WO2014073443A1 - 組電池および組電池の製造方法 - Google Patents

組電池および組電池の製造方法 Download PDF

Info

Publication number
WO2014073443A1
WO2014073443A1 PCT/JP2013/079516 JP2013079516W WO2014073443A1 WO 2014073443 A1 WO2014073443 A1 WO 2014073443A1 JP 2013079516 W JP2013079516 W JP 2013079516W WO 2014073443 A1 WO2014073443 A1 WO 2014073443A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembled battery
electrode tab
conductive member
series
pair
Prior art date
Application number
PCT/JP2013/079516
Other languages
English (en)
French (fr)
Inventor
茂樹 萱野
辰徳 成清
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014545667A priority Critical patent/JP6079785B2/ja
Priority to CN201380058659.6A priority patent/CN104769746B/zh
Priority to EP13853108.2A priority patent/EP2919294B1/en
Priority to KR1020157010336A priority patent/KR101732285B1/ko
Priority to US14/441,073 priority patent/US9865849B2/en
Publication of WO2014073443A1 publication Critical patent/WO2014073443A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery and a method for manufacturing the assembled battery.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an assembled battery and a method of manufacturing the assembled battery that makes it extremely easy to handle the assembled battery.
  • the assembled battery of the present invention for achieving the above object has a single cell, a frame member, a conductive member, and a bus bar.
  • the unit cell includes a battery main body in which the power generation element is housed in an exterior body, and an electrode tab including a positive electrode tab and a negative electrode tab that are connected to the power generation element and project from the end of the exterior body.
  • the frame member mounts a pair of unit cells on the front surface and the back surface, respectively.
  • the conductive member is disposed on the frame member and electrically connects the electrode tabs of the pair of unit cells.
  • the bus bar electrically connects the conductive members disposed on the frame members adjacent in the stacking direction among the plurality of stacked frame members.
  • a battery main body in which the power generation element is housed in the exterior body, and a positive electrode tab that is connected to the power generation element and protrudes from the end of the exterior body.
  • an electrode tab including a negative electrode tab in the method for manufacturing an assembled battery includes a unit cell holding step, an electrode tab connecting step, and a conductive member connecting step.
  • the unit cell holding step the pair of unit cells are respectively placed on the front surface and the back surface using a frame member.
  • the electrode tab connection step the electrode tabs of the pair of unit cells are electrically connected to each other using a conductive member disposed on the frame member.
  • the conductive member connecting step among the plurality of stacked frame members, the conductive members disposed on the frame members adjacent in the stacking direction are electrically connected to each other using a bus bar.
  • FIG. 1 is a perspective view showing the assembled battery 1.
  • FIG. 2 is an exploded perspective view showing the assembled battery 1 in an exploded manner.
  • FIG. 3 is an exploded perspective view showing the battery module 110 of the assembled battery 1 in an exploded manner.
  • FIG. 4 is an exploded end view showing an essential part of the battery module 110 of the assembled battery 1 in an exploded manner.
  • FIG. 4A shows a part along the line A-A ′ in FIG. 3 in an end view.
  • FIG. 4B shows a part along the line B-B ′ in FIG. 3 in an end view.
  • FIG. 5 is a schematic diagram showing the parallel body 210 of the assembled battery 1.
  • FIG. 6 is a schematic diagram showing a state in which a plurality of parallel bodies 210 of the assembled battery 1 are connected in series.
  • the assembled battery 1 includes a fastening member 50 in addition to the unit cell 10, the frame member 20, the conductive member 30, and the bus bar 40.
  • the pair of unit cells 10 are placed on the front and back surfaces of the frame member 20 so as to face each other, and the pair of unit cells 10 are electrically connected via the conductive member 30.
  • the bus bar 40 electrically connects the conductive members 30 respectively disposed on the plurality of frame members 20.
  • the fastening member 50 integrally fixes a plurality of stacked frame members 20 together.
  • the unit cell 10 includes a flat battery body 11 in which a power generation element (not shown) is housed inside an exterior body 11 a formed of a flexible film-like member such as a laminate film. And an electrode tab 12 including a plate-like positive electrode tab 12a and a negative electrode tab 12b provided to be connected to the power generation element inside the outer package 11a and to protrude outward from the end of the outer package 11a.
  • the unit cell 10 corresponds to, for example, a lithium ion secondary battery, a polymer lithium battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
  • the power generation element to be charged and discharged is covered and sealed with a bag-shaped exterior body 11 a formed by joining the outer peripheral edges of a flexible film-like member.
  • the power generation element is configured by further stacking a plurality of layers in which a positive electrode and a negative electrode are stacked via a separator.
  • Insertion holes 11b are provided at two corners forming a diagonal of the exterior body 11a of the unit cell 10. The insertion hole 11 b allows the positioning protrusion 21 b provided in the battery body holding portion 21 of the frame member 20 to be inserted.
  • the frame member 20 has a pair of unit cells 10 mounted on the front surface and the back surface, respectively.
  • the frame member 20 is made of, for example, reinforced plastics, and is provided with a holding portion 21 a formed in a frame shape penetrating along the stacking direction of the unit cells 10. Double-sided tape is affixed to both the front and back surfaces of the holding portion 21a, whereby the battery bodies 11 of the pair of unit cells 10 placed on the front and back surfaces of the holding portion 21a are held by the frame member 20, respectively.
  • the frame member 20 is not limited to a penetrating frame shape, and may be configured to hold a pair of unit cells 10 by providing recesses on both sides thereof.
  • the battery main body holding portion 21 is provided with a positioning projection 21b.
  • the positioning protrusion 21b is inserted through the insertion hole 11b of the exterior body 11a of the unit cell 10.
  • the electrode tab connecting portion 22 is provided so as to protrude from both ends of the holding portion 21a.
  • the electrode tab connecting portion 22 is a direction that intersects the stacking direction of the unit cells 10 and protrudes outward.
  • the electrode tab connecting portion 22 holds the conductive member 30 in a state where the U-shaped conductive member 30 is inserted.
  • the conductive member 30 is disposed in the electrode tab connection portion 22 of the frame member 20, and electrically connects the electrode tabs 12 of the pair of unit cells 10.
  • the conductive material 31 of the conductive member 30 is made of, for example, a copper alloy and is formed in a U shape.
  • the conductive material 31 is formed in a U shape by connecting two plate-like connecting portions 31a extending in parallel with the extending direction of the electrode tab 12 of the unit cell 10 through the extending portion 31b. .
  • the positive electrode tabs 12 a of the pair of unit cells 10 are electrically connected through the conductive material 31.
  • the negative electrode tab 12 b of the pair of unit cells 10 is electrically connected via another conductive material 31.
  • the bus bar 40 electrically connects the conductive members 30 disposed in the frame members 20 adjacent to each other in the stacking direction among the plurality of stacked frame members 20.
  • the bus bar 40 is made of, for example, a copper alloy and is formed in a plate shape.
  • the bus bars 40 are arranged so as to be alternately arranged at both ends of the adjacent frame members 20 in order to electrically connect the pair of unit cells 10 mounted on each frame member 20 in series. Yes.
  • the bus bar 40 and the conductive member 30 are bonded together by locally irradiating the contacted portion with a laser and melting it.
  • the fastening member 50 integrally fastens a plurality of stacked frame members 20 as shown in FIGS.
  • the fastening member 50 includes an upper plate 51, a lower plate 52, and a plurality of fastening bolts 53.
  • the upper plate 51 and the lower plate 52 are made of metal, for example, and are formed in a plate shape.
  • insertion holes 51a for inserting the fastening bolts 53 are provided.
  • screw grooves 52a for screwing the screw threads 53a formed at the tips of the fastening bolts 53 are provided.
  • the fastening bolt 53 is inserted into the insertion holes 21 c of the plurality of frame members 20 via the upper plate 51 and then screwed into the screw grooves 52 a of the lower plate 52.
  • the pair of conductive materials 31 connect the positive electrode tabs 12 a adjacent to each other in the stacking direction of the frame member 20, and connect the negative electrode tabs 12 b to each other. 10 are electrically connected in parallel.
  • a parallel body 210 is constituted by the pair of unit cells 10, the frame member 20 and the conductive member 30 shown in FIG. 5. The parallel body 210 corresponds to one form of the battery module.
  • a plurality of parallel bodies 210 can be electrically arranged in series. Specifically, one parallel body 210a and another parallel body 210b are stacked. The other parallel body 210b is rotated 180 degrees, for example, in the direction intersecting the stacking direction of the frame members 20 with respect to the one parallel body 210a (that is, rotated 180 degrees around the stacking direction as the rotation axis). Are stacked on one parallel body 210a.
  • the bus bar 40 electrically connects the conductive member 30 that conducts the positive electrode tab 12a of one parallel body 210a and the conductive member 30 that conducts the negative electrode tab 12b of another parallel body 210b.
  • the assembled battery 1 includes a unit cell 10, a frame member 20, a conductive member 30, and a bus bar 40.
  • the cell 10 includes a battery body 11 in which a power generation element (not shown) is housed in an exterior body 11a, a positive electrode tab 12a and a negative electrode that are connected to the power generation element (not shown) and project from the end of the exterior body 11a. And an electrode tab 12 having an electrode tab 12b.
  • On the frame member 20, a pair of unit cells 10 are placed on the front surface and the back surface, respectively.
  • the conductive member 30 is disposed on the frame member 20 and electrically connects the electrode tabs 12 of the pair of unit cells 10.
  • the bus bar 40 electrically connects the conductive members 30 disposed on the frame members 20 adjacent to each other in the stacking direction among the plurality of stacked frame members 20.
  • the battery body 11 in which the power generation element (not shown) is housed in the exterior body 11a and the power generation element (not shown) connected to the power generation element (not shown) and projecting from the end of the exterior body 11a are provided.
  • a unit cell 10 including an electrode tab 12 including a positive electrode tab 12a and a negative electrode tab 12b is prepared.
  • the manufacturing method of the assembled battery 1 has a cell holding process, an electrode tab connection process, and a conductive member connection process. In the unit cell holding step, the pair of unit cells 10 are mounted on the front surface and the back surface, respectively, using the frame member 20.
  • the electrode tabs 12 of the pair of unit cells 10 are electrically connected to each other using the conductive member 30 disposed on the frame member 20.
  • the bus members 40 are used to electrically connect the conductive members 30 disposed on the frame members 20 adjacent to each other in the stacking direction among the plurality of stacked frame members 20.
  • the pair of unit cells 10 are placed on the frame member 20, and the conductive member 30 connects the electrode tabs 12 of the pair of unit cells 10 to each other.
  • the bus bars 40 connect the adjacent conductive members 30 to each other.
  • the assembled battery 1 after assembly can ensure electrical reliability without the electrode tab 12 of the cell 10 being easily deformed even when an external force is applied.
  • the pair of single cells 10 are not easily opened or short-circuited, and the electrical reliability is high.
  • the assembled battery 1 can be easily assembled without depending on the dimensional error or positioning accuracy of the members. Specifically, even if the positions of the electrode tabs 12 of the pair of unit cells 10 are relatively displaced in the extending direction of the electrode tabs 12, the electrode tabs 12 are not directly connected to each other via the conductive member 30. Since it is the structure connected indirectly, the assembled battery 1 can be assembled without considering the relative position shift of the electrode tab 12. Similarly, even if the position of the bus bar 40 that electrically connects the conductive members 30 is relatively shifted, the bus bars 40 are arranged independently of each other. The assembled battery 1 can be assembled without doing so. As described above, even if the number of members increases, the assembly can be performed without depending on the shape error or positioning error of each member constituting the assembled battery 1, and thus it is extremely difficult to configure the members by stacking them. Great effect.
  • the positive electrode tabs 12a adjacent to each other in the stacking direction of the frame member 20 are connected via one conductive member 30, and the negative electrode tabs 12b are connected via another conductive member 30, You may comprise the parallel body 210 which connected the cell 10 electrically in parallel.
  • the conductive member 30 is used to connect the positive electrode tabs 12 a adjacent to each other in the stacking direction of the frame member 20, and the negative electrode tab 12 b. You may connect each other.
  • a parallel body 210 is configured by electrically connecting a pair of unit cells 10 in parallel.
  • the parallel body 210 can be configured by electrically connecting the pair of unit cells 10 in parallel with the simple configuration as described above. Since it can do, the handling at the time of forming the assembled battery 1 becomes very easy.
  • the bus bar 40 electrically connects the conductive member 30 that conducts the positive electrode tabs 12a of one parallel body 210a and the conductive member 30 that conducts the negative electrode tabs 12b of another parallel body 210b in series.
  • the conductive member connecting step uses the bus bar 40, the conductive member 30 that conducts the positive electrode tabs 12a of one parallel body 210a, and the conductive member 30 that conducts the negative electrode tabs 12b of the other parallel body 210b, Are electrically connected in series.
  • a pair of unit cells 10 connected in parallel are connected in series according to a required voltage value by the simple configuration as described above. Since it can do, the handling at the time of forming the assembled battery 1 becomes very easy.
  • the frame member 20 may be formed in a frame shape penetrating so that the pair of unit cells 10 directly face each other.
  • the pair of unit cells 10 can be held by the frame member 20 in a state where the pair of unit cells 10 are brought close to or in contact with each other. Therefore, a pair of unit cells 10 can be stacked with high density. Furthermore, when forming the frame member 20, it is easier to process the both sides of the frame member 20 than to provide recesses on both sides, and thus the manufacturing cost of the frame member 20 can be reduced. Furthermore, the frame member 20 can be reduced in weight.
  • Modification 1 of the first embodiment An assembled battery 1 and a method for manufacturing the assembled battery 1 according to Modification 1 of the first embodiment will be described with reference to FIGS.
