 that are implemented as software programs or circuits executed by a CPU (Central Processing Unit). Further, terminals wired from the voltage measuring unit 33 and the partial discharge unit 38 are connected to the positive and negative terminals of the storage battery 41, respectively.
  • the electric power for operating the balancer 30 shall be acquired from the storage battery 41 (For example, a sine wave is oscillated between the storage battery 41 and the balancer 30, etc.). Therefore, it is desirable that the balancer 30 is provided with a power saving mode or the like that does not consume unnecessary power by sleeping or the like at times other than when the operation of each unit is necessary.
  • the measurement control unit 31 has a function of controlling the entire processing in the balancer 30, such as measurement processing of parameters such as voltage in the balancer 30 and energy absorption processing of the storage battery 41. For example, these processes may be performed based on an instruction from the user via a button or the like provided on the balancer 30, or these processes are performed at regular intervals (for example, every five minutes or once a day). May be performed continuously.
  • the partial discharge unit 38 to be described later is instructed to absorb energy and the voltage between the other storage batteries 41 is Leveling.
  • the voltage measurement unit 33 measures the voltage or discharge capacity during charging between the terminals of the storage battery 41 in accordance with an instruction from the measurement control unit 31 (for example, an arbitrary timing instructed by the user or a constant interval every 5 minutes), The measurement data is output to the measurement control unit 31.
  • the partial discharge unit 38 absorbs the energy of the storage battery 41 according to an instruction from the measurement control unit 31 (for example, when the voltage between the terminals of the storage battery 41 is a predetermined value or more). That is, the storage battery 41 is discharged for a certain time, and the voltage of the storage battery 41 is lowered.
  • FIG. 3 is a diagram showing an outline of a configuration example of the partial discharge unit 38.
  • the constant current control is performed so that the voltage drop in the resistor R1 is constant
  • the voltage of the storage battery 41 and the current consumption value have a linear (linear function) relationship.
  • the larger the current the larger the current consumption, and as a result, it is possible to absorb the voltage variation between the other storage batteries 41.
  • the storage battery voltage leveling device (balancer) 30 is connected to a part of the plurality of series storage batteries 41 that are always connected to the device and is operated independently.
  • the energy of the storage battery 41 can be absorbed (discharged), and the voltage between the storage batteries 41 and the state of the battery can be leveled.
  • a voltage leveling mechanism can be easily constructed by installing such a balancer 30 in the storage battery 41 when the power supply device 40 is constructed and introduced.
  • the operation content instruction to the balancer 30 is, for example, directly given to the balancer 30 by the user.
  • the balancer 30 operable by wireless communication, the individual balancer 30 is instructed.
  • the voltage between the storage batteries 41 can be leveled intensively from a remote location without giving instructions one by one, and work efficiency can be greatly reduced.
  • FIG. 4 is a diagram showing an outline of a configuration example of a power supply system to which a storage battery voltage leveling device (balancer) 30 according to the second embodiment of the present invention is connected. 1 is different from the configuration example shown in FIG. 1 in the first embodiment in that a storage battery voltage leveling device (balancer) 30 has a wireless communication function and can perform wireless communication with these balancers 30. By having 90, it is possible to perform leveling of the voltage between the storage batteries 41 in a concentrated manner from a remote concentrated operation instruction device 90.
  • the centralized operation instruction device 90 is composed of, for example, a portable information processing terminal, a dedicated terminal, and the like, and can be connected to each balancer 30 by wireless communication. Each balancer 30 is instructed by a user or at regular intervals. The function of instructing the measurement of the voltage of the storage battery 41 and the leveling of the voltage by the discharge, and the instruction of changing various setting values to the measurement control unit 31 of the balancer 30 are provided. Note that wireless communication standards, protocols, and the like are not particularly limited, and known techniques can be used as appropriate.
  • FIG. 5 is a diagram showing an outline of a configuration example of the storage battery voltage leveling device (balancer) 30 according to the present embodiment. The difference from the configuration example shown in FIG. 2 of the first embodiment is that a communication unit 36 for performing wireless communication with the centralized operation instruction device 90 is provided.
  • the individual balancer 30 is configured so that the centralized operation instructing device 90 can perform operation instruction and control from a remote location via wireless communication.
  • the work efficiency can be greatly reduced without manually instructing and setting 30 each time.
  • a wireless communication configuration it is possible to reduce a risk of occurrence of a failure such as a leakage current due to a harness, a short circuit due to a dielectric breakdown of a coating, or a disconnection.
  • the balancer 30 in a power supply device 40 having a plurality of storage batteries 41, when the voltage of the storage battery 41 is higher than a predetermined value, the battery is partially discharged (in units of each storage battery 41) by the balancer 30. It is possible to perform voltage leveling between 41. Here, by using such a leveling mechanism in combination with a monitoring function for estimating the state and life of each storage battery 41, the leveling of the voltage between the storage batteries 41 can be efficiently performed. An effect can be obtained. Therefore, in the third embodiment of the present invention, the balancer 30 as described above is configured to be combined with a device having a monitoring function for measuring the state of the storage battery 41 to monitor and control the state of the battery system. For use in a storage battery status monitoring system.
  • a power source system configured by combining a generator and a storage battery such as a solar battery or a wind power generator is used.
  • a power supply system power generated by natural energy is supplied to the load.
  • the amount of power generation may change due to changes in the natural environment, and power supply to the load may be excessive or insufficient. Therefore, the storage battery is used to absorb fluctuations in the amount of power generation and load, and supply / reverse flow with the commercial power system is performed to stabilize and improve the efficiency of power supply.
  • the power system including the power system and the storage battery can be operated in a coordinated manner by mutually supplying and backflowing with the commercial power system. Done. In order to effectively perform this cooperative operation, it is important to appropriately grasp the state of the storage battery.
  • This storage battery is known to deteriorate over time even in a non-operating state, and it is generally known that deterioration increases as the ambient temperature increases. Therefore, for example, in general, in a device equipped with a storage battery such as UPS, the state of the storage battery is usually monitored in order to avoid that the storage battery does not operate normally due to a life or failure during operation (discharge). is doing. In addition, by predicting the life time due to deterioration such as the ambient temperature and age, the storage battery is not in an abnormal state, but even if it is in a normal state, it will be new before the predicted life time arrives. The method of exchanging with a storage battery has been taken.
  • devices and systems that monitor the status of storage batteries installed in multiple power supply systems by measuring multiple parameters other than temperature and centrally monitoring the results. Is required.
  • internal resistance is measured in addition to temperature and voltage, but in order to estimate the life more accurately, it is necessary to increase the number of measurement parameters such as data during charging and discharging. It is done.
  • the storage battery state monitoring system automatically measures or acquires various parameters for a plurality of storage batteries that are charged with electric power generated using natural energy such as solar cells and are always connected to the device. .
  • the state and life of each storage battery are efficiently estimated with high accuracy, and the storage battery can be controlled to operate properly in a predetermined partial charge state.
  • each storage battery is provided with a measurement device that measures various parameters and acquires and holds data, and the data measured by the measurement device is wirelessly communicated to the monitoring device upon request. Sent by.
  • the monitoring device performs centralized processing to estimate the state and life of the storage battery based on the measurement data collected from each measurement device.For example, if there is a storage battery that needs to be replaced, the relevant information etc. It has an interface for notifying the user.
  • a power supply system that performs system linkage with a power supply system is generally a large-scale system exceeding 100 kVA
  • a monitoring apparatus and a measurement apparatus Harness method was taken for connection between.
  • the storage battery chassis is grounded, so if a measurement device line that operates with a separate power source touches the base, troubles such as short circuit, smoke, and fire may occur due to dielectric breakdown. There was a problem such as need to put. Even if a wireless system is adopted, the number of measuring devices that can be used is limited, and it is difficult to apply to a large-scale system.
  • monitoring is performed in consideration of reduction in communication load due to the monitoring device having communication sessions with a large number of measurement devices, ease of installation of the measurement device by using wireless communication, flexibility, and the like.
  • a hierarchical structure having a relay device for performing communication load distribution and / or communication protocol conversion is provided between the device and the measurement device. Thereby, even in a large-scale system, communication between the monitoring device and each measuring device can be made wireless.
  • the voltage and internal resistance mainly AC impedance, the battery reactance is also included in the measurement.
  • internal resistance mainly AC impedance, the battery reactance
  • deterioration is determined in a multifaceted manner based on a plurality of parameters such as DC resistance during discharging and charging.
  • temperature and voltage as abnormal value management including those due to sudden failures, etc., abnormal when the temperature or voltage value of the storage battery acquired at regular intervals (for example, 5 minutes) exceeds a predetermined threshold It is determined that the state is not correct.
  • the time of life may be determined from a table or expression showing the correlation between temperature and life.
  • the internal resistance As an ordinary trend management, for example, it is measured at a regular timing such as once a day or at a timing when an instruction from the user is received, and an initial value of the internal resistance value (for example, a storage battery)
  • the deterioration of the storage battery is estimated from the rate of change from the value measured initially at the time of installation. For example, when the internal resistance value increases by 20% or more from the initial value, it is determined that the deterioration is mild, and when the internal resistance value increases by 50% or more from the initial value, it is determined that replacement is necessary promptly (for example, within one year). If the initial value is increased by 100% or more, it is determined that the replacement is necessary immediately. Since the absolute value of the internal resistance varies depending on the type of storage battery, etc., the determination based on the relative value is performed in this way.
  • the internal resistance is measured at a plurality of frequencies so that the life can be estimated more accurately in accordance with various deterioration modes of the storage battery, and the above-described values are determined for each internal resistance at each frequency. Assume that the determination is based on a relative value with respect to the initial value.
  • a frequency of about 1 kHz is generally used, and it is known that the situation in which the storage battery gradually deteriorates can be determined to some extent by the internal resistance measured at the frequency. .
  • the frequency of about 1 kHz (for example, 350 Hz to less than 2000 Hz) is used in this embodiment.
  • the frequency is high and only information that can determine the life of the storage battery can be obtained. Therefore, in order to obtain more detailed information, it is desirable to measure the internal resistance at a low frequency close to direct current or direct current.
  • the DC resistance component when the storage battery is discharged or charged, the voltage value and the current value sequentially measured from the measuring device installed in each storage battery (when measuring the internal resistance at AC) It is assumed that the current value and the voltage value during discharge are obtained by calculating the ratio of the respective changes (slopes). About this, by comparing with an initial value similarly to the above, deterioration of a storage battery can be determined more correctly.
  • the internal resistance at low frequency is also measured.
  • a frequency that is less than 100 Hz that can be configured without any problem and that does not interfere with the commercial power supply (not 50 Hz or an integer multiple of 60 Hz) is used.
  • the measurement frequency of the internal resistance includes a high frequency of at least about 1 kHz (for example, 350 Hz to less than 2000 Hz) and a low frequency of less than 100 Hz (a frequency that does not interfere with the commercial power supply) As the frequency different from these, the internal resistance is measured by three kinds of frequencies including an intermediate frequency (for example, 100 Hz or more and less than 350 Hz).
  • the accuracy of deterioration determination can be improved by measuring internal resistance at a plurality of frequencies selected from at least one of a low frequency region below 200 Hz and a high frequency region above 200 Hz and below 2000 Hz. It is possible to improve. Furthermore, it can be said that the accuracy can be further improved by adding and measuring other different frequencies within the above frequency range.
  • the state and life of the storage battery can be determined by determining deterioration in a multifaceted manner based on one or more of a plurality of parameters including temperature, voltage, internal resistance, DC resistance at the time of discharging / charging, etc. It is possible to estimate with high accuracy.
  • FIG. 6 is a diagram showing an outline of a configuration example of the storage battery state monitoring system according to the third embodiment of the present invention.
  • the storage battery state monitoring system 1 is a device including an assembled battery composed of a plurality of storage batteries 41 connected in series, such as a power supply device 40, for example, by automatically measuring or acquiring various parameters for each storage battery 41.
  • 41 is a system for estimating the state and life of 41.
  • the storage battery state monitoring system 1 is fixedly installed one by one for each storage battery 41 of one or more power supply devices 40, and a state measurement device 30 ′ that measures various parameters of the storage battery 41 (embodiment) 1 and 2 and a host monitoring device 10 that collects data measured by the state measuring device 30 'and estimates the state and life of the storage battery 41 in an integrated manner.
  • a data relay device 20 that relays the measurement data transmitted from each state measurement device 30 ′ and transmits it to the higher order monitoring device 10 is provided between the upper monitoring device 10 and each state measurement device 30 ′.
  • M data relay apparatuses 20 (hereinafter may be referred to as “master units”) are communicably connected to one higher-level monitoring apparatus 10, and each data relay apparatus 20.
  • master units has a three-layer structure in which N state measuring devices 30 ′ (hereinafter may be referred to as “child devices”) are communicably connected.
  • the host monitoring device 10 and the master unit 20 are connected by wired communication via a network 60 such as a LAN (Local Area Network), and the master unit 20 and the slave unit 30 ′ are connected by wireless communication.
  • a network 60 such as a LAN (Local Area Network)
  • the master unit 20 and the slave unit 30 ′ are connected by wireless communication.
  • the standard and protocol for wired / wireless communication are not particularly limited, and a known technique can be used as appropriate.
  • mobile_unit 30 ' can be installed with respect to the storage battery 41, without requiring the wiring etc. to the exterior,
  • the ease at the time of installation It is possible to improve the flexibility and improve the installation efficiency, and to reduce the risk of malfunctions due to misconnections and aging of wiring.
  • base unit 20 has a function of converting a communication protocol at least between wireless communication with slave unit 30 ′ and wired communication with host monitoring device 10.
  • the master unit 20 may perform wireless communication with each slave unit 30 ′ in parallel or sequentially.
  • the slave unit 30 ′ has a two-layer configuration in which the slave unit 30 ′ communicates directly with the host monitoring device 10.
  • the communication between the child device 30 ′ and the parent device 20 (or the host monitoring device 10) may be wired communication as well as wireless communication.
  • Each power supply device 40 is connected to a control / power supply device 50 for controlling the operation of the power supply device 40 as in the first and second embodiments.
  • the control / power supply device 50 further has a role as a current detection device capable of detecting a current value flowing through the storage battery 41 installed in series in the power supply device 40, and the power supply device 40 (storage battery 41). The value of the current flowing through the storage battery 41 during charging / discharging can be measured.
  • the control / power supply device 50 is connected to, for example, the network 60, and the host monitoring device 10 transmits the current value of the storage battery 41, the presence / absence of charging / discharging, and the power generation of the power generation facility 70 via the network 60. Information related to the quantity can be acquired.
  • the control / power supply device 50 detects the current value of each storage battery 41 and the host monitoring device 10 can acquire the information from the control / power supply device 50.
  • the present invention is not limited to this. For example, it is good also as a structure which subunit
  • the host monitoring device 10 is configured on the network 60 so that a plurality of power supply devices 40 (slave devices 30 ′) can be centrally monitored.
  • the control / power supply device 50 corresponding to each power supply device 40 may be integrated with the function of the host monitoring device 10 so that each control / power supply device 50 individually monitors the power supply device 40.
  • FIG. 7 is a diagram showing an outline of a configuration example of the host monitoring device 10.
  • the host monitoring device 10 collects information on various parameters measured for each storage battery 41 from each slave unit 30 ′ via the master unit 20, and estimates the state and life of each storage battery 41 based on the collected data. Monitor for abnormal conditions and the arrival of life.
  • the host monitoring device 10 is configured by an information processing device such as a PC (Personal Computer) or a server device, and is implemented as a software program that operates on middleware such as an OS (Operating System) or a DBMS (DataBase Management System) (not shown).
  • it has a measurement history 14 that is a database for storing measurement data collected from the slave unit 30 ′, and setting information 15 including files, registries, and the like that hold various settings related to the operation of the storage battery state monitoring system 1.
  • the interface unit 11 has a user interface function that provides a screen for the user to input various instructions and a screen for displaying the result of monitoring the state of the storage battery 41 to the user. It is good also as a structure which displays from a web browser on a user's client terminal, and displays a screen with a web server program which is not illustrated.
  • Various instructions input by the user include, for example, specification of operating conditions of the host monitoring device 10 and the slave unit 30 ′ set in the setting information 15, and measurement and collection of data for the slave unit 30 ′ based on a user request. There are instructions.
  • the monitoring control unit 12 relates to the measurement of various parameters with respect to the slave unit 30 ′ (via the master unit 20) in accordance with the setting contents registered in the setup information 15 or instructions from the user via the interface unit 11. Requests specification of conditions and execution of measurement. Further, it has a function of requesting the slave unit 30 ′ to transmit measurement data of various parameters, collecting the measurement data, and recording and storing it in the measurement history 14 for each storage battery 41.
  • each slave unit 30 ′ transmits the measurement data to the host monitoring device 10 via the master unit 20 all at once. It can be considered that a large communication load is applied.
  • the slave unit 30' when the user instructs the slave unit 30 'to measure various parameters (particularly the measurement of internal resistance) and transmit measurement data, the slave unit 30' is appropriately set. Instructed with a sufficient time difference for each group automatically or manually so that the timing of processing by the slave unit 30 'belonging to each group does not overlap between groups (for example, every 30% of the whole) Shall.
  • the monitoring control unit 12 controls the discharging of the storage battery 41 and the charging from the power generation facility 70 so that the storage battery 41 operates in a predetermined partially charged state based on the voltage data in the collected measurement data. For example, instructions are given to the control / power supply apparatus 40 according to the following procedure.
  • the degradation determination unit 13 collects the temperature, voltage, and internal resistance collected from the slave unit 30 ′ and recorded in the measurement history 14 according to the setting contents registered in the setting information 15 or an instruction from the user via the interface unit 11. Based on the measured values of various parameters such as, and the current value at the time of discharging / charging in the power supply device 40 obtained from the control / power supply device 50, the deterioration of the storage battery 41 is determined in a multifaceted manner by the method described above. To estimate the state and life.
  • deterioration of the storage battery 41 is estimated mainly at two timings.
  • the first is based on temperature and voltage acquisition data continuously measured at a certain time interval (in this embodiment, a short interval such as 5 minutes or a long interval such as one day). Estimate abnormalities and life span including sudden failures.
  • the deterioration tendency of the storage battery 41 in a plurality of deterioration modes is estimated based on the measured values of the internal resistance measured at a plurality of frequencies.
  • the DC resistance calculated from the measured data of the voltage at the time of discharging or charging and the value of the DC current at the time of discharging or charging obtained from the control / power supply device 50 may be estimated with higher accuracy.
  • the initial values of the internal resistance and the direct current resistance may be obtained from initial measurement data for the target storage battery 41 in the measurement history 14 or may be recorded separately for each storage battery 41.
  • the setting information 15 includes, for example, temperature and voltage measurement intervals (for example, every 5 minutes, once a day, etc.) of the slave unit 30 ′ and internal resistance measurement as setting contents related to the operation of the storage battery state monitoring system 1.
  • An interval for example, once a day
  • the condition of the operation mode (normal mode or power saving mode) of the slave unit 30 ′ may be set.
  • the settings related to the operation of the slave unit 30 ′ are held in the setting information 15 of the higher-level monitoring device 10 and can be specified to the slave unit 30 ′ from the monitoring control unit 12. It becomes possible to designate and change the operating conditions of the slave unit 30 ′ efficiently by a command from the host monitoring device 10 without requiring individual work.
  • FIG. 8 is a diagram showing an outline of a configuration example of the state measurement device (slave device) 30.
  • mobile_unit 30 ' is fixed and installed one by one with respect to the cover part etc. of the storage battery 41, while measuring and recording the various parameters about the said storage battery 41, from the high-order monitoring apparatus 10 via the main
  • the measurement data is transmitted to the host monitoring apparatus 10 via the parent device 20.
  • one slave unit 30 ′ is installed for one storage battery 41.
  • the voltage of the storage battery 41, etc. a plurality of storage batteries 41 installed in series are connected.
  • monitoring may be performed collectively by one slave unit (for example, the slave unit 30 ′ is set to a number equal to or less than one half of the total serial number).
