WO2014071717A1 - 一种锂离子电池硅负极极片及其制备方法和锂离子电池 - Google Patents

一种锂离子电池硅负极极片及其制备方法和锂离子电池 Download PDF

Info

Publication number
WO2014071717A1
WO2014071717A1 PCT/CN2013/073480 CN2013073480W WO2014071717A1 WO 2014071717 A1 WO2014071717 A1 WO 2014071717A1 CN 2013073480 W CN2013073480 W CN 2013073480W WO 2014071717 A1 WO2014071717 A1 WO 2014071717A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
ion battery
negative electrode
lithium ion
silicon negative
Prior art date
Application number
PCT/CN2013/073480
Other languages
English (en)
French (fr)
Inventor
张麒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014071717A1 publication Critical patent/WO2014071717A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion batteries, and in particular to a lithium ion battery silicon negative electrode sheet and a preparation method thereof and a lithium ion battery. Background technique
  • lithium-ion batteries have advantages such as light weight, small size, high operating voltage, high energy density, high output power, high charging efficiency, no memory effect, long cycle life, etc., in mobile phones and notebook computers. And other fields have been widely used.
  • the volume expansion of the silicon material leads to an increase in the thickness of the negative electrode piece, which in turn causes the volume of the lithium ion battery to increase; the cycle life of the lithium ion battery is seriously affected; (3) the silicon material is easily detached from the current collector after volume expansion , It is easy to cause safety problems such as self-discharge and internal short-circuit.
  • silicon materials In order to enable the commercialization of silicon materials in the negative electrode sheets of lithium ion batteries, the current research focus on silicon materials is how to control the expansion of silicon materials. At present, more methods are used to optimize and modify silicon materials. For example, using nano-silica powder, silicon nanowires, silicon nanotubes or silicon-carbon composites, some people also use vapor deposition to deposit nano-silicon on amorphous carbon, although these methods improve the cycling stability of silicon anodes to some extent. However, the effectiveness of these methods for improving stability is limited, and the process for preparing these silicon materials is complicated, the process energy consumption is large, the cost of the lithium ion battery is increased, and commercialization of mass production is difficult.
  • FIG. 101894940A discloses a hole forming agent (ammonium fluoride, ammonium chloride, ammonium nitrate, etc.) in a silicon-based negative electrode slurry, and then drying at a high temperature under a protective gas to form a hole.
  • the solvent is evaporated, that is, a space is reserved in the negative electrode during the preparation of the negative electrode to obtain a porous silicon-based negative electrode.
  • Chinese Patent Application Publication No. CN101192663A incorporates a pore-forming polymer (polyalkylene carbonate, polyalkylene oxide, polyalkylsiloxane, in the electrode slurry during the preparation of the electrode).
  • the pore-forming polymer when the electrode is used for preparing a battery, the pore-forming polymer is immersed in the electrolyte solution, and the pore former is dissolved in the electrolyte It acts to form pores in the active material layer.
  • the preparation method is easy to handle, the pore-forming polymer used therein is different from the main component of the electrolyte, and dissolution of the electrolyte causes a change in the composition of the electrolyte, which ultimately affects the performance of the lithium ion battery. Summary of the invention
  • the first aspect of the embodiments of the present invention provides a silicon negative electrode pole piece for a lithium ion battery, which is used for increasing the volume of the battery, shortening the service life of the lithium ion battery, prone to self-discharge and internal short circuit, and the prior art.
  • the pore former present in the negative electrode of the lithium ion battery is easily dissolved in the electrolyte, resulting in the electrolyte component The problem of birth change.
  • the second aspect of the embodiments of the present invention provides a method for preparing a silicon negative electrode pole piece of the lithium ion battery, which is used to solve the problems of large energy consumption, high process cost, and difficult safety production of the existing porous silicon negative electrode piece.
  • a third aspect of the embodiments of the present invention provides a lithium ion battery including the lithium ion battery silicon negative electrode tab, which has high energy density and long cycle life.
  • an embodiment of the present invention provides a silicon negative electrode pole piece for a lithium ion battery, comprising a current collector and a silicon negative electrode active material layer coated on the current collector, wherein the material of the silicon negative electrode active material layer comprises silicon a material, a binder, a conductive agent, and a pore former, wherein the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for a total weight of the silicon anode active material. 5% ⁇ 25%.
  • the pore former is a polymer particle comprising at least one or more of the following polymers of formula I,
  • R is H or a C1-C6 chain alkyl group
  • R is N0 2 , CN or a halogen
  • n is an integer of 10 to 10000.
  • the pore former has a weight average molecular weight of 500 to 1,000,000.
  • the pore former accounts for 10% to 20% of the total weight of the silicon anode active material.
  • the silicon material is a silicon nanoparticle, a silicon alloy material, a silicon oxycarbon composite material or a nano silicon/silicon dioxide composite.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, epoxy resin, polyvinyl alcohol, polyimide, and polyurethane.
  • the conductive agent is one or more of graphite, expanded graphite, carbon nanotubes, carbon fibers, activated carbon, amorphous carbon, conductive carbon black, acetylene black, Super P and KS-6.
  • the silicon material, the binder and the conductive agent respectively occupy the total weight of the silicon anode active material
  • the thickness of the silicon negative electrode active material layer is 30 to 200 ⁇ .
  • the current collector is a flat copper foil or a foamed copper foil.
  • the pore forming agent is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore forming agent is low. At a potential, it can be reductively decomposed to generate gas and lithium carbonate. After the gas escapes, pores can be formed on the silicon negative electrode sheet to form a lithium ion battery silicon negative electrode sheet having a porous structure, and the existence of the porous structure can charge and discharge the silicon material.
  • the expansion reserve space that appears in the process can ensure good connectivity between the silicon materials and good connectivity between the silicon material and the conductive agent, thereby improving the energy density of the lithium ion battery and improving the lithium ion battery. Cycle life.
  • an embodiment of the present invention provides a method for preparing a silicon negative electrode pole piece for a lithium ion battery, including the following steps:
  • the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for 5% to 25% of the total weight of the solid anode component of the silicon anode slurry;
  • the silicon negative electrode slurry is coated on the surface of the current collector, dried and rolled to obtain a silicon negative electrode tab of a lithium ion battery.
  • the pore former is a polymer particle comprising at least one or more of the following polymers of the general formula I, Formula I: ,
  • R is H or a C1-C6 chain alkyl group
  • R is N0 2 , CN or a halogen
  • n is an integer of 10 to 10000.
  • the pore former has a weight average molecular weight of 500 to 1,000,000.
  • the pore former comprises from 10% to 20% by weight based on the total weight of the solid component of the silicon anode slurry.
  • the silicon material is a silicon nanoparticle, a silicon alloy material, a silicon oxycarbon composite material or a nano silicon/silicon dioxide composite.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, epoxy resin, polyvinyl alcohol, polyimide, and polyurethane.
  • the conductive agent is one or more of graphite, expanded graphite, carbon nanotubes, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, acetylene black, Super P and KS-6.
  • the silicon material, the binder and the conductive agent respectively account for 60% to 90%, 4% to 10% and 1% to 5% of the total weight of the solid component of the silicon negative electrode slurry.
  • the organic solvent is hydrazine, hydrazine-dimercapto amide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP), tetrahydrofuran (THF), acetone and One or more of sterols.
  • the organic solvent in the silicon negative electrode slurry accounts for 30% to 70% by weight.
  • the silicon negative electrode slurry includes a silicon negative electrode slurry solid formulation and an organic solvent. After the silicon negative electrode slurry is dried and rolled, the silicon negative electrode slurry solid formulation is coated on the current collector to form a silicon negative electrode active material layer.
  • the current collector is a flat copper foil or a foamed copper foil.
  • the stirring temperature is 0 to 50 ° C, and the stirring time is 2 to 12 hours.
  • a method for preparing a silicon negative electrode pole piece for a lithium ion battery according to a second aspect of the present invention provides a method for manufacturing a silicon negative electrode pole piece of a conventional lithium ion battery, which is simple and easy to operate, low in cost, non-polluting, and easy to industrialize. produce.
  • an embodiment of the present invention provides a lithium ion battery, which is composed of a silicon ion negative electrode pole piece, a positive electrode pole piece, a diaphragm, a non-aqueous electrolyte and an outer casing of the lithium ion battery provided by the first aspect of the present invention.
  • the outer casing is a casing that can be opened or aired.
  • the outer casing is an aluminum plastic film casing, a square steel shell or an aluminum shell shell.
  • the positive electrode active material is selected from the group consisting of lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium iron silicate, lithium cobaltate, nickel cobalt manganese ternary material, nickel manganese/cobalt.
  • the positive electrode active material is selected from the group consisting of lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium iron silicate, lithium cobaltate, nickel cobalt manganese ternary material, nickel manganese/cobalt.
  • the separator is a polyethylene polymer, a polypropylene polymer or a nonwoven fabric.