  • FIG. 7 is an exploded perspective view showing the battery module 120 of the assembled battery 1 in an exploded manner.
  • FIG. 8 is an exploded end view showing an essential part of the battery module 120 of the assembled battery 1 in an exploded manner.
  • FIG. 8A shows a part along the line C-C ′ in FIG. 7 in an end view.
  • FIG. 8B shows a part along the line D-D ′ of FIG. 7 in an end view.
  • FIG. 9 is a schematic diagram showing the serial body 220 of the assembled battery 1.
  • FIG. 10 is a schematic diagram showing a state in which a plurality of series bodies 220 of the assembled battery 1 are connected in series.
  • the assembled battery 1 according to the first modification of the first embodiment has a configuration in which a pair of unit cells 10 are connected in series without being electrically connected in parallel with the configuration of the assembled battery 1 according to the first embodiment described above. Different.
  • the conductive member 30 of the assembled battery 1 includes conductive materials 32 and 33 in addition to the conductive material 31 described above.
  • the conductive materials 32 and 33 are made of, for example, a copper alloy and are formed in an L shape.
  • the conductive materials 32 and 33 restrict the width in the longitudinal direction and the height direction so that they are not electrically connected to each other even if they are arranged adjacent to the electrode tab connection portion 22 of the frame member 20.
  • the conductive materials 32 and 33 are disposed on one electrode tab connection portion 22 provided on the frame member 20.
  • the conductive material 32 is disposed such that the L-shaped refracted portion faces upward in FIG. 7 or FIG.
  • the conductive material 32 is in contact with the positive electrode tab 12a of the unit cell 10 located above the pair.
  • the conductive material 33 is disposed such that the L-shaped refracted portion faces downward in FIG. 7 or FIG.
  • the conductive material 33 is in contact with the negative electrode tab 12b of the unit cell 10 located below the pair.
  • the conductive material 31 is disposed on the other electrode tab connecting portion 22 provided on the frame member 20 so as to face the conductive materials 32 and 33.
  • the conductive material 31 electrically connects the pair of unit cells 10 in series by connecting the positive electrode tab 12a and the negative electrode tab 12b adjacent to each other in the stacking direction of the frame member 20.
  • a series body 220 is constituted by the pair of unit cells 10, the frame member 20 and the conductive member 30 shown in FIG. 9.
  • the serial body 220 corresponds to one form of the battery module.
  • a plurality of serial bodies 220 can be electrically arranged in series. Specifically, one serial body 220a and another serial body 220b are stacked. The other series body 220b is laminated on the one series body 220a in a state where the other series body 220b is rotated by 180 degrees, for example, in a direction intersecting the lamination direction of the frame member 20 with respect to the one series body 220a.
  • the bus bar 40 electrically connects the conductive member 30 that conducts the positive electrode tab 12a of one series body 220a and the conductive member 30 that conducts the negative electrode tab 12b of another series body 220b.
  • the positive electrode tab 12a and the negative electrode tab 12b that are adjacent to each other in the stacking direction of the frame member 20 are connected via the conductive member 30 to form a series body 220 in which the pair of unit cells 10 are electrically connected in series.
  • the electrode tab connection step uses the conductive member 30 to connect the positive electrode tab 12 a and the negative electrode tab 12 b that are adjacent to each other in the stacking direction of the frame member 20. Good. A pair of single cells 10 are electrically connected in series to form a series body 220.
  • the series body 220 can be configured by electrically connecting the pair of unit cells 10 in series with the simple configuration as described above. Since it can do, the handling at the time of forming the assembled battery 1 becomes very easy.
  • the error is absorbed and provided in the pair of unit cells 10 via the conductive member 30.
  • the electrode tabs 12 having different polarities can be easily connected. Therefore, it is very easy to configure the series body 220 using the pair of unit cells 10 and form a series circuit.
  • the bus bar 40 electrically connects in series the conductive member 30 that conducts the positive electrode tab 12a of one series body 220a and the conductive member 30 that conducts the negative electrode tab 12b of another series body 220b.
  • the conductive member connecting step uses the bus bar 40 to electrically connect the conductive member 30 that conducts the positive electrode tab 12a of one series body 220a and the conductive member 30 that conducts the negative electrode tab 12b of another series body 220b. Connected in series.
  • a pair of unit cells 10 connected in series are further serially connected in accordance with a required voltage value by the simple configuration as described above. Since it can connect, the handling at the time of forming the assembled battery 1 becomes very easy.
  • FIG. 11 is an exploded perspective view showing a state in which a plurality of battery modules 300 of the assembled battery 1 are stacked.
  • FIG. 12 is an exploded perspective view showing a state where a plurality of battery modules 300 of the assembled battery 1 are disassembled.
  • FIG. 13 is an exploded perspective view showing the battery module 300 of the assembled battery 1 in an exploded manner.
  • the assembled battery 1 according to the second modification of the first embodiment has the configuration in which the positive electrode tab 312a and the negative electrode tab 312b of the unit cell 310 are protruded from only one end without protruding from both ends of the exterior body 311a, as described above. It differs from the structure of the assembled battery 1 which concerns on 1st Embodiment.
  • FIG. 11 shows a state where stacked battery modules 300 are connected by a bus bar 340. Specifically, a pair of unit cells 10 are electrically connected in parallel as shown in FIG. 13, and then two battery modules 300 are stacked as shown in FIG.
  • the battery module 300 includes a single battery 310, a frame member 320, a conductive member 330, and a bus bar 340.
  • the basic configuration of the unit cell 310, the frame member 320, the conductive member 330, and the bus bar 340 is the same as that of the unit cell 10, the frame member 20, the conductive member 30, and the bus bar 40 described above, except for the electrode tab. This is the same as the typical configuration.
  • the positive electrode tab 312a and the negative electrode tab 312b of the electrode tab 312 are respectively protruded from one end of the exterior body 311a.
  • the frame member 320 is provided with two electrode tab connection portions 322 protruding from one end.
  • the conductive member 330 includes a pair of conductive materials 331 each formed in a U-shape. The pair of conductive materials 331 are disposed on the two electrode tab connection portions 322, respectively.
  • the other frame member 320b is laminated on the one frame member 320a in a state where the front surface side and the back surface side are reversed with respect to the one frame member 320a.
  • the bus bar 340 connects the conductive materials 331 disposed adjacent to each other in the vertical direction. Specifically, the bus bar 340 electrically conducts the positive electrode tab 312a of the unit cell 310 placed on one frame member 320a and the negative electrode tab 312b of the unit cell 310 placed on the other frame member 320b. They are electrically connected in series via a material 331.
  • the unit cell 310 has a configuration in which a positive electrode tab 312a and a negative electrode tab 312b are provided so as to protrude from the same end of the exterior body 311a.
  • the assembled battery 1 configured in this way, when it is desirable to collect current from only one side of the assembled battery 1, not from both sides, from the shape of the installation space, avoidance of interference with other members, insulation, etc. Can be applied.
  • a configuration may be adopted in which one frame member 320a and another frame member 320b in which the front surface side and the back surface side are reversed with respect to the one frame member 320a are laminated.
  • the bus bar 340 conducts the conductive member 30 that conducts the positive electrode tab 12a of the single battery 10 placed on one frame member 320a and the conductive member 30 that conducts the negative electrode tab 12b of the single battery 10 placed on the other frame member 320b.
  • the members 30 are electrically connected in series.
  • a pair of unit cells 10 connected in parallel according to a required voltage value even if the current is collected from only one side of the assembled battery 1 instead of both sides. Can be connected in series.
  • FIG. 14 is a perspective view showing the assembled battery 2.
  • FIG. 15 is an exploded perspective view showing an essential part of the assembled battery 2 in an exploded manner.
  • FIG. 16 is an end view showing a part of the assembled battery 2 shown in FIG. 14 along the line EE ′.
  • the battery pack 2 according to the second embodiment is different from the battery pack 1 according to the first embodiment described above in that the connection member 60 for connecting the bus bar 40 is provided.
  • the connecting member 60 connects a plurality of bus bars 40 arranged in the stacking direction while being electrically insulated from each other.
  • the connecting member 60 is made of plastics, for example, and is formed in a rectangular shape.
  • the connecting member 60 includes a bus bar holding plate 61 that is joined to the frame member 20, and flanges 62 to 64 that anchor the bus bar 40.
  • the bus bar holding plate 61 is provided with a plurality of insertion holes 61a.
  • the insertion hole 61a allows the electrode tab connection portion 22 of the frame member 20 to be inserted.
  • the positioning holes 61b provided at the edge of the bus bar holding plate 61 allow the positioning protrusions 21d provided on the outer peripheral surface of the frame member 20 to be inserted.
  • the flanges 62 to 64 are made of plastics, for example, and are each formed in a rectangular shape. A pair of flanges 62 are provided so as to face the upper and lower sides of the insertion hole 61a of the bus bar holding plate 61, and hold the bus bar 40 from the upper and lower directions.
  • the flanges 63 and 64 are provided so as to face the left and right of the insertion hole 61a of the bus bar holding plate 61, and hold the bus bar 40 from the left and right directions.
  • the flange portion 62 of the connecting member 60 is provided with a plurality of cuts in a direction intersecting with the stacking direction of the frame member 20. Therefore, the flange part 62 of the connecting member 60 can move and hold the bus bar 40 in the stacking direction of the frame member 20 by bending the outer shape using a plurality of cut portions.
  • the assembled battery 2 is configured to further include a connecting member 60 that electrically insulates and connects a plurality of bus bars 40 arranged in the stacking direction.
  • the connecting member 60 can be attached to the frame member 20 that is stacked. Therefore, the assembled battery 2 can be easily assembled and the time required for assembling the assembled battery 2 can be shortened.
  • the connecting member 60 may be configured to hold the bus bar 40 so as to be movable in the stacking direction of the frame member 20.
  • the positions of the plurality of bus bars 40 can be relatively varied in a state where the plurality of bus bars 40 are connected to the single connection member 60. Therefore, when a stacking error occurs in the stacking direction of the frame member 20 by stacking a plurality of the frame members 20 or when a dimensional error occurs in the single frame member 20, these errors are transferred to the bus bar 40. Can be absorbed by the connecting member 60. As described above, the assembled battery 2 can be assembled without depending on the stacking error in the stacking direction of the plurality of frame members 20 or the dimensional error of the single frame member 20. Can be improved.
  • FIG. 17 is a perspective view showing the assembled battery 3.
  • FIG. 18 is an exploded perspective view showing an essential part of the assembled battery 3 in an exploded manner.
  • FIG. 19 is an end view showing a part of the battery pack 3 along the line FF ′ shown in FIG.
  • the assembled battery 3 according to the third embodiment is different from the assembled battery 2 according to the second embodiment described above in that the deformed portions 71 to 73 that can deform the bus bar 70 are provided.
  • the bus bar 70 is electrically connected to the conductive member 30 while being connected to the connecting member 60.
  • the bus bar 70 is made of, for example, a copper alloy and is formed in a plate shape having a plurality of refractive portions.
  • the bus bar 70 includes a pair of deformed portions 72 that are convex in the direction intersecting the stacking direction of the frame members 20 and away from the frame members 20, and the frame.
  • a deformation portion 73 that is a convex portion is provided in a direction close to the member 20.
  • the deformation part 73 is provided between the pair of deformation parts 72.
  • the bus bar 70 can deform the pair of deformable portions 72 and the deformable portion 73 configured like a plate spring having irregularities.
  • the deforming portions 71 to 73 can be used by being elastically deformed, for example, by being formed of a copper alloy, as long as the deforming portions 71 to 73 are not plastically deformed beyond a predetermined deformation amount.
  • the assembled battery 3 has a configuration in which the bus bar 70 is provided with deformable portions 71 to 73 that can be deformed in the stacking direction of the frame member 20.
  • the assembled battery 3 configured as described above, even when a stacking error occurs in the stacking direction of the frame member 20 by stacking a plurality of the frame members 20, the stacking error is corrected by the deformed portions 71 to 73 can be absorbed. Further, even when a dimensional error occurs in the frame member 20 itself, the dimensional error can be absorbed by the deforming portions 71 to 73 of the bus bar 70. Therefore, the assembled battery 3 can be assembled without depending on the stacking error in the stacking direction of the plurality of frame members 20 or the dimensional error of the single frame member 20, thereby improving the productivity of the assembled battery 3. be able to.
  • deformable portions 71 to 73 may be configured to be elastically deformable.
  • the deforming portions 71 to 73 can be deformed again.
  • 1,2,3 batteries 10,310 cells, 11,311 battery body, 11a, 311a exterior body, 11b, 311b insertion hole, 12,312 electrode tabs, 12a, 312a positive electrode tab, 12b, 312b negative electrode tab, 20, 320, 320a, 320b frame member, 21, 321 Battery body holding part, 21a, 321a holding part, 21b, 21d, 321b positioning protrusion, 21c, 321c insertion hole, 22,322 electrode tab connections, 30, 330 conductive member, 31, 32, 33, 331 conductive material, 31a, 32a, 33a connection part, 31b, 32b, 33b extending part, 40, 70, 340 bus bar, 71, 72, 73 deformation part, 50 fastening members, 51 upper plate, 51a insertion hole, 52 Lower plate, 52a thread groove, 53 fastening bolts, 53a Thread, 60 connecting members, 61 Busbar holding plate, 61a insertion hole, 61b positioning hole, 62, 63, 64 buttocks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】組電池を形成する際の取り扱いが非常に容易となる組電池および組電池の製造方法を提供する。 【課題手段】組電池1は、単電池10、フレーム部材20、導電部材30、およびバスバ40を有している。単電池は、発電要素(不図示)を外装体11aに収納した電池本体11と、発電要素に接続し外装体の端部からそれぞれ突出して設けた正極電極タブ12aおよび負極電極タブ12bを備える電極タブ12と、を含んでいる。フレーム部材は、一対の単電池を表面と裏面にそれぞれ載置している。導電部材は、フレーム部材に配設し、一対の単電池の電極タブ同士を電気的に接続している。バスバは、複数積層したフレーム部材のうち、積層方向に隣接したフレーム部材に配設された導電部材同士をそれぞれ電気的に接続している。

