WO2014050697A1 - ポリビニルアルコールフィルムおよび偏光フィルム - Google Patents

ポリビニルアルコールフィルムおよび偏光フィルム Download PDF

Info

Publication number
WO2014050697A1
WO2014050697A1 PCT/JP2013/075298 JP2013075298W WO2014050697A1 WO 2014050697 A1 WO2014050697 A1 WO 2014050697A1 JP 2013075298 W JP2013075298 W JP 2013075298W WO 2014050697 A1 WO2014050697 A1 WO 2014050697A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
degree
pva film
swelling
Prior art date
Application number
PCT/JP2013/075298
Other languages
English (en)
French (fr)
Inventor
康平 下田
磯▲ざき▼ 孝徳
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020147031926A priority Critical patent/KR101624072B1/ko
Priority to CN201380049685.2A priority patent/CN104640912B/zh
Priority to JP2013558251A priority patent/JP5563725B1/ja
Priority to KR1020147031875A priority patent/KR101571261B1/ko
Publication of WO2014050697A1 publication Critical patent/WO2014050697A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polyvinyl alcohol film suitable as a raw film for producing a polarizing film, a method for producing the same, and a method for producing a polarizing film using the same.
  • the present invention also relates to a polarizing film excellent in polarizing performance useful for the production of a thin polarizing plate and a polarizing plate produced using the polarizing film.
  • a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes a polarization state of light.
  • LCDs are used in a wide range of devices such as small devices such as calculators and wrist watches, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors. .
  • LCD application fields liquid crystal televisions, liquid crystal monitors, and the like are becoming larger and thinner, and as the glass used is thinner, the polarizing plate is also required to be thinner from the viewpoint of shrinkage stress.
  • a polarizing plate is obtained by dyeing, uniaxially stretching a polyvinyl alcohol film (hereinafter, “polyvinyl alcohol” may be abbreviated as “PVA”), and optionally further fixing with a boron compound or the like. After the production, it is produced by bonding a protective film such as a cellulose triacetate (TAC) film on the surface of the polarizing film. Therefore, in order to achieve thinning of the polarizing plate, it is required to produce a thin polarizing film using a thinner PVA film, and the specific thickness of the PVA film is 40 ⁇ m or less, and further 30 ⁇ m or less. It is requested to do.
  • PVA polyvinyl alcohol film
  • TAC cellulose triacetate
  • a PVA film is usually produced by using a film-forming stock solution containing PVA, casting it on a support such as a metal roll and drying it, and further subjecting it to a heat treatment if necessary (for example, (See Patent Documents 1 and 2, etc.).
  • Patent Document 1 describes a method in which a PVA aqueous solution is cast on a drum-type roll, a PVA film is formed and dried, then heat treatment is performed, and humidity control is performed under specific conditions.
  • Patent Document 2 describes a method in which a formed PVA film is cooled and heat-treated by a specific method. And in both patent documents 1 and 2, manufacturing a polarizing film using the obtained PVA film is indicated.
  • a PVA film used as a raw film for producing a polarizing film may need to have a degree of swelling of about 190 to 210% for reasons such as preventing wrinkles during stretching.
  • a thin PVA film having a thickness of about 40 ⁇ m or less is formed by a conventionally known method, it is easy to dry at the time of film formation as compared with the case where a PVA film having a conventional thickness is formed. Therefore, it becomes a PVA film having a high degree of swelling.
  • the present invention can reduce the generation of wrinkles at the time of stretching, and the PVA film capable of producing a thin polarizing film with high yield by reducing the stretching stress and reducing the breaking at the time of stretching. And it aims at providing the manufacturing method of a polarizing film using the same.
  • the polarizing plate is likely to warp due to the thin glass used. .
  • such a problem is likely to occur when the raw film is stretched at a higher stretch ratio in order to improve the polarization performance.
  • an object of the present invention is to provide a polarizing film excellent in polarization performance that hardly warps even when a thin polarizing plate is manufactured, and a polarizing plate manufactured using the polarizing film.
  • the inventors of the present invention have a swelling degree of 190 to 210% by subjecting a thin PVA film having a thickness of 40 ⁇ m or less to wet heat treatment under specific conditions.
  • a PVA film having a thickness of 40 ⁇ m or less is produced, an unprecedented PVA film having a swelling degree of 260% or more after being stretched in water can be efficiently obtained, and such a PVA film can be obtained at the time of stretching. It has been found that the generation of wrinkles is reduced, the stretching stress is low, and the breakage during stretching is reduced, so that a thin polarizing film can be produced with good yield.
  • the present invention [1] A PVA film having a degree of swelling (A) of 190 to 230% and a thickness of 40 ⁇ m or less, and having a degree of swelling (B) of 260% or more after being stretched at a stretch ratio of 3 in water at 30 ° C.
  • a production method comprising a step of performing a wet heat treatment for 200 seconds or more under a condition of 80% RH or more; [4] The production method of the above [3], further comprising a step of heat-treating at a temperature of 90 to 130 ° C. for 10 seconds or longer after the step of performing the wet heat treatment; [5] A method for producing a polarizing film comprising the steps of dyeing and uniaxially stretching the PVA film of [2] above; [6] A polarizing film having a dichroic ratio of 55 or more, and the shrinkage stress in the orientation direction is 73 N after 1 hour at a temperature of 80 ° C. and a relative humidity of 5% with the orientation direction fixed.
  • the present invention it is possible to reduce the occurrence of wrinkles at the time of stretching, and the PVA film capable of producing a thin polarizing film with high yield by reducing the stretching stress and reducing the breaking at the time of stretching, and the production thereof.
  • a method and a method for producing a polarizing film using the method are provided.
  • the polarizing film excellent in the polarization performance which is hard to produce a curvature, and the polarizing plate manufactured using it are provided.
  • the present invention is described in detail below.
  • the PVA film of the present invention needs to have a swelling degree (A) of 190 to 230%, and the swelling degree (A) is preferably 195% or more, and preferably 210% or less. 205% or less is more preferable. If the degree of swelling (A) is less than 190%, the stretching stress increases, and breakage occurs frequently during stretching. On the other hand, when the degree of swelling (A) exceeds 230%, wrinkles are generated at the time of stretching, and the process passability decreases.
  • the degree of swelling (A) is an index showing the water retention ability when the PVA film is immersed in water, and the mass after immersion of the PVA film in water at 30 ° C. for 30 minutes as it is (without stretching) It can obtain
  • the PVA film of the present invention needs to have a swelling degree (B) of 260% or more after being stretched at a stretching ratio of 3 in water at 30 ° C., preferably 265% or more, and 270%. More preferably.
  • the degree of swelling (B) is less than 260%, the stretching stress increases, and breakage tends to occur during stretching. If the degree of swelling (B) is too high, wrinkles are likely to occur during stretching and the process passability tends to decrease. Therefore, the degree of swelling (B) is preferably 320% or less, and 300% The following is more preferable.
  • the degree of swelling (B) is an index indicating the water retention capacity of the PVA film after stretching the PVA film in 30 ° C. water at a stretch ratio of 3 times, and stretching the PVA film in 30 ° C. water at 240% / min. It can be determined as a percentage by dividing the mass after stretching at a stretch ratio of 3 times by the mass after stretching and drying at 105 ° C. for 16 hours, specifically by the method described later in the examples. Can be measured.
  • the present invention is not limited in any way, when the PVA film is stretched in water, the crystallites in the PVA film are dissolved at the initial stage of stretching to increase the degree of swelling. It is thought that the degree of swelling decreases due to crystallization.
  • the PVA film is specified by specifying the degree of swelling (B) when stretched in water at a stretch ratio of 3 times.
  • Examples of the PVA constituting the PVA film of the present invention include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and isolacetate.
  • Examples thereof include those obtained by saponifying a polyvinyl ester obtained by polymerizing one or more vinyl esters such as propenyl.
  • vinyl esters vinyl acetate is preferable from the viewpoints of ease of production of PVA, availability, cost, and the like.
  • the polyvinyl ester is preferably obtained using only one or two or more vinyl esters as monomers, and more preferably obtained using only one vinyl ester as a monomer. However, as long as it does not impair the effects of the present invention, it may be a copolymer of one or more vinyl esters and other monomers copolymerizable therewith.
  • Examples of the other monomer copolymerizable with the vinyl ester include ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene, and isobutene; (meth) acrylic acid or a salt thereof; (Meth) methyl acrylate, (meth) ethyl acrylate, (meth) acrylate n-propyl, (meth) acrylate i-propyl, (meth) acrylate n-butyl, (meth) acrylate i-butyl, ( (Meth) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl ( (Meth) acrylamide, N-ethyl (meth) acrylamide, N,
  • Vinyl ether vinyl cyanide such as (meth) acrylonitrile
  • vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride
  • Allyl compounds such as allyl acetate and allyl chloride; maleic acid or its salts, esters or acid anhydrides; itaconic acid or its salts, esters or acid anhydrides
  • vinylsilyl compounds such as vinyltrimethoxysilane; unsaturated sulfonic acids be able to.
  • Said polyvinyl ester can have a structural unit derived from 1 type, or 2 or more types of an above described other monomer.
  • the proportion of structural units derived from the other monomers described above in the polyvinyl ester is preferably 15 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester, and is preferably 10 mol%. More preferably, it is more preferably 5 mol% or less.
