JP2013160582A - Battery pack system and management method of battery pack system - Google Patents

Battery pack system and management method of battery pack system Download PDF

Info

Publication number
JP2013160582A
JP2013160582A JP2012021629A JP2012021629A JP2013160582A JP 2013160582 A JP2013160582 A JP 2013160582A JP 2012021629 A JP2012021629 A JP 2012021629A JP 2012021629 A JP2012021629 A JP 2012021629A JP 2013160582 A JP2013160582 A JP 2013160582A
Authority
JP
Japan
Prior art keywords
charging
voltage
battery
cell
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012021629A
Other languages
Japanese (ja)
Inventor
Kaho Yabuta
火峰 薮田
Tomonobu Tsujikawa
知伸 辻川
Takashi Matsushita
傑 松下
Nobuhiko Suzuki
伸彦 鈴木
Riichi Kitano
利一 北野
Toshio Matsushima
敏雄 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
NTT Facilities Research Institute Inc.
Original Assignee
NTT Facilities Inc
NTT Facilities Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, NTT Facilities Research Institute Inc. filed Critical NTT Facilities Inc
Priority to JP2012021629A priority Critical patent/JP2013160582A/en
Publication of JP2013160582A publication Critical patent/JP2013160582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily determine degradation and abnormality of a battery pack formed by serially connecting a number of secondary batteries.SOLUTION: A battery pack system repeatedly sets a charge period in which a charge current is supplied and a charge suspension period in which the supply is stopped, for a single battery pack 3 formed by serially connecting a number of cells 2. The battery pack system includes a battery management unit 6 which monitors voltages of the cells 2 and the single battery pack 3, and a control unit 7 which determines abnormality of the cells 2 on the basis of voltages VC of the cells 2 in the charge period or the voltages VC of the cells 2 in the charge suspension period, and then stops the supply of the charge current to the single battery pack 3 including the cells 2.

Description

多数の二次電池を直列接続して構成され、間欠充電される組電池の異常を判定する組電池システムおよび組電池システムの管理方法に関する。   The present invention relates to an assembled battery system that is configured by connecting a large number of secondary batteries in series and determines an abnormality of an assembled battery that is intermittently charged, and a method for managing the assembled battery system.

二次電池としては、リチウムイオン二次電池(リチウムイオンセル)や鉛蓄電池が知られている。例えば、リチウムイオンセルは、エネルギー密度が高い、自己放電量が少ない、などという利点を有し、自動車用蓄電池や電気・電子機器用蓄電池などとして広く使用されている。また、使用目的に応じた電圧や容量を得るために、リチウムイオンセルを複数接続して組電池を構成し、使用する場合がある。このような組電池をバックアップ電源とする場合の充電方法として、例えば、図9に示すようなフロート充電方式が知られている。図9は、組電池システムを整流器(交流直流変換器)101に適用した状態を示す概略構成図であり、組電池を負荷装置102のバックアップ電源とし、整流器101によってフロート充電で運用している。この組電池は、負荷装置102と並列に電力供給系統に接続されている。すなわち、商用電源100が整流器101を介して、負荷装置102と組電池とに接続され、商用電源100からの電力が整流器101によって整流(直流変換)されて、負荷装置102および組電池に供給されるようになっている。このようなフロート充電においては、図10に示すように、充電電圧が常に一定に維持されているため、充電電流が無駄になったり、二次電池の劣化が早まって短寿命となったりするおそれがある。   Known secondary batteries include lithium ion secondary batteries (lithium ion cells) and lead acid batteries. For example, lithium ion cells have advantages such as high energy density and low self-discharge amount, and are widely used as automobile storage batteries, storage batteries for electric / electronic devices, and the like. Further, in order to obtain a voltage and capacity according to the purpose of use, there are cases where a plurality of lithium ion cells are connected to form an assembled battery for use. As a charging method when such an assembled battery is used as a backup power source, for example, a float charging method as shown in FIG. 9 is known. FIG. 9 is a schematic configuration diagram showing a state in which the assembled battery system is applied to a rectifier (AC / DC converter) 101. The assembled battery is used as a backup power source for the load device 102 and is operated by the rectifier 101 by float charging. This assembled battery is connected to the power supply system in parallel with the load device 102. That is, the commercial power source 100 is connected to the load device 102 and the assembled battery via the rectifier 101, and the electric power from the commercial power source 100 is rectified (DC conversion) by the rectifier 101 and supplied to the load device 102 and the assembled battery. It has become so. In such float charging, as shown in FIG. 10, since the charging voltage is always maintained constant, the charging current may be wasted, or the secondary battery may be deteriorated prematurely and become short-lived. There is.

そこで、組電池に常に一定の充電電圧をかけるのではなく、繰り返し定期的(間欠的)に電圧をかける間欠充電方式によって所定電圧を維持する方法が知られている。   Therefore, a method is known in which a predetermined voltage is maintained by an intermittent charging method in which a voltage is repeatedly and periodically (intermittently) applied instead of always applying a constant charging voltage to an assembled battery.

また、二次電池を利用した組電池は信頼性、安全性を高度に維持するために、劣化や異常を早期に発見することが重要であり、劣化や異常の判定方法として、例えば、放電後の充電時における応答特性を確認する方法がある。ところが、間欠充電されている組電池は、充電休止期間における自己放電を除くと、商用電源の故障や整流器の故障以外で組電池から放電されることがなく、放電後の充電時における応答特性を確認することはできないため、この方法を用いることはできない。そのため、間欠充電されている組電池では、完全充電状態において内部抵抗を測定することにより、電池の状態判定をしている。ところが、内部抵抗を自動測定するには多大なコストが必要となるため、手動で測定されることが多いので、常時測定することが困難となり、十分な電池の状態判定を行えないおそれがある。   In addition, in order to maintain a high level of reliability and safety in assembled batteries using secondary batteries, it is important to detect deterioration and abnormalities at an early stage. There is a method for confirming the response characteristics during charging. However, battery packs that are intermittently charged, excluding self-discharge during the charging suspension period, will not be discharged from the battery pack other than commercial power supply failure or rectifier failure. This method cannot be used because it cannot be confirmed. Therefore, in an assembled battery that is intermittently charged, the state of the battery is determined by measuring the internal resistance in a fully charged state. However, since automatic measurement of internal resistance requires a great deal of cost and is often measured manually, it is difficult to always measure and there is a risk that sufficient battery state determination cannot be performed.

ところで、長期間にわたって充放電を繰り返し行った二次電池を充電する場合においても、充電制御を安定して行うことができる二次電池の充電装置及び充電方法に関する技術が知られている(例えば、特許文献1参照。)。この技術は、充電開始から初期充電時間経過後に充電電圧を印加状態から遮断状態に切り替え、第一所定時間経過後に遮断状態から印加状態へ切り替え、切替時点から第二所定時間経過後に充電電流を取得し、切替時点から第三所定時間経過後に印加状態から遮断状態に切り替えることを繰り返し、充電電流の変化傾向に基づいて充電を終了させるものである。   By the way, even when charging a secondary battery that has been repeatedly charged and discharged over a long period of time, a technique related to a charging device and a charging method for a secondary battery that can stably perform charging control is known (for example, (See Patent Document 1). This technology switches the charging voltage from the applied state to the disconnected state after the initial charging time has elapsed from the start of charging, switches from the blocked state to the applied state after the first predetermined time has elapsed, and acquires the charging current after the second predetermined time has elapsed since the switching point. Then, after the third predetermined time has elapsed from the switching time point, the switching from the applied state to the cut-off state is repeated, and the charging is terminated based on the changing tendency of the charging current.

特開2011−015556号公報JP 2011-015556 A

しかしながら、特許文献1に記載の技術は、長期間にわたって充放電を繰り返し行った二次電池を充電する場合においても、充電制御を安定して行うことができるものであっても、二次電池の劣化や異常を判定することは容易ではない。   However, the technique described in Patent Document 1 is a method for charging a secondary battery that has been repeatedly charged and discharged over a long period of time. It is not easy to determine deterioration or abnormality.