Description

組電池および組電池の製造方法
 本発明は、組電池および組電池の製造方法に関する。
 従来から、発電要素を備えた電池モジュールを複数積層して形成した組電池がある。ここで、ラミネート式電池の集電タブを枠状からなる一対の固定具で挟み込むようにして保持する構成がある(例えば、特許文献1参照。)。
実用新案登録第3169685号公報
 しかしながら、上記特許文献1の構成では、集電タブに設けられた穴を、その集電タブを折り返して固定具に設けられた穴の位置と、隣接する固定具の穴の位置とに、それぞれ合わせる必要がある。このような場合、組電池の製造において、その組電池の取り扱いに手間が掛り、量産に適さない虞があった。
 本発明は、上記の課題を解決するためになされたものであり、組電池の取り扱いが非常に容易となる組電池および組電池の製造方法の提供を目的とする。
 上記目的を達成するための本発明の組電池は、単電池、フレーム部材、導電部材、およびバスバを有している。単電池は、発電要素を外装体に収納した電池本体と、発電要素に接続し外装体の端部からそれぞれ突出して設けた正極電極タブおよび負極電極タブを備える電極タブと、を含んでいる。フレーム部材は、一対の単電池を表面と裏面にそれぞれ載置している。導電部材は、フレーム部材に配設し、一対の単電池の電極タブ同士を電気的に接続している。バスバは、複数積層したフレーム部材のうち、積層方向に隣接したフレーム部材に配設された導電部材同士をそれぞれ電気的に接続している。
 また、上記目的を達成するための本発明の組電池の製造方法では、発電要素を外装体に収納した電池本体と、発電要素に接続し外装体の端部からそれぞれ突出して設けた正極電極タブおよび負極電極タブを備える電極タブと、を含む単電池を用意する。組電池の製造方法は、単電池保持工程、電極タブ接続工程、および導電部材接続工程を有している。単電池保持工程では、フレーム部材を用いて、一対の単電池を表面と裏面にそれぞれ載置する。電極タブ接続工程では、フレーム部材に配設する導電部材を用いて、一対の単電池の電極タブ同士を電気的に接続する。導電部材接続工程では、バスバを用いて、複数積層したフレーム部材のうち、積層方向に隣接したフレーム部材に配設された導電部材同士をそれぞれ電気的に接続する。
第1実施形態に係る組電池を示す斜視図である。 第1実施形態に係る組電池を分解して示す分解斜視図である。 第1実施形態に係る組電池の電池モジュールを分解して示す分解斜視図である。 第1実施形態に係る組電池の電池モジュールの要部を分解して示す分解端面図である。 第1実施形態に係る組電池の並列体を示す模式図である。 第1実施形態に係る組電池の並列体を直列に複数接続した状態を示す模式図である。 第1実施形態の変形例1に係る組電池の電池モジュールを分解して示す分解斜視図である。 第1実施形態の変形例1に係る組電池の電池モジュールの要部を分解して示す分解端面図である。 第1実施形態の変形例1に係る組電池の直列体を示す模式図である。 第1実施形態の変形例1に係る組電池の直列体を直列に複数接続した状態を示す模式図である。 第1実施形態の変形例2に係る組電池の複数の電池モジュールを積層した状態を示す分解斜視図である。 第1実施形態の変形例2に係る組電池の複数の電池モジュールを分解した状態を示す分解斜視図である。 第1実施形態の変形例2に係る組電池の電池モジュールを分解して示す分解斜視図である。 第2実施形態に係る組電池を示す斜視図である。 第2実施形態に係る組電池の要部を分解して示す分解斜視図である。 第2実施形態に係る組電池の要部を示す端面図である。 第3実施形態に係る組電池を示す斜視図である。 第3実施形態に係る組電池の要部を分解して示す分解斜視図である。 第3実施形態に係る組電池の要部を示す端面図である。
 以下、添付した図面を参照しながら、本発明の第1~第3実施形態を説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における各部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。
 (第1実施形態)
 第1実施形態に係る組電池1およびその組電池1の製造方法について、図1~図6を参照しながら説明する。
 図1は、組電池1を示す斜視図である。図2は、組電池1を分解して示す分解斜視図である。図3は、組電池1の電池モジュール110を分解して示す分解斜視図である。図4は、組電池1の電池モジュール110の要部を分解して示す分解端面図である。図4(a)は、図3のA-A’線に沿った一部を端面図で示している。図4(b)は、図3のB-B’線に沿った一部を端面図で示している。図5は、組電池1の並列体210を示す模式図である。図6は、組電池1の並列体210を直列に複数接続した状態を示す模式図である。
 図1および図2に示すように、組電池1は、単電池10、フレーム部材20、導電部材30、およびバスバ40に加えて、締結部材50を有している。組電池1は、フレーム部材20の表面と裏面に一対の単電池10を対向して載置した上で、その一対の単電池10を導電部材30を介して電気的に接続する。バスバ40は、複数のフレーム部材20にそれぞれ配設した導電部材30間を電気的に接続する。締結部材50は、複数積層したフレーム部材20を一体に固定する。
 単電池10は、図3および図4に示すように、発電要素(不図示)をラミネートフィルム等の可撓性のフィルム状の部材で形成した外装体11a内部に収納した扁平形状の電池本体11と、外装体11a内部で発電要素に接続すると共に外装体11aの端部からそれぞれ外部へ突出して設けた、板状の正極電極タブ12aおよび負極電極タブ12bを備える電極タブ12とを含む。具体的には、単電池10は、たとえば、リチウムイオン二次電池、ポリマーリチウム電池、ニッケル-水素電池、ニッケル-カドミウム電池に相当する。単電池10は、充放電が行われる発電要素を、可撓性のフィルム状部材の外周縁を接合することによって形成した袋状の外装体11aで被覆して封止している。発電要素は、正極と負極とをセパレータを介して積層したものを更に複数積層して構成している。単電池10の外装体11aの対角をなす2隅には、挿通孔11bを設けている。この挿通孔11bは、フレーム部材20の電池本体保持部21に設けられた位置決め突起21bを挿通させる。
 フレーム部材20は、図3および図4に示すように、一対の単電池10を表面と裏面にそれぞれ載置している。フレーム部材20は、たとえば、強化プラスチックスからなり、単電池10の積層方向に沿って貫通した枠形状に形成した保持部21aを設けている。保持部21aの表面と裏面の両面には両面テープが貼り付けられ、これにより保持部21aの表面と裏面とに載置された一対の単電池10の電池本体11はそれぞれ、フレーム部材20に保持されている。フレーム部材20は、貫通した枠形状に限定されることはなく、その両面に凹部を設け、一対の単電池10をそれぞれ保持する構成としてもよい。電池本体保持部21には、位置決め突起21bが設けられている。位置決め突起21bは、単電池10の外装体11aの挿通孔11bを挿通する。電極タブ接続部22は、保持部21aの両端からそれぞれ突出させて設けている。電極タブ接続部22は、単電池10の積層方向と交差する方向であって外方に突出している。電極タブ接続部22はコの字形状の導電部材30を挿入した状態で、その導電部材30を保持している。フレーム部材20同士は、互いに積層された後に後述する締結ボルト53が積層方向に挿通されて、一体に締結される。
 導電部材30は、図3および図4に示すように、フレーム部材20の電極タブ接続部22に配設し、一対の単電池10の電極タブ12同士を電気的に接続している。導電部材30の導電材31は、たとえば、銅合金からなり、コの字形状に形成している。導電材31は、単電池10の電極タブ12の延出方向に平行して延びる板状の2つの接続部31aを延在部31bを介して接続して、コの字形状に形成している。図3および図4(a)に示すように、導電材31を介して、一対の単電池10の正極電極タブ12aを電気的に接続する。同様に、別の導電材31を介して、図3および図4(b)に示すように、一対の単電池10の負極電極タブ12bを電気的に接続する。
 バスバ40は、図2に示すように、複数積層したフレーム部材20のうち、積層方向に隣接したフレーム部材20に配設された導電部材30同士をそれぞれ電気的に接続している。バスバ40は、たとえば、銅合金からなり、板状に形成している。ここで、バスバ40は、各フレーム部材20に載置された一対の単電池10を電気的に直列接続させるために、隣り合うフレーム部材20の両端において、互い違いに位置するように配設している。バスバ40と導電部材30は、その当接した部位にレーザを照射して局所的に溶融させることによって接合している。
 締結部材50は、図1および図2に示すように、複数積層されたフレーム部材20を一体に締結している。締結部材50は、アッパープレート51、ロアプレート52、および複数の締結ボルト53を含んでいる。アッパープレート51およびロアプレート52は、たとえば、金属からなり、板状に形成している。アッパープレート51の四隅には、締結ボルト53を挿通するための挿通孔51aを設けている。ロアプレート52の四隅には、締結ボルト53の先端に形成されたネジ山53aをネジ留めするためのネジ溝52aを設けている。締結ボルト53は、アッパープレート51を介して、複数のフレーム部材20の挿通孔21cに挿通した後、ロアプレート52のネジ溝52aにネジ留めしている。
 図5に示すように、一対の導電材31は、フレーム部材20の積層方向で互いに隣り合う正極電極タブ12a同士を接続し、かつ、負極電極タブ12b同士を接続することで、一対の単電池10を電気的に並列接続させている。図5に示す一対の単電池10、フレーム部材20および導電部材30で並列体210を構成している。並列体210は、電池モジュールの一形態に相当する。
 図6に示すように、複数の並列体210を電気的に直列に配設することができる。具体的には、一の並列体210aと他の並列体210bとを積層する。他の並列体210bは、一の並列体210aに対してフレーム部材20の積層方向と交差する方向にたとえば180度回転させた状態(すなわち、積層方向を回転軸として180度回転させた状態)で、一の並列体210aに積層している。バスバ40は、一の並列体210aの正極電極タブ12aを導電させる導電部材30と、他の並列体210bの負極電極タブ12bを導電させる導電部材30とを電気的に接続している。
 上述した第1実施形態に係る組電池1およびその組電池1の製造方法によれば、以下の作用効果を奏する。
 組電池1は、単電池10、フレーム部材20、導電部材30、およびバスバ40を有している。単電池10は、発電要素(不図示)を外装体11aに収納した電池本体11と、発電要素(不図示)に接続し外装体11aの端部からそれぞれ突出して設けた正極電極タブ12aおよび負極電極タブ12bを備える電極タブ12と、を含んでいる。フレーム部材20には、一対の単電池10を表面と裏面にそれぞれ載置している。導電部材30は、フレーム部材20に配設し、一対の単電池10の電極タブ12同士を電気的に接続している。バスバ40は、複数積層したフレーム部材20のうち、積層方向に隣接したフレーム部材20に配設された導電部材30同士をそれぞれ電気的に接続している。