  • one slave unit is installed for 3 to 6 storage batteries connected in series, 6V / 12V monoblock, or 1 series unit. Can be configured to monitor. Thereby, the harness around the handset can be shortened as much as possible, and problems such as dielectric breakdown can be avoided.
  • mobile_unit 30 ' is an apparatus which has the function fundamentally similar to the balancer 30 in Embodiment 1, 2, and also has each part of the temperature measurement part 32 and the sine wave generation
  • An internal resistance measurement unit 34 is provided instead of the partial discharge unit 38.
  • the internal memory 37 which is a memory
  • a temperature sensor 39 wired from the temperature measuring unit 32 is disposed in the storage battery 41, and terminals wired from the voltage measuring unit 33, the internal resistance measuring unit 34, and the sine wave generating unit 35 are connected to the positive and negative of the storage battery 41. Are connected to each terminal.
  • the measurement control unit 31 has a function of controlling the entire processing in the slave unit 30 ′, such as measurement processing of various parameters in the slave unit 30 ′, recording and transmission of measurement data, and the like.
  • Each measuring unit constantly monitors the storage battery 41 (for example, every 5 minutes or once a day), and sequentially records the measured data in a predetermined area of the internal memory 37. At this time, the old measurement data is overwritten and the area is used cyclically.
  • the communication unit 36 communicates with the parent device 20 by wireless communication, and transmits measurement data to the upper monitoring device 10 via the parent device 20 based on an instruction from the upper monitoring device 10 via the parent device 20. To do.
  • the measurement data recorded in the internal memory 37 can be taken out by copying, moving, or the like to an external memory (not shown) composed of a semiconductor memory or the like attached to the slave unit 30 '.
  • the external memory may be used as a storage area equivalent to the internal memory 37.
  • the temperature measuring unit 32 measures the temperature of the storage battery 41 by the temperature sensor 39 in accordance with an instruction (for example, every 5 minutes) from the measurement control unit 31 and outputs the measurement data to the measurement control unit 31.
  • the voltage measurement unit 33 measures the voltage between the terminals of the storage battery 41 in accordance with an instruction (for example, every 5 minutes) from the measurement control unit 31 and outputs measurement data to the measurement control unit 31.
  • the internal resistance measurement unit 34 measures the internal resistance between the terminals of the storage battery 41 using an instruction from the measurement control unit 31 as a trigger, and outputs measurement data to the measurement control unit 31.
  • a sine wave having a plurality of frequencies as described above is generated by the sine wave generation unit 35, and a current (for example, 3 A or less) at each frequency is supplied to the storage battery 41. Based on the measured data of the current value at this time and the voltage value between the terminals, the internal resistance at each frequency is calculated.
  • the accuracy of deterioration determination by measuring internal resistance using a plurality of frequencies selected from at least one of a low frequency region of less than 200 Hz and a high frequency region of 200 Hz to less than 2000 Hz. it can. Further, the accuracy can be further improved by adding and measuring other different frequencies within the above frequency region.
  • the present embodiment includes, for example, a high frequency region of at least about 1 kHz (eg, 350 Hz or more and less than 2000 Hz, preferably 800 Hz or more and less than 1200 Hz) and a low frequency region of less than 100 Hz (a frequency that does not interfere with commercial power supply), and are different from these.
  • the internal resistance is measured by three kinds of frequencies including a frequency in a middle frequency region (for example, 100 Hz or more and less than 350 Hz).
  • Table 1 the conventional products 1 to 3 and the developed products 1 and 2 are used as the internal resistance measurement devices, and the internal resistance is measured for each of the storage batteries in different deteriorated states, and the battery capacity is estimated. The result of evaluating the measurement accuracy based on the error from the capacity and the time required for the measurement is shown.
  • the conventional products 1 to 3 are measuring instruments for measuring the internal resistance at a single frequency according to the prior art.
  • the measurement frequencies are different areas (high frequency area (350 Hz to less than 2000 Hz), medium frequency area (100 Hz to 350 Hz). Less) and a low frequency region (less than 100 Hz).
  • the developed products 1 and 2 are the state measurement device 30 ′ of the present embodiment, and the developed product 1 has a plurality of frequency regions (the developed product 1 has a high frequency region (200 Hz to less than 2000 Hz) and a low frequency region (less than 200 Hz),
  • the product 2 measures the internal resistance at measurement frequencies belonging to a high frequency region (350 Hz to less than 2000 Hz), a medium frequency region (100 Hz to less than 350 Hz), and a low frequency region (less than 100 Hz).
  • the fully charged state of the storage battery refers to a state in which charging is performed for 48 hours or more with a limited current of 13.38 V / 10 A.
  • the measured value (actual capacity) of the 5HR capacity after charging is completed, the battery is left in an open circuit state at 25 ⁇ 2 ° C. for 24 hours, and then discharged at 25 ⁇ 2 ° C. with a discharge current value of 20 A, and then terminated. The discharge capacity was determined from the discharge duration until the voltage reached 10.5V.
  • the battery left at 25 ⁇ 2 ° C. for 24 hours after full charge was discharged at a discharge current value of 100 A and terminated, as in the case of 5HR described above.
  • the discharge capacity was determined from the discharge duration until the voltage reached 9.6V.
  • the relative ratio with respect to the discharge capacity of a new state is calculated, respectively.
  • the discharge capacity is the internal resistance.
  • initial value of Discharge capacity initial value of discharge capacity x (1- (Measured value of internal resistance-Initial value of internal resistance) / Initial value of internal resistance)
  • Relative ratio 1 ⁇ (measured value of internal resistance ⁇ initial value of internal resistance) / initial value of internal resistance
  • a weighted average value obtained by weighting the measured values of two or three types of internal resistance with a predetermined weight is used.
  • a weighted average value obtained by weighting the measured values of two or three types of internal resistance with a predetermined weight is used.
  • a larger weighting value is set for the internal resistance value measured at the frequency in the high frequency region than the internal resistance value measured at the frequency in the middle frequency region.
  • a higher weighting value is set for the internal resistance value measured at the frequency in the middle frequency region than the internal resistance value measured at the frequency in the high frequency region.
  • a large weighting value is set for the internal resistance value measured at the frequency in the middle frequency range with respect to the internal resistance value measured at the frequency in the frequency range.
  • the battery capacity can be estimated with high accuracy in a short time as compared with the conventional products 1 to 3 (measurement of internal resistance at a single frequency).
  • the battery capacity can be estimated in a shorter time and with higher accuracy than the developed product 1 (measurement of internal resistance at two types of frequencies). I understand.
  • FIG. 9 is a flowchart showing an outline of an example of control processing of voltage and temperature measurement timings in the measurement control unit 31 of the state measurement device (child device) 30.
  • the predetermined time is an interval at which the slave unit 30 ′ periodically measures the parameters of the storage battery 41. If the state of the slave unit 30 ′ is not “sleep state” but “normal time”, for example, 5 In the case of minutes, “sleep state”, for example, a time interval such as one day.
  • the “sleep state” in the present embodiment refers to a state in which the frequency of measuring the voltage and temperature in the slave unit 30 ′ is lowered by a command from the host monitoring device 10 (not stopped). ).
  • step S01 if the predetermined time has not elapsed, step S01 is repeated until the predetermined time has elapsed.
  • the temperature measurement unit 32 measures the temperature of the storage battery 41 and the voltage measurement unit 33 measures the voltage between the terminals of the storage battery 41 (S02).
  • the temperature measurement unit 32 and the voltage measurement unit 33 measure the temperature and voltage and the measurement control unit 31 acquires the measurement data, the temperature and voltage measurement data are recorded in the internal memory 37 together with the time stamp (S03). ).
  • This predetermined time can be the same as the predetermined time in step S01, for example, 5 minutes when the slave unit is in the “normal time” state, for example, 1 for the “sleep state”, for example. It can be a time interval such as a day. If the predetermined time has not elapsed, the process returns to step S01, and the above series of processing is repeated. If the predetermined time has elapsed, the untransmitted measurement data acquired in step S03 and recorded / stored in the internal memory 37 is transmitted to the host monitoring apparatus 10 via the master unit 20 ( S05). After the transmission, the process returns to step S01, and the above series of processing is repeated.
  • the host monitoring device 10 estimates an abnormality or a life including a sudden failure of the storage battery 41 based on the transmitted temperature and voltage measurement data.
  • FIG. 10 is a flowchart showing an outline of an example of a charge / discharge control process of the storage battery 41 by the host monitoring device 10.
  • the host monitoring device 10 When the host monitoring device 10 is activated and starts control processing, first, it waits for transmission of measurement data from each parent device 20 in the child device 30 'and receives measurement data (S11). Next, it is determined whether or not the voltage data of the storage battery 41 included in the measurement data is below a predetermined overdischarge prevention voltage (S12). At this time, as described above, based on the received measurement data, the deterioration determination unit 13 performs a process of estimating the state and life of the storage battery 41 separately.
  • S11 measurement data
  • S12 overdischarge prevention voltage
  • step S12 when it is not lower than the overdischarge prevention voltage, it is determined that the target storage battery 41 is operating in a predetermined partial charge state, and then a power source including the target storage battery 41 for a predetermined period or longer. It is determined whether or not an internal resistance measurement command is issued to the control / power supply device 50 corresponding to the device 40 (S13). When the internal resistance measurement command is issued within a predetermined period and the measurement data of the internal resistance is acquired via the parent device 20, a discharge circuit is connected to the target storage battery 41 (power supply device 40). A command is issued to the control / power supply device 50 so as to discharge from 41 (S14), and the process proceeds to step S17. In this case, it is possible to estimate the state of the storage battery 41 by the host monitoring device 10 at a timing close in time, and since the operation is performed on that, it is determined that there is no problem with the state of the storage battery 41. It is because it can do.
  • step S13 If it is determined in step S13 that an internal resistance measurement command has not been issued for a predetermined period or longer, the process proceeds directly to step S17.
  • the predetermined period in step S13 can be, for example, one week.
  • the “connection” in step S14 includes continuing as it is when it is already connected to the discharge circuit.
  • mobile_unit 30 'corresponding to the target storage battery 41 is in the "sleep state" mentioned above, the cancellation
  • step S12 If it is below the overdischarge prevention voltage in step S12, it is determined that the target storage battery 41 is operating in an overdischarged state, and the discharge circuit is opened for the target storage battery 41 (power supply device 40). A command is issued to the control / power supply device 50 so as to stop the discharge from 41 (S15). Further, in order to avoid an extra measurement process for the target storage battery 41, a command is issued to the corresponding slave unit 30 'to enter the "sleep state" (S16). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
  • step S17 it is determined whether or not the voltage data of the storage battery 41 included in the measurement data exceeds a predetermined overcharge prevention voltage (S17). If the overcharge prevention voltage is not exceeded, it is determined that the target storage battery 41 is operating in a predetermined partial charge state, and a charging circuit is connected to the target storage battery 41 (power supply device 40) to generate power generation equipment 70. A command is issued to the control / power supply device 50 so as to charge the storage battery 41 (S18). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
  • S17 predetermined overcharge prevention voltage
  • step S17 If the overcharge prevention voltage is exceeded in step S17, it is determined that the target storage battery 41 is operating in an overcharge state, and then the storage battery 41 obtained by the current detection function of the control / power supply device 50 is determined. It is determined whether or not the charging current to the battery is below a predetermined value (S19). When the charging current is not lower than the predetermined value, that is, when it is determined that the value of the internal resistance is smaller than the predetermined value and the storage battery 41 is not deteriorated so much, the process proceeds to step S18 described above, and the target storage battery 41 is processed. A command is issued to the control / power supply device 50 to connect the charging circuit for the (power supply device 40) and charge the storage battery 41 from the power generation facility 70.
  • step S19 If it is determined in step S19 that the charging current is lower than the predetermined value, that is, if the value of the internal resistance is larger than the predetermined level and the storage battery 41 may be deteriorated, the corresponding slave unit 30 Is instructed to measure the internal resistance value (S20). Further, the control / power supply device 50 is instructed to open the charging circuit for the target storage battery 41 (power supply device 40) and stop the charging from the power generation facility 70 to the storage battery 41 (S21). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
  • FIG. 11 is a flowchart showing an outline of an example of control processing of the internal resistance measurement timing in the measurement control unit 31 of the state measurement device (child device) 30.
  • the host monitoring device 10 issues an internal resistance value measurement command to the slave unit 30 ′ in step S20 of FIG. It is determined whether or not it is performed (S31). If the measurement command for the internal resistance value has not been issued, step S01 is repeated until a predetermined time has elapsed.
  • the internal resistance measurement unit 34 measures the internal resistance of the storage battery 41 (S32).
  • a sine wave having a plurality of frequencies is generated by the sine wave generator 35, and a current (for example, 3 A or less) at each frequency is supplied to the storage battery 41.
  • the current value at this time and the voltage value between the terminals Based on the measured data, the internal resistance at each frequency is calculated.
  • the plurality of frequencies include a high frequency of at least about 1 kHz and a low frequency of less than 100 Hz, and further different frequencies can be added thereto.
  • the case where the measurement command for the internal resistance value is issued in step S20 of FIG. 10 corresponds to the case where the voltage of the target storage battery 41 exceeds the overdischarge prevention voltage.
  • the voltage of the target storage battery 41 exceeds the overdischarge prevention voltage.
  • the number of storage batteries 41 in series increases, and thus voltage variation between storage batteries 41 makes the operation of the system unstable. Cases arise.
  • the slave unit 30 ′ has the role / function of the balancer 30 in the first and second embodiments.
  • the slave unit 30 ′ has a portion in the first and second embodiments.
  • a configuration equivalent to that of the discharge unit 38 may be separately provided so that the voltage may be lowered.
  • the internal resistance measurement data is recorded in the internal memory 37 together with the time stamp (S33). Thereafter, it is determined whether or not a predetermined time has elapsed since the measurement data was transmitted to the parent device (S34). This predetermined time may be a time interval such as 5 minutes. If the predetermined time has not elapsed, the process returns to step S31 and the above-described series of processing is repeated.
  • the deterioration determination unit 13 estimates the deterioration tendency of the storage battery 41 in the plurality of deterioration modes separately.
  • parameters including voltage, internal resistance, etc. in addition to temperature are automatically measured or acquired for a plurality of storage batteries 41 always connected to the device.
  • the internal resistance by measuring the internal resistance at a plurality of frequencies, it is possible to estimate the state and life of each storage battery 41 with high accuracy and to control the storage battery 41 to operate in a predetermined partial charge state. This also makes it possible to efficiently level the voltage and state between the storage batteries.
  • a hierarchical configuration including the host monitoring device 10, the parent device 20, and the child device 30 ′ is used, and wireless communication is performed between the parent device 20 and the child device 30 ′, so that various parameters for a large number of storage batteries 41 can be set. Measurement can be performed efficiently.
  • the present invention can be used in a storage battery state monitoring system in which a storage battery is always connected to a device, such as a backup use or an output fluctuation use, and the state is monitored and estimated by energizing the storage battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a storage battery voltage leveling device capable of minimizing the variation in voltages among storage batteries in a power source system which has a plurality of lead storage batteries and is constantly connected to a device. The storage battery voltage leveling device according to a typical embodiment of the present invention comprises: temperature measurement units respectively connected in parallel with a part of the serially connected storage batteries to measure the temperature of the connected storage batteries; voltage measurement units for measuring the voltage of the storage batteries; and internal resistance measurement units for measuring the internal resistance of the storage batteries using at least two or more types of frequencies. When measuring the internal resistance of the storage batteries using the internal resistance measurement unit, the storage battery voltage leveling device decreases the voltage of the storage batteries by flowing an electric current through the storage batteries.

Description

蓄電池電圧平準化装置および蓄電池状態監視システムStorage battery voltage leveling device and storage battery state monitoring system
 本発明は、蓄電池の状態を制御する技術に関し、特に、電源システムにおいて用いられる複数の蓄電池について電圧のバラツキを抑制する蓄電池電圧平準化装置および蓄電池状態監視システムに適用して有効な技術に関するものである。 The present invention relates to a technique for controlling the state of a storage battery, and more particularly to a technique that is effective when applied to a storage battery voltage leveling device and a storage battery state monitoring system that suppress voltage variations for a plurality of storage batteries used in a power supply system. is there.
 常時稼働している必要がある重要な装置やシステムなどでは、例えば停電や瞬断など商用電源からの電力供給が途絶えた場合(もしくは商用電源からの電力を利用しない・できない場合。以下では総称して「非常時等」と記載する場合がある)でも負荷に電力の供給を継続するため、UPS(Uninterruptible Power Supply:無停電電源装置)が用いられる場合がある。UPSは、非常時等において負荷に供給するための電力を蓄積する蓄電池を有しており、1つのUPSに複数の蓄電池を有するものもある。 For important devices and systems that need to be operating at all times, for example, when power supply from a commercial power source is interrupted, such as a power outage or momentary interruption (or when power from the commercial power source is not used or cannot be used. In some cases, UPS (Uninterruptible Power Supply: Uninterruptible power supply) is used to continue supplying power to the load. A UPS has a storage battery that stores electric power to be supplied to a load in an emergency or the like, and some UPS has a plurality of storage batteries.
 また、近年、自立型電源として、もしくはその電力平準化の仕組みとして、例えば、太陽電池や風力発電等の自然エネルギーを用いた発電機、もしくは充電器と、蓄電池およびこれらに対する制御システムとを組み合わせて構成される電源システムが使用されている。これらの電源システムは、単独で独立した電源として使用される場合に加え、いわゆる系統連携のように、通常の商用電源と電気の出し入れをしながら運用される場合もある。特に近年は、いわゆるスマートグリッドのように、系統電力の使用状況を勘案し、発電した電気を系統へ逆潮流したり、系統の負荷が下がり、蓄電池の容量が下がっている場合は、系統の余剰電力を蓄電池に貯蔵したりして、全体としてのエネルギー供給の効率化を図るものが多い。 In recent years, as a self-supporting power source or as a power leveling mechanism, for example, a generator or charger using natural energy such as a solar battery or wind power generation, a storage battery, and a control system for these are combined. A configured power system is being used. In addition to being used as an independent power supply alone, these power supply systems may be operated while taking in and out a normal commercial power supply as in the so-called system linkage. In recent years, especially in the case of so-called smart grids, if the electricity generated is backflowed into the system, or the load on the system is reduced and the capacity of the storage battery is reduced, the surplus of the system In many cases, power is stored in a storage battery to improve the efficiency of energy supply as a whole.
 これらの仕組みにおいては、蓄電池を含む電源システムを効率的に稼働させるために、蓄電池の状態等を監視し、必要に応じて充放電の制御を行うことができる装置やシステム等を接続することによって、電源システムを監視・制御する仕組みが用いられる場合がある。 In these mechanisms, in order to operate the power supply system including the storage battery efficiently, the state of the storage battery, etc. is monitored, and by connecting a device or system that can control charge / discharge as necessary In some cases, a mechanism for monitoring and controlling the power supply system is used.
 例えば、特開2012-37464号公報(特許文献1)には、鉛蓄電池システムにおいて、電池状態測定部と、SOC(State Of Charge:充電状態)モデルと、電池状態測定部によって測定した情報とSOCモデル情報からSOCを推定するSOC推定部と、鉛蓄電池のSOCの推移状況を記録するSOC推移DBと、推定されたSOCの値をSOC推移DBに記録しSOCの推移状況を調べるSOC推移履歴管理部と、鉛蓄電池の劣化モデルと、SOC推移履歴管理部からのSOC推移状況および劣化モデルの情報をもとに最適な鉛蓄電池の実施方式を計画する均等充電最適計画部と、SOC推移情報・均等充電情報出力部と、均等充電最適計画部により決められた計画に従って鉛蓄電池の均等充電を実施する均等充電制御部を設けることで、鉛蓄電池の均等充電の実施間隔を、鉛蓄電池の使用状況(SOCの推移)に応じて変えることにより鉛蓄電池を長寿命化し、SOCの把握のためのみの均等充電を減らし、コスト的にも優位とする技術が記載されている。 For example, Japanese Unexamined Patent Application Publication No. 2012-37464 (Patent Document 1) discloses a battery state measurement unit, a SOC (State Of Charge) model, information measured by a battery state measurement unit, and SOC in a lead storage battery system. An SOC estimation unit that estimates the SOC from the model information, an SOC transition DB that records the transition state of the SOC of the lead storage battery, and an SOC transition history management that records the estimated SOC value in the SOC transition DB and examines the SOC transition state , The lead-acid battery deterioration model, the SOC transition history management section, the SOC transition status and the information on the deterioration model, the optimal charge storage plan that plans the optimal lead-acid battery implementation method, the SOC transition information An equal charge information output unit and an equal charge control unit that performs equal charge of lead-acid batteries according to the plan determined by the optimum charge optimal plan unit shall be provided. Therefore, the lead-acid battery life can be extended by changing the interval of the lead-acid battery equal charge according to the usage status of the lead-acid battery (change in SOC). Is also described as a technology that predominates.
