WO2014064833A1 - Light emitting device, and manufacturing method for light emitting device - Google Patents

Light emitting device, and manufacturing method for light emitting device Download PDF

Info

Publication number
WO2014064833A1
WO2014064833A1 PCT/JP2012/077725 JP2012077725W WO2014064833A1 WO 2014064833 A1 WO2014064833 A1 WO 2014064833A1 JP 2012077725 W JP2012077725 W JP 2012077725W WO 2014064833 A1 WO2014064833 A1 WO 2014064833A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
translucent
layer
Prior art date
Application number
PCT/JP2012/077725
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/077725 priority Critical patent/WO2014064833A1/en
Publication of WO2014064833A1 publication Critical patent/WO2014064833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a light emitting device having an organic light emitting layer and a method for manufacturing the light emitting device.
  • One technique for improving light extraction efficiency is to attach a light extraction film to a substrate in a light emitting device in which the substrate is a light exit surface.
  • Patent Document 1 in a display device, a metallic wedge-shaped member is embedded in a surface of a substrate on which a light emitting layer is provided, and light is reflected by the side surface of the wedge-shaped member, thereby improving light extraction efficiency. It is described.
  • Patent Document 2 describes that, in a display device, a low refractive index material layer is formed by embedding a material having a lower refractive index than that of the substrate on the surface of the substrate on which the light emitting layer is provided. If it does in this way, since light reflects in the side of a low refractive index material layer, light extraction efficiency will improve.
  • the present inventor considered that in a light-emitting device using an organic light-emitting layer, the light extraction efficiency cannot be sufficiently increased only by attaching a light extraction layer such as a light extraction film to the substrate of the light-emitting device.
  • the light-transmitting electrode 320, the organic functional layer 310, and the electrode 330 are stacked in this order on the first surface of the light-transmitting substrate 340.
  • a light extraction layer 350 for example, a light extraction film
  • the refractive index of the light extraction layer 350 is lower than that of the translucent substrate 340, light having an angle slightly exceeding the critical angle at the interface between the translucent substrate 340 and the light extraction layer 350 is obtained.
  • the amount of light extracted is large, but as the angle increases, the amount of light extracted decreases, and finally the light is almost totally reflected.
  • the refractive index of the light extraction layer 350 and the refractive index of the light transmissive substrate 340 are the same, the phenomenon that occurs at the interface between the light transmissive substrate 340 and the light extraction layer 350 described above is caused between the light extraction layer 350 and the air. It occurs at the interface.
  • An example of a problem to be solved by the present invention is to further improve the light extraction efficiency of the light emitting device when the light extraction layer is provided on the substrate of the light emitting device.
  • the invention according to claim 1 includes an organic functional layer including at least a light emitting layer; A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer; A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer; Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside.
  • the invention according to claim 8 includes an organic functional layer including at least a light emitting layer; A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer; A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer; Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside.
  • a light angle changing unit that is provided in the light-transmitting substrate, is inclined in a direction in which at least a part of a side surface faces the light extraction layer, and reflects light on the side surface; It is a light-emitting device provided with.
  • the second surface of the light-transmitting substrate having a first surface and a second surface opposite to the first surface, the light-transmitting substrate and an external surface.
  • a method for manufacturing a light emitting device comprising:
  • the second surface of the light transmissive substrate having a first surface and a second surface opposite to the first surface, the light transmissive substrate and an external surface.
  • a method for manufacturing a light emitting device comprising:
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 2.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the light-emitting device shown in FIG.
  • FIG. 10 is a plan view illustrating a layout of a light angle changing unit of a light emitting device according to Example 4.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the embodiment.
  • the light emitting device 10 can be used as a light source of a display, a lighting device, or an optical communication unit, for example.
  • the light emitting device 10 according to the embodiment includes an organic functional layer 110, a translucent electrode 120, a translucent substrate 140, a light angle changing unit 160, and a light extraction layer 150.
  • the translucent electrode 120 and the organic functional layer 110 are laminated on the first surface 141 of the translucent substrate 140 in this order. That is, the translucent electrode 120 faces one surface of the organic functional layer 110, and the translucent substrate 140 faces the surface of the translucent electrode 120 opposite to the organic functional layer 110. .
  • Another layer may exist between the first surface 141 and the translucent electrode 120. Further, another layer may be positioned between the organic functional layer 110 and the translucent electrode 120.
  • the organic functional layer 110 has at least a light emitting layer. Both the translucent electrode 120 and the translucent substrate 140 transmit at least part of the light emitted from the light emitting layer of the organic functional layer 110.
  • the light extraction layer 150 is provided on the second surface 142 of the translucent substrate 140, that is, the surface opposite to the first surface 141.
  • the light extraction layer 150 is, for example, a light extraction film.
  • the light extraction layer 150 is attached to the second surface 142 of the translucent substrate 140.
  • the light extraction layer 150 has a structure in which a part of light having an angle exceeding the critical angle at the interface between the translucent substrate 140 and the air can be extracted into the air. By providing the light extraction layer 150, a part of light having an angle exceeding the critical angle at the air interface between the translucent substrate 140 and the air can be taken out into the air, and the second surface 142 of the translucent substrate 140 can be extracted from the outside. The amount of light exiting to increases.
  • the light angle changing unit 160 is provided in the translucent substrate 140 and reduces the incident angle of the light incident on the translucent substrate 140 from the first surface 141 to the light extraction layer 150.
  • the incident angle is defined as an angle from the normal of the target surface.
  • the light incident on the translucent substrate 140 is reflected by the side surface of the light angle changing unit 160, so that the incident angle on the light extraction layer 150 becomes small.
  • at least a part of the side surface of the light angle changing unit 160 is inclined in a direction facing the light extraction layer 150 (a direction facing upward in FIG. 2).
  • the light angle changing unit 160 by providing the light angle changing unit 160, the light incident on the light-transmissive substrate 140 from the light emitting layer of the organic functional layer 110 has a small incident angle on the light extraction layer 150. For this reason, the light incident on the first surface 141 of the translucent substrate 140 has a component less than the critical angle at the interface between the second surface 142 and the light extraction layer 150. As a result, the light extraction efficiency of the light emitting device 10 is improved.
  • FIG. 2 shows a case where light from the organic functional layer 110 is reflected once by the light angle changing unit 160.
  • the light from the organic functional layer 110 may be finally less than the critical angle while being repeatedly reflected by the light extraction layer 150 and the light angle changing unit 160.
  • each configuration of the light emitting device 10 will be described in detail.
  • the translucent substrate 140 is made of, for example, an inorganic material having translucency with respect to light emitted from the light emitting layer of the organic functional layer 110.
  • the translucent substrate 140 is, for example, a glass substrate, but may be a resin substrate or a resin film.
  • a concave portion 144 is formed on the first surface 141 of the translucent substrate 140 in order to form the light angle changing portion 160.
  • the depth of the recess 144 is preferably 0.5 times or less in view of the strength of the translucent substrate 140.
  • the distance from the bottom of the recess to the first surface 141 (that is, the height of the light angle changing unit 160) is h, the arrangement interval of the light angle changing units 160 is L, and the interface between the second surface 142 and the light extraction layer 150 is When the critical angle is ⁇ , it is preferable to satisfy the following formula (1).
  • the depth of the recess 144 is not limited to this.
  • the light angle changing unit 160 is formed by embedding a material for forming the light angle changing unit 160 in the recess 144.
  • This material is a material that reflects light emitted from the light emitting layer of the organic functional layer 110. Moreover, it is preferable that this material has electroconductivity.
  • the light angle changing unit 160 is made of, for example, metal.
  • the metal may be formed of, for example, a metal paste (for example, Ag paste or Al paste) or a metal wire.
  • the light angle changing unit 160 may contain a binder.
  • the material forming the light angle changing unit 160 may be a carbon material such as graphene.
  • the conductive material constituting the light angle changing unit 150 may be in contact with the translucent electrode 120.
  • the recess 144 may not be filled with a conductive material, but may be partially hollow.
  • the cross-sectional shape of the concave portion 144 that is, the cross-sectional shape of the light angle changing unit 160 may be such that a part of the side surface is inclined in a direction facing the light extraction layer 150.
  • the side surface of the light angle changing part 160 it is preferable that no part is facing the translucent electrode 120, that is, there is no part facing the lower side in FIG.
  • the light angle changing unit 160 has a substantially triangular cross section (for example, an equilateral triangle).
  • the cross-sectional shape of the light angle changing unit 160 is not limited to these.
  • the translucent electrode 120, the organic functional layer 110, and the electrode 130 are formed in this order.
  • the translucent electrode 120 is a transparent electrode formed of, for example, ITO (Indium Thin Oxide) or IZO (Indium Zinc Oxide). However, the translucent electrode 120 may be a metal thin film that is thin enough to transmit light. As described above, the translucent electrode 120 is continuously formed on the first surface 141 and the light angle changing unit 160 of the translucent substrate 140.
  • the light angle changing unit 160 is made of a conductive material. Moreover, as will be described later, the light angle changing unit 160 extends linearly in a plan view. For this reason, by providing the light angle changing unit 160, the apparent resistance of the translucent electrode 120 can be lowered.
  • This effect can be obtained if at least a portion of the light angle changing unit 160 that is in contact with the translucent electrode 120 has conductivity. However, when the entire light angle changing unit 160 is made of a conductive material, the resistance of the light angle changing unit 160 can be reduced, and this effect can be particularly increased.
  • the organic functional layer 110 has a configuration in which a plurality of organic layers are stacked. One of the organic layers is a light emitting layer. The layer structure of the organic functional layer 110 will be described later with reference to another drawing.
  • the electrode 130 is made of, for example, a metal such as Al or Ag, and reflects light that has traveled toward the electrode 130 out of light emitted from the light emitting layer of the organic functional layer 110 in a direction toward the translucent substrate 140. .