  • a silicon negative electrode pole piece for a lithium ion battery comprising a current collector and a silicon negative electrode active material layer coated on the current collector, wherein the material of the silicon negative electrode active material layer comprises a silicon material, a binder, a conductive agent and a pore former
  • the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for 5% to 25% of the total weight of the solid component of the silicon anode slurry.
  • the pore former in the silicon negative electrode sheet of the lithium ion battery can be reductively decomposed to generate gas and lithium carbonate at a low potential, and the gas can be vented to form a hole in the silicon negative electrode sheet to form Porous lithium ion battery silicon negative pole piece, the existence of porous structure can reserve space for expansion of silicon material during charging and discharging process, thus ensuring good connectivity between silicon materials and silicon material and conductive agent There is good connectivity between them, which increases the energy density of the lithium ion battery and improves the cycle life of the lithium ion battery.
  • the produced lithium carbonate is deposited on the surface of the silicon negative electrode active material layer to form an SEI film.
  • the lithium ion battery provided by the third aspect of the embodiments of the present invention has high energy density and long cycle life.
  • the advantages of the embodiments of the present invention will be set forth in part in the description which follows.
  • FIG. 1 is a flow chart of a method for preparing a silicon negative electrode pole piece of a lithium ion battery according to an embodiment of the present invention.
  • the following is a preferred embodiment of the embodiments of the present invention, and it should be noted that those skilled in the art can make some improvements and retouching without departing from the principles of the embodiments of the present invention. These improvements and retouchings are also considered to be the scope of protection of the embodiments of the present invention.
  • the first aspect of the embodiments of the present invention provides a lithium ion battery silicon negative pole piece for solving the prior art.
  • the second aspect of the present invention provides a method for preparing a silicon negative electrode pole piece of the lithium ion battery, which is used for solving the problem that the existing porous silicon negative electrode pole piece has high energy consumption, high process cost, and is not easy to be safely produced.
  • a third aspect of the embodiments of the present invention provides a lithium ion battery comprising the lithium ion battery silicon negative electrode tab, the lithium ion battery having high energy density and long cycle life.
  • an embodiment of the present invention provides a silicon negative electrode pole piece for a lithium ion battery, comprising a current collector and a silicon negative electrode active material layer coated on the current collector, wherein the material of the silicon negative electrode active material layer comprises silicon a material, a binder, a conductive agent, and a pore former, wherein the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for a total weight of the silicon anode active material. 5% ⁇ 25%.
  • the pore forming agent is a polymer particle comprising at least one or more of the following polymers of the formula I, Formula I:
  • R is H or a C1-C6 chain alkyl group
  • R is N0 2 , CN or a halogen
  • n is an integer of 10 to 10000.
  • the pore former has a weight average molecular weight of 500 to 1,000,000.
  • the pore former accounts for 10% to 20% of the total weight of the silicon anode active material.
  • the silicon material is a silicon nanoparticle, a silicon alloy material, a silicon oxycarbon composite material or a nano silicon/silicon dioxide composite.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, epoxy resin, polyvinyl alcohol, polyimide, and polyurethane.
  • the conductive agent is one or more of graphite, expanded graphite, carbon nanotubes, carbon fibers, activated carbon, amorphous carbon, conductive black, acetylene black, Super P and KS-6.
  • the silicon material, the binder and the conductive agent account for 60% to 90%, 4% to 10%, and 1% to 5%, respectively, of the total weight of the silicon anode active material.
  • the thickness of the silicon negative electrode active material layer is 30 to 200 ⁇ .
  • the current collector is a flat copper foil or a foamed copper foil.
  • the pore forming agent is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore forming agent is low. At a potential, it can be reductively decomposed to generate gas and lithium carbonate. After the gas escapes, pores can be formed on the silicon negative electrode sheet to form a lithium ion battery silicon negative electrode sheet having a porous structure, and the existence of the porous structure can charge and discharge the silicon material.
  • the expansion reserved space that occurs during the process thereby ensuring good connectivity between the silicon materials and good connectivity between the silicon material and the conductive agent, thereby increasing the energy density of the lithium ion battery. Improve the cycle life of lithium-ion batteries.
  • an embodiment of the present invention provides a method for preparing a silicon negative electrode pole piece for a lithium ion battery, including the following steps:
  • the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for 5% to 25% of the total weight of the solid anode component of the silicon anode slurry;
  • the pore forming agent is a polymer particle containing at least one or more of the following polymers of the formula I,
  • R is H or a C1-C6 chain alkyl group
  • R is N0 2 , CN or a halogen
  • n is an integer of 10 to 10000.
  • the pore former has a weight average molecular weight of 500 to 1,000,000.
  • the pore former accounts for 10% to 20% of the total weight of the solid component of the silicon anode slurry.
  • the silicon material is a silicon nanoparticle, a silicon alloy material, a silicon oxycarbon composite material or a nano silicon/silicon dioxide composite.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, epoxy resin, polyvinyl alcohol, polyimide, and polyurethane.
  • the conductive agent is one or more of graphite, expanded graphite, carbon nanotubes, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, acetylene black, Super P, and KS-6.
  • the silicon material, the binder and the conductive agent respectively occupy the total weight of the solid component of the silicon negative electrode slurry
  • the organic solvent is hydrazine, hydrazine-dimercaptocarboxamide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP), tetrahydrofuran (THF), acetone and decyl alcohol.
  • DMF hydrazine
  • DMAc hydrazine-dimercaptocarboxamide
  • DMAc hydrazine
  • DMAc hydrazine-dimercaptoacetamide
  • NMP N-2-mercaptopyrrolidone
  • THF tetrahydrofuran
  • acetone decyl alcohol
  • the organic solvent in the silicon negative electrode slurry accounts for 30% to 70% by weight.
  • the silicon negative electrode slurry includes a silicon negative electrode slurry solid formulation and an organic solvent. After the silicon negative electrode slurry is dried and rolled, the silicon negative electrode slurry solid formulation is coated on the current collector to form a silicon negative electrode active material layer.
  • the current collector is a flat copper foil or a foamed copper foil.
  • the stirring temperature is 0 to 50 ° C, and the stirring time is 2 to 12 hours.
  • a method for preparing a silicon negative electrode pole piece for a lithium ion battery according to a second aspect of the present invention provides a method for manufacturing a silicon negative electrode pole piece of a conventional lithium ion battery, which is simple and easy to operate, low in cost, non-polluting, and easy to industrialize. produce.
  • an embodiment of the present invention provides a lithium ion battery, which is composed of a silicon ion negative electrode pole piece, a positive electrode pole piece, a diaphragm, a non-aqueous electrolyte and an outer casing of the lithium ion battery provided by the first aspect of the present invention.
  • the outer casing is a casing that can be opened or aired.
  • the outer casing is an aluminum plastic film casing, a square steel shell or an aluminum shell shell.
  • the positive electrode tab is composed of a current collector and a positive active material coated on the current collector.
  • the positive active material is selected from the group consisting of lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium iron silicate, lithium cobaltate, nickel cobalt manganese ternary material, nickel manganese/cobalt manganese/nickel cobalt raw material, lithium manganate, One or more of lithium-rich layered lithium nickel manganese oxide.
  • the separator is a polyethylene polymer, a polypropylene polymer or a nonwoven fabric.
  • the nonaqueous electrolyte is an electrolyte of a carbonate solvent containing a lithium salt selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), dinonyl carbonate (DMC), and Ethyl carbonate One or more of (EMC), the lithium salt being selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiC10 4 , LiCF 3 S0 3 , LiA10 4 , LiAlCl 4 , Li ( CF 3 S0 2 ) 2 N, One or several of LiBOB and LiDFOB.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dinonyl carbonate
  • Ethyl carbonate One or more of (EMC) the lithium salt being selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiC10 4 , LiCF 3 S0 3 , LiA10 4 , LiAlCl 4 , Li
  • a silicon negative electrode pole piece for a lithium ion battery comprising a current collector and a silicon negative electrode active material layer coated on the current collector, wherein the material of the silicon negative electrode active material layer comprises a silicon material, a binder, a conductive agent and a pore former
  • the pore former is a polymer formed by grafting an electron withdrawing group of ethylene carbonate or a homolog thereof, and the pore former accounts for 5% to 25% of the total weight of the silicon anode active material.
  • the silicon negative electrode pole piece of the lithium ion battery in the embodiment of the present invention is divided into strips according to the battery capacity specification and the manufacturing method of the battery core, and is directly wound or laminated with the positive electrode piece of the lithium ion battery, in positive and negative
  • the microporous separator is added between the poles, and the liquid is injected and sealed after being assembled and packaged, and is carried out according to a process familiar to those skilled in the art, and is not particularly limited.
  • the resulting lithium ion battery then proceeds to the formation step.
