WO2014054434A1 - Engine starting device mounted on vehicle provided with motor generator and decompression device - Google Patents

Engine starting device mounted on vehicle provided with motor generator and decompression device Download PDF

Info

Publication number
WO2014054434A1
WO2014054434A1 PCT/JP2013/075452 JP2013075452W WO2014054434A1 WO 2014054434 A1 WO2014054434 A1 WO 2014054434A1 JP 2013075452 W JP2013075452 W JP 2013075452W WO 2014054434 A1 WO2014054434 A1 WO 2014054434A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
compression stroke
decompression
cylinder
starting
Prior art date
Application number
PCT/JP2013/075452
Other languages
French (fr)
Japanese (ja)
Inventor
永田 孝一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201380051534.0A priority Critical patent/CN104718362B/en
Publication of WO2014054434A1 publication Critical patent/WO2014054434A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vehicle engine starter, and more particularly to an engine starter mounted on a vehicle including a motor generator and a decompression device.
  • the engine starting device disclosed in Japanese Patent Application Laid-Open No. 2002-332938 is configured to prepare for the next engine start by reversing the crankshaft to a predetermined position after the engine is stopped.
  • this apparatus is configured to be able to execute decompression (forcing the exhaust valve to be opened at the time of engine start to suppress an increase in in-cylinder pressure during the compression stroke). According to such a configuration, good startability is ensured even when a small starter motor having a small maximum generated torque is employed.
  • the reverse rotation torque applied to the crankshaft may be transmitted to the drive wheels during reverse rotation of the crankshaft (hereinafter referred to as “swing back”) prior to engine start.
  • wing back reverse rotation of the crankshaft
  • idling stops have been adopted in motorcycles.
  • a so-called alternator type starter is sometimes used to realize smooth engine start and start from an idling stop state.
  • This alternator type starter ie, ACG starter
  • ACG starter serves as both a starter motor and an alternator.
  • ACG starter it is necessary for the ACG starter when starting the engine in order to further improve fuel efficiency by reducing the weight of the vehicle and to apply it to an engine with a larger displacement.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an engine starter having further improved startability compared to the prior art.
  • the engine starter of the present invention is configured to start an engine (this engine is mounted on a vehicle and has at least one cylinder).
  • the engine starter includes a motor generator and a decompression device.
  • the motor generator is directly coupled to the crankshaft in the engine. That is, the motor generator and the crankshaft are coupled so that transmission of the rotational driving force cannot be cut off.
  • the motor generator functions as a generator by the rotational driving force generated at the crankshaft after the engine is started, and at the time of starting the engine, the crankshaft is rotated in the same direction as after the engine is started. By doing so, it is also configured to function as a starting motor.
  • the decompression device is configured to perform decompression (releasing the air in the cylinder during the compression stroke to the outside of the cylinder) when the engine is started.
  • a feature of the present invention lies in that the decompression device is configured to operate as follows: In an initial compression stroke (a compression stroke that first occurs after starting the motor generator for starting the engine) Thus, even if fuel is sucked into the cylinder that reaches the initial compression stroke, the decompression is performed so that air in the cylinder is released to the extent that the first explosion is impossible. . On the other hand, during the target initial explosion compression stroke (compression stroke that reaches a predetermined number of times after the initial compression stroke), the air in the cylinder is not released to the extent that the first explosion is impossible. End the compression.
  • the “first explosion” means that after the motor generator for starting the engine is started, an explosion (fuel combustion) that can form an effective expansion stroke is first performed in the cylinder. It means to occur.
  • the crankshaft is rotated to such an extent that the initial explosion can be reached in the compression stroke while overcoming the compression stroke without performing decompression.
  • the inertial force due to the above that is, the angular speed (rotational speed) of the crankshaft is increased. Therefore, the decompression device reaches the target initial explosion compression stroke (the compression stroke that reaches a predetermined number of times after the initial compression stroke: in other words, the compression stroke that first attempts ignition combustion after the start of cranking by the motor generator).
  • the decompression is terminated so that the air in the cylinder is not released to the extent that the first explosion is impossible in the cylinder. Thereby, a quick start is realizable.
  • the startability of the engine is further improved as compared with the related art.
  • the engine can be started satisfactorily regardless of the position of the piston at the start of cranking by the motor generator without performing the swing back as described above at the time of starting. Therefore, a smooth start without giving a sense of incongruity to a vehicle (especially a motorcycle) occupant can be realized.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which an embodiment of the present invention is applied.
  • the figure which shows the internal structure of the engine shown by FIG. The schematic block diagram of the system for controlling the driving
  • movement by the decompression apparatus shown by FIG. The time chart at the time of engine starting in the system shown by FIG.
  • a motorcycle 1 corresponding to the vehicle of the present invention is provided with a front wheel 1a and a rear wheel 1b which is a drive wheel.
  • the motorcycle 1 includes an engine 2, a power transmission mechanism 3, and an engine control device 4.
  • the engine control device 4 is provided under the seat 5.
  • the engine 2 is configured as a so-called “single cylinder engine” having one cylinder 20.
  • a piston 21 is accommodated in the cylinder 20 so as to be able to reciprocate along the central axis of the cylinder 20.
  • the piston 21 is connected to the crankshaft 22 via a connecting rod 23.
  • the motor generator 24 is a so-called ACG starter that serves as both a starter motor and an AC generator (alternator).
  • the motor generator 24 is coupled to the crankshaft 22 so that transmission of rotational driving force cannot be interrupted. That is, the rotor 24a of the motor generator 24 is directly connected to the crankshaft 22 (fixed to one end of the crankshaft 22 so that the rotational driving force is always transmitted between the motor generator 24 and the crankshaft 22. )
  • the motor generator 24 functions as a generator by the rotational driving force generated in the crankshaft 22 after the engine 2 is started, and rotates the crankshaft 22 in the same direction as after the engine 2 is started when the engine 2 is started. It is configured to function as a starting motor when driven.
  • the motor generator 24 has a three-phase brushless motor structure.
  • the intake system 25 is configured to supply a fuel mixture into the cylinder 20.
  • the intake pipe 25a is connected to the cylinder 20 via the intake port 25b.
  • An air cleaner 25c is attached to the most upstream portion of the intake pipe 25a in the intake air flow direction.
  • a throttle valve 25d is provided downstream of the air cleaner 25c in the intake air flow direction.
  • the throttle valve 25d is configured to be able to adjust the passage cross-sectional area (flow passage area) in the intake pipe 25a according to the opening.
  • the throttle valve 25d is connected to a throttle valve actuator (not shown) so that the opening degree is electrically controlled by the engine control device 4.
  • An injector 25e is provided downstream of the throttle valve 25d in the intake air flow direction.
  • the injector 25e is configured and arranged to inject fuel toward the intake port 25b by being electromagnetically driven.
  • the engine 2 is provided with an intake valve 25f for opening and closing an opening of the intake port 25b (a communication port with the cylinder 20).
  • the intake valve 25f is controlled to be opened and closed by an intake valve mechanism 25g.
  • the intake valve mechanism 25g includes an intake camshaft (not shown) and the like, and appropriately changes the opening and closing timing of the intake valve 25f and the valve opening lift amount according to the operating state of the engine 2. It is configured to be possible.
  • the exhaust system 26 is configured to discharge the gas discharged from the cylinder 20 to the outside.
  • the exhaust pipe 26a is connected to the cylinder 20 via the exhaust port 26b.
  • the engine 2 is provided with an exhaust valve 26f for opening and closing an opening of the exhaust port 26b (a communication port with the cylinder 20).
  • the exhaust valve 26f is opened and closed according to the rotational phase of the exhaust cam 26g.
  • the exhaust cam 26g is fixed to the exhaust camshaft 26h.
  • the exhaust valve 26f has an opening and closing timing and an opening lift amount of the engine 2 by an exhaust valve mechanism (including an exhaust cam 26g, an exhaust cam shaft 26h, and other members not shown). It is appropriately changed according to the operating state.
  • the ignition plug 27 is attached to the engine 2. An electrode part for generating spark discharge is formed at the tip of the spark plug 27.
  • the spark plug 27 is provided in the combustion chamber (including the end portion on the top dead center side of the piston 21 in the cylinder 20) so that the above-described electrode portion is exposed.
  • the spark plug 27 is electrically connected to an ignition device 27a including an ignition coil and the like.
  • the ignition device 27a energizes the ignition plug 27 (applies a high voltage), thereby generating a spark discharge at the above-described electrode portion of the ignition plug 27.
  • the engine 2 is provided with a decompression device 28.
  • the decompression device 28 is configured to perform decompression when the engine 2 is started.
  • “decompression” in the present embodiment means that the exhaust valve 26f is opened during the compression stroke and the air in the cylinder 20 is released toward the exhaust port 26b and the exhaust pipe 26a. The increase in the in-cylinder pressure (pressure in the cylinder 20) is suppressed. Decompression is performed based on a predetermined control amount, that is, the decompression amount.
  • the decompression device 28 includes a decompression pin 28a and an actuator 28b.
  • the actuator 28b made of an electromagnetic solenoid
  • the decompression pin 28a is located between the base end portion (tapet) of the exhaust valve 26f and the exhaust cam 26g at a position opposite to the cam lift portion of the exhaust cam 26g.
  • the exhaust valve 26 f that should be originally closed can be forcibly opened (the basic configuration of such a decompression device 28 is (For example, see JP-A-2005-76620).
  • FIG. 4 is a graph showing the state of the decompression operation by the decompression device, in which the vertical axis represents cranking torque and the horizontal axis represents crank angle.
  • the solid line shows the cranking torque diagram during normal operation (when decompression is not performed), and the dotted line shows the cranking torque diagram when decompression is performed (the crank angle in the dotted line diagram is The range from about 120 degrees to about 620 degrees overlaps the solid line (the “target stop position” in the figure will be described later).
  • the fuel vapor is introduced into the cylinder 20 by the operation of the injector 25e, and the cylinder 20 is operated by the operation of the ignition plug 27 and the ignition device 27a.
  • the increase in in-cylinder pressure during the compression stroke is suppressed by decompression to the extent that the first explosion is impossible even if ignition combustion is attempted (specifically, the maximum in-cylinder pressure during non-combustion is undecompressed)
  • the forced opening amount (decompression amount) of the exhaust valve 26f by the decompression pin 28a is set so that the cranking torque will be at least 40% or less of the normal time when it becomes 20% or less of the hour) Yes.
  • the power transmission mechanism 3 is configured to transmit the rotational driving force of the crankshaft 22 generated by the operation of the engine 2 to the rear wheel 1b (see FIG. 1).
  • the power transmission mechanism 3 includes an output shaft 31 and a clutch 32.
  • the output shaft 31 is connected to the crankshaft 22 via the clutch 32.
  • the clutch 32 is configured to be able to switch between transmission and interruption of the rotational driving force between the crankshaft 22 and the output shaft 31.
  • a one-way clutch mechanism is provided in the clutch 32.
  • the engine 2 (including the intake system 25 and the exhaust system 26) is equipped with various sensors in order to construct a system for controlling the operation of the engine 2.
  • the engine 2 is provided with an intake air temperature sensor 61, an intake air pressure sensor 62, a throttle opening sensor 63, a coolant temperature sensor 64, a crank angle sensor 65, a cam position sensor 66, a motor rotation angle sensor 67, and the like. It has been.
  • the intake air temperature sensor 61 is attached to the air cleaner 25c.
  • the intake air temperature sensor 61 is configured to generate an output corresponding to the temperature of intake air flowing through the air cleaner 25c.
  • the intake pressure sensor 62 is configured and arranged to generate an output corresponding to the pressure in the intake pipe 25a on the downstream side of the throttle valve 25d.
  • the throttle opening sensor 63 is configured and arranged to generate an output corresponding to the opening of the throttle valve 25d.