  • FIG. 3 is a diagram showing a planar layout of the light angle changing unit 160 when viewed in the X direction of FIG. FIG. 2 corresponds to a cross section AB in FIG. In this figure, the light angle changing part 160 is shown with the translucent electrode 120 for description.
  • the plurality of light angle changing units 160 are all linear and parallel to each other, but may not be linear.
  • the light angle changing unit 160 also functions as an auxiliary wiring (bus line) for reducing the resistance of the translucent electrode 120.
  • the light angle changing units 160 may be arranged at regular intervals, or at least some of them may be arranged at different intervals. Even if the light angle changing portions 160 are scattered, the electric resistance of the portions becomes smaller than the portion of the translucent electrode 120 alone, so that the resistance value is lowered as a whole, and the power transmission efficiency is improved.
  • FIG. 4 is a diagram showing a first example of the layer structure of the organic functional layer 110.
  • the organic functional layer 110 has a structure in which a hole injection layer 111, a hole transport layer 112, a light emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are stacked in this order. . That is, the organic functional layer 110 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 111 and the hole transport layer 112, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 114 and the electron injection layer 115, one layer having the function of these two layers may be provided.
  • the light emitting layer 113 is, for example, a layer emitting red light, a layer emitting blue light, a layer emitting yellow light, or a layer emitting green light.
  • the light emitting device 10 includes a region having a light emitting layer 113 that emits red light, a region having a light emitting layer 113 that emits green light, and a light emitting layer 113 that emits blue light in a plan view. The region may be provided repeatedly. In this case, when each region is caused to emit light simultaneously, the light emitting device 10 emits white light.
  • the light emitting layer 113 may be configured to emit white light by mixing materials for emitting a plurality of colors.
  • FIG. 5 is a diagram illustrating a second example of the configuration of the organic functional layer 110.
  • the organic functional layer 110 has a configuration in which light emitting layers 113a, 113b, and 113c are stacked between a hole transport layer 112 and an electron transport layer 114.
  • the light emitting layers 113a, 113b, and 113c are light of different colors (for example, red, green, and blue).
  • the light emitting layers 113a, 113b, and 113c emit light simultaneously, so that the light emitting device 10 emits white light.
  • FIG. 6 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIG.
  • the light extraction layer 150 is formed on the second surface 142 of the translucent substrate 140.
  • this film is attached to the first surface 141 of the translucent substrate 140.
  • the light extraction layer 150 may be provided on the second surface 142 of the translucent substrate 140 lastly after the organic functional layer 110 is formed.
  • a mask pattern for example, a resist pattern
  • the first surface 141 is etched (for example, wet etching) using the mask pattern as a mask.
  • a recess 144 is formed in the translucent substrate 140.
  • the concave portion 144 may be formed by shot blasting (for example, sand blasting). Alternatively, the concave portion 144 may be formed by pressing the mold (for example, made of carbon) after heating the translucent substrate 140 to a deformable temperature.
  • the light angle changing portion 160 is formed in the recess 144.
  • the light angle changing unit 160 is formed by the following method, for example.
  • a conductive paste is filled in the recess 144 using, for example, a screen printing method.
  • the method of filling the conductive paste may be a method using a dispenser or an ink jet method.
  • the conductive paste is heated and dried. Thereby, the light angle change part 160 is formed.
  • the translucent electrode 120, the organic functional layer 110, and the electrode 130 are formed in this order on the first surface 141 and the light angle changing unit 160 of the translucent substrate 140.
  • the translucent electrode 120 and the electrode 130 are formed using, for example, a sputtering method.
  • the organic functional layer 110 is formed using a coating method or a vapor deposition method.
  • the translucent substrate 140 is provided on the second surface 142 of the translucent substrate 140, the translucency is included in the light emitted from the light emitting layer 113 of the organic functional layer 110.
  • the amount of light emitted from the second surface 142 of the substrate 140 to the outside increases.
  • a light angle changing unit 160 is embedded in the translucent substrate 140. For this reason, the light incident on the translucent substrate 140 from the organic functional layer 110 increases the critical angle component at the interface between the second surface 142 and the light extraction layer 150. For this reason, the light extraction efficiency of the light emitting device 10 increases.
  • the light angle changing unit 160 has conductivity at least at a portion in contact with the translucent electrode 120. For this reason, when the light angle changing unit 160 is connected to the translucent electrode 120, the light angle changing unit 160 functions as an auxiliary electrode of the translucent electrode 120. For this reason, it can suppress that the voltage applied to the translucent electrode 120 becomes non-uniform in the surface of the translucent electrode 120.
  • the concave portion 144 is formed on the first surface 141 of the translucent substrate 140, and the conductive light angle changing portion 160 is formed in the concave portion 144.
  • the translucent electrode 120 is formed on the light angle changing unit 160 and the first surface 141. For this reason, the light angle changing unit 160 can be easily connected to the translucent electrode 120.
  • FIG. 7 is a cross-sectional view illustrating Example 1 of the light-emitting device 10 described in the embodiment.
  • the cross-sectional shape of the light angle changing unit 160 is different from that of the embodiment.
  • the light angle changing unit 160 has a configuration in which the vertices in the height direction of the triangle are rounded. That is, the angle of at least the tip of the side surface of the light angle changing unit 160 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140.
  • connection portion between the side surface of the recess 144 (that is, the side surface of the light angle changing unit 160) and the first surface 141 of the translucent substrate 140 is rounded.
  • Such a shape can be realized by adjusting the conditions (for example, etching conditions) when forming the recess 144.
  • the recessed part 144 may be a bowl type.
  • the same effect as that of the embodiment can be obtained.
  • a part of the light incident on the translucent substrate 140 from the organic functional layer 110 is repeatedly reflected by the light extraction layer 150 and the light angle changing unit 160, and finally the second It becomes less than the critical angle of the interface between the surface 142 and the light extraction layer 150.
  • the light extraction layer 150 may have an angle at which the extraction efficiency into the air layer is deteriorated.
  • the angle of the tip of the light angle changing unit 160 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140.
  • the incident angle of the light with respect to the light extraction layer 150 is changed between the second surface 142 and the light extraction layer 150. It can be less than the critical angle of the interface.
  • FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment.
  • FIG. 9 is a plan view illustrating a positional relationship between the light angle changing unit 160 and the partition wall 170 in the second embodiment.
  • FIG. 8 corresponds to the cross section AB of FIG.
  • the light emitting device 10 according to Example 2 has a partition wall 170.
  • the partition wall 170 is provided on the first surface 141 of the translucent substrate 140 and divides the organic functional layer 110 into a plurality of regions.
  • the organic functional layers 110 in the adjacent regions may emit light having the same spectrum, or may emit light having different spectra (for example, light of different colors).
  • the light emitting device 10 has a plurality of regions that emit a plurality of colors necessary for generating white light.
  • the light emitting device 10 includes a region that emits blue light, a region that emits red light, and a region that emits green light.
  • the light angle changing part 160 is provided in the position which overlaps with the partition part 170 by planar view. Specifically, the light angle changing unit 160 is provided inside the partition wall 170 in plan view. For this reason, the organic functional layer 110 is not provided in a portion overlapping the light angle changing unit 160 in plan view.
  • the manufacturing method of the light emitting device 10 according to this example is the light emission shown in the embodiment except that the partition wall 170 is formed before the organic functional layer 110 is formed after forming the translucent electrode 120. This is the same as the manufacturing method of the device 10.
  • the partition wall 170 is formed, for example, by performing exposure and development after forming a polyimide film.
  • the effects shown in the embodiment can be obtained.
  • the light angle changing unit 160 is provided on the first surface 141 of the translucent substrate 140, a region where light is incident on the first surface 141 of the translucent substrate 140 is reduced in plan view.
  • the light emitting device 10 includes the partition wall 170, the light angle changing unit 160 is overlapped with the partition wall 170 in plan view. Since the organic functional layer 110 cannot be provided in a region where the partition wall 170 is provided in the translucent substrate 140, the amount of incident light is originally small. For this reason, it can suppress that the area
  • FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third embodiment.
  • the translucent electrode 120 is continuously formed on the first surface 141 of the translucent substrate 140 and along the inner wall of the recess 144.
  • the light angle changing unit 160 is formed on the translucent electrode 120 in the recess 144. That is, the light angle changing unit 160 is connected to the translucent electrode 120 on the side surface.
  • FIG. 11 is a cross-sectional view showing a method for manufacturing the light emitting device 10 shown in FIG.
  • the manufacturing method of the light emitting device 10 according to the present example is the same as the manufacturing method of the light emitting device 10 described in the embodiment until the recess 144 is formed.
  • the translucent electrode 120 is formed along the upper surface of the first surface 141 and the recess 144. .
  • the method for forming the translucent electrode 120 is as described in the embodiment.
  • the light angle changing portion 160 is formed on the translucent electrode 120 in the recess 144.
  • the method of forming the light angle changing unit 160 is also as described in the embodiment.
  • the same effect as in the embodiment can be obtained.
  • the translucent electrode 120 is formed along the recess 144, the contact area between the translucent electrode 120 and the light angle changing unit 160 can be increased. Therefore, the connection resistance between the translucent electrode 120 and the light angle changing unit 160 can be reduced.
  • FIG. 12 is a plan view showing a layout of the light angle changing unit 160 of the light emitting device 10 according to Example 4, and corresponds to FIG. 3 in the embodiment.
  • the light angle changing unit 160 may be formed in a dot shape in addition to the one extending linearly.
  • those formed in a dot shape are arranged in a staggered manner between the adjacent linear light angle changing units 160.
  • the layout of the dot-shaped light angle changing unit 160 is not limited to the example shown in this figure.
  • the dot-shaped light angle changing unit 150 may have a pyramid shape or a cone shape.
  • the same effect as in the embodiment can be obtained.
  • the dot-shaped light angle changing unit 160 is disposed between the linear light angle changing units 160, the light is incident in a direction parallel to the linear light angle changing unit 160. Also, the same operation as in the embodiment occurs. For this reason, the light extraction efficiency of the light emitting device 10 can be further increased.