 同様に、組電池1の製造方法では、発電要素(不図示)を外装体11aに収納した電池本体11と、発電要素(不図示)に接続し外装体11aの端部からそれぞれ突出して設けた正極電極タブ12aおよび負極電極タブ12bを備える電極タブ12と、を含む単電池10を用意する。組電池1の製造方法は、単電池保持工程、電極タブ接続工程、および導電部材接続工程を有している。単電池保持工程では、フレーム部材20を用いて、一対の単電池10を表面と裏面にそれぞれ載置する。電極タブ接続工程では、フレーム部材20に配設する導電部材30を用いて、一対の単電池10の電極タブ12同士を電気的に接続する。導電部材接続工程では、バスバ40を用いて、複数積層したフレーム部材20のうち、積層方向に隣接したフレーム部材20に配設された導電部材30同士をそれぞれ電気的に接続する。
 このように構成した組電池1およびその組電池1の製造方法によれば、フレーム部材20に一対の単電池10を載置し、導電部材30が一対の単電池10の電極タブ12同士を接続した状態で、バスバ40が隣り合う導電部材30同士を接続している。このような簡便な構成によって、一対の単電池10を電気的に接続することができることから、組電池1を形成する際の取り扱いが非常に容易となる。
 また、上記のような構成によれば、フレーム部材20に一対の単電池10を載置した上で、導電部材30が一対の単電池10の電極タブ12同士を接続していることから、各部材を組み合わせた後の組電池1に外力が加わっても、一対の単電池10が電気的に開放したり短絡したりし難い。すなわち、組み立て後の組電池1は、外力が加わっても単電池10の電極タブ12が容易に変形することなく、電気的な信頼性を担保することができる。このように、各部材を組み合わせた後の組電池1に外力が加わっても、一対の単電池10が電気的に開放したり短絡したりし難く電気的な信頼性に富む。
 また、上記のような構成によれば、部材の寸法誤差や位置決め精度に依存せず、組電池1を容易に組み立てることができる。具体的には、一対の単電池10の電極タブ12の位置が、電極タブ12の延出方向に相対的にずれていても、電極タブ12同士は直接接続せずに導電部材30を介して間接的に接続する構成であることから、電極タブ12の相対的な位置ずれを考慮せずに、組電池1を組み立てることができる。同様に、導電部材30を電気的に接続するバスバ40の位置が相対的にずれていても、バスバ40同士は独立して配設していることから、バスバ40の相対的な位置ずれを考慮せずに、組電池1を組み立てることができる。このように、部材点数が増えたとしても、組電池1を構成する各部材の形状誤差や位置決め誤差に依存せずに組み立てを行うことができることから、各部材を積層して構成する場合に非常に大きな効果を奏する。
 さらに、フレーム部材20の積層方向で互いに隣り合う正極電極タブ12a同士を一の導電部材30を介して接続し、かつ、負極電極タブ12b同士を他の導電部材30を介して接続し、一対の単電池10を電気的に並列接続した並列体210を構成してもよい。
 同様に、組電池1の製造方法において、電極タブ接続工程では、導電部材30を用いて、フレーム部材20の積層方向で互いに隣り合う、正極電極タブ12a同士を接続し、かつ、負極電極タブ12b同士を接続してもよい。一対の単電池10を電気的に並列接続して並列体210を構成する。
 このように構成した組電池1およびその組電池1の製造方法によれば、上記のような簡便な構成によって、一対の単電池10を電気的に並列接続して並列体210を構成することができることから、組電池1を形成する際の取り扱いが非常に容易となる。
 また、フレーム部材20により載置された一対の単電池10の位置に相対的な誤差が生じている場合でも、その相対的な位置ずれを吸収し、導電部材30を介して一対の単電池10に設けられた同一の極性の電極タブ12同士を容易に接続することができる。したがって、一対の単電池10を用いて並列体210を構成し、並列回路を形成することが非常に容易である。
 さらに、一の並列体210aと、一の並列体210aに対して積層方向と交差する方向に回転させた状態で一の並列体210aに積層する他の並列体210bと、を備える構成としてもよい。バスバ40は、一の並列体210aの正極電極タブ12a同士を導電させる導電部材30と、他の並列体210bの負極電極タブ12b同士を導電させる導電部材30と、を電気的に直列接続させる。
 同様に、組電池1の製造方法において、他の並列体210bを一の並列体210aに対してフレーム部材20の積層方向と交差する方向に回転させた状態で一の並列体210aに積層させる構成としてもよい。導電部材接続工程は、バスバ40を用いて、一の並列体210aの正極電極タブ12a同士を導電させる導電部材30と、他の並列体210bの負極電極タブ12b同士を導電させる導電部材30と、を電気的に直列接続させる。
 このように構成した組電池1およびその組電池1の製造方法によれば、上記のような簡便な構成によって、必要とされる電圧値に合わせ、並列に接続した一対の単電池10を直列接続することができることから、組電池1を形成する際の取り扱いが非常に容易となる。
 さらに、フレーム部材20は、一対の単電池10が直接対面するように貫通した枠形状に形成してもよい。
 このように構成した組電池1によれば、一対の単電池10を近接または当接させた状態で、その一対の単電池10をフレーム部材20で保持することができる。したがって、一対の単電池10を高密度で積層することができる。さらに、フレーム部材20を形成する際に、その両面に凹部を設けるよりも、両面を貫通させる方が、加工が容易であることから、当該フレーム部材20の製造コストを抑制することができる。さらに、フレーム部材20を軽量化することができる。
 (第1実施形態の変形例1)
 第1実施形態の変形例1に係る組電池1およびその組電池1の製造方法について、図7~図10を参照しながら説明する。
 図7は、組電池1の電池モジュール120を分解して示す分解斜視図である。図8は、組電池1の電池モジュール120の要部を分解して示す分解端面図である。図8(a)は、図7のC-C’線に沿った一部を端面図で示している。図8(b)は、図7のD-D’線に沿った一部を端面図で示している。図9は、組電池1の直列体220を示す模式図である。図10は、組電池1の直列体220を直列に複数接続した状態を示す模式図である。
 第1実施形態の変形例1に係る組電池1は、一対の単電池10を電気的に並列接続させずに直列接続させた構成が、前述した第1実施形態に係る組電池1の構成と異なる。
 第1実施形態の変形例1においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
 図7および図8に示すように、組電池1の導電部材30は、前述した導電材31に加えて、導電材32および33を含んでいる。導電材32および33は、たとえば、銅合金からなり、L字形状に形成している。導電材32および33は、フレーム部材20の電極タブ接続部22に隣り合うように配設しても互いに導通しないように、長手方向および高さ方向の幅をそれぞれ規制している。
 導電材32および33は、フレーム部材20に設けられた一方の電極タブ接続部22に配設している。具体的には、導電材32は、そのL字形状の屈折部分が、図7または図8(a)中の上方に向くように配設している。導電材32は、一対のうちの上方に位置した単電池10の正極電極タブ12aに当接している。導電材33は、そのL字形状の屈折部分が、図7または図8(a)中の下方に向くように配設している。導電材33は、一対のうちの下方に位置した単電池10の負極電極タブ12bに当接している。導電材31は、図7および図8(b)に示すように、導電材32および33に対向するように、フレーム部材20に設けられた他方の電極タブ接続部22に配設している。
 図9に示すように、導電材31は、フレーム部材20の積層方向で互いに隣り合う正極電極タブ12aと負極電極タブ12bとを接続することで、一対の単電池10を電気的に直列接続させている。図9に示す一対の単電池10、フレーム部材20および導電部材30で直列体220を構成している。直列体220は、電池モジュールの一形態に相当する。
 図10に示すように、複数の直列体220を電気的に直列に配設することができる。具体的には、一の直列体220aと他の直列体220bとを積層する。他の直列体220bは、一の直列体220aに対してフレーム部材20の積層方向と交差する方向にたとえば180度回転させた状態で、一の直列体220aに積層している。バスバ40は、一の直列体220aの正極電極タブ12aを導電させる導電部材30と、他の直列体220bの負極電極タブ12bを導電させる導電部材30とを電気的に接続している。
 上述した第1実施形態の変形例1に係る組電池1およびその組電池1の製造方法によれば、前述した第1実施形態に係る作用効果に加えて、さらに以下の作用効果を奏する。
 フレーム部材20の積層方向で互いに隣り合う正極電極タブ12aと負極電極タブ12bとを導電部材30を介して接続し、一対の単電池10を電気的に直列接続した直列体220を構成する。
 同様に、組電池1の製造方法において、電極タブ接続工程は、導電部材30を用いて、フレーム部材20の積層方向で互いに隣り合う、正極電極タブ12aと負極電極タブ12bとを接続してもよい。一対の単電池10を電気的に直列接続して直列体220を構成する。
 このように構成した組電池1およびその組電池1の製造方法によれば、上記のような簡便な構成によって、一対の単電池10を電気的に直列接続して直列体220を構成することができることから、組電池1を形成する際の取り扱いが非常に容易となる。
 また、フレーム部材20に載置された一対の単電池10の位置に相対的な誤差が生じている場合でも、その誤差を吸収し、導電部材30を介して一対の単電池10に設けられた異なる極性の電極タブ12同士を容易に接続することができる。したがって、一対の単電池10を用いて直列体220を構成し、直列回路を形成することが非常に容易である。
 さらに、一の直列体220aと、一の直列体220aに対して積層方向と交差する方向に回転させた状態で一の直列体220aに積層する他の直列体220bと、を備える構成としてもよい。バスバ40は、一の直列体220aの正極電極タブ12aを導電させる導電部材30と、他の直列体220bの負極電極タブ12bを導電させる導電部材30と、を電気的に直列接続する。
 同様に、組電池1の製造方法において、他の直列体220bを一の直列体220aに対してフレーム部材20の積層方向と交差する方向に回転させた状態で一の直列体220aに積層させる構成としてもよい。導電部材接続工程は、バスバ40を用いて、一の直列体220aの正極電極タブ12aを導電させる導電部材30と、他の直列体220bの負極電極タブ12bを導電させる導電部材30と、を電気的に直列接続させる。
 このように構成した組電池1およびその組電池1の製造方法によれば、上記のような簡便な構成によって、必要とされる電圧値に合わせ、直列に接続した一対の単電池10をさらに直列接続することができることから、組電池1を形成する際の取り扱いが非常に容易となる。