  • the coolant temperature sensor 64 is attached to the cylinder block of the engine 2.
  • the cooling water temperature sensor 64 is configured to generate an output corresponding to the cooling water temperature in the engine 2.
  • the crank angle sensor 65 is disposed so as to face the crankshaft 22.
  • the crank angle sensor 65 has a signal having a narrow pulse generated every time the crankshaft 22 rotates 10 degrees and a wide pulse generated every time the crankshaft 22 rotates 360 degrees (this signal is an engine control device). 4 is converted into an engine rotational speed NE).
  • the cam position sensor 66 outputs a signal having a narrow pulse generated every time the intake camshaft rotates 5 degrees and a wide pulse generated every 360 degrees of the intake camshaft.
  • the motor rotation angle sensor 67 includes Hall elements provided corresponding to the U phase, V phase, and W phase in the motor generator 24, respectively, and the rotation phase of the rotor 24a in the motor generator 24, that is, the rotation phase of the crankshaft 22 is determined. It is configured to be detectable.
  • the engine control device 4 is a so-called microcomputer including a CPU, a ROM, a RAM, an interface, and the like.
  • the engine control device 4 includes various operation units such as a motor generator 24, a throttle valve 25d, and an injector 25e, various sensors including the intake air temperature sensor 61 to the motor rotation angle sensor 67, and a driver (not shown). It is electrically connected to an operation unit (such as an ignition switch or a starter switch) via the above-described interface.
  • the engine control device 4 is configured to control the operation of each part of the engine 2 in accordance with the outputs of various sensors including the intake air temperature sensor 61 and the like, and the operation state of the operation part.
  • the engine control device 4 temporarily stops the engine 2 when the predetermined idling stop condition is satisfied (also controls the stop position of the piston 21 at this time), A so-called idling stop control is performed in which the engine 2 is restarted when a predetermined idling stop cancellation condition is satisfied.
  • the engine control device 4 includes a valve control unit 401, a fuel injection control unit 402, an ignition control unit 403, a motor control unit 404, and other control units (not shown).
  • the valve control unit 401 controls the operation of a mechanism unit (including the intake valve mechanism 25g, the above-described exhaust valve mechanism, and the decompression device 28) for opening and closing the intake valve 25f and the exhaust valve 26f. It is like that.
  • the fuel injection control unit 402 controls the operation of the injector 25e.
  • the ignition control unit 403 controls the operation of the ignition device 27a.
  • the motor control unit 404 controls the operation of the motor generator 24.
  • the engine control device 4 is configured as an ASIC (Application Specific Integrated Circuit). That is, the valve operating control unit 401 and the like are mounted on the ASIC as a hardware circuit module separate from a CPU (not shown).
  • ASIC Application Specific Integrated Circuit
  • valve control unit 401 is the first time when the engine 2 is started (including the first start of the engine 2 after the ignition switch is turned on and the restart of the engine 2 under the idling stop control).
  • the operation of the decompression device 28 (actuator 28b) is controlled so that the decompression is performed in the compression stroke while the decompression is not performed in the target initial explosion compression stroke.
  • the “first compression stroke” is a compression stroke that is first reached after the motor generator 24 for starting the engine 2 is started (after cranking is started by the motor generator 24).
  • target initial explosion compression stroke is a compression stroke that is reached immediately after the initial compression stroke.
  • the fuel injection control unit 402 is configured to control the operation of the injector 25e so that fuel injection is started from the target initial explosion intake stroke while fuel injection is not performed before the target initial explosion intake stroke.
  • the “target initial explosion intake stroke” is the intake stroke immediately before the target initial explosion compression stroke.
  • the ignition control unit 403 starts generation of spark discharge by the spark plug 27 from the target initial explosion compression stroke, while preventing ignition from occurring before the target initial explosion compression stroke. That is, the operation of the spark plug 27 is controlled.
  • FIG. 5 is a time chart when the engine is started in the system shown in FIG.
  • the horizontal axis indicates the passage of time.
  • ACG indicates the motor generator 24.
  • NE indicates the engine rotation speed.
  • the parentheses indicate the operation state (ON / OFF) of the starter switch that is operated when the engine 2 is started for the first time after the ignition switch is turned on (therefore, this is under idling stop control). It is irrelevant in the case of restarting).
  • the crank angle (the rotational phase of the crankshaft 22, that is, the position of the piston 21) becomes the “target stop position” shown in FIG. 4.
  • stop control of the engine 2 is performed (see, for example, Japanese Patent Application Laid-Open No. 2007-231786).
  • This target stop position is set in the vicinity immediately after the compression top dead center is exceeded so that the approaching rotation distance can be sufficiently obtained at the time of restart.
  • crank angle is usually near the target stop position at the start of cranking by the motor generator 24 for restarting the engine 2 under idling stop control.
  • the crankshaft 22 is given sufficient rotational inertia force by cranking. For this reason, in this case, it is considered that the piston 21 can successfully overcome the initial compression stroke without performing decompression.
  • crank angle is not necessarily the target It is not always near the stop position. Therefore, in an extreme example, cranking may be started immediately before the compression top dead center as shown by a two-dot chain line in the figure. Further, even when the engine 2 is restarted under the idling stop control, the running rotation distance may not be sufficiently obtained due to an error in the stop position control. Furthermore, even if the cranking is from the vicinity of the target stop position, the inertia of the small and light motor generator 24 is sufficient to overcome the initial compression stroke due to the increase in inertia caused by the large displacement. It can be difficult.
  • the initial compression is performed after cranking is started by starting energization of the motor generator 24 (based on starter switch ON operation or establishment of a predetermined idling stop release condition). Until the stroke is over, decompression is performed so that the in-cylinder pressure is sufficiently lowered to the extent that the first explosion is impossible in the first compression stroke. As a result, the cranking torque is favorably reduced (see the dotted line in FIG. 4). Therefore, even if swingback is not performed, the initial compression stroke (compression top dead center) can be successfully overcome regardless of the crank angle at the start of cranking.
  • the angular speed of the crankshaft 22 is 800 revolutions per minute due to strong cranking by the motor generator 24. It rapidly rises to the extent corresponding to the number of revolutions.
  • the inertial force due to the rotation of the crankshaft 22 rises to such an extent that the first explosion can be satisfactorily overcome the compression stroke even without decompression. Therefore, in the present embodiment, the decompression is completed so that the air in the cylinder 20 is not released to the extent that the first explosion is impossible during the target initial explosion compression stroke.
  • the initial explosion is successfully realized in the target initial explosion compression stroke, which is the next compression stroke of the first compression stroke, and thus the engine 2 can be quickly (re-) started (“Next” in FIG. 5).
  • the ACG rotation speed after turning off the ACG energization in the “cycle” corresponds to the idling rotation speed of the engine 2). It should be noted that the decompression can be canceled (terminated) even when the decompression is completely released or in the middle of the cancellation at the first explosion in the compression process.
  • the fuel injection is controlled by the engine control device 4 so that the fuel injection is started from the target initial explosion intake stroke while the fuel injection is not performed before the target initial explosion intake stroke. .
  • the spark discharge by the spark plug 27 starts from the target initial explosion compression stroke, while the engine control device 4 causes the ignition device 27a not to generate spark discharge before the target initial explosion compression stroke. That is, the energization of the spark plug 27 is controlled. Therefore, according to the configuration of the present embodiment, it is possible to satisfactorily prevent unburned fuel mixture from being blown into the exhaust pipe 26a and useless use of ignition power.
  • the target initial explosion compression stroke is not limited to the compression stroke that occurs immediately after the initial compression stroke. That is, for example, the target initial explosion compression stroke may be a compression stroke that reaches a predetermined minority number of times (two times, three times, etc.) from the initial compression stroke.
  • the degree of air release (that is, the degree of suppression of the increase in the in-cylinder pressure) in a plurality of compression strokes in which decompression is performed is set such that the first explosion is impossible.
  • the degree of air release is substantially constant in a plurality of compression strokes in which decompression is performed.
  • the decompression device 28 is not limited to the configuration shown in the above embodiment.
  • the exhaust valve 26 f may be driven by a hydraulic valve mechanism 29.
  • the hydraulic valve mechanism 29 is configured such that the opening and closing timing of the exhaust valve 26f and the valve opening lift amount can be changed as appropriate according to the hydraulic pressure supply state (see, for example, JP-A-2007-71025). ).
  • a hydraulic pressure supply state for opening the exhaust valve 26f is realized in the compression stroke, so that the exhaust valve 26f is forcibly opened at the time of decompression. That is, in the configuration shown in FIG. 6, the hydraulic valve mechanism 29 corresponds to the decompression device 28 in FIG.
  • the cranking torque is reduced to the maximum by setting the valve opening amount (lift amount) of the exhaust valve 26f to the full lift amount in the exhaust stroke during decompression.
  • the lift amount may be variable according to the crank angle at the start of cranking.
  • the lift amount of the exhaust valve 26f at the time of decompression may be controlled so that the lift amount increases as the crank angle at the cranking start time becomes farther from the target stop position shown in FIG. .
  • the decompression device 28 is not limited to the one that is electrically controlled as described above. That is, for example, the decompression device 28 is set by stopping the rotation of the exhaust camshaft 26h and set to a decompression operation state (a state in which the exhaust valve 26f is forcibly opened), while the exhaust camshaft 26h is It may have a mechanical configuration that is reset after one rotation (or a small number of predetermined rotations) and set to a normal operation state (a state in which the decompression operation state is released) (such a mechanical configuration). The configuration can be realized relatively easily using the common general knowledge of those skilled in the art at the time of filing of the present application).
  • the present invention is not limited to a single cylinder engine. That is, the present invention can be suitably applied to a multi-cylinder engine including two cylinders. In this case, it is preferable that a decompression device 28 is provided for each of the cylinders 20. Further, it is assumed that the specific cylinder corresponding to the “target initial explosion intake stroke” reaches the “target initial explosion compression stroke”.
  • valve operating control unit 401 and the like are realized by hardware, but may be realized by software as a functional block. That is, the valve control unit 401 or the like may be realized as a routine (program) that is read out and executed from a ROM or a rewritable nonvolatile memory by the operation of the CPU.
  • routine program
  • the in-cylinder pressure in the compression stroke can also be reduced by delaying the closing timing of the intake valve 25f (see Japanese Patent Application Laid-Open No. 2000-34913, etc .: this can also be referred to as “decompression”.
  • the “intake side decompression” is referred to as “exhaust side decompression”.
  • the exhaust side decompression is not performed in the target initial explosion compression stroke, while the intake side decompression is optional (may or may not be performed) in the target initial explosion intake stroke. .)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An engine starting device is provided with: a motor generator (24); and a decompression device (28). The motor generator is coupled to a crank shaft (22) of an engine (2) in such a manner that the transmission of rotating drive power cannot be cut off. When the engine is started, the decompression device performs decompression for discharging air in a cylinder (20) in the compression stroke outside the cylinder. In the initial compression stroke, the decompression device performs decompression so that, even when fuel is taken into the cylinder that is going to have the initial compression stroke, the air in the cylinder can be discharged to such an extent that the initial combustion cannot take place. The decompression device ends decompression so that the air in the cylinder is not discharged to such an extent that the initial combustion cannot take place during a target initial combustion compression stroke.