Abstract

 This light emitting device includes an organic functional layer (110). The organic functional layer (110) includes at least a light emitting layer. A light angle changing part (160) is provided within a translucent substrate (140), and changes the incident angle, with respect to a light extraction layer (150), of light entering the translucent substrate (140) from the light emitting layer of the organic functional layer (110) toward a direction approaching vertical. For example, light entering the translucent substrate (140) is reflected by the side surface of the light angle changing part (160) such that the incident angle of said light with respect to the light extraction layer (150) is changed toward a direction approaching vertical.

Description

発光装置及び発光装置の製造方法LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
 本発明は、有機発光層を有する発光装置及び発光装置の製造方法に関する。 The present invention relates to a light emitting device having an organic light emitting layer and a method for manufacturing the light emitting device.
 近年は、有機発光層を有する発光装置を照明装置の光源として利用することが検討されている。このような発光装置を照明装置として利用するためには、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上させる必要がある。 In recent years, it has been studied to use a light emitting device having an organic light emitting layer as a light source of a lighting device. In order to use such a light-emitting device as a lighting device, it is necessary to improve the proportion of light emitted to the outside (light extraction efficiency) among the light generated in the organic light-emitting layer.
 光取り出し効率を向上させるための技術の一つとして、基板が光の出射面である発光装置において、光取り出しフィルムを基板に貼り付けるものがある。 One technique for improving light extraction efficiency is to attach a light extraction film to a substrate in a light emitting device in which the substrate is a light exit surface.
 なお、特許文献1には、ディスプレイ装置において、基板のうち発光層が設けられた面に金属性の楔状部材を埋め込み、この楔状部材の側面で光を反射させることにより、光取り出し効率を向上させることが記載されている。 In Patent Document 1, in a display device, a metallic wedge-shaped member is embedded in a surface of a substrate on which a light emitting layer is provided, and light is reflected by the side surface of the wedge-shaped member, thereby improving light extraction efficiency. It is described.
 また特許文献2には、表示装置において、基板のうち発光層が設けられた面に、基板よりも低屈折率の材料を埋め込んで低屈折率材料層を形成することが記載されている。このようにすると、低屈折率材料層の側面で光が反射するため、光取り出し効率が向上する。 Patent Document 2 describes that, in a display device, a low refractive index material layer is formed by embedding a material having a lower refractive index than that of the substrate on the surface of the substrate on which the light emitting layer is provided. If it does in this way, since light reflects in the side of a low refractive index material layer, light extraction efficiency will improve.
特許第3573393号公報Japanese Patent No. 3573393 特開2009-110873号公報JP 2009-110873 A
 本発明者は、有機発光層を用いた発光装置において、光取り出しフィルムなどの光取り出し層を発光装置の基板に貼り付けるのみでは、光取り出し効率を十分に上げることができない、と考えた。 The present inventor considered that in a light-emitting device using an organic light-emitting layer, the light extraction efficiency cannot be sufficiently increased only by attaching a light extraction layer such as a light extraction film to the substrate of the light-emitting device.
 例えば図1に示す発光装置は、透光性基板340の第1面に透光性電極320、有機機能層310、及び電極330をこの順に積層し、さらに透光性基板340の第1面とは逆側の面(第2面)に光取出層350(例えば光取り出しフィルム)を設けたものである。
このような構造においても、光取出層350の屈折率が透光性基板340よりも低い場合には、透光性基板340と光取出層350の界面において、臨界角をすこし超えた角度の光は取り出し量が多いが、角度が大きくなるにつれて光の取り出し量が少なくなり、最後にはほぼ全反射してしまう。また、光取出層350の屈折率と透光性基板340の屈折率が同じ場合には、上記した透光性基板340と光取出層350の界面で生じる現象が光取出層350と空気との界面で生じてしまう。
For example, in the light-emitting device illustrated in FIG. 1, the light-transmitting electrode 320, the organic functional layer 310, and the electrode 330 are stacked in this order on the first surface of the light-transmitting substrate 340. Is provided with a light extraction layer 350 (for example, a light extraction film) on the opposite surface (second surface).
Even in such a structure, when the refractive index of the light extraction layer 350 is lower than that of the translucent substrate 340, light having an angle slightly exceeding the critical angle at the interface between the translucent substrate 340 and the light extraction layer 350 is obtained. The amount of light extracted is large, but as the angle increases, the amount of light extracted decreases, and finally the light is almost totally reflected. Further, when the refractive index of the light extraction layer 350 and the refractive index of the light transmissive substrate 340 are the same, the phenomenon that occurs at the interface between the light transmissive substrate 340 and the light extraction layer 350 described above is caused between the light extraction layer 350 and the air. It occurs at the interface.
 本発明が解決しようとする課題としては、光取出層を発光装置の基板に設けた場合において、発光装置の光取り出し効率をさらに向上させることが一例として挙げられる。 An example of a problem to be solved by the present invention is to further improve the light extraction efficiency of the light emitting device when the light extraction layer is provided on the substrate of the light emitting device.
 請求項1に記載の発明は、少なくとも発光層を含む有機機能層と、
 前記有機機能層の一面に対向しており、前記発光層が発光した光を透過させる透光性電極と、
 前記透光性電極のうち前記有機機能層に面する面とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させる透光性基板と、
 前記透光性基板の前記第1面とは逆側の面である第2面に設けられ、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層と、
 前記透光性基板の中に設けられており、前記第1面から前記透光性基板に入射した光の前記光取出層への入射角度を小さくする光角度変更部と、
を備える発光装置である。
The invention according to claim 1 includes an organic functional layer including at least a light emitting layer;
A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer;
A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer;
Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside. The extraction layer,
A light angle changing unit that is provided in the light transmissive substrate and reduces an incident angle of light incident on the light transmissive substrate from the first surface to the light extraction layer;
It is a light-emitting device provided with.
 請求項8に記載の発明は、少なくとも発光層を含む有機機能層と、
 前記有機機能層の一面に対向しており、前記発光層が発光した光を透過させる透光性電極と、
 前記透光性電極のうち前記有機機能層に面する面とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させる透光性基板と、
 前記透光性基板の前記第1面とは逆側の面である第2面に設けられ、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層と、
 前記透光性基板の中に設けられており、側面の少なくとも一部が前記光取出層に面する方向に傾斜しており、前記側面で光を反射する光角度変更部と、
を備える発光装置である。
The invention according to claim 8 includes an organic functional layer including at least a light emitting layer;
A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer;
A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer;
Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside. The extraction layer,
A light angle changing unit that is provided in the light-transmitting substrate, is inclined in a direction in which at least a part of a side surface faces the light extraction layer, and reflects light on the side surface;
It is a light-emitting device provided with.
 請求項9に記載の発明は、第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第2面に、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層を設ける工程と、
 前記透光性基板の前記第1面に凹部を形成する工程と、
 前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
 前記第2面及び前記光角度変更部に、透光性電極を形成する工程と、
 前記透光性電極に、少なくとも発光層を含む有機機能層を形成する工程と、
を備える発光装置の製造方法である。
According to a ninth aspect of the present invention, there is provided the second surface of the light-transmitting substrate having a first surface and a second surface opposite to the first surface, the light-transmitting substrate and an external surface. Providing a light extraction layer that emits a part of light having an angle greater than the critical angle to the outside; and
Forming a recess in the first surface of the translucent substrate;
Forming a light angle changing unit that reduces an incident angle of light incident on the light-transmissive substrate from the first surface to the second surface by embedding a conductive material in the concave portion;
Forming a translucent electrode on the second surface and the light angle changing unit;
Forming an organic functional layer including at least a light emitting layer on the translucent electrode;
A method for manufacturing a light emitting device comprising:
 請求項10に記載の発明は、第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第2面に、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層を設ける工程と、
 前記透光性基板の前記第1面に、凹部を形成する工程と、
 前記第1面及び前記凹部の内面に沿って、透光性電極を形成する工程と、
 前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
 前記透光性電極に、少なくとも発光層を含む有機機能層を形成する工程と、
を備える発光装置の製造方法である。
According to a tenth aspect of the present invention, there is provided the second surface of the light transmissive substrate having a first surface and a second surface opposite to the first surface, the light transmissive substrate and an external surface. Providing a light extraction layer that emits a part of light having an angle greater than the critical angle to the outside; and
Forming a recess in the first surface of the translucent substrate;
Forming a translucent electrode along the inner surface of the first surface and the recess;
Forming a light angle changing unit that reduces an incident angle of light incident on the light-transmissive substrate from the first surface to the second surface by embedding a conductive material in the concave portion;
Forming an organic functional layer including at least a light emitting layer on the translucent electrode;
A method for manufacturing a light emitting device comprising:
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
課題を説明するための図である。It is a figure for demonstrating a subject. 実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on embodiment. 光角度変更部の平面レイアウトを示す図である。It is a figure which shows the planar layout of a light angle change part. 有機機能層の構成の第1例を示す図である。It is a figure which shows the 1st example of a structure of an organic functional layer. 有機機能層の構成の第2例を示す図である。It is a figure which shows the 2nd example of a structure of an organic functional layer. 図2に示した発光装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the light-emitting device shown in FIG. 実施例1に係る発光装置の構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 1. FIG. 実施例2に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 2. FIG. 光角度変更部と隔壁部の位置関係を示す平面図である。It is a top view which shows the positional relationship of a light angle change part and a partition part. 実施例3に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 3. FIG. 図10に示した発光装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the light-emitting device shown in FIG. 実施例4に係る発光装置の光角度変更部のレイアウトを示す平面図である。FIG. 10 is a plan view illustrating a layout of a light angle changing unit of a light emitting device according to Example 4.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(実施形態)