  • the other monomer described above is a monomer that may promote water solubility of the obtained PVA, such as (meth) acrylic acid or unsaturated sulfonic acid
  • the obtained PVA In order to prevent PVA from being dissolved when the film is used as a raw film for producing a polarizing film, the proportion of structural units derived from these monomers in the polyvinyl ester is the total amount of the polyvinyl ester. Based on the number of moles of the structural unit, it is preferably 5 mol% or less, and more preferably 3 mol% or less.
  • the above PVA may be modified with one or two or more types of graft copolymerizable monomers as long as the effects of the present invention are not impaired.
  • the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; ⁇ -olefins having 2 to 30 carbon atoms, and the like.
  • the proportion of structural units derived from the graft copolymerizable monomer in PVA is preferably 5 mol% or less based on the number of moles of all structural units constituting PVA.
  • the above PVA may have a part of its hydroxyl group cross-linked or not cross-linked. Moreover, said PVA may react with aldehyde compounds, such as acetaldehyde and a butyraldehyde, etc. to form an acetal structure, and the said PVA does not react with these compounds and does not form an acetal structure. May be.
  • aldehyde compounds such as acetaldehyde and a butyraldehyde, etc.
  • the degree of polymerization of the PVA is preferably in the range of 1,500 to 6,000, more preferably in the range of 1,800 to 5,000, and in the range of 2,000 to 4,000. More preferably.
  • the degree of polymerization is less than 1,500, the durability of the polarizing film produced using the obtained PVA film tends to deteriorate.
  • the degree of polymerization exceeds 6,000, it tends to lead to an increase in production cost, poor process passability during film formation, and an increase in shrinkage stress of the resulting polarizing film.
  • the polymerization degree of PVA as used in this specification means the average degree of polymerization measured according to description of JIS K6726-1994.
  • the saponification degree of the PVA is preferably 98.0 mol% or more, more preferably 98.5 mol% or more, and 99.0 mol% or more from the viewpoint of water resistance of the polarizing film. More preferably. When the degree of saponification is less than 98.0 mol%, the water resistance of the obtained polarizing film tends to deteriorate.
  • the degree of saponification of PVA refers to the total number of moles of structural units (typically vinyl ester units) that can be converted into vinyl alcohol units by saponification and the vinyl alcohol units of PVA. The proportion (mol%) occupied by the number of moles of vinyl alcohol units.
  • the degree of saponification can be measured according to the description of JIS K6726-1994.
  • the PVA film of the present invention preferably contains a plasticizer.
  • the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the PVA film of the present invention
  • polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane
  • PVA film of the present invention One or more of these plasticizers can be included.
  • glycerin is preferable in terms of the effect of improving stretchability.
  • the content of the plasticizer in the PVA film of the present invention is preferably in the range of 1 to 20 parts by mass, more preferably in the range of 3 to 17 parts by mass with respect to 100 parts by mass of PVA contained therein. Preferably, it is in the range of 5 to 15 parts by mass.
  • the plasticizer is 1 part by mass or more, the stretchability of the PVA film can be further improved.
  • the plasticizer is 20 parts by mass or less, it is possible to prevent the PVA film from becoming too flexible and handling properties from being lowered.
  • the PVA film of the present invention may further contain components such as an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, an anti-coloring agent, an oil agent, and a surfactant described later, if necessary.
  • components such as an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, an anti-coloring agent, an oil agent, and a surfactant described later, if necessary.
  • the shape of the PVA film of the present invention is not particularly limited, but a more uniform PVA film can be produced continuously and smoothly, and it can also be used continuously in the case of producing a polarizing film using it. Therefore, it is preferable that the film is a long film.
  • the length of the long film (length in the length direction) is not particularly limited, and can be set as appropriate according to the application, for example, within a range of 5 to 30,000 m.
  • the width of the PVA film of the present invention is not particularly limited, and can be appropriately set according to the use of the PVA film or the polarizing film produced therefrom, but in recent years, the screen size of liquid crystal televisions and liquid crystal monitors has increased. In view of this, it is suitable for these applications that the width of the PVA film is 3 m or more, more preferably 4 m or more. On the other hand, if the width of the PVA film is too large, it is difficult to uniformly perform uniaxial stretching itself when manufacturing a polarizing film with a device that has been put to practical use, and therefore the width of the PVA film should be 7 m or less. Is preferred.
  • the thickness of the PVA film of the present invention makes it possible to obtain a thin polarizing film, reduces the shrinkage stress of the polarizing film and further the polarizing plate using the polarizing film, and prevents the laminated thin glass from warping.
  • it is necessary to be 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, further preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the thickness is preferably 5 ⁇ m or more.
  • the present invention relates to a method for producing a PVA film having a degree of swelling (A) of 190 to 230% and a thickness of 40 ⁇ m or less, wherein the PVA film having a degree of swelling (A) of 250% or more is treated at a temperature of 55 to 100 ° C.
  • the manufacturing method which has the process of carrying out the wet heat treatment for 200 second or more on the conditions of humidity 80% RH or more is included. According to the said manufacturing method, the above-mentioned PVA film of this invention which has swelling degree (B) in a specific range can be manufactured efficiently.
  • the degree of swelling (A) of the PVA film subjected to the wet heat treatment is 250% or more.
  • the degree of swelling (A) of the PVA film subjected to the wet heat treatment is preferably 400 to 900%, and more preferably 450 to 800%.
  • the moisture content of the PVA film subjected to wet heat treatment is not particularly limited, but is preferably 40% by mass or less from the viewpoint of increasing the efficiency of wet heat treatment, and 20% by mass.
  • the content is more preferably 10% by mass or less, and more preferably 2% by mass or more.
  • the PVA film which has the desired thickness By making a PVA film which has the desired thickness by a conventionally well-known method, the PVA film which has the above-mentioned swelling degree (A) is easy. Can get to.
  • a film-forming stock solution in which PVA is dissolved in a liquid medium or a film-forming stock solution in which PVA and a liquid medium are included and PVA is melted can be used for film formation.
  • liquid medium used for preparing the membrane forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, Trimethylolpropane, ethylenediamine, diethylenetriamine and the like can be mentioned, and one or more of these can be used.
  • water is preferably used from the viewpoint of environmental load and recoverability.
  • the volatile fraction of the raw film forming solution (content ratio of volatile components such as liquid medium removed by volatilization or evaporation during film formation) varies depending on the film forming method, film forming conditions, etc. It is preferably 95% by mass, more preferably 55 to 90% by mass, and particularly preferably 60 to 85% by mass. If the volatile fraction of the film-forming stock solution is too low, the viscosity of the film-forming stock solution becomes too high, making filtration and defoaming difficult when preparing the film-forming stock solution, making it difficult to produce a PVA film with few foreign matters and defects. Tend. On the other hand, when the volatile fraction of the film-forming stock solution is too high, the concentration of the film-forming stock solution becomes too low, and industrial PVA film tends to be difficult to form.
  • the film forming stock solution contains a surfactant.
  • the surfactant By containing the surfactant, the occurrence of uneven thickness of the PVA film is suppressed, and the PVA film can be easily peeled from the roll or belt used for film formation.
  • the PVA film contains a surfactant.
  • the kind of said surfactant is not specifically limited, Anionic surfactant or nonionic surfactant is preferable from a peelable viewpoint from a roll, a belt, etc.
  • anionic surfactant for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
  • a carboxylic acid type such as potassium laurate
  • a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
  • a sulfonic acid type such as dodecylbenzene sulfonate
  • Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene laurylamino Alkylamine type such as ether; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide; polyoxy An allyl phenyl ether type such as alkylene allyl phenyl ether is preferred.
  • surfactants may be used alone or in combination of two or more.
  • the content thereof is preferably in the range of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of PVA, and 0.02 to 0.3 parts by mass Is more preferably in the range of 0.05 to 0.1 parts by mass.
  • the content of the surfactant is less than 0.01 parts by mass with respect to 100 parts by mass of PVA, the effect of improving the film forming property and the releasability due to the addition of the surfactant becomes difficult to appear, whereas on the other hand, 100 parts by mass of PVA
  • the amount exceeds 0.5 parts by mass the surfactant may bleed out on the surface of the PVA film, causing blocking, and handling properties may be reduced.
  • Examples of the film forming method for forming a PVA film to be subjected to wet heat treatment using the above-described film forming stock solution include a wet film forming method, a gel film forming method, a casting film forming method, and an extrusion film forming method. Etc. can be adopted. A method based on a combination of these can also be employed.
  • the casting film forming method or the extrusion film forming method is preferably employed because a PVA film having a uniform thickness and width and good physical properties can be obtained.
  • a T-type slit die, hopper plate, I-die, lip coater die, etc. are used to uniformly discharge the film forming stock solution onto the peripheral surface of a heated roll (or belt) that rotates. Then, volatile components are evaporated from one surface of the film discharged onto the roll (or belt) and dried to form a PVA film, or one or more after being dried in this way
  • a method of forming a PVA film by further drying on the peripheral surface of a heated heated roll or by passing it through a hot air drying apparatus.
  • the PVA film after film formation may be subjected to wet heat treatment to be described later by winding it as necessary after being wound up once by a winding device. However, the PVA film continuously formed as described above may be used. The film may be wound after the wet heat treatment described later is continuously applied.
  • the surface temperature of the roll used for film formation can be set to 50 to 100 ° C., for example. Further, the drying temperature when the film-forming stock solution is discharged onto the belt can be set to 50 to 100 ° C., for example.