特開2012-37464号公報JP 2012-37464 A
 上記のような電源システムに用いられる蓄電池は一般に鉛蓄電池であり、リチウムイオン電池と異なり、セルの電圧を制御するセルコントローラを用いない。従って、セル毎に容量差が生じたり、充電中の電圧に異常が生じたりした場合に、蓄電池全体に接続された監視装置や制御装置等では個別セルの電圧をバランスさせることができないため、当該電池の劣化を早めてしまうなど、システム全体に影響を与えてしまう場合がある。 The storage battery used in the power supply system as described above is generally a lead storage battery, and unlike a lithium ion battery, does not use a cell controller that controls the cell voltage. Therefore, when there is a capacity difference for each cell or when an abnormality occurs in the voltage during charging, the voltage of individual cells cannot be balanced by the monitoring device or control device connected to the entire storage battery. It may affect the entire system, such as premature battery deterioration.
 例えば、通常時は稼働(放電)せず常時充電されている状態となるUPSなどでは、部分的に電圧の高いセルがあると、当該セルは過充電状態となり劣化が早まってしまう。また、消防設備で定義される蓄電池設備のように、4800VAhを超えるような大規模なシステムの場合は、蓄電池の直列数が多くなるため、蓄電池間の電圧のバラツキがシステムの運用を不安定にする場合がある。 For example, in a UPS or the like that is normally in operation (discharged) and is always charged, if there is a cell with a partially high voltage, the cell becomes overcharged and deteriorates faster. In addition, in the case of a large-scale system exceeding 4800VAh, such as a storage battery facility defined by a fire fighting facility, the number of storage batteries in series increases, and thus voltage variation between storage batteries makes the operation of the system unstable. There is a case.
 これに対し、電源システムやその蓄電池に監視・制御装置等を接続して、部分的に蓄電池の電圧等の状態をバランシングすることが考えられる。例えば、特許文献1に記載されたような技術では、風力発電を含む大規模用途においても蓄電池のSOCを把握して均等に充電されるように制御することが可能であるが、商用電源と系統連携する100kVAを超えるような大型の電源システムでは、信頼性の観点より、従来ハーネス方式の監視装置が使用されてきた。しかしながら、この方式では、蓄電池のシャーシが接地されているため、別電源で動作する測定・記録装置の線が架台に触れると絶縁破壊により短絡・発煙・発火などのトラブルが生じ得るため、個別にヒューズを入れるなどの対応が必要となってしまう。 In contrast, it is conceivable that a monitoring / control device or the like is connected to the power supply system or its storage battery to partially balance the state of the storage battery voltage or the like. For example, in the technique described in Patent Document 1, it is possible to grasp the SOC of a storage battery and control it to be charged evenly even in a large-scale application including wind power generation. In a large power supply system exceeding 100 kVA to be linked, a harness-type monitoring device has been conventionally used from the viewpoint of reliability. However, in this system, the storage battery chassis is grounded, so if the measurement / recording device line that operates with a separate power source touches the base, problems such as short circuit, smoke, and fire may occur due to insulation breakdown. It is necessary to take measures such as inserting a fuse.
 そこで本発明の目的は、常に機器に接続された状態の複数の鉛蓄電池を有する電源システムにおいて、蓄電池間の電圧のバラツキを抑制する蓄電池電圧平準化装置および蓄電池状態監視システムを提供することにある。本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Accordingly, an object of the present invention is to provide a storage battery voltage leveling device and a storage battery state monitoring system that suppress variations in voltage between storage batteries in a power supply system having a plurality of lead storage batteries that are always connected to a device. . The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明の代表的な実施の形態による蓄電池電圧平準化装置は、常に機器に接続され、複数の蓄電池が直列に接続された組電池を備えた電源装置に対して、前記各蓄電池の電圧を平準化する蓄電池電圧平準化装置であって、直列に接続された前記蓄電池の一部に対してそれぞれ並列に接続され、接続された前記蓄電池の温度を測定する温度測定部と、当該蓄電池の電圧を測定する電圧測定部と、当該蓄電池の内部抵抗を少なくとも2種類以上の周波数によって測定する内部抵抗測定部とを有し、当該蓄電池の内部抵抗を前記内部抵抗測定部により測定する際に、当該蓄電池に対して電流を流すことによって当該蓄電池の電圧を下げることを特徴とするものである。 A storage battery voltage leveling device according to a typical embodiment of the present invention leveles a voltage of each storage battery with respect to a power supply device that is always connected to a device and includes a battery pack in which a plurality of storage batteries are connected in series. A storage battery voltage leveling device that is connected in parallel to a part of the storage batteries connected in series, a temperature measuring unit that measures the temperature of the connected storage battery, and a voltage of the storage battery A voltage measuring unit for measuring and an internal resistance measuring unit for measuring the internal resistance of the storage battery by at least two types of frequencies, and when the internal resistance of the storage battery is measured by the internal resistance measuring unit, the storage battery In contrast, the voltage of the storage battery is lowered by passing a current.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 本発明の代表的な実施の形態によれば、常に機器に接続された状態の複数の鉛蓄電池を有する電源システムにおいて、蓄電池間の電圧のバラツキを抑制する蓄電池電圧平準化装置および蓄電池状態監視システムを実現することが可能となる。 According to a typical embodiment of the present invention, in a power supply system having a plurality of lead storage batteries that are always connected to a device, a storage battery voltage leveling device and a storage battery state monitoring system that suppress variations in voltage between storage batteries. Can be realized.
本発明の実施の形態1である蓄電池電圧平準化装置が接続された電源システムの構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the power supply system to which the storage battery voltage leveling apparatus which is Embodiment 1 of this invention was connected. 本発明の実施の形態1における蓄電池電圧平準化装置の構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the storage battery voltage leveling apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における部分放電部の構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the partial discharge part in Embodiment 1 of this invention. 本発明の実施の形態2である蓄電池電圧平準化装置が接続された電源システムの構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the power supply system to which the storage battery voltage leveling apparatus which is Embodiment 2 of this invention was connected. 本発明の実施の形態2における蓄電池電圧平準化装置の構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the storage battery voltage leveling apparatus in Embodiment 2 of this invention. 本発明の実施の形態3である蓄電池状態監視システムの構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the storage battery state monitoring system which is Embodiment 3 of this invention. 本発明の実施の形態3における上位監視装置の構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the high-order monitoring apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における状態測定装置(子機)の構成例について概要を示した図である。It is the figure which showed the outline | summary about the structural example of the state measuring apparatus (slave unit) in Embodiment 3 of this invention. 本発明の実施の形態3における状態測定装置(子機)の電圧および温度の測定タイミングの制御処理の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the control processing of the measurement timing of the voltage and temperature of the state measurement apparatus (slave unit) in Embodiment 3 of this invention. 本発明の実施の形態3における上位監視装置による蓄電池の充放電の制御処理の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the control process of charging / discharging of the storage battery by the high-order monitoring apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における状態測定装置(子機)の内部抵抗の測定タイミングの制御処理の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the control processing of the measurement timing of the internal resistance of the state measuring apparatus (slave unit) in Embodiment 3 of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下においては、本発明の特徴を分かり易くするために、従来の技術と比較して説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. In the following, in order to make the features of the present invention easier to understand, the description will be made in comparison with the prior art.
 <実施の形態1>
 上述したように、例えばUPSや、自然エネルギーを利用した自立型電源などの電源システムに用いられる蓄電池は一般に鉛蓄電池であり、リチウムイオン電池と異なり、セルの電圧を制御するセルコントローラを用いない。従って、セル毎に容量差が生じたり、充電中の電圧に異常が生じたりした場合に、蓄電池全体に接続された監視装置や制御装置等では個別セルの電圧をバランスさせることができないため、当該電池の劣化を早めてしまうなど、システム全体に影響を与えてしまう場合がある。
<Embodiment 1>
As described above, for example, a storage battery used in a power supply system such as a UPS or a self-contained power supply using natural energy is generally a lead storage battery, and unlike a lithium ion battery, does not use a cell controller that controls the cell voltage. Therefore, when there is a capacity difference for each cell or when an abnormality occurs in the voltage during charging, the voltage of individual cells cannot be balanced by the monitoring device or control device connected to the entire storage battery. It may affect the entire system, such as premature battery deterioration.
 これに対し、本発明の実施の形態1では、常に機器に接続された複数の直列の蓄電池の一部に対して蓄電池電圧平準化装置(以下では“バランサ”と記載する場合がある)を接続して独立して動作させることで、個別に蓄電池のエネルギーを吸収し、蓄電池間の電圧や電池の状態を平準化させる。 On the other hand, in Embodiment 1 of the present invention, a storage battery voltage leveling device (hereinafter sometimes referred to as “balancer”) is always connected to a part of a plurality of series storage batteries connected to a device. By operating independently, the energy of the storage battery is individually absorbed, and the voltage between the storage batteries and the state of the battery are leveled.
 図1は、本発明の実施の形態1である蓄電池電圧平準化装置が接続された電源システムの構成例について概要を示した図である。電源システムは、例えば、直列に接続された複数の蓄電池41(例えば、VRLA(Valve-Regulated Lead-Acid:制御弁式)バッテリーにより構成される)からなる組電池を備える電源装置40を1つ以上有し、各電源装置40には、電源装置40の動作を制御する制御・電源装置50が接続されている。 FIG. 1 is a diagram showing an outline of a configuration example of a power supply system to which a storage battery voltage leveling device according to Embodiment 1 of the present invention is connected. The power supply system includes, for example, one or more power supply devices 40 each including an assembled battery including a plurality of storage batteries 41 connected in series (for example, a VRLA (Valve-Regulated-Lead-Acid: control valve type) battery). Each power supply device 40 is connected with a control / power supply device 50 for controlling the operation of the power supply device 40.
 制御・電源装置50は、例えば、電力制御装置(Power Conditioning System:PCS)や、無停電電源装置(UPS)もしくは直流電源装置などの電源装置などを含んで構成される制御装置であり、電源装置40を利用する装置やシステム等の負荷への電力を蓄電池41から供給するか、後述する発電設備70や電力系統80から供給するかを切り替える制御を行う。また、発電設備70からの余剰電力を電源装置40に供給して蓄電池41を充電したり、商用の電力系統80に逆潮流したりなどの制御を行う。 The control / power supply device 50 is a control device configured to include, for example, a power control device (Power Conditioning System: PCS), a power supply device such as an uninterruptible power supply (UPS), or a DC power supply device. Control is performed to switch between supplying electric power to a load such as a device or system that uses 40 from the storage battery 41 or from a power generation facility 70 or an electric power system 80 described later. Further, surplus power from the power generation facility 70 is supplied to the power supply device 40 to charge the storage battery 41 or to control the reverse power flow to the commercial power system 80.
 発電設備70は、例えば、太陽光発電装置(太陽電池)や風力発電装置などの自然エネルギーを利用した発電装置からなり、人為的なエネルギーの供給なく自立的に発電することができる発電設備であり、電力系統80は、商用の電力供給システムである。本実施の形態では、蓄電池41への電力供給源として、発電設備70と電力系統80とを有し、制御・電源装置50により切り替えて利用することが可能な構成となっているが、いずれか一方のみの構成であってもよい。 The power generation facility 70 includes a power generation device using natural energy such as a solar power generation device (solar cell) or a wind power generation device, and is a power generation facility that can generate power independently without supplying artificial energy. The power system 80 is a commercial power supply system. In the present embodiment, as a power supply source to the storage battery 41, the power generation facility 70 and the power system 80 are provided and can be switched and used by the control / power supply device 50. Only one configuration may be used.
 蓄電池41には、蓄電池電圧平準化装置(バランサ)30が並列に接続されている。なお、電源装置40において直列に接続された全ての蓄電池41にバランサ30を接続した場合、これらが同時に動作すると全体での電圧降下が大きくなり電源装置40と干渉してしまう場合がある。そこで本実施の形態では、図1に示すように、電源装置40において直列に接続された全ての蓄電池41にバランサ30を接続するものとする。バランサ30は、動作している短時間の間のみ電流を流す(機能する)が全数同時に動作すると電源と干渉することから、電源動作に影響を与えない範囲(例えば全電池個数の1/3以下)で同時に動作させる機能を付加し電源装置40の動作に与える影響を少なくすることができる。また、電池1セルでは無く、複数セルを直列としたユニット単位で接続しても問題は無い。 A storage battery voltage leveling device (balancer) 30 is connected to the storage battery 41 in parallel. In addition, when the balancer 30 is connected to all the storage batteries 41 connected in series in the power supply device 40, if these operate simultaneously, the overall voltage drop may increase and interfere with the power supply device 40. Therefore, in the present embodiment, as shown in FIG. 1, the balancer 30 is connected to all the storage batteries 41 connected in series in the power supply device 40. The balancer 30 causes a current to flow (functions) only for a short time during operation, but interferes with the power supply when all the elements operate simultaneously, and therefore does not affect the power supply operation (for example, 1/3 or less of the total number of batteries) ) Can be added at the same time to reduce the influence on the operation of the power supply device 40. Further, there is no problem even if a plurality of cells are connected in series instead of one battery.
 図2は、蓄電池電圧平準化装置(バランサ)30の構成例について概要を示した図である。バランサ30は、上述したように、蓄電池41に並列に接続されて独立して動作し、電圧が高い状態の蓄電池41のエネルギーを吸収して他の蓄電池41との間で電圧や電池の状態を平準化させる装置であり、例えば、CPU(Central Processing Unit)により実行されるソフトウェアプログラムや回路等として実装される測定制御部31、電圧測定部33、部分放電部38などの各部を有する。また、電圧測定部33、および部分放電部38から配線された端子が蓄電池41の正負の端子にそれぞれ接続されている。なお、バランサ30が動作するための電力は、蓄電池41から取得するものとする(例えば、蓄電池41とバランサ30との間で正弦波発震させる等)。そのため、バランサ30では、各部の動作が必要なタイミング以外ではスリープするなどして、不要な電力を消費しないようにする省電力モード等を設けるのが望ましい。 FIG. 2 is a diagram showing an outline of a configuration example of the storage battery voltage leveling device (balancer) 30. As described above, the balancer 30 is connected to the storage battery 41 in parallel and operates independently, absorbs the energy of the storage battery 41 in a state where the voltage is high, and changes the voltage and the state of the battery with the other storage battery 41. The leveling device includes, for example, various units such as a measurement control unit 31, a voltage measurement unit 33, and a partial discharge unit 38 that are implemented as software programs or circuits executed by a CPU (Central Processing Unit). Further, terminals wired from the voltage measuring unit 33 and the partial discharge unit 38 are connected to the positive and negative terminals of the storage battery 41, respectively. In addition, the electric power for operating the balancer 30 shall be acquired from the storage battery 41 (For example, a sine wave is oscillated between the storage battery 41 and the balancer 30, etc.). Therefore, it is desirable that the balancer 30 is provided with a power saving mode or the like that does not consume unnecessary power by sleeping or the like at times other than when the operation of each unit is necessary.
 測定制御部31は、バランサ30における電圧等のパラメータの測定処理や、蓄電池41のエネルギーの吸収処理など、バランサ30における処理全体を制御する機能を有する。例えば、バランサ30に設けられたボタン等を介したユーザからの指示に基づいてこれらの処理を行なってもよいし、一定間隔(例えば5分毎や1日1回などの間隔)でこれらの処理を継続的に行うようにしてもよい。後述する電圧測定部33により測定された充電時の電圧が所定の値以上であった場合は、後述する部分放電部38に対してエネルギーの吸収を指示して他の蓄電池41との間で電圧を平準化させる。 The measurement control unit 31 has a function of controlling the entire processing in the balancer 30, such as measurement processing of parameters such as voltage in the balancer 30 and energy absorption processing of the storage battery 41. For example, these processes may be performed based on an instruction from the user via a button or the like provided on the balancer 30, or these processes are performed at regular intervals (for example, every five minutes or once a day). May be performed continuously. When the voltage at the time of charging measured by the voltage measuring unit 33 to be described later is equal to or higher than a predetermined value, the partial discharge unit 38 to be described later is instructed to absorb energy and the voltage between the other storage batteries 41 is Leveling.
 電圧測定部33は、測定制御部31からの指示(例えばユーザから指示された任意のタイミングや5分毎の一定間隔)に従って、蓄電池41の端子間の充電時の電圧もしくは放電容量を測定し、測定データを測定制御部31に出力する。部分放電部38は、測定制御部31からの指示(例えば、蓄電池41の端子間の電圧が所定の値以上であった場合)に従って、蓄電池41のエネルギーを吸収する。すなわち、当該蓄電池41を一定時間放電させて、蓄電池41の電圧を下げる。 The voltage measurement unit 33 measures the voltage or discharge capacity during charging between the terminals of the storage battery 41 in accordance with an instruction from the measurement control unit 31 (for example, an arbitrary timing instructed by the user or a constant interval every 5 minutes), The measurement data is output to the measurement control unit 31. The partial discharge unit 38 absorbs the energy of the storage battery 41 according to an instruction from the measurement control unit 31 (for example, when the voltage between the terminals of the storage battery 41 is a predetermined value or more). That is, the storage battery 41 is discharged for a certain time, and the voltage of the storage battery 41 is lowered.
 図3は、部分放電部38の構成例について概要を示した図である。例えばこのような回路構成において、抵抗R1における電圧降下が一定になるように定電流制御する場合、蓄電池41の電圧と消費電流値が線形(一次関数)の関係となるため、蓄電池41の電圧が大きいほど消費電流が大きくなり、結果として他の蓄電池41との間の電圧のバラツキを吸収することができる。 FIG. 3 is a diagram showing an outline of a configuration example of the partial discharge unit 38. For example, in such a circuit configuration, when the constant current control is performed so that the voltage drop in the resistor R1 is constant, the voltage of the storage battery 41 and the current consumption value have a linear (linear function) relationship. The larger the current, the larger the current consumption, and as a result, it is possible to absorb the voltage variation between the other storage batteries 41.
 このように、本実施の形態では、常に機器に接続された複数の直列の蓄電池41の一部に対して蓄電池電圧平準化装置(バランサ)30を接続して独立して動作させることで、個別に蓄電池41のエネルギーを吸収し(放電し)、蓄電池41間の電圧や電池の状態を平準化させることができる。なお、このようなバランサ30を電源装置40の構築、導入時に蓄電池41に設置することで容易に電圧平準化の仕組みを構築することができる。 As described above, in the present embodiment, the storage battery voltage leveling device (balancer) 30 is connected to a part of the plurality of series storage batteries 41 that are always connected to the device and is operated independently. Thus, the energy of the storage battery 41 can be absorbed (discharged), and the voltage between the storage batteries 41 and the state of the battery can be leveled. It is to be noted that a voltage leveling mechanism can be easily constructed by installing such a balancer 30 in the storage battery 41 when the power supply device 40 is constructed and introduced.