そこでこの発明は、多数の二次電池を直列接続して構成され、間欠充電される組電池の劣化や異常を容易に判定可能な組電池システムおよび組電池システムの管理方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an assembled battery system that is configured by connecting a large number of secondary batteries in series, and that can easily determine deterioration or abnormality of the assembled battery that is intermittently charged, and a method for managing the assembled battery system. And

上記目的を達成するために請求項1に記載の発明は、多数の二次電池を直列接続して構成される組電池に、充電電流を供給する充電期間と供給を休止する充電休止期間とを繰り返して設定する組電池システムであって、前記二次電池および前記組電池の電圧監視を行う電池管理手段と、前記充電期間における前記二次電池の電圧、または前記充電休止期間における前記二次電池の電圧にもとづいて、前記二次電池の異常を判定し、当該二次電池を含む組電池への充電電流の供給を停止する制御手段と、を備えることを特徴とする組電池システムである。   In order to achieve the above object, the invention described in claim 1 is characterized in that a battery pack configured by connecting a number of secondary batteries in series includes a charging period for supplying a charging current and a charging suspension period for stopping the supply. A battery pack system that is repeatedly set, the battery management means for monitoring the voltage of the secondary battery and the battery pack, the voltage of the secondary battery in the charging period, or the secondary battery in the charging suspension period And a control unit that determines abnormality of the secondary battery based on the voltage and stops supply of the charging current to the assembled battery including the secondary battery.

この発明によれば、間欠充電における充電電流の充電期間における二次電池の電圧、または間欠充電における充電電流の充電休止期間における二次電池の電圧にもとづいて、二次電池の異常が判定され、当該二次電池を含む組電池への充電電流の供給が停止される。   According to this invention, the abnormality of the secondary battery is determined based on the voltage of the secondary battery in the charging period of the charging current in intermittent charging or the voltage of the secondary battery in the charging suspension period of the charging current in intermittent charging, Supply of the charging current to the assembled battery including the secondary battery is stopped.

請求項2に記載の発明は、請求項1に記載の組電池システムにおいて、前記制御手段は、前記充電休止期間における前記組電池の総電圧の自己放電量を回復させるだけの充電電流を前記充電期間に供給する、ことを特徴とする。   According to a second aspect of the present invention, in the assembled battery system according to the first aspect, the control means supplies the charging current sufficient to recover the self-discharge amount of the total voltage of the assembled battery during the charging suspension period. It supplies in a period.

請求項3に記載の発明は、多数の二次電池を直列接続して構成される組電池に、充電電流の供給と供給休止とを繰り返す組電池システムの管理方法であって、電池管理手段は前記二次電池の電圧を監視し、前記二次電池および前記組電池を流れる充電電流を制御し、前記制御手段は、前記充電期間における前記二次電池の電圧、または前記充電休止期間における前記二次電池の電圧にもとづいて、前記二次電池の異常を判定し、当該二次電池を含む組電池への充電電流の供給を停止する、ことを特徴とする組電池システムの管理方法である。   The invention according to claim 3 is a method for managing an assembled battery system in which a charging current is supplied and stopped in an assembled battery configured by connecting a large number of secondary batteries in series. The voltage of the secondary battery is monitored and the charging current flowing through the secondary battery and the assembled battery is controlled, and the control means is configured to control the voltage of the secondary battery during the charging period or the second battery during the charging suspension period. A method of managing an assembled battery system, wherein abnormality of the secondary battery is determined based on a voltage of the secondary battery, and supply of charging current to the assembled battery including the secondary battery is stopped.

請求項4に記載の発明は、請求項3に記載の組電池システムの管理方法において、前記制御手段は、前記充電休止期間における前記組電池の総電圧の自己放電量を回復させるだけの充電電流を前記充電期間に供給する、ことを特徴とする。   According to a fourth aspect of the present invention, in the method for managing an assembled battery system according to the third aspect, the control means is a charging current that only recovers the self-discharge amount of the total voltage of the assembled battery during the charging suspension period. Is supplied during the charging period.

請求項1および3に記載の発明によれば、間欠充電における充電電流の供給期間(充電期間)における二次電池の電圧、または間欠充電における充電電流の供給休止期間(充電休止期間)における二次電池の電圧にもとづいて、二次電池の異常を判定することができる。つまり、間欠充電によって二次電池の充電状態を適切に保持しながら、間欠充電の充電期間や充電休止期間における二次電池の電圧特性から異常を判定することで、二次電池の劣化を判定することができるので、二次電池の特性をより適切に把握することができる。さらに、間欠充電を行う中で、二次電池の劣化を判定することができるので、二次電池の劣化や異常を早期に判定することが可能となる。   According to the first and third aspects of the present invention, the voltage of the secondary battery in the charging current supply period (charging period) in intermittent charging, or the secondary in the charging current supply stopping period (charging suspension period) in intermittent charging. Abnormality of the secondary battery can be determined based on the battery voltage. In other words, while appropriately maintaining the charging state of the secondary battery by intermittent charging, the deterioration of the secondary battery is determined by determining an abnormality from the voltage characteristics of the secondary battery during the charging period or charging suspension period of the intermittent charging. Therefore, the characteristics of the secondary battery can be grasped more appropriately. Furthermore, since the deterioration of the secondary battery can be determined during the intermittent charging, the deterioration and abnormality of the secondary battery can be determined at an early stage.

また、上記のように早期に二次電池の異常を判定することができるとともに、異常と判定された二次電池を含む組電池への充電電流の供給が停止されるので、組電池の安全性、信頼性を向上させることができる。この結果、組電池全体をより適正に充電することが可能となり、組電池全体の放電容量が適正となって、設計通りの所定の放電時間を確保することができる。   In addition, as described above, the abnormality of the secondary battery can be determined at an early stage, and the supply of the charging current to the assembled battery including the secondary battery determined to be abnormal is stopped. , Reliability can be improved. As a result, the entire assembled battery can be more appropriately charged, the discharge capacity of the entire assembled battery becomes appropriate, and a predetermined discharge time as designed can be secured.

請求項2および4に記載の発明によれば、充電期間には、充電休止期間における組電池の総電圧の自己放電量を回復させる充電電流だけが供給されるので、組電池に供給される充電電流を最小限に抑えることができる。すなわち、二次電池の劣化を抑制し、組電池を長寿命化することが可能となる。また、充電期間に供給する充電電流を最小限とすることが可能であるので、充電に要するコストを削減することが可能である。   According to the second and fourth aspects of the present invention, since only the charging current for recovering the self-discharge amount of the total voltage of the assembled battery during the charging suspension period is supplied during the charging period, the charging supplied to the assembled battery Current can be minimized. That is, it is possible to suppress the deterioration of the secondary battery and extend the life of the assembled battery. Further, since the charging current supplied during the charging period can be minimized, the cost required for charging can be reduced.

この発明の実施の形態に係る組電池システムを示す概略構成図である。It is a schematic block diagram which shows the assembled battery system which concerns on embodiment of this invention. 図1のシステムにおける間欠充電方式を説明するための概略図である。It is the schematic for demonstrating the intermittent charge system in the system of FIG. 図1のシステムにおける充電休止期間における総電圧およびセル電圧の特性を示す図である。It is a figure which shows the characteristic of the total voltage and cell voltage in the charge stop period in the system of FIG. 図3の時間T2におけるセル電圧の特性を示す図である。It is a figure which shows the characteristic of the cell voltage in the time T2 of FIG. 図1のシステムにおけるセル電圧と容量との関係を示す図である。It is a figure which shows the relationship between the cell voltage and capacity | capacitance in the system of FIG. 図1のシステムにおける再充電期間における総電圧およびセル電圧の特性を示す図である。It is a figure which shows the characteristic of the total voltage and cell voltage in the recharge period in the system of FIG. 図6の時間T3〜T4におけるセル電圧の特性を示す図である。It is a figure which shows the characteristic of the cell voltage in the time T3-T4 of FIG. 図1のシステムにおける再充電期間の充電開始前セル電圧と充電開始後セル電圧との関係を示す図である。It is a figure which shows the relationship between the cell voltage before a charge start of the recharge period in the system of FIG. 1, and the cell voltage after a charge start. 従来の組電池を使用したフロート充電方式の組電池システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the assembled battery system of the float charge system using the conventional assembled battery. 図9の組電池システムにおける総電圧と充電電流を示す図である。It is a figure which shows the total voltage and charging current in the assembled battery system of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る組電池の組電池システム1を整流器101に適用した状態を示す概略構成図である。この実施の形態においては、二次電池はリチウムイオンセル(セル電圧4.1V)2とし、このリチウムイオン組電池(以下、単に「組電池」という)を負荷装置102のバックアップ電源とし、整流器101によって間欠充電で運用する場合について説明する。   FIG. 1 is a schematic configuration diagram showing a state where an assembled battery system 1 for an assembled battery according to an embodiment of the present invention is applied to a rectifier 101. In this embodiment, the secondary battery is a lithium ion cell (cell voltage 4.1 V) 2, this lithium ion assembled battery (hereinafter simply referred to as “assembled battery”) is used as a backup power source of the load device 102, and the rectifier 101. The case of operating by intermittent charging will be described.