 図2は、実施形態に係る発光装置10の構成を示す断面図である。発光装置10は、例えばディスプレイ、照明装置、又は光通信手段の光源として用いることができる。実施形態に係る発光装置10は、有機機能層110、透光性電極120、透光性基板140、光角度変更部160、及び光取出層150を有している。透光性電極120及び有機機能層110は、透光性基板140の第1面141の上に、この順に積層されている。すなわち、透光性電極120は、有機機能層110の一面に対向しており、透光性基板140は、透光性電極120のうち有機機能層110とは逆側の面に対向している。なお、第1面141と透光性電極120の間には他の層が存在していても良い。また、有機機能層110と透光性電極120の間にも他の層が位置していても良い。有機機能層110は、少なくとも発光層を有している。透光性電極120及び透光性基板140は、いずれも、有機機能層110の発光層が発光した光の少なくとも一部を透過する。
(Embodiment)
FIG. 2 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the embodiment. The light emitting device 10 can be used as a light source of a display, a lighting device, or an optical communication unit, for example. The light emitting device 10 according to the embodiment includes an organic functional layer 110, a translucent electrode 120, a translucent substrate 140, a light angle changing unit 160, and a light extraction layer 150. The translucent electrode 120 and the organic functional layer 110 are laminated on the first surface 141 of the translucent substrate 140 in this order. That is, the translucent electrode 120 faces one surface of the organic functional layer 110, and the translucent substrate 140 faces the surface of the translucent electrode 120 opposite to the organic functional layer 110. . Note that another layer may exist between the first surface 141 and the translucent electrode 120. Further, another layer may be positioned between the organic functional layer 110 and the translucent electrode 120. The organic functional layer 110 has at least a light emitting layer. Both the translucent electrode 120 and the translucent substrate 140 transmit at least part of the light emitted from the light emitting layer of the organic functional layer 110.
 光取出層150は、透光性基板140の第2面142、すなわち第1面141とは逆側の面に設けられている。光取出層150は、例えば光取り出しフィルムである。この場合、光取出層150は、透光性基板140の第2面142に貼り付けられている。光取出層150は、透光性基板140と空気界面における臨界角を超える角度の光の一部も空気中に取り出せるような構造を有している。光取出層150が設けられることにより、透光性基板140と空気界面における臨界角を超える角度の光の一部も空気中に取り出すことができ、透光性基板140の第2面142から外部に出射する光の量は増大する。 The light extraction layer 150 is provided on the second surface 142 of the translucent substrate 140, that is, the surface opposite to the first surface 141. The light extraction layer 150 is, for example, a light extraction film. In this case, the light extraction layer 150 is attached to the second surface 142 of the translucent substrate 140. The light extraction layer 150 has a structure in which a part of light having an angle exceeding the critical angle at the interface between the translucent substrate 140 and the air can be extracted into the air. By providing the light extraction layer 150, a part of light having an angle exceeding the critical angle at the air interface between the translucent substrate 140 and the air can be taken out into the air, and the second surface 142 of the translucent substrate 140 can be extracted from the outside. The amount of light exiting to increases.
 そして、有機機能層110の発光層で生じた光は、透光性電極120、透光性基板140、及び光取出層150を介して外部に出射する。 Then, light generated in the light emitting layer of the organic functional layer 110 is emitted to the outside through the translucent electrode 120, the translucent substrate 140, and the light extraction layer 150.
 光角度変更部160は、透光性基板140の中に設けられており、第1面141から透光性基板140に入射した光の光取出層150への入射角度を小さくする。ここで、入射角を、対象面の法線からの角度と定義する。例えば透光性基板140に入射した光は、光角度変更部160の側面で反射することにより、光取出層150への入射角度が小さくなる。この場合、光角度変更部160の側面の少なくとも一部は、光取出層150に面する方向(図2において上を向く方向)に傾斜している。 The light angle changing unit 160 is provided in the translucent substrate 140 and reduces the incident angle of the light incident on the translucent substrate 140 from the first surface 141 to the light extraction layer 150. Here, the incident angle is defined as an angle from the normal of the target surface. For example, the light incident on the translucent substrate 140 is reflected by the side surface of the light angle changing unit 160, so that the incident angle on the light extraction layer 150 becomes small. In this case, at least a part of the side surface of the light angle changing unit 160 is inclined in a direction facing the light extraction layer 150 (a direction facing upward in FIG. 2).
 上記したように、光角度変更部160が設けられることにより、有機機能層110の発光層から透光性基板140に入射した光は、光取出層150への入射角度が小さくなる。このため、透光性基板140の第1面141に入射した光は、第2面142と光取出層150の界面における臨界角未満の成分が増える。この結果、発光装置10の光取り出し効率は向上する。 As described above, by providing the light angle changing unit 160, the light incident on the light-transmissive substrate 140 from the light emitting layer of the organic functional layer 110 has a small incident angle on the light extraction layer 150. For this reason, the light incident on the first surface 141 of the translucent substrate 140 has a component less than the critical angle at the interface between the second surface 142 and the light extraction layer 150. As a result, the light extraction efficiency of the light emitting device 10 is improved.
 なお、図2では、有機機能層110からの光が光角度変更部160に一回反射される場合を示している。ただし、有機機能層110からの光は、光取出層150や、光角度変更部160での反射を繰り返しながら、最後に臨界角を下回る場合もある。以下、発光装置10の各構成について、詳細に説明する。 FIG. 2 shows a case where light from the organic functional layer 110 is reflected once by the light angle changing unit 160. However, the light from the organic functional layer 110 may be finally less than the critical angle while being repeatedly reflected by the light extraction layer 150 and the light angle changing unit 160. Hereinafter, each configuration of the light emitting device 10 will be described in detail.
 透光性基板140は、例えば、有機機能層110の発光層が発光する光に対して透光性を有する無機材料から形成されている。透光性基板140は、例えばガラス基板であるが、樹脂基板や樹脂フィルムであっても良い。 The translucent substrate 140 is made of, for example, an inorganic material having translucency with respect to light emitted from the light emitting layer of the organic functional layer 110. The translucent substrate 140 is, for example, a glass substrate, but may be a resin substrate or a resin film.
 透光性基板140の第1面141には、光角度変更部160を形成するために、凹部144が形成されている。凹部144の深さは、透光性基板140の強度を考えると、0.5倍以下であるのが好ましい。また、凹部の底部から第1面141までの距離(すなわち光角度変更部160の高さ)をh、光角度変更部160の配置間隔をL、第2面142と光取出層150の界面における臨界角をθとすると、以下の式(1)を満たすのが好ましい。ただし、凹部144の深さはこれに限定されない。 A concave portion 144 is formed on the first surface 141 of the translucent substrate 140 in order to form the light angle changing portion 160. The depth of the recess 144 is preferably 0.5 times or less in view of the strength of the translucent substrate 140. The distance from the bottom of the recess to the first surface 141 (that is, the height of the light angle changing unit 160) is h, the arrangement interval of the light angle changing units 160 is L, and the interface between the second surface 142 and the light extraction layer 150 is When the critical angle is θ, it is preferable to satisfy the following formula (1). However, the depth of the recess 144 is not limited to this.
 tan((90-θ)/2)≦h/L・・・(1) Tan ((90-θ) / 2) ≦ h / L (1)
 光角度変更部160は、凹部144内に、光角度変更部160を形成するための材料を埋め込むことにより、形成されている。この材料は、有機機能層110の発光層が発光した光を反射する材料である。また、この材料は、導電性を有しているのが好ましい。具体的には、光角度変更部160は、例えば金属により形成されている。光角度変更部160が金属で形成されている場合、この金属は、例えば金属ペースト(例えばAgペースト又はAlペースト)により形成されてもよいし、金属線であっても良い。金属ペーストで形成される場合、光角度変更部160は、バインダーを含んでいることもある。なお、光角度変更部160を形成する材料は、グラフェンなどの炭素材料であってもよい。また、光角度変更部150を構成する導電性材料は、透光性電極120と接していればよい。例えば凹部144内は導電性材料で充填されていなくても、一部が中空でもよい。 The light angle changing unit 160 is formed by embedding a material for forming the light angle changing unit 160 in the recess 144. This material is a material that reflects light emitted from the light emitting layer of the organic functional layer 110. Moreover, it is preferable that this material has electroconductivity. Specifically, the light angle changing unit 160 is made of, for example, metal. When the light angle changing unit 160 is formed of a metal, the metal may be formed of, for example, a metal paste (for example, Ag paste or Al paste) or a metal wire. When formed with a metal paste, the light angle changing unit 160 may contain a binder. The material forming the light angle changing unit 160 may be a carbon material such as graphene. Further, the conductive material constituting the light angle changing unit 150 may be in contact with the translucent electrode 120. For example, the recess 144 may not be filled with a conductive material, but may be partially hollow.
 凹部144の断面形状、すなわち光角度変更部160の断面形状は、側面の一部が、光取出層150に面する方向に傾斜していればよい。光角度変更部160の側面は、いずれの部分も、透光性電極120に面していない、すなわち図2において下側を向いている部分がないのが好ましい。本図に示す例では、光角度変更部160は、断面が略三角形(例えばに等辺三角形)である。ただし光角度変更部160の断面形状は、これらに限定されない。 The cross-sectional shape of the concave portion 144, that is, the cross-sectional shape of the light angle changing unit 160 may be such that a part of the side surface is inclined in a direction facing the light extraction layer 150. As for the side surface of the light angle changing part 160, it is preferable that no part is facing the translucent electrode 120, that is, there is no part facing the lower side in FIG. In the example shown in the figure, the light angle changing unit 160 has a substantially triangular cross section (for example, an equilateral triangle). However, the cross-sectional shape of the light angle changing unit 160 is not limited to these.
 また、透光性基板140の第1面141上及び光角度変更部160上には、透光性電極120、有機機能層110、及び電極130がこの順に形成されている。 Further, on the first surface 141 of the translucent substrate 140 and the light angle changing unit 160, the translucent electrode 120, the organic functional layer 110, and the electrode 130 are formed in this order.
 透光性電極120は、例えばITO(Indium Thin Oxide)やIZO(インジウム亜鉛酸化物)などによって形成された透明電極である。ただし、透光性電極120は、光が透過する程度に薄い金属薄膜であっても良い。上記したように、透光性電極120は、透光性基板140の第1面141上及び光角度変更部160上に連続して形成されている。そして光角度変更部160は、導電性材料により形成されている。また、後述するように、光角度変更部160は、平面視で線状に延在している。このため、光角度変更部160を設けることにより、透光性電極120の見かけ上の抵抗を低くすることができる。 The translucent electrode 120 is a transparent electrode formed of, for example, ITO (Indium Thin Oxide) or IZO (Indium Zinc Oxide). However, the translucent electrode 120 may be a metal thin film that is thin enough to transmit light. As described above, the translucent electrode 120 is continuously formed on the first surface 141 and the light angle changing unit 160 of the translucent substrate 140. The light angle changing unit 160 is made of a conductive material. Moreover, as will be described later, the light angle changing unit 160 extends linearly in a plan view. For this reason, by providing the light angle changing unit 160, the apparent resistance of the translucent electrode 120 can be lowered.