 <実施の形態2>
 実施の形態1では、バランサ30に対する動作内容の指示は、例えばユーザがバランサ30に対して直接行うものとしているが、バランサ30を無線通信により動作可能とすることで、個別のバランサ30に対して逐一指示等を行わずに遠隔から集中的に蓄電池41間の電圧の平準化を行うことができ、作業効率を大幅に削減することができる。
<Embodiment 2>
In the first embodiment, the operation content instruction to the balancer 30 is, for example, directly given to the balancer 30 by the user. However, by making the balancer 30 operable by wireless communication, the individual balancer 30 is instructed. The voltage between the storage batteries 41 can be leveled intensively from a remote location without giving instructions one by one, and work efficiency can be greatly reduced.
 図4は、本発明の実施の形態2である蓄電池電圧平準化装置(バランサ)30が接続された電源システムの構成例について概要を示した図である。実施の形態1の図1に示した構成例との相違点は、蓄電池電圧平準化装置(バランサ)30が、無線通信機能を有し、これらのバランサ30と無線通信が可能な集中動作指示装置90を有することで、遠隔の集中動作指示装置90から集中的に各蓄電池41間の電圧の平準化を行うことを可能とする点である。 FIG. 4 is a diagram showing an outline of a configuration example of a power supply system to which a storage battery voltage leveling device (balancer) 30 according to the second embodiment of the present invention is connected. 1 is different from the configuration example shown in FIG. 1 in the first embodiment in that a storage battery voltage leveling device (balancer) 30 has a wireless communication function and can perform wireless communication with these balancers 30. By having 90, it is possible to perform leveling of the voltage between the storage batteries 41 in a concentrated manner from a remote concentrated operation instruction device 90.
 集中動作指示装置90は、例えば、携帯型の情報処理端末や専用の端末等により構成され、無線通信により各バランサ30と接続可能であり、ユーザからの指示により、もしくは一定期間毎に、各バランサに対して蓄電池41の電圧の測定と放電による電圧の平準化の指示を行ったり、バランサ30の測定制御部31に対する各種設定値を変更する指示を行ったりする機能を有する。なお、無線通信の規格やプロトコル等は特に限定されず、公知の技術を適宜利用することができる。 The centralized operation instruction device 90 is composed of, for example, a portable information processing terminal, a dedicated terminal, and the like, and can be connected to each balancer 30 by wireless communication. Each balancer 30 is instructed by a user or at regular intervals. The function of instructing the measurement of the voltage of the storage battery 41 and the leveling of the voltage by the discharge, and the instruction of changing various setting values to the measurement control unit 31 of the balancer 30 are provided. Note that wireless communication standards, protocols, and the like are not particularly limited, and known techniques can be used as appropriate.
 図5は、本実施の形態の蓄電池電圧平準化装置(バランサ)30の構成例について概要を示した図である。実施の形態1の図2に示した構成例との相違点は、集中動作指示装置90との間で無線通信を行うための通信部36を有する点である。 FIG. 5 is a diagram showing an outline of a configuration example of the storage battery voltage leveling device (balancer) 30 according to the present embodiment. The difference from the configuration example shown in FIG. 2 of the first embodiment is that a communication unit 36 for performing wireless communication with the centralized operation instruction device 90 is provided.
 このように、本実施の形態では、各バランサ30に対して集中動作指示装置90により無線通信を介して遠隔から集中的に動作指示や制御を行うことができる構成とすることで、個別のバランサ30に対して逐一手動で指示や設定を行うことなく、作業効率を大幅に削減することができる。また、無線通信の構成をとることにより、ハーネスによる漏れ電流や被覆の絶縁破壊による短絡、断線などの障害発生のリスクを軽減させることができる。 As described above, in the present embodiment, the individual balancer 30 is configured so that the centralized operation instructing device 90 can perform operation instruction and control from a remote location via wireless communication. The work efficiency can be greatly reduced without manually instructing and setting 30 each time. Further, by adopting a wireless communication configuration, it is possible to reduce a risk of occurrence of a failure such as a leakage current due to a harness, a short circuit due to a dielectric breakdown of a coating, or a disconnection.
 <実施の形態3>
 実施の形態1、2では、複数の蓄電池41を有する電源装置40において、蓄電池41の電圧が所定の値より高い場合に、バランサ30によって部分的に(蓄電池41毎の単位で)放電させて蓄電池41間の電圧の平準化を行うことを可能とする。ここで、このような平準化の仕組みを、各蓄電池41の状態や寿命を推定する監視機能と組み合わせて用いることで、蓄電池41間の電圧の平準化を効率的に実施することができ、相乗効果を得ることができる。そこで、本発明の実施の形態3では、上記のようなバランサ30を、蓄電池41の状態を測定する監視機能を有する装置に融合させた形で構成し、電池システムの状態の監視や制御を行うための蓄電池状態監視システムに組み込んで利用する。
<Embodiment 3>
In the first and second embodiments, in a power supply device 40 having a plurality of storage batteries 41, when the voltage of the storage battery 41 is higher than a predetermined value, the battery is partially discharged (in units of each storage battery 41) by the balancer 30. It is possible to perform voltage leveling between 41. Here, by using such a leveling mechanism in combination with a monitoring function for estimating the state and life of each storage battery 41, the leveling of the voltage between the storage batteries 41 can be efficiently performed. An effect can be obtained. Therefore, in the third embodiment of the present invention, the balancer 30 as described above is configured to be combined with a device having a monitoring function for measuring the state of the storage battery 41 to monitor and control the state of the battery system. For use in a storage battery status monitoring system.
 上述したように、自然エネルギーを利用した自立型電源や、電力平準化の仕組みとして、太陽電池や風力発電等の発電機と蓄電池を組み合わせて構成される電源システムが使用されている。このような電源システムでは、自然エネルギーにより発電された電力を負荷に供給するが、自然環境の変化により発電量が変化し、負荷への電力供給に過不足が生じ得る。そこで、蓄電池を利用して発電量や負荷の変動を吸収するとともに、商用の電力系統と相互に供給・逆潮流を行なって、電力供給の安定化と効率化を図る。 As described above, as a self-supporting power source using natural energy and a power leveling mechanism, a power source system configured by combining a generator and a storage battery such as a solar battery or a wind power generator is used. In such a power supply system, power generated by natural energy is supplied to the load. However, the amount of power generation may change due to changes in the natural environment, and power supply to the load may be excessive or insufficient. Therefore, the storage battery is used to absorb fluctuations in the amount of power generation and load, and supply / reverse flow with the commercial power system is performed to stabilize and improve the efficiency of power supply.
 ここで、例えば、日照量が多いもしくは強風の場合に、蓄電池に余剰電力が供給され続けると、蓄電池は過充電状態となり、蓄電池の劣化が進行してしまう。逆に、日照量が少ないもしくは風が弱い場合は、蓄電池から負荷へと電力が供給され続けるため、蓄電池は過放電状態となり、同様に蓄電池の劣化が進行してしまう。このような状況を防止し、さらには電力系統の安定化を図るためにも、商用の電力系統と相互に供給・逆潮流を行なって、電力系統と蓄電池を含む電力システムが協調運転することが行われる。この協調運転を効果的に行うために、蓄電池の状態を適切に把握しておくことは重要である。 Here, for example, when the amount of sunshine is large or the wind is strong, if the surplus power continues to be supplied to the storage battery, the storage battery is overcharged and the deterioration of the storage battery proceeds. Conversely, when the amount of sunshine is small or the wind is weak, power is continuously supplied from the storage battery to the load, so the storage battery is overdischarged, and the deterioration of the storage battery similarly proceeds. In order to prevent this situation and to stabilize the power system, the power system including the power system and the storage battery can be operated in a coordinated manner by mutually supplying and backflowing with the commercial power system. Done. In order to effectively perform this cooperative operation, it is important to appropriately grasp the state of the storage battery.
 この蓄電池は、動作しない状態でも経年劣化し、また、一般的に周囲の温度が高いほど劣化が進むことが知られている。従って、例えば一般的に、UPSなどの蓄電池を搭載した機器では、通常、動作(放電)時に蓄電池が寿命や故障等で正常に動作しないということが生じるのを回避するため、蓄電池の状態を監視している。また、周囲の温度や使用年数といった劣化に伴う寿命の時期を予測して、蓄電池が現に異常な状態である場合はもちろん、正常な状態であっても予測した寿命の時期が到来する前に新品の蓄電池と交換する方法がとられてきた。 This storage battery is known to deteriorate over time even in a non-operating state, and it is generally known that deterioration increases as the ambient temperature increases. Therefore, for example, in general, in a device equipped with a storage battery such as UPS, the state of the storage battery is usually monitored in order to avoid that the storage battery does not operate normally due to a life or failure during operation (discharge). is doing. In addition, by predicting the life time due to deterioration such as the ambient temperature and age, the storage battery is not in an abnormal state, but even if it is in a normal state, it will be new before the predicted life time arrives. The method of exchanging with a storage battery has been taken.
 しかしながら、温度と劣化の程度との関係のみに基づく単純な寿命の予測では、予測された寿命の精度はあまり高くないため、安全を考慮した結果、蓄電池の交換時期が実際の寿命よりも相当早い時期になって最後まで有効に使い切れていない場合もあり、経済的にも有効利用の観点からも非効率な状態となっている。また、上述したように、太陽電池等と組み合わせた電源システムにおいて、所定のPSOC(Partial State Of Charge:部分充電状態)の容量で使用するためにSOC(充電状態)の閾値を設ける場合にも、安全を多くとった状態で使用容量範囲を制限する必要が生じる。 However, with simple life prediction based solely on the relationship between temperature and the degree of deterioration, the accuracy of the predicted life is not so high, and as a result of safety considerations, the replacement time of the storage battery is considerably earlier than the actual life In some cases, it has not been used up effectively until the end, and it is inefficient from the viewpoint of economic and effective use. In addition, as described above, in a power supply system combined with a solar battery or the like, even when a SOC (charge state) threshold is provided for use with a predetermined PSOC (Partial State, Of State, Charge) state, It is necessary to limit the usable capacity range with much safety.
 蓄電池の状態や寿命を推定する際には、温度以外の各種パラメータを複数用いた方がより正確に推定することが可能である。ここで、例えば蓄電池の内部抵抗を測定する場合、簡易な手法としては、例えば市販されている携帯型の測定器を用いることが考えられる。しかしながら、携帯型の測定器では、電源システム等からのノイズの影響を受けるため測定精度に問題があったり、公園の電灯や時計などの屋外機器に用いられる場合には、現地で人手により個別に測定する必要があるため非効率であったりなど、実際の利用は困難である。 When estimating the state and life of a storage battery, it is possible to estimate more accurately by using a plurality of parameters other than temperature. Here, for example, when measuring the internal resistance of the storage battery, as a simple method, for example, a commercially available portable measuring device may be used. However, portable measuring instruments are affected by noise from the power supply system, etc., so there is a problem in measurement accuracy, or when they are used for outdoor equipment such as park lights and watches, they must be individually handled locally. Since it is necessary to measure, it is inefficient and practical use is difficult.
 そこで、複数の電源システムに搭載された蓄電池について、温度以外の複数のパラメータを測定することによりその状態等を監視するとともに、結果を一元的に保持して集中的に監視するような装置やシステムが要望される。既存の装置やシステムでは、温度や電圧に加えて内部抵抗を測定しているが、より正確な寿命の推定を行うためには、例えば充放電時のデータなど、測定パラメータをより増やすことが求められる。 Therefore, devices and systems that monitor the status of storage batteries installed in multiple power supply systems by measuring multiple parameters other than temperature and centrally monitoring the results. Is required. In existing devices and systems, internal resistance is measured in addition to temperature and voltage, but in order to estimate the life more accurately, it is necessary to increase the number of measurement parameters such as data during charging and discharging. It is done.
 また、例えば、内部抵抗については、既存の装置やシステムにおけるような単一の周波数ではなく、複数の周波数で測定したほうが、蓄電池の様々な劣化モードに対応してより正確な寿命の推定が可能である。ここで、個々の蓄電池に対して測定周波数を可変として複数周波数で内部抵抗を測定する装置はあるものの、携帯型の測定器と同様、屋外機器の複数の蓄電池を対象とする測定は実際上困難である。多数の蓄電池の状態を並行的に監視するためには、少なくとも各パラメータの測定やデータの記録に係る処理はある程度自動化する必要がある。 In addition, for example, for internal resistance, it is possible to estimate the life more accurately by measuring at multiple frequencies instead of a single frequency as in existing devices and systems, corresponding to various deterioration modes of the storage battery. It is. Here, although there are devices that measure the internal resistance at multiple frequencies with variable measurement frequency for each storage battery, it is practically difficult to measure multiple storage batteries of outdoor equipment as with portable measuring instruments. It is. In order to monitor the state of a large number of storage batteries in parallel, it is necessary to at least automate the processes related to the measurement of each parameter and the recording of data.
 そこで本実施の形態における蓄電池状態監視システムは、例えば、太陽電池など自然エネルギーを利用して発電された電力により充電され、常に機器に接続された複数の蓄電池について各種パラメータを自動で測定もしくは取得する。これにより、各蓄電池の状態や寿命を高い精度で効率的に推定し、蓄電池が所定の部分充電状態で適切に動作するよう制御することを可能とする。また、蓄電池間の電圧や状態の平準化も効率的に行うことを可能とする。 Therefore, the storage battery state monitoring system according to the present embodiment automatically measures or acquires various parameters for a plurality of storage batteries that are charged with electric power generated using natural energy such as solar cells and are always connected to the device. . Thereby, the state and life of each storage battery are efficiently estimated with high accuracy, and the storage battery can be controlled to operate properly in a predetermined partial charge state. In addition, it is possible to efficiently perform leveling of voltages and states between storage batteries.
 本実施の形態では、各蓄電池には、各種パラメータについて測定を行いデータを取得して保持する測定装置がそれぞれ設置され、当該測定装置で測定されたデータは、要求に応じて監視装置に無線通信により送信される。監視装置では、各測定装置から収集した測定データに基づいて蓄電池の状態や寿命を推定する処理を一元的に行い、例えば、交換が必要な蓄電池がある場合には関連する情報等とともにその旨をユーザに通知するなどのインタフェースを有する。 In the present embodiment, each storage battery is provided with a measurement device that measures various parameters and acquires and holds data, and the data measured by the measurement device is wirelessly communicated to the monitoring device upon request. Sent by. The monitoring device performs centralized processing to estimate the state and life of the storage battery based on the measurement data collected from each measurement device.For example, if there is a storage battery that needs to be replaced, the relevant information etc. It has an interface for notifying the user.
 上述したように、一般的に、電源系統との系統連携を行うような電源システムは、100kVAを超えるような大規模のシステムとなるため、従来は、信頼性の観点より、監視装置と測定装置との間の接続にはハーネス方式がとられていた。しかしながら、この方式では、蓄電池のシャーシが接地されているため、別電源で動作する測定装置の線が架台に触れると絶縁破壊により短絡・発煙・発火などのトラブルが生じ得るため、個別にヒューズを入れる必要があるなどの問題があった。また、無線方式をとるにしても、使用できる測定装置等の数に制限があり、大規模システムに適用することは困難であった。 As described above, since a power supply system that performs system linkage with a power supply system is generally a large-scale system exceeding 100 kVA, conventionally, from the viewpoint of reliability, a monitoring apparatus and a measurement apparatus Harness method was taken for connection between. However, in this method, the storage battery chassis is grounded, so if a measurement device line that operates with a separate power source touches the base, troubles such as short circuit, smoke, and fire may occur due to dielectric breakdown. There was a problem such as need to put. Even if a wireless system is adopted, the number of measuring devices that can be used is limited, and it is difficult to apply to a large-scale system.
 そこで、本実施の形態では、監視装置が多数の測定装置と通信セッションを持つことによる通信負荷の低減や、無線通信の利用による測定装置の設置の容易性・柔軟性等を考慮して、監視装置と測定装置との間に、通信負荷分散および/または通信プロトコル変換を行うための中継装置を有する階層構成をとる。これにより、大規模システムにおいても監視装置と各測定装置との間の通信を無線方式とすることを可能とする。 Therefore, in the present embodiment, monitoring is performed in consideration of reduction in communication load due to the monitoring device having communication sessions with a large number of measurement devices, ease of installation of the measurement device by using wireless communication, flexibility, and the like. A hierarchical structure having a relay device for performing communication load distribution and / or communication protocol conversion is provided between the device and the measurement device. Thereby, even in a large-scale system, communication between the monitoring device and each measuring device can be made wireless.
 本実施の形態の蓄電池状態監視システムでは、蓄電池の劣化の判定を行う際に、蓄電池の温度に基づく判定に加えて、電圧、内部抵抗(主に交流インピーダンスであり、電池のリアクタンスも測定時に含まれるが、以下では総称して「内部抵抗」と記載する)、放電・充電の際の直流抵抗という複数のパラメータに基づいて多面的に劣化を判定する。例えば、温度や電圧については、突発的な障害等によるものも含む異常値管理として、一定間隔(例えば5分)で取得した蓄電池の温度や電圧の値が、所定の閾値を超えた場合に異常な状態であると判定する。具体的には、例えば、蓄電池の温度が室温+10℃を超えた場合には軽度の異常と判定し、室温+20℃を超えた場合には直ちに交換が必要な状態であると判定する。また、温度と寿命との相関関係を示すテーブルや式から寿命の時期を判定するようにしてもよい。 In the storage battery state monitoring system of the present embodiment, when determining the deterioration of the storage battery, in addition to the determination based on the temperature of the storage battery, the voltage and internal resistance (mainly AC impedance, the battery reactance is also included in the measurement. However, in the following, it is collectively referred to as “internal resistance”), and deterioration is determined in a multifaceted manner based on a plurality of parameters such as DC resistance during discharging and charging. For example, regarding temperature and voltage, as abnormal value management including those due to sudden failures, etc., abnormal when the temperature or voltage value of the storage battery acquired at regular intervals (for example, 5 minutes) exceeds a predetermined threshold It is determined that the state is not correct. Specifically, for example, when the temperature of the storage battery exceeds room temperature + 10 ° C., it is determined as a slight abnormality, and when it exceeds room temperature + 20 ° C., it is determined that the battery needs to be replaced immediately. Further, the time of life may be determined from a table or expression showing the correlation between temperature and life.
 また、内部抵抗については、通常時の傾向管理として、例えば、1日1回などの定期的なタイミングや、ユーザからの指示を受けたタイミングで測定し、内部抵抗値の初期値(例えば蓄電池の設置時に最初に測定した値)からの変化率により蓄電池の劣化を推定する。例えば、内部抵抗値が初期値から20%以上増加した場合には軽度の劣化と判定し、初期値から50%以上増加した場合には速やかに(例えば1年以内に)交換が必要と判定し、初期値から100%以上増加した場合には直ちに交換が必要と判定する。蓄電池の種類等によって内部抵抗の絶対値が異なることから、このように相対値による判定を行う。 As for the internal resistance, as an ordinary trend management, for example, it is measured at a regular timing such as once a day or at a timing when an instruction from the user is received, and an initial value of the internal resistance value (for example, a storage battery) The deterioration of the storage battery is estimated from the rate of change from the value measured initially at the time of installation. For example, when the internal resistance value increases by 20% or more from the initial value, it is determined that the deterioration is mild, and when the internal resistance value increases by 50% or more from the initial value, it is determined that replacement is necessary promptly (for example, within one year). If the initial value is increased by 100% or more, it is determined that the replacement is necessary immediately. Since the absolute value of the internal resistance varies depending on the type of storage battery, etc., the determination based on the relative value is performed in this way.