組電池システム1は、単電池であるリチウムイオンセル(以下、単に「セル」という)2が多数直列に接続されて単組電池3が構成され、さらにこの単組電池3が複数並列に接続されて組電池が構成されている。ここで、組電池は、後述する制御部7によって図2に示すように充電電流を供給する充電期間と供給を休止する充電休止期間とを繰り返す間欠充電で運用されるように制御されている。   The assembled battery system 1 includes a plurality of lithium ion cells (hereinafter simply referred to as “cells”) 2 which are single cells connected in series to form a single battery 3, and a plurality of the single batteries 3 are connected in parallel. The assembled battery is configured. Here, the assembled battery is controlled to be operated by intermittent charging that repeats a charging period for supplying a charging current and a charging suspension period for stopping the supply, as shown in FIG.

ここで、図2は、間欠充電方式における単組電池3の総電圧VTの変化を示している。つまり、充電期間(T<T0)において、総電圧VTは整流器出力設定電圧(例えば、セル2が12個直列に接続されて構成された単組電池では49.2V)で略一定、充電電流はフロート充電電流で略一定である。また、充電休止期間(T0<T<T3)において、総電圧VTは自己放電や制御部7における消費などによって緩やかに減少する。そして、再び充電期間(T3<T<T5)となると、充電電流値が急激にフロート充電電流値よりも大となり、総電圧VTの上昇とともに充電電流が減少しフロート充電電流値で略一定となる。この充電期間と充電休止期間との間隔は、単組電池3の自己放電量や制御部7などでの消費電力量から算出されて設定されている。具体的には、温度ごとの時間と自己放電量との関係をデータとして予め記憶し、記憶しているデータにもとづいて、例えば温度Tにおいて1ヶ月の自己放電量が容量の10%である場合は、充電期間と充電休止期間との間隔を1ヶ月として自己放電量の10%を回復するための充電を行うように制御する。   Here, FIG. 2 shows a change in the total voltage VT of the battery pack 3 in the intermittent charging method. That is, in the charging period (T <T0), the total voltage VT is substantially constant at the rectifier output setting voltage (for example, 49.2V in a single battery configured by connecting 12 cells 2 in series), and the charging current is The float charging current is substantially constant. Further, in the charging suspension period (T0 <T <T3), the total voltage VT gradually decreases due to self-discharge or consumption in the control unit 7. When the charging period again (T3 <T <T5), the charging current value suddenly becomes larger than the float charging current value, and the charging current decreases with the increase of the total voltage VT, and becomes substantially constant at the float charging current value. . The interval between the charging period and the charging suspension period is calculated and set from the self-discharge amount of the single battery 3 and the power consumption amount by the control unit 7 or the like. Specifically, the relationship between the time for each temperature and the self-discharge amount is stored in advance as data, and based on the stored data, for example, the self-discharge amount for one month at temperature T is 10% of the capacity Is controlled so as to perform charging for recovering 10% of the self-discharge amount by setting the interval between the charging period and the charging suspension period as one month.

組電池は、負荷装置102と並列に電力供給系統に接続されている。すなわち、商用電源100が整流器101を介して、負荷装置102と組電池とに接続され、商用電源100からの電力が整流器101によって整流されて、負荷装置102および組電池に供給されるようになっている。   The assembled battery is connected to the power supply system in parallel with the load device 102. That is, the commercial power supply 100 is connected to the load device 102 and the assembled battery via the rectifier 101, and the power from the commercial power supply 100 is rectified by the rectifier 101 and supplied to the load device 102 and the assembled battery. ing.

また、組電池システム1は、単組電池電流計4、セル電圧調整器5、電池管理手段としての単組電池管理ユニット(電池管理部)6、制御手段としての単一のコントローラ(制御部)7、充電スイッチ8を備えている。そして、電池管理部6および制御部7には、通常時は整流器101を介して商用電源100から電力が供給され、商用電源100からの電力供給が停止(停電)すると、各単組電池3から電力が供給されるようになっている。   The assembled battery system 1 includes a single battery ammeter 4, a cell voltage regulator 5, a single battery management unit (battery management unit) 6 as battery management means, and a single controller (control part) as control means. 7. A charge switch 8 is provided. The battery management unit 6 and the control unit 7 are normally supplied with power from the commercial power source 100 via the rectifier 101, and when the power supply from the commercial power source 100 is stopped (power failure), each single battery 3 Electric power is supplied.

単組電池電流計4は、単組電池3に流れる充電電流を測定、監視するとともに、制御部7に送信するものである。   The single battery ammeter 4 measures and monitors the charging current flowing through the single battery 3 and transmits it to the control unit 7.

セル電圧調整器5は、各セル2と並列に接続され、電池管理部6からの制御信号に基づいて、各セル2の充電電圧が所定値内になるように調整するものである。セル電圧調整器5は、各セル2の電圧(充電中の電圧、放電中の電圧)や温度などのセル状態をする測定器(図示略)を有し、測定結果をリアルタイムに電池管理部6を介して制御部7に送信するとともに、各セル2の充電電圧が所定値内になるように調整するように制御信号を送信するものである。そして、例えば、測定器で測定されたセル2の充電電圧が所定電圧よりも高い場合に、そのセル2の電圧を下げ、充電電圧を所定電圧内に調整するようになっている。   The cell voltage regulator 5 is connected in parallel with each cell 2 and adjusts the charging voltage of each cell 2 to be within a predetermined value based on a control signal from the battery management unit 6. The cell voltage adjuster 5 includes a measuring device (not shown) that changes the cell state such as the voltage (voltage during charging, voltage during discharging) and temperature of each cell 2, and the battery management unit 6 displays the measurement result in real time. And a control signal is transmitted so as to adjust the charging voltage of each cell 2 to be within a predetermined value. For example, when the charging voltage of the cell 2 measured by the measuring instrument is higher than a predetermined voltage, the voltage of the cell 2 is lowered and the charging voltage is adjusted within the predetermined voltage.

測定器は、セル2のセル電圧(充電中の電圧、放電中の電圧)VCを計測する電圧計や温度計などの計器から構成されている。通信部は、電池管理部6とデータ通信を行うための通信インターフェイスであり、セル状態を電池管理部6に送信したりするものである。   The measuring instrument is composed of a meter such as a voltmeter or a thermometer that measures the cell voltage (voltage during charging, voltage during discharging) VC of the cell 2. The communication unit is a communication interface for performing data communication with the battery management unit 6, and transmits a cell state to the battery management unit 6.

電池管理部6は、セル2および単組電池3の電圧監視を行うものであり、具体的には、セル電圧調整器5から送信された各セル2のセル電圧VCや温度などのセル状態を制御部7に送信するとともに、単組電池3の充電電流や放電電流、総電圧VTなどの単組電池状態を監視、解析する測定器(図示略)や、通信部(図示略)、警報部(図示略)などを備えている。   The battery management unit 6 monitors the voltage of the cell 2 and the battery pack 3, and specifically, the cell state such as the cell voltage VC and temperature of each cell 2 transmitted from the cell voltage regulator 5. A measuring device (not shown), a communication unit (not shown), an alarm unit that transmits to the control unit 7 and monitors and analyzes the state of the single battery such as the charging current and discharging current of the single battery 3 and the total voltage VT. (Not shown).