Description

モータジェネレータとデコンプレッション装置を備えた車両に搭載されるエンジン始動装置Engine starter mounted on a vehicle equipped with a motor generator and a decompression device
 本発明は、車両用エンジン始動装置に関し、特にモータジェネレータとデコンプレッション装置を備えた車両に搭載されるエンジン始動装置に関する。 The present invention relates to a vehicle engine starter, and more particularly to an engine starter mounted on a vehicle including a motor generator and a decompression device.
 従来、エンジンの始動性を向上するための様々な試みがなされている。例えば、特開2002-332938号公報に開示されたエンジン始動装置は、エンジン停止後にクランクシャフトを所定の位置まで逆転させて次のエンジン始動に備えるように構成されている。また、この装置は、デコンプレッション(エンジン始動時に排気バルブを強制的に開弁して圧縮行程における筒内圧の上昇を抑制すること)を実行可能に構成されている。かかる構成によれば、最大発生トルクの小さな小型のスタータモータを採用した場合であっても良好な始動性が確保される。 Conventionally, various attempts have been made to improve engine startability. For example, the engine starting device disclosed in Japanese Patent Application Laid-Open No. 2002-332938 is configured to prepare for the next engine start by reversing the crankshaft to a predetermined position after the engine is stopped. In addition, this apparatus is configured to be able to execute decompression (forcing the exhaust valve to be opened at the time of engine start to suppress an increase in in-cylinder pressure during the compression stroke). According to such a configuration, good startability is ensured even when a small starter motor having a small maximum generated torque is employed.
特開2002-332938号公報JP 2002-332938 A
 上述した従来の構成においては、エンジン始動に先立つクランクシャフトの逆転(以下、「スイングバック」と称する。)時に、クランクシャフトに付与される逆回転トルクが駆動輪に伝わる場合があり得る。この場合、車両(特に自動二輪車)の乗員に違和感を与える懸念がある。 In the conventional configuration described above, the reverse rotation torque applied to the crankshaft may be transmitted to the drive wheels during reverse rotation of the crankshaft (hereinafter referred to as “swing back”) prior to engine start. In this case, there is a concern that an occupant of the vehicle (particularly a motorcycle) may be uncomfortable.
 また、近年、自動二輪車においても、いわゆるアイドリングストップが採用されるようになっている。アイドリングストップシステムを採用した自動二輪車においては、アイドリングストップ状態からのスムーズなエンジン始動と発進とを実現するために、いわゆる交流発電機タイプスタータが用いられていることがある。この交流発電機タイプスタータ(即ち、ACGスタータ)は、スタータモータと交流発電機とを兼ねるものである。このような、ACGスタータを備えた自動二輪車においては、車両の重量を軽減することによる、さらなる燃費向上や、より大排気量のエンジンへの適用等のために、エンジン始動時にACGスタータに必要とされるトルクを可能な限り低減するという要求がある。 In recent years, so-called idling stops have been adopted in motorcycles. In a motorcycle employing an idling stop system, a so-called alternator type starter is sometimes used to realize smooth engine start and start from an idling stop state. This alternator type starter (ie, ACG starter) serves as both a starter motor and an alternator. In such a motorcycle equipped with an ACG starter, it is necessary for the ACG starter when starting the engine in order to further improve fuel efficiency by reducing the weight of the vehicle and to apply it to an engine with a larger displacement. There is a demand to reduce the torque produced as much as possible.
 本発明は、上記に鑑みてなされたものであって、従来よりも始動性がよりいっそう向上したエンジン始動装置を提供することを目的とするものである。 The present invention has been made in view of the above, and an object of the present invention is to provide an engine starter having further improved startability compared to the prior art.
 本発明のエンジン始動装置は、エンジン(このエンジンは、車両に搭載されるものであって、少なくとも1つの気筒を有している。)を始動するように構成されている。このエンジン始動装置は、モータジェネレータと、デコンプレッション装置と、を備えている。 The engine starter of the present invention is configured to start an engine (this engine is mounted on a vehicle and has at least one cylinder). The engine starter includes a motor generator and a decompression device.
 前記モータジェネレータは、前記エンジンにおけるクランクシャフトと、直接結合されている。すなわち、前記モータジェネレータと前記クランクシャフト間の回転駆動力の伝達を遮断出来ないように結合されている。このモータジェネレータは、前記エンジンの始動後に前記クランクシャフトにて発生する回転駆動力によって発電機として機能するとともに、前記エンジンの始動の際に前記クランクシャフトを前記エンジンの始動後と同一方向に回転駆動することで始動用電動機としても機能するように構成されている。 The motor generator is directly coupled to the crankshaft in the engine. That is, the motor generator and the crankshaft are coupled so that transmission of the rotational driving force cannot be cut off. The motor generator functions as a generator by the rotational driving force generated at the crankshaft after the engine is started, and at the time of starting the engine, the crankshaft is rotated in the same direction as after the engine is started. By doing so, it is also configured to function as a starting motor.
 前記デコンプレッション装置は、前記エンジンの始動の際に、デコンプレッション(圧縮行程中の前記気筒内の空気を当該気筒の外部に放出すること)を行うように構成されている。 The decompression device is configured to perform decompression (releasing the air in the cylinder during the compression stroke to the outside of the cylinder) when the engine is started.
 本発明の特徴は、前記デコンプレッション装置が、以下の如く動作するように構成されたことにある:初回圧縮行程(前記エンジンの始動のための前記モータジェネレータの起動後最初に迎える圧縮行程)にて、仮に当該初回圧縮行程を迎える前記気筒内に燃料が吸入された場合であっても初爆の発生が不可能な程度まで当該気筒内の空気が放出されるように、前記デコンプレッションを行う。一方、目標初爆圧縮行程(前記初回圧縮行程から所定回数後に迎える圧縮行程)中には前記気筒内の空気が初爆の発生が不可能な程度まで放出されることがないように、前記デコンプレッションを終了する。なお、ここで「初爆」とは、前記エンジンの始動のための前記モータジェネレータの起動後、最初に、有効な膨張行程を形成し得る程度の爆発(燃料の燃焼)が前記気筒内にて発生することをいうものとする。 A feature of the present invention lies in that the decompression device is configured to operate as follows: In an initial compression stroke (a compression stroke that first occurs after starting the motor generator for starting the engine) Thus, even if fuel is sucked into the cylinder that reaches the initial compression stroke, the decompression is performed so that air in the cylinder is released to the extent that the first explosion is impossible. . On the other hand, during the target initial explosion compression stroke (compression stroke that reaches a predetermined number of times after the initial compression stroke), the air in the cylinder is not released to the extent that the first explosion is impossible. End the compression. Here, the “first explosion” means that after the motor generator for starting the engine is started, an explosion (fuel combustion) that can form an effective expansion stroke is first performed in the cylinder. It means to occur.
 かかる構成においては、前記エンジンを始動する際に、当該エンジンにおける前記クランクシャフトは、前記モータジェネレータにより、当該エンジンの始動後と同一方向に回転駆動される。また、前記デコンプレッション装置により前記デコンプレッションが行われることで、前記初回圧縮行程にて前記気筒内の空気が放出されて、当該気筒の内圧上昇が抑制される。このとき、当該気筒内に燃料が吸入された場合であっても初爆の発生が不可能となるように、当該気筒の内圧の上昇は抑制される。これにより、クランキングトルクが良好に減少する。したがって、ピストンが当該初回圧縮行程(すなわち始動の際に最初に迎える圧縮上死点)を良好に乗り越えることが可能となる。 In such a configuration, when the engine is started, the crankshaft in the engine is rotationally driven by the motor generator in the same direction as after the engine is started. Further, when the decompression is performed by the decompression device, air in the cylinder is released in the initial compression stroke, and an increase in the internal pressure of the cylinder is suppressed. At this time, the increase in the internal pressure of the cylinder is suppressed so that the first explosion is impossible even when the fuel is sucked into the cylinder. Thereby, cranking torque decreases favorably. Therefore, it becomes possible for the piston to successfully overcome the initial compression stroke (that is, the compression top dead center that is first met at the time of starting).
 その後、前記初回圧縮行程から所定回数後に迎える圧縮行程においては、デコンプレッションを行わなくても当該圧縮行程を乗り越えつつ当該圧縮行程にて初爆を迎えることができる程度にまで、前記クランクシャフトの回転による慣性力、すなわち前記クランクシャフトの角速度(回転速度)が上昇していることが期待される。そこで、前記デコンプレッション装置は、前記目標初爆圧縮行程(前記初回圧縮行程から所定回数後に迎える圧縮行程:換言すれば前記モータジェネレータによるクランキングの開始後最初に点火燃焼を試みる圧縮行程)を迎える前記気筒にて当該気筒内の空気が初爆の発生が不可能な程度まで放出されることがないように、前記デコンプレッションを終了する。これにより、迅速な始動が実現可能となる。 Thereafter, in the compression stroke that reaches a predetermined number of times after the initial compression stroke, the crankshaft is rotated to such an extent that the initial explosion can be reached in the compression stroke while overcoming the compression stroke without performing decompression. It is expected that the inertial force due to the above, that is, the angular speed (rotational speed) of the crankshaft is increased. Therefore, the decompression device reaches the target initial explosion compression stroke (the compression stroke that reaches a predetermined number of times after the initial compression stroke: in other words, the compression stroke that first attempts ignition combustion after the start of cranking by the motor generator). The decompression is terminated so that the air in the cylinder is not released to the extent that the first explosion is impossible in the cylinder. Thereby, a quick start is realizable.
 このように、上記構成を備えた、本発明のエンジン始動装置によれば、従来よりも前記エンジンの始動性がよりいっそう向上する。具体的には、例えば、始動時に上述のようなスイングバックを行わなくても、前記モータジェネレータによるクランキングの開始時点における前記ピストンの位置に拘わらず前記エンジンが良好に始動され得る。よって、車両(特に自動二輪車)の乗員に違和感を与えることのない、スムーズな始動が実現され得る。 As described above, according to the engine starter of the present invention having the above-described configuration, the startability of the engine is further improved as compared with the related art. Specifically, for example, the engine can be started satisfactorily regardless of the position of the piston at the start of cranking by the motor generator without performing the swing back as described above at the time of starting. Therefore, a smooth start without giving a sense of incongruity to a vehicle (especially a motorcycle) occupant can be realized.
本発明の一実施形態が適用された車両の概略構成図。1 is a schematic configuration diagram of a vehicle to which an embodiment of the present invention is applied. 図1に示されているエンジンの内部構成を示す図。The figure which shows the internal structure of the engine shown by FIG. 図1に示されているエンジンの運転を制御するためのシステムの概略構成図。The schematic block diagram of the system for controlling the driving | operation of the engine shown by FIG. 図3に示されているデコンプレッション装置によるデコンプレッション動作の様子を示すグラフ。The graph which shows the mode of the decompression operation | movement by the decompression apparatus shown by FIG. 図1に示されているシステムにおけるエンジン始動の際のタイムチャート。The time chart at the time of engine starting in the system shown by FIG. 図3に示されているシステムの一変形例を示す概略構成図。The schematic block diagram which shows the modification of the system shown by FIG.
 以下、本発明を具体化した一実施形態を、各図面に基づいて説明する。なお、変形例については、当該実施形態の説明中に挿入されると首尾一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。 Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings. In addition, about a modification, since understanding of the description of coherent embodiment will be prevented if it inserts during the description of the said embodiment, it is described collectively at the end.
 <構成>
 図1を参照すると、本発明の車両に相当する自動二輪車1には、前輪1aと、駆動輪である後輪1bと、が設けられている。この自動二輪車1には、エンジン2と、動力伝達機構3と、エンジン制御装置4と、が搭載されている。エンジン制御装置4は、シート5の下に設けられている。
<Configuration>
Referring to FIG. 1, a motorcycle 1 corresponding to the vehicle of the present invention is provided with a front wheel 1a and a rear wheel 1b which is a drive wheel. The motorcycle 1 includes an engine 2, a power transmission mechanism 3, and an engine control device 4. The engine control device 4 is provided under the seat 5.
 図2及び図3を参照すると、本実施形態においては、エンジン2は、1つの気筒20を有する、いわゆる「単気筒エンジン」として構成されている。気筒20内には、ピストン21が、気筒20の中心軸線に沿って往復移動が可能なように収容されている。ピストン21は、クランクシャフト22と、コンロッド23を介して連結されている。 2 and 3, in the present embodiment, the engine 2 is configured as a so-called “single cylinder engine” having one cylinder 20. A piston 21 is accommodated in the cylinder 20 so as to be able to reciprocate along the central axis of the cylinder 20. The piston 21 is connected to the crankshaft 22 via a connecting rod 23.