 なお、本実施の形態では、蓄電池の様々な劣化モードに対応してより正確な寿命の推定が行えるよう、複数の周波数により内部抵抗を測定し、各周波数での内部抵抗毎に上記のような初期値との相対値による判定を行うものとする。従来の内部抵抗の測定機器では、一般的に1kHz程度の周波数が用いられており、蓄電池が徐々に劣化する状況については当該周波数で測定した内部抵抗によりある程度判断可能であることが知られている。また、当該周波数については従来広く用いられてきた経緯からリファレンスとなるデータの蓄積も多いため、本実施の形態においても1種類は1kHz程度(例えば350Hz以上2000Hz未満)の周波数を用いるものとする。 In the present embodiment, the internal resistance is measured at a plurality of frequencies so that the life can be estimated more accurately in accordance with various deterioration modes of the storage battery, and the above-described values are determined for each internal resistance at each frequency. Assume that the determination is based on a relative value with respect to the initial value. In a conventional internal resistance measuring device, a frequency of about 1 kHz is generally used, and it is known that the situation in which the storage battery gradually deteriorates can be determined to some extent by the internal resistance measured at the frequency. . In addition, since a lot of reference data is accumulated due to the background that has been widely used, the frequency of about 1 kHz (for example, 350 Hz to less than 2000 Hz) is used in this embodiment.
 一方で、1kHz程度の周波数では、電極反応などの発電要素に係る情報を得るためには周波数が高く、蓄電池の寿命を判定することが可能な程度の情報しか得ることができない。従って、より詳細な情報を得るためには、さらに直流や直流に近い低周波での内部抵抗についても測定するのが望ましい。本実施の形態では、直流抵抗成分については、蓄電池が放電もしくは充電している際に各蓄電池に設置した測定装置からの逐次測定された電圧値と電流値(交流での内部抵抗測定時のものと比べて大きい)とから、放電中の電流値と電圧値についてのそれぞれの変化分(傾き)の比の計算により取得するものとする。これについて上記と同様に初期値と比較することにより、蓄電池の劣化をより正確に判定することができる。 On the other hand, at a frequency of about 1 kHz, in order to obtain information relating to power generation elements such as electrode reaction, the frequency is high and only information that can determine the life of the storage battery can be obtained. Therefore, in order to obtain more detailed information, it is desirable to measure the internal resistance at a low frequency close to direct current or direct current. In the present embodiment, for the DC resistance component, when the storage battery is discharged or charged, the voltage value and the current value sequentially measured from the measuring device installed in each storage battery (when measuring the internal resistance at AC) It is assumed that the current value and the voltage value during discharge are obtained by calculating the ratio of the respective changes (slopes). About this, by comparing with an initial value similarly to the above, deterioration of a storage battery can be determined more correctly.
 しかしながら、例えば上記のような太陽電池と組み合わせた電源システムでは、日照量が多い昼間など蓄電池が放電・充電を行わない時間帯も多いことから、上記のように直流抵抗を測定できるタイミングは限られる。従って、待機時(蓄電池が放電・充電をしていない状態)は低周波での内部抵抗についても測定するものとする。例えば、実際上支障なく装置を構成することができ、かつ商用電源と干渉しない(50Hzもしくは60Hzの整数倍ではない)100Hz未満程度の周波数を用いる。劣化判定の精度をより向上させるためには、さらに異なる複数の周波数により内部抵抗を測定するのが望ましい。 However, for example, in a power supply system combined with a solar cell as described above, there are many times when the storage battery does not discharge or charge, such as in the daytime when the amount of sunlight is large, so the timing at which the DC resistance can be measured as described above is limited . Therefore, during standby (when the storage battery is not discharged / charged), the internal resistance at low frequency is also measured. For example, a frequency that is less than 100 Hz that can be configured without any problem and that does not interfere with the commercial power supply (not 50 Hz or an integer multiple of 60 Hz) is used. In order to further improve the accuracy of the deterioration determination, it is desirable to measure the internal resistance at a plurality of different frequencies.
 従って、本実施の形態では、後述するように、内部抵抗の測定周波数は、少なくとも1kHz程度(例えば350Hz以上2000Hz未満)の高周波と100Hz未満(商用電源と干渉しない周波数)の低周波を含み、さらにこれらと異なる周波数として、中間(例えば100Hz以上350Hz未満)の周波数を加えた3種類の周波数により内部抵抗を測定するものとする。 Therefore, in this embodiment, as will be described later, the measurement frequency of the internal resistance includes a high frequency of at least about 1 kHz (for example, 350 Hz to less than 2000 Hz) and a low frequency of less than 100 Hz (a frequency that does not interfere with the commercial power supply) As the frequency different from these, the internal resistance is measured by three kinds of frequencies including an intermediate frequency (for example, 100 Hz or more and less than 350 Hz).
 上記をより一般的に記載すると、例えば、200Hz未満の低周波領域と、200Hz以上2000Hz未満の高周波領域から少なくともそれぞれ1つ以上選択した複数の周波数によって内部抵抗を測定することで劣化判定の精度を向上させることが可能である。さらに上記の周波数領域内で異なる他の周波数を加えて測定することで精度をより向上させることも可能である、ということができる。 To describe the above more generally, for example, the accuracy of deterioration determination can be improved by measuring internal resistance at a plurality of frequencies selected from at least one of a low frequency region below 200 Hz and a high frequency region above 200 Hz and below 2000 Hz. It is possible to improve. Furthermore, it can be said that the accuracy can be further improved by adding and measuring other different frequencies within the above frequency range.
 このように、温度、電圧、内部抵抗、放電・充電の際の直流抵抗などを含む複数のパラメータのうちの1つ以上に基づいて多面的に劣化を判定することで、蓄電池の状態や寿命を高い精度で推定することが可能となる。 In this way, the state and life of the storage battery can be determined by determining deterioration in a multifaceted manner based on one or more of a plurality of parameters including temperature, voltage, internal resistance, DC resistance at the time of discharging / charging, etc. It is possible to estimate with high accuracy.
 [システム構成]
 図6は、本発明の実施の形態3である蓄電池状態監視システムの構成例について概要を示した図である。蓄電池状態監視システム1は、例えば電源装置40などの、直列に接続された複数の蓄電池41からなる組電池を備える機器において、各蓄電池41について各種パラメータを自動で測定もしくは取得することで、各蓄電池41の状態や寿命を推定するシステムである。
[System configuration]
FIG. 6 is a diagram showing an outline of a configuration example of the storage battery state monitoring system according to the third embodiment of the present invention. The storage battery state monitoring system 1 is a device including an assembled battery composed of a plurality of storage batteries 41 connected in series, such as a power supply device 40, for example, by automatically measuring or acquiring various parameters for each storage battery 41. 41 is a system for estimating the state and life of 41.
 この蓄電池状態監視システム1は、1つ以上の電源装置40の各蓄電池41に対して1つずつ固定して設置され、当該蓄電池41についての各種パラメータを測定する状態測定装置30’(実施の形態1、2におけるバランサ30に対応)と、状態測定装置30’で測定されたデータを収集して蓄電池41の状態や寿命を推定する処理を一元的に行う上位監視装置10とを有する。また、上位監視装置10と各状態測定装置30’との間に、各状態測定装置30’から送信された測定データを中継して上位監視装置10に送信するデータ中継装置20を有する。 The storage battery state monitoring system 1 is fixedly installed one by one for each storage battery 41 of one or more power supply devices 40, and a state measurement device 30 ′ that measures various parameters of the storage battery 41 (embodiment) 1 and 2 and a host monitoring device 10 that collects data measured by the state measuring device 30 'and estimates the state and life of the storage battery 41 in an integrated manner. In addition, a data relay device 20 that relays the measurement data transmitted from each state measurement device 30 ′ and transmits it to the higher order monitoring device 10 is provided between the upper monitoring device 10 and each state measurement device 30 ′.
 すなわち、本実施の形態では、1つの上位監視装置10に対してM個のデータ中継装置20(以下では「親機」と記載する場合がある)が通信可能に接続され、各データ中継装置20にはN個の状態測定装置30’(以下では「子機」と記載する場合がある)が通信可能に接続される3階層の階層構成を有する。なお、上位監視装置10と親機20との間はLAN(Local Area Network)等のネットワーク60を介した有線通信により接続され、親機20と子機30’との間は無線通信により接続される。なお、有線/無線通信の規格やプロトコル等は特に限定されず、公知の技術を適宜利用することができる。 That is, in the present embodiment, M data relay apparatuses 20 (hereinafter may be referred to as “master units”) are communicably connected to one higher-level monitoring apparatus 10, and each data relay apparatus 20. Has a three-layer structure in which N state measuring devices 30 ′ (hereinafter may be referred to as “child devices”) are communicably connected. The host monitoring device 10 and the master unit 20 are connected by wired communication via a network 60 such as a LAN (Local Area Network), and the master unit 20 and the slave unit 30 ′ are connected by wireless communication. The Note that the standard and protocol for wired / wireless communication are not particularly limited, and a known technique can be used as appropriate.
 これにより、多数の蓄電池41を有する電源装置40等の機器において、外部への配線等を要さずに子機30’を蓄電池41に対して設置することができ、設置の際の容易性、柔軟性を向上させて設置の効率化を可能とするとともに、結線間違いや配線の経年劣化等に基づく不具合のリスクを低減させることを可能とする。 Thereby, in apparatuses, such as the power supply device 40 which has many storage batteries 41, the subunit | mobile_unit 30 'can be installed with respect to the storage battery 41, without requiring the wiring etc. to the exterior, The ease at the time of installation, It is possible to improve the flexibility and improve the installation efficiency, and to reduce the risk of malfunctions due to misconnections and aging of wiring.
 なお、本実施の形態では、親機20は、少なくとも、子機30’との間の無線通信と、上位監視装置10との間の有線通信との間で通信プロトコルの変換を行う機能を有するが、その他の機能を有していなくてもよい。このとき、親機20は、各子機30’との無線通信を並行的に行ってもよいし、逐次的に行ってもよい。また、蓄電池状態監視システム1の規模等(例えば監視対象の蓄電池41の数等)によっては、親機20を有さず、子機30’が直接上位監視装置10と通信する2階層の構成であってもよいし、子機30’と親機20(もしくは上位監視装置10)との間の通信も、無線通信に限らず有線通信であってもよい。 In the present embodiment, base unit 20 has a function of converting a communication protocol at least between wireless communication with slave unit 30 ′ and wired communication with host monitoring device 10. However, other functions may not be provided. At this time, the master unit 20 may perform wireless communication with each slave unit 30 ′ in parallel or sequentially. Further, depending on the scale or the like of the storage battery state monitoring system 1 (for example, the number of storage batteries 41 to be monitored, etc.), the slave unit 30 ′ has a two-layer configuration in which the slave unit 30 ′ communicates directly with the host monitoring device 10. The communication between the child device 30 ′ and the parent device 20 (or the host monitoring device 10) may be wired communication as well as wireless communication.
 各電源装置40には、実施の形態1、2と同様に、電源装置40の動作を制御する制御・電源装置50が接続されている。この制御・電源装置50は、さらに、電源装置40内で直列に設置された蓄電池41を流れる電流値を検出することができる電流検出装置としての役割を有し、電源装置40(蓄電池41)の充放電の際に蓄電池41に流れる電流値を測定することができる。制御・電源装置50は、例えばネットワーク60に接続されており、上位監視装置10は、ネットワーク60を介して、制御・電源装置50から蓄電池41の電流値や充放電の有無、発電設備70の発電量に係る情報などを取得することができる。 Each power supply device 40 is connected to a control / power supply device 50 for controlling the operation of the power supply device 40 as in the first and second embodiments. The control / power supply device 50 further has a role as a current detection device capable of detecting a current value flowing through the storage battery 41 installed in series in the power supply device 40, and the power supply device 40 (storage battery 41). The value of the current flowing through the storage battery 41 during charging / discharging can be measured. The control / power supply device 50 is connected to, for example, the network 60, and the host monitoring device 10 transmits the current value of the storage battery 41, the presence / absence of charging / discharging, and the power generation of the power generation facility 70 via the network 60. Information related to the quantity can be acquired.
 なお、本実施の形態では、制御・電源装置50が各蓄電池41の電流値を検出し、上位監視装置10が制御・電源装置50から当該情報を取得可能な構成としているが、これに限らず、例えば、後述する子機30’が、温度や電圧等の他のパラメータと同様に各蓄電池41の電流値を測定して上位監視装置10に送信する構成としてもよい。また、本実施の形態では、図6の例に示すように、複数の電源装置40(子機30’)を一元的に監視可能なようにネットワーク60上に上位監視装置10を有する構成としているが、上位監視装置10の機能を各電源装置40に対応する制御・電源装置50に一体化させ、各制御・電源装置50が個別に電源装置40を監視する構成としてもよい。 In the present embodiment, the control / power supply device 50 detects the current value of each storage battery 41 and the host monitoring device 10 can acquire the information from the control / power supply device 50. However, the present invention is not limited to this. For example, it is good also as a structure which subunit | mobile_unit 30 'mentioned later measures the electric current value of each storage battery 41 similarly to other parameters, such as temperature and a voltage, and transmits to the high-order monitoring apparatus 10. FIG. Further, in the present embodiment, as shown in the example of FIG. 6, the host monitoring device 10 is configured on the network 60 so that a plurality of power supply devices 40 (slave devices 30 ′) can be centrally monitored. However, the control / power supply device 50 corresponding to each power supply device 40 may be integrated with the function of the host monitoring device 10 so that each control / power supply device 50 individually monitors the power supply device 40.
 図7は、上位監視装置10の構成例について概要を示した図である。上位監視装置10は、親機20を介して、各子機30’から各蓄電池41について測定された各種パラメータの情報を収集し、収集したデータに基づいて各蓄電池41の状態や寿命を推定して、異常な状態や寿命の到来の有無を監視する。 FIG. 7 is a diagram showing an outline of a configuration example of the host monitoring device 10. The host monitoring device 10 collects information on various parameters measured for each storage battery 41 from each slave unit 30 ′ via the master unit 20, and estimates the state and life of each storage battery 41 based on the collected data. Monitor for abnormal conditions and the arrival of life.
 上位監視装置10は、例えばPC(Personal Computer)やサーバ機器等の情報処理装置によって構成され、図示しないOS(Operating System)やDBMS(DataBase Management System)などのミドルウェア上で動作するソフトウェアプログラムとして実装されるインタフェース部11、監視制御部12、および劣化判定部13などの各部を有する。また、子機30’から収集した測定データを蓄積するデータベースである測定履歴14と、蓄電池状態監視システム1の動作に係る各種の設定を保持するファイルやレジストリ等からなる設定情報15とを有する。 The host monitoring device 10 is configured by an information processing device such as a PC (Personal Computer) or a server device, and is implemented as a software program that operates on middleware such as an OS (Operating System) or a DBMS (DataBase Management System) (not shown). The interface unit 11, the monitoring control unit 12, and the deterioration determination unit 13. In addition, it has a measurement history 14 that is a database for storing measurement data collected from the slave unit 30 ′, and setting information 15 including files, registries, and the like that hold various settings related to the operation of the storage battery state monitoring system 1.
 インタフェース部11は、ユーザが各種指示を入力するための画面、および蓄電池41の状態監視の結果を表示するための画面を、ユーザに対して提供するユーザインタフェースの機能を有する。図示しないWebサーバプログラムにより、ユーザのクライアント端末上のWebブラウザからアクセスして画面を表示する構成としてもよい。ユーザが入力する各種指示としては、例えば、設定情報15に設定される、上位監視装置10や子機30’の動作条件の指定や、ユーザの要求に基づく子機30’に対するデータの測定や収集の指示などがある。 The interface unit 11 has a user interface function that provides a screen for the user to input various instructions and a screen for displaying the result of monitoring the state of the storage battery 41 to the user. It is good also as a structure which displays from a web browser on a user's client terminal, and displays a screen with a web server program which is not illustrated. Various instructions input by the user include, for example, specification of operating conditions of the host monitoring device 10 and the slave unit 30 ′ set in the setting information 15, and measurement and collection of data for the slave unit 30 ′ based on a user request. There are instructions.
 監視制御部12は、設定情報15に登録された設定内容、もしくはインタフェース部11を介したユーザからの指示に従って、(親機20を介して)子機30’に対して各種パラメータの測定に係る条件の指定や測定の実行を要求する。また、子機30’に対して各種パラメータの測定データを送信するよう要求して測定データを収集し、測定履歴14に蓄電池41毎に記録して蓄積する機能を有する。 The monitoring control unit 12 relates to the measurement of various parameters with respect to the slave unit 30 ′ (via the master unit 20) in accordance with the setting contents registered in the setup information 15 or instructions from the user via the interface unit 11. Requests specification of conditions and execution of measurement. Further, it has a function of requesting the slave unit 30 ′ to transmit measurement data of various parameters, collecting the measurement data, and recording and storing it in the measurement history 14 for each storage battery 41.
 なお、ユーザからの指示による監視対象の蓄電池41が多数となる場合は、例えば、子機30’に対して一斉にデータの測定指示を行うと、多数の子機30’が一斉に蓄電池41に対して測定を行うことになる。子機30’は、パラメータの測定の際に微小ながらも蓄電池41に対して通電するため、電圧降下が生じることから、多数の子機30’が一斉に測定を行うと電源装置40に対して悪影響を及ぼすことも考えられる。また、子機30’に対して一斉に測定データの送信要求を行うと、各子機30’が一斉に測定データを親機20を介して上位監視装置10に送信する結果、これらの機器に大きな通信負荷がかかってしまうことも考えられる。 When there are a large number of storage batteries 41 to be monitored according to an instruction from the user, for example, when a data measurement instruction is given to the slave unit 30 ′, a large number of slave units 30 ′ are simultaneously sent to the storage battery 41. Measurement. Since the slave unit 30 ′ is energized to the storage battery 41 even though it is minute when measuring the parameters, a voltage drop occurs. Therefore, if a large number of slave units 30 ′ perform measurement at the same time, the power source device 40 is adversely affected. Can also be considered. Further, when the measurement data is requested to be transmitted simultaneously to the slave unit 30 ′, each slave unit 30 ′ transmits the measurement data to the host monitoring device 10 via the master unit 20 all at once. It can be considered that a large communication load is applied.
 従って、本実施の形態では、ユーザが、子機30’に対して各種パラメータの測定(特に内部抵抗の測定)や、測定データの送信などの指示を行う際に、子機30’を適切な数(例えば全体の30%程度毎)にグルーピングして、各グループ間で、属する子機30’による処理のタイミングが重複しないよう、自動または手動によりグループ毎に十分な時間差を設けて指示を行うものとする。 Therefore, in the present embodiment, when the user instructs the slave unit 30 'to measure various parameters (particularly the measurement of internal resistance) and transmit measurement data, the slave unit 30' is appropriately set. Instructed with a sufficient time difference for each group automatically or manually so that the timing of processing by the slave unit 30 'belonging to each group does not overlap between groups (for example, every 30% of the whole) Shall.
 また、監視制御部12は、収集した測定データにおける電圧データに基づいて、蓄電池41が所定の部分充電状態で動作するよう、蓄電池41の放電と発電設備70からの充電について制御するため、電源装置40の制御・電源装置50に対して、例えば後述するような手順に従って指示を行う。 In addition, the monitoring control unit 12 controls the discharging of the storage battery 41 and the charging from the power generation facility 70 so that the storage battery 41 operates in a predetermined partially charged state based on the voltage data in the collected measurement data. For example, instructions are given to the control / power supply apparatus 40 according to the following procedure.
 劣化判定部13は、設定情報15に登録された設定内容、もしくはインタフェース部11を介したユーザからの指示に従って、子機30’から収集して測定履歴14に記録された温度、電圧、内部抵抗などの各種パラメータの測定値、および制御・電源装置50から取得した電源装置40での放電・充電時の電流値等に基づいて、上述したような手法により蓄電池41の劣化を多面的に判定することで状態や寿命を推定する。 The degradation determination unit 13 collects the temperature, voltage, and internal resistance collected from the slave unit 30 ′ and recorded in the measurement history 14 according to the setting contents registered in the setting information 15 or an instruction from the user via the interface unit 11. Based on the measured values of various parameters such as, and the current value at the time of discharging / charging in the power supply device 40 obtained from the control / power supply device 50, the deterioration of the storage battery 41 is determined in a multifaceted manner by the method described above. To estimate the state and life.