測定器は、単組電池3の充電電流や放電電流を計測する電流計や、単組電池3の総電圧(充電中の電圧、放電中の電圧)VTを計測する電圧計などの計器から構成されている。通信部は、セル電圧調整器5および制御部7とデータ通信を行うための通信インターフェイスであり、各セル電圧調整器5からセル状態などを受信したり、セル状態や単組電池状態などを制御部7に送信したりするものである。   The measuring instrument is composed of instruments such as an ammeter that measures the charging current and discharging current of the battery pack 3 and a voltmeter that measures the total voltage (voltage during charging and voltage discharging) VT of the battery pack 3. Has been. The communication unit is a communication interface for performing data communication with the cell voltage regulator 5 and the control unit 7, receives a cell state from each cell voltage regulator 5, and controls a cell state, a single battery pack state, etc. Or transmitted to the unit 7.

警報部(図示略)は、制御部7によって後述するようにしてセル2の異常あるいは単組電池3全体の異常などと判定された場合に、警報を発するものであり、LEDランプや警報ブザーなどで構成されている。また、セル2が異常の場合には、該当するセル2と単組電池3を表示するようになっている。   The alarm unit (not shown) issues an alarm when the control unit 7 determines that the cell 2 is abnormal or the entire battery pack 3 is abnormal as will be described later, such as an LED lamp or an alarm buzzer. It consists of Further, when the cell 2 is abnormal, the corresponding cell 2 and the single battery 3 are displayed.

制御部7は、充電スイッチ8に制御信号(開閉信号)を送信して間欠充電を行うとともに、後述するような解析・処理結果に基づいて、異常と判定されたセル2を含む単組電池3の充電スイッチ8に制御信号(開閉信号)を送信するものである。つまり、制御部7によって充電スイッチ8を開閉することによって、商用電源100からの充電電流の供給状態(充電状態、充電期間)と供給休止状態(充電休止状態、充電休止期間)とを交互に切り替える間欠充電を制御可能となっている。ここで、充電期間と充電休止期間との切り替えは、所定時間間隔で行うようにすることも、充電休止期間における単組電池3の総電圧VTが所定値となった場合に行うようにすることも制御可能である。また、充電期間と充電休止期間との切り替えは、組電池全体を一斉に切り替えることも、単組電池3ごとに切り替えることも制御可能である。また、制御部7は、各単組電池電流計4から受信した充電電流や、各電池管理部6から受信したセル状態や単組電池状態などに基づいて、充電スイッチ8に制御信号(開閉信号)の送信などを行うものである。   The control unit 7 transmits a control signal (open / close signal) to the charging switch 8 to perform intermittent charging, and includes the single battery 3 including the cell 2 determined to be abnormal based on the analysis and processing results as described later. A control signal (open / close signal) is transmitted to the charging switch 8. That is, the control unit 7 opens and closes the charging switch 8 to alternately switch between a charging current supply state (charging state and charging period) from the commercial power supply 100 and a supply suspension state (charging suspension state and charging suspension period). Intermittent charging can be controlled. Here, switching between the charging period and the charging suspension period may be performed at predetermined time intervals or when the total voltage VT of the battery pack 3 during the charging suspension period becomes a predetermined value. Can also be controlled. In addition, the switching between the charging period and the charging suspension period can be controlled by switching the entire assembled battery all at once or switching for each single assembled battery 3. Further, the control unit 7 sends a control signal (open / close signal) to the charging switch 8 based on the charging current received from each single battery ammeter 4 or the cell state or single battery state received from each battery management unit 6. ).

また、制御部7は、後述するようなセル2の異常を判定するための判定基準値(しきい値)や後述する判定基準A、Bなどを記憶する記憶部(図示略)を有している。この制御部7は、LAN回線、公衆回線等を利用してデータや判定結果を遠隔地の監視センタ等に転送できる機能を備えている。   Further, the control unit 7 includes a storage unit (not shown) for storing a determination reference value (threshold value) for determining an abnormality of the cell 2 as described later and determination criteria A and B described later. Yes. The control unit 7 has a function of transferring data and determination results to a remote monitoring center using a LAN line, a public line, or the like.

さらに、制御部7は、充電期間におけるセル電圧VC、または充電休止期間におけるセル電圧VCにもとづいて、セル2の異常を判定し、そのセル2を含む単組電池3への充電電流の供給を停止するものである。具体的には、後述する組電池システム1の作用、動作が得られるように処理を行うようになっている。つまり、制御部7は、組電池を間欠充電する際に、電池管理部6によって測定、記憶された各セル2のセル電圧VCに基づいて、組電池のなかにセル電圧特性が異常、すなわち、劣化しているセル2があるか否かを判定する機能を有するプログラム(タスク)を有している。そして、セル2が異常であると判定した場合には、充電スイッチ8に「オフ(開)指令」を送信したり、警報部に指令を送信したりするものである。具体的には、セル2のセル電圧VCにもとづいて、次の判定基準A、Bによって判定する。ここで、電池管理部6および制御部7の負荷は一定であり、消費電流を算出可能であるため、制御部7においては、電池管理部6および制御部7での消費電流を考慮してセル電圧VCでの判定が可能となる。   Further, the control unit 7 determines abnormality of the cell 2 based on the cell voltage VC in the charging period or the cell voltage VC in the charging suspension period, and supplies the charging current to the single battery 3 including the cell 2. It will stop. Specifically, processing is performed so as to obtain the action and operation of the assembled battery system 1 described later. That is, when the control unit 7 intermittently charges the assembled battery, the cell voltage characteristic is abnormal in the assembled battery based on the cell voltage VC of each cell 2 measured and stored by the battery management unit 6, that is, It has a program (task) having a function of determining whether or not there is a degraded cell 2. When it is determined that the cell 2 is abnormal, an “off (open) command” is transmitted to the charging switch 8 or a command is transmitted to the alarm unit. Specifically, based on the cell voltage VC of the cell 2, the determination is made according to the following determination criteria A and B. Here, since the loads of the battery management unit 6 and the control unit 7 are constant and the consumption current can be calculated, the control unit 7 takes into consideration the consumption currents in the battery management unit 6 and the control unit 7 and the cells. Determination with the voltage VC is possible.

「判定基準A」   "Criteria A"

判定基準Aは、充電休止期間における各セル2の電圧降下率やセル電圧VCが異常である場合、そのセル2を異常(劣化)と判定する。つまり、充電休止期間において(充電電流がない状態で)電圧降下率が大きいセル2や、セル電圧VCが小さいセル2を、異常と判定する。そして、該当する充電スイッチ8を切り離してその単組電池3の充電を停止すべき判定結果を出す。具体的には、例えば図3および図4に示すように、電池管理部6によって測定したセル電圧VCにもとづいて、(A−1)時間T0(充電休止期間の開始時)において、開放電圧が第1の所定電圧以下である場合、(A−2)時間T1において、電圧降下率が所定値以上である場合、(A−3)時間T2において、セル電圧VCが第2の所定電圧以下となっている場合のいずれかに該当する場合は、そのセル2を異常と判定する。そして、そのセル2を含む単組電池3の充電を停止するように充電スイッチ8に制御信号を送信するとともに、その情報(警報情報)を電池管理部6に送信する。   The determination criterion A determines that the cell 2 is abnormal (deteriorated) when the voltage drop rate or the cell voltage VC of each cell 2 is abnormal during the charging suspension period. That is, the cell 2 having a large voltage drop rate and the cell 2 having a small cell voltage VC are determined to be abnormal during the charging suspension period (in a state where there is no charging current). Then, the corresponding charging switch 8 is disconnected, and a determination result for stopping the charging of the battery pack 3 is issued. Specifically, for example, as shown in FIG. 3 and FIG. 4, based on the cell voltage VC measured by the battery management unit 6, (A-1) at time T 0 (at the start of the charging suspension period), the open circuit voltage is When the voltage is equal to or lower than the first predetermined voltage, (A-2) When the voltage drop rate is equal to or higher than the predetermined value at time T1, (A-3) At time T2, the cell voltage VC is equal to or lower than the second predetermined voltage. If any of the cases is true, the cell 2 is determined to be abnormal. Then, a control signal is transmitted to the charging switch 8 so as to stop the charging of the single battery 3 including the cell 2, and the information (alarm information) is transmitted to the battery management unit 6.