  • the temperature in the wet heat treatment is in the range of 55 to 100 ° C. If the temperature of the wet heat treatment is less than 55 ° C., the effect of the wet heat treatment is not sufficiently exhibited, and it becomes difficult to obtain a PVA film having the degree of swelling (A) described above, or a heat treatment described later is further applied to the above. Even if the PVA film having the degree of swelling (A) is used, the degree of swelling (B) is less than 260%, the stretching stress is increased, and breakage is likely to occur during stretching. On the other hand, when the temperature of the wet heat treatment exceeds 100 ° C., the degree of swelling (B) of the obtained PVA film becomes less than 260%, the stretching stress increases, and breakage tends to occur during stretching. Since the PVA film of the present invention can be produced more efficiently, the wet heat treatment temperature is preferably in the range of 58 to 90 ° C, more preferably in the range of 60 to 80 ° C.
  • the relative humidity in the wet heat treatment is 80% RH or more.
  • the relative humidity of the wet heat treatment is less than 80% RH, it becomes difficult to obtain a PVA film having the degree of swelling (A) described above, or a PVA having the degree of swelling (A) described above after further heat treatment described below. Even if it is made into a film, the degree of swelling (B) becomes less than 260%, the stretching stress increases, and breakage tends to occur during stretching.
  • the relative humidity of the wet heat treatment is preferably 85% RH or more from the viewpoint of enhancing the effect of the wet heat treatment.
  • the wet heat treatment time is 200 seconds or more. If the wet heat treatment time is less than 200 seconds, the effect of the wet heat treatment cannot be obtained sufficiently. From the viewpoint of enhancing the effect of the wet heat treatment, the wet heat treatment time is preferably 4 minutes or longer, and more preferably 5 minutes or longer. It should be noted that the wet heat treatment time is preferably 60 minutes or less because the effect reaches its peak even if the wet heat treatment is performed for an excessively long time, while the productivity tends to decrease.
  • a PVA film having a swelling degree (A) of 190 to 230% by the wet heat treatment described above may be used, but the swelling degree (A) of the PVA film after the wet heat treatment is 230%.
  • a PVA film having a degree of swelling (A) of 190 to 230% may be finally obtained by further heat treatment after the wet heat treatment. If such heat treatment is performed after the wet heat treatment, a PVA film having a swelling degree (B) in the above range can be produced in a shorter wet heat treatment time, which is preferable from the viewpoint of productivity.
  • the heat treatment is preferably performed for 10 seconds or more under the condition of a temperature of 90 to 130 ° C.
  • the degree of swelling (A) can be more efficiently made 190 to 230%.
  • the swelling degree (B) of a PVA film falls because the temperature of heat processing is 130 degrees C or less. Since the PVA film of the present invention can be produced more efficiently, the temperature of the heat treatment is more preferably 100 to 125 ° C, and further preferably 110 to 120 ° C.
  • the heat treatment effect can be enhanced by the heat treatment time being 10 seconds or longer. From the viewpoint of the effect of heat treatment, the heat treatment time is more preferably 30 seconds or more. On the other hand, regarding the upper limit of the heat treatment time, a time until the degree of swelling (A) of the PVA film becomes 190 to 230% can be adopted, but it is 15 minutes or less from the viewpoint of preventing the PVA film from yellowing. It is preferable.
  • the relative humidity in the heat treatment is not particularly limited, and any relative humidity can be adopted when the heat treatment is performed at a temperature exceeding 100 ° C., and the relative humidity is 80% RH when the heat treatment is performed at a temperature of 100 ° C. or less. Less than.
  • the present invention is not limited in any way, it is considered that the PVA film of the present invention is obtained by generating microcrystals in the PVA film by wet heat treatment in the method for producing the PVA film of the present invention. Even a PVA film in which such microcrystals are formed only by wet heat treatment, or a PVA film in which microcrystal nuclei are first formed by wet heat treatment and then microcrystals are formed by subsequent heat treatment. However, it is considered that the PVA film of the present invention which is not conventionally obtained can be efficiently obtained by the above-mentioned method because the microstructure is different from that of the PVA film crystallized without being subjected to the wet heat treatment.
  • the PVA film of this invention while being able to reduce the generation
  • the method for producing a polarizing film using the PVA film of the present invention as a raw film is not particularly limited, and any conventionally employed method may be employed. Examples of such a method include a method of dyeing and uniaxially stretching the PVA film of the present invention, and specifically, swelling, dyeing, uniaxial stretching, and as required for the PVA film of the present invention. Furthermore, a method of performing fixing treatment, drying, heat treatment, etc. can be mentioned. In this case, the order of each treatment such as swelling, dyeing, uniaxial stretching, and fixing treatment is not particularly limited, and one or two or more treatments can be performed simultaneously. Also, one or more of each process can be performed twice or more.
  • Swelling can be performed by immersing the PVA film in water.
  • the temperature of the water when immersed in water is preferably in the range of 20 to 40 ° C., more preferably in the range of 22 to 38 ° C., and preferably in the range of 25 to 35 ° C. Further preferred.
  • the time for immersion in water is preferably in the range of 0.1 to 5 minutes, for example, and more preferably in the range of 0.5 to 3 minutes.
  • the water at the time of immersing in water is not limited to pure water, The aqueous solution in which various components melt
  • the dyeing is preferably performed using iodine, and the dyeing time may be any stage before uniaxial stretching, during uniaxial stretching, or after uniaxial stretching.
  • Dyeing is generally performed by immersing a PVA film in a solution (particularly an aqueous solution) containing iodine-potassium iodide as a dyeing bath, and such a dyeing method is also preferably used in the present invention.
  • the iodine concentration in the dyeing bath is preferably in the range of 0.01 to 0.5% by mass, and the potassium iodide concentration is preferably in the range of 0.01 to 10% by mass.
  • the temperature of the dyeing bath is preferably 20 to 50 ° C., particularly 25 to 40 ° C.
  • Uniaxial stretching may be performed by either a wet stretching method or a dry stretching method.
  • the wet drawing method it can be carried out in an aqueous solution containing boric acid, or can be carried out in the dyeing bath described above or in a fixing treatment bath described later.
  • stretching method it can carry out in air using the PVA film after water absorption.
  • the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid.
  • the concentration of boric acid in the boric acid aqueous solution is preferably in the range of 0.5 to 6.0% by mass, more preferably in the range of 1.0 to 5.0% by mass, It is particularly preferably within the range of ⁇ 4.0% by mass. Further, the boric acid aqueous solution may contain potassium iodide, and its concentration is preferably in the range of 0.01 to 10% by mass.
  • the stretching temperature in the uniaxial stretching is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 80 ° C, and particularly preferably in the range of 50 to 70 ° C.
  • the draw ratio in uniaxial stretching is preferably 5 times or more, more preferably 5.5 times or more, and particularly preferably 6 times or more from the viewpoint of the polarizing performance of the polarizing film to be obtained.
  • the upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
  • the fixing treatment bath used for the fixing treatment an aqueous solution containing one or more of boron compounds such as boric acid and borax can be used. Moreover, you may add an iodine compound and a metal compound in a fixed treatment bath as needed.
  • the concentration of the boron compound in the fixing treatment bath is generally about 2 to 15% by mass, particularly about 3 to 10% by mass.
  • the temperature of the fixing treatment bath is preferably 15 to 60 ° C., particularly 25 to 40 ° C.
  • Drying is preferably performed at 30 to 150 ° C, particularly 50 to 130 ° C.
  • tension is applied to the polarizing film and heat treatment is performed at about 80 to 120 ° C. for about 1 to 5 minutes. A film can be obtained.
  • the polarizing film obtained as described above is usually used as a polarizing plate by attaching a protective film on both sides or one side.
  • the protective film include those that are optically transparent and have mechanical strength. Specifically, for example, cellulose triacetate (TAC) film, cellulose acetate / butyrate (CAB) film, acrylic film, polyester-based film Film or the like is used.
  • TAC cellulose triacetate
  • CAB cellulose acetate / butyrate
  • acrylic film acrylic film
  • polyester-based film Film or the like
  • the adhesive for bonding include PVA adhesives and urethane adhesives, among which PVA adhesives are suitable.
  • the polarizing plate obtained as described above can be used as an LCD component after being coated with an acrylic adhesive or the like and bonded to a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
  • the polarizing film of the present invention has a dichroic ratio of 55 or more, and the orientation direction contracts after 1 hour at a temperature of 80 ° C. and a relative humidity of 5% with the orientation direction fixed.
  • the stress is 73 N / mm 2 or less.
  • the dichroic ratio is 55 or more, the polarizing film can be used for applications requiring high polarization performance.
  • the dichroic ratio is preferably 60 or more.
  • the upper limit of the dichroic ratio is 80.
  • the polarizing film of the present invention has a shrinkage stress in the orientation direction when 1 hour has passed under conditions of a temperature of 80 ° C. and a relative humidity of 5% with the orientation direction (stretching direction at the time of producing the polarizing film) fixed.
  • 73 N / mm 2 or less When the shrinkage stress is 73 N / mm 2 or less, the polarizing film is less likely to warp.
  • the shrinkage stress is preferably at 70N / mm 2 or less, more preferably 68N / mm 2 or less, and more preferably 67N / mm 2 or less.
  • the said shrinkage stress may be 20 N / mm ⁇ 2 > or more, Furthermore, 50 N / mm ⁇ 2 > or more.