 なお、この効果は、光角度変更部160のうち少なくとも透光性電極120に接している部分が導電性を有していれば、得られる。ただし、光角度変更部160の全体が導電性材料により形成されている場合、光角度変更部160の抵抗を小さくすることができるため、この効果を特に大きくすることができる。 This effect can be obtained if at least a portion of the light angle changing unit 160 that is in contact with the translucent electrode 120 has conductivity. However, when the entire light angle changing unit 160 is made of a conductive material, the resistance of the light angle changing unit 160 can be reduced, and this effect can be particularly increased.
 有機機能層110は、複数の有機層を積層した構成を有している。この有機層の一つは、発光層である。有機機能層110の層構造については、別の図を用いて後述する。 The organic functional layer 110 has a configuration in which a plurality of organic layers are stacked. One of the organic layers is a light emitting layer. The layer structure of the organic functional layer 110 will be described later with reference to another drawing.
 電極130は、例えばAlやAgなどの金属から形成されており、有機機能層110の発光層が発光した光のうち電極130に向かってきた光を、透光性基板140に向かう方向に反射する。 The electrode 130 is made of, for example, a metal such as Al or Ag, and reflects light that has traveled toward the electrode 130 out of light emitted from the light emitting layer of the organic functional layer 110 in a direction toward the translucent substrate 140. .
 図3は、図2のX方向で見た場合の、光角度変更部160の平面レイアウトを示す図である。図2は、図3のA-B断面に対応している。この図において、説明のため、光角度変更部160は透光性電極120とともに示されている。 FIG. 3 is a diagram showing a planar layout of the light angle changing unit 160 when viewed in the X direction of FIG. FIG. 2 corresponds to a cross section AB in FIG. In this figure, the light angle changing part 160 is shown with the translucent electrode 120 for description.
 本図に示す例において、複数の光角度変更部160は、いずれも直線状であり、互いに平行であるが、直線でなくても良い。上記したように、光角度変更部160は、透光性電極120の抵抗を下げるための補助配線(バスライン)としても機能する。なお、光角度変更部160は、一定間隔で配置されてもよいし、少なくとも一部が他とは異なる間隔で配置されていても良い。光角度変更部160が点在していても、その部分の電気抵抗は透光性電極120だけの部分より小さくなるので、全体として抵抗値が下がり、電力伝送効率は向上する。 In the example shown in the figure, the plurality of light angle changing units 160 are all linear and parallel to each other, but may not be linear. As described above, the light angle changing unit 160 also functions as an auxiliary wiring (bus line) for reducing the resistance of the translucent electrode 120. Note that the light angle changing units 160 may be arranged at regular intervals, or at least some of them may be arranged at different intervals. Even if the light angle changing portions 160 are scattered, the electric resistance of the portions becomes smaller than the portion of the translucent electrode 120 alone, so that the resistance value is lowered as a whole, and the power transmission efficiency is improved.
 図4は、有機機能層110の層構造の第1例を示す図である。本図に示す例において、有機機能層110は、正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、及び電子注入層115をこの順に積層した構造を有している。すなわち有機機能層110は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層111及び正孔輸送層112の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層114及び電子注入層115の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。 FIG. 4 is a diagram showing a first example of the layer structure of the organic functional layer 110. In the example shown in this figure, the organic functional layer 110 has a structure in which a hole injection layer 111, a hole transport layer 112, a light emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are stacked in this order. . That is, the organic functional layer 110 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 111 and the hole transport layer 112, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 114 and the electron injection layer 115, one layer having the function of these two layers may be provided.
 本図に示す例において、発光層113は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、発光装置10は、平面視において、赤色の光を発光する発光層113を有する領域、緑色の光を発光する発光層113を有する領域、及び青色の光を発光する発光層113を有する領域が繰り返し設けられていても良い。この場合、各領域を同時に発光させると、発光装置10は白色に発光する。 In the example shown in the figure, the light emitting layer 113 is, for example, a layer emitting red light, a layer emitting blue light, a layer emitting yellow light, or a layer emitting green light. In this case, the light emitting device 10 includes a region having a light emitting layer 113 that emits red light, a region having a light emitting layer 113 that emits green light, and a light emitting layer 113 that emits blue light in a plan view. The region may be provided repeatedly. In this case, when each region is caused to emit light simultaneously, the light emitting device 10 emits white light.
 なお、発光層113は、複数の色を発光するための材料を混ぜることにより、白色の光を発光するように構成されていても良い。 The light emitting layer 113 may be configured to emit white light by mixing materials for emitting a plurality of colors.
 図5は、有機機能層110の構成の第2例を示す図である。本図に示す例において、有機機能層110は、正孔輸送層112と電子輸送層114の間に、発光層113a,113b,113cを積層させた構成を有している。発光層113a,113b,113cは、互いに異なる色の光(例えば赤、緑、及び青)である。そして発光層113a,113b,113cが同時に発光することにより、発光装置10は白色に発光する。 FIG. 5 is a diagram illustrating a second example of the configuration of the organic functional layer 110. In the example shown in this figure, the organic functional layer 110 has a configuration in which light emitting layers 113a, 113b, and 113c are stacked between a hole transport layer 112 and an electron transport layer 114. The light emitting layers 113a, 113b, and 113c are light of different colors (for example, red, green, and blue). The light emitting layers 113a, 113b, and 113c emit light simultaneously, so that the light emitting device 10 emits white light.
 図6は、図2に示した発光装置10の製造方法を説明するための図である。まず、図6(a)に示すように、透光性基板140の第2面142に光取出層150を形成する。光取出層150がフィルムである場合、このフィルムを透光性基板140の第1面141に貼り付ける。なお、光取出層150は有機機能層110を形成した後、最後に透光性基板140の第2面142に設けても良い。 FIG. 6 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIG. First, as illustrated in FIG. 6A, the light extraction layer 150 is formed on the second surface 142 of the translucent substrate 140. When the light extraction layer 150 is a film, this film is attached to the first surface 141 of the translucent substrate 140. The light extraction layer 150 may be provided on the second surface 142 of the translucent substrate 140 lastly after the organic functional layer 110 is formed.
 次いで、透光性基板140の第1面141にマスクパターン(例えばレジストパターン)を形成し、このマスクパターンをマスクとして第1面141をエッチング(例えばウェットエッチング)する。これにより、透光性基板140には凹部144が形成される。なお、凹部144は、ショットブラスト(例えばサンドブラスト)により形成されても良い。また透光性基板140を変形可能な温度まで加熱した後に、型(例えばカーボン製)を押し付けることにより、凹部144を形成しても良い。 Next, a mask pattern (for example, a resist pattern) is formed on the first surface 141 of the translucent substrate 140, and the first surface 141 is etched (for example, wet etching) using the mask pattern as a mask. As a result, a recess 144 is formed in the translucent substrate 140. The concave portion 144 may be formed by shot blasting (for example, sand blasting). Alternatively, the concave portion 144 may be formed by pressing the mold (for example, made of carbon) after heating the translucent substrate 140 to a deformable temperature.
 次いで、図6(b)に示すように、凹部144内に光角度変更部160を形成する。光角度変更部160は、例えば以下の方法により形成される。 Next, as shown in FIG. 6 (b), the light angle changing portion 160 is formed in the recess 144. The light angle changing unit 160 is formed by the following method, for example.
 まず、凹部144内に導電性ペーストを、例えばスクリーン印刷法を用いて充填する。導電性ペーストの充填方法は、ディスペンサーを用いた方法やインクジェット法であってもよい。次いで、導電性ペーストを加熱し、乾燥させる。これにより、光角度変更部160が形成される。 First, a conductive paste is filled in the recess 144 using, for example, a screen printing method. The method of filling the conductive paste may be a method using a dispenser or an ink jet method. Next, the conductive paste is heated and dried. Thereby, the light angle change part 160 is formed.
 次いで、透光性基板140の第1面141上及び光角度変更部160上に、透光性電極120、有機機能層110、及び電極130を、この順に形成する。透光性電極120及び電極130は、例えばスパッタリング法を用いて形成される。また、有機機能層110は、塗布法又は蒸着法を用いて形成される。 Next, the translucent electrode 120, the organic functional layer 110, and the electrode 130 are formed in this order on the first surface 141 and the light angle changing unit 160 of the translucent substrate 140. The translucent electrode 120 and the electrode 130 are formed using, for example, a sputtering method. The organic functional layer 110 is formed using a coating method or a vapor deposition method.
 以上、実施形態によれば、透光性基板140の第2面142には透光性基板140が設けられているため、有機機能層110の発光層113が発光した光のうち、透光性基板140の第2面142から外部に出射する量は増大する。そして、透光性基板140には光角度変更部160が埋め込まれている。このため、有機機能層110から透光性基板140に入射した光は、第2面142と光取出層150の界面における臨界角満の成分が増える。このため、発光装置10の光取り出し効率は上昇する。 As described above, according to the embodiment, since the translucent substrate 140 is provided on the second surface 142 of the translucent substrate 140, the translucency is included in the light emitted from the light emitting layer 113 of the organic functional layer 110. The amount of light emitted from the second surface 142 of the substrate 140 to the outside increases. A light angle changing unit 160 is embedded in the translucent substrate 140. For this reason, the light incident on the translucent substrate 140 from the organic functional layer 110 increases the critical angle component at the interface between the second surface 142 and the light extraction layer 150. For this reason, the light extraction efficiency of the light emitting device 10 increases.
 また実施形態では、光角度変更部160は、少なくとも透光性電極120と接触する部分が導電性を有している。このため、光角度変更部160を透光性電極120に接続すると、光角度変更部160は透光性電極120の補助電極として機能する。このため、透光性電極120に加わった電圧が透光性電極120の面内で不均一になることを抑制できる。さらに実施形態では、透光性基板140の第1面141に凹部144を形成し、凹部144内に導電性の光角度変更部160を形成している。そして、光角度変更部160及び第1面141上に、透光性電極120を形成している。このため、光角度変更部160を容易に透光性電極120に接続することができる。 Further, in the embodiment, the light angle changing unit 160 has conductivity at least at a portion in contact with the translucent electrode 120. For this reason, when the light angle changing unit 160 is connected to the translucent electrode 120, the light angle changing unit 160 functions as an auxiliary electrode of the translucent electrode 120. For this reason, it can suppress that the voltage applied to the translucent electrode 120 becomes non-uniform in the surface of the translucent electrode 120. Further, in the embodiment, the concave portion 144 is formed on the first surface 141 of the translucent substrate 140, and the conductive light angle changing portion 160 is formed in the concave portion 144. The translucent electrode 120 is formed on the light angle changing unit 160 and the first surface 141. For this reason, the light angle changing unit 160 can be easily connected to the translucent electrode 120.
(実施例1)