  • the pore former in the silicon negative electrode sheet of the lithium ion battery can be reductively decomposed to generate gas and lithium carbonate at a low potential, and after the gas escapes, pores can be formed on the silicon negative electrode sheet to form Porous lithium ion battery silicon negative pole piece, the existence of porous structure can reserve space for expansion of silicon material during charging and discharging process, thus ensuring good connectivity between silicon materials and silicon material and conductive agent There is good connectivity between them, which increases the energy density of the lithium ion battery and improves the cycle life of the lithium ion battery.
  • the produced lithium carbonate is deposited on the surface of the silicon negative electrode active material layer to form an SEI film.
  • the porosity of the silicon negative electrode active material layer in the lithium ion battery after the formation is 10% to 50%, and the pore size is 0.01 to 10 ⁇ ⁇ .
  • the lithium ion battery provided by the third aspect of the embodiments of the present invention has high energy density and long cycle life.
  • Embodiment 1 is not limited to the specific embodiments below. Changes can be implemented as appropriate within the scope of the invariable principal rights. Embodiment 1
  • a method for preparing a silicon negative electrode pole piece for a lithium ion battery comprising the following steps:
  • Vinyl ester (1 ⁇ a €1 2 0— ⁇ : - 0 ) as a solid component of the silicon negative electrode slurry adding 25 g of polyvinylidene fluoride to 500 g of ⁇ -2-mercaptopyrrolidone solution After stirring for 4 hours, 50 g of poly-4-cyanoethylene carbonate having a weight average molecular weight of 25,000 and a dispersion index PDI of 1.6 was added, stirred at low speed for 2 hours, then 25 g of acetylene black was added, stirred at low speed for 2 hours, and finally added to the nanometer. 400 g of silicon/silica composite, stirring at low speed for 2 hours, stirring at 25 ° C, and then dispersing at high speed for 1 hour under the protection of 8 ° C cooling water to obtain a stable silicon negative electrode slurry;
  • the silicon negative electrode pole piece of the lithium ion battery prepared in this embodiment comprises a current collector and a silicon negative electrode active material layer coated on the current collector, and the material of the silicon negative electrode active material layer comprises a silicon material, a binder, a conductive agent and The pore former, the pore former is poly-4-cyanoethylene carbonate, and the pore former accounts for 10% of the total weight of the silicon anode active material.
  • the silicon negative electrode pole piece of the lithium ion battery obtained in the present embodiment was cut into a certain length.
  • the positive electrode slurry was uniformly coated on a 16 micrometer aluminum foil to control the coated areal density to be 23 g/cm 2 , After drying at 120 ° C, it was rolled to a desired thickness, and then cut into positive electrode tabs having a width of 39 mm, and cut into positive electrode tabs matching the length of the above-mentioned negative electrode tabs.
  • the negative electrode tab, the positive electrode tab and the separator obtained above are wound and pre-sealed with an aluminum plastic film, and the solvent (ethylene carbonate: mercaptoethyl carbonate: diethyl carbonate volume ratio is 1:1: 1) 10 g of a non-aqueous electrolyte containing 1 mol of lithium hexafluorofluorene was injected into the above-mentioned incompletely sealed cell, and then heat-sealed.
  • the resulting lithium ion battery is then formed in a conventional manner, and the gas generated during the formation is collected in the gas, followed by a gassing seal.
  • the lithium ion battery has a design capacity of 2000 mAh. After the formation and capacity test, the lithium ion battery has a thickness of 5.5 mm and an average capacity of 2000 mAh.
  • the embodiment is different from the first embodiment in that the silicon negative electrode slurry formulation is: 325 g of nano silicon/silica composite, 20 g of polyvinylidene fluoride, 30 g of acetylene black, poly-4-cyanoethylene carbonate. The ester was 125 g. Other preparation methods of the lithium ion battery are the same as in the first embodiment.
  • the lithium ion battery obtained in Example 2 had a negative electrode thickness of 0.078 mm and an average initial capacity of 2000 mAh.
  • the present embodiment differs from the first embodiment and the second embodiment in that the silicon negative electrode slurry formulation is: 420 g of nano silicon/silica composite, 25 g of polyvinylidene fluoride, 30 g of acetylene black, poly 4- The cyanoethylene carbonate was 25 g.
  • Other preparation methods of the lithium ion battery are the same as those in the first embodiment and the second embodiment.
  • a lithium ion battery was obtained, which had a negative electrode thickness of 0.078 mm and an average initial capacity of 2000 mAh.
  • Comparative Example 1 The preparation method of Comparative Example 1 is the same as that of Examples 1 and 2 and Example 3, only in the preparation of silicon negative electrode slurry. No pore former is added during the preparation process.
  • the thickness of the negative electrode sheet prepared in Comparative Example 1 was also 0.078 mm, and the initial thickness of the soft pack battery was also designed to be 5.5 mm, and the average capacity was 2000 mAh.
  • the products obtained in the first embodiment, the second embodiment, the third embodiment and the third embodiment were subjected to 20 cycles and 100 cycles, respectively, and the battery capacity data was collected, and a part of the battery was disassembled, and the average of the negative electrode pieces was measured.
  • the thickness is shown in Table 1.
  • Embodiment 4 A method for preparing a silicon negative electrode pole piece for a lithium ion battery, comprising the following steps:
  • Nitropropylene ester ( (3 ⁇ 4 ) as a solid component of the silicon negative electrode slurry, add 25 grams of polytetrafluoroethylene (PTFE) to 500 grams of hydrazine, hydrazine-dihydrazinamide solution, stir 4 Hours, followed by the addition of 100 g of poly(2-nitropropene carbonate) having a weight average molecular weight of 50,000 and a dispersion index PDI of 1.7, stirring at low speed for 2 hours, followed by addition of 25 g of Super ⁇ , stirring at low speed for 2 hours, and finally adding silicon carbon.
  • PTFE polytetrafluoroethylene
  • the silicon negative electrode pole piece of the lithium ion battery prepared in this embodiment comprises a current collector and a silicon negative electrode active material layer coated on the current collector, and the material of the silicon negative electrode active material layer comprises a silicon material, a binder, a conductive agent and The pore former, the pore former is poly(2-nitropropene carbonate), and the pore former accounts for 20% of the total weight of the silicon anode active material.
  • the silicon negative electrode pole piece of the lithium ion battery obtained in the present embodiment was cut into a certain length.
  • the positive electrode slurry was uniformly coated on a 16 micrometer aluminum foil, the coated areal density was controlled to be 21 g/cm 2 , then dried at 130 ° C, rolled to a desired thickness, and then cut into A positive electrode piece having a width of 44 mm is cut into a positive electrode piece which matches the length of the above negative electrode piece.
  • the negative electrode tab, the positive electrode tab and the separator obtained above are wound into a shell of a standard triangular aluminum shell of 103450 type, and the solvent (ethylene carbonate: mercaptoethyl carbonate: diethyl carbonate volume ratio) 10 g of a non-aqueous electrolyte containing 1 mol of lithium hexafluorofluorene in 1 : 1 : 1) was injected into the above-mentioned aluminum shell injection hole.
  • the solvent ethylene carbonate: mercaptoethyl carbonate: diethyl carbonate volume ratio
  • the obtained lithium ion battery is then opened in a conventional manner, and the gas escapes from the unsealed liquid injection hole during the high temperature formation process, and is then sealed by the steel ball.
  • the lithium-ion battery is designed to have a thickness of 9.8mm, a designed winding thickness of 9.0mm, and a design capacity of 1800mAh. After capacity testing, the average charge and discharge capacity is 1800mAh for the first time, and the average thickness of the lithium-ion battery sample is 10.0mm.
  • Proportion two Comparative Example 2 was prepared in the same manner as in Example 4 except that no pore former was added during the preparation of the silicon negative electrode slurry.
  • the thickness of the negative electrode sheet prepared in Comparative Example 2 was also 0.079 mm, the initial thickness of the prismatic battery was also designed to be 9.8 mm, the designed winding thickness of the battery core was 9.0 mm, and the average capacity was measured to be 1800 mAh, and the average thickness was 10.0 mm.
  • the products obtained in the fourth embodiment and the second comparative example were subjected to 20 cycles and 100 cycles, respectively, and the battery capacity data was collected, and part of the batteries were disassembled, and the average thickness of the negative electrode sheets was measured. The results are shown in Table 2. .
  • a method for preparing a silicon negative electrode pole piece for a lithium ion battery comprising the following steps:
  • the thickness of the pole piece is 0.079 mm, and the strip-shaped pole piece is cut into a width of 46 mm to obtain a silicon negative electrode piece of a lithium ion battery.
  • the silicon negative electrode pole piece of the lithium ion battery prepared in this embodiment comprises a current collector and a silicon negative electrode active material layer coated on the current collector, and the material of the silicon negative electrode active material layer comprises a silicon material, a binder, a conductive agent and The pore former, the pore former is poly(2-fluoropropylene carbonate), and the pore former accounts for 20% of the total weight of the silicon anode active material.
  • the lithium ion battery provided by the third aspect of the present invention has high energy density and long cycle life after being formed, and the energy retention rate can be increased by 10 to 25% under the same conditions of other materials, and the cycle life can be improved by 20 ⁇ 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例提供了一种锂离子电池硅负极极片,包括集流体和涂覆在集流体上的硅负极活性材料层,硅负极活性材料层的材质包括硅材料、粘结剂、导电剂和造孔剂,造孔剂为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物,造孔剂占硅负极活性材料总重量的5%〜25%。造孔剂在低电位下可被还原分解生成气体和碳酸锂,气体逸出后在硅负极极片上造孔,形成具有多孔结构的锂离子电池硅负极极片,多孔结构的存在能为硅材料在充放电过程中出现的膨胀预留空间,因此能够保证硅材料之间具有较好的连接性以及硅材料与导电剂之间具有良好的连接性。本发明实施例还提供了一种锂离子电池硅负极极片的制备方法以及包含该锂离子电池硅负极极片的锂离子电池。

Description

一种鋰离子电池硅负极极片及其制备方法和鋰离子电池 本申请要求了 2012年 11月 9日提交中国专利局的, 申请号 201210445842.9, 发明名称为"一种锂离子电池硅负极极片及其制备方法和锂离子电池"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及锂离子电池领域, 特别是涉及一种锂离子电池硅负极极片及其 制备方法和锂离子电池。 背景技术
在众多的储能技术中, 锂离子电池由于具有重量轻、 体积小、 工作电压高、 能量密度高、 输出功率大、 充电效率高、 无记忆效应、 循环寿命长等优点, 在 手机、 笔记本电脑等领域得到了广泛的应用。
但目前智能手机和平板电脑等电子数码产品对锂离子电池的能量密度要求 越来越高, 而商用的负极材料石墨很难满足能量密度要求。 硅材料的理论克容 量为 4200mAh/g, 远高于石墨材料的理论克容量 372mAh/g, 但硅材料在充放电 过程中体积膨胀大, 使硅材料目前在软包装电池中难以商用化, 具体表现在: ( 1 )硅材料体积膨胀导致负极极片厚度增大, 进而引起锂离子电池体积增大; 重影响锂离子电池的循环使用寿命; ( 3 )硅材料体积膨胀后易从集流体上脱落, 容易引起自放电和内短路等安全问题。
为使硅材料能够商用化于锂离子电池的负极极片中,当前对硅材料的研究重 点为如何控制硅材料膨胀。 目前釆用较多的办法是对硅材料进行优化与改性, 比如釆用纳米硅粉、 硅纳米线, 硅纳米管或硅碳复合, 也有人釆用气相沉积法 在无定形碳上沉积纳米硅, 虽然这些方法在一定程度上提高了硅负极的循环稳 定性, 但是这些方法提高稳定性的效果有限, 而且制备这些硅材料的工艺复杂, 工艺能耗大, 增加了锂离子电池的成本, 难以实现大批量生产的商业化。
此外,也有人提出制备多孔硅基负极的电极。例如,公开号为 CN101894940A 的中国专利申请文件通过在硅基负极浆料中加入成孔剂 (氟化铵、 氯化铵、 硝 酸铵等) , 然后在保护气体下进行高温烘干, 使成孔剂蒸发, 即在制备负极的 过程中在负极预留空间, 得到含有多孔的硅基负极。 但该制备方法需要在保护 气体中高温下进行, 能耗大, 工艺成本高, 而且所用的成孔剂具有腐蚀性, 会 腐蚀铜集流体, 含有一定的毒性, 不易安全生产。 又例如, 公开号为 CN101192663A 的中国专利申请文件在制备电极的过程中在电极浆料中加入造 孔聚合物 (聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基 酯、 聚曱基丙烯酸烷基酯等聚合物或共聚物) , 该电极用于制备电池时, 造孔 聚合物浸润于电解质溶液中, 此时造孔剂溶解于电解液中从而在活性材料层内 起到形成孔的作用。 该制备方法虽然易于操作, 但其中使用的造孔聚合物与电 解液的主体成分不同, 溶解于电解液后将引起电解液组分变化, 最终将影响锂 离子电池的性能。 发明内容
有鉴于此,本发明实施例第一方面提供了一种锂离子电池硅负极极片,用以 电池体积增大、 锂离子电池循环使用寿命缩短、 易出现自放电和内短路以及现 有技术中锂离子电池负极中存在的造孔剂易溶解于电解液中导致电解液组分发 生改变的问题。 本发明实施例第二方面提供了该锂离子电池硅负极极片的制备 方法, 用以解决现有多孔硅负极极片生产能耗大、 工艺成本高、 不易安全生产 的问题。 本发明实施例第三方面提供了包含所述锂离子电池硅负极极片的锂离 子电池, 该锂离子电池能量密度高且循环寿命长。
第一方面,本发明实施例提供了一种锂离子电池硅负极极片, 包括集流体和 涂覆在所述集流体上的硅负极活性材料层, 所述硅负极活性材料层的材质包括 硅材料、 粘结剂、 导电剂和造孔剂, 所述造孔剂为接枝吸电子基团的碳酸乙烯 酯或其同系物形成的聚合物, 所述造孔剂占硅负极活性材料总重量的 5%〜25%。
优选地,所述造孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合 物颗粒,
R 0
†~C— l20— C O- ^
通式 I: ,
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
优选地, 所述造孔剂具有 500〜1000000的重均分子量。
优选地, 所述造孔剂占硅负极活性材料总重量的 10%〜20%。
优选地, 所述硅材料为硅纳米颗粒、硅合金材料、硅氧碳复合材料或纳米硅 /二氧化硅复合物。
优选地, 所述粘结剂为聚偏氟乙烯、 聚四氟乙烯、 环氧树脂、 聚乙烯醇、 聚 酰亚胺和聚氨酯中的一种或几种。
优选地, 所述导电剂为石墨、 膨胀石墨、 碳纳米管、 碳纤维、 活性碳、 无定 形碳、 导电炭黑、 乙炔黑、 Super P和 KS-6中的一种或几种。 优选地, 所述硅材料、 粘结剂和导电剂分别占硅负极活性材料总重量的
60%〜90%、 4%〜10%和 1%〜5%。
优选地, 所述硅负极活性材料层的厚度为 30〜200 μ ηι。
优选地, 所述集流体为平面铜箔或泡沫铜箔。
本发明实施例第一方面提供的一种锂离子电池硅负极极片中,造孔剂为接枝 吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造孔剂在低电位下可 被还原分解生成气体和碳酸锂, 气体逸出后可在硅负极极片上造孔, 从而形成 具有多孔结构的锂离子电池硅负极极片, 多孔结构的存在能够为硅材料在充放 电过程中出现的膨胀预留空间, 因此能够保证硅材料之间具有较好的连接性以 及硅材料与导电剂之间具有良好的连接性, 从而提高锂离子电池的能量密度, 提升锂离子电池的循环寿命。
第二方面,本发明实施例提供了一种锂离子电池硅负极极片的制备方法, 包 括以下步骤:
( 1 )取硅材料、 粘结剂、 导电剂和造孔剂组成硅负极浆料固体配料组分, 将所述固体配料组分在有机溶剂中分散, 搅拌, 制得硅负极浆料, 所述造孔剂 为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造孔剂占所述 硅负极浆料固体配料组分总重量的 5%〜25%;
( 2 )将所述硅负极浆料涂覆于集流体表面, 进行干燥和辊压, 制得锂离子 电池硅负极极片。
优选地,所述造孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合 物颗粒, 通式 I :
Figure imgf000007_0001
,
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
优选地, 所述造孔剂具有 500〜1000000的重均分子量。
优选地, 所述造孔剂占所述硅负极浆料固体配料组分总重量的 10%〜20%。 优选地, 硅材料为硅纳米颗粒、 硅合金材料、 硅氧碳复合材料或纳米硅 /二 氧化硅复合物。
优选地, 所述粘结剂为聚偏氟乙烯、 聚四氟乙烯、 环氧树脂、 聚乙烯醇、 聚 酰亚胺和聚氨酯中的一种或几种。
优选地, 导电剂为石墨、膨胀石墨、碳纳米管、碳纤维、 活性碳、 无定形碳、 导电炭黑、 乙炔黑、 Super P和 KS-6中的一种或几种。
优选地, 所述硅材料、粘结剂和导电剂分别占硅负极浆料固体配料组分总重 量的 60%〜90%、 4%〜10%和 1%〜5%。
优选地,有机溶剂为 Ν,Ν-二曱基曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋喃 (THF) 、 丙酮和曱醇中的一种或几种。
优选地, 所述硅负极浆料中有机溶剂所占的重量百分数为 30%〜70%。
所述硅负极浆料包括硅负极浆料固体配料和有机溶剂。所述硅负极浆料在经 过干燥和辊压后, 其中的硅负极浆料固体配料涂覆在集流体上形成硅负极活性 材料层。
优选地, 所述集流体为平面铜箔或泡沫铜箔。
优选地, 搅拌温度为 0〜50 °C , 搅拌时间为 2〜12小时。 本发明实施例第二方面提供的一种锂离子电池硅负极极片的制备方法,该方 法不改变常规锂离子电池硅负极极片的生产流程, 简单易行, 成本低廉, 无污 染, 易于工业化生产。
第三方面,本发明实施例提供了锂离子电池, 所述锂离子电池由本发明实施 例第一方面提供的锂离子电池硅负极极片、 正极极片、 隔膜、 非水电解液和外 壳组成, 所述外壳为能够开口化成或有气嚢的壳体。
优选地, 所述外壳为铝塑膜壳体, 方型钢壳或铝壳壳体。
优选地, 正极极片上含有正极活性材料, 所述正极活性材料选自磷酸铁锂、 磷酸锰锂、 磷酸钒锂、 硅酸铁锂、 钴酸锂、 镍钴锰三元材料、 镍锰 /钴锰 /镍钴二 原材料、 锰酸锂、 富锂层状镍锰酸锂中的一种或几种。
优选地, 所述隔膜为聚乙烯聚合物、 聚丙烯聚合物或无纺布。
锂离子电池硅负极极片,包括集流体和涂覆在所述集流体上的硅负极活性材 料层, 所述硅负极活性材料层的材质包括硅材料、 粘结剂、 导电剂和造孔剂, 所述造孔剂为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造 孔剂占硅负极浆料固体组分总重量的 5%〜25%。
所述锂离子电池经过化成后,锂离子电池硅负极极片中的造孔剂在低电位下 可被还原分解生成气体和碳酸锂, 气体逸出后可在硅负极极片上造孔, 形成具 有多孔结构的锂离子电池硅负极极片, 多孔结构的存在能够为硅材料在充放电 过程中出现的膨胀预留空间, 因此能够保证硅材料之间具有较好的连接性以及 硅材料与导电剂之间具有良好的连接性, 从而提高锂离子电池的能量密度, 提 升锂离子电池的循环寿命。 同时, 生产的碳酸锂沉积在硅负极活性材料层表面 形成 SEI膜。
本发明实施例第三方面提供的锂离子电池能量密度高并且循环寿命长。 本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是 显而易见的, 或者可以通过本发明实施例的实施而获知。 附图说明
图 1为本发明具体实施方式中锂离子电池硅负极极片的制备方法的流程图。 具体实施方式 以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普 通技术人员来说, 在不脱离本发明实施例原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也视为本发明实施例的保护范围。
本发明实施例第一方面提供了一种锂离子电池硅负极极片,用以解决现有技
大、 锂离子电池循环使用寿命缩短、 易出现自放电和内短路以及现有技术中锂 离子电池负极中存在的造孔剂易溶解于电解液中导致电解液组分发生改变的问 题。 本发明实施例第二方面提供了该锂离子电池硅负极极片的制备方法, 用以 解决现有多孔硅负极极片生产能耗大、 工艺成本高、 不易安全生产的问题。 本 发明实施例第三方面提供了包含所述锂离子电池硅负极极片的锂离子电池, 该 锂离子电池能量密度高且循环寿命长。
第一方面,本发明实施例提供了一种锂离子电池硅负极极片, 包括集流体和 涂覆在所述集流体上的硅负极活性材料层, 所述硅负极活性材料层的材质包括 硅材料、 粘结剂、 导电剂和造孔剂, 所述造孔剂为接枝吸电子基团的碳酸乙烯 酯或其同系物形成的聚合物, 所述造孔剂占硅负极活性材料总重量的 5%〜25%。
所述造孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合物颗粒, 通式 I:
Figure imgf000010_0001
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
所述造孔剂具有 500〜1000000的重均分子量。
所述造孔剂占硅负极活性材料总重量的 10%〜20%。
所述硅材料为硅纳米颗粒、 硅合金材料、 硅氧碳复合材料或纳米硅 /二氧化 硅复合物。
所述粘结剂为聚偏氟乙烯、 聚四氟乙烯、 环氧树脂、 聚乙烯醇、 聚酰亚胺和 聚氨酯中的一种或几种。
所述导电剂为石墨、 膨胀石墨、 碳纳米管、 碳纤维、 活性碳、 无定形碳、 导 电炭黑、 乙炔黑、 Super P和 KS-6中的一种或几种。
所述硅材料、 粘结剂和导电剂分别占硅负极活性材料总重量的 60%〜90%、 4%〜10%和 1%〜5%。
所述硅负极活性材料层的厚度为 30〜200 μ ηι。
所述集流体为平面铜箔或泡沫铜箔。
本发明实施例第一方面提供的一种锂离子电池硅负极极片中,造孔剂为接枝 吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造孔剂在低电位下可 被还原分解生成气体和碳酸锂, 气体逸出后可在硅负极极片上造孔, 从而形成 具有多孔结构的锂离子电池硅负极极片, 多孔结构的存在能够为硅材料在充放 电过程中出现的膨胀预留空间, 因此能够保证硅材料之间具有较好的连接性以 及硅材料与导电剂之间具有良好的连接性, 从而提高锂离子电池的能量密度, 提升锂离子电池的循环寿命。
第二方面,本发明实施例提供了一种锂离子电池硅负极极片的制备方法, 包 括以下步骤:
( 1 )取硅材料、 粘结剂、 导电剂和造孔剂组成硅负极浆料固体配料组分, 将所述固体配料组分在有机溶剂中分散, 搅拌, 制得硅负极浆料, 所述造孔剂 为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造孔剂占所述 硅负极浆料固体配料组分总重量的 5%〜25%;
( 2 )将所述硅负极浆料涂覆于集流体表面, 进行干燥和辊压, 制得锂离子 电池娃负极极片。
所述造孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合物颗粒,
R 0
†~C— l20— C O- ^
通式 I: ,
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
所述造孔剂具有 500〜1000000的重均分子量。
所述造孔剂占所述硅负极浆料固体配料组分总重量的 10%〜20%。
硅材料为硅纳米颗粒、 硅合金材料、 硅氧碳复合材料或纳米硅 /二氧化硅复 合物。
所述粘结剂为聚偏氟乙烯、 聚四氟乙烯、 环氧树脂、 聚乙烯醇、 聚酰亚胺和 聚氨酯中的一种或几种。
导电剂为石墨、 膨胀石墨、 碳纳米管、 碳纤维、 活性碳、 无定形碳、 导电炭 黑、 乙炔黑、 Super P和 KS-6中的一种或几种。 所述硅材料、 粘结剂和导电剂分别占硅负极浆料固体配料组分总重量的
60%〜90%、 4%〜10%和 1%〜5%。
有机溶剂为 Ν,Ν-二曱基曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱 基吡咯烷酮 (NMP)、 四氢呋喃 (THF) 、 丙酮和曱醇中的一种或几种。
所述硅负极浆料中有机溶剂所占的重量百分数为 30%〜70%。
所述硅负极浆料包括硅负极浆料固体配料和有机溶剂。所述硅负极浆料在经 过干燥和辊压后, 其中的硅负极浆料固体配料涂覆在集流体上形成硅负极活性 材料层。
所述集流体为平面铜箔或泡沫铜箔。
搅拌温度为 0〜50°C , 搅拌时间为 2〜12小时。
本发明实施例第二方面提供的一种锂离子电池硅负极极片的制备方法,该方 法不改变常规锂离子电池硅负极极片的生产流程, 简单易行, 成本低廉, 无污 染, 易于工业化生产。
第三方面,本发明实施例提供了锂离子电池, 所述锂离子电池由本发明实施 例第一方面提供的锂离子电池硅负极极片、 正极极片、 隔膜、 非水电解液和外 壳组成, 所述外壳为能够开口化成或有气嚢的壳体。
所述外壳为铝塑膜壳体, 方型钢壳或铝壳壳体。
正极极片由集流体和涂覆在集流体上的正极活性材料组成。所述正极活性材 料选自磷酸铁锂、 磷酸锰锂、 磷酸钒锂、 硅酸铁锂、 钴酸锂、 镍钴锰三元材料、 镍锰 /钴锰 /镍钴二原材料、 锰酸锂、 富锂层状镍锰酸锂中的一种或几种。
所述隔膜为聚乙烯聚合物、 聚丙烯聚合物或无纺布。
非水电解液是碳酸酯溶剂的电解液,所述电解液中含有锂盐,所述碳酸酯选 自碳酸亚乙酯 (EC ) 、 碳酸丙烯酯(PC ) 、 碳酸二曱酯(DMC )和碳酸曱乙酯 ( EMC )中的一种或几种,所述锂盐选自 LiPF6、 LiBF4、 LiSbF6、 LiC104、 LiCF3S03、 LiA104、 LiAlCl4、 Li ( CF3S02 ) 2N、 LiBOB和 LiDFOB中的一种或几种。
锂离子电池硅负极极片,包括集流体和涂覆在所述集流体上的硅负极活性材 料层, 所述硅负极活性材料层的材质包括硅材料、 粘结剂、 导电剂和造孔剂, 所述造孔剂为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造 孔剂占硅负极活性材料总重量的 5%〜25%。
锂离子电池的制作
将本发明实施方式中的锂离子电池硅负极极片根据电池容量规格和电芯的 制作方式分裁成片条状, 直接与锂离子电池正极极片进行卷绕或叠片成型, 在 正负极之间加入微孔隔离膜, 经组装封装后注液、 密封, 均按本行业技术人员 所熟悉的工艺进行, 无特殊限定。
制得的锂离子电池随后进入化成步骤。 所述锂离子电池经过化成后, 锂离 子电池硅负极极片中的造孔剂在低电位下可被还原分解生成气体和碳酸锂, 气 体逸出后可在硅负极极片上造孔, 形成具有多孔结构的锂离子电池硅负极极片, 多孔结构的存在能够为硅材料在充放电过程中出现的膨胀预留空间, 因此能够 保证硅材料之间具有较好的连接性以及硅材料与导电剂之间具有良好的连接 性, 从而提高锂离子电池的能量密度, 提升锂离子电池的循环寿命。 同时, 生 产的碳酸锂沉积在硅负极活性材料层表面形成 SEI膜。
化成后的锂离子电池中硅负极活性材料层的空隙率为 10%〜50%, 孔径大小 为 0.01〜10 μ ηι。
本发明实施例第三方面提供的锂离子电池能量密度高并且循环寿命长。
本发明实施例不限定于以下的具体实施例。 在不变主权利的范围内, 可以 适当的进行变更实施。 实施例一
一种锂离子电池硅负极极片的制备方法, 包括以下步骤:
( 1 )分别取纳米硅 /二氧化硅复合物、 聚偏氟乙烯、 乙炔黑和聚 4-氰基碳酸
CM 0
「 I II —;
乙烯酯 ( 1~^ 一€120— ί·:— 0 )作为硅负极浆料固体配料组分, 将 25 克聚偏氟乙烯, 加入到 500克的 Ν-2-曱基吡咯烷酮溶液中, 搅拌 4小时, 接着 加入 50克重均分子量为 25000, 分散指数 PDI为 1.6的聚 4-氰基碳酸乙烯酯, 低速搅拌 2小时, 随后加入 25克乙炔黑, 低速搅拌 2小时, 最后加入纳米硅 / 二氧化硅复合物 400克, 低速搅拌 2小时, 搅拌温度均为 25 °C , 然后在 8°C冷 却水的保护下高速分散 1小时, 得到稳定的硅负极浆料;
( 2 )将所述硅负极浆料涂覆于平面铜箔表面, 涂覆重量为 5.26g/cm2 (;不含 铜箔), 置于 80°C的烘箱中进行干燥, 然后进行辊压至极片厚度为 0.078mm, 分 切为宽度是 40mm的条型极片, 制得锂离子电池硅负极极片。
本实施例制得的锂离子电池硅负极极片包括集流体和涂覆在所述集流体上 的硅负极活性材料层, 硅负极活性材料层的材质包括硅材料、 粘结剂、 导电剂 和造孔剂, 造孔剂为聚 4-氰基碳酸乙烯酯, 所述造孔剂占硅负极活性材料总重 量的 10%。 锂离子电池的制备方法
将本实施例制得的锂离子电池硅负极极片裁切成一定长度。
将 200克正极活性材料 LiCo02、 6克粘结剂聚偏二氟乙烯 (PVDF)、 4克导 电剂乙炔黑的混合物加入到 60克 N-曱基 - 2吡咯烷酮溶液 (NMP)中, 先低速搅 拌 4小时, 然后在 8°C冷却水的保护下高速分散 1小时形成均匀的正极浆料。 将 该正极浆料均匀的涂布在 16微米的铝箔上, 控制涂布的面密度为 23 g/cm2, 然 后 120°C下烘干, 经过辊压成所需要的厚度, 然后分切成宽度为 39mm的正极极 片, 并裁切成匹配上述负极极片长短需求的正极极片。
将上述得到的负极极片、正极极片及隔膜卷绕好用铝塑膜预封 ,将在溶剂 (碳 酸亚乙酯: 曱基乙基碳酸酯: 碳酸二乙酯体积比为 1 : 1 : 1)中含有 1摩尔的六 氟璘 g史锂的非水电解液 10克注入上述的未完全封合的棵电芯中,然后进行热封。
制得的锂离子电池随后按照常规方式化成,化成过程中产生的气体收集在气 嚢中, 后继经过抽气封口。
该锂离子电池的设计容量为 2000毫安时, 经过化成及容量测试后, 锂离子 电池的厚度为 5.5mm, 平均容量为 2000毫安时。
实施例二
本实施方式与实施例一不同的是, 所述硅负极浆料配方为: 纳米硅 /二氧化 硅复合物为 325g, 聚偏氟乙烯为 20g, 乙炔黑为 30g, 聚 4-氰基碳酸乙烯酯为 125g。 锂离子电池的其他制备方式与实施例一相同。
实施例二制得的锂离子电池, 其负极厚度为 0.078mm, 平均初始容量为 2000mAh。
实施例三
本实施方式与实施例一和实施例二不同的是, 所述硅负极浆料配方为: 纳米 硅 /二氧化硅复合物为 420g, 聚偏氟乙烯为 25g, 乙炔黑为 30g, 聚 4-氰基碳酸 乙烯酯为 25g。 锂离子电池的其他制备方式与实施例一及实施例二相同。
实施例二制得锂离子电池, 其负极厚度为 0.078mm , 平均初始容量为 2000mAh。
于比例一
对比例一的制备方法与实施例一、二和实施例三相同,仅在硅负极浆料的制 备过程中不加入造孔剂。 对比例一制得的负极极片厚度也为 0.078mm, 软包电 池初始厚度也设计为 5.5mm, 平均容量为 2000mAh。
将实施例一、 实施例二和实施例三与对比例一中经过化成的产品分别经过 20次循环、 100次循环后釆集一次电池容量数据, 并拆解部分电池, 测量负极 极片的平均厚度, 结果如表 1所示。
表 1. 实施例一、 实施例二及实施例三与对比例一产品性能比较
Figure imgf000016_0001
实施例四 一种锂离子电池硅负极极片的制备方法, 包括以下步骤:
( 1 )分别取硅碳合金材料、 聚四氟乙烯(PTFE )、 Super P 和聚(碳酸 2- ί½ 0
1-C-CH20-C~0¾
硝基丙烯酯) ( (¾ )作为硅负极浆料固体配料组分, 将 25克聚四 氟乙婦(PTFE ), 加入到 500克的 Ν,Ν-二曱基曱酰胺溶液中, 搅拌 4小时, 接 着加入 100克重均分子量为 50000, 分散指数 PDI为 1.7的聚(碳酸 2-硝基丙 烯酯), 低速搅拌 2小时, 随后加入 25克 Super Ρ, 低速搅拌 2小时, 最后加入 硅碳合金材料 350克, 低速搅拌 2小时, 搅拌温度均为 30°C , 然后在 8°C冷却 水的保护下高速分散 1小时, 得到稳定的硅负极浆料;
( 2 )将所述硅负极浆料涂覆于平面铜箔表面, 涂覆重量为 5.26g/cm2 (;不含 铜箔), 置于 80°C的烘箱中进行干燥, 然后进行辊压至极片厚度为 0.079mm, 分 切为宽度是 46mm的条型极片, 制得锂离子电池硅负极极片。
本实施例制得的锂离子电池硅负极极片包括集流体和涂覆在所述集流体上 的硅负极活性材料层, 硅负极活性材料层的材质包括硅材料、 粘结剂、 导电剂 和造孔剂, 造孔剂为聚(碳酸 2-硝基丙烯酯), 所述造孔剂占硅负极活性材料总 重量的 20%。
锂离子电池的制备方法
将本实施例制得的锂离子电池硅负极极片裁切成一定长度。
将 200克正极活性材料 LiCo02、 5克粘结剂聚偏二氟乙烯 (PVDF)、 6克导 电剂乙炔黑的混合物加入到 300克 N-曱基 - 2吡咯烷酮溶液 (NMP)中,先低速搅 拌 4小时, 然后在 8°C冷却水的保护下高速分散 1小时形成均匀的正极浆料。 将 该正极浆料均匀的涂布在 16微米的铝箔上, 控制涂布的面密度为 21 g/cm2, 然 后 130°C下烘干, 经过辊压成所需要的厚度, 然后分切成宽度为 44mm的正极极 片, 并裁切成匹配上述负极极片长短需求的正极极片。
将上述得到的负极极片、 正极极片及隔膜卷绕好套壳入 103450型标准方形 铝壳壳体, 将在溶剂 (碳酸亚乙酯: 曱基乙基碳酸酯: 碳酸二乙酯体积比为 1 : 1 : 1)中含有 1摩尔的六氟璘 g史锂的非水电解液 10克注入上述的铝壳注液孔中。
制得的锂离子电池随后按照常规方式开口化成,高温化成过程中气体从未封 口的注液孔逸出, 后经钢珠封口。
该锂离子电池设计厚度为 9.8mm, 电芯设计卷绕厚度为 9.0mm, 设计容量 为 1800mAh, 经过容量测试后, 首次充放电平均容量为 1800mAh, 锂离子电池 样品平均厚度为 10.0mm。
于比例二 对比例二的制备方法与实施例四相同,仅在硅负极浆料的制备过程中不加入 造孔剂。 对比例二制得的负极极片厚度也为 0.079mm, 方形电池初始厚度也设 计为 9.8mm, 电芯设计卷绕厚度为 9.0mm, 测得平均容量为 1800mAh, 平均厚 度为 10.0mm。
将实施例四与对比例二中经过化成的产品分别经过 20次循环、 100次循环 后釆集一次电池容量数据, 并拆解部分电池, 测量负极极片的平均厚度, 结果 如表 2所示。
表 2. 实施例四与对比例二产品性能比较
Figure imgf000018_0001
实施例五
一种锂离子电池硅负极极片的制备方法, 包括以下步骤:
( 1 )分别取硅氧碳复合材料、聚偏氟乙烯、 乙炔黑和聚(碳酸 2-氟乙烯酯) f 0
m. f J一 i J f\一 ■ A .J,,,,
( L L il I2U U U Jn)作为硅负极浆料固体配料组分, 将 25克聚偏氟 乙烯, 加入到 500克的 N-2-曱基吡咯烷酮溶液中, 搅拌 4小时, 接着加入 50克 重均分子量为 5000, 纯度分布 PDI为 1.3的聚(碳酸 2-氟乙烯酯), 低速搅拌 2 小时, 随后加入 25克乙炔黑, 低速搅拌 2小时, 最后加入硅氧碳复合材料 400 克, 低速搅拌 2小时, 搅拌温度均为 25 °C , 然后在 8°C冷却水的保护下高速分 散 1小时, 得到稳定的硅负极浆料; ( 2 )将所述硅负极浆料涂覆于平面铜箔表面, 涂覆重量为 5.26g/cm2 (;不含 铜箔), 置于 80°C的烘箱中进行干燥, 然后进行辊压至极片厚度为 0.079mm, 分 切为宽度是 46mm的条型极片, 制得锂离子电池硅负极极片。
本实施例制得的锂离子电池硅负极极片包括集流体和涂覆在所述集流体上 的硅负极活性材料层, 硅负极活性材料层的材质包括硅材料、 粘结剂、 导电剂 和造孔剂, 造孔剂为聚(碳酸 2-氟丙烯酯), 所述造孔剂占硅负极活性材料总重 量的 20%。
综上, 本发明实施例第三方面提供的锂离子电池经过化成后能量密度高并 且循环寿命长, 在其它材料相同的情况下, 能量保持率能提升 10 ~ 25%, 循环 寿命能提升 20〜50%。

Claims

权 利 要 求
1、 一种锂离子电池硅负极极片, 其特征在于, 包括集流体和涂覆在所述集 流体上的硅负极活性材料层, 所述硅负极活性材料层的材质包括硅材料、 粘结 剂、 导电剂和造孔剂, 所述造孔剂为接枝吸电子基团的碳酸乙烯酯或其同系物 形成的聚合物, 所述造孔剂占硅负极活性材料总重量的 5%〜25%。
2、 如权利要求 1所述的一种锂离子电池硅负极极片, 其特征在于, 所述造 孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合物颗粒,
E 0
I 11
f C— C 0— C— 通式 I: ,
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
3、 如权利要求 1所述的一种锂离子电池硅负极极片, 其特征在于, 所述造 孔剂具有 500〜1000000的重均分子量。
4、 如权利要求 1所述的一种锂离子电池硅负极极片, 其特征在于, 所述硅 材料为硅纳米颗粒、 硅合金材料、 硅氧碳复合材料或纳米硅 /二氧化硅复合物。
5、 如权利要求 1所述的一种锂离子电池硅负极极片, 其特征在于, 所述硅 材料、 粘结剂和导电剂分别占硅负极活性材料总重量的 60%〜90%、 4%〜10%和 1%〜5%。
6、 如权利要求 1所述的一种锂离子电池硅负极极片, 其特征在于, 所述硅 负极活性材料层的厚度为 30〜200 μ m。
7、 一种锂离子电池硅负极极片的制备方法, 其特征在于, 包括以下步骤: ( 1 )取硅材料、 粘结剂、 导电剂和造孔剂组成硅负极浆料固体配料组分, 将所述固体配料组分在有机溶剂中分散, 搅拌, 制得硅负极浆料, 所述造孔剂 为接枝吸电子基团的碳酸乙烯酯或其同系物形成的聚合物, 所述造孔剂占所述 硅负极浆料固体配料组分总重量的 5%〜25%;
( 2 )将所述硅负极浆料涂覆于集流体表面, 进行干燥和辊压, 制得锂离子 电池硅负极极片。
8、 如权利要求 7所述的一种锂离子电池硅负极极片, 其特征在于, 所述造 孔剂为至少含有以下通式 I的聚合物中的一种或几种的聚合物颗粒,
E 0
零 - ¾
通式 I: ,
其中, R为 H或 C1〜C6的链状烷基, R,为 N02 、 CN或卤素, n为 10〜10000 的整数。
9、 如权利要求 7所述的一种锂离子电池硅负极极片, 其特征在于, 所述造 孔剂具有 500〜1000000的重均分子量。
10、 一种锂离子电池, 其特征在于, 所述锂离子电池由如权利要求 1〜6中任 一权利要求所述的锂离子电池硅负极极片、 正极极片、 隔膜、 非水电解液和外 壳组成, 所述外壳为能够开口化成或有气嚢的壳体。
PCT/CN2013/073480 2012-11-09 2013-03-29 一种锂离子电池硅负极极片及其制备方法和锂离子电池 WO2014071717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210445842.9A CN103811719B (zh) 2012-11-09 2012-11-09 一种锂离子电池硅负极极片及其制备方法和锂离子电池
CN201210445842.9 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014071717A1 true WO2014071717A1 (zh) 2014-05-15

Family

ID=50683999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073480 WO2014071717A1 (zh) 2012-11-09 2013-03-29 一种锂离子电池硅负极极片及其制备方法和锂离子电池

Country Status (2)

Country Link
CN (1) CN103811719B (zh)
WO (1) WO2014071717A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336917B (zh) * 2014-08-14 2018-11-20 东莞新能源科技有限公司 锂离子电池及其负极片的制备方法
CN105633350A (zh) * 2016-04-01 2016-06-01 深圳市沃特玛电池有限公司 一种多孔极片及其制备方法、锂离子电池
CN106099173B (zh) * 2016-07-19 2018-05-04 浙江超威创元实业有限公司 一种多孔聚酰亚胺负极高能量密度锂离子电池
CN107749459B (zh) * 2016-11-07 2020-11-03 万向一二三股份公司 一种锰酸锂电池负极的制备方法
CN109994707B (zh) * 2017-12-29 2021-09-21 宁德时代新能源科技股份有限公司 正极片及其制备方法、电池
CN108767195B (zh) * 2018-04-27 2021-01-26 国联汽车动力电池研究院有限责任公司 一种孔隙结构可调的硅基电极及其制备方法
CN109103503B (zh) * 2018-07-18 2020-11-03 惠州亿纬锂能股份有限公司 锂离子电池的制备方法
CN110224112B (zh) * 2018-11-07 2022-02-22 山东华亿比科新能源股份有限公司 一种锂离子电池用二次造孔方法
CN112531160A (zh) * 2019-09-19 2021-03-19 贝特瑞新材料集团股份有限公司 一种无定形炭负极材料及其制备方法和用途
CN112542570B (zh) * 2019-09-23 2022-08-09 北京小米移动软件有限公司 硅负极极片及其制备方法和锂离子电池
CN110911630A (zh) * 2019-10-23 2020-03-24 东北大学 一种高孔隙率锂离子电池极片及其制备方法
CN111769269B (zh) * 2020-07-10 2022-02-15 黄杰 一种多孔聚合物纳米硅复合负极材料及其制备方法与应用
CN114436238B (zh) * 2021-12-28 2023-07-18 深圳市翔丰华科技股份有限公司 锂离子电池用低膨胀硅碳负极材料的制备方法
CN114361716A (zh) * 2021-12-29 2022-04-15 广东国光电子有限公司 一种具有安全涂层的正极极片及其制备方法与应用
CN115295764A (zh) * 2022-07-29 2022-11-04 江苏正力新能电池技术有限公司 一种负极极片及其制备方法和二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192663A (zh) * 2006-11-20 2008-06-04 三星Sdi株式会社 可充电锂电池的电极以及利用该电极制造的可充电锂电池
CN102201595A (zh) * 2010-03-26 2011-09-28 三洋电机株式会社 锂二次电池及其制造方法
US20120121974A1 (en) * 2010-11-12 2012-05-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
CN102623745A (zh) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 一种锂离子电池及其阳极片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192663A (zh) * 2006-11-20 2008-06-04 三星Sdi株式会社 可充电锂电池的电极以及利用该电极制造的可充电锂电池
CN102201595A (zh) * 2010-03-26 2011-09-28 三洋电机株式会社 锂二次电池及其制造方法
US20120121974A1 (en) * 2010-11-12 2012-05-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
CN102623745A (zh) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 一种锂离子电池及其阳极片及其制备方法

Also Published As

Publication number Publication date
CN103811719A (zh) 2014-05-21
CN103811719B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
WO2014071717A1 (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
WO2014032407A1 (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
EP2660904B1 (en) Method for preparing graphene-like doped positive electrode material of lithium-ion battery
WO2014063464A1 (zh) 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池
WO2011079735A1 (zh) 大容量动力锂离子电池及其制备方法
CN112909220A (zh) 二次电池及含有它的装置
WO2024082287A1 (zh) 具有改善的电解液粘度和cb值的锂离子电池和用电装置
CN106711428A (zh) 一种富锂三元复合材料及其制备方法
CN115148960A (zh) 负极极片及包含该负极极片的电化学装置、电子装置
CN103151563A (zh) 一种聚合物电池的制备方法及聚合物电池
WO2024016940A1 (zh) 正极片、二次电池、电池模组、电池包和用电装置
WO2024012166A1 (zh) 二次电池及用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
CN108039453B (zh) 一种利用涂层提高锂电池负极循环性能的方法
WO2023130210A1 (zh) 二次电池的补锂方法及充放电方法
WO2023060529A1 (zh) 锂离子电池
WO2022178748A1 (zh) 负极活性材料、负极片、电化学装置和电子装置
CN114614200A (zh) 电化学装置及用电设备
WO2015060483A1 (ko) 비가교-가교 고분자 혼성 바인더, 이의 제조방법, 및 이를 포함하는 리튬 이차전지용 음극 활물질 조성물
WO2021127999A1 (zh) 二次电池及含有该二次电池的装置
WO2022193283A1 (zh) 电化学装置及电子装置
WO2024077507A1 (zh) 粘结组合物、电极浆料、电极极片、二次电池及用电装置
WO2024077473A1 (zh) 集流体及其制备方法、电极极片、二次电池以及用电装置
WO2024065181A1 (zh) 负极组合物及制备方法、负极浆料及制备方法、负极极片及制备方法、二次电池、用电装置以及噻蒽类化合物的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853743

Country of ref document: EP

Kind code of ref document: A1