  • the shrinkage stress was measured by taking a rectangular sample of 12 cm parallel to the alignment direction of the polarizing film and 1.5 cm in a direction orthogonal to the alignment direction, The autograph was fixed so that the orientation direction was fixed, and the shrinkage stress in the orientation direction was measured after 1 hour under the conditions of a temperature of 80 ° C. and a relative humidity of 5%, and this was measured as the cross-sectional area of the film (unit: mm 2 ).
  • the thickness of the polarizing film of this invention there is no restriction
  • the method for producing the polarizing film of the present invention is not particularly limited, and the polarizing film can be produced by dyeing and uniaxially stretching using a PVA film as a raw film, but the swelling degree (A) is 190 to 230%.
  • a PVA film having a thickness of 40 ⁇ m or less and having a swelling degree (B) of 260% or more after being stretched at a stretching ratio of 3 times in water at 30 ° C. is used as the raw film.
  • the manufacturing method of the polarizing film which has the process of dye
  • the polarizing film of this invention since the above-mentioned content can be employ
  • the actual stretch ratio here is the distance between the center of the marked line after stretching (the center in the thickness direction of the marked line at the position where the length of the marked line is equally divided) (A in FIG. 1B). Is divided by the distance (5 cm) between the marked lines before stretching. After stretching, within 1 minute in an environment of temperature 20 ° C. and relative humidity 65% RH, wipe the moisture on the sample surface after stretching using filter paper, and follow the marked line at the center of the marked line in the thickness direction. The film between the marked lines was cut out by cutting the sample (see (c) of FIG. 1), and the mass “L” of the film between the marked lines was measured.
  • the stress is measured by using an autograph (AG-I) manufactured by Shimadzu Corporation and dividing the measured force by the cross-sectional area before stretching (sample thickness ⁇ sample width (3 cm)). Stress was used. The same measurement was performed 5 times and the average value was adopted.
  • the light transmittance when tilted by +45 degrees with respect to the orientation direction and the light transmittance when tilted by ⁇ 45 degrees with respect to the orientation direction were measured, and an average value thereof ( Ts1) (%) was determined.
  • the light transmittance when tilted by +45 degrees and the light transmittance when tilted by ⁇ 45 degrees are measured, and the average value (Ts2) (%) is calculated. Asked. And the calculated
  • the above two samples were stacked so that the light transmittance (T ⁇ ) (%) when the alignment directions were overlapped so that the alignment directions were parallel, and the alignment directions were orthogonal to each other.
  • the light transmittance (T ⁇ ) (%) was measured.
  • the transmittances (T ⁇ ) and (T ⁇ ) are the same as the measurement of the single transmittance (Ts) described above, the light transmittance when tilted +45 degrees with respect to the orientation direction of one sample, and ⁇ 45. It was obtained as an average value with the light transmittance when tilted.
  • the polarization degree (P) (%) of the polarizing film was determined based on the following formula (iii).
  • Polarization degree (P) (%) ⁇ (T ⁇ T ⁇ ) / (T ⁇ + T ⁇ ) ⁇ 1/2 ⁇ 100 (iii)
  • Dichroic ratio log (Ts / 100 ⁇ Ts / 100 ⁇ P / 100) / log (Ts / 100 + Ts / 100 ⁇ P / 100) (iv)
  • Example 1 100 parts by mass of PVA (saponified product of vinyl acetate homopolymer, degree of polymerization 2,400, degree of saponification 99.95 mol%), 6 parts by mass of glycerin as a plasticizer, sodium polyoxyethylene lauryl ether sulfate as a surfactant 0
  • a PVA having a thickness of 30 ⁇ m is cast by casting a film-forming stock solution consisting of 1 part by mass and water and having a volatile content of 66% by mass onto a metal drum at 60 ° C. and drying until the volatile content (water content) becomes 5% by mass.
  • a film (PVA film before treatment) was used.
  • the degree of swelling (A) of this PVA film was 480%.
  • This PVA film was wet-heat treated for 50 minutes under the conditions of a temperature of 60 ° C. and a relative humidity of 90% RH.
  • the obtained PVA film (treated PVA film) had a degree of swelling (A) of 200%, a thickness of 30 ⁇ m, a degree of swelling (B) of 272%, and a stretching stress of 6.8 MPa.
  • production of wrinkles generation
  • the film is uniaxially stretched in the length direction (MD) up to 2.4 times the original length (stretching at the second stage) at a stretching speed of% / min, and then boric acid is 3% by mass and potassium iodide is 3% by mass.
  • MD length direction
  • Example 2 to 5 Comparative Examples 1 to 4 and Reference Example 1
  • Each PVA film (treated PVA film) was obtained in the same manner as in Example 1 except that the configuration of the PVA film before treatment, the wet heat treatment conditions and the heat treatment conditions were changed as shown in Table 1.
  • Example 3 where both wet heat treatment and heat treatment were performed, the heat treatment was performed after the wet heat treatment. In the heat treatment, conditions with a relative humidity of less than 30% RH were adopted.