 図7は、実施形態で説明した発光装置10の実施例1を示す断面図である。本実施例では、光角度変更部160の断面形状が実施形態と異なる。具体的には、断面視において、光角度変更部160は、三角形の高さ方向の頂点を丸めた構成を有している。すなわち光角度変更部160の側面の少なくとも先端部の角度は、透光性基板140の第2面142に近づくにつれて、第2面142に平行な方向に近づくように変化している。また、凹部144の側面(すなわち光角度変更部160の側面)と透光性基板140の第1面141との接続部は丸まっている。このような形状は、凹部144を形成するときの条件(例えばエッチング条件)を調節することにより、実現できる。なお、凹部144は、御椀型になっていてもよい。
(Example 1)
FIG. 7 is a cross-sectional view illustrating Example 1 of the light-emitting device 10 described in the embodiment. In the present example, the cross-sectional shape of the light angle changing unit 160 is different from that of the embodiment. Specifically, in a cross-sectional view, the light angle changing unit 160 has a configuration in which the vertices in the height direction of the triangle are rounded. That is, the angle of at least the tip of the side surface of the light angle changing unit 160 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140. Further, the connection portion between the side surface of the recess 144 (that is, the side surface of the light angle changing unit 160) and the first surface 141 of the translucent substrate 140 is rounded. Such a shape can be realized by adjusting the conditions (for example, etching conditions) when forming the recess 144. In addition, the recessed part 144 may be a bowl type.
 本実施例においても、実施形態と同様の効果を得ることができる。また、実施形態で説明したように、有機機能層110から透光性基板140に入射した光の一部は、光取出層150や光角度変更部160での反射を繰り返しながら、最後に第2面142と光取出層150の界面の臨界角未満になる。また、光角度変更部160の中央部で光が反射した場合、光取出層150において空気層への取り出し効率が悪くなる角度になることがある。これに対して本実施例では、光角度変更部160の先端部の角度は、透光性基板140の第2面142に近づくにつれて、第2面142に平行な方向に近づくように変化しているため、光角度変更部160の中央部で反射した光が光角度変更部160の先端部に当たることによって、その光の光取出層150に対する入射角を、第2面142と光取出層150の界面の臨界角未満にすることができる。 In this example, the same effect as that of the embodiment can be obtained. Further, as described in the embodiment, a part of the light incident on the translucent substrate 140 from the organic functional layer 110 is repeatedly reflected by the light extraction layer 150 and the light angle changing unit 160, and finally the second It becomes less than the critical angle of the interface between the surface 142 and the light extraction layer 150. In addition, when light is reflected at the center of the light angle changing unit 160, the light extraction layer 150 may have an angle at which the extraction efficiency into the air layer is deteriorated. On the other hand, in the present embodiment, the angle of the tip of the light angle changing unit 160 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140. Therefore, when the light reflected by the central portion of the light angle changing unit 160 strikes the tip of the light angle changing unit 160, the incident angle of the light with respect to the light extraction layer 150 is changed between the second surface 142 and the light extraction layer 150. It can be less than the critical angle of the interface.
(実施例2)
 図8は、実施例2に係る発光装置10の構成を示す断面図であり、図9は実施例2における光角度変更部160と隔壁部170の位置関係を示す平面図である。図8は、図9のA-B断面に対応している。実施例2に係る発光装置10は、隔壁部170を有している。隔壁部170は、透光性基板140の第1面141に設けられており、有機機能層110を複数の領域に分割している。隣り合う領域の有機機能層110は、同一のスペクトルを有する光を発光してもよいし、互いに異なるスペクトルを有する光(例えば互いに異なる色の光)を発光してもよい。後者の場合、発光装置10は、白色の光を生成するために必要な複数の色を発光する複数の領域を有している。例えば発光装置10は、青色の光を発光する領域、赤色の光を発光する領域、及び緑色の光を発光する領域を有している。
(Example 2)
FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment. FIG. 9 is a plan view illustrating a positional relationship between the light angle changing unit 160 and the partition wall 170 in the second embodiment. FIG. 8 corresponds to the cross section AB of FIG. The light emitting device 10 according to Example 2 has a partition wall 170. The partition wall 170 is provided on the first surface 141 of the translucent substrate 140 and divides the organic functional layer 110 into a plurality of regions. The organic functional layers 110 in the adjacent regions may emit light having the same spectrum, or may emit light having different spectra (for example, light of different colors). In the latter case, the light emitting device 10 has a plurality of regions that emit a plurality of colors necessary for generating white light. For example, the light emitting device 10 includes a region that emits blue light, a region that emits red light, and a region that emits green light.
 そして、光角度変更部160は、平面視で隔壁部170と重なる位置に設けられている。詳細には、光角度変更部160は、平面視で隔壁部170の内側に設けられている。このため、平面視で光角度変更部160と重なる部分には、有機機能層110が設けられていない。 And the light angle changing part 160 is provided in the position which overlaps with the partition part 170 by planar view. Specifically, the light angle changing unit 160 is provided inside the partition wall 170 in plan view. For this reason, the organic functional layer 110 is not provided in a portion overlapping the light angle changing unit 160 in plan view.
 本実施例に係る発光装置10の製造方法は、透光性電極120を形成した後、有機機能層110を形成する前に、隔壁部170を形成する点を除いて、実施形態に示した発光装置10の製造方法と同様である。隔壁部170は、例えばポリイミド膜を形成した後、露光及び現像を行うことにより、形成される。 The manufacturing method of the light emitting device 10 according to this example is the light emission shown in the embodiment except that the partition wall 170 is formed before the organic functional layer 110 is formed after forming the translucent electrode 120. This is the same as the manufacturing method of the device 10. The partition wall 170 is formed, for example, by performing exposure and development after forming a polyimide film.
 本実施例においても、実施形態に示した効果を得ることができる。また、透光性基板140の第1面141に光角度変更部160を設けた場合、平面視において、透光性基板140の第1面141のうち光が入射する領域が小さくなる。これに対して本実施例では、発光装置10が隔壁部170を有している場合、光角度変更部160を平面視で隔壁部170と重ねている。透光性基板140のうち隔壁部170が設けられている領域は、有機機能層110を設けることができないため、もともと入射する光の量は少ない。このため、光角度変更部160を追加したことが原因で、透光性基板140の第1面141のうち光が入射する領域が小さくなることを、抑制できる。 Also in this embodiment, the effects shown in the embodiment can be obtained. In addition, when the light angle changing unit 160 is provided on the first surface 141 of the translucent substrate 140, a region where light is incident on the first surface 141 of the translucent substrate 140 is reduced in plan view. On the other hand, in this embodiment, when the light emitting device 10 includes the partition wall 170, the light angle changing unit 160 is overlapped with the partition wall 170 in plan view. Since the organic functional layer 110 cannot be provided in a region where the partition wall 170 is provided in the translucent substrate 140, the amount of incident light is originally small. For this reason, it can suppress that the area | region in which light injects among the 1st surfaces 141 of the translucent board | substrate 140 becomes small because the light angle change part 160 was added.
(実施例3)
 図10は、実施例3に係る発光装置10の構成を示す断面図である。実施例3に係る発光装置10は、透光性電極120が透光性基板140の第1面141上及び凹部144の内壁に沿って連続して形成されている。そして、光角度変更部160は、凹部144内の透光性電極120上に形成されている。すなわち、光角度変更部160は、側面で透光性電極120に接続している。
(Example 3)
FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third embodiment. In the light emitting device 10 according to Example 3, the translucent electrode 120 is continuously formed on the first surface 141 of the translucent substrate 140 and along the inner wall of the recess 144. The light angle changing unit 160 is formed on the translucent electrode 120 in the recess 144. That is, the light angle changing unit 160 is connected to the translucent electrode 120 on the side surface.
 図11は、図10に示した発光装置10の製造方法を示す断面図である。本実施例に係る発光装置10の製造方法は、凹部144を形成するまでの工程は、実施形態で説明した発光装置10の製造方法と同様である。 FIG. 11 is a cross-sectional view showing a method for manufacturing the light emitting device 10 shown in FIG. The manufacturing method of the light emitting device 10 according to the present example is the same as the manufacturing method of the light emitting device 10 described in the embodiment until the recess 144 is formed.
 図11(a)に示したように、透光性基板140の第1面141に凹部144を形成した後、第1面141の上面及び凹部144に沿って、透光性電極120を形成する。透光性電極120の形成方法は、実施形態で説明した通りである。 As shown in FIG. 11A, after forming the recess 144 on the first surface 141 of the translucent substrate 140, the translucent electrode 120 is formed along the upper surface of the first surface 141 and the recess 144. . The method for forming the translucent electrode 120 is as described in the embodiment.
 次いで、図11(b)に示すように、凹部144内の透光性電極120上に、光角度変更部160を形成する。光角度変更部160の形成方法も、実施形態で説明した通りである。 Next, as shown in FIG. 11B, the light angle changing portion 160 is formed on the translucent electrode 120 in the recess 144. The method of forming the light angle changing unit 160 is also as described in the embodiment.
 その後の工程は、実施形態と同様である。 The subsequent steps are the same as in the embodiment.
 本実施例によっても、実施形態と同様の効果を得ることができる。また、透光性電極120を凹部144に沿って形成しているため、透光性電極120と光角度変更部160の接触面積を大きくすることができる。従って、透光性電極120と光角度変更部160の接続抵抗を小さくすることができる。 Also in this example, the same effect as in the embodiment can be obtained. Moreover, since the translucent electrode 120 is formed along the recess 144, the contact area between the translucent electrode 120 and the light angle changing unit 160 can be increased. Therefore, the connection resistance between the translucent electrode 120 and the light angle changing unit 160 can be reduced.
(実施例4)
 図12は、実施例4に係る発光装置10の光角度変更部160のレイアウトを示す平面図であり、実施形態における図3に対応している。本実施例において、光角度変更部160は、直線状に延在しているものの他に、ドット状に形成されているものもある。光角度変更部160のうちドット状に形成されたものは、隣り合う直線状の光角度変更部160の間に、千鳥状に配置されている。ただし、ドット状の光角度変更部160のレイアウトは、本図に示す例に限定されない。なお、ドット状の光角度変更部150は、角錐形状であっても良いし円錐形状であっても良い。
Example 4
FIG. 12 is a plan view showing a layout of the light angle changing unit 160 of the light emitting device 10 according to Example 4, and corresponds to FIG. 3 in the embodiment. In the present embodiment, the light angle changing unit 160 may be formed in a dot shape in addition to the one extending linearly. Among the light angle changing units 160, those formed in a dot shape are arranged in a staggered manner between the adjacent linear light angle changing units 160. However, the layout of the dot-shaped light angle changing unit 160 is not limited to the example shown in this figure. The dot-shaped light angle changing unit 150 may have a pyramid shape or a cone shape.
 本実施例によっても、実施形態と同様の効果を得ることができる。また、直線状の光角度変更部160の間に、ドット状の光角度変更部160を配置しているため、直線状の光角度変更部160と平行な方向に光が入射した場合であっても、実施形態と同様の作用が生じる。このため、さらに発光装置10の光取り出し効率を高めることができる。 Also in this example, the same effect as in the embodiment can be obtained. In addition, since the dot-shaped light angle changing unit 160 is disposed between the linear light angle changing units 160, the light is incident in a direction parallel to the linear light angle changing unit 160. Also, the same operation as in the embodiment occurs. For this reason, the light extraction efficiency of the light emitting device 10 can be further increased.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (10)