 (第1実施形態の変形例2)
 第1実施形態の変形例2に係る組電池1について、図11~図13を参照しながら説明する。
 図11は、組電池1の複数の電池モジュール300を積層した状態を示す分解斜視図である。図12は、組電池1の複数の電池モジュール300を分解した状態を示す分解斜視図である。図13は、組電池1の電池モジュール300を分解して示す分解斜視図である。
 第1実施形態の変形例2に係る組電池1は、単電池310の正極電極タブ312aおよび負極電極タブ312bを外装体311aの両端から突出させずに片端のみから突出させた構成が、前述した第1実施形態に係る組電池1の構成と異なる。
 第1実施形態の変形例2においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
 図11、積層した電池モジュール300をバスバ340で接続した状態を示している。具体的には、図13に示すように一対の単電池10を電気的に並列に接続した上で、図12に示すように2個の電池モジュール300を積層している。電池モジュール300は、単電池310、フレーム部材320、導電部材330、およびバスバ340を有している。この単電池310、フレーム部材320、導電部材330、およびバスバ340の基本的な構成は、電極タブに係るものを除き、前述した単電池10、フレーム部材20、導電部材30、およびバスバ40の基本的な構成と同様である。
 図13に示すように、単電池310は、電極タブ312の正極電極タブ312aおよび負極電極タブ312bを、外装体311aの片端からそれぞれ突出させている。フレーム部材320は、2個の電極タブ接続部322を片端から突出させて設けている。導電部材330は、それぞれコの字状に形成した一対の導電材331を含んでいる。一対の導電材331は、2個の電極タブ接続部322にそれぞれ配設している。他のフレーム部材320bは、一のフレーム部材320aに対して表面側と裏面側を反転させた状態で、その一のフレーム部材320aに積層している。バスバ340は、上下に隣接して配設した導電材331同士を接続している。具体的には、バスバ340は、一のフレーム部材320aに載置した単電池310の正極電極タブ312aと、他のフレーム部材320bに載置した単電池310の負極電極タブ312bとを、それぞれ導電材331を介して電気的に直列接続している。
 上述した第1実施形態の変形例2に係る組電池1によれば、前述した第1実施形態および第1実施形態の変形例1に係る作用効果に加えて、さらに以下の作用効果を奏する。
 単電池310は、正極電極タブ312aおよび負極電極タブ312bを、外装体311aの同一の端部からそれぞれ突出して設けた構成としている。
 このように構成した組電池1によれば、設置スペースの形状、他の部材との干渉回避、および絶縁性等から、組電池1の両面ではなく片面のみから集電する方が望ましい場合に、適用することができる。
 さらに、一のフレーム部材320aと、一のフレーム部材320aに対して表面側と裏面側を反転させた他のフレーム部材320bとを積層する構成としてもよい。バスバ340は、一のフレーム部材320aに載置した単電池10の正極電極タブ12aを導電させる導電部材30と、他のフレーム部材320bに載置した単電池10の負極電極タブ12bを導電させる導電部材30と、を電気的に直列接続する。
 このように構成した組電池1によれば、組電池1の両面ではなく片面のみから集電する形態であっても、必要とされる電圧値に合わせて、並列に接続した一対の単電池10を直列接続することができる。
 (第2実施形態)
 第2実施形態に係る組電池2について、図14~図16を参照しながら説明する。
 図14は、組電池2を示す斜視図である。図15は、組電池2の要部を分解して示す分解斜視図である。図16は、図14に示す組電池2のE-E’線に沿った一部を端面図で
示している。
 第2実施形態に係る組電池2は、バスバ40を連結する連結部材60を設けた構成が、前述した第1実施形態に係る組電池1の構成と異なる。
 第2実施形態においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
 図14に示すように、連結部材60は、積層方向に複数配設したバスバ40を互いに電気的に絶縁させて連結する。連結部材60は、たとえば、プラスチックスからなり、長方形状に形成している。図15に示すように、連結部材60は、フレーム部材20に接合するバスバ保持プレート61と、バスバ40を係留する鉤部62~64とを備えている。
 図15に示すように、バスバ保持プレート61は、挿通孔61aを複数設けている。挿通孔61aは、フレーム部材20の電極タブ接続部22を挿通させる。バスバ保持プレート61の縁部に設けた位置決め孔61bは、フレーム部材20の外周面に設けられた位置決め突起21dを挿通させる。鉤部62~64は、たとえば、それぞれプラスチックスからなり、それぞれ長方体形状に形成している。鉤部62は、バスバ保持プレート61の挿通孔61aの上下に対向するように一対設け、バスバ40を上下方向から保持している。鉤部63および64は、バスバ保持プレート61の挿通孔61aの左右に対向するように設け、バスバ40を左右方向から保持している。
 図16に示すように、連結部材60の鉤部62は、フレーム部材20の積層方向と交差する方向に複数の切り込みを設けている。したがって、連結部材60の鉤部62は、複数の切り込み部分を用いて外形形状を撓ませることによって、バスバ40をフレーム部材20の積層方向に対して移動させて保持することができる。
 上述した第2実施形態に係る組電池2によれば、前述した第1実施形態に係る作用効果に加えて、さらに以下の作用効果を奏する。
 組電池2は、積層方向に複数配設したバスバ40を互いに電気的に絶縁させて連結する連結部材60をさらに有した構成である。
 このように構成した組電池2によれば、たとえば、複数のバスバ40を1個の連結部材60に連結させた状態で、その連結部材60を複数積層したフレーム部材20に取り付けることができる。したがって、組電池2の組み立てを容易にすることができるとともに、組電池2の組み立てに要する時間を短縮することができる。
 さらに、連結部材60は、バスバ40をフレーム部材20の積層方向に対して移動可能に保持する構成としてもよい。
 このように構成した組電池2によれば、複数のバスバ40を1個の連結部材60に連結させた状態で、その複数のバスバ40の位置を相対的に可変させることができる。したがって、フレーム部材20を複数積層することによって当該フレーム部材20の積層方向に積層誤差が生じている場合や、単一のフレーム部材20に寸法誤差が生じている場合に、それらの誤差をバスバ40を介し連結部材60で吸収することができる。このように、複数のフレーム部材20の積層方向の積層誤差や、単一のフレーム部材20の寸法誤差に依存することなく、組電池2を組み立てることができることから、その組電池2の生産性を向上させることができる。
 (第3実施形態)
 第3実施形態に係る組電池3について、図17~図19を参照しながら説明する。
 図17は、組電池3を示す斜視図である。図18は、組電池3の要部を分解して示す分解斜視図である。図19は、図17に示す組電池3のF-F’線に沿った一部を端面図で
示している。
 第3実施形態に係る組電池3は、バスバ70が変形可能な変形部71~73を設けた構成が、前述した第2実施形態に係る組電池2の構成と異なる。
 第3実施形態においては、前述した第1または第2実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
 図17~図19に示すように、バスバ70は、連結部材60に連結した状態で、導電部材30に電気的に接続している。バスバ70は、たとえば、銅合金からなり、複数の屈折部位を備えた板状に形成している。具体的には、バスバ70は、図19に示すように、フレーム部材20の積層方向と交差する方向であって、フレーム部材20から離間する方向に凸部となる一対の変形部72と、フレーム部材20に近接する方向に凸部となる変形部73と、を設けている。変形部73は、一対の変形部72の間に設けている。したがって、バスバ70は、凹凸を有する板バネのように構成している一対の変形部72および変形部73を変形させることができる。変形部71~73は、たとえば、銅合金で形成することによって、所定の変形量を超えて塑性変形させない限り、弾性変形させて使用することができる。
 上述した第3実施形態に係る組電池3によれば、前述した第1および第2実施形態に係る作用効果に加えて、さらに以下の作用効果を奏する。
 組電池3は、バスバ70がフレーム部材20の積層方向に対して変形可能な変形部71~73を設けた構成としている。
 このように構成した組電池3によれば、フレーム部材20を複数積層することによって、そのフレーム部材20の積層方向に積層誤差が生じている場合でも、その積層誤差をバスバ70の変形部71~73で吸収することができる。さらに、フレーム部材20自体に寸法誤差が生じている場合にも、その寸法誤差をバスバ70の変形部71~73で吸収することができる。したがって、複数のフレーム部材20の積層方向の積層誤差や、単一のフレーム部材20の寸法誤差に依存することなく、組電池3を組み立てることができることから、その組電池3の生産性を向上させることができる。
 さらに、変形部71~73は、弾性変形可能な構成としてもよい。
 このように構成した組電池3によれば、バスバ70を連結部材60に取り付けた後、一旦取り外してから再度取り付けする必要が生じた場合に、変形部71~73を再度変形させることができる。
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
 本出願は、2012年11月9日に出願された日本特許出願番号2012-247634号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
1,2,3 組電池、
10,310 単電池、
11,311 電池本体、
11a,311a 外装体、
11b,311b 挿通孔、
12,312 電極タブ、
12a,312a 正極電極タブ、
12b,312b 負極電極タブ、
20,320,320a,320b フレーム部材、
21,321 電池本体保持部、
21a,321a 保持部、
21b,21d,321b 位置決め突起、
21c,321c 挿通孔、
22,322 電極タブ接続部、
30,330 導電部材、
31,32,33,331 導電材、
31a,32a,33a 接続部、
31b,32b,33b 延在部、
40,70,340 バスバ、
71,72,73 変形部、
50 締結部材、
51 アッパープレート、
51a 挿通孔、
52 ロアプレート、
52a ネジ溝、
53 締結ボルト、
53a ネジ山、
60 連結部材、
61 バスバ保持プレート、
61a 挿通孔、
61b 位置決め孔、
62,63,64 鉤部、
110,120,300 電池モジュール、
210,210a,210b 並列体、
220,220a,220b 直列体。