  • Table 1 shows the degree of swelling (A), thickness, degree of swelling (B), stretching stress, and the presence or absence of wrinkles during stretching of each of the obtained PVA films.
  • Example 3 Using the PVA film of Example 3 and Comparative Example 1 (PVA film after treatment), a polarizing film having a thickness of 12 ⁇ m was produced in the same manner as in Example 1.
  • the temperature of the boric acid / potassium iodide aqueous solution used in the fourth stage stretching was 57 ° C. in Example 3 and 58 ° C. in Comparative Example 1.
  • the stretching speed during the fourth stage stretching was 120% / min in order to suppress breakage during stretching.
  • Table 1 shows the dichroic ratio and shrinkage stress of the obtained polarizing film.
  • the PVA film was heat-treated for 3 minutes under conditions of a temperature of 140 ° C. and a relative humidity of less than 30% RH.
  • the swelling degree (A) of the obtained PVA film was 198%.
  • the heat treatment was performed for 10 minutes under the conditions of a temperature of 60 ° C. and a relative humidity of 90% RH.
  • the obtained PVA film (treated PVA film) had a degree of swelling (A) of 181% and a thickness of 30 ⁇ m.
  • Rectangular sample 2. Mark in the width direction of the sample The center of the marked line after stretching (the center in the thickness direction of the marked line at the position where the length of the marked line is equally divided) 4). Film between marked lines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 【課題】延伸時の皺の発生を低減でき、延伸応力が低く延伸時の破断が低減されて薄型の偏光フィルムを収率よく製造できるPVAフィルム、その製造方法、および薄型の偏光板を製造する場合でも反りが生じにくい偏光性能に優れた偏光フィルムの提供。 【解決手段】膨潤度(A)が190~210%で厚みが40μm以下のPVAフィルムであって30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)が260%以上であるPVAフィルム;膨潤度(A)が190~210%で厚みが40μm以下のPVAフィルムの製造方法であって膨潤度(A)が250%以上のPVAフィルムを温度55~100℃相対湿度80%RH以上で200秒以上湿熱処理する製造方法;および二色性比が55以上の偏光フィルムであって配向方向を固定した状態で温度80℃相対湿度5%で1時間経過した際の配向方向の収縮応力が73N/mm以下である偏光フィルム。

Description

ポリビニルアルコールフィルムおよび偏光フィルム
 本発明は、偏光フィルム製造用の原反フィルムとして好適なポリビニルアルコールフィルム、その製造方法およびそれを用いた偏光フィルムの製造方法に関する。また本発明は、薄型の偏光板の製造に有用な偏光性能に優れた偏光フィルムおよびそれを用いて製造した偏光板に関する。
 光の透過および遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。LCDは、電卓および腕時計などの小型機器、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広範囲において用いられるようになっている。これらLCDの適用分野のうち液晶テレビや液晶モニターなどでは大型化や薄型化が進んでおり、用いられるガラスの薄型化に伴い、収縮応力の観点から偏光板にも薄型化が求められている。
 偏光板は、一般にポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記する場合がある)に染色、一軸延伸、および必要に応じてさらにホウ素化合物等による固定処理を施して偏光フィルムを製造した後、その偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護膜を貼り合わせることによって製造される。したがって偏光板の薄型化を達成するために、より薄いPVAフィルムを用いて薄型の偏光フィルムを製造することが求められており、具体的なPVAフィルムの厚みについて、40μm以下、さらには30μm以下とすることが求められている。
 ところでPVAフィルムは、通常、PVAを含む製膜原液を用い、これを金属ロール等の支持体上に流延して乾燥し、必要に応じてさらに熱処理等を施すことによって製造される(例えば、特許文献1および2などを参照)。特許文献1には、PVA水溶液をドラム型ロールに流延してPVAフィルムを製膜し乾燥した後、熱処理を行い、さらに特定の条件下で調湿処理を行う方法が記載されている。また特許文献2には、製膜したPVAフィルムを冷却し、特定の方法で熱処理する方法が記載されている。そして、特許文献1および2のいずれにおいても、得られたPVAフィルムを用いて偏光フィルムを製造することが記載されている。
特開2004-160846号公報 特開2006-188655号公報
 偏光フィルム製造用の原反フィルムとして使用されるPVAフィルムは、延伸時の皺の発生を防止するなどの理由から膨潤度を190~210%程度にすることが必要になることがある。ところが従来公知の方法で厚み40μm程度以下の薄型のPVAフィルムを製膜した場合には、従来厚みのPVAフィルムを製膜した場合と比較して製膜時に乾燥しやすいため、結晶化度が低くて膨潤度の高いPVAフィルムとなってしまう。このようなPVAフィルムの結晶化度を上げて膨潤度を190~210%程度に低下させるためには熱処理を行うことが考えられるが、従来公知の熱処理方法によって膨潤度を低下させた場合には延伸応力の高いフィルムとなってしまい、偏光フィルム製造時の一軸延伸処理においてフィルムが破断しやすくなって偏光フィルムの収率の低下を招く問題があった。
 そこで本発明は、延伸時の皺の発生を低減することができるとともに、延伸応力が低く延伸時の破断が低減されて薄型の偏光フィルムを収率よく製造することのできるPVAフィルム、その製造方法およびそれを用いた偏光フィルムの製造方法を提供することを目的とする。
 また、PVAフィルムを原反フィルムとして用いて製造された従来の偏光フィルムを薄型の偏光板の製造に用いた場合には、用いられるガラスが薄いことなどに起因して偏光板に反りが生じやすい。特に偏光性能を向上させるために原反フィルムをより高い延伸倍率で延伸した場合にこのような問題が生じやすい。
 そこで本発明は、薄型の偏光板を製造する場合であっても反りが生じにくい偏光性能に優れた偏光フィルムおよびそれを用いて製造した偏光板を提供することをも目的とする。
 本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、厚みが40μm以下の薄型のPVAフィルムに対して、特定の条件下で湿熱処理を施すことによって膨潤度が190~210%である厚みが40μm以下のPVAフィルムを製造すると、水中で延伸した後の膨潤度が260%以上である従来にないPVAフィルムが効率よく得られること、および、このようなPVAフィルムは延伸時の皺の発生が低減されるとともに、延伸応力が低く延伸時の破断が低減されて薄型の偏光フィルムを収率よく製造することができることを見出した。また、収縮応力が特定範囲にある偏光性能に優れた偏光フィルムによれば、偏光フィルムおよび偏光板に係る上記目的が達成されることを見出した。本発明者らは、これらの知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち、本発明は、
[1]膨潤度(A)が190~230%である厚みが40μm以下のPVAフィルムであって、30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)が260%以上であるPVAフィルム;
[2]偏光フィルム製造用の原反フィルムである、上記[1]のPVAフィルム;
[3]膨潤度(A)が190~230%である厚みが40μm以下のPVAフィルムの製造方法であって、膨潤度(A)が250%以上のPVAフィルムを温度55~100℃、相対湿度80%RH以上の条件下で200秒以上湿熱処理する工程を有する製造方法;
[4]湿熱処理する工程の後に、温度90~130℃の条件下で10秒以上熱処理する工程をさらに有する、上記[3]の製造方法;
[5]上記[2]のPVAフィルムを染色および一軸延伸する工程を有する偏光フィルムの製造方法;
[6]二色性比が55以上の偏光フィルムであって、配向方向を固定した状態で、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力が73N/mm以下である、偏光フィルム;
[7]厚みが20μm以下である、上記[6]の偏光フィルム;および、
[8]上記[6]または[7]の偏光フィルムを用いて製造した偏光板;
に関する。
 本発明によれば、延伸時の皺の発生を低減することができるとともに、延伸応力が低く延伸時の破断が低減されて薄型の偏光フィルムを収率よく製造することのできるPVAフィルム、その製造方法およびそれを用いた偏光フィルムの製造方法が提供される。また本発明によれば、薄型の偏光板を製造する場合であっても反りが生じにくい偏光性能に優れた偏光フィルムおよびそれを用いて製造した偏光板が提供される。
PVAフィルムを30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)を測定する際の概略図である。
 以下に本発明について詳細に説明する。
 本発明のPVAフィルムは膨潤度(A)が190~230%であることが必要であり、膨潤度(A)は、195%以上であることが好ましく、また、210%以下であることが好ましく、205%以下であることがより好ましい。膨潤度(A)が190%未満であると延伸応力が高くなり、延伸時に破断が多発する。一方、膨潤度(A)が230%を超えると延伸時に皴が発生して工程通過性が低下する。
 膨潤度(A)はPVAフィルムを水中に浸漬した際の保水能力を示す指標であり、PVAフィルムをそのまま(延伸を施すことなく)30℃の水中に30分間浸漬した後の質量を、浸漬後105℃で16時間乾燥した後の質量で除すことによって百分率として求めることができ、具体的には実施例において後述する方法により測定することができる。