 モータジェネレータ24は、スタータモータとACジェネレータ(交流発電機)とを兼ねる、いわゆるACGスタータである。このモータジェネレータ24は、クランクシャフト22と、回転駆動力の伝達の遮断が出来ないように結合されている。すなわち、モータジェネレータ24とクランクシャフト22との間で回転駆動力が常時伝達されるように、モータジェネレータ24のロータ24aは、クランクシャフト22と直結されている(クランクシャフト22の一端に固定されている)。このモータジェネレータ24は、エンジン2の始動後にクランクシャフト22にて発生する回転駆動力によって発電機として機能するとともに、エンジン2の始動の際にクランクシャフト22をエンジン2の始動後と同一方向に回転駆動することで始動用電動機としても機能するように構成されている。具体的には、本実施形態においては、モータジェネレータ24は、三相ブラシレスモータ構造を有している。 The motor generator 24 is a so-called ACG starter that serves as both a starter motor and an AC generator (alternator). The motor generator 24 is coupled to the crankshaft 22 so that transmission of rotational driving force cannot be interrupted. That is, the rotor 24a of the motor generator 24 is directly connected to the crankshaft 22 (fixed to one end of the crankshaft 22 so that the rotational driving force is always transmitted between the motor generator 24 and the crankshaft 22. ) The motor generator 24 functions as a generator by the rotational driving force generated in the crankshaft 22 after the engine 2 is started, and rotates the crankshaft 22 in the same direction as after the engine 2 is started when the engine 2 is started. It is configured to function as a starting motor when driven. Specifically, in the present embodiment, the motor generator 24 has a three-phase brushless motor structure.
 図3を参照すると、吸気系統25は、気筒20内に燃料混合気を供給するように構成されている。具体的には、吸気管25aは、吸気ポート25bを介して気筒20と接続されている。吸気管25aの吸気通流方向における最上流部には、エアクリーナ25cが装着されている。エアクリーナ25cよりも吸気通流方向における下流側には、スロットルバルブ25dが設けられている。スロットルバルブ25dは、開度に応じて吸気管25aにおける通路断面積(流路面積)を調整可能に構成されている。このスロットルバルブ25dは、開度がエンジン制御装置4によって電気的に制御されるように、図示しないスロットルバルブアクチュエータと連結されている。 Referring to FIG. 3, the intake system 25 is configured to supply a fuel mixture into the cylinder 20. Specifically, the intake pipe 25a is connected to the cylinder 20 via the intake port 25b. An air cleaner 25c is attached to the most upstream portion of the intake pipe 25a in the intake air flow direction. A throttle valve 25d is provided downstream of the air cleaner 25c in the intake air flow direction. The throttle valve 25d is configured to be able to adjust the passage cross-sectional area (flow passage area) in the intake pipe 25a according to the opening. The throttle valve 25d is connected to a throttle valve actuator (not shown) so that the opening degree is electrically controlled by the engine control device 4.
 スロットルバルブ25dよりも吸気通流方向における下流側には、インジェクタ25eが設けられている。インジェクタ25eは、電磁的に駆動されることで、吸気ポート25bに向かって燃料を噴射するように構成及び配置されている。また、エンジン2には、吸気ポート25bの開口部(気筒20との連通口)を開閉するための吸気バルブ25fが設けられている。吸気バルブ25fは、吸気動弁機構25gによって開閉が制御されるようになっている。吸気動弁機構25gは、図示しない吸気カムシャフト等を含むものであって、吸気バルブ25fの開弁及び閉弁のタイミングと、開弁リフト量とを、エンジン2の運転状態に応じて適宜変更可能に構成されている。 An injector 25e is provided downstream of the throttle valve 25d in the intake air flow direction. The injector 25e is configured and arranged to inject fuel toward the intake port 25b by being electromagnetically driven. Further, the engine 2 is provided with an intake valve 25f for opening and closing an opening of the intake port 25b (a communication port with the cylinder 20). The intake valve 25f is controlled to be opened and closed by an intake valve mechanism 25g. The intake valve mechanism 25g includes an intake camshaft (not shown) and the like, and appropriately changes the opening and closing timing of the intake valve 25f and the valve opening lift amount according to the operating state of the engine 2. It is configured to be possible.
 排気系統26は、気筒20から排出された気体を外部に排出するように構成されている。具体的には、排気管26aは、排気ポート26bを介して気筒20と接続されている。また、エンジン2には、排気ポート26bの開口部(気筒20との連通口)を開閉するための排気バルブ26fが設けられている。排気バルブ26fは、排気カム26gの回転位相に応じて開閉されるようになっている。排気カム26gは、排気カムシャフト26hに固定されている。なお、排気バルブ26fは、排気動弁機構(排気カム26g、排気カムシャフト26h、及び図示しない他の部材を含む。)によって、開弁及び閉弁のタイミングと開弁リフト量とがエンジン2の運転状態に応じて適宜変更されるようになっている。 The exhaust system 26 is configured to discharge the gas discharged from the cylinder 20 to the outside. Specifically, the exhaust pipe 26a is connected to the cylinder 20 via the exhaust port 26b. Further, the engine 2 is provided with an exhaust valve 26f for opening and closing an opening of the exhaust port 26b (a communication port with the cylinder 20). The exhaust valve 26f is opened and closed according to the rotational phase of the exhaust cam 26g. The exhaust cam 26g is fixed to the exhaust camshaft 26h. The exhaust valve 26f has an opening and closing timing and an opening lift amount of the engine 2 by an exhaust valve mechanism (including an exhaust cam 26g, an exhaust cam shaft 26h, and other members not shown). It is appropriately changed according to the operating state.
 エンジン2には、点火プラグ27が装着されている。点火プラグ27の先端部には、火花放電を生じるための電極部が形成されている。点火プラグ27は、燃焼室(気筒20におけるピストン21の上死点側の端部を含む)に上述の電極部が露出するように設けられている。この点火プラグ27は、イグニッションコイル等を含む点火装置27aと電気的に接続されている。点火装置27aは、点火プラグ27に通電する(高電圧を印加する)ことで、点火プラグ27における上述の電極部にて火花放電を生じさせるようになっている。 The ignition plug 27 is attached to the engine 2. An electrode part for generating spark discharge is formed at the tip of the spark plug 27. The spark plug 27 is provided in the combustion chamber (including the end portion on the top dead center side of the piston 21 in the cylinder 20) so that the above-described electrode portion is exposed. The spark plug 27 is electrically connected to an ignition device 27a including an ignition coil and the like. The ignition device 27a energizes the ignition plug 27 (applies a high voltage), thereby generating a spark discharge at the above-described electrode portion of the ignition plug 27.
 エンジン2には、デコンプレッション装置28が設けられている。このデコンプレッション装置28は、エンジン2の始動の際にデコンプレッションを行うように構成されている。ここで、本実施形態における「デコンプレッション」とは、圧縮行程中に排気バルブ26fを開弁して気筒20内の空気を排気ポート26b及び排気管26aに向けて放出することで、圧縮行程における筒内圧(気筒20内の圧力)の上昇を抑制することをいうものとする。デコンプレッションは所定の制御量、即ちデコンプレッション量に基づいて行われる。 The engine 2 is provided with a decompression device 28. The decompression device 28 is configured to perform decompression when the engine 2 is started. Here, “decompression” in the present embodiment means that the exhaust valve 26f is opened during the compression stroke and the air in the cylinder 20 is released toward the exhaust port 26b and the exhaust pipe 26a. The increase in the in-cylinder pressure (pressure in the cylinder 20) is suppressed. Decompression is performed based on a predetermined control amount, that is, the decompression amount.
 具体的には、本実施形態においては、デコンプレッション装置28は、デコンプレッションピン28aと、アクチュエータ28bと、を備えている。デコンプレッションピン28aは、電磁ソレノイドからなるアクチュエータ28bが通電されている場合に、排気カム26gにおけるカムリフト部とは反対側の位置にて排気バルブ26fにおける基端部(タペット)と排気カム26gとの間に介在するように突出することで、本来閉弁状態であるはずの排気バルブ26fを強制的に開弁させ得るように設けられている(このようなデコンプレッション装置28の基本的な構成は周知であって、例えば、特開2005-76620号公報等参照。)。 Specifically, in the present embodiment, the decompression device 28 includes a decompression pin 28a and an actuator 28b. When the actuator 28b made of an electromagnetic solenoid is energized, the decompression pin 28a is located between the base end portion (tapet) of the exhaust valve 26f and the exhaust cam 26g at a position opposite to the cam lift portion of the exhaust cam 26g. By projecting so as to be interposed therebetween, the exhaust valve 26 f that should be originally closed can be forcibly opened (the basic configuration of such a decompression device 28 is (For example, see JP-A-2005-76620).
 図4はデコンプレッション装置によるデコンプレッション動作の様子を示すグラフであり、縦軸はクランキングトルクを示し、横軸はクランク角を示している。また、実線は通常時(デコンプレッション非実行時)のクランキングトルク線図を示し、点線はデコンプレッション実行時のクランキングトルク線図を示している(点線の線図のうちの、クランク角が約120度~約620度の範囲は、実線と重なっている。なお、図中の「目標停止位置」については後述する。)。図4における点線にて示されているように、本実施形態においては、仮にインジェクタ25eの作動によって気筒20内に燃料蒸気が導入され且つ点火プラグ27及び点火装置27aの作動によって気筒20内にて点火燃焼が試みられても初爆の発生が不可能な程度にまで、圧縮行程中の筒内圧の上昇がデコンプレッションによって抑制される(具体的には非燃焼時の最高筒内圧が非デコンプレッション時の20%以下となることでクランキングトルクが通常時の少なくとも40%以下となる)ように、デコンプレッションピン28aによる排気バルブ26fの強制的な開弁量(デコンプレッション量)が設定されている。 FIG. 4 is a graph showing the state of the decompression operation by the decompression device, in which the vertical axis represents cranking torque and the horizontal axis represents crank angle. The solid line shows the cranking torque diagram during normal operation (when decompression is not performed), and the dotted line shows the cranking torque diagram when decompression is performed (the crank angle in the dotted line diagram is The range from about 120 degrees to about 620 degrees overlaps the solid line (the “target stop position” in the figure will be described later). As shown by the dotted line in FIG. 4, in this embodiment, the fuel vapor is introduced into the cylinder 20 by the operation of the injector 25e, and the cylinder 20 is operated by the operation of the ignition plug 27 and the ignition device 27a. The increase in in-cylinder pressure during the compression stroke is suppressed by decompression to the extent that the first explosion is impossible even if ignition combustion is attempted (specifically, the maximum in-cylinder pressure during non-combustion is undecompressed) The forced opening amount (decompression amount) of the exhaust valve 26f by the decompression pin 28a is set so that the cranking torque will be at least 40% or less of the normal time when it becomes 20% or less of the hour) Yes.
 再び図2を参照すると、動力伝達機構3は、エンジン2の運転によって発生したクランクシャフト22の回転駆動力を後輪1b(図1参照)に伝達するように構成されている。この動力伝達機構3は、出力シャフト31とクラッチ32とを備えている。出力シャフト31は、クラッチ32を介して、クランクシャフト22と連結されている。クラッチ32は、クランクシャフト22と出力シャフト31との間で、回転駆動力の伝達と遮断とを切り替え可能に構成されている。本実施形態においては、クラッチ32内には、ワンウェイクラッチ機構が設けられている。 2 again, the power transmission mechanism 3 is configured to transmit the rotational driving force of the crankshaft 22 generated by the operation of the engine 2 to the rear wheel 1b (see FIG. 1). The power transmission mechanism 3 includes an output shaft 31 and a clutch 32. The output shaft 31 is connected to the crankshaft 22 via the clutch 32. The clutch 32 is configured to be able to switch between transmission and interruption of the rotational driving force between the crankshaft 22 and the output shaft 31. In the present embodiment, a one-way clutch mechanism is provided in the clutch 32.
 再び図3を参照すると、エンジン2(吸気系統25や排気系統26を含む)には、エンジン2の運転を制御するシステムを構築するために、各種のセンサ類が装着されている。具体的には、エンジン2には、吸気温センサ61、吸気圧センサ62、スロットル開度センサ63、冷却水温センサ64、クランク角センサ65、カムポジションセンサ66、モータ回転角センサ67、等が設けられている。 Referring to FIG. 3 again, the engine 2 (including the intake system 25 and the exhaust system 26) is equipped with various sensors in order to construct a system for controlling the operation of the engine 2. Specifically, the engine 2 is provided with an intake air temperature sensor 61, an intake air pressure sensor 62, a throttle opening sensor 63, a coolant temperature sensor 64, a crank angle sensor 65, a cam position sensor 66, a motor rotation angle sensor 67, and the like. It has been.
 吸気温センサ61は、エアクリーナ25cに装着されている。この吸気温センサ61は、エアクリーナ25c内を通流する吸入空気の温度に対応する出力を生じるように構成されている。吸気圧センサ62は、スロットルバルブ25dよりも下流側における吸気管25a内の圧力に対応する出力を生じるように構成及び配置されている。スロットル開度センサ63は、スロットルバルブ25dの開度に対応する出力を生じるように構成及び配置されている。冷却水温センサ64は、エンジン2のシリンダブロックに装着されている。この冷却水温センサ64は、エンジン2内の冷却水温に対応する出力を生じるように構成されている。 The intake air temperature sensor 61 is attached to the air cleaner 25c. The intake air temperature sensor 61 is configured to generate an output corresponding to the temperature of intake air flowing through the air cleaner 25c. The intake pressure sensor 62 is configured and arranged to generate an output corresponding to the pressure in the intake pipe 25a on the downstream side of the throttle valve 25d. The throttle opening sensor 63 is configured and arranged to generate an output corresponding to the opening of the throttle valve 25d. The coolant temperature sensor 64 is attached to the cylinder block of the engine 2. The cooling water temperature sensor 64 is configured to generate an output corresponding to the cooling water temperature in the engine 2.