Claims (17)

  1.  発電要素を外装体に収納した電池本体と、前記発電要素に接続し前記外装体の端部からそれぞれ突出して設けた正極電極タブおよび負極電極タブを備える電極タブと、を含む単電池と、
     一対の前記単電池を表面と裏面にそれぞれ載置したフレーム部材と、
     前記フレーム部材に配設し、一対の前記単電池の前記電極タブ同士を電気的に接続する導電部材と、
     複数積層した前記フレーム部材のうち、積層方向に隣接した前記フレーム部材に配設された前記導電部材同士をそれぞれ電気的に接続するバスバと、を有する組電池。
  2.  前記フレーム部材の積層方向で互いに隣り合う前記正極電極タブ同士を一の前記導電部材を介して接続し、かつ、前記負極電極タブ同士を他の前記導電部材を介して接続し、一対の前記単電池を電気的に並列接続した並列体を構成する請求項1に記載の組電池。
  3.  一の前記並列体と、
     一の前記並列体に対して積層方向と交差する方向に回転させた状態で一の前記並列体に積層する他の前記並列体と、を備え、
     前記バスバは、一の前記並列体の前記正極電極タブ同士を導電させる前記導電部材と、他の前記並列体の前記負極電極タブ同士を導電させる前記導電部材と、を電気的に直列接続する請求項2に記載の組電池。
  4.  前記フレーム部材の積層方向で互いに隣り合う前記正極電極タブと前記負極電極タブとを前記導電部材を介して接続し、一対の前記単電池を電気的に直列接続した直列体を構成する請求項1に記載の組電池。
  5.  一の前記直列体と、
     一の前記直列体に対して積層方向と交差する方向に回転させた状態で一の前記直列体に積層する他の前記直列体と、を備え、
     前記バスバは、一の前記直列体の前記正極電極タブを導電させる前記導電部材と、他の前記直列体の前記負極電極タブを導電させる前記導電部材と、を電気的に直列接続する請求項4に記載の組電池。
  6.  前記単電池は、正極電極タブおよび負極電極タブを、前記外装体の同一の端部からそれぞれ突出して設けた請求項1、2、または4のいずれか1項に記載の組電池。
  7.  一の前記フレーム部材と、一の前記フレーム部材に対して表面側と裏面側を反転させた他の前記フレーム部材とを積層し、
     前記バスバは、一の前記フレーム部材に載置した前記単電池の前記正極電極タブを導電させる前記導電部材と、他の前記フレーム部材に載置した前記単電池の前記負極電極タブを導電せる前記導電部材と、を電気的に直列接続する請求項6に記載の組電池。
  8.  前記フレーム部材は、一対の前記単電池が対面するように貫通した枠形状に形成している請求項1~7のいずれか1項に記載の組電池。
  9.  積層方向に複数配設した前記バスバを互いに電気的に絶縁させて連結する連結部材をさらに有する請求項1~8のいずれか1項に記載の組電池。
  10.  前記連結部材は、前記バスバを前記フレーム部材の積層方向に対して移動可能に保持する請求項9に記載の組電池。
  11.  前記バスバは、前記フレーム部材の積層方向に対して変形可能な変形部を設けた請求項9または10に記載の組電池。
  12.  前記変形部は、弾性変形可能である請求項11に記載の組電池。
  13.  発電要素を外装体に収納した電池本体と、前記発電要素に接続し前記外装体の端部からそれぞれ突出して設けた正極電極タブおよび負極電極タブを備える電極タブと、を含む単電池を用意し、
     フレーム部材を用いて、一対の前記単電池を表面と裏面にそれぞれ載置する単電池保持工程と、
     前記フレーム部材に配設する導電部材を用いて、一対の前記単電池の前記電極タブ同士を電気的に接続する電極タブ接続工程と、
     バスバを用いて、複数積層した前記フレーム部材のうち、積層方向に隣接した前記フレーム部材に配設された前記導電部材同士をそれぞれ電気的に接続する導電部材接続工程と、を有する組電池の製造方法。
  14.  前記電極タブ接続工程は、前記導電部材を用いて、前記フレーム部材の積層方向で互いに隣り合う、前記正極電極タブ同士を接続し、かつ、前記負極電極タブ同士を接続することによって、一対の前記単電池を電気的に並列接続して並列体を構成する請求項13に記載の組電池の製造方法。
  15.  他の前記並列体を一の前記並列体に対して前記フレーム部材の積層方向と交差する方向に回転させた状態で一の前記並列体に積層させた後、
     前記導電部材接続工程は、前記バスバを用いて、一の前記並列体の前記正極電極タブ同士を導電させる前記導電部材と、他の前記並列体の前記負極電極タブ同士を導電させる前記導電部材と、を電気的に直列接続させる請求項14に記載の組電池の製造方法。
  16.  前記電極タブ接続工程は、前記導電部材を用いて、前記フレーム部材の積層方向で互いに隣り合う、前記正極電極タブと前記負極電極タブとを接続することによって、一対の前記単電池を電気的に直列接続して直列体を構成する請求項13に記載の組電池の製造方法。
  17.  他の前記直列体を一の前記直列体に対して前記フレーム部材の積層方向と交差する方向に回転させた状態で一の前記直列体に積層させた後、
     前記導電部材接続工程は、前記バスバを用いて、一の前記直列体の前記正極電極タブを導電させる前記導電部材と、他の前記直列体の前記負極電極タブを導電させる前記導電部材と、を電気的に直列接続させる請求項16に記載の組電池の製造方法。
PCT/JP2013/079516 2012-11-09 2013-10-31 組電池および組電池の製造方法 WO2014073443A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014545667A JP6079785B2 (ja) 2012-11-09 2013-10-31 組電池および組電池の製造方法
CN201380058659.6A CN104769746B (zh) 2012-11-09 2013-10-31 电池组和电池组的制造方法
EP13853108.2A EP2919294B1 (en) 2012-11-09 2013-10-31 Assembled battery and method for manufacturing assembled battery
KR1020157010336A KR101732285B1 (ko) 2012-11-09 2013-10-31 조전지 및 조전지의 제조 방법
US14/441,073 US9865849B2 (en) 2012-11-09 2013-10-31 Assembled battery and method for manufacturing assembled battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247634 2012-11-09
JP2012-247634 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073443A1 true WO2014073443A1 (ja) 2014-05-15

Family

ID=50684551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079516 WO2014073443A1 (ja) 2012-11-09 2013-10-31 組電池および組電池の製造方法

Country Status (6)