 また本発明のPVAフィルムは、30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)が260%以上であることが必要であり、265%以上であることが好ましく、270%以上であることがより好ましい。当該膨潤度(B)が260%未満であると延伸応力が高くなり、延伸時に破断が生じやすい。なお当該膨潤度(B)があまりに高いと延伸時に皺が発生しやすくなって工程通過性が低下する傾向があることから、当該膨潤度(B)は320%以下であることが好ましく、300%以下であることがより好ましい。
 当該膨潤度(B)はPVAフィルムを30℃の水中で延伸倍率3倍に延伸した後の当該PVAフィルムの保水能力を示す指標であり、PVAフィルムを30℃の水中で240%/分の延伸速度で延伸倍率3倍に延伸した後の質量を、延伸した後105℃で16時間乾燥した後の質量で除すことによって百分率として求めることができ、具体的には実施例において後述する方法により測定することができる。なお本発明を何ら限定するものではないが、PVAフィルムを水中で延伸すると延伸初期にはPVAフィルム中の微結晶が溶解して膨潤度が高くなり、延伸倍率3倍付近を過ぎると今度は配向結晶化によって膨潤度が低下すると考えられる。本発明においては水中で延伸倍率3倍に延伸した際の膨潤度(B)を特定することによってPVAフィルムを特定する。
 本発明のPVAフィルムを構成するPVAとしては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸イソプロペニル等のビニルエステルの1種または2種以上を重合して得られるポリビニルエステルをけん化することにより得られるものが挙げられる。上記のビニルエステルの中でも、PVAの製造の容易性、入手容易性、コスト等の点から、酢酸ビニルが好ましい。
 上記のポリビニルエステルは、単量体として1種または2種以上のビニルエステルのみを用いて得られたものが好ましく、単量体として1種のビニルエステルのみを用いて得られたものがより好ましいが、本発明の効果を損なわない範囲内であれば、1種または2種以上のビニルエステルと、これと共重合可能な他の単量体との共重合体であってもよい。
 上記のビニルエステルと共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸またはその塩、(メタ)アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロール(メタ)アクリルアミドまたはその誘導体等の(メタ)アクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;(メタ)アクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;不飽和スルホン酸などを挙げることができる。上記のポリビニルエステルは、前記した他の単量体の1種または2種以上に由来する構造単位を有することができる。
 上記のポリビニルエステルに占める前記した他の単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましい。
 特に前記した他の単量体が、(メタ)アクリル酸、不飽和スルホン酸などのように、得られるPVAの水溶性を促進する可能性のある単量体である場合には、得られるPVAフィルムを偏光フィルム製造用の原反フィルムとして使用する際などにおいてPVAが溶解するのを防止するために、ポリビニルエステルにおけるこれらの単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましく、3モル%以下であることがより好ましい。
 上記のPVAは、本発明の効果を損なわない範囲内であれば、1種または2種以上のグラフト共重合可能な単量体によって変性されたものであってもよい。当該グラフト共重合可能な単量体としては、例えば、不飽和カルボン酸またはその誘導体;不飽和スルホン酸またはその誘導体;炭素数2~30のα-オレフィンなどが挙げられる。PVAにおけるグラフト共重合可能な単量体に由来する構造単位の割合は、PVAを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましい。
 上記のPVAは、その水酸基の一部が架橋されていてもよいし架橋されていなくてもよい。また上記のPVAは、その水酸基の一部がアセトアルデヒド、ブチルアルデヒド等のアルデヒド化合物などと反応してアセタール構造を形成していてもよいし、これらの化合物と反応せずアセタール構造を形成していなくてもよい。
 上記のPVAの重合度は1,500~6,000の範囲内であることが好ましく、1,800~5,000の範囲内であることがより好ましく、2,000~4,000の範囲内であることがさらに好ましい。重合度が1,500未満であると得られるPVAフィルムを用いて製造した偏光フィルムの耐久性が悪くなる傾向がある。一方、重合度が6,000を超えると、製造コストの上昇、製膜時における工程通過性の不良、得られる偏光フィルムの収縮応力の上昇などにつながる傾向がある。なお、本明細書でいうPVAの重合度はJIS K6726-1994の記載に準じて測定した平均重合度を意味する。
 上記のPVAのけん化度は、偏光フィルムの耐水性の点から、98.0モル%以上であることが好ましく、98.5モル%以上であることがより好ましく、99.0モル%以上であることがさらに好ましい。けん化度が98.0モル%未満であると、得られる偏光フィルムの耐水性が悪くなる傾向がある。なお、本明細書におけるPVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。けん化度はJIS K6726-1994の記載に準じて測定することができる。
 本発明のPVAフィルムは可塑剤を含有することが好ましい。当該可塑剤としては、例えば、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等の多価アルコールなどを挙げることができ、本発明のPVAフィルムはこれらの可塑剤の1種または2種以上を含むことができる。これらの中でも、延伸性の向上効果の点からグリセリンが好ましい。
 本発明のPVAフィルムにおける可塑剤の含有量は、それに含まれるPVA100質量部に対して、1~20質量部の範囲内であることが好ましく、3~17質量部の範囲内であることがより好ましく、5~15質量部の範囲内であることがさらに好ましい。可塑剤が1質量部以上であることにより、PVAフィルムの延伸性をより向上させることができる。一方、可塑剤が20質量部以下であることにより、PVAフィルムが柔軟になり過ぎて取り扱い性が低下するのを防止することができる。
 本発明のPVAフィルムは、必要に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色防止剤、油剤、後述する界面活性剤などの成分をさらに含有していてもよい。
 本発明のPVAフィルムの形状は特に制限されないが、より均一なPVAフィルムを連続して円滑に製造することができると共に、それを用いて偏光フィルムを製造する場合などにおいても連続して使用することができることから長尺のフィルムであることが好ましい。長尺のフィルムの長さ(長さ方向の長さ)は特に制限されず、用途などに応じて適宜設定することができ、例えば、5~30,000mの範囲内とすることができる。
 本発明のPVAフィルムの幅は特に制限されず、PVAフィルムや、それから製造される偏光フィルムの用途などに応じて適宜設定することができるが、近年、液晶テレビや液晶モニターの大画面化が進行している点から、PVAフィルムの幅を3m以上、より好ましくは4m以上にしておくと、これらの用途に好適である。一方、PVAフィルムの幅があまりに大き過ぎると実用化されている装置で偏光フィルムを製造する場合に一軸延伸自体を均一に行うことが困難になりやすいので、PVAフィルムの幅は7m以下であることが好ましい。
 本発明のPVAフィルムの厚みは、薄型の偏光フィルムを得ることができ、当該偏光フィルムさらにはそれを用いた偏光板の収縮応力を低減させ、積層される薄型のガラスが反ることを防止するなどの観点から、40μm以下であることが必要であり、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることがさらに好ましく、15μm以下であることが特に好ましい。一方、あまりに薄いPVAフィルムはその製造や取り扱いが困難になる傾向があることから、当該厚みは5μm以上であることが好ましい。
 本発明は、膨潤度(A)が190~230%である厚みが40μm以下のPVAフィルムの製造方法であって、膨潤度(A)が250%以上のPVAフィルムを温度55~100℃、相対湿度80%RH以上の条件下で200秒以上湿熱処理する工程を有する製造方法を包含する。当該製造方法によれば、膨潤度(B)が特定範囲にある上記した本発明のPVAフィルムを効率よく製造することができる。
 湿熱処理に供されるPVAフィルムの膨潤度(A)は250%以上である。このような膨潤度(A)を有するPVAフィルムを用いることにより、湿熱処理の効果が十分に発揮される。湿熱処理の効果を高める観点から、湿熱処理に供されるPVAフィルムの膨潤度(A)は、400~900%であることが好ましく、450~800%であることがより好ましい。
 湿熱処理に供されるPVAフィルムの水分率(湿熱処理する直前の水分率)は特に制限されないが、湿熱処理の効率を高めるなどの観点から、40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがより好ましく、また、2質量%以上であることがより好ましい。
 湿熱処理に供されるPVAフィルムの製膜方法に特に制限はなく、従来公知の方法で所望する厚みを有するPVAフィルムを製膜することによって、上記した膨潤度(A)を有するPVAフィルムを容易に得ることができる。具体的には、例えば、PVAが液体媒体中に溶解した製膜原液や、PVAおよび液体媒体を含みPVAが溶融した製膜原液を用いて製膜することができる。
 製膜原液の調製に使用される液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種または2種以上を使用することができる。そのうちでも、環境に与える負荷や回収性の点から水が好適に使用される。
 製膜原液の揮発分率(製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の含有割合)は、製膜方法、製膜条件などによって異なるが、一般的には、50~95質量%、さらには55~90質量%、特に60~85質量%であることが好ましい。製膜原液の揮発分率が低過ぎると、製膜原液の粘度が高くなり過ぎて、製膜原液調製時の濾過や脱泡が困難となり、異物や欠点の少ないPVAフィルムの製造が困難になる傾向がある。一方、製膜原液の揮発分率が高過ぎると、製膜原液の濃度が低くなり過ぎて、工業的なPVAフィルムの製膜が困難になる傾向がある。
 また、製膜原液は界面活性剤を含有することが好ましい。界面活性剤を含有することにより、PVAフィルムの厚み斑の発生が抑制されると共に、製膜に使用されるロールやベルトからのPVAフィルムの剥離が容易になる。界面活性剤を含有する製膜原液からPVAフィルムを製造した場合には、当該PVAフィルム中には界面活性剤が含有される。上記の界面活性剤の種類は特に限定されないが、ロールやベルトなどからの剥離性の観点からアニオン性界面活性剤またはノニオン性界面活性剤が好ましい。
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などが好適である。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが好適である。
 これらの界面活性剤は1種を単独で使用しても2種以上を併用してもよい。
 製膜原液が界面活性剤を含有する場合は、その含有量はPVA100質量部に対して0.01~0.5質量部の範囲内であることが好ましく、0.02~0.3質量部の範囲内であることがより好ましく、0.05~0.1質量部の範囲内であることが特に好ましい。界面活性剤の含有量がPVA100質量部に対して0.01質量部よりも少ないと、界面活性剤を添加したことによる製膜性および剥離性の向上効果が現れにくくなり、一方、PVA100質量部に対して0.5質量部を超えると、界面活性剤がPVAフィルムの表面にブリードアウトしてブロッキングの原因になり、取り扱い性が低下する場合がある。