  1.  少なくとも発光層を含む有機機能層と、
     前記有機機能層の一面に対向しており、前記発光層が発光した光を透過させる透光性電極と、
     前記透光性電極のうち前記有機機能層に面する面とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させる透光性基板と、
     前記透光性基板の前記第1面とは逆側の面である第2面に設けられ、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層と、
     前記透光性基板の中に設けられており、前記第1面から前記透光性基板に入射した光の前記光取出層への入射角度を小さくする光角度変更部と、
    を備える発光装置。
    An organic functional layer including at least a light emitting layer;
    A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer;
    A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer;
    Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside. The extraction layer,
    A light angle changing unit that is provided in the light transmissive substrate and reduces an incident angle of light incident on the light transmissive substrate from the first surface to the light extraction layer;
    A light emitting device comprising:
  2.  請求項1に記載の発光装置において、
     前記光角度変更部は、
      平面視で線状に延在しており、
      断面視で一部が前記透光性電極に接しており、
      少なくとも前記透光性電極に接している部分が導電性を有している発光装置。
    The light-emitting device according to claim 1.
    The light angle changing unit is
    It extends linearly in plan view,
    A part is in contact with the translucent electrode in cross-sectional view,
    A light emitting device in which at least a portion in contact with the translucent electrode has conductivity.
  3.  請求項2に記載の発光装置において、
     前記光角度変更部は、前記透光性基板の前記第1面に埋め込まれており、
     前記透光性電極は、前記透光性基板の前記第1面上及び前記光角度変更部上に連続して形成されている発光装置。
    The light-emitting device according to claim 2.
    The light angle changing unit is embedded in the first surface of the translucent substrate,
    The translucent electrode is a light emitting device formed continuously on the first surface of the translucent substrate and on the light angle changing unit.
  4.  請求項2に記載の発光装置において、
     前記透光性基板は、前記第1面に凹部を有しており、
     前記透光性電極は、前記凹部の内面を含めて前記透光性基板に沿って形成されており、
     前記光角度変更部は、前記凹部内の前記透光性電極上に設けられている発光装置。
    The light-emitting device according to claim 2.
    The translucent substrate has a recess in the first surface;
    The translucent electrode is formed along the translucent substrate including the inner surface of the recess,
    The light angle changing unit is a light emitting device provided on the translucent electrode in the recess.
  5.  請求項2~4のいずれか一項に記載の発光装置において、
     前記光角度変更部は、導電性材料により形成されている発光装置。
    The light emitting device according to any one of claims 2 to 4,
    The light angle changing unit is a light emitting device formed of a conductive material.
  6.  請求項1~4のいずれか一項に記載の発光装置において、
     断面視で、前記光角度変更部の少なくとも先端部の角度は、前記透光性基板の前記第2面に近づくにつれて、前記第2面に平行な方向に近づくように変化している発光装置。
    The light emitting device according to any one of claims 1 to 4,
    In a cross-sectional view, a light emitting device in which at least the angle of the tip of the light angle changing portion changes so as to approach a direction parallel to the second surface as it approaches the second surface of the translucent substrate.
  7.  請求項1~4のいずれか一項に記載の発光装置において、
     前記透光性基板の前記第1面に設けられ、前記有機機能層を複数の領域に分割する隔壁部を備え、
     前記光角度変更部は、平面視で前記隔壁部と重なる位置に設けられている発光装置。
    The light emitting device according to any one of claims 1 to 4,
    Provided on the first surface of the translucent substrate, and comprising a partition portion that divides the organic functional layer into a plurality of regions,
    The light angle changing unit is a light emitting device provided at a position overlapping the partition in a plan view.
  8.  少なくとも発光層を含む有機機能層と、
     前記有機機能層の一面に対向しており、前記発光層が発光した光を透過させる透光性電極と、
     前記透光性電極のうち前記有機機能層に面する面とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させる透光性基板と、
     前記透光性基板の前記第1面とは逆側の面である第2面に設けられ、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層と、
     前記透光性基板の中に設けられており、側面の少なくとも一部が前記光取出層に面する方向に傾斜しており、前記側面で光を反射する光角度変更部と、
    を備える発光装置。
    An organic functional layer including at least a light emitting layer;
    A translucent electrode facing one surface of the organic functional layer and transmitting light emitted by the light emitting layer;
    A first substrate facing a surface of the translucent electrode opposite to the surface facing the organic functional layer, and a translucent substrate that transmits light emitted by the light emitting layer;
    Light that is provided on a second surface that is opposite to the first surface of the translucent substrate and that emits a part of light having an angle greater than or equal to the critical angle of the translucent substrate to the outside. The extraction layer,
    A light angle changing unit that is provided in the light-transmitting substrate, is inclined in a direction in which at least a part of a side surface faces the light extraction layer, and reflects light on the side surface;
    A light emitting device comprising:
  9.  第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第2面に、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層を設ける工程と、
     前記透光性基板の前記第1面に凹部を形成する工程と、
     前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
     前記第2面及び前記光角度変更部に、透光性電極を形成する工程と、
     前記透光性電極に、少なくとも発光層を含む有機機能層を形成する工程と、
    を備える発光装置の製造方法。
    One light having an angle greater than or equal to the critical angle outside the translucent substrate is formed on the second surface of the translucent substrate having a first surface and a second surface opposite to the first surface. Providing a light extraction layer for emitting the part to the outside;
    Forming a recess in the first surface of the translucent substrate;
    Forming a light angle changing unit that reduces an incident angle of light incident on the light-transmissive substrate from the first surface to the second surface by embedding a conductive material in the concave portion;
    Forming a translucent electrode on the second surface and the light angle changing unit;
    Forming an organic functional layer including at least a light emitting layer on the translucent electrode;
    A method for manufacturing a light emitting device.
  10.  第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第2面に、前記透光性基板と外部の臨界角以上の角度の光の一部を当該外部に出射させる光取出層を設ける工程と、
     前記透光性基板の前記第1面に、凹部を形成する工程と、
     前記第1面及び前記凹部の内面に沿って、透光性電極を形成する工程と、
     前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
     前記透光性電極に、少なくとも発光層を含む有機機能層を形成する工程と、
    を備える発光装置の製造方法。
    One light having an angle greater than or equal to the critical angle outside the translucent substrate is formed on the second surface of the translucent substrate having a first surface and a second surface opposite to the first surface. Providing a light extraction layer for emitting the part to the outside;
    Forming a recess in the first surface of the translucent substrate;
    Forming a translucent electrode along the inner surface of the first surface and the recess;
    Forming a light angle changing unit that reduces an incident angle of light incident on the light-transmissive substrate from the first surface to the second surface by embedding a conductive material in the concave portion;
    Forming an organic functional layer including at least a light emitting layer on the translucent electrode;
    A method for manufacturing a light emitting device.
PCT/JP2012/077725 2012-10-26 2012-10-26 Light emitting device, and manufacturing method for light emitting device WO2014064833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077725 WO2014064833A1 (en) 2012-10-26 2012-10-26 Light emitting device, and manufacturing method for light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077725 WO2014064833A1 (en) 2012-10-26 2012-10-26 Light emitting device, and manufacturing method for light emitting device