つまり、具体的に、(A−3)の状態、すなわち、時間T2におけるセル電圧VCの状態を示したものが図4であり、本図において時間T2における第2の所定電圧である電圧許容値の下限値がV2であるとすると、セル電圧VCがV1、V2であるセルC1、C2は正常と判定し、セル電圧VCがV3であるセルC3は異常と判定する。この場合は、セルC3を含む単組電池3の充電スイッチ8を切り離して充電を停止する。   That is, specifically, FIG. 4 shows the state of (A-3), that is, the state of the cell voltage VC at the time T2, and the voltage allowable value that is the second predetermined voltage at the time T2 in this figure. If the lower limit value of V2 is V2, the cells C1 and C2 whose cell voltages VC are V1 and V2 are determined to be normal, and the cell C3 whose cell voltage VC is V3 is determined to be abnormal. In this case, the charging switch 8 of the battery pack 3 including the cell C3 is disconnected to stop charging.

ここで、図5に示すように温度T、時間T2におけるセル電圧VCから容量を算出することが可能であり、このデータは予め記憶部に記憶されている。具体的には、例えば温度T、時間T2において、電圧V1の場合の容量は100%であり、電圧V2の場合の容量は70%であり、これらの場合は良好領域A1に属している。また、電圧V3の場合の容量が70%以下となり、不良領域A2に属している。ここで、良好領域および不良領域は、組電池に要求される仕様であり、信頼度や性能によって定められている。   Here, as shown in FIG. 5, the capacity can be calculated from the cell voltage VC at the temperature T and the time T2, and this data is stored in the storage unit in advance. Specifically, for example, at the temperature T and the time T2, the capacity at the voltage V1 is 100%, and the capacity at the voltage V2 is 70%, and these cases belong to the good region A1. Further, the capacity in the case of the voltage V3 is 70% or less and belongs to the defective area A2. Here, the good region and the defective region are specifications required for the assembled battery, and are determined by reliability and performance.

「判定基準B」   "Criteria B"

判定基準Bは、充電休止期間後の再充電期間における各セル2のセル電圧VCが異常である場合、そのセル2を異常(劣化)と判定する。つまり、再充電期間において電圧上昇傾向が異常な(急激に上昇する)セル2や、セル電圧VCが大きいセル2を、異常と判定する。そして、該当する充電スイッチ8を切り離してその単組電池3の充電を停止すべき判定結果を出す。具体的には、例えば図6および図7に示すように、電池管理部6によって測定したセル電圧VCにもとづいて、(B−1)時間T3(再充電期間の開始時)におけるセル電圧VCである充電開始前セル電圧V4が第3の所定電圧以下で、(B−2)時間T4におけるセル電圧VCである充電開始後セル電圧V5が第4の所定電圧以上となっている場合は、図7に示す例えばセルC7のように急激に電圧が上昇する特性を有するため、そのセル2を異常と判定する。そして、そのセル2を含む単組電池3の充電を停止するように充電スイッチ8に制御信号を送信するとともに、その情報(警報情報)を電池管理部6に送信する。   The criterion B determines that the cell 2 is abnormal (deteriorated) when the cell voltage VC of each cell 2 in the recharging period after the charging suspension period is abnormal. That is, it is determined that the cell 2 having an abnormal voltage increase tendency (abrupt increase) during the recharging period or the cell 2 having a large cell voltage VC is abnormal. Then, the corresponding charging switch 8 is disconnected, and a determination result for stopping the charging of the battery pack 3 is issued. Specifically, for example, as shown in FIG. 6 and FIG. 7, based on the cell voltage VC measured by the battery management unit 6, (B-1) the cell voltage VC at time T3 (at the start of the recharge period) When a certain cell voltage V4 before starting charging is equal to or lower than the third predetermined voltage and (B-2) the cell voltage V5 after starting charging which is the cell voltage VC at time T4 is equal to or higher than the fourth predetermined voltage. For example, the cell 2 is determined to be abnormal because it has a characteristic such as the cell C7 shown in FIG. Then, a control signal is transmitted to the charging switch 8 so as to stop the charging of the single battery 3 including the cell 2, and the information (alarm information) is transmitted to the battery management unit 6.

図6は、再充電期間におけるセル電圧VCを示している。再充電を開始すると、セル電圧VCが上昇するとともに、総電圧VTが回復して時間T5に総電圧VTは所定の電圧で一定となる。このとき、セル電圧VC4は最低電圧で推移し、セル電圧VC5は平均電圧で推移し、セル電圧VC6は最高電圧で推移しており、いずれの場合も時間T5以降は短時間で4.1Vで一定となる。   FIG. 6 shows the cell voltage VC during the recharging period. When recharging is started, the cell voltage VC rises, and the total voltage VT is recovered. At time T5, the total voltage VT becomes constant at a predetermined voltage. At this time, the cell voltage VC4 changes at the lowest voltage, the cell voltage VC5 changes at the average voltage, and the cell voltage VC6 changes at the highest voltage. In any case, the voltage is 4.1V in a short time after the time T5. It becomes constant.

図7に示すように、セルC7のセル電圧VC7は、充電開始前セル電圧V4が低く、充電開始後セル電圧V5が高く、時間T5以降も4.1Vで一定となるまでに長時間を要するため、異常であると判定する。具体的には、充電開始前セル電圧V4または充電開始後セル電圧V5のいずれかが所定範囲外となった場合に、異常であると判定する。   As shown in FIG. 7, the cell voltage VC7 of the cell C7 has a low cell voltage V4 before starting charging, a high cell voltage V5 after starting charging, and it takes a long time until it becomes constant at 4.1V after time T5. Therefore, it determines with it being abnormal. Specifically, when either the cell voltage V4 before starting charging or the cell voltage V5 after starting charging is out of a predetermined range, it is determined to be abnormal.

ここで、図8に示すような温度Tにおける充電開始前セル電圧V4および充電開始後セル電圧V5が、良好領域A3に属する場合は正常であると判定し、充電開始前セル電圧V4または充電開始後セル電圧V5が、不良領域A4、A5に属する場合を異常であると判定とする。つまり、例えば、充電開始前セル電圧V4が低く、充電開始後セル電圧V5が高い場合は、不良領域A5に属するために、そのセル2を異常と判定する。   Here, when the cell voltage V4 before the charge start and the cell voltage V5 after the charge start at the temperature T as shown in FIG. 8 belong to the good region A3, it is determined to be normal, and the cell voltage V4 before the charge start or the charge start The case where the rear cell voltage V5 belongs to the defective areas A4 and A5 is determined to be abnormal. That is, for example, when the cell voltage V4 before starting charging is low and the cell voltage V5 after starting charging is high, the cell 2 is determined to be abnormal because it belongs to the defective area A5.

充電スイッチ8は、単組電池3を間欠充電する充電源とこの単組電池3との接続を接離するスイッチである。すなわち、図1に示すように、商用電源100からの電力が整流器101で直流に変換され、充電スイッチ8を介して単組電池3に供給されるようになっている。この充電スイッチ8は、制御部7によって間欠充電の充電期間と充電休止期間とが単組電池3ごとに制御信号が送信されるとともに、セル2の異常の判定結果にもとづいて制御信号が送信され、これを受けて開閉するようになっている。   The charging switch 8 is a switch for connecting and disconnecting the connection between the charging source for intermittently charging the single battery 3 and the single battery 3. That is, as shown in FIG. 1, the electric power from the commercial power supply 100 is converted into direct current by the rectifier 101 and supplied to the single battery 3 via the charging switch 8. The charging switch 8 transmits a control signal for each battery pack 3 during the intermittent charging period and charging suspension period by the control unit 7, and transmits a control signal based on the determination result of the abnormality of the cell 2. In response, it opens and closes.

以上のような電池管理部6、制御部7、充電スイッチ8によって、組電池を管理する管理装置が構成されている。そして、この管理装置と組電池とによって、組電池システム1が構成されている。   The battery management unit 6, the control unit 7, and the charge switch 8 as described above constitute a management device that manages the assembled battery. And the assembled battery system 1 is comprised by this management apparatus and the assembled battery.

次に、このような構成の組電池システム1の作用、動作や管理方法について説明する。   Next, the operation, operation, and management method of the assembled battery system 1 having such a configuration will be described.

まず、組電池システム1の運用開始前には、充電スイッチ8が「開」状態であり、すべての単組電池3が非充電状態となっている。そして、充電スイッチ8を「閉」状態にして、単組電池3の間欠充電を開始する。   First, before the operation of the assembled battery system 1 starts, the charging switch 8 is in the “open” state, and all the single assembled batteries 3 are in the non-charged state. Then, the charging switch 8 is set to the “closed” state, and intermittent charging of the battery pack 3 is started.

次に、充電開始時から所定時間が経過すると、充電が休止され充電休止期間となり、判定基準Aによってセル2の異常が判定される。具体的には、(A−1)時間T0における開放電圧が第1の所定電圧以下であるか否か、(A−2)時間T1経過後における電圧降下率、すなわち、時間T1における傾きが所定値以上であるか否か、(A−3)時間T2経過後における電圧が第2の所定電圧以下であるか否か、が判定される。つまり、例えば図4に示すように、時間T2における電圧許容値の下限値がV2であるとすると、セル電圧V3であるセルC3は異常と判定される。   Next, when a predetermined time elapses from the start of charging, charging is suspended and a charging suspension period is set, and abnormality of the cell 2 is determined by the determination criterion A. Specifically, (A-1) whether or not the open circuit voltage at time T0 is equal to or lower than the first predetermined voltage, (A-2) the voltage drop rate after time T1, e.g., the slope at time T1 is predetermined. It is determined whether or not the value is equal to or greater than the value, and (A-3) whether or not the voltage after the elapse of time T2 is equal to or less than the second predetermined voltage. That is, for example, as shown in FIG. 4, if the lower limit value of the voltage allowable value at time T2 is V2, the cell C3 having the cell voltage V3 is determined to be abnormal.

そして、セルC3を含む単組電池3の充電スイッチ8が「開」されて充電が停止される。   Then, the charge switch 8 of the battery pack 3 including the cell C3 is “opened” and charging is stopped.

つづいて、再度、充電が開始され充電期間となると、判定基準Bによってセルの異常が判定される。具体的には、(B−1)時間T3において、セル電圧VCが第3の所定電圧以下で、(B−2)時間T4において、セル電圧VCが第4の所定電圧以上となっている場合は、そのセル2が異常と判定される。つまり、例えば図7に示すように、セルC7は充電開始前セル電圧V4が低く、充電開始後セル電圧V5が高いため、図8に示す不良領域A5に属することとなり、異常であると判定される。   Subsequently, when charging is started again and the charging period is reached, the abnormality of the cell is determined by the determination criterion B. Specifically, when (B-1) the cell voltage VC is equal to or lower than the third predetermined voltage at time T3, and (B-2) the cell voltage VC is equal to or higher than the fourth predetermined voltage at time T4. Is determined that the cell 2 is abnormal. That is, for example, as shown in FIG. 7, since the cell voltage V4 before starting charging is low and the cell voltage V5 after starting charging is high, the cell C7 belongs to the defective area A5 shown in FIG. The

そして、セルC7含む単組電池3の充電スイッチ8が「開」されて充電が停止される。   Then, the charging switch 8 of the battery pack 3 including the cell C7 is “opened” and charging is stopped.

商用電源100からの電力供給が停止された場合は、各単組電池3が放電を開始し、各単組電池3から電力が負荷装置102に供給されるとともに、電池管理部6および制御部7に対して電力が供給される。   When the power supply from the commercial power supply 100 is stopped, each single battery 3 starts discharging, electric power is supplied from each single battery 3 to the load device 102, and the battery management unit 6 and the control unit 7. Is supplied with electric power.

このような処理が間欠充電の充電期間と充電休止期間のたびに行われ、同時に、各電池管理部6から制御部7に対して、セル状態や単組電池状態、解析・処理結果などが逐次送信され、制御部7にてこれらのデータが蓄積、集計される。そして、蓄積されたデータを解析することで、組電池システム1全体をより安全、適正に運用することが可能となるものである。   Such a process is performed every time the charging period and the charging suspension period of intermittent charging, and at the same time, the cell state, the single battery state, the analysis / processing result, etc. are sequentially transmitted from each battery management unit 6 to the control unit 7. The data is transmitted and accumulated in the control unit 7. Then, by analyzing the accumulated data, the entire assembled battery system 1 can be operated more safely and appropriately.

以上のように、この組電池システム1によれば、間欠充電における充電電流の充電期間におけるセル電圧VC、または間欠充電における充電電流の充電休止期間(充電休止期間)におけるセル電圧VCにもとづいて、セル2の異常を判定することができる。つまり、間欠充電によってセル2の充電状態を適切に保持しながら、充電休止期間、すなわち、充電電流が供給されていない状態におけるセル2の電圧特性を判定することができるので、セル2の特性をより適切に把握することができる。さらに、間欠充電を行う中で、セル2の劣化を判定することができるので、セル2の劣化や異常を早期に判定することが可能となる。   As described above, according to this assembled battery system 1, based on the cell voltage VC in the charging period of the charging current in the intermittent charging or the cell voltage VC in the charging suspension period (charging suspension period) of the charging current in the intermittent charging, An abnormality of the cell 2 can be determined. That is, while appropriately maintaining the charging state of the cell 2 by intermittent charging, it is possible to determine the voltage characteristic of the cell 2 in the charging suspension period, that is, in a state where the charging current is not supplied. It can be grasped more appropriately. Furthermore, since the deterioration of the cell 2 can be determined during intermittent charging, it is possible to determine the deterioration or abnormality of the cell 2 at an early stage.

より具体的には、上記の判定基準Aによれば、充電休止期間におけるセル2の充電電圧の低下率や減少量に応じて、適正に安全性を確保することが可能となる。また、上記の判定基準Bによれば、再充電期間におけるセル2の充電電圧の上昇率や増加量に応じて、適正に安全性を確保することが可能となる。   More specifically, according to the above-described determination criterion A, it is possible to appropriately ensure safety according to the rate of decrease or the amount of decrease in the charging voltage of the cell 2 during the charging suspension period. Further, according to the above-described determination standard B, it is possible to appropriately ensure safety according to the rate of increase or increase in the charging voltage of the cell 2 during the recharging period.

また、上記のように早期にセル2の異常を判定することができるとともに、異常と判定されたセル2を含む単組電池3への充電電流の供給が停止されるので、単組電池3の信頼性を向上させることができる。この結果、組電池全体をより適正に充電することが可能となり、組電池全体の放電容量が適正となって、設計通りの所定の放電時間を確保することができる。また、セル2の充電電圧が異常と判定すると、そのセル2を含む単組電池3への充電を停止するため、過充電による異常発熱などを早期に防止することが可能となる。   In addition, the abnormality of the cell 2 can be determined early as described above, and the supply of the charging current to the single battery 3 including the cell 2 determined to be abnormal is stopped. Reliability can be improved. As a result, the entire assembled battery can be more appropriately charged, the discharge capacity of the entire assembled battery becomes appropriate, and a predetermined discharge time as designed can be secured. If it is determined that the charging voltage of the cell 2 is abnormal, charging to the single battery 3 including the cell 2 is stopped, so that abnormal heat generation due to overcharging can be prevented at an early stage.

しかも、単組電池3ごとに充電を停止するため、ある単組電池3内のセル2に異常が発生した場合でも、その単組電池3の充電のみが停止され、他の単組電池3は影響を受けず、他の単組電池3によって組電池システム1の機能・運用を維持することが可能となる。また、充電を停止しても、この単組電池3からの放電が可能なため、単組電池3のバックアップ・予備電源としての機能を維持することができる。   In addition, since charging is stopped for each single battery 3, even if an abnormality occurs in a cell 2 in a single battery 3, only charging of the single battery 3 is stopped, and other single batteries 3 The function / operation of the assembled battery system 1 can be maintained by the other single assembled battery 3 without being affected. Further, even if charging is stopped, the single battery 3 can be discharged, so that the function of the single battery 3 as a backup / standby power source can be maintained.

さらに、充電期間には、充電休止期間における単組電池3の総電圧VTの自己放電量を回復させるだけの充電電流だけが供給されるので、単組電池3に供給される充電電流を最小限に抑えることができる。すなわち、セル2に常時一定電圧が印加されていたり、一定電流が供給されていたりすることよる劣化を抑制し、単組電池3を長寿命化することが可能となる。また、充電期間に供給する充電電流を最小限とすることが可能であるので、充電に要するコストを削減することが可能である。   Furthermore, since only the charging current for recovering the self-discharge amount of the total voltage VT of the single battery 3 during the charging suspension period is supplied during the charging period, the charging current supplied to the single battery 3 is minimized. Can be suppressed. That is, it is possible to suppress the deterioration caused by the constant voltage being constantly applied to the cell 2 or the constant current being supplied, thereby extending the life of the single battery 3. Further, since the charging current supplied during the charging period can be minimized, the cost required for charging can be reduced.

さらに、単組電池3への充電電流の供給が停止されても、電池管理部6や制御部7などへの電力供給は継続される。このため、各セル2や単組電池3の監視、制御などの管理を維持することができる。   Furthermore, even if the supply of the charging current to the single battery 3 is stopped, the power supply to the battery management unit 6 and the control unit 7 is continued. For this reason, management, such as monitoring and control of each cell 2 and the single battery assembly 3, can be maintained.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、組電池システム1を整流器101に適用する場合について説明したが、無停電電源装置など、その他の設備に適用することもできる。このとき、適用する設備に応じて、セル2や単組電池3の数などを調整する。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the case where the assembled battery system 1 is applied to the rectifier 101 has been described. However, the battery pack system 1 may be applied to other facilities such as an uninterruptible power supply. At this time, the number of the cells 2 or the single assembled battery 3 is adjusted according to the equipment to be applied.

また、二次電池としてリチウムイオン二次電池である場合について説明したが、鉛蓄電池にも適用可能である。   Moreover, although the case where it was a lithium ion secondary battery was demonstrated as a secondary battery, it is applicable also to a lead acid battery.

また、上記の実施の形態では、電池管理部6を単組電池3ごとに配設しているが、セル2ごとに配設するようにしてもよい。   In the above-described embodiment, the battery management unit 6 is provided for each single battery pack 3, but may be provided for each cell 2.

さらに、間欠充電における充電期間と充電休止期間の切り替えを、セル2の劣化度に応じて変更するようにしてもよい。具体的には、セル2のセル電圧VCが、異常と判定されるしきい値に近くなった場合に、当該セル2の状態を監視するために、間欠充電の間隔を短くしてより詳細にセル状態を監視するようにしてもよい。具体的には、例えば、セル2が、図5の不良領域A2には入っていないが、不良領域A2に隣接する良好領域A1である場合には、時間の経過とともに異常となる可能性が高いと考えられるため、そのセル2の間欠充電間隔を短くするようにする。つまり、良好領域A1の外縁部に該当する領域を予備不良領域として定めておき、予備不良領域に属するセルの充電間隔を短くするように制御する。また、このとき、警報部などを通じで当該セルの情報を出力するようにしてもよい。   Further, switching between the charging period and the charging suspension period in intermittent charging may be changed according to the degree of deterioration of the cell 2. Specifically, in order to monitor the state of the cell 2 when the cell voltage VC of the cell 2 is close to a threshold value that is determined to be abnormal, the interval of intermittent charging is shortened in more detail. The cell state may be monitored. Specifically, for example, when the cell 2 is not included in the defective area A2 of FIG. 5 but is the good area A1 adjacent to the defective area A2, there is a high possibility that the abnormality will occur as time passes. Therefore, the intermittent charge interval of the cell 2 is shortened. That is, a region corresponding to the outer edge portion of the good region A1 is determined as a preliminary defective region, and control is performed so as to shorten the charging interval of cells belonging to the preliminary defective region. At this time, the cell information may be output through an alarm unit or the like.

さらにまた、充電スイッチ8に替えてダイオードを接続することで、単組電池3の充電を停止する場合は整流器101からの充電を停止するように制御し、停電時には各単組電池3から負荷装置102に電力を供給するようにしてもよい。このようにすることで、すべての単組電池3の充電停止中に停電が発生した場合であっても、負荷装置102への電力供給を継続することができる。   Furthermore, by connecting a diode instead of the charge switch 8, the charging from the rectifier 101 is controlled to stop when the charging of the single battery 3 is stopped. Electric power may be supplied to 102. By doing in this way, even if it is a case where a power failure generate | occur | produces during the charge stop of all the assembled batteries 3, the electric power supply to the load apparatus 102 can be continued.

1 リチウムイオン組電池システム(組電池システム)
2 リチウムイオンセル(二次電池)
3 単組電池
4 単組電池電流計
5 セル電圧調整器
6 電池管理部(電池管理手段)
7 制御部(制御手段)
8 充電スイッチ
VC セル電圧
VT 総電圧
1 Lithium-ion battery system (battery system)
2 Lithium ion cell (secondary battery)
3 single battery 4 single battery ammeter 5 cell voltage regulator 6 battery management unit (battery management means)
7 Control unit (control means)
8 Charge switch VC Cell voltage VT Total voltage

Claims (4)

多数の二次電池を直列接続して構成される組電池に、充電電流を供給する充電期間と供給を休止する充電休止期間とを繰り返して設定する組電池システムであって、
前記二次電池および前記組電池の電圧監視を行う電池管理手段と、
前記充電期間における前記二次電池の電圧、または前記充電休止期間における前記二次電池の電圧にもとづいて、前記二次電池の異常を判定し、当該二次電池を含む組電池への充電電流の供給を停止する制御手段と、
を備えることを特徴とする組電池システム。
An assembled battery system that repeatedly sets a charging period for supplying charging current and a charging suspension period for stopping supply to the assembled battery configured by connecting a large number of secondary batteries in series,
Battery management means for monitoring the voltage of the secondary battery and the assembled battery;
Based on the voltage of the secondary battery in the charging period or the voltage of the secondary battery in the charging suspension period, the abnormality of the secondary battery is determined, and the charging current to the assembled battery including the secondary battery is determined. Control means for stopping the supply;
An assembled battery system comprising:
前記制御手段は、前記充電休止期間における前記組電池の総電圧の自己放電量を回復させるだけの充電電流を前記充電期間に供給する、ことを特徴とする請求項1に記載の組電池システム。   2. The assembled battery system according to claim 1, wherein the control unit supplies a charging current for recovering the self-discharge amount of the total voltage of the assembled battery during the charging suspension period to the charging period. 多数の二次電池を直列接続して構成される組電池に、充電電流の供給と供給休止とを繰り返す組電池システムの管理方法であって、
電池管理手段は前記二次電池の電圧を監視し、前記二次電池および前記組電池を流れる充電電流を制御し、
前記制御手段は、前記充電期間における前記二次電池の電圧、または前記充電休止期間における前記二次電池の電圧にもとづいて、前記二次電池の異常を判定し、当該二次電池を含む組電池への充電電流の供給を停止する、
ことを特徴とする組電池システムの管理方法。
A method for managing an assembled battery system that repeats supply and suspension of charging current to an assembled battery configured by connecting a large number of secondary batteries in series,
The battery management means monitors the voltage of the secondary battery, controls the charging current flowing through the secondary battery and the assembled battery,
The control means determines an abnormality of the secondary battery based on the voltage of the secondary battery in the charging period or the voltage of the secondary battery in the charging suspension period, and includes the secondary battery. Stop supplying charging current to
A method for managing an assembled battery system, comprising:
前記制御手段は、前記充電休止期間における前記組電池の総電圧の自己放電量を回復させるだけの充電電流を前記充電期間に供給する、ことを特徴とする請求項3に記載の組電池システムの管理方法。   4. The assembled battery system according to claim 3, wherein the control unit supplies a charging current for recovering a self-discharge amount of the total voltage of the assembled battery during the charging suspension period. 5. Management method.
JP2012021629A 2012-02-03 2012-02-03 Battery pack system and management method of battery pack system Pending JP2013160582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021629A JP2013160582A (en) 2012-02-03 2012-02-03 Battery pack system and management method of battery pack system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021629A JP2013160582A (en) 2012-02-03 2012-02-03 Battery pack system and management method of battery pack system