 上記した製膜原液を用いて湿熱処理に供されるPVAフィルムを製膜する際の製膜方法としては、例えば、湿式製膜法、ゲル製膜法、流延製膜法、押出製膜法などを採用することができる。また、これらの組み合わせによる方法などを採用することもできる。以上の製膜方法の中でも流延製膜法または押出製膜法が、厚みおよび幅が均一で、物性の良好なPVAフィルムが得られることから好ましく採用される。
 具体的な製膜方法としては、T型スリットダイ、ホッパープレート、I-ダイ、リップコーターダイなどを用いて、製膜原液を回転する加熱したロール(あるいはベルト)の周面上に均一に吐出し、このロール(あるいはベルト)上に吐出された膜の一方の面から揮発性成分を蒸発させて乾燥してPVAフィルムとするか、あるいは、このように乾燥させた後、1個または複数個の回転する加熱したロールの周面上でさらに乾燥したり、熱風乾燥装置の中を通過させてさらに乾燥したりしてPVAフィルムを製膜する方法が挙げられる。製膜後のPVAフィルムは、巻き取り装置により一旦巻き取った後に必要に応じて巻き出すなどして後述する湿熱処理を施してもよいが、上記のようにして連続的に製膜されたPVAフィルムに対して後述する湿熱処理を連続的に施した後に巻き取ってもよい。
 製膜に使用されるロールの表面温度としては、例えば、50~100℃とすることができる。また、製膜原液をベルト上に吐出する場合の乾燥温度としては、例えば、50~100℃とすることができる。
 湿熱処理における温度は55~100℃の範囲内である。湿熱処理の温度が55℃未満であると湿熱処理の効果が十分に発揮されず、上記した膨潤度(A)を有するPVAフィルムを得るのが困難になったり、後述する熱処理をさらに施して上記した膨潤度(A)を有するPVAフィルムにしたとしても膨潤度(B)が260%未満になって延伸応力が高くなり、延伸時に破断が生じやすくなったりする。一方、湿熱処理の温度が100℃を超えると得られるPVAフィルムの膨潤度(B)が260%未満になって延伸応力が高くなり、延伸時に破断が生じやすい。本発明のPVAフィルムをより効率的に製造することができることから、湿熱処理の温度は58~90℃の範囲内であることが好ましく、60~80℃の範囲内であることがより好ましい。
 湿熱処理における相対湿度は80%RH以上である。湿熱処理の相対湿度が80%RH未満であると上記した膨潤度(A)を有するPVAフィルムを得るのが困難になったり、後述する熱処理をさらに施して上記した膨潤度(A)を有するPVAフィルムにしたとしても膨潤度(B)が260%未満になって延伸応力が高くなり、延伸時に破断が生じやすくなったりする。湿熱処理の相対湿度は湿熱処理の効果を高める観点から85%RH以上であることが好ましい。
 湿熱処理時間は200秒以上である。湿熱処理時間が200秒未満であると湿熱処理の効果が十分に得られない。湿熱処理の効果を高める観点から、湿熱処理時間は4分以上であることが好ましく、5分以上であることがより好ましい。なお、あまりに長い時間湿熱処理を行っても効果が頭打ちになる一方、生産性が低下する傾向があることから、湿熱処理時間は60分以下であることが好ましい。
 本発明のPVAフィルムの製造方法では、上記した湿熱処理によって膨潤度(A)が190~230%であるPVAフィルムとしてもよいが、当該湿熱処理後のPVAフィルムの膨潤度(A)が230%を超える場合において当該湿熱処理後に熱処理をさらに施すことによって最終的に膨潤度(A)が190~230%であるPVAフィルムとしてもよい。湿熱処理後にこのような熱処理を施せば、より短い湿熱処理時間で膨潤度(B)が上記範囲にあるPVAフィルムを製造することができ、生産性の観点から好ましい。
 熱処理の効果を高める観点から、上記の熱処理は温度90~130℃の条件下で10秒以上行うことが好ましい。熱処理の温度が90℃以上であることにより膨潤度(A)をより効率的に190~230%にすることができる。一方、熱処理の温度が130℃以下であることによりPVAフィルムの膨潤度(B)が低下するのを抑制することができる。本発明のPVAフィルムをより効率的に製造することができることから、熱処理の温度は100~125℃であることがより好ましく、110~120℃であることがさらに好ましい。
 また、熱処理時間が10秒以上であることにより熱処理の効果を高めることができる。熱処理の効果の観点から、熱処理時間は30秒以上であることがより好ましい。一方、熱処理時間の上限に関し、PVAフィルムの膨潤度(A)が190~230%となるまでの時間を採用することができるが、PVAフィルムが黄変するのを防ぐ観点から15分以下であることが好ましい。
 熱処理における相対湿度は特に制限されず、100℃を超える温度で熱処理をする場合には任意の相対湿度を採用することができ、100℃以下の温度で熱処理をする場合には相対湿度80%RH未満とすることができる。
 なお本発明を何ら限定するものではないが、本発明のPVAフィルムの製造方法における湿熱処理によってPVAフィルム中に微結晶が生じて本発明のPVAフィルムが得られるものと考えられる。このような微結晶を湿熱処理のみによって形成させたPVAフィルムであっても、あるいは、はじめに湿熱処理によって微結晶の核を形成しておきその後の熱処理によって微結晶を形成させたPVAフィルムであっても、湿熱処理を施さずに結晶化させたPVAフィルムとは異なる微細構造となるため、上記の方法によって従来にない本発明のPVAフィルムが効率的に得られるものと考えられる。
 本発明のPVAフィルムの用途に特に制限はないが、本発明のPVAフィルムによれば、延伸時の皺の発生を低減することができるとともに、延伸応力が低く延伸時の破断を低減することができることから、偏光フィルム製造用の原反フィルムとして用いることが好ましい。
 本発明のPVAフィルムを原反フィルムとして用いて偏光フィルムを製造する際の方法は特に制限されず、従来から採用されているいずれの方法を採用してもよい。このような方法としては、例えば、本発明のPVAフィルムを染色および一軸延伸する方法が挙げられ、具体的には、本発明のPVAフィルムに対して、膨潤、染色、一軸延伸、および必要に応じてさらに、固定処理、乾燥、熱処理などを施す方法が挙げられる。この場合、膨潤、染色、一軸延伸、固定処理などの各処理の順序は特に制限されず、1つまたは2つ以上の処理を同時に行うこともできる。また、各処理の1つまたは2つ以上を2回またはそれ以上行うこともできる。
 膨潤は、PVAフィルムを水に浸漬することにより行うことができる。水に浸漬する際の水の温度としては、20~40℃の範囲内であることが好ましく、22~38℃の範囲内であることがより好ましく、25~35℃の範囲内であることがさらに好ましい。また、水に浸漬する時間としては、例えば、0.1~5分間の範囲内であることが好ましく、0.5~3分間の範囲内であることがより好ましい。なお、水に浸漬する際の水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。
 染色は、ヨウ素を用いて行うのがよく、染色の時期としては、一軸延伸前、一軸延伸時、一軸延伸後のいずれの段階であってもよい。染色はPVAフィルムを染色浴としてヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中に浸漬させることにより行うのが一般的であり、本発明においてもこのような染色方法が好適に採用される。染色浴におけるヨウ素の濃度は0.01~0.5質量%の範囲内であることが好ましく、ヨウ化カリウムの濃度は0.01~10質量%の範囲内であることが好ましい。また、染色浴の温度は20~50℃、特に25~40℃とすることが好ましい。
 一軸延伸は、湿式延伸法または乾式延伸法のいずれで行ってもよい。湿式延伸法の場合はホウ酸を含む水溶液中で行うこともできるし、上記した染色浴中や後述する固定処理浴中で行うこともできる。また乾式延伸法の場合は吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。ホウ酸水溶液中におけるホウ酸の濃度は0.5~6.0質量%の範囲内であることが好ましく、1.0~5.0質量%の範囲内であることがより好ましく、1.5~4.0質量%の範囲内であることが特に好ましい。また、ホウ酸水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01~10質量%の範囲内にすることが好ましい。
 一軸延伸における延伸温度は、30~90℃の範囲内であることが好ましく、40~80℃の範囲内であることがより好ましく、50~70℃の範囲内であることが特に好ましい。
 また、一軸延伸における延伸倍率は、得られる偏光フィルムの偏光性能の点から5倍以上であることが好ましく、5.5倍以上であることがより好ましく、6倍以上であることが特に好ましい。延伸倍率の上限は特に制限されないが、延伸倍率は8倍以下であることが好ましい。
 偏光フィルムの製造に当たっては、PVAフィルムへの染料(ヨウ素等)の吸着を強固にするために固定処理を行うことが好ましい。固定処理に使用する固定処理浴としては、ホウ酸、硼砂等のホウ素化合物の1種または2種以上を含む水溶液を使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴におけるホウ素化合物の濃度は、一般に2~15質量%、特に3~10質量%程度であることが好ましい。固定処理浴の温度は、15~60℃、特に25~40℃であることが好ましい。
 乾燥は、30~150℃、特に50~130℃で行うことが好ましい。乾燥により偏光フィルムの水分率が10%以下になった時点で偏光フィルムに張力を掛けて80~120℃程度で1~5分間程度熱処理を行うと、寸法安定性、耐久性等に一層優れる偏光フィルムを得ることができる。
 以上のようにして得られた偏光フィルムは、通常、その両面または片面に保護膜を貼り合わせて偏光板にして使用される。保護膜としては、光学的に透明で且つ機械的強度を有するものが挙げられ、具体的には例えば、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などを挙げることができるが、中でもPVA系接着剤が好適である。
 上記のようにして得られた偏光板は、アクリル系等の粘着剤をコートした後、ガラス基板に貼り合わせてLCDの部品として使用することができる。同時に位相差フィルムや視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。
 本発明の偏光フィルムは、二色性比が55以上であって、且つ、配向方向を固定した状態で、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力が73N/mm以下である。二色性比が55以上であることにより、当該偏光フィルムを高い偏光性能が求められる用途に用いることが可能となる。二色性比は60以上であることが好ましい。なお、二色性比の上限としては、例えば80である。二色性比は、偏光フィルムの単体透過率(Ts)(%)および偏光度(P)(%)を用いて、二色性比=log(Ts/100-Ts/100×P/100)/log(Ts/100+Ts/100×P/100)の式により求められる。
 また、本発明の偏光フィルムは、配向方向(偏光フィルム製造時の延伸方向)を固定した状態で、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力が73N/mm以下である。当該収縮応力が73N/mm以下であることにより、反りが生じにくい偏光フィルムとなる。偏光フィルムの反りの観点から、当該収縮応力は、70N/mm以下であることが好ましく、68N/mm以下であることがより好ましく、67N/mm以下であることがさらに好ましい。当該収縮応力の下限に特に制限はないが、当該収縮応力は、例えば20N/mm以上、さらには50N/mm以上であってもよい。