Country Link
US (1) US9865849B2 (ja)
EP (1) EP2919294B1 (ja)
JP (1) JP6079785B2 (ja)
KR (1) KR101732285B1 (ja)
CN (1) CN104769746B (ja)
WO (1) WO2014073443A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137840A (ko) * 2014-05-30 2015-12-09 에스케이배터리시스템즈 주식회사 단위전지모듈 및 이를 포함하는 전지모듈
KR20160012021A (ko) * 2014-07-23 2016-02-02 에스케이이노베이션 주식회사 단위전지모듈과 이를 포함하는 전지모듈 및 전지모듈의 제조방법과 이를 포함하는 전지팩
WO2016021288A1 (ja) * 2014-08-08 2016-02-11 日産自動車株式会社 電池モジュールの製造装置
WO2016080196A1 (ja) * 2014-11-21 2016-05-26 株式会社オートネットワーク技術研究所 蓄電モジュール
WO2017068707A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池の製造方法および製造装置
WO2017068709A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池
JP2017084468A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 組電池および組電池の製造方法
JP2017084465A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 組電池および組電池用のバスバカバー並びに組電池の製造方法
KR20170083088A (ko) * 2014-11-10 2017-07-17 티이 커넥티비티 코포레이션 배터리 커넥터 시스템의 버스 바
CN107431163A (zh) * 2015-04-30 2017-12-01 株式会社Lg 化学 电池组及其制造方法
CN107534107A (zh) * 2015-04-30 2018-01-02 株式会社Lg 化学 电池组及其制造方法
JPWO2017068706A1 (ja) * 2015-10-22 2018-07-26 日産自動車株式会社 組電池および組電池の製造方法
WO2018142476A1 (ja) * 2017-01-31 2018-08-09 日産自動車株式会社 組電池の製造方法および製造装置
JPWO2017068704A1 (ja) * 2015-10-22 2018-08-09 日産自動車株式会社 組電池
JPWO2017068708A1 (ja) * 2015-10-22 2018-08-30 日産自動車株式会社 電池パックおよびその製造方法
WO2019150903A1 (ja) * 2018-01-30 2019-08-08 Necエナジーデバイス株式会社 電池モジュール
CN110178244A (zh) * 2016-12-29 2019-08-27 罗密欧***公司 用于电池结构、互连、感测和平衡的***和方法
JP2019186037A (ja) * 2018-04-10 2019-10-24 カルソニックカンセイ株式会社 電池モジュール
JP2019200884A (ja) * 2018-05-15 2019-11-21 河村電器産業株式会社 蓄電装置
JP2019216005A (ja) * 2018-06-12 2019-12-19 トヨタ自動車株式会社 蓄電装置
JP2020504427A (ja) * 2017-05-22 2020-02-06 エルジー・ケム・リミテッド バッテリーモジュール及びこれを含むバッテリーパック
JP2020518988A (ja) * 2017-12-14 2020-06-25 エルジー・ケム・リミテッド バスバーアセンブリーを含むバッテリーモジュール
JP2020535601A (ja) * 2018-04-20 2020-12-03 エルジー・ケム・リミテッド 直/並列連結を容易にする構造を有するバッテリーモジュール及びそれを含むバッテリーパック
JP2022512496A (ja) * 2019-08-02 2022-02-04 エルジー エナジー ソリューション リミテッド 移動可能なバスバー組立体を備えたバッテリーパック及びこれを含む二次電池
CN114258610A (zh) * 2020-06-30 2022-03-29 宁德新能源科技有限公司 一种电化学装置及电子装置
CN114824682A (zh) * 2022-05-07 2022-07-29 蔚来汽车科技(安徽)有限公司 电池结构、电池模组以及电动汽车
JP2022156750A (ja) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 蓄電装置
WO2023238320A1 (ja) * 2022-06-09 2023-12-14 株式会社エンビジョンAescジャパン 電池モジュール

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787638B1 (ko) * 2014-11-05 2017-10-19 주식회사 엘지화학 이중 측벽 구조를 가지는 카트리지 프레임 및 이를 포함하는 배터리 모듈
KR101953362B1 (ko) * 2015-09-02 2019-05-22 주식회사 엘지화학 개선된 체결구조를 갖는 배터리 모듈
JP6782246B2 (ja) 2015-10-22 2020-11-11 株式会社エンビジョンAescジャパン 組電池の組み立て方法および組電池
DE102015225188B4 (de) * 2015-12-15 2020-10-08 Bayerische Motoren Werke Aktiengesellschaft Energiespeichermodul
KR20170126715A (ko) * 2016-05-10 2017-11-20 주식회사 미코 연료전지 스택 구조체
JP2017216087A (ja) * 2016-05-30 2017-12-07 株式会社東芝 組電池
US10566599B2 (en) * 2016-07-05 2020-02-18 Ammon N. Balaster Modular power storage and supply system
EP3522249B1 (en) * 2016-09-26 2021-02-17 Envision AESC Japan Ltd. Assembly comprising unit cell and spacer
KR102101906B1 (ko) * 2016-10-21 2020-04-17 주식회사 엘지화학 조립 가이드 기능의 체결 부재를 포함하는 전지팩
DE102016223194B4 (de) * 2016-11-23 2018-07-26 Robert Bosch Gmbh Batteriezelle umfassend mindestens eine galvanische Zelle, Batterie und Verfahren zum Herstellen einer Batteriezelle
CN106935781B (zh) * 2017-01-06 2020-07-21 天津清源电动车辆有限责任公司 一种电池组的连接方法
CN110249451B (zh) * 2017-01-20 2021-11-19 远景Aesc日本有限公司 电池组、电池组所使用的汇流条保持件以及电池组的制造方法
JP6928739B2 (ja) * 2017-03-07 2021-09-01 株式会社エンビジョンAescジャパン 電池パック及び電池パックの製造方法
CN115692957A (zh) * 2017-03-07 2023-02-03 远景Aesc日本有限公司 连结辅助部件、电池组以及电池组的制造方法
WO2018163708A1 (ja) * 2017-03-07 2018-09-13 日産自動車株式会社 組電池の製造方法
CN110326126B (zh) * 2017-03-07 2022-03-25 远景Aesc能源元器件有限公司 电池组以及电池组的制造方法
CN107394095A (zh) * 2017-07-03 2017-11-24 广州鹏辉能源科技股份有限公司 一种软包电芯模组及其组装方法
KR102059651B1 (ko) 2017-08-08 2019-12-26 주식회사 엘지화학 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
KR102273184B1 (ko) * 2017-10-10 2021-07-05 주식회사 엘지에너지솔루션 전극 리드 접합용 버스바 조립체 및 이를 포함하는 배터리 모듈
KR102258819B1 (ko) 2017-11-24 2021-05-31 주식회사 엘지에너지솔루션 전기적 연결 안전성이 향상된 배터리 모듈
KR102184368B1 (ko) * 2017-12-11 2020-11-30 삼성에스디아이 주식회사 배터리 팩
KR102384970B1 (ko) 2018-08-13 2022-04-11 주식회사 엘지에너지솔루션 전극조립체 및 그 전극조립체의 제조 방법
US10873067B2 (en) * 2018-08-22 2020-12-22 Microsoft Technology Licensing, Llc Folding tab for ultra-thin battery cell connection
EP3736874A1 (de) * 2019-05-10 2020-11-11 Andreas Stihl AG & Co. KG Akkupack, bearbeitungssystem und verfahren zur herstellung eines akkupacks
CN110176565A (zh) * 2019-05-28 2019-08-27 广东利元亨智能装备股份有限公司 电芯模组及电芯模组的组装方法
KR102532699B1 (ko) * 2019-06-25 2023-05-12 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
JP7474060B2 (ja) * 2020-02-07 2024-04-24 本田技研工業株式会社 バッテリパック
JP7459012B2 (ja) * 2021-04-23 2024-04-01 プライムプラネットエナジー&ソリューションズ株式会社 ラミネートセルの接続構造、組電池およびラミネートセルの接続方法
FR3125923A1 (fr) * 2021-07-27 2023-02-03 Faurecia Systemes D'echappement Module et batterie de stockage d’électricité, procédé de fabrication correspondant
FR3132166B1 (fr) * 2022-01-24 2024-04-26 A Raymond Et Cie Dispositif de connexion pour la connexion électrique de deux terminaux de deux cellules élémentaire d’un bloc batterie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087907A (ja) * 2005-09-26 2007-04-05 Fuji Heavy Ind Ltd 蓄電体セルのケース構造
JP2010092598A (ja) * 2008-10-03 2010-04-22 Gs Yuasa Corporation 組電池
JP3169685U (ja) 2011-05-31 2011-08-11 古河電池株式会社 電池モジュール
JP2011171245A (ja) * 2010-02-22 2011-09-01 Denso Corp ラミネート電池構造体
JP2012520550A (ja) * 2009-03-16 2012-09-06 リ−テック・バッテリー・ゲーエムベーハー 平型セル、スペーサ要素、および接触装置を有する電気的エネルギー貯蔵装置
WO2012131801A1 (ja) * 2011-03-31 2012-10-04 Necエナジーデバイス株式会社 電池パック
JP2013191538A (ja) * 2012-02-14 2013-09-26 Sumitomo Heavy Ind Ltd 蓄電モジュール、その製造方法、及び作業機械

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169685B2 (ja) * 1992-05-15 2001-05-28 アラコ株式会社 接着シートにおける深溝形状出し方法
KR101103755B1 (ko) * 2008-09-03 2012-01-06 에스케이이노베이션 주식회사 버스 바 구비 리튬 2차 전지 단위 셋 및 버스 바 구비 리튬2차 전지 셋
KR101047991B1 (ko) * 2008-12-10 2011-07-13 에스케이이노베이션 주식회사 수용부가 형성된 엔드프레임을 갖는 리튬 2차 전지 케이스 및 수용부가 형성된 엔드프레임을 갖는 리튬 2차 전지 셋
WO2010138209A1 (en) * 2009-05-28 2010-12-02 Phoenix Motorcars, Inc. Battery module with related devices and methods
KR101146677B1 (ko) * 2009-10-30 2012-05-22 에스비리모티브 주식회사 버스바홀더
CN102203996A (zh) * 2009-11-09 2011-09-28 埃纳德尔公司 可扩展性电池模块
JP2011171192A (ja) * 2010-02-19 2011-09-01 Toshiba Corp 二次電池の接続構造およびこれを備えた組電池
JP5544931B2 (ja) 2010-03-02 2014-07-09 株式会社デンソー ラミネートセル電池構造体
US8673473B2 (en) * 2010-08-10 2014-03-18 GM Global Technology Operations LLC Integrated cooling fin and frame
WO2012070782A2 (ko) 2010-11-22 2012-05-31 주식회사 엘지화학 콤팩트한 구조의 전지팩
JP4940481B1 (ja) * 2010-12-13 2012-05-30 パナソニック株式会社 電池モジュール及び電池パック
JP5413394B2 (ja) * 2011-03-28 2014-02-12 株式会社Gsユアサ 単電池及び組電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087907A (ja) * 2005-09-26 2007-04-05 Fuji Heavy Ind Ltd 蓄電体セルのケース構造
JP2010092598A (ja) * 2008-10-03 2010-04-22 Gs Yuasa Corporation 組電池
JP2012520550A (ja) * 2009-03-16 2012-09-06 リ−テック・バッテリー・ゲーエムベーハー 平型セル、スペーサ要素、および接触装置を有する電気的エネルギー貯蔵装置
JP2011171245A (ja) * 2010-02-22 2011-09-01 Denso Corp ラミネート電池構造体
WO2012131801A1 (ja) * 2011-03-31 2012-10-04 Necエナジーデバイス株式会社 電池パック
JP3169685U (ja) 2011-05-31 2011-08-11 古河電池株式会社 電池モジュール
JP2013191538A (ja) * 2012-02-14 2013-09-26 Sumitomo Heavy Ind Ltd 蓄電モジュール、その製造方法、及び作業機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2919294A4