Publications (1)

Publication Number Publication Date
JP2013160582A true JP2013160582A (en) 2013-08-19

Family

ID=49172956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021629A Pending JP2013160582A (en) 2012-02-03 2012-02-03 Battery pack system and management method of battery pack system

Country Status (1)

Country Link
JP (1) JP2013160582A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022665A (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Power storage device, vehicle, internal short circuit detection control method for power storage device, and charge control method for power storage device
US10205327B2 (en) 2015-01-30 2019-02-12 Samsung Sdi Co., Ltd. Battery system and energy storage system including distribution controller for selecting battery banks for charging/discharging
JP2019041469A (en) * 2017-08-24 2019-03-14 株式会社Nttファシリティーズ Battery pack control system and battery pack control method
WO2019240225A1 (en) * 2018-06-14 2019-12-19 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
CN111602065A (en) * 2018-01-16 2020-08-28 雷诺股份公司 Method for detecting a faulty battery cell in a battery
JP2022522342A (en) * 2019-11-05 2022-04-18 エルジー エナジー ソリューション リミテッド Battery diagnostic device, battery diagnostic method and energy storage system
WO2022158515A1 (en) * 2021-01-20 2022-07-28 Apb株式会社 Lithium ion battery quality estimation method, lithium ion battery quality estimation device, and computer program
JP7453402B2 (en) 2020-07-31 2024-03-19 エルジー エナジー ソリューション リミテッド Battery management device, battery pack, battery system and battery management method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298504A (en) * 1994-04-27 1995-11-10 Sanyo Electric Co Ltd Charging method for secondary battery
JPH0898421A (en) * 1994-09-27 1996-04-12 Toshiba Corp Boosting charging system
JPH09261883A (en) * 1996-03-22 1997-10-03 Sanyo Electric Co Ltd Charging control of secondary battery
JPH10270092A (en) * 1997-03-24 1998-10-09 Nippon Telegr & Teleph Corp <Ntt> Secondary battery deterioration judging method and its device
JPH10304589A (en) * 1997-04-24 1998-11-13 Sanyo Electric Co Ltd Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state
JPH10322917A (en) * 1997-05-12 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> Deterioration discrimination for secondary battery and device thereof
JPH11224696A (en) * 1998-02-04 1999-08-17 Nippon Telegr & Teleph Corp <Ntt> Method for judging deterioration of secondary battery and its circuit
JP2007187533A (en) * 2006-01-12 2007-07-26 Sanyo Electric Co Ltd Judging technique for length of life of battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298504A (en) * 1994-04-27 1995-11-10 Sanyo Electric Co Ltd Charging method for secondary battery
JPH0898421A (en) * 1994-09-27 1996-04-12 Toshiba Corp Boosting charging system
JPH09261883A (en) * 1996-03-22 1997-10-03 Sanyo Electric Co Ltd Charging control of secondary battery
JPH10270092A (en) * 1997-03-24 1998-10-09 Nippon Telegr & Teleph Corp <Ntt> Secondary battery deterioration judging method and its device
JPH10304589A (en) * 1997-04-24 1998-11-13 Sanyo Electric Co Ltd Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state
JPH10322917A (en) * 1997-05-12 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> Deterioration discrimination for secondary battery and device thereof
JPH11224696A (en) * 1998-02-04 1999-08-17 Nippon Telegr & Teleph Corp <Ntt> Method for judging deterioration of secondary battery and its circuit
JP2007187533A (en) * 2006-01-12 2007-07-26 Sanyo Electric Co Ltd Judging technique for length of life of battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205327B2 (en) 2015-01-30 2019-02-12 Samsung Sdi Co., Ltd. Battery system and energy storage system including distribution controller for selecting battery banks for charging/discharging
CN107687387A (en) * 2016-08-05 2018-02-13 株式会社杰士汤浅国际 Electrical storage device, vehicle, detection control method and charge control method
JP2018022665A (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Power storage device, vehicle, internal short circuit detection control method for power storage device, and charge control method for power storage device
US10637262B2 (en) 2016-08-05 2020-04-28 Gs Yuasa International Ltd. Energy storage apparatus, vehicle, internal short-circuit detection controlling method for energy storage apparatus, and charge controlling method for energy storage apparatus
CN107687387B (en) * 2016-08-05 2021-07-06 株式会社杰士汤浅国际 Power storage device, vehicle, and charge control method
JP7004524B2 (en) 2017-08-24 2022-01-21 株式会社Nttファシリティーズ Batteries control system and battery control method
JP2019041469A (en) * 2017-08-24 2019-03-14 株式会社Nttファシリティーズ Battery pack control system and battery pack control method
JP7301850B2 (en) 2018-01-16 2023-07-03 ルノー エス.ア.エス. How to detect defective cells in electrical batteries
CN111602065A (en) * 2018-01-16 2020-08-28 雷诺股份公司 Method for detecting a faulty battery cell in a battery
JP2021511767A (en) * 2018-01-16 2021-05-06 ルノー エス.ア.エス.Renault S.A.S. How to detect defective cells in electric batteries
WO2019240225A1 (en) * 2018-06-14 2019-12-19 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP2019219389A (en) * 2018-06-14 2019-12-26 株式会社Gsユアサ Estimation device, power storage device, estimation method and computer program
JP7322529B2 (en) 2018-06-14 2023-08-08 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP2022522342A (en) * 2019-11-05 2022-04-18 エルジー エナジー ソリューション リミテッド Battery diagnostic device, battery diagnostic method and energy storage system
JP7214002B2 (en) 2019-11-05 2023-01-27 エルジー エナジー ソリューション リミテッド Battery diagnostic device, battery diagnostic method and energy storage system
US11796599B2 (en) 2019-11-05 2023-10-24 Lg Energy Solution, Ltd. Battery diagnosis apparatus, battery diagnosis method and energy storage system
JP7453402B2 (en) 2020-07-31 2024-03-19 エルジー エナジー ソリューション リミテッド Battery management device, battery pack, battery system and battery management method
WO2022158515A1 (en) * 2021-01-20 2022-07-28 Apb株式会社 Lithium ion battery quality estimation method, lithium ion battery quality estimation device, and computer program

Similar Documents

Publication Publication Date Title
JP7212650B2 (en) Systems and methods for series battery charging and formation
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
CN104184183B (en) Battery management system and method of driving the same
JP2013160582A (en) Battery pack system and management method of battery pack system
JP5812025B2 (en) Power storage system for stationary use and control method
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
US20130187465A1 (en) Power management system
JP6897765B2 (en) Management device, power storage device and power storage system
JP2003132960A (en) Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
WO2017212815A1 (en) Trickle charging power supply system
CN111164824A (en) Management device of battery pack and battery pack system
KR102014719B1 (en) Battery life management device
JP5409163B2 (en) Lithium-ion battery management device, management method, and lithium-ion battery system
JP5366641B2 (en) Lithium-ion battery management device and lithium-ion battery system
KR101425394B1 (en) Power Converting System with Diagnostic or Regeneration Function for Battery
JP2012186951A (en) Power supply system and discharge test method
JP2014209827A (en) Independent power supply
JP6265010B2 (en) Power storage system
RU2491696C1 (en) Uninterrupted power supply module for dc loads
CN112703628A (en) Power supply system, diagnostic device, and uninterruptible power supply device
JP5626756B2 (en) Lithium ion battery management method and management apparatus
JP2004119112A (en) Power supply device
JP2019041469A (en) Battery pack control system and battery pack control method
JP2021197220A (en) Method for controlling zinc battery and power supply system
KR101815230B1 (en) solar battery charge-discharge control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308