Publications (1)

Publication Number Publication Date
WO2014064833A1 true WO2014064833A1 (en) 2014-05-01

Family

ID=50544226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077725 WO2014064833A1 (en) 2012-10-26 2012-10-26 Light emitting device, and manufacturing method for light emitting device

Country Status (1)

Country Link
WO (1) WO2014064833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478604A (en) * 2016-06-03 2019-03-15 康宁股份有限公司 Light extraction means and method for OLED display and the OLED display using the light extraction means and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045643A (en) * 2001-07-30 2003-02-14 Nec Corp Luminescent element and display device
JP2007073305A (en) * 2005-09-06 2007-03-22 Harison Toshiba Lighting Corp Organic el light emitting device and manufacturing method of the same
JP2007080579A (en) * 2005-09-12 2007-03-29 Toyota Industries Corp Surface light emitting device
JP2009004348A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Spontaneous emission display, transparent conductive film, method for manufacturing transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045643A (en) * 2001-07-30 2003-02-14 Nec Corp Luminescent element and display device
JP2007073305A (en) * 2005-09-06 2007-03-22 Harison Toshiba Lighting Corp Organic el light emitting device and manufacturing method of the same
JP2007080579A (en) * 2005-09-12 2007-03-29 Toyota Industries Corp Surface light emitting device
JP2009004348A (en) * 2006-09-28 2009-01-08 Fujifilm Corp Spontaneous emission display, transparent conductive film, method for manufacturing transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478604A (en) * 2016-06-03 2019-03-15 康宁股份有限公司 Light extraction means and method for OLED display and the OLED display using the light extraction means and method

Similar Documents

Publication Publication Date Title
CN104617124B (en) Organic light emitting diode display
JP6186377B2 (en) Light emitting device
WO2016042638A1 (en) Light emitting device
US20130234590A1 (en) Display device and method for manufacturing the same
JP2019110118A (en) Organic light-emitting display device
JP2012221811A (en) Display device
KR101579457B1 (en) Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
WO2014064833A1 (en) Light emitting device, and manufacturing method for light emitting device
WO2013190781A1 (en) Light emitting panel
JP6463354B2 (en) Light emitting device
JP2012009254A (en) Lighting apparatus and manufacturing method thereof
WO2014064832A1 (en) Light emitting device, and manufacturing method for light emitting device
WO2014064834A1 (en) Light emitting device, and manufacturing method for light emitting device
WO2014064835A1 (en) Light emitting device, and manufacturing method for light emitting device
JP2016164898A (en) Light emitting device
JP6479106B2 (en) Light emitting device
JP6457065B2 (en) Light emitting device
JP2016082101A (en) Light-emitting device
JP6164982B2 (en) Light emitting device
JP6259613B2 (en) Light emitting device
WO2017221424A1 (en) Light emitting device
CN215815917U (en) Light emitting device with microstructures
WO2017119068A1 (en) Light emitting device
WO2013186916A1 (en) Organic electroluminescence device
WO2013161001A1 (en) Organic el light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887025

Country of ref document: EP

Kind code of ref document: A1