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214538B1 (ko) * 2014-05-30 2021-02-09 에스케이이노베이션 주식회사 단위전지모듈 및 이를 포함하는 전지모듈
KR20150137840A (ko) * 2014-05-30 2015-12-09 에스케이배터리시스템즈 주식회사 단위전지모듈 및 이를 포함하는 전지모듈
KR20160012021A (ko) * 2014-07-23 2016-02-02 에스케이이노베이션 주식회사 단위전지모듈과 이를 포함하는 전지모듈 및 전지모듈의 제조방법과 이를 포함하는 전지팩
KR102210461B1 (ko) * 2014-07-23 2021-02-01 에스케이이노베이션 주식회사 단위전지모듈과 이를 포함하는 전지모듈 및 전지모듈의 제조방법과 이를 포함하는 전지팩
WO2016021288A1 (ja) * 2014-08-08 2016-02-11 日産自動車株式会社 電池モジュールの製造装置
JPWO2016021288A1 (ja) * 2014-08-08 2017-04-27 日産自動車株式会社 電池モジュールの製造装置
KR20170083088A (ko) * 2014-11-10 2017-07-17 티이 커넥티비티 코포레이션 배터리 커넥터 시스템의 버스 바
US10396405B2 (en) 2014-11-10 2019-08-27 Te Connectivity Corporation Bus bar for a battery connector system
KR101975976B1 (ko) 2014-11-10 2019-05-09 티이 커넥티비티 코포레이션 배터리 커넥터 시스템의 버스 바
JP2017531304A (ja) * 2014-11-10 2017-10-19 ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation 電池コネクタシステム用のバスバー
JP2016100210A (ja) * 2014-11-21 2016-05-30 株式会社オートネットワーク技術研究所 蓄電モジュール
US10418613B2 (en) 2014-11-21 2019-09-17 Autonetworks Technologies, Ltd. Electricity storage module
WO2016080196A1 (ja) * 2014-11-21 2016-05-26 株式会社オートネットワーク技術研究所 蓄電モジュール
US10446812B2 (en) 2015-04-30 2019-10-15 Lg Chem, Ltd. Battery pack and manufacturing method therefor
CN107431163B (zh) * 2015-04-30 2020-07-14 株式会社Lg 化学 电池组及其制造方法
CN107431163A (zh) * 2015-04-30 2017-12-01 株式会社Lg 化学 电池组及其制造方法
CN107534107A (zh) * 2015-04-30 2018-01-02 株式会社Lg 化学 电池组及其制造方法
JP2018507523A (ja) * 2015-04-30 2018-03-15 エルジー・ケム・リミテッド バッテリーパック及びその製造方法
JP2018508109A (ja) * 2015-04-30 2018-03-22 エルジー・ケム・リミテッド バッテリーパック及びその製造方法
JPWO2017068704A1 (ja) * 2015-10-22 2018-08-09 日産自動車株式会社 組電池
WO2017069045A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池の製造方法および製造装置
JPWO2017068708A1 (ja) * 2015-10-22 2018-08-30 日産自動車株式会社 電池パックおよびその製造方法
JPWO2017068709A1 (ja) * 2015-10-22 2018-08-30 日産自動車株式会社 組電池
KR101941414B1 (ko) 2015-10-22 2019-01-22 닛산 지도우샤 가부시키가이샤 조전지
WO2017068707A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池の製造方法および製造装置
WO2017068709A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池
US10553840B2 (en) 2015-10-22 2020-02-04 Envision Aesc Japan Ltd. Manufacturing method and manufacturing device for battery pack
JPWO2017068706A1 (ja) * 2015-10-22 2018-07-26 日産自動車株式会社 組電池および組電池の製造方法
KR20180057724A (ko) * 2015-10-22 2018-05-30 닛산 지도우샤 가부시키가이샤 조전지
JP2017084465A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 組電池および組電池用のバスバカバー並びに組電池の製造方法
US11515597B2 (en) 2015-10-22 2022-11-29 Envision Aesc Japan Ltd. Battery pack
US10622603B2 (en) 2015-10-22 2020-04-14 Envision Aesc Japan Ltd. Battery pack and method for producing same
JP2017084468A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 組電池および組電池の製造方法
CN110178244B (zh) * 2016-12-29 2023-01-03 罗密欧***公司 用于电池结构、互连、感测和平衡的***和方法
CN110178244A (zh) * 2016-12-29 2019-08-27 罗密欧***公司 用于电池结构、互连、感测和平衡的***和方法
JPWO2018142476A1 (ja) * 2017-01-31 2019-11-07 株式会社エンビジョンAescジャパン 組電池の製造方法および製造装置
WO2018142476A1 (ja) * 2017-01-31 2018-08-09 日産自動車株式会社 組電池の製造方法および製造装置
JP2020504427A (ja) * 2017-05-22 2020-02-06 エルジー・ケム・リミテッド バッテリーモジュール及びこれを含むバッテリーパック
JP7041799B2 (ja) 2017-05-22 2022-03-25 エルジー エナジー ソリューション リミテッド バッテリーモジュール及びこれを含むバッテリーパック
US11152671B2 (en) 2017-05-22 2021-10-19 Lg Chem, Ltd. Battery module and battery pack including the same
JP7045588B2 (ja) 2017-12-14 2022-04-01 エルジー エナジー ソリューション リミテッド バスバーアセンブリーを含むバッテリーモジュール
JP2020518988A (ja) * 2017-12-14 2020-06-25 エルジー・ケム・リミテッド バスバーアセンブリーを含むバッテリーモジュール
US11223093B2 (en) 2017-12-14 2022-01-11 Lg Chem, Ltd. Battery module comprising bus bar assembly
JP7087007B2 (ja) 2018-01-30 2022-06-20 株式会社エンビジョンAescジャパン 電池モジュール
JP7407234B2 (ja) 2018-01-30 2023-12-28 株式会社Aescジャパン 電池モジュール
JPWO2019150903A1 (ja) * 2018-01-30 2021-01-07 株式会社エンビジョンAescエナジーデバイス 電池モジュール
WO2019150903A1 (ja) * 2018-01-30 2019-08-08 Necエナジーデバイス株式会社 電池モジュール
JP2022116339A (ja) * 2018-01-30 2022-08-09 株式会社エンビジョンAescジャパン 電池モジュール
JP2019186037A (ja) * 2018-04-10 2019-10-24 カルソニックカンセイ株式会社 電池モジュール
JP2020535601A (ja) * 2018-04-20 2020-12-03 エルジー・ケム・リミテッド 直/並列連結を容易にする構造を有するバッテリーモジュール及びそれを含むバッテリーパック
JP7230011B2 (ja) 2018-04-20 2023-02-28 エルジー エナジー ソリューション リミテッド 直/並列連結を容易にする構造を有するバッテリーモジュール及びそれを含むバッテリーパック
US11431063B2 (en) 2018-04-20 2022-08-30 Lg Energy Solution, Ltd. Battery module having structure facilitating series-parallel connections and battery pack comprising same
JP2019200884A (ja) * 2018-05-15 2019-11-21 河村電器産業株式会社 蓄電装置
JP7326705B2 (ja) 2018-06-12 2023-08-16 トヨタ自動車株式会社 蓄電装置
JP2019216005A (ja) * 2018-06-12 2019-12-19 トヨタ自動車株式会社 蓄電装置
JP7258278B2 (ja) 2019-08-02 2023-04-17 エルジー エナジー ソリューション リミテッド 移動可能なバスバー組立体を備えたバッテリーパック及びこれを含む二次電池
JP2022512496A (ja) * 2019-08-02 2022-02-04 エルジー エナジー ソリューション リミテッド 移動可能なバスバー組立体を備えたバッテリーパック及びこれを含む二次電池
JP2022549657A (ja) * 2020-06-30 2022-11-28 寧徳新能源科技有限公司 電気化学装置及び電子装置
CN114258610A (zh) * 2020-06-30 2022-03-29 宁德新能源科技有限公司 一种电化学装置及电子装置
JP7333474B2 (ja) 2020-06-30 2023-08-24 寧徳新能源科技有限公司 電気化学装置及び電子装置
JP2022156750A (ja) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 蓄電装置
JP7380631B2 (ja) 2021-03-31 2023-11-15 トヨタ自動車株式会社 組電池
CN114824682A (zh) * 2022-05-07 2022-07-29 蔚来汽车科技(安徽)有限公司 电池结构、电池模组以及电动汽车
WO2023238320A1 (ja) * 2022-06-09 2023-12-14 株式会社エンビジョンAescジャパン 電池モジュール

Also Published As

Publication number Publication date
EP2919294A4 (en) 2015-10-21
CN104769746B (zh) 2017-10-03
JPWO2014073443A1 (ja) 2016-09-08
CN104769746A (zh) 2015-07-08
US20150303415A1 (en) 2015-10-22
KR20150060830A (ko) 2015-06-03
EP2919294B1 (en) 2017-09-06
JP6079785B2 (ja) 2017-02-22
EP2919294A1 (en) 2015-09-16
KR101732285B1 (ko) 2017-05-02
US9865849B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP6079785B2 (ja) 組電池および組電池の製造方法
JP5657273B2 (ja) 積層型電池、電池モジュール及び積層型電池の製造方法
JP5398273B2 (ja) 蓄電モジュール
JP5323782B2 (ja) 電池モジュール及び複数の電池モジュールを備える電池パック
JP5159112B2 (ja) 電池パック及びその製造方法
JP6019125B2 (ja) 信頼性が向上した電池モジュールアセンブリ及びこれを含む中大型電池パック
KR101053208B1 (ko) 용접 신뢰성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
JP5272629B2 (ja) 組電池構造体の製造方法
KR101305224B1 (ko) 전지모듈 및 이를 포함하는 전지팩
JP6752674B2 (ja) 組電池
US20120141847A1 (en) Battery pack and method for manufacturing battery pack
JP2016531395A (ja) 電力貯蔵装置用電池パック
US9692023B2 (en) Electricity storage module
JP2006253060A (ja) フィルム外装電気デバイス集合体
JP5619076B2 (ja) 蓄電装置
JP6679717B2 (ja) エネルギ蓄積装置用の端子装置
JP7062201B2 (ja) Icb組立体、それを含むバッテリーモジュール及びその製造方法
WO2018142809A1 (ja) 蓄電装置
US11394088B2 (en) Battery module
WO2018143464A1 (ja) 電池モジュール、電池モジュールの製造方法
JP7102550B2 (ja) Icb組立体、それを含むバッテリーモジュール及びその製造方法
JP7062137B2 (ja) Icb組立体、それを含むバッテリーモジュール及びその製造方法
WO2020026966A1 (ja) 電池モジュールの固定構造
JP2014022239A (ja) 電池パック
JP2014022238A (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010336

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013853108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013853108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441073

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014545667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE