WO2014069311A1 - Reactor, converter, and power conversion device - Google Patents

Reactor, converter, and power conversion device Download PDF

Info

Publication number
WO2014069311A1
WO2014069311A1 PCT/JP2013/078744 JP2013078744W WO2014069311A1 WO 2014069311 A1 WO2014069311 A1 WO 2014069311A1 JP 2013078744 W JP2013078744 W JP 2013078744W WO 2014069311 A1 WO2014069311 A1 WO 2014069311A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
coil
reactor
bottom plate
coil elements
Prior art date
Application number
PCT/JP2013/078744
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 吉川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2014069311A1 publication Critical patent/WO2014069311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a reactor used as a component part of a power conversion device such as a vehicle-mounted DC-DC converter mounted on a vehicle such as a hybrid vehicle.
  • the present invention relates to a small reactor that can appropriately measure physical quantities (temperature, current value, etc.) during operation of the reactor.
  • Patent Document 1 discloses a reactor used for a converter mounted on a vehicle such as a hybrid vehicle.
  • the reactor includes a coil having a pair of coil elements, an annular magnetic core in which the coil is disposed, and a case that houses a combination of the coil and the magnetic core, and a seal that is filled in the case.
  • What has a stop resin (secondary resin part, potting resin) is disclosed.
  • Patent Document 1 discloses a reactor in which sensors are arranged between coil elements in a direction orthogonal to both the side-by-side direction of both coil elements and the axial direction of the coil elements.
  • one of the objects of the present invention is to provide a small reactor capable of appropriately measuring a physical quantity during operation of the reactor. Moreover, the other object of this invention is to provide the converter which provides the said reactor, and the power converter device which provides this converter.
  • a reactor according to the present invention includes a coil including a pair of coil elements connected to each other, a pair of inner core portions disposed in each of the coil elements, and an outer core portion that connects these inner core portions to form a closed magnetic circuit. And a magnetic core. And the heat sink with which the said coil is mounted, and the sensor which measures the physical quantity at the time of operation
  • Each of the coil elements is a cylindrical body formed by winding a winding in a spiral shape, and the end face shape has a shape having a corner R portion with rounded corners, and the axes of the coil elements are parallel to each other. Are arranged in parallel.
  • the sensor is disposed in a trapezoidal space formed by the corner R portion and the heat radiating plate opposed to each other in each coil element.
  • the reactor of the present invention is small in size so that it can appropriately measure physical quantities (coil temperature, etc.) during operation of the reactor.
  • FIG. 1 shows a reactor according to a first embodiment, in which (A) is a perspective view and (B) is a cross-sectional view taken along the line BB of FIG. It is a disassembled perspective view which shows the outline of the assembly of the coil and magnetic core which are provided in the reactor of Embodiment 1.
  • FIG. The insulator provided in the reactor of Embodiment 2 is shown, (A) is a cross-sectional perspective view, (B) is a cross-sectional view of FIG. 3 (A).
  • the insulator and sensor holder which are provided in the reactor of Embodiment 3 are shown, (A) is a cross-sectional perspective view, (B) is a cross-sectional view of FIG. 4 (A).
  • FIG. 1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. It is a schematic circuit diagram which shows an example of the power converter device of Embodiment 7 which provides the converter of Embodiment 7.
  • each coil element is set to a specific shape, and the position where a sensor for measuring a physical quantity (coil temperature, current, etc.) during operation of the reactor is set to a specific position.
  • a sensor for measuring a physical quantity coil temperature, current, etc.
  • the reactor according to the embodiment forms a closed magnetic circuit by connecting a coil including a pair of coil elements connected to each other, a pair of inner core portions arranged in each of the coil elements, and the inner core portions. And a magnetic core having an outer core portion. Further, the reactor includes a heat radiating plate on which the coil is placed, and a sensor that measures a physical quantity during operation of the reactor.
  • Each of the coil elements is a cylindrical body formed by winding a winding in a spiral shape, and the end surface shape has a corner R portion with rounded corners so that the axes of the coil elements are parallel to each other. Are arranged in parallel.
  • the sensor is disposed in a trapezoidal space formed by the corner R portion and the heat radiating plate disposed to face each other in the coil elements.
  • the trapezoidal space is sufficient depending on the rounding radius of the corner R portion even when the regions sandwiched between the inner core portions of the pair of coil elements are brought close to each other. Since the space can be large, the sensor can be sufficiently installed. That is, when the sensor is arranged in the trapezoidal space, the gap between the two coil elements can be made smaller than the thickness of the sensor, and thus the reactor can be miniaturized.
  • the trapezoidal space is a so-called dead space formed by winding a winding so as to provide a corner R portion.
  • the dead space can be effectively used by arranging a sensor in the space. For this reason, the reactor is not substantially enlarged.
  • the reactor according to the embodiment has a large part of the trapezoidal space sandwiched between the corner R portions deviated from the region sandwiched between both inner core portions. It is possible to reduce the stress caused by the coil element to be applied, and preferably not to be applied substantially.
  • the trapezoidal space is formed on the upper side and the lower side of the reactor when the placement side when placed is the lower side and the opposite side is the upper side. .
  • the sensor is arranged in a trapezoidal space sandwiched between corners R of each coil element on the upper side of the reactor, there is room for improvement in the following points.
  • A) When the reactor includes a sealing resin, a combination of a coil and a magnetic core is housed in a case, the sealing resin is filled in the case, and the resin is cured. In that case, when the sealing resin is filled, the sensor floats due to the resin, and the sensor cannot be fixed at a predetermined position.
  • the reactor does not include sealing resin, the outer periphery of the sensor (particularly in the case of a temperature sensor) is not covered with anything and is exposed to the atmosphere. Physical quantities may be measured.
  • the reactor of the embodiment can be sandwiched between the corner R portion and the heat sink by arranging the sensor in a trapezoidal space sandwiched between the corner R portions of the coil elements on the lower side of the reactor. )
  • the sensor can be prevented from floating by the resin, and when the reactor does not include the sealing resin (B), the sensor can be prevented from being exposed to the atmosphere.
  • the heat radiating plate includes a bonding layer that fixes the coil, and the sensor is fixed by the bonding layer.
  • the sensor Since the sensor is fixed by the bonding layer, the sensor can be held more firmly. With the bonding layer, the coil can be fixed to the heat radiating plate and the sensor can be fixed at the same time. Therefore, the bonding process for individually bonding the coils can be simplified, and the assembly workability is excellent.
  • the reactor includes a sensor holder that holds the sensor, and an insulator that is interposed between the coil and the magnetic core, and the sensor holder is formed integrally with the insulator.
  • the form currently made is mentioned.
  • the sensor can be held more firmly by providing the sensor holder. Since the sensor holder is formed integrally with the insulator, when the sensor is assembled to the sensor holder, the assembly of the assembly and the insulator can be fixed to the heat sink and the sensor can be fixed at the same time. Excellent. Further, since the assembly and the sensor can be fixed to the heat radiating plate as an integrated body, the sensor can be easily positioned with respect to the coil, and the displacement of the sensor can be prevented.
  • the reactor includes a sensor holder that holds the sensor, and an insulator that is interposed between the coil and the magnetic core.
  • the sensor holder is a member that is independent of the insulator. The form comprised by is mentioned.
  • the sensor holder and the insulator are formed of independent members, the sensor can be easily placed because the sensor can be assembled to the sensor holder after being assembled to the sensor holder.
  • the sensor holder may include an engagement portion that engages with the insulator.
  • the sensor holder can be easily positioned by engaging the sensor holder with the insulator. Further, the sensor holder can be more firmly fixed to the assembly, the sensor can be prevented from being displaced, and the assembly workability is excellent.
  • a converter according to an embodiment includes the reactor according to the embodiment described in any one of (1) to (5) above.
  • the converter of the embodiment is small by including the reactor of the small embodiment.
  • the converter of the above-mentioned embodiment can be used suitably for the component of a power converter device.
  • the power converter device which concerns on embodiment comprises the converter of the said embodiment.
  • the power conversion device of the embodiment is small by including the converter of the small embodiment.
  • Embodiment 1 The reactor of Embodiment 1 is demonstrated with reference to FIG. 1, FIG.
  • the reactor 1 connects a coil 2 including a pair of coil elements 2a and 2b connected to each other, a pair of inner core portions 31 (FIG. 2) disposed in the coil elements 2a and 2b, and the inner core portions 31.
  • the magnetic core 3 having the outer core portion 32 forming a closed magnetic path is provided. Furthermore, it includes a bottom plate portion 40 (heat radiating plate) on which the coil 2 is placed, and a sensor 7 that measures a physical quantity during operation of the reactor 1.
  • the reactor 1 of this example includes an insulator 5 interposed between the coil 2 and the magnetic core 3, and a bonding layer 42 in the bottom plate portion 40 where the surface on the installation side of the coil 2 contacts. .
  • the main features of the reactor 1 are the shape of each coil element 2a, 2b and the position where the sensor 7 is arranged. Hereinafter, the characteristic part will be described first, and then other configurations will be described in more detail.
  • the coil 2 will be described with reference mainly to FIGS.
  • the coil 2, the sensor 7, and the bonding layer 42 are mainly shown, and the insulator 5 and the like are omitted.
  • the coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a single continuous winding 2w having no joint part, and a coil connecting part 2r for connecting both the coil elements 2a and 2b.
  • Each of the coil elements 2a and 2b is a hollow cylindrical body having the same number of turns, and is arranged in parallel (side by side) so that the respective axial directions are parallel to each other, and is wound on the other end side of the coil 2 (right side in FIG. 2).
  • a part of 2w is bent into a U shape to form a coil coupling portion 2r. With this configuration, the winding directions of both coil elements 2a and 2b are the same.
  • it can be set as the coil which produced each coil element by a separate coil
  • a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
  • the thickness of the insulating coating is preferably 20 ⁇ m or more and 100 ⁇ m or less, and the thicker the pinholes can be reduced, the higher the electrical insulation.
  • the conductor is typically a rectangular wire, and various other cross-sectional shapes such as a circular shape, an elliptical shape, and a polygonal shape can be used.
  • the flat wire has the advantage that it is easy to form a coil having a higher space factor than when a round wire having a circular cross section is used, and it is easy to ensure a wide contact area with the bonding layer 42.
  • the conductor is made of a copper flat wire
  • the insulation coating is made of a coated flat wire made of enamel (typically polyamideimide), and each coil element 2a, 2b turns the covered flat wire into an edgewise winding. Edgewise coil.
  • Both end portions 2e of the winding forming the coil 2 are appropriately extended from the turn forming portion on one end side (left side in FIG. 2) of the coil 2 (FIG. 1 (A)).
  • a terminal member (not shown) made of a conductive material is connected to the conductor portion exposed by peeling off the insulation coating at both ends 2e of the winding, and power is supplied to the coil 2 through the terminal member.
  • An external device (not shown) such as a power source is connected.
  • each of the coil elements 2a and 2b can be a shape obtained by rounding corners of a polygon other than the rectangle.
  • the above-mentioned shape with rounded corners of the rectangle is (1) easy to wind the winding 2w and excellent in manufacturability of the coil.
  • the inner peripheral shape is simple and similar to the inner peripheral shape of the coil element. There is an advantage that it is easy to form an inner core portion having a simple outer peripheral shape, and (3) a small dead space and a small size.
  • the rounding radius of the corner R portion 21 can be selected as appropriate.
  • the rounding radius may be selected in consideration of the size of the coil 2 and the size of the winding 2w to be used (width and thickness in the case of a flat wire).
  • the coil 2 is an edgewise coil, it is easy to increase the rounding radius on the outer peripheral side in the winding 2w constituting the corner R portion 21, and the sensor 7 is placed between the adjacent coil elements 2a and 2b. It is easy to take a large trapezoidal space.
  • a slight gap g is provided between the linear portions 22 as shown in FIG. 1B to enhance the insulation between the coil elements 2a, 2b.
  • the gap g is smaller than the thickness (for example, about 3 mm) of the sensor 7 described later and larger than the wiring 71 connected to the sensor 7 (for example, about 2 mm).
  • the gap g is secured by partition pieces 53a and 53b (FIG. 2) of the insulator 5 described later. A wiring 71 connected to the sensor 7 described later is interposed in the gap g.
  • the coil 2 having the corner R portion 21 on the lower side of the reactor 1 is formed by the corner R portion 21 and the bottom plate portion 40 that are opposed to each other in each of the coil elements 2a and 2b.
  • a trapezoidal space is formed on the upper side and the lower side of the reactor 1, but in the present embodiment, the lower trapezoidal space is used. Specifically, this trapezoidal space is the intersection of the lower corner R portion 21 and the long linear portion 22 connected to the corner R portion 21 in one coil element 2a, and the lower corner R in the other coil element 2b.
  • a straight line l r connecting the intersection of the portion 21 and the long linear portion 22 connected to the corner R portion 21, a curve constituting the corner R portion 21 of both the coil elements 2a and 2b, and a bottom plate portion 40 (both coil elements 2a and 2b is a space surrounded by a straight line connecting the lower surface 2d of 2b.
  • the present embodiment is characterized in that a trapezoidal space formed by the lower corner R portion 21 and the bottom plate portion 40 of both the coil elements 2a and 2b is used as an arrangement space for the sensor 7.
  • the size of the trapezoidal space can be adjusted by the rounding radius of the corner R portion 21. If the rounding radius is large, the storage space for the sensor 7 tends to be large, and if the rounding radius is small, a small coil tends to be obtained.
  • the sensor 7 is preferably arranged in a region not sandwiched between the inner core portions 31.
  • an inner core portion 31 having an outer peripheral shape similar to the inner peripheral shape of the coil elements 2a and 2b is accommodated coaxially in each of the coil elements 2a and 2b, and connects the lower surfaces of both the inner core portions 31.
  • a straight line (tangent) l c is taken, a region below the tangent l c is a region not sandwiched by the inner core portion 31.
  • the sensor 7 is arranged in a region surrounded by a curve to be formed.
  • the trapezoidal space is formed from one end surface of the coil 2 to the other end surface, and the sensor 7 can be disposed at this arbitrary location.
  • an intermediate region including the center of the coil 2 in the axial direction is preferably used as a region where the sensor 7 is disposed.
  • the intermediate region is, for example, a region from the center to one end side or the other end side of the coil 2 up to 30% of the axial length of the coil 2, that is, the axial length of the coil 2 including the center.
  • An area of 60% is mentioned.
  • the senor 7 is a temperature sensor, and includes a rod-like body including a thermal element 7a such as a thermistor and a protective portion 7b that protects the thermal element 7a.
  • the protective part 7b include tubes made of resin.
  • a wiring 71 (FIG. 1B) for transmitting sensed information to an external device such as a control device.
  • the sensor include a sensor for measuring a physical quantity during operation of the reactor, such as a current sensor, a voltage sensor, and an acceleration sensor capable of measuring the vibration of the reactor, in addition to the temperature sensor.
  • the surface on the installation side (the lower surface 2d (FIG. 1B)) of the coil 2 is opposed to the opposite surface (the upper surface 2u (FIG. 1B)).
  • the intermediate portion in the height direction between the coil elements 2a and 2b is the highest temperature location, and the temperature decreases as the distance from the highest temperature location increases. Since the lower surface 2d and the area in the vicinity thereof are cooled by the cooling base, they are the lowest temperature locations.
  • the correlation of the reactor at that time is determined from the correlation due to this temperature distribution.
  • the maximum temperature is required. Therefore, the current to the coil 2 can be controlled according to the measured temperature.
  • the bottom plate portion 40 (heat radiating plate) is typically a plate material fixed in contact with the installation target when the reactor 1 is installed on the installation target (FIG. 1). Since the bottom plate portion 40 is used for the heat dissipation path of the coil 2, it is generally made of a metal that is a material having a high thermal conductivity. Specific examples of the metal include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. Aluminum, magnesium and their alloys are lightweight and can be a lightweight reactor.
  • the thickness of the bottom plate portion 40 is, for example, about 2 mm to 5 mm in consideration of strength, shielding properties, heat dissipation properties, noise characteristics, and the like.
  • the bottom plate portion 40 is made of an aluminum alloy.
  • the bottom plate portion 40 has a bonding layer 42 formed on the entire surface where the surface on the installation side of the coil 2 contacts.
  • the bottom plate portion 40 may form a protrusion along the biaxial direction of the coil when the combined body 10 is placed on the bottom plate portion 40 at a location facing the trapezoidal space.
  • the sensor 7 is easily positioned and placed.
  • the sensor 7 can be brought close to the coil 2 side, and the sensor 7 can be easily brought into contact with the corner R portion 21 of the coil 2.
  • the amount of adhesive for the bonding layer 42 formed in the trapezoidal space can be reduced.
  • the outer shape of the bottom plate portion 40 can be selected as appropriate.
  • the bottom plate portion 40 has a rectangular shape as shown in FIG. 1A, and has mounting portions 400 protruding from the four corners.
  • an installation state in which the bottom plate portion 40 is downward is shown, but there may be an installation state in which the bottom plate portion 40 is upward or sideward.
  • the bottom plate portion 40 includes a bonding layer 42 at a location where at least a surface on the installation side of the coil 2 (lower surface 2d (FIG. 1B)) contacts.
  • the sensor 7 is disposed on the bonding layer 42, and the sensor 7 disposed in the trapezoidal space described above is held in contact with the coil 2.
  • the bonding layer 42 can be easily formed by a single layer structure made of an insulating material, and can insulate the coil 2 and the bottom plate portion 40 even if the bottom plate portion 40 is made of metal. Insulating properties can be further improved by using a multilayer structure made of an insulating material. When a multilayer structure of the same material is used, the thickness per layer can be reduced. Even if a pinhole exists by making it thin, insulation can be ensured by closing the pinhole with another adjacent layer. On the other hand, when the multilayer structure is made of different materials, a plurality of characteristics such as insulation between the coil 2 and the bottom plate portion 40, adhesion between the two, and heat dissipation from the coil 2 to the bottom plate portion 40 can be provided. In this case, at least one constituent material is an insulating material.
  • the shape of the bonding layer 42 is not particularly limited as long as at least the surface (lower surface 2d) on the installation side of the coil 2 has a sufficient contact area.
  • the bonding layer 42 has a shape along the shape formed by the surface on the installation side of the combined body 10, that is, the surfaces on the installation side of both the coil 2 and the outer core portion 32. Therefore, both the coil 2 and the outer core portion 32 can sufficiently contact the bonding layer 42.
  • the bonding layer 42 is a multilayer having an adhesive layer made of an insulating material on the surface side where the surface on the side where the coil 2 is installed contacts, and a heat dissipation layer made of a material having excellent heat conductivity on the side contacting the bottom plate portion 40.
  • a structure is preferred.
  • the bonding layer 42 includes an adhesive layer and a heat dissipation layer.
  • the adhesive layer a material having excellent adhesive strength can be suitably used.
  • the adhesive layer can be composed of an insulating adhesive, specifically, an epoxy adhesive, an acrylic adhesive, or the like.
  • the adhesive layer may be formed on the heat dissipation layer or screen printing may be used.
  • a sheet-like adhesive may be used for the adhesive layer.
  • the adhesive layer has a single-layer structure of an insulating adhesive.
  • a material excellent in heat dissipation preferably a material having a thermal conductivity of more than 2 W / m ⁇ K can be suitably used.
  • the heat dissipation layer is preferably as high as possible in terms of thermal conductivity, and is made of a material of 3 W / m ⁇ K or more, particularly 10 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more, particularly 30 W / m ⁇ K or more. preferable.
  • the constituent material of the heat dissipation layer include a metal material.
  • a metal material is generally a conductive material having a high thermal conductivity, and it is desired to improve the insulating properties of the adhesive layer.
  • the heat dissipation layer made of a metal material tends to be heavy.
  • a non-metallic inorganic material such as ceramics such as a material selected from oxides, carbides, and nitrides of metal elements, B, and Si is used as a constituent material of the heat dissipation layer, heat dissipation is excellent. It is also preferable because of its excellent electrical insulation.
  • More specific ceramics are silicon nitride (Si 3 N 4 ): about 20 W / m ⁇ K to 150 W / m ⁇ K, alumina (Al 2 O 3 ): about 20 W / m ⁇ K to about 30 W / m ⁇ K, Aluminum nitride (AlN): about 200 W / m ⁇ K to 250 W / m ⁇ K, boron nitride (BN): about 50 W / m ⁇ K to 65 W / m ⁇ K, silicon carbide (SiC): 50 W / m ⁇ K About 130 W / m ⁇ K.
  • a vapor deposition method such as PVD method or CVD method is used, or a sintered plate of the ceramic is prepared and bonded to the bottom plate portion 40 with an appropriate adhesive.
  • a vapor deposition method such as PVD method or CVD method is used, or a sintered plate of the ceramic is prepared and bonded to the bottom plate portion 40 with an appropriate adhesive.
  • the constituent material of the heat dissipation layer may be an insulating resin (for example, an epoxy resin or an acrylic resin) containing a filler made of the above ceramics.
  • This material provides a heat dissipation layer that is excellent in both heat dissipation and electrical insulation.
  • both the heat dissipation layer and the adhesive layer are made of an insulating material, that is, the whole bonding layer is made of an insulating material, the bonding layer is further excellent in insulation.
  • the insulating resin is an adhesive, the adhesiveness between the heat dissipation layer and the adhesive layer is excellent, and the bonding layer including the heat dissipation layer can firmly bond the coil 2 and the bottom plate portion 40.
  • the adhesives constituting the adhesive layer and the heat dissipation layer may be different, but if they are the same type, the adhesive layer is excellent and the bonding layer can be easily formed. You may form the whole joining layer with the said insulating adhesive containing a filler. In this case, the bonding layer has a single layer structure made of a single kind of material.
  • the heat dissipation layer can be easily formed by, for example, applying to the bottom plate portion 40 or screen printing to form the heat dissipation layer with the filler-containing resin.
  • the heat dissipation layer may be a single layer structure or a multilayer structure. In the case of a multi-layer structure, at least one layer of materials may be different.
  • the heat dissipation layer can have a multilayer structure made of materials having different thermal conductivities.
  • the thickness of the bonding layer 42 is 0.2 mm or more, more preferably 1 mm or more. When the thickness of the bonding layer 42 is 3 mm or more, the sensor 7 can be disposed in the bonding layer 42 and held more firmly. The thickness of the bonding layer 42 is the thickness before the combined body 10 is placed. As for the thickness of the bonding layer 42, a region where the sensor 7 is disposed may be partially thickened. The sensor 7 can be disposed in the bonding layer 42 or can be in contact with the coil 2.
  • the magnetic core 3 includes a pair of inner core portions 31 covered with the coil elements 2 a and 2 b and a pair of outer core portions 32 that are not disposed on the coil 2 and are exposed from the coil 2.
  • each inner core portion 31 is a columnar body having an outer shape obtained by rounding the corners of a rectangular parallelepiped along the inner peripheral shape of each coil element 2a, 2b as described above, and each outer core portion 32 is Each is a columnar body having a pair of trapezoidal surfaces.
  • the magnetic core 3 has an outer core portion 32 disposed so as to sandwich the inner core portion 31 that is spaced apart, and the end surface 31e of each inner core portion 31 and the inner end surface 32e of the outer core portion 32 are brought into contact with each other. Formed.
  • the inner core portion 31 and the outer core portion 32 form a closed magnetic circuit when the coil 2 is excited.
  • the inner core portion 31 is a laminate in which a plurality of core pieces 31m made of a soft magnetic material and gap members 31g made of a material having a relative permeability smaller than that of the core pieces 31m are alternately laminated. It is a thing. When the core piece 31m and the gap material 31g are integrated with an adhesive, it is easy to handle and it is expected that noise can be reduced by firmly fixing the core piece 31m and the gap material 31g. In addition, when the core piece 31m and the gap material 31g are integrated with an adhesive tape or the like, it is easy to handle.
  • the outer core portion 32 is a core piece made of a soft magnetic material.
  • the core piece constituting the inner core portion 31 and the outer core portion 32 has a molded body using an insulating group and a soft magnetic powder typified by an iron group metal such as iron or an alloy thereof, an oxide containing iron, or the like.
  • a laminated plate body in which a plurality of magnetic thin plates (for example, an electromagnetic steel plate typified by a silicon steel plate) is laminated may be mentioned.
  • the molded body include a compacted body, a sintered body, and a composite material obtained by injection molding or cast molding a mixture including soft magnetic powder and resin.
  • each core piece is a powder compact of soft magnetic metal powder containing iron such as iron or steel.
  • the specific material of the gap material 31g is a mixture containing a nonmagnetic material such as alumina or unsaturated polyester, a nonmagnetic material such as polyphenylene sulfide (PPS) resin, and magnetic powder (for example, soft magnetic powder such as iron powder). Etc.
  • a known material can be used as the gap material 31g.
  • each core piece which comprises the magnetic core 3 shall be the thing of the same specification (compact compact
  • the installation side surface of the inner core portion 31 and the installation side surface of the outer core portion 32 are not flush with each other, and the installation side surface of the outer core portion 32 is not flush. It protrudes from the inner core portion 31 and is flush with the surface on the installation side of the coil 2 (the lower surface 2d in FIG. 1B). Therefore, the surface on the installation side of the combination 10 of the coil 2 and the magnetic core 3 is composed of the lower surface 2d of both coil elements 2a and 2b and the surface on the installation side of the outer core portion 32, and the coil 2 and the magnetic core 3 can contact the bonding layer 42, the reactor 1 is excellent in heat dissipation.
  • the surface on the installation side of the combined body 10 is composed of both the coil 2 and the magnetic core 3, the contact area with the fixed object is sufficiently large, and the reactor 1 is excellent in stability when installed. Furthermore, by configuring the core piece with a compacted body, the portion of the outer core portion 32 that protrudes from the inner core portion 31 can be used as a magnetic flux passage.
  • the insulator 5 will be described with reference to FIG.
  • the insulator 5 includes a cylindrical portion 51 that houses the inner core portion 31, and a frame plate portion 52 that is interposed between the end surfaces of the coil elements 2 a and 2 b and the inner end surface 32 e of the outer core portion 32.
  • the cylindrical portion 51 insulates the coil elements 2 a and 2 b from the inner core portion 31, and the frame plate portion 52 insulates the end surfaces of the coil elements 2 a and 2 b from the inner end surface 32 e of the outer core portion 32.
  • the cylindrical part 51 is composed of cylindrical divided pieces 50a and 50b along the outer peripheral shape of the inner core part 31, and the pair of divided pieces 50a and 50b are combined to be integrated.
  • the shape of the divided pieces 50a and 50b can be selected as appropriate.
  • the sealing resin is provided, it is easy to deaerate at the time of filling the sealing resin, is excellent in manufacturability, and can increase the contact area between the inner core portion 31 and the sealing resin, thereby suppressing noise. It is expected to be possible.
  • the frame plate portion 52 is a B-shaped flat plate portion having a pair of openings (through holes) through which the two inner core portions 31 can be inserted.
  • the frame plate portion 52 is disposed between the partition pieces 53a and 53b disposed so as to be interposed between the coil elements 2a and 2b and the coil connecting portion 2r and the outer core portion 32 when assembled to the coil 2.
  • a flat pedestal 52p a flat pedestal 52p.
  • the partition pieces 53a and 53b project from one surface of the frame plate portion 52 toward the coil side, and the pedestal 52p projects from the other surface of the frame plate portion 52 toward the outer core portion 32 side.
  • the partition pieces 53a and 53b and the pedestal 52p may be omitted.
  • insulating materials such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, and liquid crystal polymer (LCP) can be used.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • the reactor 1 having the above-described configuration can be manufactured by a process of preparing an assembly, preparing a bottom plate, fixing a sensor, and fixing the assembly.
  • the manufacturing procedure of the combination 10 of the coil 2 and the magnetic core 3 will be described. Specifically, as shown in FIG. 2, the inner core portion 31 in which the core pieces 31m and the gap material 31g are laminated and one divided piece 50a of the insulator 5 are inserted into the coil elements 2a and 2b.
  • the outer peripheral surface of the laminated body of the core piece 31m and the gap material 31g is connected with an adhesive tape to produce the inner core portion 31 in a columnar shape.
  • the other divided piece 50b of the insulator 5 is inserted into the other end face of the coil elements 2a and 2b.
  • the core piece 31m and the gap material 31g may be separated from each other without being integrated with an adhesive tape or an adhesive. In this case, some of the core pieces 31m and the gap material 31g are supported by one divided piece 50a, and the other core pieces 31m and the gap material 31g are supported by the other divided piece 50b. It is good to insert in.
  • the frame plate portion 52 and the outer side of the coil 2 are sandwiched between the end surface 31e of both the coil elements 2a and 2b and the end surface 31e of the inner core portion 31 between the frame plate portion 52 of the insulator 5 and the inner end surface 32e of the outer core portion 32.
  • the core part 32 is arrange
  • the end surface 31 e of the inner core portion 31 is exposed from the opening of the frame plate portion 52 and contacts the inner end surface 32 e of the outer core portion 32.
  • the partition pieces 53a and 53b of the insulator 5 are interposed between the two coil elements 2a and 2b, and a gap g corresponding to the thickness of the partition pieces 53a and 53b can be provided between the two elements 2a and 2b.
  • a bottom plate portion 40 is formed by punching an aluminum plate into a predetermined shape, and a bonding layer 42 having a predetermined shape is formed on one surface so as to have a thickness of 0.2 mm or more (here, 1 mm).
  • a bottom plate portion 40 having 42 is prepared.
  • the sensor 7 is placed at a predetermined position on the bonding layer 42. At this time, when the combination 10 is disposed, the sensor 7 is placed so as to be positioned in the central region of the coil 2 in the axial direction. Then, the assembled assembly 10 is placed on the bonding layer 42 so that the sensor 7 is disposed in a trapezoidal space formed below the two coil elements 2a and 2b. At this time, the wiring 71 connected to the sensor 7 is drawn from the upper side of the coil 2 through the gap g from the lower side between the coil elements 2a and 2b. Thereafter, the bonding layer 42 is appropriately cured to fix the combined body 10 and the sensor 7 to the bottom plate portion 40.
  • the reactor 1 described above is used in applications where the energization conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle or a hybrid It can be suitably used for a component part of an in-vehicle power converter such as an automobile.
  • DC maximum current
  • the coil 2 has a specific shape, and the sensor 7 is arranged in a trapezoidal space formed by a specific region: the corner R portion 21 formed by this shape.
  • the generated stress stress caused by the thermally expanded coil 2
  • the generated stress can be reduced or no stress is applied. Therefore, the sensor 7 is not damaged by the stress, and the reactor 1 can appropriately measure the temperature of the coil 2.
  • trapezoidal space reactor 1 so-called a dead space, less susceptible to the stress, or substantially disposed in the sensor 7 a (lower region than the tangent l c in the trapezoidal region) region where the stress is not loaded This is an area. Accordingly, the reactor 1 is small without causing an increase in size due to the arrangement of the sensor 7 or an increase in size for protection of the sensor 7.
  • the reactor 1 of this embodiment employs a space between the corner R portions 21 of the coil elements 2a and 2b on the lower side of the reactor 1 as the trapezoidal space, so that the sensor 7 is It can be surrounded by the bottom plate part 40. Therefore, when the reactor includes the sealing resin, the sensor can be prevented from floating by the resin, and when the reactor does not include the sealing resin, the sensor can be prevented from being exposed to the atmosphere.
  • the sensor 7 can be bonded more firmly by being fixed by the bonding layer 42 formed on the bottom plate portion 40.
  • the sensor 7 may be in a state where it is not in contact with the coil 2, but if the sensor 7 is in a state where it is in contact with the coil 2, it is considered that the reliability of the measured value is high.
  • the coil 2 can be fixed to the bottom plate portion 40 by the bonding layer 42 and the sensor 7 can be fixed at the same time, so that the assembly workability is excellent.
  • the frame plate portion 52 of the insulator 5 includes a sensor holding portion 54 on the lower side thereof.
  • the sensor holding part 54 includes a rod-like body provided so as to protrude toward the trapezoidal space of the coil 2 when the divided piece 50b is assembled to the coil 2.
  • the projecting length of the sensor holding part 54 may be appropriately selected as long as the sensor 7 can be held in contact with the coil 2 side and the sensor 7 can be assembled to the sensor holding part 54.
  • the sensor holding portion 54 has a protruding length such that about 1 ⁇ 2 of the axial length of the sensor 7 (the left and right length in FIG. 3B) is in contact with the sensor holding portion 54. Yes.
  • the frame plate portion 52 of the split piece 50b includes an L-shaped partition piece 53b disposed so as to be interposed between the coil elements 2a and 2b when assembled to the coil 2, and has an L-shaped short side.
  • the portion is provided below the frame plate portion 52.
  • the short side portion of the partition piece 53b serves as a connection portion between the sensor holding portion 54 and the frame plate portion 52, and the end surface of the short side portion serves as a stopper for the sensor 7 as shown in FIG. Accordingly, the sensor 7 can be held by the sensor holding portion 54 and can be positioned in the axial direction with respect to the coil 2 by the end surface position of the partition piece 53b. At this time, the protruding length is adjusted so that the sensor 7 can be held in a state where it is located in the axial central region of the coil 2. Here, the sensor 7 is held in contact with the coil 2 side.
  • a reactor having the above-described configuration can be manufactured by a process of preparing an assembly, fixing a sensor to the assembly, preparing a bottom plate, and fixing the assembly with a sensor to the bottom plate. Since the preparation process of the combined body and the bottom plate portion is the same as that of the first embodiment, here, the step of fixing the sensor to the combined body and the step of fixing the combined body with sensor to the bottom plate portion will be described.
  • the sensor 7 is assembled to the sensor holding unit 54.
  • the sensor 7 is inserted into a space sandwiched between the corner R portion 21 of both the coil elements 2 a and 2 b and the sensor holding portion 54 of the insulator 5.
  • the sensor 7 is inserted so that the axial direction of the sensor 7 is along the axial direction of the coil elements 2a and 2b, with the end face of the partition piece 53b of the split piece 50b of the insulator 5 being a stopper.
  • the wiring 71 connected to the sensor 7 passes through the gap g between the coil elements 2a and 2b from the side opposite to the side where the sensor 7 is disposed. Pull it out.
  • the sensor 7 is sandwiched between the corner R portion 21 and the sensor holding portion 54 of both the coil elements 2a and 2b and can be held in contact with the coil 2 side. This sensor assembly work is facilitated when the lower surface of the coil 2 is faced up.
  • the sensor 7 is fixed to the assembly of the combined body 10 and the insulator 5, and then the assembly and the sensor 7 are fixed to the bottom plate portion as an integrated body. It is easy to position the sensor 7. Since the positioning state can be held by the sensor holding portion 54, the displacement of the sensor 7 can also be prevented. Further, the assembly can be fixed to the bottom plate portion 40 and the sensor 7 can be fixed at the same time, so that the assembly workability is excellent.
  • the sensor holding portion 54 sensor holder
  • the sensor holder 8 may be a member independent of the insulator 5.
  • this difference will be mainly described with reference to FIG. 1B as appropriate, and the other configurations are the same as those of the first embodiment, and thus the description thereof will be omitted.
  • a sensor holder which is a difference will be described, and then a method for manufacturing the reactor according to the third embodiment will be described.
  • the sensor holder 8 includes a strip-shaped mounting portion 8a on which the sensor 7 is mounted, and a holding portion 8b that is arranged by forming a lateral side of an L-shaped slit between the mounting portion 8a,
  • the holding part 8b includes a plate-like partition part 8c extending to the opposite side of the mounting part 8a, and a drawer part 8h arranged to form the vertical side of the L-shaped slit.
  • the placement portion 8a, the holding portion 8b, the partition portion 8c, and the drawer portion 8h are integrally formed.
  • the horizontal side of the slit is a storage space for the sensor 7.
  • the vertical side of the slit is a storage space for the wiring 71 connected to the sensor 7, and one end of the wiring 71 is drawn out of the reactor 1.
  • the mounting portion 8a is a rod-shaped body having one end integrated with the holding portion 8b and the other end connected to the drawer portion 8h.
  • the placement portion 8a includes a sensor stop 8i so that the sensor 7 does not fall out in a state where the sensor 7 is placed.
  • the sensor stops 8i are preferably provided at both ends of the sensor 7 so as not to damage the heat sensitive element 7a of the sensor 7 when the sensor 7 is placed.
  • the surface of the mounting portion 8 a that contacts the sensor 7 is an arcuate curved surface similar to the outer shape of the sensor 7.
  • the partition portion 8c is a plate-like body disposed in the gap g provided between the linear portions 22 in each of the coil elements 2a and 2b, and is a rectangular plate-like body here.
  • the thickness of the partition portion 8 c is equal to or less than the gap g between the coil elements 2 a and 2 b and is smaller than the thickness of the sensor 7.
  • the partition portion 8 c includes a main body portion 8 d that extends in the axial direction of the coil 2, and an engagement portion 8 e that contacts the frame plate portion 52 of the insulator 5 and engages with an engagement portion 53 e formed on the frame plate portion 52. Have.
  • the main body portion 8d is tapered such that both side surfaces on the distal end side in the direction in which the sensor holder 8 is inserted into the gap g are reduced in width toward the distal end.
  • the engaging portion 8e has a hook 8f that protrudes toward the frame plate portion 52 at the end on the distal end side.
  • the shape of the hook 8f is tapered so as to become thinner toward the tip.
  • the lead portion 8h is rounded so that the wiring 71 is not damaged by hitting the corner of the sensor holder 8 when the wiring 71 is pulled out.
  • the hook 8f of the engaging portion 8e is engaged and positioned with the engaging portion 53e of the frame plate portion 52, and the sensor holder 8 can be prevented from falling off.
  • a gap 8g is provided between the hook 8f and the engaging portion 53e. Even if the sensor holder 8 is once inserted by the gap 8g, the sensor holder 8 can be pulled out until the hook 8f is stopped against the engaging portion 53e, and the sensor 7 can be easily put in and out at any time from the mounting portion 8a. .
  • the sensor 7 is in contact with the corner R portion 21 of each coil element 2a, 2b at a portion exposed from the sensor holder 8.
  • an insulating material similar to the insulator 5 such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, liquid crystal polymer (LCP), etc. is used. It can. In this case, even when the sensor holder 8 is arranged in contact with the coil 2, the insulation between them is excellent. Further, when at least a part of the sensor holder 8 is made of metal, an improvement in heat dissipation can be expected.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • a reactor having the above-described configuration can be manufactured by a process of preparing an assembly, fixing a sensor to the assembly, preparing a bottom plate, and fixing the assembly with a sensor to the bottom plate. Since the preparation process of the combined body and the bottom plate portion is the same as that of the first embodiment, here, the step of fixing the sensor to the combined body and the step of fixing the combined body with the sensor to the bottom plate portion will be described.
  • the sensor 7 is assembled to the sensor holder 8.
  • the sensor 7 is placed on the placement portion 8 a of the sensor holder 8, and the sensor 7 is sandwiched between the placement portion 8 a, the holding portion 8 b, and the sensor stopper 8 i, thereby holding the sensor 7 with the sensor holder 8.
  • the sensor 7 is held at an intermediate position in the width direction of the sensor holder 8.
  • the wiring 71 connected to the sensor 7 is arranged along the lead portion 8h, and one end is drawn to the outside.
  • the sensor holder 8 holding the sensor 7 is arranged in a trapezoidal space formed below the two coil elements 2a and 2b.
  • the partition portion 8c of the sensor holder 8 is inserted into a gap g provided between the coil elements 2a and 2b, and the hook 8f of the sensor holder 8 and the engaging portion 53e of the frame plate portion 52 are engaged. Integrate both.
  • the sensor 7 is fixed by the corner R portion 21 of both the coil elements 2a and 2b and the sensor holder 8, and the two coils are exposed at the portions exposed from the placement portion 8a and the holding portion 8b of the sensor holder 8. It will be in the state which contacted the coil 2 in the corner
  • the placement portion 8a and the holding portion 8b of the sensor holder 8 are disposed in the trapezoidal space, but the placement portion 8a and the holding portion 8b of the sensor holder 8 are trapezoidal.
  • the sensor 7 may be assembled to the sensor holder 8 after being arranged in the space.
  • the partition portion 8c of the sensor holder 8 is inserted into the gap g and integrated with the frame plate portion 52.
  • the hook 8f is engaged with the engagement portion.
  • the sensor holder 8 can be pulled out until it is stopped by 53e, and the sensor 7 can be assembled in this state.
  • the sensor 7 is assembled to the sensor holder 8, and then the assembled body 10 and the insulator 5 are assembled. Since it can arrange
  • the sensor holder 8 and the insulator 5 have an engaging portion that engages with each other, the sensor holder 8 can be easily positioned by engaging both.
  • the sensor holder 8 can be more firmly fixed to the assembly, the positional deviation of the sensor 7 can be prevented, and the assembly workability is excellent.
  • Embodiments 1 to 3 described above the embodiment in which the outer periphery of the combined body 10 is not covered and exposed to the atmosphere has been described. In addition, it can be set as the form which coat
  • the combined body 10 since the outer periphery of the combined body 10 is covered with resin, the combined body 10 can be protected from the external environment such as dust and corrosion and ensure mechanical properties such as strength.
  • the resin include epoxy resin, unsaturated polyester, urethane resin, PPS resin, PBT resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like. When this resin contains the filler made of the above-mentioned ceramic, the heat dissipation can be enhanced.
  • Embodiment 5 In the above-described first to fourth embodiments, the case in which the case is omitted has been described. In addition, it can be set as the form which provides a case.
  • the reactors of Embodiments 1 to 4 can be used as they are, but by storing them in a case, it is possible to secure mechanical characteristics such as protection from the external environment such as dust and corrosion and strength.
  • this difference will be mainly described, and the other configuration is the same as the configuration of the above-described embodiment, and thus the description thereof will be omitted. First, a case that is a difference will be described, and then a method for housing the reactor in the case will be described.
  • the case 4 will be described with reference to FIG.
  • the case 4 in which the combined body 10 of the coil 2 and the magnetic core 3 is housed includes the bottom plate portion 40 described in the first embodiment and a frame-like side wall portion 41 standing on the bottom plate portion 40.
  • the bottom plate portion 40 and the side wall portion 41 are not integrally formed, and are independent members, and are integrated by a fixing material.
  • the baseplate part 40 since it is the same as that of the structure of Embodiment 1, description is abbreviate
  • the side wall portion 41 is a frame-like body (here, rectangular shape), and when the case 4 is assembled by closing one opening portion with the bottom plate portion 40, the side wall portion 41 is disposed so as to surround the periphery of the combination body 10. The opening is opened.
  • region used as the installation side when the reactor 1 is installed in fixation object is a rectangular shape along the external shape of the said baseplate part 40, and the area
  • the side wall 41 is made of an insulating resin. Therefore, even when the coil 2 and the side wall portion 41 are disposed close to each other (for example, the distance between the outer peripheral surface of the coil 2 and the inner surface of the side wall portion 41 is approximately 0 mm to 1.0 mm), the insulation between them is excellent. Moreover, the reactor 1 can be reduced in size by reducing the said space
  • the insulating resin include PBT resin, urethane resin, PPS resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like.
  • the side wall 41 When at least a part of the side wall 41 is made of metal (particularly nonmagnetic metal such as aluminum or magnesium), an improvement in heat dissipation and a shielding function can be expected.
  • all the side wall portions 41 are made of insulating resin as in this example, (1) excellent insulation between the coil 2 and the case 4 is achieved. (2) Even a complicated shape is easily manufactured by injection molding or the like. (3) It has the advantage that weight reduction can be achieved.
  • the side wall part 41 also has an attachment part 411.
  • the attachment part 400 of the bottom plate part 40 and the attachment part 411 of the side wall part 41 overlap.
  • Bolt holes 400h and 411h are provided in the attachment portions 400 and 411, respectively.
  • Bolts (not shown) for fixing the case 4 to the installation target are inserted through the bolt holes 400h and 411h.
  • the shape, the number, and the like of the attachment portions 400 and 411 can be selected as appropriate. If the bolt hole 411h of the side wall part 41 is comprised with a metal pipe, even if the side wall part 41 is comprised with resin so that it may mention later, it is excellent in intensity
  • the bottom plate portion 40 and the side wall portion 41 are integrated by the bolt as described above, but an adhesive may be used together with the bolt. Or you may connect the baseplate part 40 and the side wall part 41 only using an adhesive agent. In this case, for example, both the adhesive layer used for the bonding layer 42 and the adhesive layer that bonds the bottom plate part 40 and the side wall part 41 can be formed. In this embodiment, the curing step of the bonding layer 42 and the curing step of the adhesive layer that bonds the bottom plate portion 40 and the side wall portion 41 can be performed simultaneously, and the curing step can be reduced. Therefore, this form can improve productivity.
  • the case 4 may be filled with a sealing resin (not shown).
  • the sealing resin fixes the position of the assembly 10 stored in the case 4, mechanical protection of the assembly 10 and the like, and protection from the external environment (improves corrosion resistance). Can be improved.
  • the end of the winding 2w is exposed from the sealing resin, the end of the winding 2w and the terminal fitting (not shown) can be easily joined. After joining the end portion of the winding 2w and the terminal metal fitting, it is also possible to adopt a form in which this joining portion is embedded in the sealing resin.
  • sealing resin examples include insulating resins such as an epoxy resin, a urethane resin, and a silicone resin.
  • insulating resins such as an epoxy resin, a urethane resin, and a silicone resin.
  • a sealing resin containing a filler excellent in insulation and thermal conductivity for example, a filler made of at least one ceramic selected from silicon nitride, alumina, aluminum nitride, boron nitride, mullite, and silicon carbide; Then, the heat dissipation can be further enhanced.
  • the reactor including the case 4 can be manufactured by a storing step of storing the reactors of Embodiments 1 to 4 in the case 4.
  • This storing step typically includes a case assembling step by attaching the side wall portion 41 to the bottom plate portion 40.
  • the side wall 41 is placed from above the reactor so as to surround the outer periphery of the sensor-attached assembly 10 (reactor) fixed to the bottom plate 40, and is disposed on the bottom plate 40.
  • the bottom plate portion 40 and the side wall portion 41 are integrated with a separately prepared bolt (not shown). By this step, the box-shaped case 4 can be assembled and the reactor can be stored in the case 4.
  • Embodiment 6 the form which is the member in which the baseplate part 40 and the side wall part 41 became independent was demonstrated.
  • it can be set as the form which provides the case which consists of a box body in which the baseplate part and the side wall part were shape
  • the whole case when the whole case is comprised with metals, such as the above-mentioned aluminum, the whole case can be utilized for a thermal radiation path
  • the reactors of the first to sixth embodiments can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including the converter.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. Motor (load) 1220.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • vehicle 1200 includes an engine in addition to motor 1220.
  • an inlet is shown as a charge location of the vehicle 1200, it can be set as the form which provides a plug.
  • the power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power.
  • converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed.
  • a power device such as a field effect transistor (FET) or an insulated gate bipolar transistor (IGBT) is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit.
  • the reactors of the first to sixth embodiments are provided. By providing the reactor 1 etc. which are small, the power converter device 1100 and the converter 1110 are also small.
  • Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 serving as a power source for auxiliary machinery 1240, and main battery 1210.
  • Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion.
  • the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as that of the reactors of the first to sixth embodiments, and a reactor whose size and shape are appropriately changed can be used.
  • the reactors of the first to sixth embodiments can also be used for converters that perform conversion of input power and that only perform step-up or converters that perform only step-down.
  • the reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power converter.
  • an in-vehicle converter typically a DC-DC converter
  • an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power converter.

Abstract

Provided is a small reactor that allows physical quantities to be appropriately measured when the reactor is operating. The reactor (1) comprises: a coil (2) having a pair of coil elements (2a, 2b) joined together; and a magnetic core (3) having a pair of inner core parts (31) disposed respectively inside the coil elements (2a, 2b), and having outer core parts (32) for linking the inner core parts (31) and forming a closed magnetic path. The reactor also comprises a radiator plate (a bottom plate part (40)) on which the coil (2) is placed, and a sensor (7) for measuring physical quantities when the reactor (1) is operating. The coil elements (2a, 2b) are shaped as cylindrical bodies configured by winding wires (2w) into helical formations, have rounded corner parts (21) where the end surface shapes are rounded at the corners, and are disposed in parallel so that the axes of the coil elements (2a, 2b) are parallel to each other. The sensor (7) is disposed in a trapezoidal space formed by the bottom plate part (40) and the rounded corner parts (21) disposed facing each other in the coil elements (2a, 2b).

Description

リアクトル、コンバータ、及び電力変換装置Reactor, converter, and power converter
 本発明は、ハイブリッド自動車などの車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品に利用されるリアクトルに関するものである。特に、リアクトルの動作時の物理量(温度や電流値など)を適切に測定可能で小型なリアクトルに関する。 The present invention relates to a reactor used as a component part of a power conversion device such as a vehicle-mounted DC-DC converter mounted on a vehicle such as a hybrid vehicle. In particular, the present invention relates to a small reactor that can appropriately measure physical quantities (temperature, current value, etc.) during operation of the reactor.
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。例えば、特許文献1は、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルを開示している。このリアクトルは、一対のコイル素子を有するコイルと、コイルが配置され、閉磁路を構成する環状の磁性コアと、コイルと磁性コアとの組合体を収納するケースと、ケース内に充填される封止樹脂(二次樹脂部、ポッティング樹脂)とを具えるものを開示している。 Reactor is one of the circuit components that perform voltage step-up and step-down operations. For example, Patent Document 1 discloses a reactor used for a converter mounted on a vehicle such as a hybrid vehicle. The reactor includes a coil having a pair of coil elements, an annular magnetic core in which the coil is disposed, and a case that houses a combination of the coil and the magnetic core, and a seal that is filled in the case. What has a stop resin (secondary resin part, potting resin) is disclosed.
 通電に伴いコイルが発熱すると、この発熱によりリアクトルの損失が大きくなる。そのため、上記リアクトルは、一般に、コイルを冷却できるように冷却ベースといった設置対象に固定されて利用される。また、リアクトルの使用時、コイルの温度や電流などの物理量を測定するセンサをリアクトルの近傍に配置して、測定した温度や電流に応じてコイルへの電流などを制御することが検討されている。特許文献1では、コイル素子間において、両コイル素子の横並び方向、及びコイル素子の軸方向の双方に直交する方向にセンサを配置するリアクトルを開示している。 If the coil generates heat when energized, the loss of the reactor increases due to this heat generation. Therefore, the reactor is generally used by being fixed to an installation target such as a cooling base so that the coil can be cooled. In addition, when a reactor is used, it is considered that a sensor for measuring a physical quantity such as a coil temperature or current is arranged in the vicinity of the reactor to control the current to the coil according to the measured temperature or current. . Patent Document 1 discloses a reactor in which sensors are arranged between coil elements in a direction orthogonal to both the side-by-side direction of both coil elements and the axial direction of the coil elements.
特開2010-245458号公報JP 2010-245458 A
 特許文献1のリアクトルでは、両コイル素子間に、少なくともセンサの厚さに応じた隙間を設ける必要がある。この隙間の大きさとセンサの厚さとが実質的に等しい場合、発熱により熱膨張したコイル素子がセンサを押圧してセンサを破損する虞がある。特に、両コイル素子間において内側コア部に挟まれた領域は、コイル素子の熱膨張分を吸収できるスペースが実質的になく、コイル素子の熱膨張による押圧力がセンサに負荷され易い。従って、センサに負荷される応力(コイル素子からの押圧力)を低減する、好ましくは、実質的に応力が加わらないようにするために上記隙間を更に大きくする必要があり、リアクトルの小型化が難しい。 In the reactor of Patent Document 1, it is necessary to provide at least a gap corresponding to the thickness of the sensor between both coil elements. When the size of the gap and the thickness of the sensor are substantially equal, the coil element that has thermally expanded due to heat generation may press the sensor and damage the sensor. In particular, the region sandwiched between the inner core portions between the two coil elements has substantially no space for absorbing the thermal expansion of the coil element, and the pressing force due to the thermal expansion of the coil element is likely to be loaded on the sensor. Therefore, it is necessary to reduce the stress applied to the sensor (pushing force from the coil element), preferably to further prevent the stress from being applied, and to reduce the size of the reactor. difficult.
 そこで、本発明の目的の一つは、リアクトルの動作時の物理量を適切に測定可能であり、小型なリアクトルを提供することにある。また、本発明の他の目的は、上記リアクトルを具えるコンバータ、このコンバータを具える電力変換装置を提供することにある。 Therefore, one of the objects of the present invention is to provide a small reactor capable of appropriately measuring a physical quantity during operation of the reactor. Moreover, the other object of this invention is to provide the converter which provides the said reactor, and the power converter device which provides this converter.
 本発明のリアクトルは、互いに繋がる一対のコイル素子を具えるコイルと、前記各コイル素子内にそれぞれ配置される一対の内側コア部及びこれら内側コア部を連結して閉磁路を形成する外側コア部を有する磁性コアとを具える。そして、前記コイルが載置される放熱板と、前記リアクトルの動作時の物理量を測定するセンサとを具える。前記各コイル素子は、巻線を螺旋状に巻回して構成された筒状体で、かつ端面形状が角部を丸めた角R部を有する形状であり、各コイル素子の軸が平行するように並列に配置される。前記センサは、前記各コイル素子において対向配置された前記角R部と前記放熱板とで形成される台形状空間に配置されている。 A reactor according to the present invention includes a coil including a pair of coil elements connected to each other, a pair of inner core portions disposed in each of the coil elements, and an outer core portion that connects these inner core portions to form a closed magnetic circuit. And a magnetic core. And the heat sink with which the said coil is mounted, and the sensor which measures the physical quantity at the time of operation | movement of the said reactor are provided. Each of the coil elements is a cylindrical body formed by winding a winding in a spiral shape, and the end face shape has a shape having a corner R portion with rounded corners, and the axes of the coil elements are parallel to each other. Are arranged in parallel. The sensor is disposed in a trapezoidal space formed by the corner R portion and the heat radiating plate opposed to each other in each coil element.
 本発明のリアクトルは、リアクトルの動作時の物理量(コイルの温度など)を適切に測定可能で、小型である。 The reactor of the present invention is small in size so that it can appropriately measure physical quantities (coil temperature, etc.) during operation of the reactor.
実施形態1のリアクトルを示し、(A)は斜視図、(B)は図1のB-B断面図である。1 shows a reactor according to a first embodiment, in which (A) is a perspective view and (B) is a cross-sectional view taken along the line BB of FIG. 実施形態1のリアクトルに具えるコイルと磁性コアとの組合体の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the assembly of the coil and magnetic core which are provided in the reactor of Embodiment 1. FIG. 実施形態2のリアクトルに具えるインシュレータを示し、(A)は断面斜視図、(B)は図3(A)の横断面図である。The insulator provided in the reactor of Embodiment 2 is shown, (A) is a cross-sectional perspective view, (B) is a cross-sectional view of FIG. 3 (A). 実施形態3のリアクトルに具えるインシュレータとセンサホルダとを示し、(A)は断面斜視図、(B)は図4(A)の横断面図である。The insulator and sensor holder which are provided in the reactor of Embodiment 3 are shown, (A) is a cross-sectional perspective view, (B) is a cross-sectional view of FIG. 4 (A). 実施形態4のリアクトルの概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the reactor of Embodiment 4. FIG. ハイブリッド自動車の電源系統を模式的に示す概略構成図である。1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. 実施形態7のコンバータを具える実施形態7の電力変換装置の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of the power converter device of Embodiment 7 which provides the converter of Embodiment 7.
 [本発明の実施の形態の説明]
 本発明は、各コイル素子の形状を特定の形状とすると共に、リアクトルの動作時の物理量(コイルの温度や電流など)を計測するセンサの配置箇所を特定の位置とすることで、上述の目的を達成する。最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
According to the present invention, the shape of each coil element is set to a specific shape, and the position where a sensor for measuring a physical quantity (coil temperature, current, etc.) during operation of the reactor is set to a specific position. To achieve. First, the contents of the embodiment of the present invention will be listed and described.
 (1) 実施形態に係るリアクトルは、互いに繋がる一対のコイル素子を具えるコイルと、上記各コイル素子内にそれぞれ配置される一対の内側コア部及びこれら内側コア部を連結して閉磁路を形成する外側コア部を有する磁性コアとを具える。さらに、このリアクトルは、上記コイルが載置される放熱板と、上記リアクトルの動作時の物理量を測定するセンサとを具える。上記各コイル素子は、巻線を螺旋状に巻回して構成された筒状体で、かつ端面形状が角部を丸めた角R部を有する形状であり、各コイル素子の軸が平行するように並列に配置されている。上記センサは、上記各コイル素子において対向配置された上記角R部と上記放熱板とで形成される台形状空間に配置されている。 (1) The reactor according to the embodiment forms a closed magnetic circuit by connecting a coil including a pair of coil elements connected to each other, a pair of inner core portions arranged in each of the coil elements, and the inner core portions. And a magnetic core having an outer core portion. Further, the reactor includes a heat radiating plate on which the coil is placed, and a sensor that measures a physical quantity during operation of the reactor. Each of the coil elements is a cylindrical body formed by winding a winding in a spiral shape, and the end surface shape has a corner R portion with rounded corners so that the axes of the coil elements are parallel to each other. Are arranged in parallel. The sensor is disposed in a trapezoidal space formed by the corner R portion and the heat radiating plate disposed to face each other in the coil elements.
 実施形態のリアクトルは、一対のコイル素子において内側コア部に挟まれた領域を近接させて両コイル素子を横並びさせた場合でも、上記台形状空間は、角R部の丸め半径に応じた十分な大きさの空間を有することができるため、センサを十分に設置可能である。即ち、台形状空間にセンサを配置すると、両コイル素子間の隙間をセンサの厚さよりも小さくすることができるため、リアクトルを小型化できる。かつ、上記台形状空間は、角R部を設けるように巻線を巻回する必要上形成された、いわばデッドスペースだが、当該空間にセンサを配置することで、このデッドスペースの有効利用ができるため、リアクトルの大型化を実質的に招かない。 In the reactor of the embodiment, the trapezoidal space is sufficient depending on the rounding radius of the corner R portion even when the regions sandwiched between the inner core portions of the pair of coil elements are brought close to each other. Since the space can be large, the sensor can be sufficiently installed. That is, when the sensor is arranged in the trapezoidal space, the gap between the two coil elements can be made smaller than the thickness of the sensor, and thus the reactor can be miniaturized. In addition, the trapezoidal space is a so-called dead space formed by winding a winding so as to provide a corner R portion. However, the dead space can be effectively used by arranging a sensor in the space. For this reason, the reactor is not substantially enlarged.
 また、実施形態のリアクトルは、上記角R部に挟まれる台形状空間の大半が、両内側コア部に挟まれた領域からずれていることから、当該空間にセンサを配置した場合、センサに加えられるコイル素子による応力を低減できる、好ましくは実質的に加わらないようにすることができる。 In addition, the reactor according to the embodiment has a large part of the trapezoidal space sandwiched between the corner R portions deviated from the region sandwiched between both inner core portions. It is possible to reduce the stress caused by the coil element to be applied, and preferably not to be applied substantially.
 リアクトルを放熱板に載置した状態において、この載置したときの載置側を下側、その対向側を上側とした場合、上記台形状空間は、リアクトルの上側と下側とに形成される。リアクトルの上側における各コイル素子の角R部に挟まれる台形状空間にセンサを配置すると、次の点で改善の余地があった。
 (A)リアクトルが封止樹脂を具える場合、コイルと磁性コアとの組合体をケースに収納し、このケース内に封止樹脂を充填し、樹脂を硬化させることが挙げられる。その場合、封止樹脂を充填する際に、樹脂によってセンサが浮いて、センサを所定の位置に固定できない。
 (B)リアクトルが封止樹脂を具えない場合、センサ(特に、温度センサの場合)の外周が何も覆われず大気に剥き出しの状態となり、センサが測定対象物であるコイル以外(大気)の物理量を測定してしまうことがある。
In the state where the reactor is placed on the heat sink, the trapezoidal space is formed on the upper side and the lower side of the reactor when the placement side when placed is the lower side and the opposite side is the upper side. . When the sensor is arranged in a trapezoidal space sandwiched between corners R of each coil element on the upper side of the reactor, there is room for improvement in the following points.
(A) When the reactor includes a sealing resin, a combination of a coil and a magnetic core is housed in a case, the sealing resin is filled in the case, and the resin is cured. In that case, when the sealing resin is filled, the sensor floats due to the resin, and the sensor cannot be fixed at a predetermined position.
(B) When the reactor does not include sealing resin, the outer periphery of the sensor (particularly in the case of a temperature sensor) is not covered with anything and is exposed to the atmosphere. Physical quantities may be measured.
 実施形態のリアクトルは、リアクトルの下側における各コイル素子の角R部に挟まれる台形状空間にセンサを配置することで、センサは、角R部と放熱板とで挟むことができ、(A)リアクトルが封止樹脂を具える場合、樹脂によってセンサが浮くことを防止でき、(B)リアクトルが封止樹脂を具えない場合、センサが大気に剥き出しになることを防止できる。 The reactor of the embodiment can be sandwiched between the corner R portion and the heat sink by arranging the sensor in a trapezoidal space sandwiched between the corner R portions of the coil elements on the lower side of the reactor. ) When the reactor includes the sealing resin, the sensor can be prevented from floating by the resin, and when the reactor does not include the sealing resin (B), the sensor can be prevented from being exposed to the atmosphere.
 (2) 実施形態に係るリアクトルの一例として、上記放熱板は、上記コイルを固定する接合層を具え、上記センサは、上記接合層によって固定されている形態が挙げられる。 (2) As an example of the reactor according to the embodiment, the heat radiating plate includes a bonding layer that fixes the coil, and the sensor is fixed by the bonding layer.
 接合層によりセンサが固定されていることで、センサをより強固に保持することができる。接合層により、コイルを放熱板に固定すると共に、センサも同時に固定することができるため、各々を個別に接合する接合工程を簡略化することができ、組立作業性に優れる。 Since the sensor is fixed by the bonding layer, the sensor can be held more firmly. With the bonding layer, the coil can be fixed to the heat radiating plate and the sensor can be fixed at the same time. Therefore, the bonding process for individually bonding the coils can be simplified, and the assembly workability is excellent.
 (3) 実施形態に係るリアクトルの一例として、上記センサを保持するセンサホルダと、上記コイルと上記磁性コアとの間に介在されるインシュレータとを具え、上記センサホルダは、上記インシュレータと一体に形成されている形態が挙げられる。 (3) As an example of the reactor according to the embodiment, the reactor includes a sensor holder that holds the sensor, and an insulator that is interposed between the coil and the magnetic core, and the sensor holder is formed integrally with the insulator. The form currently made is mentioned.
 センサホルダを具えることで、センサをより強固に保持することができる。センサホルダがインシュレータと一体に形成されていることで、センサホルダにセンサを組み付けると、組合体とインシュレータとの組物を放熱板に固定すると共に、センサも同時に固定することができ、組立作業性に優れる。また、組物とセンサとを一体物として放熱板に固定できるため、コイルに対するセンサの位置決めを行い易く、センサの位置ずれも防止できる。 The sensor can be held more firmly by providing the sensor holder. Since the sensor holder is formed integrally with the insulator, when the sensor is assembled to the sensor holder, the assembly of the assembly and the insulator can be fixed to the heat sink and the sensor can be fixed at the same time. Excellent. Further, since the assembly and the sensor can be fixed to the heat radiating plate as an integrated body, the sensor can be easily positioned with respect to the coil, and the displacement of the sensor can be prevented.
 (4) 実施形態に係るリアクトルの一例として、上記センサを保持するセンサホルダと、上記コイルと上記磁性コアとの間に介在されるインシュレータとを具え、上記センサホルダは、上記インシュレータと独立した部材で構成されている形態が挙げられる。 (4) As an example of the reactor according to the embodiment, the reactor includes a sensor holder that holds the sensor, and an insulator that is interposed between the coil and the magnetic core. The sensor holder is a member that is independent of the insulator. The form comprised by is mentioned.
 センサホルダとインシュレータとが独立した部材で構成されていることで、センサホルダにセンサを組み付けてから、組合体とインシュレータとの組物に配置することができるため、センサを配置し易い。 Since the sensor holder and the insulator are formed of independent members, the sensor can be easily placed because the sensor can be assembled to the sensor holder after being assembled to the sensor holder.
 (5) センサホルダとインシュレータとが独立した部材である実施形態に係るリアクトルの一例として、上記センサホルダは、上記インシュレータと係合する係合部を具える形態が挙げられる。 (5) As an example of the reactor according to the embodiment in which the sensor holder and the insulator are independent members, the sensor holder may include an engagement portion that engages with the insulator.
 センサホルダとインシュレータとが係合することで、センサホルダの位置決めを容易にできる。また、センサホルダを組物に対してより強固に固定でき、センサの位置ずれを防止でき、組立作業性に優れる。 The sensor holder can be easily positioned by engaging the sensor holder with the insulator. Further, the sensor holder can be more firmly fixed to the assembly, the sensor can be prevented from being displaced, and the assembly workability is excellent.
 上述の実施形態に係るリアクトルは、コンバータの構成部品に好適に利用することができる。
 (6) 実施形態に係るコンバータは、上述の(1)~(5)のいずれか1つに記載の実施形態のリアクトルを具える。
The reactor which concerns on the above-mentioned embodiment can be utilized suitably for the component of a converter.
(6) A converter according to an embodiment includes the reactor according to the embodiment described in any one of (1) to (5) above.
 実施形態のコンバータは、小型である実施形態のリアクトルを具えることで小型である。 The converter of the embodiment is small by including the reactor of the small embodiment.
 上述の実施形態のコンバータは、電力変換装置の構成部品に好適に利用することができる。
 (7) 実施形態に係る電力変換装置は、上記実施形態のコンバータを具える。
The converter of the above-mentioned embodiment can be used suitably for the component of a power converter device.
(7) The power converter device which concerns on embodiment comprises the converter of the said embodiment.
 実施形態の電力変換装置は、小型である実施形態のコンバータを具えることで小型である。 The power conversion device of the embodiment is small by including the converter of the small embodiment.
 [本発明の実施形態の詳細]
 以下、本発明についての実施形態を図面に基づいて説明する。図面において同一符号は同一部材を示す。なお、以下の説明では、リアクトルを設置したときの設置側を下側、その対向側を上側として説明する。
[Details of the embodiment of the present invention]
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals denote the same members. In the following description, the installation side when the reactor is installed will be described as the lower side, and the opposite side as the upper side.
 <実施形態1>
 図1,図2を参照して、実施形態1のリアクトルを説明する。
<Embodiment 1>
The reactor of Embodiment 1 is demonstrated with reference to FIG. 1, FIG.
 ≪リアクトルの全体構成≫
 リアクトル1は、互いに繋がる一対のコイル素子2a,2bを具えるコイル2と、各コイル素子2a,2b内にそれぞれ配置される一対の内側コア部31(図2)及びこれら内側コア部31を連結して閉磁路を形成する外側コア部32を有する磁性コア3との組合体10を具える。さらに、コイル2が載置される底板部40(放熱板)と、リアクトル1の動作時の物理量を測定するセンサ7とを具える。また、この例のリアクトル1は、コイル2と磁性コア3との間に介在されるインシュレータ5と、底板部40において、コイル2の設置側の面が接触する箇所に接合層42とを具える。リアクトル1の主たる特徴とするところは、各コイル素子2a,2bの形状と、センサ7の配置位置にある。以下、上記特徴部分をまず説明し、次に、その他の構成をより詳細に説明する。
≪Reactor overall structure≫
The reactor 1 connects a coil 2 including a pair of coil elements 2a and 2b connected to each other, a pair of inner core portions 31 (FIG. 2) disposed in the coil elements 2a and 2b, and the inner core portions 31. The magnetic core 3 having the outer core portion 32 forming a closed magnetic path is provided. Furthermore, it includes a bottom plate portion 40 (heat radiating plate) on which the coil 2 is placed, and a sensor 7 that measures a physical quantity during operation of the reactor 1. In addition, the reactor 1 of this example includes an insulator 5 interposed between the coil 2 and the magnetic core 3, and a bonding layer 42 in the bottom plate portion 40 where the surface on the installation side of the coil 2 contacts. . The main features of the reactor 1 are the shape of each coil element 2a, 2b and the position where the sensor 7 is arranged. Hereinafter, the characteristic part will be described first, and then other configurations will be described in more detail.
 [コイル]
 コイル2は、図1(B),図2を主に参照して説明する。図1(B)では、分かり易いように、コイル2と、センサ7及び接合層42を主に示し、インシュレータ5などを省略している。
[coil]
The coil 2 will be described with reference mainly to FIGS. In FIG. 1B, for easy understanding, the coil 2, the sensor 7, and the bonding layer 42 are mainly shown, and the insulator 5 and the like are omitted.
 コイル2は、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなる一対のコイル素子2a,2bと、両コイル素子2a,2bを連結するコイル連結部2rとを具える。各コイル素子2a,2bは、互いに同一の巻数の中空の筒状体であり、各軸方向が平行するように並列(横並び)され、コイル2の他端側(図2では右側)において巻線2wの一部がU字状に屈曲されてコイル連結部2rが形成されている。この構成により、両コイル素子2a,2bの巻回方向は同一となっている。 The coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a single continuous winding 2w having no joint part, and a coil connecting part 2r for connecting both the coil elements 2a and 2b. . Each of the coil elements 2a and 2b is a hollow cylindrical body having the same number of turns, and is arranged in parallel (side by side) so that the respective axial directions are parallel to each other, and is wound on the other end side of the coil 2 (right side in FIG. 2). A part of 2w is bent into a U shape to form a coil coupling portion 2r. With this configuration, the winding directions of both coil elements 2a and 2b are the same.
 なお、各コイル素子を別々の巻線により作製し、各コイル素子の巻線の一端部同士を溶接や半田付け、圧着などにより接合されたコイルとすることができる。 In addition, it can be set as the coil which produced each coil element by a separate coil | winding, and joined one end part of the coil | winding of each coil element by welding, soldering, crimping | compression-bonding, etc.
 巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる導体の外周に、絶縁性材料からなる絶縁被覆を具える被覆線を好適に利用できる。絶縁被覆の厚さは、20μm以上100μm以下が好ましく、厚いほどピンホールを低減できて電気絶縁性を高められる。導体は、平角線が代表的であり、その他、横断面が円形状、楕円形状、多角形状などの種々の形状のものを利用できる。平角線は、断面が円形状の丸線を用いた場合よりも占積率が高いコイルを形成し易く、接合層42との接触面積を広く確保し易い、といった利点がある。ここでは、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線を利用し、各コイル素子2a,2bは、この被覆平角線をエッジワイズ巻きにしたエッジワイズコイルである。 As the winding 2w, a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used. The thickness of the insulating coating is preferably 20 μm or more and 100 μm or less, and the thicker the pinholes can be reduced, the higher the electrical insulation. The conductor is typically a rectangular wire, and various other cross-sectional shapes such as a circular shape, an elliptical shape, and a polygonal shape can be used. The flat wire has the advantage that it is easy to form a coil having a higher space factor than when a round wire having a circular cross section is used, and it is easy to ensure a wide contact area with the bonding layer 42. Here, the conductor is made of a copper flat wire, and the insulation coating is made of a coated flat wire made of enamel (typically polyamideimide), and each coil element 2a, 2b turns the covered flat wire into an edgewise winding. Edgewise coil.
 コイル2を形成する巻線の両端部2eは、コイル2の一端側(図2では左側)においてターン形成部分から適宜引き延ばされる(図1(A))。巻線の両端部2eは、絶縁被覆が剥がされて露出された導体部分に、導電材料からなる端子部材(図示せず)が接続され、この端子部材を介して、コイル2に電力供給を行う電源などの外部装置(図示せず)が接続される。 Both end portions 2e of the winding forming the coil 2 are appropriately extended from the turn forming portion on one end side (left side in FIG. 2) of the coil 2 (FIG. 1 (A)). A terminal member (not shown) made of a conductive material is connected to the conductor portion exposed by peeling off the insulation coating at both ends 2e of the winding, and power is supplied to the coil 2 through the terminal member. An external device (not shown) such as a power source is connected.
 各コイル素子2a,2bはそれぞれ、軸方向から見た端面形状(=軸方向に直交する平面で切断した形状)が、長方形の角部を丸めた形状であり、四つの角R部21と、角R部21間を繋ぐ長い直線状部22と短い直線状部23とで構成されている。従って、各コイル素子2a,2bの輪郭線は、図1(B)に示すように、角R部21を構成する曲線と、直線状部22,23を構成する直線とで構成される図形である。 Each of the coil elements 2a and 2b has an end face shape viewed from the axial direction (= a shape cut by a plane orthogonal to the axial direction), rounded corners of a rectangle, and four corner R portions 21; A long linear portion 22 and a short linear portion 23 that connect the corner R portions 21 are formed. Therefore, the outline of each coil element 2a, 2b is a figure composed of a curve constituting the corner R portion 21 and a straight line constituting the linear portions 22, 23, as shown in FIG. is there.
 各コイル素子2a,2bの端面形状は、上記長方形以外の多角形の角部を丸めた形状とすることができる。しかし、長方形の角部を丸めた上記形状は、(1)巻線2wを巻回し易く、コイルの製造性に優れる、(2)内周形状が単純であり、コイル素子の内周形状に相似な外周形状を有する内側コア部を形成し易い、(3)デッドスペースが少なく小型である、といった利点がある。 The end face shape of each of the coil elements 2a and 2b can be a shape obtained by rounding corners of a polygon other than the rectangle. However, the above-mentioned shape with rounded corners of the rectangle is (1) easy to wind the winding 2w and excellent in manufacturability of the coil. (2) The inner peripheral shape is simple and similar to the inner peripheral shape of the coil element. There is an advantage that it is easy to form an inner core portion having a simple outer peripheral shape, and (3) a small dead space and a small size.
 角R部21の丸め半径は、適宜選択することができる。コイル2の大きさ、使用する巻線2wの大きさ(平角線の場合、幅や厚さ)などを考慮して、丸め半径を選択するとよい。特に、コイル2がエッジワイズコイルの場合、角R部21を構成する巻線2wにおいて外周側の丸め半径を大きくとり易く、隣接する両コイル素子2a,2bの間に、センサ7の収納箇所となる台形状空間を広くとり易い。 The rounding radius of the corner R portion 21 can be selected as appropriate. The rounding radius may be selected in consideration of the size of the coil 2 and the size of the winding 2w to be used (width and thickness in the case of a flat wire). In particular, when the coil 2 is an edgewise coil, it is easy to increase the rounding radius on the outer peripheral side in the winding 2w constituting the corner R portion 21, and the sensor 7 is placed between the adjacent coil elements 2a and 2b. It is easy to take a large trapezoidal space.
 各コイル素子2a,2bにおいて直線状部22間には、図1(B)に示すように若干の隙間gを設けて、両コイル素子2a,2b間の絶縁性を高めている。但し、この隙間gは、後述するセンサ7の厚さ(例えば、3mm程度)よりも小さく、センサ7に接続される配線71よりも大きい(例えば、2mm程度)。この例では、隙間gは、後述するインシュレータ5の仕切り片53a,53b(図2)により確保する。この隙間gには、後述するセンサ7に接続される配線71が介在される。 In each coil element 2a, 2b, a slight gap g is provided between the linear portions 22 as shown in FIG. 1B to enhance the insulation between the coil elements 2a, 2b. However, the gap g is smaller than the thickness (for example, about 3 mm) of the sensor 7 described later and larger than the wiring 71 connected to the sensor 7 (for example, about 2 mm). In this example, the gap g is secured by partition pieces 53a and 53b (FIG. 2) of the insulator 5 described later. A wiring 71 connected to the sensor 7 described later is interposed in the gap g.
 リアクトル1の下側における上記角R部21を有するコイル2は、図1(B)に示すように、各コイル素子2a,2bにおいて対向配置された角R部21と底板部40とで形成される台形状空間を有する。この台形状空間は、リアクトル1の上側と下側とに形成されるが、本実施形態では、下側の台形状空間を利用する。詳しくは、この台形状空間は、一方のコイル素子2aにおいて下側の角R部21とこの角R部21に繋がる長い直線状部22との交点、他方のコイル素子2bにおいて下側の角R部21とこの角R部21に繋がる長い直線状部22との交点とを繋ぐ直線lと、両コイル素子2a,2bの角R部21を構成する曲線と、底板部40(両コイル素子2a,2bの下面2dを繋ぐ直線)とで囲まれる空間である。本実施形態では、この両コイル素子2a,2bの下側の角R部21と底板部40とで形成される台形状空間をセンサ7の配置空間とするところを特徴の一つとする。 As shown in FIG. 1B, the coil 2 having the corner R portion 21 on the lower side of the reactor 1 is formed by the corner R portion 21 and the bottom plate portion 40 that are opposed to each other in each of the coil elements 2a and 2b. A trapezoidal space. The trapezoidal space is formed on the upper side and the lower side of the reactor 1, but in the present embodiment, the lower trapezoidal space is used. Specifically, this trapezoidal space is the intersection of the lower corner R portion 21 and the long linear portion 22 connected to the corner R portion 21 in one coil element 2a, and the lower corner R in the other coil element 2b. A straight line l r connecting the intersection of the portion 21 and the long linear portion 22 connected to the corner R portion 21, a curve constituting the corner R portion 21 of both the coil elements 2a and 2b, and a bottom plate portion 40 (both coil elements 2a and 2b is a space surrounded by a straight line connecting the lower surface 2d of 2b. The present embodiment is characterized in that a trapezoidal space formed by the lower corner R portion 21 and the bottom plate portion 40 of both the coil elements 2a and 2b is used as an arrangement space for the sensor 7.
 上記台形状空間の大きさは、角R部21の丸め半径により調整することができる。丸め半径が大きいと、センサ7の収納空間が大きくなり易く、丸め半径が小さいと小型なコイルになり易い。 The size of the trapezoidal space can be adjusted by the rounding radius of the corner R portion 21. If the rounding radius is large, the storage space for the sensor 7 tends to be large, and if the rounding radius is small, a small coil tends to be obtained.
 上記台形状空間のうち、内側コア部31に挟まれていない領域にセンサ7を配置することが好ましい。この例では、コイル素子2a,2bの内周形状に相似な外周形状を有する内側コア部31が各コイル素子2a,2bに同軸状に収納されており、これら両内側コア部31の下面を繋ぐ直線(接線)lをとったとき、この接線lよりも下方側の領域が、内側コア部31に挟まれていない領域となる。この例では、図1(B)に示すように、台形状空間のうち、内側コア部31に挟まれていない領域(接線lと各コイル素子2a,2bの下側の角R部21を構成する曲線とで囲まれる領域)にセンサ7を配置している。 In the trapezoidal space, the sensor 7 is preferably arranged in a region not sandwiched between the inner core portions 31. In this example, an inner core portion 31 having an outer peripheral shape similar to the inner peripheral shape of the coil elements 2a and 2b is accommodated coaxially in each of the coil elements 2a and 2b, and connects the lower surfaces of both the inner core portions 31. When a straight line (tangent) l c is taken, a region below the tangent l c is a region not sandwiched by the inner core portion 31. In this example, as shown in FIG. 1 (B), of the trapezoidal space region not sandwiched between the inner core portion 31 (the tangent l c and the coil elements 2a, the lower corner R portion 21 of 2b The sensor 7 is arranged in a region surrounded by a curve to be formed.
 上記台形状空間は、コイル2の一端面から他端面に亘って形成され、この任意の箇所にセンサ7を配置することができる。しかし、上記台形状空間のうち、コイル2の軸方向の中心を含む中間領域をセンサ7の配置領域とすることが好ましい。中間領域は、例えば、上記中心からコイル2の一端側又は他端側へコイル2の軸方向の長さの30%までの領域、即ち、上記中心を含んでコイル2の軸方向の長さの60%の領域が挙げられる。 The trapezoidal space is formed from one end surface of the coil 2 to the other end surface, and the sensor 7 can be disposed at this arbitrary location. However, in the trapezoidal space, an intermediate region including the center of the coil 2 in the axial direction is preferably used as a region where the sensor 7 is disposed. The intermediate region is, for example, a region from the center to one end side or the other end side of the coil 2 up to 30% of the axial length of the coil 2, that is, the axial length of the coil 2 including the center. An area of 60% is mentioned.
 [センサ]
 ここでは、センサ7は温度センサであり、サーミスタといった感熱素子7aと、感熱素子7aを保護する保護部7bとを具えた棒状体が挙げられる。保護部7bは、樹脂などのチューブが挙げられる。センサ7には、感知した情報を制御装置といった外部装置に伝達するための配線71(図1(B))が接続される。センサとしては、温度センサ以外に、電流センサや電圧センサ、リアクトルの振動を測定可能な加速度センサなど、リアクトルの動作時の物理量を測定するためのセンサが挙げられる。
[Sensor]
Here, the sensor 7 is a temperature sensor, and includes a rod-like body including a thermal element 7a such as a thermistor and a protective portion 7b that protects the thermal element 7a. Examples of the protective part 7b include tubes made of resin. Connected to the sensor 7 is a wiring 71 (FIG. 1B) for transmitting sensed information to an external device such as a control device. Examples of the sensor include a sensor for measuring a physical quantity during operation of the reactor, such as a current sensor, a voltage sensor, and an acceleration sensor capable of measuring the vibration of the reactor, in addition to the temperature sensor.
 リアクトル1を冷却ベース(図示せず)に設置した状態において、コイル2の設置側の面(下面2d(図1(B)))からその対向面(上面2u(図1(B)))に亘ってコイル素子2a,2b間の温度分布を調べたところ、各コイル素子2a,2b間で高さ方向の略中間部が最高温度箇所であり、この最高温度箇所から離れるに従って温度は低くなり、下面2d及びその近傍の領域は、冷却ベースで冷却されるため、最低温度箇所であった。そこで、下側の台形状空間における温度と最高温度との温度分布を予め測定しておくことで、台形状空間で温度測定を行った際に、この温度分布による相関関係からそのときのリアクトルの最高温度を求められる。よって、測定した温度に応じてコイル2への電流などの制御を行うことができる。 In a state where the reactor 1 is installed on the cooling base (not shown), the surface on the installation side (the lower surface 2d (FIG. 1B)) of the coil 2 is opposed to the opposite surface (the upper surface 2u (FIG. 1B)). When the temperature distribution between the coil elements 2a and 2b was examined, the intermediate portion in the height direction between the coil elements 2a and 2b is the highest temperature location, and the temperature decreases as the distance from the highest temperature location increases. Since the lower surface 2d and the area in the vicinity thereof are cooled by the cooling base, they are the lowest temperature locations. Therefore, by measuring the temperature distribution between the temperature and the maximum temperature in the lower trapezoidal space in advance, when the temperature is measured in the trapezoidal space, the correlation of the reactor at that time is determined from the correlation due to this temperature distribution. The maximum temperature is required. Therefore, the current to the coil 2 can be controlled according to the measured temperature.
 (底板部(放熱板))
 底板部40(放熱板)は、代表的には、リアクトル1が設置対象に設置されるときに設置対象に接して固定される板材である(図1)。底板部40は、コイル2の放熱経路に利用されることから、一般に熱伝導率が高い材料である金属によって構成される。具体的な金属は、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、鉄やオーステナイト系ステンレス鋼などが挙げられる。アルミニウムやマグネシウム、これらの合金は軽量であり、軽量なリアクトルとできる。底板部40の厚さは、強度、シールド性、放熱性、騒音特性などを考慮して、例えば、2mm~5mm程度が挙げられる。ここでは、底板部40をアルミニウム合金から構成している。この底板部40は、コイル2の設置側の面が接触する箇所一面に接合層42が形成されている。
(Bottom plate (heat sink))
The bottom plate portion 40 (heat radiating plate) is typically a plate material fixed in contact with the installation target when the reactor 1 is installed on the installation target (FIG. 1). Since the bottom plate portion 40 is used for the heat dissipation path of the coil 2, it is generally made of a metal that is a material having a high thermal conductivity. Specific examples of the metal include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. Aluminum, magnesium and their alloys are lightweight and can be a lightweight reactor. The thickness of the bottom plate portion 40 is, for example, about 2 mm to 5 mm in consideration of strength, shielding properties, heat dissipation properties, noise characteristics, and the like. Here, the bottom plate portion 40 is made of an aluminum alloy. The bottom plate portion 40 has a bonding layer 42 formed on the entire surface where the surface on the installation side of the coil 2 contacts.
 底板部40は、上記台形状空間に面する箇所に、組合体10を底板部40上に載置した際のコイル2軸方向に沿った突条を形成してもよい。この突条によって、底板部40上にセンサ7を載置する際に、センサ7の位置決めとなって配置し易い。この突条の上にセンサ7を配置することで、センサ7をコイル2側に近接でき、センサ7をコイル2の角R部21に接触させ易くできる。また、台形状空間に形成される接合層42の接着剤の量を削減できる。 The bottom plate portion 40 may form a protrusion along the biaxial direction of the coil when the combined body 10 is placed on the bottom plate portion 40 at a location facing the trapezoidal space. By this protrusion, when the sensor 7 is placed on the bottom plate portion 40, the sensor 7 is easily positioned and placed. By arranging the sensor 7 on the ridge, the sensor 7 can be brought close to the coil 2 side, and the sensor 7 can be easily brought into contact with the corner R portion 21 of the coil 2. In addition, the amount of adhesive for the bonding layer 42 formed in the trapezoidal space can be reduced.
 底板部40の外形は適宜選択することができる。ここでは、底板部40は、図1(A)に示すように矩形状であり、四隅のそれぞれから突出した取付部400を有する。なお、ここでは、底板部40が下方となる設置状態を示すが、底板部40が上方、又は側方となる設置状態も有り得る。 The outer shape of the bottom plate portion 40 can be selected as appropriate. Here, the bottom plate portion 40 has a rectangular shape as shown in FIG. 1A, and has mounting portions 400 protruding from the four corners. Here, an installation state in which the bottom plate portion 40 is downward is shown, but there may be an installation state in which the bottom plate portion 40 is upward or sideward.
 (接合層)
 底板部40は、少なくともコイル2の設置側の面(下面2d(図1(B)))が接触する箇所に接合層42を具える。本実施形態では、センサ7を接合層42に配置し、上述した台形状空間に配置されたセンサ7をコイル2に接触した状態で保持する。
(Bonding layer)
The bottom plate portion 40 includes a bonding layer 42 at a location where at least a surface on the installation side of the coil 2 (lower surface 2d (FIG. 1B)) contacts. In the present embodiment, the sensor 7 is disposed on the bonding layer 42, and the sensor 7 disposed in the trapezoidal space described above is held in contact with the coil 2.
 接合層42は、絶縁性材料からなる単層構造とすると容易に形成できる上に、底板部40が金属製でも、コイル2と底板部40との間を絶縁できる。絶縁性材料からなる多層構造とすると、絶縁性をより高められる。同材質の多層構造とする場合、一層あたりの厚さを薄くできる。薄くすることでピンホールが存在しても、隣接する別の層によりピンホールを塞ぐことで絶縁を確保できる。一方、異種材質の多層構造とすると、コイル2と底板部40との絶縁性、両者の密着性、コイル2から底板部40への放熱性などの複数の特性を兼備できる。この場合、少なくとも一層の構成材料は、絶縁性材料とする。 The bonding layer 42 can be easily formed by a single layer structure made of an insulating material, and can insulate the coil 2 and the bottom plate portion 40 even if the bottom plate portion 40 is made of metal. Insulating properties can be further improved by using a multilayer structure made of an insulating material. When a multilayer structure of the same material is used, the thickness per layer can be reduced. Even if a pinhole exists by making it thin, insulation can be ensured by closing the pinhole with another adjacent layer. On the other hand, when the multilayer structure is made of different materials, a plurality of characteristics such as insulation between the coil 2 and the bottom plate portion 40, adhesion between the two, and heat dissipation from the coil 2 to the bottom plate portion 40 can be provided. In this case, at least one constituent material is an insulating material.
 接合層42は、少なくともコイル2の設置側の面(下面2d)が十分に接触可能な面積を有していれば、特に形状は問わない。ここでは、接合層42は、組合体10の設置側の面、即ち、コイル2及び外側コア部32の双方の設置側の面がつくる形状に沿った形状としている。従って、コイル2及び外側コア部32の双方が接合層42に十分に接触できる。 The shape of the bonding layer 42 is not particularly limited as long as at least the surface (lower surface 2d) on the installation side of the coil 2 has a sufficient contact area. Here, the bonding layer 42 has a shape along the shape formed by the surface on the installation side of the combined body 10, that is, the surfaces on the installation side of both the coil 2 and the outer core portion 32. Therefore, both the coil 2 and the outer core portion 32 can sufficiently contact the bonding layer 42.
 特に、接合層42は、コイル2の設置側の面が接する表面側に絶縁性材料からなる接着層を具え、底板部40に接する側に熱伝導性に優れる材料からなる放熱層を具える多層構造であることが好ましい。ここでは、接合層42は、接着層と放熱層とを具える。 In particular, the bonding layer 42 is a multilayer having an adhesive layer made of an insulating material on the surface side where the surface on the side where the coil 2 is installed contacts, and a heat dissipation layer made of a material having excellent heat conductivity on the side contacting the bottom plate portion 40. A structure is preferred. Here, the bonding layer 42 includes an adhesive layer and a heat dissipation layer.
 接着層は、接着強度に優れる材料を好適に利用できる。例えば、接着層は、絶縁性接着剤、具体的には、エポキシ系接着剤、アクリル系接着剤などにより構成することができる。接着層の形成は、例えば、放熱層の上に塗布したり、スクリーン印刷を利用したりすることが挙げられる。接着層にシート状接着剤を利用してもよい。ここでは、接着層は、絶縁性接着剤の単層構造としている。 For the adhesive layer, a material having excellent adhesive strength can be suitably used. For example, the adhesive layer can be composed of an insulating adhesive, specifically, an epoxy adhesive, an acrylic adhesive, or the like. For example, the adhesive layer may be formed on the heat dissipation layer or screen printing may be used. A sheet-like adhesive may be used for the adhesive layer. Here, the adhesive layer has a single-layer structure of an insulating adhesive.
 放熱層は、放熱性に優れる材料、好ましくは熱伝導率が2W/m・K超の材料を好適に利用できる。放熱層は、熱伝導率が高いほど好ましく、3W/m・K以上、特に10W/m・K以上、更に20W/m・K以上、とりわけ30W/m・K以上の材料により構成されることが好ましい。 For the heat dissipation layer, a material excellent in heat dissipation, preferably a material having a thermal conductivity of more than 2 W / m · K can be suitably used. The heat dissipation layer is preferably as high as possible in terms of thermal conductivity, and is made of a material of 3 W / m · K or more, particularly 10 W / m · K or more, more preferably 20 W / m · K or more, particularly 30 W / m · K or more. preferable.
 放熱層の具体的な構成材料は、例えば、金属材料が挙げられる。金属材料は一般に熱伝導率が高いものの導電性材料であり、上記接着層の絶縁性を高めることが望まれる。また、金属材料からなる放熱層は重くなり易い。一方、放熱層の構成材料として、金属元素,B,及びSiの酸化物、炭化物、及び窒化物から選択される一種の材料といったセラミックスなどの非金属無機材料を利用すると、放熱性に優れる上に、電気絶縁性にも優れて好ましい。より具体的なセラミックスは、窒化珪素(Si):20W/m・K~150W/m・K程度、アルミナ(Al):20W/m・K~30W/m・K程度、窒化アルミニウム(AlN):200W/m・K~250W/m・K程度、窒化ほう素(BN):50W/m・K~65W/m・K程度、炭化珪素(SiC):50W/m・K~130W/m・K程度などが挙げられる。上記セラミックスにより放熱層を形成するには、例えば、PVD法やCVD法といった蒸着法を利用したり、上記セラミックスの焼結板などを用意して、適宜な接着剤により、底板部40に接合したりすることが挙げられる。 Specific examples of the constituent material of the heat dissipation layer include a metal material. A metal material is generally a conductive material having a high thermal conductivity, and it is desired to improve the insulating properties of the adhesive layer. Moreover, the heat dissipation layer made of a metal material tends to be heavy. On the other hand, when a non-metallic inorganic material such as ceramics such as a material selected from oxides, carbides, and nitrides of metal elements, B, and Si is used as a constituent material of the heat dissipation layer, heat dissipation is excellent. It is also preferable because of its excellent electrical insulation. More specific ceramics are silicon nitride (Si 3 N 4 ): about 20 W / m · K to 150 W / m · K, alumina (Al 2 O 3 ): about 20 W / m · K to about 30 W / m · K, Aluminum nitride (AlN): about 200 W / m · K to 250 W / m · K, boron nitride (BN): about 50 W / m · K to 65 W / m · K, silicon carbide (SiC): 50 W / m · K About 130 W / m · K. In order to form the heat dissipation layer with the ceramic, for example, a vapor deposition method such as PVD method or CVD method is used, or a sintered plate of the ceramic is prepared and bonded to the bottom plate portion 40 with an appropriate adhesive. Can be mentioned.
 或いは、放熱層の構成材料は、上記セラミックスからなるフィラーを含有する絶縁性樹脂(例えば、エポキシ樹脂、アクリル樹脂)が挙げられる。この材料は、放熱性及び電気絶縁性の双方に優れる放熱層が得られる。また、この場合、放熱層及び接着層の双方が絶縁性材料で構成される、即ち、接合層全体が絶縁性材料で構成されるため、この接合層は絶縁性に更に優れる。上記絶縁性樹脂が接着剤であると、放熱層と接着層との密着性に優れ、この放熱層を具える接合層は、コイル2と底板部40との間を強固に接合できる。接着層及び放熱層を構成する接着剤を異種としてもよいが、同種である場合、密着性に優れる上に接合層の形成が容易である。上記フィラー入りの絶縁性接着剤により接合層全体を形成してもよい。この場合、接合層は、単一種の材質からなる単層構造となる。 Alternatively, the constituent material of the heat dissipation layer may be an insulating resin (for example, an epoxy resin or an acrylic resin) containing a filler made of the above ceramics. This material provides a heat dissipation layer that is excellent in both heat dissipation and electrical insulation. In this case, since both the heat dissipation layer and the adhesive layer are made of an insulating material, that is, the whole bonding layer is made of an insulating material, the bonding layer is further excellent in insulation. When the insulating resin is an adhesive, the adhesiveness between the heat dissipation layer and the adhesive layer is excellent, and the bonding layer including the heat dissipation layer can firmly bond the coil 2 and the bottom plate portion 40. The adhesives constituting the adhesive layer and the heat dissipation layer may be different, but if they are the same type, the adhesive layer is excellent and the bonding layer can be easily formed. You may form the whole joining layer with the said insulating adhesive containing a filler. In this case, the bonding layer has a single layer structure made of a single kind of material.
 上記フィラー入り樹脂により放熱層を形成するには、例えば、底板部40に塗布したり、スクリーン印刷したりなどすることで容易に形成できる。 The heat dissipation layer can be easily formed by, for example, applying to the bottom plate portion 40 or screen printing to form the heat dissipation layer with the filler-containing resin.
 放熱層は、単層構造でも多層構造でもよい。多層構造とする場合、少なくとも一層の材質を異ならせてもよい。例えば、放熱層は、熱伝導率が異なる材質からなる多層構造とすることができる。 The heat dissipation layer may be a single layer structure or a multilayer structure. In the case of a multi-layer structure, at least one layer of materials may be different. For example, the heat dissipation layer can have a multilayer structure made of materials having different thermal conductivities.
 接合層42の厚さは、0.2mm以上、より好ましくは1mm以上である。接合層42の厚さが3mm以上であることで、センサ7を接合層42内に配置し、より強固に保持することができる。この接合層42の厚さは、組合体10を載置する前の厚さである。接合層42の厚さは、センサ7の配置箇所となる領域を部分的に厚くしてもよい。センサ7は、接合層42内に配置することもできるし、コイル2と接触した状態とすることもできる。 The thickness of the bonding layer 42 is 0.2 mm or more, more preferably 1 mm or more. When the thickness of the bonding layer 42 is 3 mm or more, the sensor 7 can be disposed in the bonding layer 42 and held more firmly. The thickness of the bonding layer 42 is the thickness before the combined body 10 is placed. As for the thickness of the bonding layer 42, a region where the sensor 7 is disposed may be partially thickened. The sensor 7 can be disposed in the bonding layer 42 or can be in contact with the coil 2.
 [磁性コア]
 磁性コア3の説明は、図2を参照して行う。磁性コア3は、各コイル素子2a,2bに覆われる一対の内側コア部31と、コイル2が配置されず、コイル2から露出されている一対の外側コア部32とを有する。ここでは、各内側コア部31はそれぞれ、上述のように各コイル素子2a,2bの内周形状に沿って、直方体の角部を丸めた外形を有する柱状体であり、各外側コア部32はそれぞれ、一対の台形状面を有する柱状体である。磁性コア3は、離間して配置される内側コア部31を挟むように外側コア部32が配置され、各内側コア部31の端面31eと外側コア部32の内端面32eとを接触させて環状に形成される。これら内側コア部31及び外側コア部32により、コイル2を励磁したとき、閉磁路を形成する。
[Magnetic core]
The magnetic core 3 will be described with reference to FIG. The magnetic core 3 includes a pair of inner core portions 31 covered with the coil elements 2 a and 2 b and a pair of outer core portions 32 that are not disposed on the coil 2 and are exposed from the coil 2. Here, each inner core portion 31 is a columnar body having an outer shape obtained by rounding the corners of a rectangular parallelepiped along the inner peripheral shape of each coil element 2a, 2b as described above, and each outer core portion 32 is Each is a columnar body having a pair of trapezoidal surfaces. The magnetic core 3 has an outer core portion 32 disposed so as to sandwich the inner core portion 31 that is spaced apart, and the end surface 31e of each inner core portion 31 and the inner end surface 32e of the outer core portion 32 are brought into contact with each other. Formed. The inner core portion 31 and the outer core portion 32 form a closed magnetic circuit when the coil 2 is excited.
 内側コア部31は、図2に示すように、軟磁性材料からなる複数のコア片31mと、コア片31mよりも比透磁率が小さい材料からなるギャップ材31gとが交互に積層配置された積層物である。コア片31mとギャップ材31gとは、特に接着剤によって一体化すると、扱い易い上に、コア片31mとギャップ材31gとを強固に固定することで騒音を低減できると期待される。その他、コア片31mとギャップ材31gとを接着テープなどによって一体化すると、扱い易い。外側コア部32は、軟磁性材料からなるコア片である。 As shown in FIG. 2, the inner core portion 31 is a laminate in which a plurality of core pieces 31m made of a soft magnetic material and gap members 31g made of a material having a relative permeability smaller than that of the core pieces 31m are alternately laminated. It is a thing. When the core piece 31m and the gap material 31g are integrated with an adhesive, it is easy to handle and it is expected that noise can be reduced by firmly fixing the core piece 31m and the gap material 31g. In addition, when the core piece 31m and the gap material 31g are integrated with an adhesive tape or the like, it is easy to handle. The outer core portion 32 is a core piece made of a soft magnetic material.
 内側コア部31や外側コア部32を構成するコア片は、鉄などの鉄族金属やその合金、鉄を含む酸化物などに代表される軟磁性粉末を用いた成形体や、絶縁被膜を有する磁性薄板(例えば、ケイ素鋼板に代表される電磁鋼板)を複数積層した積層板体が挙げられる。上記成形体は、圧粉成形体、焼結体、軟磁性粉末と樹脂とを含む混合体を射出成形や注型成形などした複合材料などが挙げられる。ここでは、各コア片はいずれも、鉄や鋼などの鉄を含有する軟磁性金属粉末の圧粉成形体としている。 The core piece constituting the inner core portion 31 and the outer core portion 32 has a molded body using an insulating group and a soft magnetic powder typified by an iron group metal such as iron or an alloy thereof, an oxide containing iron, or the like. A laminated plate body in which a plurality of magnetic thin plates (for example, an electromagnetic steel plate typified by a silicon steel plate) is laminated may be mentioned. Examples of the molded body include a compacted body, a sintered body, and a composite material obtained by injection molding or cast molding a mixture including soft magnetic powder and resin. Here, each core piece is a powder compact of soft magnetic metal powder containing iron such as iron or steel.
 ギャップ材31gの具体的な材料は、アルミナや不飽和ポリエステルなどの非磁性材料、ポリフェニレンスルフィド(PPS)樹脂などの非磁性材料と磁性粉末(例えば、鉄粉などの軟磁性粉末)とを含む混合物などが挙げられる。ここでは、ギャップ材31gは公知のものを利用できる。 The specific material of the gap material 31g is a mixture containing a nonmagnetic material such as alumina or unsaturated polyester, a nonmagnetic material such as polyphenylene sulfide (PPS) resin, and magnetic powder (for example, soft magnetic powder such as iron powder). Etc. Here, a known material can be used as the gap material 31g.
 なお、ここでは、磁性コア3を構成する各コア片は一様な材質から構成された同一の仕様(圧粉成形体)のものとしているが、内側コア部31と外側コア部32とで磁気特性や仕様を異ならせることができる。例えば、圧粉成形体と複合材料とを組み合わせた形態、材質や軟磁性粉末の混合量などが異なる複合材料を組み合わせた形態などとすることができる。 In addition, although each core piece which comprises the magnetic core 3 shall be the thing of the same specification (compact compact | molding | casting body) comprised from the uniform material here, it is magnetic with the inner core part 31 and the outer core part 32. Characteristics and specifications can be varied. For example, it is possible to adopt a form in which a green compact and a composite material are combined, or a form in which composite materials having different materials and mixed amounts of soft magnetic powder are combined.
 その他、この例に示す磁性コア3は、内側コア部31の設置側の面と外側コア部32の設置側の面とが面一になっておらず、外側コア部32の設置側の面が内側コア部31よりも突出し、かつコイル2の設置側の面(図1(B)において下面2d)と面一である。従って、コイル2と磁性コア3との組合体10の設置側の面は、両コイル素子2a,2bの下面2dと、外側コア部32の設置側の面とで構成され、コイル2及び磁性コア3の双方が接合層42に接触できるため、リアクトル1は、放熱性に優れる。また、組合体10の設置側の面がコイル2及び磁性コア3の双方で構成されることで固定対象との接触面積が十分に大きく、リアクトル1は、設置したときの安定性にも優れる。更に、コア片を圧粉成形体で構成することで、外側コア部32において内側コア部31よりも突出した箇所は磁束の通路に利用できる。 In addition, in the magnetic core 3 shown in this example, the installation side surface of the inner core portion 31 and the installation side surface of the outer core portion 32 are not flush with each other, and the installation side surface of the outer core portion 32 is not flush. It protrudes from the inner core portion 31 and is flush with the surface on the installation side of the coil 2 (the lower surface 2d in FIG. 1B). Therefore, the surface on the installation side of the combination 10 of the coil 2 and the magnetic core 3 is composed of the lower surface 2d of both coil elements 2a and 2b and the surface on the installation side of the outer core portion 32, and the coil 2 and the magnetic core 3 can contact the bonding layer 42, the reactor 1 is excellent in heat dissipation. Moreover, since the surface on the installation side of the combined body 10 is composed of both the coil 2 and the magnetic core 3, the contact area with the fixed object is sufficiently large, and the reactor 1 is excellent in stability when installed. Furthermore, by configuring the core piece with a compacted body, the portion of the outer core portion 32 that protrudes from the inner core portion 31 can be used as a magnetic flux passage.
 [インシュレータ]
 インシュレータ5の説明は、図2を参照して行う。インシュレータ5は、内側コア部31を収納する筒状部51と、各コイル素子2a,2bの端面と外側コア部32の内端面32eとの間に介在される枠板部52とを具える。筒状部51は、コイル素子2a,2bと内側コア部31とを絶縁し、枠板部52は、コイル素子2a,2bの端面と外側コア部32の内端面32eとを絶縁する。
[Insulator]
The insulator 5 will be described with reference to FIG. The insulator 5 includes a cylindrical portion 51 that houses the inner core portion 31, and a frame plate portion 52 that is interposed between the end surfaces of the coil elements 2 a and 2 b and the inner end surface 32 e of the outer core portion 32. The cylindrical portion 51 insulates the coil elements 2 a and 2 b from the inner core portion 31, and the frame plate portion 52 insulates the end surfaces of the coil elements 2 a and 2 b from the inner end surface 32 e of the outer core portion 32.
 筒状部51は、内側コア部31の外周形状に沿った筒状の分割片50a,50bから構成され、この一対の分割片50a,50bを組み合せて一体にされる。分割片50a,50bの形状は適宜選択することができる。ここでは、分割片50a,50bを内側コア部31の外周面に配置したとき、内側コア部31の一部が露出された状態となる。そのため、封止樹脂を具える形態とする場合、封止樹脂の充填時に脱気し易く、製造性に優れる上に、内側コア部31と封止樹脂との接触面積を増大でき、騒音を抑制できると期待される。 The cylindrical part 51 is composed of cylindrical divided pieces 50a and 50b along the outer peripheral shape of the inner core part 31, and the pair of divided pieces 50a and 50b are combined to be integrated. The shape of the divided pieces 50a and 50b can be selected as appropriate. Here, when the divided pieces 50 a and 50 b are arranged on the outer peripheral surface of the inner core portion 31, a part of the inner core portion 31 is exposed. Therefore, when the sealing resin is provided, it is easy to deaerate at the time of filling the sealing resin, is excellent in manufacturability, and can increase the contact area between the inner core portion 31 and the sealing resin, thereby suppressing noise. It is expected to be possible.
 枠板部52は、2個の内側コア部31がそれぞれ挿通可能な一対の開口部(貫通孔)を有するB字状の平板部分である。枠板部52は、コイル2に組み付けたとき、両コイル素子2a,2b間に介在されるように配置される仕切り片53a,53bと、コイル連結部2rと外側コア部32との間に配置される平板状の台座52pとを具える。仕切り片53a,53bは、枠板部52の一面からコイル側に向かって突設され、台座52pは、枠板部52の他面から外側コア部32側に向かって突設されている。仕切り片53a,53bや台座52pは省略してもよい。 The frame plate portion 52 is a B-shaped flat plate portion having a pair of openings (through holes) through which the two inner core portions 31 can be inserted. The frame plate portion 52 is disposed between the partition pieces 53a and 53b disposed so as to be interposed between the coil elements 2a and 2b and the coil connecting portion 2r and the outer core portion 32 when assembled to the coil 2. And a flat pedestal 52p. The partition pieces 53a and 53b project from one surface of the frame plate portion 52 toward the coil side, and the pedestal 52p projects from the other surface of the frame plate portion 52 toward the outer core portion 32 side. The partition pieces 53a and 53b and the pedestal 52p may be omitted.
 インシュレータ5の構成材料には、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、液晶ポリマー(LCP)などの絶縁性材料が利用できる。 As the constituent material of the insulator 5, insulating materials such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, and liquid crystal polymer (LCP) can be used.
 ≪リアクトルの製造≫
 上記構成を具えるリアクトル1は、代表的には、組合体の準備⇒底板部の準備⇒センサの固定⇒組合体の固定という工程により製造することができる。
≪Manufacture of reactors≫
Typically, the reactor 1 having the above-described configuration can be manufactured by a process of preparing an assembly, preparing a bottom plate, fixing a sensor, and fixing the assembly.
 [組合体の準備]
 まず、コイル2と磁性コア3との組合体10の作製手順を説明する。具体的には、図2に示すようにコア片31mやギャップ材31gを積層した内側コア部31とインシュレータ5の一方の分割片50aとを各コイル素子2a,2bに挿入する。ここでは、コア片31mとギャップ材31gとの積層体の外周面を接着テープにより連結して内側コア部31を柱状に作製している。次に、コイル素子2a,2bの他方の端面に、インシュレータ5の他方の分割片50bを挿入する。なお、コア片31mとギャップ材31gとを接着テープや接着剤などで一体化せず、ばらばらの状態としてもよい。この場合、一部のコア片31m及びギャップ材31gを一方の分割片50aで支持し、他部のコア片31m及びギャップ材31gを他方の分割片50bで支持して、各コイル素子2a,2bに挿入するとよい。
[Preparation of union]
First, the manufacturing procedure of the combination 10 of the coil 2 and the magnetic core 3 will be described. Specifically, as shown in FIG. 2, the inner core portion 31 in which the core pieces 31m and the gap material 31g are laminated and one divided piece 50a of the insulator 5 are inserted into the coil elements 2a and 2b. Here, the outer peripheral surface of the laminated body of the core piece 31m and the gap material 31g is connected with an adhesive tape to produce the inner core portion 31 in a columnar shape. Next, the other divided piece 50b of the insulator 5 is inserted into the other end face of the coil elements 2a and 2b. The core piece 31m and the gap material 31g may be separated from each other without being integrated with an adhesive tape or an adhesive. In this case, some of the core pieces 31m and the gap material 31g are supported by one divided piece 50a, and the other core pieces 31m and the gap material 31g are supported by the other divided piece 50b. It is good to insert in.
 次に、両コイル素子2a,2bの端面及び内側コア部31の端面31eをインシュレータ5の枠板部52及び外側コア部32の内端面32eで挟むように、コイル2に枠板部52及び外側コア部32を配置して、組合体10を形成する。このとき、内側コア部31の端面31eは、枠板部52の開口部から露出されて外側コア部32の内端面32eに接触する。両コイル素子2a,2b間には、インシュレータ5の仕切り片53a,53bが介在され、当該仕切り片53a,53bの厚さに応じた隙間gを両素子2a,2b間に設けることができる。 Next, the frame plate portion 52 and the outer side of the coil 2 are sandwiched between the end surface 31e of both the coil elements 2a and 2b and the end surface 31e of the inner core portion 31 between the frame plate portion 52 of the insulator 5 and the inner end surface 32e of the outer core portion 32. The core part 32 is arrange | positioned and the assembly 10 is formed. At this time, the end surface 31 e of the inner core portion 31 is exposed from the opening of the frame plate portion 52 and contacts the inner end surface 32 e of the outer core portion 32. The partition pieces 53a and 53b of the insulator 5 are interposed between the two coil elements 2a and 2b, and a gap g corresponding to the thickness of the partition pieces 53a and 53b can be provided between the two elements 2a and 2b.
 [底板部の準備]
 アルミニウム板を所定の形状に打ち抜いて底板部40を形成し、一面に所定の形状の接合層42をスクリーン印刷により厚さ0.2mm以上(ここでは1mm)となるように形成して、接合層42を具える底板部40を用意する。
[Preparing the bottom plate]
A bottom plate portion 40 is formed by punching an aluminum plate into a predetermined shape, and a bonding layer 42 having a predetermined shape is formed on one surface so as to have a thickness of 0.2 mm or more (here, 1 mm). A bottom plate portion 40 having 42 is prepared.
 [センサ及び組合体の固定]
 接合層42上の所定の位置に、センサ7を載置する。このとき、組合体10を配置した際に、センサ7がコイル2の軸方向の中心領域に位置するように載置する。そして、センサ7が両コイル素子2a,2bの下側に形成された台形状空間に配置されるように、組み立てた組合体10を接合層42上に載置する。このとき、センサ7に接続される配線71は、各コイル素子2a,2b間の下側から隙間gを通して、コイル2の上側から引き出す。その後、接合層42を適宜硬化して組合体10及びセンサ7を底板部40に固定する。
[Fix sensor and assembly]
The sensor 7 is placed at a predetermined position on the bonding layer 42. At this time, when the combination 10 is disposed, the sensor 7 is placed so as to be positioned in the central region of the coil 2 in the axial direction. Then, the assembled assembly 10 is placed on the bonding layer 42 so that the sensor 7 is disposed in a trapezoidal space formed below the two coil elements 2a and 2b. At this time, the wiring 71 connected to the sensor 7 is drawn from the upper side of the coil 2 through the gap g from the lower side between the coil elements 2a and 2b. Thereafter, the bonding layer 42 is appropriately cured to fix the combined body 10 and the sensor 7 to the bottom plate portion 40.
 ≪用途≫
 上述のリアクトル1は、通電条件が、例えば、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である用途、代表的には電気自動車やハイブリッド自動車などの車載用電力変換装置の構成部品に好適に利用することができる。
≪Usage≫
The reactor 1 described above is used in applications where the energization conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle or a hybrid It can be suitably used for a component part of an in-vehicle power converter such as an automobile.
 ≪効果≫
 本実施形態のリアクトル1は、コイル2を特定の形状とし、この形状により構成される特定の領域:角R部21がつくる台形状空間にセンサ7を配置していることで、センサ7に加えられる応力(熱膨張したコイル2による応力)を低減できる、或いは実質的に応力が加わることが無い。従って、上記応力によりセンサ7が破損せず、リアクトル1は、コイル2の温度を適切に測定できる。かつ、リアクトル1の台形状空間は、いわゆるデッドスペースであって、上記応力を受け難い、或いは実質的に応力が負荷されない領域(台形状領域において接線lよりも下方領域)をセンサ7の配置領域とする。従って、リアクトル1は、センサ7の配置による大型化や、センサ7の保護のための大型化を招くことがなく、小型である。
≪Effect≫
In the reactor 1 of the present embodiment, the coil 2 has a specific shape, and the sensor 7 is arranged in a trapezoidal space formed by a specific region: the corner R portion 21 formed by this shape. The generated stress (stress caused by the thermally expanded coil 2) can be reduced or no stress is applied. Therefore, the sensor 7 is not damaged by the stress, and the reactor 1 can appropriately measure the temperature of the coil 2. And trapezoidal space reactor 1, so-called a dead space, less susceptible to the stress, or substantially disposed in the sensor 7 a (lower region than the tangent l c in the trapezoidal region) region where the stress is not loaded This is an area. Accordingly, the reactor 1 is small without causing an increase in size due to the arrangement of the sensor 7 or an increase in size for protection of the sensor 7.
 本実施形態のリアクトル1は、上記台形状空間として、リアクトル1の下側における各コイル素子2a,2bの角R部21に挟まれる空間を採用することで、センサ7は、角R部21と底板部40とで囲むことができる。よって、リアクトルが封止樹脂を具える場合、樹脂によってセンサが浮くことを防止でき、リアクトルが封止樹脂を具えない場合、センサが大気に剥き出しになることを防止できる。センサ7は、底板部40上に形成された接合層42により固定されていることでより強固に接合することができる。センサ7はコイル2に接触していない状態であってもよいが、センサ7をコイル2に接触した状態とすると測定値の信頼性が高いと考えられる。また、接合層42によりコイル2を底板部40に固定すると共に、センサ7も同時に固定することができるため、組立作業性に優れる。 The reactor 1 of this embodiment employs a space between the corner R portions 21 of the coil elements 2a and 2b on the lower side of the reactor 1 as the trapezoidal space, so that the sensor 7 is It can be surrounded by the bottom plate part 40. Therefore, when the reactor includes the sealing resin, the sensor can be prevented from floating by the resin, and when the reactor does not include the sealing resin, the sensor can be prevented from being exposed to the atmosphere. The sensor 7 can be bonded more firmly by being fixed by the bonding layer 42 formed on the bottom plate portion 40. The sensor 7 may be in a state where it is not in contact with the coil 2, but if the sensor 7 is in a state where it is in contact with the coil 2, it is considered that the reliability of the measured value is high. In addition, the coil 2 can be fixed to the bottom plate portion 40 by the bonding layer 42 and the sensor 7 can be fixed at the same time, so that the assembly workability is excellent.
 <実施形態2>
 上述した実施形態1では、センサ7を底板部40上に形成された接合層42によって固定した形態を説明した。その他、図3に示すように、センサ保持部54(センサホルダ)によって、センサ7を保持する形態とすることができる。このセンサ保持部54は、インシュレータ5と一体に成形されている。以下、図1(B)を適宜参照して、この相違点を中心に説明し、その他の構成は実施形態1の構成と同様であるため、説明を省略する。まず相違点であるインシュレータについて説明し、次に実施形態2のリアクトルの製造方法について説明する。
<Embodiment 2>
In the above-described first embodiment, the form in which the sensor 7 is fixed by the bonding layer 42 formed on the bottom plate portion 40 has been described. In addition, as shown in FIG. 3, the sensor 7 can be held by the sensor holding portion 54 (sensor holder). The sensor holding portion 54 is formed integrally with the insulator 5. Hereinafter, this difference will be mainly described with reference to FIG. 1B as appropriate, and the other configurations are the same as those of the first embodiment, and thus the description thereof will be omitted. First, the insulator which is a difference will be described, and then a method for manufacturing the reactor according to the second embodiment will be described.
 [インシュレータ]
 インシュレータ5の枠板部52には、その下方側にセンサ保持部54を具える。センサ保持部54は、分割片50bをコイル2に組み付けたとき、コイル2の台形状空間に向かって突出するように設けられた棒状体が挙げられる。センサ保持部54の突出長さは、センサ7がコイル2側に接触した状態で保持でき、かつセンサ7をセンサ保持部54に組み付けることができればよく、適宜選択することができる。ここでは、センサ保持部54は、センサ7の軸方向の長さ(図3(B)において左右の長さ)の1/2程度がセンサ保持部54に接するような突出長さを有している。
[Insulator]
The frame plate portion 52 of the insulator 5 includes a sensor holding portion 54 on the lower side thereof. The sensor holding part 54 includes a rod-like body provided so as to protrude toward the trapezoidal space of the coil 2 when the divided piece 50b is assembled to the coil 2. The projecting length of the sensor holding part 54 may be appropriately selected as long as the sensor 7 can be held in contact with the coil 2 side and the sensor 7 can be assembled to the sensor holding part 54. Here, the sensor holding portion 54 has a protruding length such that about ½ of the axial length of the sensor 7 (the left and right length in FIG. 3B) is in contact with the sensor holding portion 54. Yes.
 分割片50bの枠板部52は、コイル2に組み付けたとき、両コイル素子2a,2b間に介在されるように配置されるL字状の仕切り片53bを具えており、L字の短辺部分が枠板部52の下方側に設けられている。この仕切り片53bの短辺部分がセンサ保持部54と枠板部52との連結箇所となり、この短辺部分の端面が、図3(B)に示すように、センサ7の当て止めとなる。従って、センサ7は、センサ保持部54により保持できると共に、仕切り片53bの端面位置によりコイル2に対するその軸方向の位置決めができる。このとき、センサ7がコイル2の軸方向の中心領域に位置した状態で保持できるように、突出長さを調整している。ここでは、センサ7はコイル2側に接触した状態で保持される。 The frame plate portion 52 of the split piece 50b includes an L-shaped partition piece 53b disposed so as to be interposed between the coil elements 2a and 2b when assembled to the coil 2, and has an L-shaped short side. The portion is provided below the frame plate portion 52. The short side portion of the partition piece 53b serves as a connection portion between the sensor holding portion 54 and the frame plate portion 52, and the end surface of the short side portion serves as a stopper for the sensor 7 as shown in FIG. Accordingly, the sensor 7 can be held by the sensor holding portion 54 and can be positioned in the axial direction with respect to the coil 2 by the end surface position of the partition piece 53b. At this time, the protruding length is adjusted so that the sensor 7 can be held in a state where it is located in the axial central region of the coil 2. Here, the sensor 7 is held in contact with the coil 2 side.
 ≪リアクトルの製造≫
 上記構成を具えるリアクトルは、代表的には、組合体の準備⇒組合体にセンサを固定⇒底板部の準備⇒底板部にセンサ付組合体を固定という工程により製造することができる。組合体及び底板部の準備工程は実施形態1と同様であるため、ここでは、組合体にセンサを固定する工程と底板部にセンサ付組合体を固定する工程について述べる。
≪Manufacture of reactors≫
Typically, a reactor having the above-described configuration can be manufactured by a process of preparing an assembly, fixing a sensor to the assembly, preparing a bottom plate, and fixing the assembly with a sensor to the bottom plate. Since the preparation process of the combined body and the bottom plate portion is the same as that of the first embodiment, here, the step of fixing the sensor to the combined body and the step of fixing the combined body with sensor to the bottom plate portion will be described.
 [組合体にセンサを固定]
 まず、センサ保持部54にセンサ7を組み付ける。両コイル素子2a,2bの角R部21と、インシュレータ5のセンサ保持部54とで挟まれる空間にセンサ7を挿入する。このとき、インシュレータ5の分割片50bの仕切り片53bの端面を当て止めとして、センサ7の軸方向がコイル素子2a,2bの軸方向に沿うようにセンサ7を差し入れる。センサ7に接続される配線71は、センサ7をセンサ保持部54に差し入れる際に、各コイル素子2a,2b間の隙間gを通して、コイル2のセンサ7が配置された側とは反対側から引き出しておく。こうすることで、センサ7は、両コイル素子2a,2bの角R部21とセンサ保持部54とで挟まれ、コイル2側に接触した状態で保持できる。このセンサの組み付け作業は、コイル2の下側となる面を上に向けて行うと作業し易い。
[Fix the sensor to the union]
First, the sensor 7 is assembled to the sensor holding unit 54. The sensor 7 is inserted into a space sandwiched between the corner R portion 21 of both the coil elements 2 a and 2 b and the sensor holding portion 54 of the insulator 5. At this time, the sensor 7 is inserted so that the axial direction of the sensor 7 is along the axial direction of the coil elements 2a and 2b, with the end face of the partition piece 53b of the split piece 50b of the insulator 5 being a stopper. When the sensor 7 is inserted into the sensor holding portion 54, the wiring 71 connected to the sensor 7 passes through the gap g between the coil elements 2a and 2b from the side opposite to the side where the sensor 7 is disposed. Pull it out. By doing so, the sensor 7 is sandwiched between the corner R portion 21 and the sensor holding portion 54 of both the coil elements 2a and 2b and can be held in contact with the coil 2 side. This sensor assembly work is facilitated when the lower surface of the coil 2 is faced up.
 [底板部にセンサ付組合体を固定]
 底板部40の上に形成された接合層42上に、センサ7を組み付けた組合体10(組物)を載置する。このとき、センサ7を組み付けた側を接合層42に面するように載置する。その後、接合層42を適宜硬化してセンサ7付組合体10を底板部40に固定する。
[Fixed assembly with sensor on bottom plate]
On the bonding layer 42 formed on the bottom plate portion 40, the combination 10 (assembly) in which the sensor 7 is assembled is placed. At this time, the sensor 7 is mounted so that the side on which the sensor 7 is assembled faces the bonding layer 42. Thereafter, the bonding layer 42 is appropriately cured to fix the combined body 10 with the sensor 7 to the bottom plate portion 40.
 ≪効果≫
 実施形態2の構成によれば、組合体10とインシュレータ5との組物に対してセンサ7を固定してから、組物とセンサ7とを一体物として底板部に固定するため、コイル2に対するセンサ7の位置決めを行い易い。センサ保持部54によって、その位置決め状態を保持できるので、センサ7の位置ずれも防止できる。また、組物を底板部40に固定すると共に、センサ7も同時に固定することができ、組立作業性に優れる。
≪Effect≫
According to the configuration of the second embodiment, the sensor 7 is fixed to the assembly of the combined body 10 and the insulator 5, and then the assembly and the sensor 7 are fixed to the bottom plate portion as an integrated body. It is easy to position the sensor 7. Since the positioning state can be held by the sensor holding portion 54, the displacement of the sensor 7 can also be prevented. Further, the assembly can be fixed to the bottom plate portion 40 and the sensor 7 can be fixed at the same time, so that the assembly workability is excellent.
 <実施形態3>
 上述した実施形態2では、センサ保持部54(センサホルダ)がインシュレータ5と一体成形された形態を説明した。その他、図4に示すように、センサホルダ8がインシュレータ5と独立した部材である形態とすることができる。以下、図1(B)を適宜参照して、この相違点を中心に説明し、その他の構成は実施形態1の構成と同様であるため、説明を省略する。まず相違点であるセンサホルダについて説明し、次に実施形態3のリアクトルの製造方法について説明する。
<Embodiment 3>
In the second embodiment described above, the form in which the sensor holding portion 54 (sensor holder) is integrally formed with the insulator 5 has been described. In addition, as shown in FIG. 4, the sensor holder 8 may be a member independent of the insulator 5. Hereinafter, this difference will be mainly described with reference to FIG. 1B as appropriate, and the other configurations are the same as those of the first embodiment, and thus the description thereof will be omitted. First, a sensor holder which is a difference will be described, and then a method for manufacturing the reactor according to the third embodiment will be described.
 [センサホルダ]
 センサホルダ8は、センサ7が載置される短冊状の載置部8aと、その載置部8aとの間にL字状のスリットの横辺を形成して配される保持部8bと、保持部8bにおける載置部8aとは反対側に延びる板状の仕切り部8cと、上記L字状のスリットの縦辺を形成して配される引き出し部8hとを具える。ここでは、載置部8a、保持部8b、仕切り部8c、及び引き出し部8hは一体で形成されている。上記スリットの横辺は、センサ7の収納空間であり、このスリットにセンサ7を収納した状態では、センサ7の上下が保持部8bと載置部8aとで挟まれ、その左右が開放されている。また上記スリットの縦辺が、センサ7に接続される配線71の収納空間であり、配線71の一端がリアクトル1の外部に引き出される。
[Sensor holder]
The sensor holder 8 includes a strip-shaped mounting portion 8a on which the sensor 7 is mounted, and a holding portion 8b that is arranged by forming a lateral side of an L-shaped slit between the mounting portion 8a, The holding part 8b includes a plate-like partition part 8c extending to the opposite side of the mounting part 8a, and a drawer part 8h arranged to form the vertical side of the L-shaped slit. Here, the placement portion 8a, the holding portion 8b, the partition portion 8c, and the drawer portion 8h are integrally formed. The horizontal side of the slit is a storage space for the sensor 7. When the sensor 7 is stored in the slit, the upper and lower sides of the sensor 7 are sandwiched between the holding portion 8b and the mounting portion 8a, and the left and right sides are opened. Yes. The vertical side of the slit is a storage space for the wiring 71 connected to the sensor 7, and one end of the wiring 71 is drawn out of the reactor 1.
 載置部8aは、一端側が保持部8bに一体化されており、他端側が引き出し部8hに連結された棒状体である。載置部8aは、センサ7を載置した状態において、センサ7が抜け落ちないように、センサ止め8iを具える。このセンサ止め8iは、センサ7を載置する際に、センサ7の感熱素子7aを損傷しないように、センサ7の両端に設けることが好ましい。載置部8aのセンサ7と接触する面は、センサ7の外形形状に相似な円弧状の曲面となっている。 The mounting portion 8a is a rod-shaped body having one end integrated with the holding portion 8b and the other end connected to the drawer portion 8h. The placement portion 8a includes a sensor stop 8i so that the sensor 7 does not fall out in a state where the sensor 7 is placed. The sensor stops 8i are preferably provided at both ends of the sensor 7 so as not to damage the heat sensitive element 7a of the sensor 7 when the sensor 7 is placed. The surface of the mounting portion 8 a that contacts the sensor 7 is an arcuate curved surface similar to the outer shape of the sensor 7.
 仕切り部8cは、各コイル素子2a,2bにおいて直線状部22間に設けられた隙間gに配置される板状体であり、ここでは矩形の板状体である。仕切り部8cの厚さは、各コイル素子2a,2b間の隙間g以下であり、センサ7の厚さよりも小さい。仕切り部8cは、コイル2の軸方向に広がる本体部8dと、インシュレータ5の枠板部52と接し、かつ枠板部52に形成された係合部53eと係合する係合部8eとを具える。本体部8dは、センサホルダ8を隙間gに差し込む方向の先端側の両側面が、先端に向かって幅が小さくなるようにテーパ状になっている。係合部8eは、上記先端側の端部に、枠板部52側に突出するフック8fを有する。フック8fの形状は、先端に向かって細くなるようにテーパ状になっている。 The partition portion 8c is a plate-like body disposed in the gap g provided between the linear portions 22 in each of the coil elements 2a and 2b, and is a rectangular plate-like body here. The thickness of the partition portion 8 c is equal to or less than the gap g between the coil elements 2 a and 2 b and is smaller than the thickness of the sensor 7. The partition portion 8 c includes a main body portion 8 d that extends in the axial direction of the coil 2, and an engagement portion 8 e that contacts the frame plate portion 52 of the insulator 5 and engages with an engagement portion 53 e formed on the frame plate portion 52. Have. The main body portion 8d is tapered such that both side surfaces on the distal end side in the direction in which the sensor holder 8 is inserted into the gap g are reduced in width toward the distal end. The engaging portion 8e has a hook 8f that protrudes toward the frame plate portion 52 at the end on the distal end side. The shape of the hook 8f is tapered so as to become thinner toward the tip.
 引き出し部8hは、配線71を引き出す際にセンサホルダ8の角に当たることで配線71が損傷しないように、その角は丸められている。 The lead portion 8h is rounded so that the wiring 71 is not damaged by hitting the corner of the sensor holder 8 when the wiring 71 is pulled out.
 センサホルダ8を隙間gに差し込んだとき、係合部8eのフック8fが枠板部52の係合部53eと係合されて位置決めされ、センサホルダ8が脱落することを防止できる。本形態では、フック8fと係合部53eとの間には、隙間8gが設けられている。この隙間8gによって、センサホルダ8を一旦差し込んだとしても、フック8fが係合部53eに当て止めされるまでセンサホルダ8を引き抜くことができ、いつでもセンサ7を載置部8aから容易に出し入れできる。 When the sensor holder 8 is inserted into the gap g, the hook 8f of the engaging portion 8e is engaged and positioned with the engaging portion 53e of the frame plate portion 52, and the sensor holder 8 can be prevented from falling off. In this embodiment, a gap 8g is provided between the hook 8f and the engaging portion 53e. Even if the sensor holder 8 is once inserted by the gap 8g, the sensor holder 8 can be pulled out until the hook 8f is stopped against the engaging portion 53e, and the sensor 7 can be easily put in and out at any time from the mounting portion 8a. .
 センサホルダ8を隙間gに差し込んだ状態では、センサ7は、センサホルダ8から露出された部分で各コイル素子2a,2bの角R部21に接触している。 In a state where the sensor holder 8 is inserted into the gap g, the sensor 7 is in contact with the corner R portion 21 of each coil element 2a, 2b at a portion exposed from the sensor holder 8.
 センサホルダ8の構成材料には、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、液晶ポリマー(LCP)など、インシュレータ5と同様の絶縁性材料が利用できる。この場合、センサホルダ8をコイル2に対して接触して配置した場合でも、両者の絶縁性に優れる。また、センサホルダ8の少なくとも一部を金属で構成すると、放熱性の向上が期待できる。 As the constituent material of the sensor holder 8, an insulating material similar to the insulator 5 such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, liquid crystal polymer (LCP), etc. is used. it can. In this case, even when the sensor holder 8 is arranged in contact with the coil 2, the insulation between them is excellent. Further, when at least a part of the sensor holder 8 is made of metal, an improvement in heat dissipation can be expected.
 ≪リアクトルの製造≫
 上記構成を具えるリアクトルは、代表的には、組合体の準備⇒組合体にセンサを固定⇒底板部の準備⇒底板部にセンサ付組合体を固定という工程により製造することができる。組合体及び底板部の準備工程は実施形態1と同様であるため、ここでは、組合体にセンサを固定する工程と底板部にセンサ付組合体を固定する工程について述べる。
≪Manufacture of reactors≫
Typically, a reactor having the above-described configuration can be manufactured by a process of preparing an assembly, fixing a sensor to the assembly, preparing a bottom plate, and fixing the assembly with a sensor to the bottom plate. Since the preparation process of the combined body and the bottom plate portion is the same as that of the first embodiment, here, the step of fixing the sensor to the combined body and the step of fixing the combined body with the sensor to the bottom plate portion will be described.
 [組合体にセンサを固定]
 まず、センサホルダ8にセンサ7を組み付ける。センサホルダ8の載置部8aにセンサ7を載置し、載置部8aと保持部8bとセンサ止め8iとでセンサ7を挟むことで、センサ7をセンサホルダ8で保持する。このとき、センサ7はセンサホルダ8の幅方向の中間位置に保持する。センサ7に接続される配線71は、引き出し部8hに沿って配置し、一端を外部に引き出す。次に、センサ7を保持したセンサホルダ8を両コイル素子2a,2bの下側に形成された台形状空間に配置する。ここでは、センサホルダ8の仕切り部8cを、各コイル素子2a,2b間に設けられた隙間gに差し込み、センサホルダ8のフック8fと枠板部52の係合部53eとを係合させて、両者を一体化する。こうすることで、センサ7は、両コイル素子2a,2bの角R部21とセンサホルダ8とで固定され、センサホルダ8の載置部8a及び保持部8bから露出された箇所において、両コイル素子2a,2bの角R部21でコイル2と接触した状態となる。
[Fix the sensor to the union]
First, the sensor 7 is assembled to the sensor holder 8. The sensor 7 is placed on the placement portion 8 a of the sensor holder 8, and the sensor 7 is sandwiched between the placement portion 8 a, the holding portion 8 b, and the sensor stopper 8 i, thereby holding the sensor 7 with the sensor holder 8. At this time, the sensor 7 is held at an intermediate position in the width direction of the sensor holder 8. The wiring 71 connected to the sensor 7 is arranged along the lead portion 8h, and one end is drawn to the outside. Next, the sensor holder 8 holding the sensor 7 is arranged in a trapezoidal space formed below the two coil elements 2a and 2b. Here, the partition portion 8c of the sensor holder 8 is inserted into a gap g provided between the coil elements 2a and 2b, and the hook 8f of the sensor holder 8 and the engaging portion 53e of the frame plate portion 52 are engaged. Integrate both. By doing so, the sensor 7 is fixed by the corner R portion 21 of both the coil elements 2a and 2b and the sensor holder 8, and the two coils are exposed at the portions exposed from the placement portion 8a and the holding portion 8b of the sensor holder 8. It will be in the state which contacted the coil 2 in the corner | angular R part 21 of element 2a, 2b.
 ここでは、センサホルダ8にセンサ7を組み付けてから、センサホルダ8の載置部8a及び保持部8bを台形状空間に配置したが、センサホルダ8の載置部8a及び保持部8bを台形状空間に配置してから、そのセンサホルダ8にセンサ7を組み付けてもよい。このとき、センサホルダ8の仕切り部8cを隙間gに差し込んで枠板部52と一体化するが、フック8fと係合部53eとの間には隙間8gがあるため、フック8fが係合部53eに当て止めされるまでセンサホルダ8を引き抜くことができ、この状態でセンサ7を組み付けることができる。 Here, after assembling the sensor 7 to the sensor holder 8, the placement portion 8a and the holding portion 8b of the sensor holder 8 are disposed in the trapezoidal space, but the placement portion 8a and the holding portion 8b of the sensor holder 8 are trapezoidal. The sensor 7 may be assembled to the sensor holder 8 after being arranged in the space. At this time, the partition portion 8c of the sensor holder 8 is inserted into the gap g and integrated with the frame plate portion 52. However, since there is a gap 8g between the hook 8f and the engagement portion 53e, the hook 8f is engaged with the engagement portion. The sensor holder 8 can be pulled out until it is stopped by 53e, and the sensor 7 can be assembled in this state.
 [底板部にセンサ付組合体を固定]
 底板部40の上に形成された接合層42上に、センサ7を組み付けた組合体10を載置する。このとき、センサ7を組み付けた側を接合層42に面するように載置する。その後、接合層42を適宜硬化してセンサ7付組合体10を底板部40に固定する。
[Fixed assembly with sensor on bottom plate]
On the bonding layer 42 formed on the bottom plate part 40, the combined body 10 in which the sensor 7 is assembled is placed. At this time, the sensor 7 is mounted so that the side on which the sensor 7 is assembled faces the bonding layer 42. Thereafter, the bonding layer 42 is appropriately cured to fix the combined body 10 with the sensor 7 to the bottom plate portion 40.
 ≪効果≫
 実施形態3の構成によれば、センサホルダ8とインシュレータ5とが独立した部材で構成されていることで、センサ7はセンサホルダ8に組み付けてから、組合体10とインシュレータ5との組物に配置することができるため、センサ7を配置し易い。さらに、センサホルダ8とインシュレータ5(枠板部52)とが互いに係合する係合部を具えると、両者を係合することで、センサホルダ8の位置決めを容易にできる。また、センサホルダ8を組物に対してより強固に固定でき、センサ7の位置ずれを防止でき、組立作業性に優れる。
≪Effect≫
According to the configuration of the third embodiment, since the sensor holder 8 and the insulator 5 are configured by independent members, the sensor 7 is assembled to the sensor holder 8, and then the assembled body 10 and the insulator 5 are assembled. Since it can arrange | position, it is easy to arrange | position the sensor 7. FIG. Further, when the sensor holder 8 and the insulator 5 (frame plate portion 52) have an engaging portion that engages with each other, the sensor holder 8 can be easily positioned by engaging both. In addition, the sensor holder 8 can be more firmly fixed to the assembly, the positional deviation of the sensor 7 can be prevented, and the assembly workability is excellent.
 <実施形態4>
 上述した実施形態1~3では、組合体10の外周が何も覆われずに大気に剥き出しである形態を説明した。その他、組合体10の外周を射出成型などにより樹脂で被覆した形態とすることができる。この形態は、組合体10の外周が樹脂で覆われていることで、組合体10を粉塵や腐食といった外部環境からの保護や強度といった機械的特性の確保を図ることができる。上記樹脂には、エポキシ樹脂、不飽和ポリエステル、ウレタン樹脂、PPS樹脂、PBT樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが挙げられる。この樹脂は、上述したセラミックスからなるフィラーを含有させると、放熱性を高められる。
<Embodiment 4>
In Embodiments 1 to 3 described above, the embodiment in which the outer periphery of the combined body 10 is not covered and exposed to the atmosphere has been described. In addition, it can be set as the form which coat | covered the outer periphery of the assembly 10 with resin by injection molding etc. In this embodiment, since the outer periphery of the combined body 10 is covered with resin, the combined body 10 can be protected from the external environment such as dust and corrosion and ensure mechanical properties such as strength. Examples of the resin include epoxy resin, unsaturated polyester, urethane resin, PPS resin, PBT resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like. When this resin contains the filler made of the above-mentioned ceramic, the heat dissipation can be enhanced.
 <実施形態5>
 上述した実施形態1~4では、ケースを省略した形態を説明した。その他、ケースを具える形態とすることができる。実施形態1~4のリアクトルは、そのままでも利用することができるが、ケース内に収納することで、粉塵や腐食といった外部環境からの保護や強度といった機械的特性の確保を図ることができる。以下、この相違点を中心に説明し、その他の構成は上述した実施形態の構成と同様であるため、説明を省略する。まず、相違点であるケースについて説明し、次にケースにリアクトルを収納する方法について説明する。
<Embodiment 5>
In the above-described first to fourth embodiments, the case in which the case is omitted has been described. In addition, it can be set as the form which provides a case. The reactors of Embodiments 1 to 4 can be used as they are, but by storing them in a case, it is possible to secure mechanical characteristics such as protection from the external environment such as dust and corrosion and strength. Hereinafter, this difference will be mainly described, and the other configuration is the same as the configuration of the above-described embodiment, and thus the description thereof will be omitted. First, a case that is a difference will be described, and then a method for housing the reactor in the case will be described.
 [ケース]
 ケース4の説明は、図5を参照して行う。コイル2と磁性コア3との組合体10が収納されるケース4は、実施形態1で説明した底板部40と、底板部40に立設する枠状の側壁部41とを具える。リアクトル1のケース4は、底板部40と側壁部41とが一体に成形されておらず、それぞれ独立した部材であり、固定材により一体化される。底板部40については、実施形態1の構成と同様であるため、説明を省略する。
[Case]
The case 4 will be described with reference to FIG. The case 4 in which the combined body 10 of the coil 2 and the magnetic core 3 is housed includes the bottom plate portion 40 described in the first embodiment and a frame-like side wall portion 41 standing on the bottom plate portion 40. In the case 4 of the reactor 1, the bottom plate portion 40 and the side wall portion 41 are not integrally formed, and are independent members, and are integrated by a fixing material. About the baseplate part 40, since it is the same as that of the structure of Embodiment 1, description is abbreviate | omitted.
 (側壁部)
 側壁部41は、枠状体(ここでは矩形状)であり、一方の開口部を底板部40により塞いでケース4を組み立てたとき、上記組合体10の周囲を囲むように配置され、他方の開口部が開放される。ここでは、側壁部41は、リアクトル1を固定対象に設置したときに設置側となる領域が上記底板部40の外形に沿った矩形状であり、開放された開口側の領域がコイル2と磁性コア3との組合体10の外周面に沿った曲面形状である。
(Sidewall)
The side wall portion 41 is a frame-like body (here, rectangular shape), and when the case 4 is assembled by closing one opening portion with the bottom plate portion 40, the side wall portion 41 is disposed so as to surround the periphery of the combination body 10. The opening is opened. Here, as for the side wall part 41, the area | region used as the installation side when the reactor 1 is installed in fixation object is a rectangular shape along the external shape of the said baseplate part 40, and the area | region of the open opening side is magnetic with the coil 2. It is a curved surface shape along the outer peripheral surface of the combination 10 with the core 3.
 側壁部41は、絶縁性樹脂から構成されている。そのため、コイル2と側壁部41とを近接配置した場合(例えば、コイル2の外周面と側壁部41の内面との間隔が0mm~1.0mm程度)でも、両者の絶縁性に優れる。また、上記間隔を小さくすることで、リアクトル1を小型にできる。上記絶縁性樹脂は、PBT樹脂、ウレタン樹脂、PPS樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが挙げられる。 The side wall 41 is made of an insulating resin. Therefore, even when the coil 2 and the side wall portion 41 are disposed close to each other (for example, the distance between the outer peripheral surface of the coil 2 and the inner surface of the side wall portion 41 is approximately 0 mm to 1.0 mm), the insulation between them is excellent. Moreover, the reactor 1 can be reduced in size by reducing the said space | interval. Examples of the insulating resin include PBT resin, urethane resin, PPS resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like.
 側壁部41の少なくとも一部を金属(特にアルミニウムやマグネシウムなどの非磁性金属)で構成すると、放熱性の向上やシールド機能を期待できる。この例のように側壁部41の全てを絶縁性樹脂で構成すると、(1)コイル2とケース4との絶縁性に優れる、(2)複雑な形状であっても射出成形などで容易に製造できる、(3)軽量化を図ることができるといった利点を有する。 When at least a part of the side wall 41 is made of metal (particularly nonmagnetic metal such as aluminum or magnesium), an improvement in heat dissipation and a shielding function can be expected. When all the side wall portions 41 are made of insulating resin as in this example, (1) excellent insulation between the coil 2 and the case 4 is achieved. (2) Even a complicated shape is easily manufactured by injection molding or the like. (3) It has the advantage that weight reduction can be achieved.
 側壁部41も取付部411を有しており、底板部40と側壁部41とを組み付けてケース4を形成した場合、底板部40の取付部400と側壁部41の取付部411とが重なる。取付部400,411にはそれぞれ、ボルト孔400h,411hが連通するように設けられている。ボルト孔400h,411hには、設置対象にケース4を固定するボルト(図示せず)が挿通される。取付部400,411の形状、個数などは適宜選択することができる。側壁部41のボルト孔411hは、金属管によって構成すると、後述するように側壁部41が樹脂で構成されていても、強度に優れる。 The side wall part 41 also has an attachment part 411. When the case 4 is formed by assembling the bottom plate part 40 and the side wall part 41, the attachment part 400 of the bottom plate part 40 and the attachment part 411 of the side wall part 41 overlap. Bolt holes 400h and 411h are provided in the attachment portions 400 and 411, respectively. Bolts (not shown) for fixing the case 4 to the installation target are inserted through the bolt holes 400h and 411h. The shape, the number, and the like of the attachment portions 400 and 411 can be selected as appropriate. If the bolt hole 411h of the side wall part 41 is comprised with a metal pipe, even if the side wall part 41 is comprised with resin so that it may mention later, it is excellent in intensity | strength.
 (連結方法)
 ここでは、底板部40及び側壁部41は、上述のようにボルトによって一体化しているが、ボルトと共に接着剤を併用してもよい。又は、接着剤のみを利用して底板部40及び側壁部41を連結してもよい。この場合、例えば、接合層42に用いる接着層と、底板部40及び側壁部41を接合する接着剤層との双方を形成する形態とすることができる。この形態は、接合層42の硬化工程と、底板部40及び側壁部41を接合する接着剤層の硬化工程とを同時に行えて、硬化工程を低減できる。従って、この形態は、生産性の向上を図ることができる。
(Consolidation method)
Here, the bottom plate portion 40 and the side wall portion 41 are integrated by the bolt as described above, but an adhesive may be used together with the bolt. Or you may connect the baseplate part 40 and the side wall part 41 only using an adhesive agent. In this case, for example, both the adhesive layer used for the bonding layer 42 and the adhesive layer that bonds the bottom plate part 40 and the side wall part 41 can be formed. In this embodiment, the curing step of the bonding layer 42 and the curing step of the adhesive layer that bonds the bottom plate portion 40 and the side wall portion 41 can be performed simultaneously, and the curing step can be reduced. Therefore, this form can improve productivity.
 [封止樹脂]
 ケース4内に封止樹脂(図示せず)を充填した形態とすることができる。封止樹脂は、ケース4に収納した組合体10などの位置の固定、組合体10などの機械的な保護や外部環境からの保護(耐食性の向上)、材質によっては放熱性の向上、絶縁性の向上などを図ることができる。この形態では、例えば、巻線2wの端部を封止樹脂から露出させると、巻線2wの端部と端子金具(図示せず)とを接合し易い。巻線2wの端部と端子金具とを接合した後、この接合箇所を封止樹脂に埋設させた形態とすることもできる。
[Sealing resin]
The case 4 may be filled with a sealing resin (not shown). The sealing resin fixes the position of the assembly 10 stored in the case 4, mechanical protection of the assembly 10 and the like, and protection from the external environment (improves corrosion resistance). Can be improved. In this embodiment, for example, when the end of the winding 2w is exposed from the sealing resin, the end of the winding 2w and the terminal fitting (not shown) can be easily joined. After joining the end portion of the winding 2w and the terminal metal fitting, it is also possible to adopt a form in which this joining portion is embedded in the sealing resin.
 封止樹脂は、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの絶縁性樹脂が挙げられる。また、絶縁性及び熱伝導性に優れるフィラー、例えば、窒化珪素、アルミナ、窒化アルミニウム、窒化ほう素、ムライト、及び炭化珪素から選択される少なくとも1種のセラミックスからなるフィラーを含有する封止樹脂とすると、放熱性を更に高められる。 Examples of the sealing resin include insulating resins such as an epoxy resin, a urethane resin, and a silicone resin. Also, a sealing resin containing a filler excellent in insulation and thermal conductivity, for example, a filler made of at least one ceramic selected from silicon nitride, alumina, aluminum nitride, boron nitride, mullite, and silicon carbide; Then, the heat dissipation can be further enhanced.
 ケース4内に封止樹脂を充填する場合、底板部40と側壁部41との間にパッキン(図示せず)を具えると、底板部40と側壁部41との隙間から未硬化の樹脂が漏れることを防止できる。底板部40と側壁部41とを接着剤によって一体化する場合、この接着剤によって両者間を密閉して未硬化の樹脂の漏洩を防止できることから、パッキンを省略できる。 When filling the case 4 with sealing resin, if a packing (not shown) is provided between the bottom plate portion 40 and the side wall portion 41, uncured resin is removed from the gap between the bottom plate portion 40 and the side wall portion 41. It can prevent leakage. When the bottom plate portion 40 and the side wall portion 41 are integrated with an adhesive, the adhesive can be sealed between the two to prevent leakage of uncured resin, so that packing can be omitted.
 ≪リアクトルの製造≫
 上記ケース4を具えるリアクトルは、実施形態1~4のリアクトルをケース4内に収納する収納工程により製造することができる。この収納工程は、代表的には、底板部40に側壁部41を取り付けることによるケースの組立工程を具える。
≪Manufacture of reactors≫
The reactor including the case 4 can be manufactured by a storing step of storing the reactors of Embodiments 1 to 4 in the case 4. This storing step typically includes a case assembling step by attaching the side wall portion 41 to the bottom plate portion 40.
 [ケースの組立]
 底板部40に固定されたセンサ7付組合体10(リアクトル)の外周を囲むように、側壁部41をリアクトルの上方から被せ、底板部40の上に配置する。別途用意したボルト(図示せず)により、底板部40と側壁部41とを一体化する。この工程により、箱状のケース4が組み立てられると共に、ケース4内にリアクトルが収納された状態とすることができる。
[Assembly of the case]
The side wall 41 is placed from above the reactor so as to surround the outer periphery of the sensor-attached assembly 10 (reactor) fixed to the bottom plate 40, and is disposed on the bottom plate 40. The bottom plate portion 40 and the side wall portion 41 are integrated with a separately prepared bolt (not shown). By this step, the box-shaped case 4 can be assembled and the reactor can be stored in the case 4.
 <実施形態6>
 上述した実施形態5では、底板部40と側壁部41とが独立した部材である形態を説明した。その他、底板部と側壁部とが一体に成形された箱体からなるケースを具える形態とすることができる。この形態では、ケース全体が上述のアルミニウムなどの金属で構成された場合には、ケース全体を放熱経路に利用でき、放熱性を高められる。
<Embodiment 6>
In Embodiment 5 mentioned above, the form which is the member in which the baseplate part 40 and the side wall part 41 became independent was demonstrated. In addition, it can be set as the form which provides the case which consists of a box body in which the baseplate part and the side wall part were shape | molded integrally. In this form, when the whole case is comprised with metals, such as the above-mentioned aluminum, the whole case can be utilized for a thermal radiation path | route and heat dissipation is improved.
 <実施形態7>
 実施形態1~6のリアクトルは、例えば、車両などに載置されるコンバータの構成部品や、このコンバータを具える電力変換装置の構成部品に利用することができる。
<Embodiment 7>
The reactors of the first to sixth embodiments can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including the converter.
 例えば、ハイブリッド自動車や電気自動車といった車両1200は、図6に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを具える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを具える。なお、図6では、車両1200の充電箇所としてインレットを示すが、プラグを具える形態とすることができる。 For example, a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. Motor (load) 1220. The motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration. In the case of a hybrid vehicle, vehicle 1200 includes an engine in addition to motor 1220. In addition, in FIG. 6, although an inlet is shown as a charge location of the vehicle 1200, it can be set as the form which provides a plug.
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。 The power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current. The converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power. In addition, converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged. The inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
 コンバータ1110は、図7に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを具え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、電界効果トランジスタ(FET),絶縁ゲートバイポーラトランジスタ(IGBT)などのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、上記実施形態1~6のリアクトルを具える。小型であるリアクトル1などを具えることで、電力変換装置1100やコンバータ1110も小型である。 As shown in FIG. 7, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed. For the switching element 1111, a power device such as a field effect transistor (FET) or an insulated gate bipolar transistor (IGBT) is used. The reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit. As the reactor L, the reactors of the first to sixth embodiments are provided. By providing the reactor 1 etc. which are small, the power converter device 1100 and the converter 1110 are also small.
 なお、車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を具える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態1~6のリアクトルなどと同様の構成を具え、適宜、大きさや形状などを変更したリアクトルを利用することができる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、上記実施形態1~6のリアクトルなどを利用することもできる。 Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 serving as a power source for auxiliary machinery 1240, and main battery 1210. Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided. The converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion. The reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as that of the reactors of the first to sixth embodiments, and a reactor whose size and shape are appropriately changed can be used. The reactors of the first to sixth embodiments can also be used for converters that perform conversion of input power and that only perform step-up or converters that perform only step-down.
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
 本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に好適に利用することができる。 The reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power converter.
 1 リアクトル 10 組合体
 2 コイル 2a,2b コイル素子 2r コイル連結部 2w 巻線
 2e 巻線の端部 2d 下面 2u 上面
 21 角R部 22,23 直線状部
 3 磁性コア 31 内側コア部 31e 端面 31m コア片
 31g ギャップ材
 32 外側コア部 32e 内端面
 4 ケース 40 底板部(放熱板) 41 側壁部 42 接合層
 400,411 取付部 400h,411h ボルト孔
 5 インシュレータ 50a,50b 分割片 51 筒状部
 52 枠板部 52p 台座
 53a,53b 仕切り片 53e 係合部 54 センサ保持部
 7 センサ 7a 感熱素子 7b 保護部 71 配線
 8 センサホルダ 8a 載置部 8b 保持部
 8c 仕切り部 8d 本体部 8e 係合部 8f フック
 8g 隙間 8h 引き出し部 8i センサ止め
 1100 電力変換装置 1110 コンバータ
 1111 スイッチング素子
 1112 駆動回路 L リアクトル 1120 インバータ
 1150 給電装置用コンバータ 1160 補機電源用コンバータ
 1200 車両 1210 メインバッテリ 1220 モータ
 1230 サブバッテリ 1240 補機類 1250 車輪
DESCRIPTION OF SYMBOLS 1 Reactor 10 Combination 2 Coil 2a, 2b Coil element 2r Coil connection part 2w Winding 2e End part of winding 2d Lower surface 2u Upper surface 21 Corner | angular R part 22,23 Linear part 3 Magnetic core 31 Inner core part 31e End surface 31m Core Piece 31g Gap material 32 Outer core portion 32e Inner end face 4 Case 40 Bottom plate portion (heat radiating plate) 41 Side wall portion 42 Joining layer 400, 411 Mounting portion 400h, 411h Bolt hole 5 Insulator 50a, 50b Split piece 51 Cylindrical portion 52 Frame plate Part 52p Pedestal 53a, 53b Partition piece 53e Engagement part 54 Sensor holding part 7 Sensor 7a Thermal element 7b Protection part 71 Wiring 8 Sensor holder 8a Placement part 8b Holding part 8c Partition part 8d Main part 8e Engagement part 8f Hook 8g Gap 8h Drawer 8i Sensor stop 1100 Power converter 11 DESCRIPTION OF SYMBOLS 10 Converter 1111 Switching element 1112 Drive circuit L Reactor 1120 Inverter 1150 Power supply converter 1160 Auxiliary power supply converter 1200 Vehicle 1210 Main battery 1220 Motor 1230 Sub battery 1240 Auxiliary equipment 1250 Wheel

Claims (7)

  1.  互いに繋がる一対のコイル素子を具えるコイルと、前記各コイル素子内にそれぞれ配置される一対の内側コア部及びこれら内側コア部を連結して閉磁路を形成する外側コア部を有する磁性コアとを具えるリアクトルであって、
     前記コイルが載置される放熱板と、
     前記リアクトルの動作時の物理量を測定するセンサとを具え、
     前記各コイル素子は、巻線を螺旋状に巻回して構成された筒状体で、かつ端面形状が角部を丸めた角R部を有する形状であり、各コイル素子の軸が平行するように並列に配置され、
     前記センサは、前記各コイル素子において対向配置された前記角R部と前記放熱板とで形成される台形状空間に配置されているリアクトル。
    A coil having a pair of coil elements connected to each other, a pair of inner core portions disposed in each of the coil elements, and a magnetic core having an outer core portion that connects these inner core portions to form a closed magnetic path. A reactor that has
    A heat sink on which the coil is placed;
    Comprising a sensor for measuring a physical quantity during operation of the reactor,
    Each of the coil elements is a cylindrical body formed by winding a winding in a spiral shape, and the end face shape has a shape having a corner R portion with rounded corners, and the axes of the coil elements are parallel to each other. Placed in parallel,
    The sensor is a reactor arranged in a trapezoidal space formed by the corner R portion and the heat radiating plate arranged to face each other in each coil element.
  2.  前記放熱板は、前記コイルを固定する接合層を具え、
     前記センサは、前記接合層によって固定されている請求項1に記載のリアクトル。
    The heat sink includes a bonding layer that fixes the coil,
    The reactor according to claim 1, wherein the sensor is fixed by the bonding layer.
  3.  前記センサを保持するセンサホルダと、
     前記コイルと前記磁性コアとの間に介在されるインシュレータとを具え、
     前記センサホルダは、前記インシュレータと一体に形成されている請求項1又は請求項2に記載のリアクトル。
    A sensor holder for holding the sensor;
    Comprising an insulator interposed between the coil and the magnetic core;
    The reactor according to claim 1, wherein the sensor holder is formed integrally with the insulator.
  4.  前記センサを保持するセンサホルダと、
     前記コイルと前記磁性コアとの間に介在されるインシュレータとを具え、
     前記センサホルダは、前記インシュレータと独立した部材で構成されている請求項1又は請求項2に記載のリアクトル。
    A sensor holder for holding the sensor;
    Comprising an insulator interposed between the coil and the magnetic core;
    The reactor according to claim 1, wherein the sensor holder is configured by a member independent of the insulator.
  5.  前記センサホルダは、前記インシュレータと係合する係合部を具える請求項4に記載のリアクトル。 The reactor according to claim 4, wherein the sensor holder includes an engaging portion that engages with the insulator.
  6.  請求項1~請求項5のいずれか1項に記載のリアクトルを具えるコンバータ。 A converter comprising the reactor according to any one of claims 1 to 5.
  7.  請求項6に記載のコンバータを具える電力変換装置。 A power conversion device comprising the converter according to claim 6.
PCT/JP2013/078744 2012-11-01 2013-10-23 Reactor, converter, and power conversion device WO2014069311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012242224A JP5861940B2 (en) 2012-11-01 2012-11-01 Reactor, converter, and power converter
JP2012-242224 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014069311A1 true WO2014069311A1 (en) 2014-05-08

Family

ID=50627220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078744 WO2014069311A1 (en) 2012-11-01 2013-10-23 Reactor, converter, and power conversion device

Country Status (2)

Country Link
JP (1) JP5861940B2 (en)
WO (1) WO2014069311A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208317A1 (en) * 2013-06-28 2014-12-31 株式会社オートネットワーク技術研究所 Reactor
WO2015186674A1 (en) * 2014-06-06 2015-12-10 株式会社オートネットワーク技術研究所 Reactor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318874B2 (en) * 2014-06-03 2018-05-09 株式会社デンソー Reactor
JP6380753B2 (en) * 2014-12-25 2018-08-29 株式会社オートネットワーク技術研究所 Reactor
JP6919983B2 (en) * 2017-05-17 2021-08-18 株式会社タムラ製作所 Coil device
JP7329901B2 (en) * 2017-06-02 2023-08-21 株式会社タムラ製作所 Coil device
JP2023077252A (en) * 2021-11-24 2023-06-05 株式会社オートネットワーク技術研究所 Reactor, converter, and power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173702A (en) * 2005-12-26 2007-07-05 Denso Corp Temperature detecting type magnetic device
JP2009109437A (en) * 2007-10-31 2009-05-21 Tamura Seisakusho Co Ltd Fixation structure and fixation unit of sensor element having lead
JP2012114302A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Reactor device
WO2012114890A1 (en) * 2011-02-25 2012-08-30 住友電気工業株式会社 Reactor
JP2012189555A (en) * 2011-03-14 2012-10-04 Tamura Seisakusho Co Ltd Sensor fixation structure
JP2012216741A (en) * 2011-03-30 2012-11-08 Tamura Seisakusho Co Ltd Coil device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173702A (en) * 2005-12-26 2007-07-05 Denso Corp Temperature detecting type magnetic device
JP2009109437A (en) * 2007-10-31 2009-05-21 Tamura Seisakusho Co Ltd Fixation structure and fixation unit of sensor element having lead
JP2012114302A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Reactor device
WO2012114890A1 (en) * 2011-02-25 2012-08-30 住友電気工業株式会社 Reactor
JP2012189555A (en) * 2011-03-14 2012-10-04 Tamura Seisakusho Co Ltd Sensor fixation structure
JP2012216741A (en) * 2011-03-30 2012-11-08 Tamura Seisakusho Co Ltd Coil device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208317A1 (en) * 2013-06-28 2014-12-31 株式会社オートネットワーク技術研究所 Reactor
JP2015012146A (en) * 2013-06-28 2015-01-19 株式会社オートネットワーク技術研究所 Reactor
WO2015186674A1 (en) * 2014-06-06 2015-12-10 株式会社オートネットワーク技術研究所 Reactor
US9984810B2 (en) 2014-06-06 2018-05-29 Autonetworks Technologies, Ltd. Reactor

Also Published As

Publication number Publication date
JP5861940B2 (en) 2016-02-16
JP2014093374A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5892337B2 (en) Reactor, converter, and power converter
JP5120678B2 (en) Reactor
JP5958877B2 (en) Reactor, converter, and power converter
JP5120679B1 (en) Reactor
JP5881015B2 (en) Reactor, converter, and power converter
WO2014069311A1 (en) Reactor, converter, and power conversion device
JP4947503B1 (en) Reactor, converter, and power converter
JP5929725B2 (en) Reactor, converter, and power converter
JP4952963B1 (en) Reactor, converter, and power converter
JP2013222802A (en) Reactor, case for reactor, converter and power conversion device
WO2012164998A1 (en) Reactor, converter, power conversion apparatus, and method for manufacturing reactor
JP2015053395A (en) Reactor, converter, and electric power converter
WO2014017149A1 (en) Reactor, converter, and electric-power conversion device
JP2012253384A (en) Reactor, converter, and electric power conversion apparatus
JP2013222813A (en) Reactor, converter, and power conversion apparatus
JP2013145850A (en) Reactor
JP2013179184A (en) Reactor, converter, and power conversion device
JP5954542B2 (en) Reactor, converter, power converter, and reactor manufacturing method
JP2012209341A (en) Reactor
JP2013128098A (en) Reactor, converter, and electric power conversion apparatus
JP2014078603A (en) Reactor, converter, power conversion device, and method of manufacturing reactor
JP2013093469A (en) Reactor, fixing structure of reactor, converter, power converting device
JP2013179185A (en) Reactor, converter, and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851513

Country of ref document: EP

Kind code of ref document: A1