 クランク角センサ65は、クランクシャフト22と対向するように配置されている。このクランク角センサ65は、クランクシャフト22が10度回転する毎に生じる幅狭のパルスと、クランクシャフト22が360度回転する毎に生じる幅広のパルスと、を有する信号(この信号はエンジン制御装置4によってエンジン回転速度NEに変換される)を出力するように構成されている。カムポジションセンサ66は、上述の吸気カムシャフトが5度回転する毎に生じる幅狭のパルスと、当該吸気カムシャフトが360度毎に生じる幅広のパルスと、を有する信号を出力するようになっている。モータ回転角センサ67は、モータジェネレータ24におけるU相、V相、及びW相にそれぞれ対応して設けられたホール素子からなり、モータジェネレータ24におけるロータ24aの回転位相すなわちクランクシャフト22の回転位相を検出可能に構成されている。 The crank angle sensor 65 is disposed so as to face the crankshaft 22. The crank angle sensor 65 has a signal having a narrow pulse generated every time the crankshaft 22 rotates 10 degrees and a wide pulse generated every time the crankshaft 22 rotates 360 degrees (this signal is an engine control device). 4 is converted into an engine rotational speed NE). The cam position sensor 66 outputs a signal having a narrow pulse generated every time the intake camshaft rotates 5 degrees and a wide pulse generated every 360 degrees of the intake camshaft. Yes. The motor rotation angle sensor 67 includes Hall elements provided corresponding to the U phase, V phase, and W phase in the motor generator 24, respectively, and the rotation phase of the rotor 24a in the motor generator 24, that is, the rotation phase of the crankshaft 22 is determined. It is configured to be detectable.
 エンジン制御装置4は、CPU、ROM、RAM、インタフェース、等を含む、いわゆるマイクロコンピュータである。このエンジン制御装置4は、モータジェネレータ24やスロットルバルブ25dやインジェクタ25e等の各種動作部、上述の吸気温センサ61~モータ回転角センサ67を含む各種センサ類、並びに運転者によって操作される図示しない操作部(イグニッションスイッチやスタータスイッチ等)と、上述のインタフェースを介して電気的に接続されている。 The engine control device 4 is a so-called microcomputer including a CPU, a ROM, a RAM, an interface, and the like. The engine control device 4 includes various operation units such as a motor generator 24, a throttle valve 25d, and an injector 25e, various sensors including the intake air temperature sensor 61 to the motor rotation angle sensor 67, and a driver (not shown). It is electrically connected to an operation unit (such as an ignition switch or a starter switch) via the above-described interface.
 エンジン制御装置4は、上述の吸気温センサ61等を含む各種センサ類の出力、及び上述の操作部の操作状態に応じて、エンジン2の各部の動作を制御するように構成されている。特に、本実施形態においては、エンジン制御装置4は、所定のアイドリングストップ条件が成立している場合にエンジン2を一時的に停止する(このとき併せてピストン21の停止位置を制御する)一方、所定のアイドリングストップ解除条件が成立した場合にエンジン2を再始動する、いわゆるアイドリングストップ制御を実行するようになっている。 The engine control device 4 is configured to control the operation of each part of the engine 2 in accordance with the outputs of various sensors including the intake air temperature sensor 61 and the like, and the operation state of the operation part. In particular, in the present embodiment, the engine control device 4 temporarily stops the engine 2 when the predetermined idling stop condition is satisfied (also controls the stop position of the piston 21 at this time), A so-called idling stop control is performed in which the engine 2 is restarted when a predetermined idling stop cancellation condition is satisfied.
 本実施形態においては、エンジン制御装置4は、動弁制御部401と、燃料噴射制御部402と、点火制御部403と、モータ制御部404と、図示しないその他の制御部と、を備えている。動弁制御部401は、吸気バルブ25f及び排気バルブ26fの開閉動作を行うための機構部(吸気動弁機構25g、上述の排気動弁機構、及びデコンプレッション装置28を含む)の動作を制御するようになっている。燃料噴射制御部402は、インジェクタ25eの動作を制御するようになっている。点火制御部403は、点火装置27aの動作を制御するようになっている。モータ制御部404は、モータジェネレータ24の動作を制御するようになっている。なお、本実施形態においては、エンジン制御装置4は、ASIC(Application Specific Integrated Circuit)として構成されている。すなわち、動弁制御部401等は、図示しないCPUとは別個のハードウェア回路モジュールとして、ASIC上に実装されている。 In the present embodiment, the engine control device 4 includes a valve control unit 401, a fuel injection control unit 402, an ignition control unit 403, a motor control unit 404, and other control units (not shown). . The valve control unit 401 controls the operation of a mechanism unit (including the intake valve mechanism 25g, the above-described exhaust valve mechanism, and the decompression device 28) for opening and closing the intake valve 25f and the exhaust valve 26f. It is like that. The fuel injection control unit 402 controls the operation of the injector 25e. The ignition control unit 403 controls the operation of the ignition device 27a. The motor control unit 404 controls the operation of the motor generator 24. In the present embodiment, the engine control device 4 is configured as an ASIC (Application Specific Integrated Circuit). That is, the valve operating control unit 401 and the like are mounted on the ASIC as a hardware circuit module separate from a CPU (not shown).
 特に、動弁制御部401は、エンジン2の始動の際(イグニッションスイッチがONされてから最初のエンジン2の始動と、アイドリングストップ制御下におけるエンジン2の再始動と、を含む。)に、初回圧縮行程にてデコンプレッションを行う一方で目標初爆圧縮行程にてデコンプレッションを行わないようにデコンプレッション装置28(アクチュエータ28b)の動作を制御すべく構成されている。ここで、「初回圧縮行程」とは、エンジン2の始動のためのモータジェネレータ24の起動後(モータジェネレータ24によるクランキングの開始後)最初に迎える圧縮行程である。また、「目標初爆圧縮行程」とは、初回圧縮行程の直後に迎える圧縮行程である。 In particular, the valve control unit 401 is the first time when the engine 2 is started (including the first start of the engine 2 after the ignition switch is turned on and the restart of the engine 2 under the idling stop control). The operation of the decompression device 28 (actuator 28b) is controlled so that the decompression is performed in the compression stroke while the decompression is not performed in the target initial explosion compression stroke. Here, the “first compression stroke” is a compression stroke that is first reached after the motor generator 24 for starting the engine 2 is started (after cranking is started by the motor generator 24). Further, the “target initial explosion compression stroke” is a compression stroke that is reached immediately after the initial compression stroke.
 燃料噴射制御部402は、目標初爆吸気行程から燃料噴射を開始する一方で当該目標初爆吸気行程より前には燃料噴射を行わないようにインジェクタ25eの動作を制御すべく構成されている。ここで、「目標初爆吸気行程」とは、目標初爆圧縮行程の直前の吸気行程である。また、点火制御部403は、目標初爆圧縮行程から点火プラグ27による火花放電の発生を開始する一方、当該目標初爆圧縮行程より前には火花放電の発生を行わないように、点火装置27aの動作すなわち点火プラグ27に対する通電を制御すべく構成されている。 The fuel injection control unit 402 is configured to control the operation of the injector 25e so that fuel injection is started from the target initial explosion intake stroke while fuel injection is not performed before the target initial explosion intake stroke. Here, the “target initial explosion intake stroke” is the intake stroke immediately before the target initial explosion compression stroke. In addition, the ignition control unit 403 starts generation of spark discharge by the spark plug 27 from the target initial explosion compression stroke, while preventing ignition from occurring before the target initial explosion compression stroke. That is, the operation of the spark plug 27 is controlled.
 <動作説明>
 以下、上述の通りの、本実施形態の構成による動作(作用・効果)について説明する。
<Description of operation>
Hereinafter, the operation (action / effect) according to the configuration of the present embodiment as described above will be described.
 図5は図1に示されているシステムにおけるエンジン始動の際のタイムチャートである。図5において、横軸は時間経過を示している。また、「ACG」は、モータジェネレータ24を指すものである。さらに、「NE」は、エンジン回転速度を示す。なお、括弧内は、イグニッションスイッチがONされてから最初にエンジン2が始動される際に操作される、スタータスイッチの操作状態(ON/OFF)を示すものである(したがってこれはアイドリングストップ制御下の再始動の場合は無関係である)。 FIG. 5 is a time chart when the engine is started in the system shown in FIG. In FIG. 5, the horizontal axis indicates the passage of time. “ACG” indicates the motor generator 24. Further, “NE” indicates the engine rotation speed. The parentheses indicate the operation state (ON / OFF) of the starter switch that is operated when the engine 2 is started for the first time after the ignition switch is turned on (therefore, this is under idling stop control). It is irrelevant in the case of restarting).
 図4を参照すると、アイドリングストップ制御下でエンジン2が一旦停止される場合、クランク角(クランクシャフト22の回転位相すなわちピストン21の位置)が同図に示されている「目標停止位置」となるように、エンジン2の停止制御が行われる(例えば特開2007-231786号公報等参照)。この目標停止位置は、再始動の際に助走回転距離が充分に得られるように、圧縮上死点を越えた直後近辺に設定される。 Referring to FIG. 4, when the engine 2 is temporarily stopped under the idling stop control, the crank angle (the rotational phase of the crankshaft 22, that is, the position of the piston 21) becomes the “target stop position” shown in FIG. 4. Thus, stop control of the engine 2 is performed (see, for example, Japanese Patent Application Laid-Open No. 2007-231786). This target stop position is set in the vicinity immediately after the compression top dead center is exceeded so that the approaching rotation distance can be sufficiently obtained at the time of restart.
 このような停止制御が行われると、アイドリングストップ制御下におけるエンジン2の再始動のための、モータジェネレータ24によるクランキング開始時点にて、クランク角は、通常は目標停止位置近辺である。この場合、クランキングによってクランクシャフト22には充分な回転の慣性力が付与される。このため、この場合は、デコンプレッションを実行しなくても、ピストン21は初回圧縮行程を良好に乗り越えることが可能であるように考えられる。 When such stop control is performed, the crank angle is usually near the target stop position at the start of cranking by the motor generator 24 for restarting the engine 2 under idling stop control. In this case, the crankshaft 22 is given sufficient rotational inertia force by cranking. For this reason, in this case, it is considered that the piston 21 can successfully overcome the initial compression stroke without performing decompression.
 しかしながら、アイドリングストップ制御下におけるエンジン2の再始動の場合とは異なり、エンジン2が完全に停止された後にイグニッションスイッチがONされてから最初にエンジン2が始動される場合、クランク角は、必ずしも目標停止位置近辺にあるとは限らない。よって、極端な例では、図中二点鎖線にて示されているような、圧縮上死点の直前から、クランキングが開始される場合があり得る。また、アイドリングストップ制御下におけるエンジン2の再始動の場合であっても、停止位置制御の誤差によって助走回転距離が充分に得られないことがあり得る。さらには、仮に目標停止位置近辺からのクランキングであっても、大排気量化に伴うイナーシャの増大により、小型軽量のモータジェネレータ24では初回圧縮行程を乗り越えるために充分な回転の慣性力が得られ難くなることがあり得る。 However, unlike the case of restarting the engine 2 under idling stop control, when the engine 2 is started for the first time after the ignition switch is turned on after the engine 2 is completely stopped, the crank angle is not necessarily the target It is not always near the stop position. Therefore, in an extreme example, cranking may be started immediately before the compression top dead center as shown by a two-dot chain line in the figure. Further, even when the engine 2 is restarted under the idling stop control, the running rotation distance may not be sufficiently obtained due to an error in the stop position control. Furthermore, even if the cranking is from the vicinity of the target stop position, the inertia of the small and light motor generator 24 is sufficient to overcome the initial compression stroke due to the increase in inertia caused by the large displacement. It can be difficult.
 そこで、本実施形態においては、図5に示されているように、モータジェネレータ24の通電開始によるクランキング開始(スタータスイッチのON操作あるいは所定のアイドリングストップ解除条件の成立に基づく)後、初回圧縮行程を過ぎるまでの間は、当該初回圧縮行程にて初爆の発生が不可能な程度まで充分に筒内圧が低くなるように、デコンプレッションが行われる。これにより、クランキングトルクが良好に減少する(図4における点線参照)。したがって、スイングバックを行わなくても、クランキング開始時点のクランク角に拘わらず良好に初回圧縮行程(圧縮上死点)が乗り越えられる。また、始動時にモータジェネレータ24に必要とされるトルクを可能な限り低減することが可能となり、以て、より低定格(すなわち小型軽量)のモータジェネレータ24を用いることが可能となる。さらには、より大排気量のエンジン2における、始動性の向上やアイドリングストップの適用が可能となる。 Therefore, in this embodiment, as shown in FIG. 5, the initial compression is performed after cranking is started by starting energization of the motor generator 24 (based on starter switch ON operation or establishment of a predetermined idling stop release condition). Until the stroke is over, decompression is performed so that the in-cylinder pressure is sufficiently lowered to the extent that the first explosion is impossible in the first compression stroke. As a result, the cranking torque is favorably reduced (see the dotted line in FIG. 4). Therefore, even if swingback is not performed, the initial compression stroke (compression top dead center) can be successfully overcome regardless of the crank angle at the start of cranking. Further, it is possible to reduce the torque required for the motor generator 24 at the start as much as possible, and thus it is possible to use a motor generator 24 having a lower rating (that is, smaller and lighter). Furthermore, it is possible to improve startability and apply an idling stop in the engine 2 having a larger displacement.