 本実施の形態では、後述するように、主に2つのタイミングで蓄電池41の劣化を推定する。1つ目は、一定の時間間隔(本実施の形態では5分などの短い間隔もしくは1日などの長い間隔)のタイミングで継続して測定した温度および電圧の取得データに基づいて、蓄電池41の突発的な障害等を含む異常や寿命を推定する。2つ目は、蓄電池41の電圧が所定の過充電防止電圧を上回っており、かつ充電電流が所定値を下回っている状態、すなわち、蓄電池41が劣化している可能性があると判断されるタイミングで、複数周波数にて測定した内部抵抗の測定値に基づいて、蓄電池41の複数の劣化モードでの劣化傾向を推定する。 In the present embodiment, as will be described later, deterioration of the storage battery 41 is estimated mainly at two timings. The first is based on temperature and voltage acquisition data continuously measured at a certain time interval (in this embodiment, a short interval such as 5 minutes or a long interval such as one day). Estimate abnormalities and life span including sudden failures. Second, it is determined that the voltage of the storage battery 41 is higher than a predetermined overcharge prevention voltage and the charging current is lower than a predetermined value, that is, the storage battery 41 may be deteriorated. At the timing, the deterioration tendency of the storage battery 41 in a plurality of deterioration modes is estimated based on the measured values of the internal resistance measured at a plurality of frequencies.
 さらに、蓄電池41が放電もしくは充電を行ったタイミングで、放電もしくは充電の際の電圧の測定データと、制御・電源装置50から取得した放電時もしくは充電時の直流電流の値とから算出した直流抵抗に基づいて蓄電池41の劣化傾向をより高い精度で推定するようにしてもよい。なお、内部抵抗や直流抵抗の初期値については、測定履歴14における対象の蓄電池41についての最初の測定データから得てもよいし、蓄電池41毎に別途記録しておくようにしてもよい。 Further, at the timing when the storage battery 41 is discharged or charged, the DC resistance calculated from the measured data of the voltage at the time of discharging or charging and the value of the DC current at the time of discharging or charging obtained from the control / power supply device 50. Based on the above, the deterioration tendency of the storage battery 41 may be estimated with higher accuracy. Note that the initial values of the internal resistance and the direct current resistance may be obtained from initial measurement data for the target storage battery 41 in the measurement history 14 or may be recorded separately for each storage battery 41.
 蓄電池41の状態や劣化の推定の結果、寿命が到来している、もしくは寿命の到来が近いため、交換が必要であると判定された場合は、例えば、その旨をインタフェース部11を介して測定データや推定結果などの情報とともにユーザに通知する。 As a result of estimation of the state or deterioration of the storage battery 41, when it is determined that replacement is necessary because the lifetime has reached or is approaching, for example, the fact is measured via the interface unit 11. Notify users along with information such as data and estimation results.
 設定情報15には、蓄電池状態監視システム1の動作に係る設定内容として、例えば、子機30’の温度や電圧の測定間隔(例えば5分毎や1日1回など)や、内部抵抗の測定間隔(例えば1日1回)などをユーザや管理者等により設定もしくは変更可能なようにしてもよい。また、子機30’の動作モード(通常モードや省電力モード)の条件などを設定可能なようにしてもよい。 The setting information 15 includes, for example, temperature and voltage measurement intervals (for example, every 5 minutes, once a day, etc.) of the slave unit 30 ′ and internal resistance measurement as setting contents related to the operation of the storage battery state monitoring system 1. An interval (for example, once a day) or the like may be set or changed by a user or an administrator. Further, the condition of the operation mode (normal mode or power saving mode) of the slave unit 30 ′ may be set.
 なお、子機30’の動作に係る設定を上位監視装置10の設定情報15に保持し、監視制御部12から子機30’に対して指定できるようにすることで、多数の子機30’に対する個別の作業を不要として、上位監視装置10からの指令によって効率良く子機30’の動作条件を指定・変更することが可能となる。 It should be noted that the settings related to the operation of the slave unit 30 ′ are held in the setting information 15 of the higher-level monitoring device 10 and can be specified to the slave unit 30 ′ from the monitoring control unit 12. It becomes possible to designate and change the operating conditions of the slave unit 30 ′ efficiently by a command from the host monitoring device 10 without requiring individual work.
 図8は、状態測定装置(子機)30の構成例について概要を示した図である。子機30’は、蓄電池41の蓋部等に対して1つずつ固定して設置され、当該蓄電池41についての各種パラメータを測定して記録するとともに、親機20を介した上位監視装置10からの指示に応じて、親機20を介して測定データを上位監視装置10に送信する。蓄電池41に固定して設置することで、各種パラメータを測定するための端子やセンサ等との間の配線の接続を安定させ、測定データのバラツキを低減させることができる。 FIG. 8 is a diagram showing an outline of a configuration example of the state measurement device (slave device) 30. The subunit | mobile_unit 30 'is fixed and installed one by one with respect to the cover part etc. of the storage battery 41, while measuring and recording the various parameters about the said storage battery 41, from the high-order monitoring apparatus 10 via the main | base station 20 In response to the instruction, the measurement data is transmitted to the host monitoring apparatus 10 via the parent device 20. By fixing the storage battery 41 and installing it, it is possible to stabilize the connection of wiring with terminals and sensors for measuring various parameters, and to reduce variations in measurement data.
 なお、通常は、1個の蓄電池41に対して子機30’が1個設置される対応であるが、コストや蓄電池41の電圧などに応じて、直列に設置された複数個の蓄電池41に対してまとめて1個の子機により監視するようにしてもよい(例えば、子機30’を全直列数の2分の1以下の数とする)。例えば、本実施の形態のような大規模な電源システムでは、直列接続された3~6個の蓄電池、もしくは6V/12Vのモノブロック、もしくは1シリーズユニットなどに対して1個の子機を設置して監視するよう構成することができる。これにより、子機周辺におけるハーネスを極力短くすることができ、絶縁破壊等の問題を回避することができる。 Usually, one slave unit 30 ′ is installed for one storage battery 41. However, depending on the cost, the voltage of the storage battery 41, etc., a plurality of storage batteries 41 installed in series are connected. On the other hand, monitoring may be performed collectively by one slave unit (for example, the slave unit 30 ′ is set to a number equal to or less than one half of the total serial number). For example, in a large-scale power supply system such as the present embodiment, one slave unit is installed for 3 to 6 storage batteries connected in series, 6V / 12V monoblock, or 1 series unit. Can be configured to monitor. Thereby, the harness around the handset can be shortened as much as possible, and problems such as dielectric breakdown can be avoided.
 子機30’は、実施の形態1、2におけるバランサ30と基本的には同様の機能を有する装置であり、さらに、温度測定部32、および正弦波発生部35の各部を有し、また、部分放電部38の代わりに内部抵抗測定部34を有する。また、不揮発性の半導体メモリ等からなる記憶装置である内部メモリ37を有する。また、温度測定部32から配線された温度センサ39が蓄電池41に配置されているとともに、電圧測定部33、内部抵抗測定部34、および正弦波発生部35から配線された端子が蓄電池41の正負の端子にそれぞれ接続されている。 The subunit | mobile_unit 30 'is an apparatus which has the function fundamentally similar to the balancer 30 in Embodiment 1, 2, and also has each part of the temperature measurement part 32 and the sine wave generation | occurrence | production part 35, An internal resistance measurement unit 34 is provided instead of the partial discharge unit 38. Moreover, it has the internal memory 37 which is a memory | storage device which consists of a non-volatile semiconductor memory. A temperature sensor 39 wired from the temperature measuring unit 32 is disposed in the storage battery 41, and terminals wired from the voltage measuring unit 33, the internal resistance measuring unit 34, and the sine wave generating unit 35 are connected to the positive and negative of the storage battery 41. Are connected to each terminal.
 測定制御部31は、子機30’における各種パラメータの測定処理や、測定データの記録、送信など、子機30’における処理全体を制御する機能を有する。各測定部により、蓄電池41を(例えば5分毎や1日1回などの間隔で)常時監視して、測定されたデータを内部メモリ37の所定の領域に逐次記録する。このとき、古い測定データを上書きして領域をサイクリックに利用する。また、通信部36による無線通信により親機20と通信を行い、親機20を介した上位監視装置10からの指示に基づいて、親機20経由で上位監視装置10に対して測定データを送信する。なお、内部メモリ37に記録された測定データは、子機30’に装着した半導体メモリ等からなる図示しない外部メモリに複写・移動等して取り出すことができる。また、当該外部メモリを内部メモリ37と同等の記憶領域として使用してもよい。 The measurement control unit 31 has a function of controlling the entire processing in the slave unit 30 ′, such as measurement processing of various parameters in the slave unit 30 ′, recording and transmission of measurement data, and the like. Each measuring unit constantly monitors the storage battery 41 (for example, every 5 minutes or once a day), and sequentially records the measured data in a predetermined area of the internal memory 37. At this time, the old measurement data is overwritten and the area is used cyclically. In addition, the communication unit 36 communicates with the parent device 20 by wireless communication, and transmits measurement data to the upper monitoring device 10 via the parent device 20 based on an instruction from the upper monitoring device 10 via the parent device 20. To do. Note that the measurement data recorded in the internal memory 37 can be taken out by copying, moving, or the like to an external memory (not shown) composed of a semiconductor memory or the like attached to the slave unit 30 '. The external memory may be used as a storage area equivalent to the internal memory 37.
 温度測定部32は、測定制御部31からの指示(例えば5分毎)に従って、温度センサ39により蓄電池41の温度を測定し、測定データを測定制御部31に出力する。また、電圧測定部33も同様に、測定制御部31からの指示(例えば5分毎)に従って、蓄電池41の端子間の電圧を測定し、測定データを測定制御部31に出力する。 The temperature measuring unit 32 measures the temperature of the storage battery 41 by the temperature sensor 39 in accordance with an instruction (for example, every 5 minutes) from the measurement control unit 31 and outputs the measurement data to the measurement control unit 31. Similarly, the voltage measurement unit 33 measures the voltage between the terminals of the storage battery 41 in accordance with an instruction (for example, every 5 minutes) from the measurement control unit 31 and outputs measurement data to the measurement control unit 31.
 内部抵抗測定部34は、測定制御部31からの指示をトリガとして、蓄電池41の端子間の内部抵抗を測定し、測定データを測定制御部31に出力する。ここでは、正弦波発生部35によって、上述したような複数の周波数の正弦波を発生させ、各周波数での電流(例えば3A以下)を蓄電池41に流す。このときの電流値と、端子間の電圧値との測定データに基づいて、各周波数での内部抵抗を算出する。 The internal resistance measurement unit 34 measures the internal resistance between the terminals of the storage battery 41 using an instruction from the measurement control unit 31 as a trigger, and outputs measurement data to the measurement control unit 31. Here, a sine wave having a plurality of frequencies as described above is generated by the sine wave generation unit 35, and a current (for example, 3 A or less) at each frequency is supplied to the storage battery 41. Based on the measured data of the current value at this time and the voltage value between the terminals, the internal resistance at each frequency is calculated.
 上述したように、例えば、200Hz未満の低周波領域と、200Hz以上2000Hz未満の高周波領域から少なくともそれぞれ1つ以上選択した複数の周波数によって内部抵抗を測定することで劣化判定の精度を向上させることができる。また、上記の周波数領域内でさらに異なる他の周波数を加えて測定することで精度をより向上させることができる。本実施の形態では、例えば、少なくとも1kHz程度(例えば350Hz以上2000Hz未満、好ましくは800Hz以上1200Hz未満)の高周波領域と100Hz未満(商用電源と干渉しない周波数)の低周波領域を含み、さらにこれらと異なる周波数として、中周波領域(例えば100Hz以上350Hz未満)の周波数を加えた3種類の周波数により内部抵抗を測定するものとする。 As described above, for example, it is possible to improve the accuracy of deterioration determination by measuring internal resistance using a plurality of frequencies selected from at least one of a low frequency region of less than 200 Hz and a high frequency region of 200 Hz to less than 2000 Hz. it can. Further, the accuracy can be further improved by adding and measuring other different frequencies within the above frequency region. The present embodiment includes, for example, a high frequency region of at least about 1 kHz (eg, 350 Hz or more and less than 2000 Hz, preferably 800 Hz or more and less than 1200 Hz) and a low frequency region of less than 100 Hz (a frequency that does not interfere with commercial power supply), and are different from these. As the frequency, the internal resistance is measured by three kinds of frequencies including a frequency in a middle frequency region (for example, 100 Hz or more and less than 350 Hz).
 測定周波数による効果を確認するため、従来技術による内部抵抗の測定機器(単独の周波数により測定するもの)を用いた場合と、本実施の形態の状態測定装置30’(内部抵抗測定部34が複数の周波数により測定するもの)を用いた場合とで、それぞれ実際に蓄電池の内部抵抗を測定して、その寿命の評価(電池容量の推定)を試みた実験結果の例を以下の表に示す。 In order to confirm the effect of the measurement frequency, when using a conventional internal resistance measuring device (measured by a single frequency) and the state measuring device 30 ′ of the present embodiment (a plurality of internal resistance measuring units 34 are provided). The following table shows examples of experimental results obtained by actually measuring the internal resistance of the storage battery and trying to evaluate its life (estimating the battery capacity).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1では、内部抵抗の測定機器として従来品1~3および開発品1、2を用いて、複数の異なる劣化状態の蓄電池についてそれぞれ内部抵抗を測定した上で電池容量の推定を行い、実際の容量との誤差と、測定に要した時間に基づいて測定精度を評価した結果を示している。 In Table 1, the conventional products 1 to 3 and the developed products 1 and 2 are used as the internal resistance measurement devices, and the internal resistance is measured for each of the storage batteries in different deteriorated states, and the battery capacity is estimated. The result of evaluating the measurement accuracy based on the error from the capacity and the time required for the measurement is shown.
 ここで、従来品1~3は、従来技術による単独の周波数により内部抵抗を測定する測定機器であり、測定周波数がそれぞれ異なる領域(高周波領域(350Hz以上2000Hz未満)、中周波領域(100Hz以上350Hz未満)、低周波領域(100Hz未満))に属するものである。一方、開発品1、2は、本実施の形態の状態測定装置30’であって、複数の周波数領域(開発品1は高周波領域(200Hz以上2000Hz未満)と低周波領域(200Hz未満)、開発品2は高周波領域(350Hz以上2000Hz未満)と中周波領域(100Hz以上350Hz未満)と低周波領域(100Hz未満))に属する測定周波数により内部抵抗を測定するものである。 Here, the conventional products 1 to 3 are measuring instruments for measuring the internal resistance at a single frequency according to the prior art. The measurement frequencies are different areas (high frequency area (350 Hz to less than 2000 Hz), medium frequency area (100 Hz to 350 Hz). Less) and a low frequency region (less than 100 Hz). On the other hand, the developed products 1 and 2 are the state measurement device 30 ′ of the present embodiment, and the developed product 1 has a plurality of frequency regions (the developed product 1 has a high frequency region (200 Hz to less than 2000 Hz) and a low frequency region (less than 200 Hz), The product 2 measures the internal resistance at measurement frequencies belonging to a high frequency region (350 Hz to less than 2000 Hz), a medium frequency region (100 Hz to less than 350 Hz), and a low frequency region (less than 100 Hz).
 当該実験では、使用する蓄電池として、
 ・電池A 蓄電池規格UP300-12(12V/100Ah/5HR)の新品
 ・電池B 電池Aと同等の電池に対して電解液を10%減じたもの
 ・電池C 電池Aと同等の電池に対して25℃トリクル寿命試験により5年相当経過させた状態のもの
 ・電池D 電池Aと同等の電池に対して25℃トリクル寿命試験により15年相当経過させた状態のもの
 ・電池E 電池Cと同等の電池に対して電解液減少分を補液したもの
 ・電池F 電池Dと同等の電池に対して電解液減少分を補液したもの
の6種類の蓄電池(電池A~F)を作成した。
In the experiment, as a storage battery to be used,
・ Battery A New storage battery standard UP300-12 (12V / 100Ah / 5HR) ・ Battery B Battery equivalent to battery A with 10% less electrolyte ・ Battery C 25 for battery equivalent to battery A A battery that has been passed for 5 years by a trickle life test at ℃ ・ Battery D A battery that has been passed for 15 years by a trickle life test at 25 degrees C for a battery equivalent to battery A ・ Battery E A battery that is equivalent to battery C 6 batteries (batteries A to F) were prepared with the same amount as the battery D but with the electrolyte decreased.
 表では、上記各蓄電池について、5HR容量および1CA容量を元に、それぞれの状況として、実容量と、従来品1~3および開発品1、2による内部抵抗の測定値に基づいて得られた容量の推定値について、それぞれ、満充電状態との相対比(%)により示している。 In the table, for each of the above-mentioned storage batteries, based on the 5HR capacity and 1CA capacity, the actual capacity and the capacity obtained based on the measured values of the internal resistance of the conventional products 1 to 3 and the developed products 1 and 2, respectively. Each of the estimated values is indicated by a relative ratio (%) to the fully charged state.
 各電池の放電容量の実測値(実容量)については、JIS8704-02に基づいて満充電状態の蓄電池を準備し、これに基づくものとしている。ここで、蓄電池の満充電状態とは、13.38V/10Aの制限電流にて48時間以上充電した状態のことを指す。5HR容量の実測値(実容量)については、充電終了後、開路状態にて25±2℃の雰囲気中で24時間放置し、その後、25±2℃にて放電電流値20Aで放電し、終止電圧10.5Vに到達するまでの放電持続時間から放電容量を求めた。また、1CA容量の実測値(実容量)については、上記の5HRの場合と同様に、満充電後25±2℃の雰囲気中で24時間放置した電池について、放電電流値100Aで放電し、終止電圧9.6Vに到達するまでの放電持続時間から放電容量を求めた。得られた各蓄電池の放電容量の実測値について、それぞれ、新品状態の放電容量に対する相対比を算出している。 Regarding the measured value (actual capacity) of the discharge capacity of each battery, a fully charged storage battery is prepared based on JIS 8704-02, and is based on this. Here, the fully charged state of the storage battery refers to a state in which charging is performed for 48 hours or more with a limited current of 13.38 V / 10 A. Regarding the measured value (actual capacity) of the 5HR capacity, after charging is completed, the battery is left in an open circuit state at 25 ± 2 ° C. for 24 hours, and then discharged at 25 ± 2 ° C. with a discharge current value of 20 A, and then terminated. The discharge capacity was determined from the discharge duration until the voltage reached 10.5V. As for the measured value (actual capacity) of the 1CA capacity, the battery left at 25 ± 2 ° C. for 24 hours after full charge was discharged at a discharge current value of 100 A and terminated, as in the case of 5HR described above. The discharge capacity was determined from the discharge duration until the voltage reached 9.6V. About the measured value of the discharge capacity of each obtained storage battery, the relative ratio with respect to the discharge capacity of a new state is calculated, respectively.
 また、内部抵抗の測定値に基づく容量の推定に際しては、実験結果の蓄積に基づく知見として従来から得られている内部抵抗と放電容量(もしくは放電持続時間)との関係についての実験式を用いている。具体的には、内部抵抗の測定値と放電容量との関係は一次関数で表されるため、例えば、従来品1~3(単独の周波数により測定するもの)については、放電容量は、内部抵抗の測定値と初期値とに基づいて、
  放電容量=放電容量の初期値×
       (1-(内部抵抗の測定値-内部抵抗の初期値)/内部抵抗の初期値)
の式により表される。従って、新品状態の放電容量(放電容量の初期値)に対する相対比は、
  相対比=1-(内部抵抗の測定値-内部抵抗の初期値)/内部抵抗の初期値
の式により算出することができる。
Moreover, when estimating the capacity based on the measured value of internal resistance, we use an experimental formula for the relationship between internal resistance and discharge capacity (or discharge duration) that has been obtained as a knowledge based on the accumulation of experimental results. Yes. Specifically, since the relationship between the measured value of the internal resistance and the discharge capacity is expressed by a linear function, for example, for the conventional products 1 to 3 (measured by a single frequency), the discharge capacity is the internal resistance. Based on the measured value and initial value of
Discharge capacity = initial value of discharge capacity x
(1- (Measured value of internal resistance-Initial value of internal resistance) / Initial value of internal resistance)
It is expressed by the following formula. Therefore, the relative ratio to the discharge capacity in the new state (the initial value of the discharge capacity) is
Relative ratio = 1− (measured value of internal resistance−initial value of internal resistance) / initial value of internal resistance can be calculated.