 ところで、本実施形態の自動二輪車1の構成においては、仮にスイングバックが行われた場合、クランクシャフト22に付与される逆回転トルクが、クラッチ32内に設けられた上述のワンウェイクラッチ機構によって後輪1bに伝わる。よって、この場合、後輪1bがわずかに後転することで、乗員に違和感を与える懸念がある。この点、本実施形態によれば、始動時にスイングバックが行われないため、乗員に違和感を与えないスムーズな(再)始動が実現される。 By the way, in the configuration of the motorcycle 1 of the present embodiment, if the swingback is performed, the reverse rotation torque applied to the crankshaft 22 is rear wheel by the above-described one-way clutch mechanism provided in the clutch 32. It is transmitted to 1b. Therefore, in this case, there is a concern that the occupant may feel uncomfortable because the rear wheel 1b slightly rotates backward. In this respect, according to the present embodiment, since the swingback is not performed at the time of starting, a smooth (re-) starting that does not give the passenger an uncomfortable feeling is realized.
 また、本実施形態においては、図5に示されているように、初回圧縮行程が良好に乗り越えられた後は、モータジェネレータ24による強力なクランキングにより、クランクシャフト22の角速度が毎分800回転程度の回転数に相当する程度にまで急速に上昇する。これにより、次回の圧縮行程に達するまでの間に、クランクシャフト22の回転による慣性力は、デコンプレッション無しでも圧縮行程を乗り越えて初爆を良好に迎えることができる程度にまで上昇する。そこで、本実施形態においては、目標初爆圧縮行程中には気筒20内の空気が初爆の発生が不可能な程度まで放出されることがないように、デコンプレッションが終了する。これにより、初回圧縮行程の次回の圧縮行程である目標初爆圧縮行程にて良好に初爆が実現し、以てエンジン2の迅速な(再)始動が実現可能となる(図5における「次サイクル」でのACG通電OFF後のACG回転数は、エンジン2のアイドリング回転数に相当する。)。尚、デコンプレッションの解除(終了)については、圧縮工程の初爆時にデコンプが完全に解除状態、もしくは解除の途中であっても実施することが出来る。 Further, in the present embodiment, as shown in FIG. 5, after the initial compression stroke is successfully overcome, the angular speed of the crankshaft 22 is 800 revolutions per minute due to strong cranking by the motor generator 24. It rapidly rises to the extent corresponding to the number of revolutions. Thus, until reaching the next compression stroke, the inertial force due to the rotation of the crankshaft 22 rises to such an extent that the first explosion can be satisfactorily overcome the compression stroke even without decompression. Therefore, in the present embodiment, the decompression is completed so that the air in the cylinder 20 is not released to the extent that the first explosion is impossible during the target initial explosion compression stroke. As a result, the initial explosion is successfully realized in the target initial explosion compression stroke, which is the next compression stroke of the first compression stroke, and thus the engine 2 can be quickly (re-) started (“Next” in FIG. 5). The ACG rotation speed after turning off the ACG energization in the “cycle” corresponds to the idling rotation speed of the engine 2). It should be noted that the decompression can be canceled (terminated) even when the decompression is completely released or in the middle of the cancellation at the first explosion in the compression process.
 さらに、本実施形態においては、目標初爆吸気行程から燃料噴射を開始する一方、当該目標初爆吸気行程より前には燃料噴射を行わないように、エンジン制御装置4によって燃料噴射が制御される。同様に、目標初爆圧縮行程から点火プラグ27による火花放電の発生を開始する一方、当該目標初爆圧縮行程より前には火花放電の発生を行わないように、エンジン制御装置4によって点火装置27aの動作すなわち点火プラグ27に対する通電が制御される。したがって、本実施形態の構成によれば、未燃の燃料混合気の排気管26aへの吹き抜けや、無駄な点火用電力の消費が、良好に防止される。 Further, in the present embodiment, the fuel injection is controlled by the engine control device 4 so that the fuel injection is started from the target initial explosion intake stroke while the fuel injection is not performed before the target initial explosion intake stroke. . Similarly, the spark discharge by the spark plug 27 starts from the target initial explosion compression stroke, while the engine control device 4 causes the ignition device 27a not to generate spark discharge before the target initial explosion compression stroke. That is, the energization of the spark plug 27 is controlled. Therefore, according to the configuration of the present embodiment, it is possible to satisfactorily prevent unburned fuel mixture from being blown into the exhaust pipe 26a and useless use of ignition power.
 <変形例>
 以下、代表的な変形例について、幾つか例示する。以下の変形例の説明において、上述の実施形態にて説明されているものと同様の構成及び機能を有する部分に対しては、上述の実施形態と同様の符号が用いられ得るものとする。そして、かかる部分の説明については、技術的に矛盾しない範囲内において、上述の実施形態における説明が適宜援用され得るものとする。もっとも、言うまでもなく、変形例とて、以下に列挙されたものに限定されるものではない。また、複数の変形例の全部及び一部が、技術的に矛盾しない範囲内において、適宜、複合的に適用され得る。
<Modification>
Hereinafter, some typical modifications will be exemplified. In the following description of the modified examples, the same reference numerals as those in the above embodiment can be used for portions having the same configurations and functions as those described in the above embodiment. And about description of this part, the description in the above-mentioned embodiment shall be used suitably in the range which is not technically consistent. Needless to say, the modifications are not limited to those listed below. In addition, all and some of the plurality of modified examples can be combined in an appropriate manner within a technically consistent range.
 目標初爆圧縮行程は、初回圧縮行程の直後に迎える圧縮行程に限定されない。すなわち、例えば、目標初爆圧縮行程は、初回圧縮行程から所定の少数回数(2回、3回、等)後に迎える圧縮行程であってもよい。この場合、デコンプレッションが行われる複数回の圧縮行程における空気の放出度合(すなわち筒内圧の上昇抑制度合)は、ともに、初爆の発生が不可能な程度とされる。特に、上述の実施形態の構成においては、デコンプレッションが行われる複数回の圧縮行程において、空気の放出度合がほぼ一定となる。 The target initial explosion compression stroke is not limited to the compression stroke that occurs immediately after the initial compression stroke. That is, for example, the target initial explosion compression stroke may be a compression stroke that reaches a predetermined minority number of times (two times, three times, etc.) from the initial compression stroke. In this case, the degree of air release (that is, the degree of suppression of the increase in the in-cylinder pressure) in a plurality of compression strokes in which decompression is performed is set such that the first explosion is impossible. In particular, in the configuration of the above-described embodiment, the degree of air release is substantially constant in a plurality of compression strokes in which decompression is performed.
 デコンプレッション装置28は、上述の実施形態にて示された構成に限定されない。例えば、図6に示されているように、排気バルブ26fは、油圧動弁機構29によって駆動されるようになっていてもよい。この油圧動弁機構29は、油圧供給状態に応じて、排気バルブ26fの開弁及び閉弁タイミング並びに開弁リフト量が適宜変更可能に構成されている(例えば特開2007-71025号公報等参照)。かかる構成においては、圧縮行程にて、排気バルブ26fを開弁させるための油圧供給状態が実現されることで、デコンプレッション時の排気バルブ26fの強制的な開弁が行われる。すなわち、図6に示されている構成においては、油圧動弁機構29が、図3におけるデコンプレッション装置28に相当する。 The decompression device 28 is not limited to the configuration shown in the above embodiment. For example, as shown in FIG. 6, the exhaust valve 26 f may be driven by a hydraulic valve mechanism 29. The hydraulic valve mechanism 29 is configured such that the opening and closing timing of the exhaust valve 26f and the valve opening lift amount can be changed as appropriate according to the hydraulic pressure supply state (see, for example, JP-A-2007-71025). ). In such a configuration, a hydraulic pressure supply state for opening the exhaust valve 26f is realized in the compression stroke, so that the exhaust valve 26f is forcibly opened at the time of decompression. That is, in the configuration shown in FIG. 6, the hydraulic valve mechanism 29 corresponds to the decompression device 28 in FIG.
 図6の構成においては、デコンプレッション時に、排気バルブ26fの開弁量(リフト量)が、排気行程におけるフルリフト量に設定されることで、クランキングトルクが最大限低減される。あるいは、クランキング開始時点のクランク角に応じてリフト量が可変であってもよい。具体的には、クランキング開始時点におけるクランク角が図4に示されている目標停止位置から遠いほどリフト量が多くなるように、デコンプレッション時の排気バルブ26fのリフト量が制御されてもよい。 In the configuration of FIG. 6, the cranking torque is reduced to the maximum by setting the valve opening amount (lift amount) of the exhaust valve 26f to the full lift amount in the exhaust stroke during decompression. Alternatively, the lift amount may be variable according to the crank angle at the start of cranking. Specifically, the lift amount of the exhaust valve 26f at the time of decompression may be controlled so that the lift amount increases as the crank angle at the cranking start time becomes farther from the target stop position shown in FIG. .
 また、デコンプレッション装置28は、上述のような電気的に制御される構成のものに限定されない。すなわち、例えば、デコンプレッション装置28は、排気カムシャフト26hの回転の停止によってセットされてデコンプレッション動作状態(排気バルブ26fを強制的に開弁させる状態)に設定される一方、排気カムシャフト26hが1回転(あるいは少数の所定回転)した後にリセットされて通常運転状態(デコンプレッション動作状態が解除された状態)に設定されるような、機械的構成を備えていてもよい(このような機械的構成は本願の出願時点における当業者の技術常識を用いれば比較的簡単に実現可能である)。 Further, the decompression device 28 is not limited to the one that is electrically controlled as described above. That is, for example, the decompression device 28 is set by stopping the rotation of the exhaust camshaft 26h and set to a decompression operation state (a state in which the exhaust valve 26f is forcibly opened), while the exhaust camshaft 26h is It may have a mechanical configuration that is reset after one rotation (or a small number of predetermined rotations) and set to a normal operation state (a state in which the decompression operation state is released) (such a mechanical configuration). The configuration can be realized relatively easily using the common general knowledge of those skilled in the art at the time of filing of the present application).
 本発明は、単気筒エンジンに限定されない。すなわち、本発明は、2気筒を含む多気筒エンジンに対しても好適に適用可能である。この場合、すべての気筒20に対応して、デコンプレッション装置28がそれぞれ設けられていることが好ましい。また、「目標初爆吸気行程」に該当する特定気筒が、「目標初爆圧縮行程」を迎えるものとする。 The present invention is not limited to a single cylinder engine. That is, the present invention can be suitably applied to a multi-cylinder engine including two cylinders. In this case, it is preferable that a decompression device 28 is provided for each of the cylinders 20. Further, it is assumed that the specific cylinder corresponding to the “target initial explosion intake stroke” reaches the “target initial explosion compression stroke”.
 特に、多気筒エンジンにおいては、アイドリングストップ制御における停止制御を行うことで1つの気筒20について充分な助走回転距離が得られたとしても、他の気筒20については充分な助走回転距離が得られない場合がある。このような場合であっても、本発明によれば、良好な始動性が確保される。 In particular, in a multi-cylinder engine, even if a sufficient running rotation distance is obtained for one cylinder 20 by performing stop control in the idling stop control, a sufficient running rotation distance cannot be obtained for the other cylinders 20. There is a case. Even in such a case, according to the present invention, good startability is ensured.
 上記の実施形態においては、動弁制御部401等は、ハードウェア的に実現されていたが、機能ブロックとしてソフトウェア的に実現されていてもよい。すなわち、動弁制御部401等は、CPUの動作によって、ROMあるいは書き換え可能な不揮発性メモリから読み出されて実行される、ルーチン(プログラム)として実現されていてもよい。 In the above-described embodiment, the valve operating control unit 401 and the like are realized by hardware, but may be realized by software as a functional block. That is, the valve control unit 401 or the like may be realized as a routine (program) that is read out and executed from a ROM or a rewritable nonvolatile memory by the operation of the CPU.
 吸気バルブ25fの閉弁時期の遅延によっても、圧縮行程における筒内圧は低減され得る(特開2000-34913号公報等参照:これも「デコンプレッション」と称され得る。本明細書ではこれを以下「吸気側デコンプレッション」と称する一方、上述の実施形態のような態様のものを「排気側デコンプレッション」と称する。)。この点、本発明においては、吸気側デコンプレッションと排気側デコンプレッションとを併用することが可能である。但し、この場合、排気側デコンプレッションは目標初爆圧縮行程においては行われない一方、吸気側デコンプレッションは目標初爆吸気行程において任意である(行われてもよいし、行われなくてもよい。)。 The in-cylinder pressure in the compression stroke can also be reduced by delaying the closing timing of the intake valve 25f (see Japanese Patent Application Laid-Open No. 2000-34913, etc .: this can also be referred to as “decompression”. On the other hand, the “intake side decompression” is referred to as “exhaust side decompression”. In this regard, in the present invention, it is possible to use both intake-side decompression and exhaust-side decompression. However, in this case, the exhaust side decompression is not performed in the target initial explosion compression stroke, while the intake side decompression is optional (may or may not be performed) in the target initial explosion intake stroke. .)
 1…自動二輪車、2…エンジン、20…気筒、22…クランクシャフト、24…モータジェネレータ、28…デコンプレッション装置 1 ... motorcycle, 2 ... engine, 20 ... cylinder, 22 ... crankshaft, 24 ... motor generator, 28 ... decompression device

Claims (8)

  1.  車両(1)に搭載され、少なくとも1つの気筒(20)及びクランクシャフト(22)を有するエンジン(2)を、前記クランクシャフトと結合し回転駆動力を伝達することにより始動するように構成された、エンジン始動装置であって、前記クランクシャフト(22)と前記回転駆動力の伝達が遮断できないように結合されていて、前記エンジンの始動後に前記クランクシャフトにて発生する回転駆動力によって発電機として機能するとともに、前記エンジンの始動の際に前記クランクシャフトを前記エンジンの始動後と同一方向に回転駆動することで始動用電動機としても機能するように構成された、モータジェネレータ(24)と、前記エンジンの始動の際に、圧縮行程中の前記気筒内の空気を当該気筒の外部に放出するデコンプレッションを行うように構成された、デコンプレッション装置(28)と、を備え、前記デコンプレッション装置は、前記エンジンの始動のための前記モータジェネレータの起動後最初に迎える圧縮行程である初回圧縮行程にて、仮に当該初回圧縮行程を迎える前記気筒内に燃料が吸入された場合であっても初爆の発生が不可能な程度まで当該気筒内の空気が放出されるように、前記デコンプレッションを所定のデコンプレッション量に基づいて行うとともに、前記初回圧縮行程から所定回数後に迎える圧縮行程である目標初爆圧縮行程中には前記気筒内の空気が初爆の発生が不可能な程度まで放出されることがないように、前記所定のデコンプレッション量を調整するか、デコンプレッションを終了するように構成されたことを特徴とする、エンジン始動装置。 An engine (2) mounted on the vehicle (1) and having at least one cylinder (20) and a crankshaft (22) is configured to start by being coupled with the crankshaft and transmitting rotational driving force. An engine starting device, which is coupled to the crankshaft (22) so that the transmission of the rotational driving force cannot be interrupted, and serves as a generator by the rotational driving force generated at the crankshaft after the engine is started. A motor generator (24) configured to function as a starting motor by rotating the crankshaft in the same direction as after starting the engine at the time of starting the engine; When the engine is started, a decompressor that releases the air in the cylinder during the compression stroke to the outside of the cylinder. A decompression device (28) configured to perform a first compression stroke, which is a compression stroke that is first reached after the motor generator is started for starting the engine. Therefore, even if fuel is sucked into the cylinder that reaches the initial compression stroke, the decompression is set to a predetermined value so that the air in the cylinder is released to the extent that the first explosion is impossible. And the air in the cylinder is released to the extent that the first explosion is impossible during the target initial explosion compression stroke, which is a compression stroke that reaches a predetermined number of times after the initial compression stroke. The predetermined decompression amount is adjusted or the decompression is terminated so that the predetermined decompression amount does not occur. Engine starting device.
  2.  請求項1に記載の、エンジン始動装置において、前記デコンプレッション装置の動作を制御する、制御装置(401)をさらに備え、前記デコンプレッション装置は、前記制御装置によって動作が制御されるアクチュエータ(28b)を備えたことを特徴とする、エンジン始動装置。 The engine starter according to claim 1, further comprising a control device (401) for controlling the operation of the decompression device, wherein the decompression device is an actuator (28b) whose operation is controlled by the control device. An engine starting device comprising:
  3.  請求項1又は2に記載の、エンジン始動装置において、前記目標初爆圧縮行程の直前の吸気行程である目標初爆吸気行程から燃料噴射を開始する一方、当該目標初爆吸気行程より前には燃料噴射を行わないように、燃料噴射を制御する、燃料噴射制御手段(402)をさらに備えたことを特徴とする、エンジン始動装置。 The engine starter according to claim 1 or 2, wherein fuel injection is started from a target initial explosion intake stroke that is an intake stroke immediately before the target initial explosion compression stroke, and before the target initial explosion intake stroke, An engine starter further comprising fuel injection control means (402) for controlling fuel injection so as not to perform fuel injection.
  4.  請求項1~3のうちのいずれか1項に記載の、エンジン始動装置であって、前記デコンプレッション装置は、前記エンジンの始動のための前記モータジェネレータの起動時点での、当該エンジンにおけるピストン(21)の位置に応じて、前記デコンプレッションにおける空気の放出度合を可変に構成されたことを特徴とする、エンジン始動装置。 The engine starting device according to any one of claims 1 to 3, wherein the decompression device includes a piston (1) in the engine at the time of starting the motor generator for starting the engine. 21. An engine starter characterized in that the degree of release of air in the decompression is variable according to the position of 21).
  5.  請求項1~4のうちのいずれか1項に記載の、エンジン始動装置であって、前記デコンプレッション装置は、前記初回圧縮行程後であって前記目標初爆圧縮行程より前の圧縮行程にて、仮に当該圧縮行程を迎える前記気筒内に燃料が吸入された場合であっても初爆の発生が不可能な程度まで当該気筒内の空気が放出されるように、前記デコンプレッションを行うように構成されたことを特徴とする、エンジン始動装置。 The engine starting device according to any one of claims 1 to 4, wherein the decompression device is in a compression stroke after the initial compression stroke and before the target initial explosion compression stroke. The decompression is performed so that air in the cylinder is released to the extent that the first explosion is impossible even if fuel is sucked into the cylinder that reaches the compression stroke. An engine starter characterized in that it is configured.
  6.  請求項5に記載の、エンジン始動装置であって、前記デコンプレッション装置は、空気の放出度合が一定となるように、前記デコンプレッションを行うように構成されたことを特徴とする、エンジン始動装置。 6. The engine starting device according to claim 5, wherein the decompression device is configured to perform the decompression so that a degree of air release is constant. .
  7.  請求項1~4のうちのいずれか1項に記載の、エンジン始動装置であって、前記目標初爆圧縮行程は、前記初回圧縮行程の直後に迎える圧縮行程であることを特徴とする、エンジン始動装置。 The engine starting device according to any one of claims 1 to 4, wherein the target initial explosion compression stroke is a compression stroke that comes immediately after the initial compression stroke. Starter.
  8.  請求項1~請求項7のうちのいずれか1項に記載の、エンジン始動装置であって、前記エンジンは単気筒エンジンであることを特徴とする、エンジン始動装置。 The engine starter according to any one of claims 1 to 7, wherein the engine is a single cylinder engine.
PCT/JP2013/075452 2012-10-01 2013-09-20 Engine starting device mounted on vehicle provided with motor generator and decompression device WO2014054434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380051534.0A CN104718362B (en) 2012-10-01 2013-09-20 Engine starting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012219099A JP5888200B2 (en) 2012-10-01 2012-10-01 Engine starter
JP2012-219099 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054434A1 true WO2014054434A1 (en) 2014-04-10