 なお、開発品1、2のように複数の測定周波数により内部抵抗を測定する場合は、例えば、測定された2種類もしくは3種類の内部抵抗の値に対して所定の重み付けをした加重平均値を用いて上記の式に適用するものとする。例えば、低率放電での測定の場合は、高周波領域の周波数で測定した内部抵抗値に対して、中周波領域の周波数で測定した内部抵抗に比して大きい重み付け値を設定する。また、高率放電での測定の場合は、中周波領域の周波数で測定した内部抵抗値に対して、高周波領域の周波数で測定した内部抵抗に比して大きい重み付け値を設定し、さらに、低周波領域の周波数で測定した内部抵抗値に対して、中周波領域の周波数で測定した内部抵抗値に対して大きい重み付け値を設定する。 When measuring the internal resistance at a plurality of measurement frequencies as in the developed products 1 and 2, for example, a weighted average value obtained by weighting the measured values of two or three types of internal resistance with a predetermined weight is used. And apply to the above equation. For example, in the case of measurement at low rate discharge, a larger weighting value is set for the internal resistance value measured at the frequency in the high frequency region than the internal resistance value measured at the frequency in the middle frequency region. In the case of measurement at high rate discharge, a higher weighting value is set for the internal resistance value measured at the frequency in the middle frequency region than the internal resistance value measured at the frequency in the high frequency region. A large weighting value is set for the internal resistance value measured at the frequency in the middle frequency range with respect to the internal resistance value measured at the frequency in the frequency range.
 表1では、従来品1~3および開発品1、2のそれぞれについて、各蓄電池の5HR容量と1CA容量につき、内部抵抗の測定値に基づいて求めた容量の推定値(相対比)と実容量(相対比)との間の誤差を求めている。さらに、それぞれの誤差の合計、および内部抵抗の測定に要した時間に基づいて評価点を求めて評価した結果についても示している。 In Table 1, for each of the conventional products 1 to 3 and the developed products 1 and 2, the estimated capacity (relative ratio) and actual capacity obtained from the measured values of internal resistance for the 5HR capacity and 1CA capacity of each storage battery The error between (relative ratio) is obtained. Furthermore, the results of evaluating and evaluating the evaluation points based on the total error and the time required for measuring the internal resistance are also shown.
 評価結果によれば、従来品1~3(単独の周波数での内部抵抗の測定)に比べて総じて短時間に、かつ高い精度で電池容量を推定することができることが分かる。また、開発品2(3種類の周波数での内部抵抗の測定)によれば、開発品1(2種類の周波数での内部抵抗の測定)よりもさらに短時間かつ高い精度で電池容量を推定できることが分かる。 According to the evaluation results, it is understood that the battery capacity can be estimated with high accuracy in a short time as compared with the conventional products 1 to 3 (measurement of internal resistance at a single frequency). Moreover, according to the developed product 2 (measurement of internal resistance at three types of frequencies), the battery capacity can be estimated in a shorter time and with higher accuracy than the developed product 1 (measurement of internal resistance at two types of frequencies). I understand.
 [蓄電池に対する測定処理の流れ]
 図9は、状態測定装置(子機)30の測定制御部31における電圧および温度の測定タイミングの制御処理の例について概要を示したフローチャートである。子機30’が起動して蓄電池41の各種パラメータの測定処理を開始すると、まず、直近の処理から所定の時間が経過しているか否かを判定する(S01)。この所定の時間とは、子機30’が自ら定期的に蓄電池41のパラメータを測定する間隔であり、子機30’の状態が“スリープ状態”ではない“通常時”の場合は、例えば5分、“スリープ状態”の場合は、例えば1日などの時間間隔とする。ここで、本実施の形態における“スリープ状態”とは、上位監視装置10からの指令により子機30’における電圧や温度の測定頻度が下げられた状態を指すものとする(停止するわけではない)。
[Flow of measurement process for storage battery]
FIG. 9 is a flowchart showing an outline of an example of control processing of voltage and temperature measurement timings in the measurement control unit 31 of the state measurement device (child device) 30. When the child device 30 ′ is activated and starts measurement processing of various parameters of the storage battery 41, it is first determined whether or not a predetermined time has elapsed since the most recent processing (S01). The predetermined time is an interval at which the slave unit 30 ′ periodically measures the parameters of the storage battery 41. If the state of the slave unit 30 ′ is not “sleep state” but “normal time”, for example, 5 In the case of minutes, “sleep state”, for example, a time interval such as one day. Here, the “sleep state” in the present embodiment refers to a state in which the frequency of measuring the voltage and temperature in the slave unit 30 ′ is lowered by a command from the host monitoring device 10 (not stopped). ).
 ステップS01で、所定の時間が経過していない場合は、所定の時間が経過するまでステップS01を繰り返す。所定の時間が経過した場合は、温度測定部32により蓄電池41の温度を測定するとともに、電圧測定部33により蓄電池41の端子間の電圧を測定する(S02)。温度測定部32および電圧測定部33により温度および電圧の測定が行われ、測定制御部31が測定データを取得すると、温度と電圧の測定データをタイムスタンプと合わせて内部メモリ37に記録する(S03)。 In step S01, if the predetermined time has not elapsed, step S01 is repeated until the predetermined time has elapsed. When the predetermined time has elapsed, the temperature measurement unit 32 measures the temperature of the storage battery 41 and the voltage measurement unit 33 measures the voltage between the terminals of the storage battery 41 (S02). When the temperature measurement unit 32 and the voltage measurement unit 33 measure the temperature and voltage and the measurement control unit 31 acquires the measurement data, the temperature and voltage measurement data are recorded in the internal memory 37 together with the time stamp (S03). ).
 その後、測定データを親機に送信してから所定の時間が経過しているか否かを判定する(S04)。この所定の時間は、例えば、ステップS01での所定の時間と同じとすることができ、子機の状態が“通常時”の場合は、例えば5分、“スリープ状態”の場合は、例えば1日などの時間間隔とすることができる。この所定の時間が経過していない場合は、ステップS01に戻り、上記の一連の処理を繰り返す。所定の時間が経過している場合は、ステップS03で取得し、内部メモリ37に記録・蓄積された測定データのうち未送信のものを、親機20を介して上位監視装置10に送信する(S05)。送信後は、ステップS01に戻り、上記の一連の処理を繰り返す。なお、上位監視装置10では、送信された温度および電圧の測定データに基づいて、蓄電池41の突発的な障害等を含む異常や寿命を推定する。 Thereafter, it is determined whether or not a predetermined time has elapsed since the measurement data was transmitted to the parent device (S04). This predetermined time can be the same as the predetermined time in step S01, for example, 5 minutes when the slave unit is in the “normal time” state, for example, 1 for the “sleep state”, for example. It can be a time interval such as a day. If the predetermined time has not elapsed, the process returns to step S01, and the above series of processing is repeated. If the predetermined time has elapsed, the untransmitted measurement data acquired in step S03 and recorded / stored in the internal memory 37 is transmitted to the host monitoring apparatus 10 via the master unit 20 ( S05). After the transmission, the process returns to step S01, and the above series of processing is repeated. The host monitoring device 10 estimates an abnormality or a life including a sudden failure of the storage battery 41 based on the transmitted temperature and voltage measurement data.
 図10は、上位監視装置10による蓄電池41の充放電の制御処理の例について概要を示したフローチャートである。上位監視装置10が起動して制御処理を開始すると、まず、各親機20からの子機30’での測定データの送信を待ち受け、測定データを受信する(S11)。次に、測定データに含まれる蓄電池41の電圧データが、所定の過放電防止電圧を下回っているか否かを判定する(S12)。このとき、上述したように、受信した測定データに基づいて、劣化判定部13によって別途蓄電池41の状態や寿命を推定する処理を行う。 FIG. 10 is a flowchart showing an outline of an example of a charge / discharge control process of the storage battery 41 by the host monitoring device 10. When the host monitoring device 10 is activated and starts control processing, first, it waits for transmission of measurement data from each parent device 20 in the child device 30 'and receives measurement data (S11). Next, it is determined whether or not the voltage data of the storage battery 41 included in the measurement data is below a predetermined overdischarge prevention voltage (S12). At this time, as described above, based on the received measurement data, the deterioration determination unit 13 performs a process of estimating the state and life of the storage battery 41 separately.
 ステップS12で、過放電防止電圧を下回っていない場合は、対象の蓄電池41は所定の部分充電状態で動作しているものと判断し、次に、所定の期間以上、対象の蓄電池41を含む電源装置40に対応する制御・電源装置50に対して、内部抵抗の測定指令を出していないかを判定する(S13)。所定の期間内に内部抵抗の測定指令を出して、親機20を介して内部抵抗の測定データを取得している場合は、対象の蓄電池41(電源装置40)について放電回路を接続して蓄電池41からの放電を行うよう、制御・電源装置50に対して指令を出し(S14)、ステップS17へ進む。この場合は、時間的に近いタイミングにおいて上位監視装置10で蓄電池41の状態を推定することができており、その上で動作していることから、蓄電池41の状態は問題がないと判断することができるためである。 In step S12, when it is not lower than the overdischarge prevention voltage, it is determined that the target storage battery 41 is operating in a predetermined partial charge state, and then a power source including the target storage battery 41 for a predetermined period or longer. It is determined whether or not an internal resistance measurement command is issued to the control / power supply device 50 corresponding to the device 40 (S13). When the internal resistance measurement command is issued within a predetermined period and the measurement data of the internal resistance is acquired via the parent device 20, a discharge circuit is connected to the target storage battery 41 (power supply device 40). A command is issued to the control / power supply device 50 so as to discharge from 41 (S14), and the process proceeds to step S17. In this case, it is possible to estimate the state of the storage battery 41 by the host monitoring device 10 at a timing close in time, and since the operation is performed on that, it is determined that there is no problem with the state of the storage battery 41. It is because it can do.
 ステップS13で、所定の期間以上内部抵抗の測定指令を出していない場合は、そのままステップS17へ進む。なお、ステップS13での所定の期間については、例えば、1週間などとすることができる。また、ステップS14での“接続”(図10における後述する他の“接続”も同様)には、すでに放電回路に接続されている場合にはそのまま継続することも含む。また、対象の蓄電池41に対応する子機30’が上述した“スリープ状態”になっている場合は、その解除も含む。 If it is determined in step S13 that an internal resistance measurement command has not been issued for a predetermined period or longer, the process proceeds directly to step S17. Note that the predetermined period in step S13 can be, for example, one week. Further, the “connection” in step S14 (the same applies to other “connections” described later in FIG. 10) includes continuing as it is when it is already connected to the discharge circuit. Moreover, when the subunit | mobile_unit 30 'corresponding to the target storage battery 41 is in the "sleep state" mentioned above, the cancellation | release is also included.
 ステップS12で、過放電防止電圧を下回っている場合は、対象の蓄電池41は過放電状態で動作しているものと判断し、対象の蓄電池41(電源装置40)について放電回路を開放して蓄電池41からの放電を停止するよう、制御・電源装置50に対して指令を出す(S15)。さらに、対象の蓄電池41に対する余計な測定処理を回避するため、対応する子機30’に対して“スリープ状態”となるよう指令を出す(S16)。その後、ステップS11に戻って各親機20からの子機30’での測定データの送信を待ち受ける。 If it is below the overdischarge prevention voltage in step S12, it is determined that the target storage battery 41 is operating in an overdischarged state, and the discharge circuit is opened for the target storage battery 41 (power supply device 40). A command is issued to the control / power supply device 50 so as to stop the discharge from 41 (S15). Further, in order to avoid an extra measurement process for the target storage battery 41, a command is issued to the corresponding slave unit 30 'to enter the "sleep state" (S16). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
 一方、ステップS17では、測定データに含まれる蓄電池41の電圧データが、所定の過充電防止電圧を上回っているか否かを判定する(S17)。過充電防止電圧を上回っていない場合は、対象の蓄電池41は所定の部分充電状態で動作しているものと判断し、対象の蓄電池41(電源装置40)について充電回路を接続して発電設備70から蓄電池41への充電を行うよう、制御・電源装置50に対して指令を出す(S18)。その後、ステップS11に戻って各親機20からの子機30’での測定データの送信を待ち受ける。 On the other hand, in step S17, it is determined whether or not the voltage data of the storage battery 41 included in the measurement data exceeds a predetermined overcharge prevention voltage (S17). If the overcharge prevention voltage is not exceeded, it is determined that the target storage battery 41 is operating in a predetermined partial charge state, and a charging circuit is connected to the target storage battery 41 (power supply device 40) to generate power generation equipment 70. A command is issued to the control / power supply device 50 so as to charge the storage battery 41 (S18). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
 ステップS17で、過充電防止電圧を上回っている場合は、対象の蓄電池41は過充電状態で動作しているものと判断し、次に、制御・電源装置50の電流検出機能により得た蓄電池41への充電電流が所定値を下回っているか否かを判定する(S19)。充電電流が所定値を下回っていない場合、すなわち内部抵抗の値が所定の程度より小さく、蓄電池41がそれほど劣化していないと判断される場合は、上述のステップS18に進んで、対象の蓄電池41(電源装置40)について充電回路を接続して発電設備70から蓄電池41への充電を行うよう、制御・電源装置50に対して指令を出す。 If the overcharge prevention voltage is exceeded in step S17, it is determined that the target storage battery 41 is operating in an overcharge state, and then the storage battery 41 obtained by the current detection function of the control / power supply device 50 is determined. It is determined whether or not the charging current to the battery is below a predetermined value (S19). When the charging current is not lower than the predetermined value, that is, when it is determined that the value of the internal resistance is smaller than the predetermined value and the storage battery 41 is not deteriorated so much, the process proceeds to step S18 described above, and the target storage battery 41 is processed. A command is issued to the control / power supply device 50 to connect the charging circuit for the (power supply device 40) and charge the storage battery 41 from the power generation facility 70.
 ステップS19で、充電電流が所定値を下回っている場合、すなわち内部抵抗の値が所定の程度より大きく、蓄電池41が劣化している可能性があると判断される場合は、対応する子機30’に対して内部抵抗値を測定するよう指令を出す(S20)。さらに、対象の蓄電池41(電源装置40)について充電回路を開放して発電設備70から蓄電池41への充電を停止するよう、制御・電源装置50に対して指令を出す(S21)。その後、ステップS11に戻って各親機20からの子機30’での測定データの送信を待ち受ける。 If it is determined in step S19 that the charging current is lower than the predetermined value, that is, if the value of the internal resistance is larger than the predetermined level and the storage battery 41 may be deteriorated, the corresponding slave unit 30 Is instructed to measure the internal resistance value (S20). Further, the control / power supply device 50 is instructed to open the charging circuit for the target storage battery 41 (power supply device 40) and stop the charging from the power generation facility 70 to the storage battery 41 (S21). Then, it returns to step S11 and waits for transmission of measurement data from each parent device 20 in the child device 30 '.
 図11は、状態測定装置(子機)30の測定制御部31における内部抵抗の測定タイミングの制御処理の例について概要を示したフローチャートである。子機30’が起動して蓄電池41の各種パラメータの測定処理を開始すると、まず、上位監視装置10から図10のステップS20などによる内部抵抗値の測定指令が当該子機30’に対して出されているか否かを判定する(S31)。内部抵抗値の測定指令が出されていない場合は、所定の時間が経過するまでステップS01を繰り返す。 FIG. 11 is a flowchart showing an outline of an example of control processing of the internal resistance measurement timing in the measurement control unit 31 of the state measurement device (child device) 30. When the slave unit 30 ′ is started and measurement processing of various parameters of the storage battery 41 is started, first, the host monitoring device 10 issues an internal resistance value measurement command to the slave unit 30 ′ in step S20 of FIG. It is determined whether or not it is performed (S31). If the measurement command for the internal resistance value has not been issued, step S01 is repeated until a predetermined time has elapsed.
 上位監視装置10から内部抵抗値の測定指令を受けた場合は、内部抵抗測定部34により蓄電池41の内部抵抗を測定する(S32)。ここでは上述したように、正弦波発生部35により複数の周波数の正弦波を発生させ、各周波数における電流(例えば3A以下)を蓄電池41に流し、このときの電流値と、端子間の電圧値との測定データに基づいて、各周波数での内部抵抗を算出する。本実施の形態では、複数の周波数は、上述したように、少なくとも1kHz程度の高周波と100Hz未満の低周波を含み、これにさらに異なる周波数を加えることが可能である。 When receiving a measurement command for the internal resistance value from the host monitoring device 10, the internal resistance measurement unit 34 measures the internal resistance of the storage battery 41 (S32). Here, as described above, a sine wave having a plurality of frequencies is generated by the sine wave generator 35, and a current (for example, 3 A or less) at each frequency is supplied to the storage battery 41. The current value at this time and the voltage value between the terminals Based on the measured data, the internal resistance at each frequency is calculated. In the present embodiment, as described above, the plurality of frequencies include a high frequency of at least about 1 kHz and a low frequency of less than 100 Hz, and further different frequencies can be added thereto.
 なお、例えば、図10のステップS20により内部抵抗値の測定指令が出されている場合は、対象の蓄電池41の電圧が過放電防止電圧を上回っている場合に該当するが、例えば、上述したように、消防設備で定義される蓄電池設備のように、4800VAhを超えるようなシステムの場合は、蓄電池41の直列数が多くなるため、蓄電池41間の電圧のバラツキがシステムの運用を不安定にする場合が生じる。 For example, the case where the measurement command for the internal resistance value is issued in step S20 of FIG. 10 corresponds to the case where the voltage of the target storage battery 41 exceeds the overdischarge prevention voltage. For example, as described above In addition, in the case of a system that exceeds 4800 VAh, such as a storage battery facility defined by a fire fighting facility, the number of storage batteries 41 in series increases, and thus voltage variation between storage batteries 41 makes the operation of the system unstable. Cases arise.
 そこで、本実施の形態では、図10のステップS20により内部抵抗の測定指令が出された場合も含めて、電圧が所定の閾値より高い場合に、親機20からの指示等により、内部抵抗測定時に通常よりも若干長い時間(例えば、通常は1秒間のところを2~3秒間など)、一定の電流を流して対象の蓄電池41をより放電させることで電圧をより下げるようにする。これにより、蓄電池41間の電圧のバラツキを抑えて均等化することを可能とする。すなわち、子機30’は、実施の形態1、2におけるバランサ30の役割・機能を有することになる。 Therefore, in the present embodiment, when the voltage is higher than the predetermined threshold value, including the case where the internal resistance measurement command is issued in step S20 of FIG. Sometimes, the voltage is further lowered by causing a certain current to flow and discharging the target storage battery 41 more for a slightly longer time than usual (for example, usually 1 second for 2 to 3 seconds, etc.). Thereby, it is possible to equalize while suppressing variations in voltage between the storage batteries 41. That is, the slave unit 30 ′ has the role / function of the balancer 30 in the first and second embodiments.
 なお、本実施の形態では、内部抵抗の測定時に流す電流が比較的大きいことから、これを用いて電圧を下げるようにしているが、例えば、子機30’に実施の形態1、2における部分放電部38と同等の構成を別途有し、これにより電圧を下げるようにしてもよい。 In the present embodiment, since the current that flows when measuring the internal resistance is relatively large, the voltage is lowered using this current. For example, the slave unit 30 ′ has a portion in the first and second embodiments. A configuration equivalent to that of the discharge unit 38 may be separately provided so that the voltage may be lowered.