Family

ID=50434764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075452 WO2014054434A1 (en) 2012-10-01 2013-09-20 Engine starting device mounted on vehicle provided with motor generator and decompression device

Country Status (3)

Country Link
JP (1) JP5888200B2 (en)
CN (1) CN104718362B (en)
WO (1) WO2014054434A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859052B2 (en) 2015-11-12 2020-12-08 Bombardier Recreational Products Inc. Method for operating an electric turning machine operatively connected to an internal combustion engine
US10975824B2 (en) 2015-11-12 2021-04-13 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11448146B2 (en) 2015-11-12 2022-09-20 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826414B1 (en) * 2015-01-14 2015-12-02 ヤマハ発動機株式会社 Engine system and saddle riding type vehicle
JP6002269B1 (en) * 2015-03-30 2016-10-05 本田技研工業株式会社 Starter for vehicle engine
JP6665734B2 (en) * 2016-08-30 2020-03-13 株式会社デンソー Engine starter
CN111396203A (en) * 2020-03-26 2020-07-10 扬州翊翔航空科技有限公司 Auxiliary starting device of micro hybrid system for unmanned aerial vehicle and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291895A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Controller of internal combustion engine
JP2009209722A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Start control device and start control method for engine
JP2010203423A (en) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd Control device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374950B2 (en) * 1996-03-26 2003-02-10 石川島芝浦機械株式会社 Internal combustion engine decompression device
JP4346262B2 (en) * 2001-07-25 2009-10-21 本田技研工業株式会社 Method and apparatus for starting internal combustion engine
AU2003200190B2 (en) * 2002-02-06 2008-06-26 Honda Giken Kogyo Kabushiki Kaisha Internal Combustion Engine Provided with Decompressing Means
AU2003200227B2 (en) * 2002-02-06 2008-09-25 Honda Giken Kogyo Kabushiki Kaisha Internal Combustion Engine Provided with Decompressing Means and Method of Adjusting Valve Lift for Decompression
DE10342703B4 (en) * 2003-09-16 2013-09-26 Robert Bosch Gmbh Method for starting a multi-cylinder internal combustion engine and internal combustion engine
JP4640830B2 (en) * 2006-03-22 2011-03-02 本田技研工業株式会社 Starter for internal combustion engine
JP4710808B2 (en) * 2006-11-28 2011-06-29 トヨタ自動車株式会社 Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291895A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Controller of internal combustion engine
JP2009209722A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Start control device and start control method for engine
JP2010203423A (en) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd Control device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859052B2 (en) 2015-11-12 2020-12-08 Bombardier Recreational Products Inc. Method for operating an electric turning machine operatively connected to an internal combustion engine
US10883467B2 (en) 2015-11-12 2021-01-05 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US10975824B2 (en) 2015-11-12 2021-04-13 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11293363B2 (en) 2015-11-12 2022-04-05 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11300066B2 (en) 2015-11-12 2022-04-12 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11415096B2 (en) 2015-11-12 2022-08-16 Bombardier Recreational Products Inc. Method for operating an electric turning machine operatively connected to an internal combustion engine
US11448146B2 (en) 2015-11-12 2022-09-20 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11852087B2 (en) 2015-11-12 2023-12-26 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine

Also Published As

Publication number Publication date
CN104718362B (en) 2017-05-17
JP2014070616A (en) 2014-04-21
CN104718362A (en) 2015-06-17
JP5888200B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2014054434A1 (en) Engine starting device mounted on vehicle provided with motor generator and decompression device
JP4673767B2 (en) INTERNAL COMBUSTION ENGINE AUTOMATIC STOP DEVICE AND AUTOMOBILE INTERNAL COMBUSTION ENGINE HAVING THE AUTOMATIC STOP DEVICE
US7726270B2 (en) Engine start control apparatus and engine start control method
JP6485651B2 (en) Control device for internal combustion engine
JP5919697B2 (en) Diesel engine start control device
JP6510878B2 (en) Control device for internal combustion engine
JP2007107433A (en) Control device for internal conbustion engine
JP6398412B2 (en) Engine start control device
JP2011089467A (en) Control method for internal combustion engine, and internal combustion engine system
JP7240228B2 (en) Control device for internal combustion engine
JP2005140112A (en) Restarting method and controller for internal combustion engine for automobile
JP2004036428A (en) Control device for internal combustion engine
JP2010084587A (en) Valve timing control method of internal combustion engine and internal combustion engine system
JP3783548B2 (en) Control device for internal combustion engine
JP5034882B2 (en) Control device for internal combustion engine
JP4737128B2 (en) Engine start control device and start control method
JP6877935B2 (en) Engine control unit
JP2006316689A (en) Control device for internal combustion engine
JP4760739B2 (en) Automatic stop / start system for internal combustion engine
JP5929795B2 (en) Control device for internal combustion engine
JP4998323B2 (en) Internal combustion engine system and control method for internal combustion engine
JP2001159321A (en) Control device for internal combustion engine for vehicle
JP4775315B2 (en) Control device for vehicle engine
JP6881239B2 (en) Internal combustion engine control device
JP2009036115A (en) Vehicle engine controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201502596

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13843449

Country of ref document: EP

Kind code of ref document: A1