 内部抵抗測定部34により内部抵抗の測定が行われ、測定制御部31が測定データを取得すると、内部抵抗の測定データをタイムスタンプと合わせて内部メモリ37に記録する(S33)。その後、測定データを親機に送信してから所定の時間が経過しているか否かを判定する(S34)。この所定の時間は、例えば5分などの時間間隔とすることができる。この所定の時間が経過していない場合は、ステップS31に戻り、上記の一連の処理を繰り返す。 When the internal resistance is measured by the internal resistance measuring unit 34 and the measurement control unit 31 acquires the measurement data, the internal resistance measurement data is recorded in the internal memory 37 together with the time stamp (S33). Thereafter, it is determined whether or not a predetermined time has elapsed since the measurement data was transmitted to the parent device (S34). This predetermined time may be a time interval such as 5 minutes. If the predetermined time has not elapsed, the process returns to step S31 and the above-described series of processing is repeated.
 所定の時間が経過している場合は、ステップS33で取得し、内部メモリ37に記録・蓄積された測定データのうち未送信のものを、親機20を介して上位監視装置10に送信する(S35)。送信後は、ステップS01に戻り、上記の一連の処理を繰り返す。このとき、上述したように、受信した複数周波数にて測定した内部抵抗の測定値に基づいて、劣化判定部13によって別途蓄電池41の複数の劣化モードでの劣化傾向を推定する。 If the predetermined time has elapsed, the untransmitted measurement data acquired in step S33 and recorded / stored in the internal memory 37 is transmitted to the host monitoring apparatus 10 via the master unit 20 ( S35). After the transmission, the process returns to step S01, and the above series of processing is repeated. At this time, as described above, based on the measured values of the internal resistance measured at the plurality of received frequencies, the deterioration determination unit 13 estimates the deterioration tendency of the storage battery 41 in the plurality of deterioration modes separately.
 以上に説明したように、本実施の形態の蓄電池状態監視システム1によれば、常に機器に接続された複数の蓄電池41について、温度以外に電圧、内部抵抗などを含むパラメータを自動で測定もしくは取得するとともに、内部抵抗については複数周波数にて測定することで、各蓄電池41の状態や寿命を高い精度で推定し、蓄電池41が所定の部分充電状態で動作するよう制御することが可能となる。また、これにより、蓄電池間の電圧や状態の平準化も効率的に行うことが可能となる。また、上位監視装置10と親機20、子機30’からなる階層構成をとり、親機20と子機30’との間は無線通信とすることで、多数の蓄電池41についての各種パラメータの測定を効率的に行うことが可能となる。 As described above, according to the storage battery state monitoring system 1 of the present embodiment, parameters including voltage, internal resistance, etc. in addition to temperature are automatically measured or acquired for a plurality of storage batteries 41 always connected to the device. In addition, by measuring the internal resistance at a plurality of frequencies, it is possible to estimate the state and life of each storage battery 41 with high accuracy and to control the storage battery 41 to operate in a predetermined partial charge state. This also makes it possible to efficiently level the voltage and state between the storage batteries. In addition, a hierarchical configuration including the host monitoring device 10, the parent device 20, and the child device 30 ′ is used, and wireless communication is performed between the parent device 20 and the child device 30 ′, so that various parameters for a large number of storage batteries 41 can be set. Measurement can be performed efficiently.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、バックアップ用途・出力変動用途など、蓄電池が常に機器に接続され、蓄電池に通電して状態を監視・推定する蓄電池状態監視システムに利用可能である。 The present invention can be used in a storage battery state monitoring system in which a storage battery is always connected to a device, such as a backup use or an output fluctuation use, and the state is monitored and estimated by energizing the storage battery.
 1…蓄電池状態監視システム、
 10…上位監視装置、11…インタフェース部、12…監視制御部、13…劣化判定部、14…測定履歴、15…設定情報、
 20…データ中継装置(親機)、
 30…蓄電池電圧平準化装置(バランサ)、30’…状態測定装置(子機)、31…測定制御部、32…温度測定部、33…電圧測定部、34…内部抵抗測定部、35…正弦波発生部、36…通信部、37…内部メモリ、38…部分放電部、39…温度センサ、
 40…電源装置、41…蓄電池、
 50…制御・電源装置、
 60…ネットワーク、
 70…発電設備、
 80…電力系統、
 90…集中動作指示装置。
 
 
 
1 ... Storage battery status monitoring system,
DESCRIPTION OF SYMBOLS 10 ... High-order monitoring apparatus, 11 ... Interface part, 12 ... Monitoring control part, 13 ... Degradation determination part, 14 ... Measurement history, 15 ... Setting information,
20: Data relay device (master unit),
DESCRIPTION OF SYMBOLS 30 ... Storage battery voltage leveling apparatus (balancer), 30 '... State measurement apparatus (slave unit), 31 ... Measurement control part, 32 ... Temperature measurement part, 33 ... Voltage measurement part, 34 ... Internal resistance measurement part, 35 ... Sine Wave generating unit, 36 ... communication unit, 37 ... internal memory, 38 ... partial discharge unit, 39 ... temperature sensor,
40 ... power supply device, 41 ... storage battery,
50: Control / power supply,
60 ... Network,
70 ... power generation equipment,
80 ... Power system,
90: Centralized operation instruction device.


Claims (8)

  1.  常に機器に接続され、複数の蓄電池が直列に接続された組電池を備えた電源装置に対して、前記各蓄電池の電圧を平準化する蓄電池電圧平準化装置であって、
     直列に接続された前記蓄電池の一部に対してそれぞれ並列に接続され、
     接続された前記蓄電池の温度を測定する温度測定部と、
     当該蓄電池の電圧を測定する電圧測定部と、
     当該蓄電池の内部抵抗を少なくとも2種類以上の周波数によって測定する内部抵抗測定部とを有し、
     当該蓄電池の内部抵抗を前記内部抵抗測定部により測定する際に、当該蓄電池に対して電流を流すことによって当該蓄電池の電圧を下げることを特徴とする蓄電池電圧平準化装置。
    A storage battery voltage leveling device that equalizes the voltage of each storage battery with respect to a power supply device that is always connected to a device and includes a battery pack in which a plurality of storage batteries are connected in series,
    Each of the storage batteries connected in series is connected in parallel with each other,
    A temperature measuring unit for measuring the temperature of the connected storage battery;
    A voltage measuring unit for measuring the voltage of the storage battery;
    An internal resistance measurement unit that measures the internal resistance of the storage battery by at least two types of frequencies,
    When measuring the internal resistance of the storage battery by the internal resistance measurement unit, the storage battery voltage leveling device lowers the voltage of the storage battery by passing a current through the storage battery.
  2.  常に機器に接続され、複数の蓄電池が直列に接続された組電池を備えた電源装置に対して、前記各蓄電池の状態を監視する蓄電池状態監視システムであって、
     請求項1に記載の蓄電池電圧平準化装置と、
     前記蓄電池電圧平準化装置が測定した、前記蓄電池電圧平準化装置が接続された前記蓄電池の温度、電圧、内部抵抗のうち、少なくとも1つ以上の値に基づいて当該蓄電池の劣化を推定する上位監視装置とを有することを特徴とする蓄電池状態監視システム。
    A storage battery state monitoring system that monitors the state of each storage battery for a power supply device that includes an assembled battery that is always connected to a device and a plurality of storage batteries connected in series,
    The storage battery voltage leveling device according to claim 1,
    High-order monitoring that estimates deterioration of the storage battery based on at least one of the temperature, voltage, and internal resistance of the storage battery connected to the storage battery voltage leveling apparatus, measured by the storage battery voltage leveling apparatus And a storage battery state monitoring system.
  3.  請求項2に記載の蓄電池状態監視システムにおいて、
     前記蓄電池電圧平準化装置は、さらに、前記上位監視装置との間で無線通信を行う通信部を有し、
     前記上位監視装置からの指示に基づいて、前記内部抵抗測定部により、接続された前記蓄電池の内部抵抗を測定することを特徴とする蓄電池状態監視システム。
    In the storage battery state monitoring system according to claim 2,
    The storage battery voltage leveling device further includes a communication unit that performs wireless communication with the host monitoring device,
    The storage battery state monitoring system, wherein the internal resistance measurement unit measures the internal resistance of the connected storage battery based on an instruction from the host monitoring device.
  4.  請求項2または3に記載の蓄電池状態監視システムにおいて、
     前記蓄電池電圧平準化装置が接続される前記蓄電池の数は、前記電源装置における直列に接続された前記蓄電池の数の2分の1以下であることを特徴とする蓄電池状態監視システム。
    In the storage battery state monitoring system according to claim 2 or 3,
    The storage battery state monitoring system, wherein the number of the storage batteries to which the storage battery voltage leveling device is connected is equal to or less than half of the number of the storage batteries connected in series in the power supply device.
  5.  常に機器に接続され、複数の蓄電池が直列に接続された組電池を備えた電源装置に対して、前記各蓄電池の電圧を平準化する蓄電池電圧平準化装置であって、
     直列に接続された前記蓄電池に対してそれぞれ並列に接続され、
     接続された前記蓄電池の電圧が高いほど消費電流が大きくなる回路により当該蓄電池の電圧を下げる部分放電部を有することを特徴とする蓄電池電圧平準化装置。
    A storage battery voltage leveling device that equalizes the voltage of each storage battery with respect to a power supply device that is always connected to a device and includes a battery pack in which a plurality of storage batteries are connected in series,
    Each of the storage batteries connected in series is connected in parallel,
    A storage battery voltage leveling device comprising: a partial discharge unit that lowers the voltage of the storage battery by a circuit in which current consumption increases as the voltage of the connected storage battery increases.
  6.  請求項5に記載の蓄電池電圧平準化装置において、
     さらに、接続された前記蓄電池の電圧を測定する電圧測定部を有し、
     前記電圧測定部により測定した電圧が所定の値以上である場合に、前記部分放電部により当該蓄電池の電圧を下げることを特徴とする蓄電池電圧平準化装置。
    The storage battery voltage leveling device according to claim 5,
    Furthermore, it has a voltage measuring unit that measures the voltage of the connected storage battery,
    When the voltage measured by the voltage measuring unit is a predetermined value or more, the storage battery voltage leveling device reduces the voltage of the storage battery by the partial discharge unit.
  7.  請求項5または6に記載の蓄電池電圧平準化装置において、
     さらに、前記電源装置の外部の集中動作指示装置との間で無線通信を行う通信部を有し、
     前記集中動作指示装置からの指示に基づいて、前記部分放電部により接続された前記蓄電池の電圧を下げることを特徴とする蓄電池電圧平準化装置。
    The storage battery voltage leveling device according to claim 5 or 6,
    And a communication unit that performs wireless communication with a centralized operation instruction device outside the power supply device,
    A storage battery voltage leveling device that lowers the voltage of the storage battery connected by the partial discharge unit based on an instruction from the concentrated operation instruction device.
  8.  請求項5~7のいずれか1項に記載の蓄電池電圧平準化装置において、
     当該蓄電池電圧平準化装置が接続される前記蓄電池の数は、前記電源装置における直列に接続された前記蓄電池の数の2分の1以下であることを特徴とする蓄電池電圧平準化装置。
    The storage battery voltage leveling device according to any one of claims 5 to 7,
    The storage battery voltage leveling device is characterized in that the number of the storage batteries to which the storage battery voltage leveling device is connected is equal to or less than half of the number of the storage batteries connected in series in the power supply device.
PCT/JP2012/079947 2012-11-19 2012-11-19 Storage battery voltage leveling device and storage battery state monitoring system WO2014076839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/079947 WO2014076839A1 (en) 2012-11-19 2012-11-19 Storage battery voltage leveling device and storage battery state monitoring system
JP2014546826A JPWO2014076839A1 (en) 2012-11-19 2012-11-19 Storage battery voltage leveling device and storage battery state monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079947 WO2014076839A1 (en) 2012-11-19 2012-11-19 Storage battery voltage leveling device and storage battery state monitoring system

Publications (1)

Publication Number Publication Date
WO2014076839A1 true WO2014076839A1 (en) 2014-05-22

Family

ID=50730779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079947 WO2014076839A1 (en) 2012-11-19 2012-11-19 Storage battery voltage leveling device and storage battery state monitoring system

Country Status (2)

Country Link
JP (1) JPWO2014076839A1 (en)
WO (1) WO2014076839A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935057A (en) * 2015-07-14 2015-09-23 国家电网公司 Equalization method and equalization system for lithium ion battery pack
JP2016057184A (en) * 2014-09-10 2016-04-21 株式会社Ihi Charge/discharge device for dwelling house and power supply system
JPWO2015189898A1 (en) * 2014-06-09 2017-04-20 日立オートモティブシステムズ株式会社 Battery system
JP2017175705A (en) * 2016-03-22 2017-09-28 Ntn株式会社 Secondary battery deterioration suppression device and individual deterioration suppression device
JP2017174587A (en) * 2016-03-23 2017-09-28 Ntn株式会社 Deterioration discrimination device for secondary battery, and voltage sensor
JPWO2016208745A1 (en) * 2015-06-26 2018-05-24 国立研究開発法人宇宙航空研究開発機構 Method and system for estimating state of charge or depth of discharge of battery and method and system for evaluating soundness of battery
WO2019086827A1 (en) * 2017-11-01 2019-05-09 Swanbarton Limited A battery charger system and method
CN111746347A (en) * 2020-06-02 2020-10-09 上海理工大学 Balancing device and balancing method for soft package battery for vehicle
CN115871579A (en) * 2023-01-03 2023-03-31 重庆长安汽车股份有限公司 Vehicle power utilization monitoring method and system, electronic equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289630A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2004028663A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Electronic control circuit
JP2005037380A (en) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The Degradation determining method and degradation determining device of storage battery
JP2007143373A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Charging device, discharging device, charging/discharging device, charging method, and discharging method for battery
JP2008289234A (en) * 2007-05-16 2008-11-27 Hitachi Vehicle Energy Ltd Cell controller, battery module and power supply system
JP2009232671A (en) * 2008-02-27 2009-10-08 Nissan Motor Co Ltd Controller of battery pack
JP2010223968A (en) * 2003-06-27 2010-10-07 Furukawa Electric Co Ltd:The Method and device for determining deterioration of storage battery
JP2011182558A (en) * 2010-03-01 2011-09-15 Pues Corp Assembled battery
JP2011254585A (en) * 2010-05-31 2011-12-15 Furukawa Battery Co Ltd:The Charged state control device and controlling method thereof
WO2012053643A1 (en) * 2010-10-21 2012-04-26 日立ビークルエナジー株式会社 Battery system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185979A (en) * 1996-12-26 1998-07-14 Canon Inc Failure diagnostic method and device for electronic apparatus, life diagnostic method and device for battery and recording media
JP3982142B2 (en) * 1999-03-09 2007-09-26 旭硝子株式会社 Electric double layer capacitor device and voltage control method thereof
JP4193787B2 (en) * 2004-10-19 2008-12-10 株式会社デンソー Cell voltage equalization device for battery pack
JP2006200983A (en) * 2005-01-19 2006-08-03 Denso Corp Semiconductor integrated circuit device and its test method
JP4920306B2 (en) * 2006-05-19 2012-04-18 富士電機株式会社 Storage battery state monitoring device, storage battery state monitoring method, storage battery state monitoring program
JP2008076295A (en) * 2006-09-22 2008-04-03 Omron Corp Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program
CN102668316B (en) * 2009-10-27 2015-03-25 三美电机株式会社 Charge/discharge control circuit, semiconductor integrated circuit, charge/discharge control method, and charge/discharge control program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289630A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2004028663A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Electronic control circuit
JP2005037380A (en) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The Degradation determining method and degradation determining device of storage battery
JP2010223968A (en) * 2003-06-27 2010-10-07 Furukawa Electric Co Ltd:The Method and device for determining deterioration of storage battery
JP2007143373A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Charging device, discharging device, charging/discharging device, charging method, and discharging method for battery
JP2008289234A (en) * 2007-05-16 2008-11-27 Hitachi Vehicle Energy Ltd Cell controller, battery module and power supply system
JP2009232671A (en) * 2008-02-27 2009-10-08 Nissan Motor Co Ltd Controller of battery pack
JP2011182558A (en) * 2010-03-01 2011-09-15 Pues Corp Assembled battery
JP2011254585A (en) * 2010-05-31 2011-12-15 Furukawa Battery Co Ltd:The Charged state control device and controlling method thereof
WO2012053643A1 (en) * 2010-10-21 2012-04-26 日立ビークルエナジー株式会社 Battery system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015189898A1 (en) * 2014-06-09 2017-04-20 日立オートモティブシステムズ株式会社 Battery system
JP2016057184A (en) * 2014-09-10 2016-04-21 株式会社Ihi Charge/discharge device for dwelling house and power supply system
JPWO2016208745A1 (en) * 2015-06-26 2018-05-24 国立研究開発法人宇宙航空研究開発機構 Method and system for estimating state of charge or depth of discharge of battery and method and system for evaluating soundness of battery
JP7018609B2 (en) 2015-06-26 2022-02-14 国立研究開発法人宇宙航空研究開発機構 A method and system for estimating the state of charge or the depth of discharge of a battery, and a method and system for evaluating the soundness of a battery.
CN104935057A (en) * 2015-07-14 2015-09-23 国家电网公司 Equalization method and equalization system for lithium ion battery pack
JP2017175705A (en) * 2016-03-22 2017-09-28 Ntn株式会社 Secondary battery deterioration suppression device and individual deterioration suppression device
WO2017164073A1 (en) * 2016-03-22 2017-09-28 Ntn株式会社 Deterioration suppression device for secondary battery and individual deterioration suppression device
CN109121450A (en) * 2016-03-22 2019-01-01 Ntn株式会社 The degradation inhibiting device of secondary cell and independent degradation inhibiting device
US10908224B2 (en) 2016-03-22 2021-02-02 Ntn Corporation Deterioration suppression device for secondary battery and individual deterioration suppression device
JP2017174587A (en) * 2016-03-23 2017-09-28 Ntn株式会社 Deterioration discrimination device for secondary battery, and voltage sensor
WO2019086827A1 (en) * 2017-11-01 2019-05-09 Swanbarton Limited A battery charger system and method
CN111746347A (en) * 2020-06-02 2020-10-09 上海理工大学 Balancing device and balancing method for soft package battery for vehicle
CN111746347B (en) * 2020-06-02 2022-11-29 上海理工大学 Balancing device and balancing method for soft package battery for vehicle
CN115871579A (en) * 2023-01-03 2023-03-31 重庆长安汽车股份有限公司 Vehicle power utilization monitoring method and system, electronic equipment and storage medium
CN115871579B (en) * 2023-01-03 2024-05-24 重庆长安汽车股份有限公司 Vehicle electricity consumption monitoring method, system, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2014076839A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5924346B2 (en) Battery status monitoring system
WO2014076839A1 (en) Storage battery voltage leveling device and storage battery state monitoring system
JP6067619B2 (en) Energy storage system for uninterruptible power supply with battery and operation method thereof
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
US7489106B1 (en) Battery optimization system and method of use
CN106100013B (en) Cell base station power system management, including battery circuit management
CN102195304B (en) Method and device for managing service time of cell and portable computer
WO2009151388A2 (en) Method and arrangement in a power system
JP2019216598A (en) Storage battery-mounted apparatus
JP2016123267A (en) Control device, storage battery, and control method
JP2019009997A (en) Power management system and apparatus mounted with storage battery, ems controller, and power management server
JP2013160582A (en) Battery pack system and management method of battery pack system
JP2008268143A (en) Storage battery system
JP2014138508A (en) Control device and method for power storage device, and power storage system comprising the same
NZ551097A (en) Battery management apparatus
JP2016201965A (en) Power storage system and control method therefor
JP6678393B2 (en) Power storage system and control method thereof
JP4346881B2 (en) Power supply
KR101956868B1 (en) Lead storage battery management system of mobile communication base station using power line communication
WO2023126268A1 (en) Method and battery module with state of health determination
JP2021069261A (en) Control device, server device, and management method
JP2021197220A (en) Method for controlling zinc battery and power supply system
CN111261961A (en) Base station retired battery intelligent management system
JP2003018761A (en) Power supply device
KR20180019458A (en) Lead storage battery management system of mobile communication base station using power line communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888220

Country of ref document: EP

Kind code of ref document: A1