 当該収縮応力は、実施例において後述するように、偏光フィルムの配向方向に平行に12cm、配向方向と直交する方向に1.5cmの矩形のサンプルを採取し、次いでこのサンプルを、チャック間5cmで配向方向が固定されるようにオートグラフに固定し、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力を測定し、これをフィルムの断面積(単位:mm)で除すことにより求めることができる。
 本発明の偏光フィルムの厚みに特に制限はなく、例えば、30μm以下、さらには25μm以下とすることができるが、偏光フィルムさらにはそれを用いた偏光板の収縮応力を低減させ、積層される薄型のガラスが反ることを防止するなどの観点から、当該厚みは20μm以下であることが好ましく、15μm以下であることがより好ましい。一方、あまりに薄い偏光フィルムはその製造や取り扱いが困難になる傾向があることから、当該厚みは3μm以上であることが好ましい。
 本発明の偏光フィルムの製造方法は特に限定されず、PVAフィルムを原反フィルムとして用いて、これを染色および一軸延伸することにより製造することができるが、膨潤度(A)が190~230%である厚みが40μm以下のPVAフィルムであって、30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)が260%以上であるPVAフィルムを原反フィルムとして用いて、当該PVAフィルムを染色および一軸延伸する工程を有する偏光フィルムの製造方法によれば、本発明の偏光フィルムを効率よく製造することができ、好ましい。本発明の偏光フィルムに関する説明としては、本発明のPVAフィルムを原反フィルムとして用いて偏光フィルムを製造する場合の説明などとして上記した内容をそのまま採用することができるため、ここでは重複する説明を省略する。
 本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例、比較例および参考例において採用された各測定方法を以下に示す。
PVAフィルムの膨潤度(A)の測定
 測定対象となるPVAフィルムから幅方向に10cm、長さ方向に20cmの長方形のサンプルを切り出し、このサンプルをさらに幅が2~3mm、長さが20cmの短冊状にカットした。その後、これらの短冊状のサンプル全てを30℃の1,000gの蒸留水中にそのまま浸漬した。30分間浸漬後に短冊状のサンプルを取り出し、遠心分離機(KOKUSAN XEM-KL-5886)を用いて3,000rpmで5分間遠心脱水し、脱水後の質量「N」(短冊状のサンプル全ての合計)を測定した。続いて、その短冊状のサンプルを105℃の乾燥機で16時間乾燥した後、質量「M」(短冊状のサンプル全ての合計)を測定し、下記式(i)により膨潤度(A)を算出した。なお同様の測定を3回行い、その平均値を採用した。
   膨潤度(A)(%) = 100 × N/M   (i)
PVAフィルムを30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)の測定
 測定対象となるPVAフィルムから幅方向に5cm、長さ方向に15cmの長方形のサンプルを切り出し、サンプルの長さ方向の中央部に、標線間(標線の太さ方向の中心間)の距離が5cmになるように油性ペンでサンプルの幅方向の標線(太さ約0.5mm)を2本引いた(図1の(a)を参照)。これを各標線が延伸治具の端に位置するように延伸治具にセットし(チャック間の距離は5cm)、30℃の蒸留水に浸漬して直ちに0.12m/分(240%/分)の延伸速度で実延伸倍率が3.0倍になるように一軸延伸した。ここでいう実延伸倍率とは、延伸後の標線の中央(標線の長さを等分する位置における標線の太さ方向の中心)間の距離(図1の(b)のA)を延伸前の標線間の距離(5cm)で除した値である。延伸後、温度20℃、相対湿度65%RHの環境中で1分以内に、ろ紙を用いて延伸後のサンプル表面の水分をふき取り、標線の太さ方向の中心部分で標線に沿ってサンプルを切ることにより標線間のフィルムを切り出し(図1の(c)を参照)、この標線間のフィルムの質量「L」を測定した。続いてそのフィルムを105℃の乾燥機で16時間乾燥した後、質量「K」を測定し、下記式(ii)により、30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)を算出した。なお同様の測定を5回行い、その平均値を採用した。
   膨潤度(B)(%) = 100 × L/K   (ii)
PVAフィルムの延伸応力の測定
 測定対象となるPVAフィルムから幅方向に3cm、長さ方向に10cmのサンプルを切り出し、長さ方向に一軸延伸するためにチャック間が1.5cmになるように延伸治具に挟み、30℃の蒸留水中に60秒間浸漬した。その後、36mm/分(240%/分)の延伸速度で長さ方向に一軸延伸しながら延伸倍率に対する応力を連続的に測定した。そして、延伸倍率が3.0倍の時の応力を延伸応力とした。なお、応力の測定には株式会社島津製作所製のオートグラフ(AG-I)を用い、また、測定された力を延伸前の断面積(サンプル厚み×サンプル幅(3cm))で除すことにより応力とした。同様の測定を5回行い、その平均値を採用した。
偏光フィルムの二色性比の測定
 以下の実施例または比較例で得られた偏光フィルムの幅方向の中央部から、偏光フィルムの配向方向に平行に4cm×4cmの正方形のサンプルを2枚採取した。
 これらのサンプルについて、日本分光株式会社製の分光光度計「V-7100」を用いて、その光の透過率を測定した。なお測定に際しては、JIS Z 8722(物体色の測定方法)に準拠し、C光源を用いて、2度視野の可視光領域の視感度補正を行った。1枚のサンプルについて、配向方向に対して+45度傾けた場合の光の透過率と、配向方向に対して-45度傾けた場合の光の透過率とを測定して、それらの平均値(Ts1)(%)を求めた。もう1枚のサンプルについても、同様に、+45度傾けた場合の光の透過率と-45度傾けた場合の光の透過率とを測定して、それらの平均値(Ts2)(%)を求めた。そして、求めたTs1とTs2とを平均してその偏光フィルムの単体透過率(Ts)(%)とした。
 次に、上記の2枚のサンプルを、それらの配向方向が平行になるように重ねた場合の光の透過率(T∥)(%)、および、それらの配向方向が直交するように重ねた場合の光の透過率(T⊥)(%)を測定した。透過率(T∥)および(T⊥)は、上記の単体透過率(Ts)の測定と同様にして、一方のサンプルの配向方向に対して+45度傾けた場合の光の透過率と-45度傾けた場合の光の透過率との平均値として求めた。透過率(T∥)および(T⊥)から、下記式(iii)に基づいてその偏光フィルムの偏光度(P)(%)を求めた。
   偏光度(P)(%)={(T∥-T⊥)/(T∥+T⊥)}1/2×100   (iii)
 そして、得られた単体透過率(Ts)(%)および偏光度(P)(%)から、下記式(iv)に基づいてその偏光フィルムの二色性比を求めた。
   二色性比=log(Ts/100-Ts/100×P/100)/log(Ts/100+Ts/100×P/100)   (iv)
偏光フィルムの収縮応力の測定
 以下の実施例または比較例で得られた偏光フィルムの幅方向の中央部から、偏光フィルムの配向方向に平行に12cm、配向方向と直交する方向に1.5cmの矩形のサンプルを採取した。次いでこのサンプルを、チャック間5cmで配向方向が固定されるように、株式会社島津製作所製のオートグラフ「AG-X」に固定し、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力を測定し、これをフィルムの断面積(単位:mm)で除すことにより、その偏光フィルムの収縮応力を求めた。
[実施例1]
 PVA(酢酸ビニルの単独重合体のけん化物、重合度2,400、けん化度99.95モル%)100質量部、可塑剤としてグリセリン6質量部、界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部および水からなる揮発分率66質量%の製膜原液を60℃の金属ドラムに流延し、揮発分率(含水率)が5質量%になるまで乾燥して厚み30μmのPVAフィルム(処理前のPVAフィルム)とした。このPVAフィルムの膨潤度(A)は480%であった。
 このPVAフィルムを、温度60℃、相対湿度90%RHの条件下で50分湿熱処理した。得られたPVAフィルム(処理後のPVAフィルム)の膨潤度(A)は200%、厚みは30μm、膨潤度(B)は272%、延伸応力は6.8MPaであった。なお延伸応力の測定時に皺の発生(延伸時の皺の発生)はみられなかった。
 上記のPVAフィルム(処理後のPVAフィルム)を、温度30℃の水中に浸漬している間に240%/分の延伸速度で元の長さの1.1倍に長さ方向(MD)に一軸延伸(1段目延伸)した後、ヨウ素を0.04質量%およびヨウ化カリウムを4質量%の濃度で含有する温度30℃のヨウ素/ヨウ化カリウム水溶液中に浸漬している間に240%/分の延伸速度で元の長さの2.4倍まで長さ方向(MD)に一軸延伸(2段目延伸)し、次いでホウ酸を3質量%およびヨウ化カリウムを3質量%の濃度で含有する温度30℃のホウ酸/ヨウ化カリウム水溶液中に浸漬している間に240%/分の延伸速度で元の長さの2.7倍まで長さ方向(MD)に一軸延伸(3段目延伸)し、さらにホウ酸を4質量%およびヨウ化カリウムを6質量%の濃度で含有する温度56℃のホウ酸/ヨウ化カリウム水溶液中に浸漬している間に240%/分の延伸速度で元の長さの6.4倍まで長さ方向(MD)に一軸延伸(4段目延伸)し、その後、ヨウ化カリウムを3質量%の濃度で含有する温度30℃のヨウ化カリウム水溶液中に5秒間浸漬することによりフィルムを洗浄し、続いて60℃の乾燥機で90秒間乾燥することにより、厚み12μmの偏光フィルムを製造した。
 得られた偏光フィルムの二色性比および収縮応力を上記した方法により測定したところ、二色性比は63、収縮応力は66.6N/mmであった。
[実施例2~5、比較例1~4および参考例1]
 処理前のPVAフィルムの構成、湿熱処理条件および熱処理条件を表1に示すように変更したこと以外は実施例1と同様にして各PVAフィルム(処理後のPVAフィルム)を得た。なお、湿熱処理および熱処理の両方を施した実施例3では、湿熱処理後に熱処理を施した。また、熱処理では相対湿度30%RH未満の条件を採用した。
 得られた各PVAフィルムの膨潤度(A)、厚み、膨潤度(B)、延伸応力、および延伸時の皺の発生の有無を表1に示した。
 実施例3および比較例1のPVAフィルム(処理後のPVAフィルム)を用いて、実施例1と同様にして厚み12μmの偏光フィルムを製造した。但し、延伸性の最適化のため、4段目延伸の際に使用されるホウ酸/ヨウ化カリウム水溶液の温度について、実施例3では57℃を、比較例1では58℃をそれぞれ採用した。また、比較例1においては、延伸時の破断を抑制するために、4段目延伸の際の延伸速度を120%/分とした。
 得られた偏光フィルムの二色性比および収縮応力を表1に示した。
[比較例5]
 PVA(酢酸ビニルの単独重合体のけん化物、重合度2,400、けん化度99.95モル%)100質量部、可塑剤としてグリセリン6質量部、界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部および水からなる揮発分率66質量%の製膜原液を60℃の金属ドラムに流延し、揮発分率(含水率)が5質量%になるまで乾燥して厚み30μmのPVAフィルム(処理前のPVAフィルム)とした。このPVAフィルムの膨潤度(A)は480%であった。
 このPVAフィルムを、温度140℃、相対湿度30%RH未満の条件下で3分熱処理した。得られたPVAフィルムの膨潤度(A)は198%であった。その後、温度60℃、相対湿度90%RHの条件下で10分湿熱処理した。得られたPVAフィルム(処理後のPVAフィルム)の膨潤度(A)は181%、厚みは30μmであった。
Figure JPOXMLDOC01-appb-T000001
1.長方形のサンプル
2.サンプルの幅方向の標線
3.延伸後の標線の中央(標線の長さを等分する位置における標線の太さ方向の中心)
4.標線間のフィルム

Claims (8)

  1.  膨潤度(A)が190~230%である厚みが40μm以下のポリビニルアルコールフィルムであって、30℃の水中で延伸倍率3倍に延伸した後の膨潤度(B)が260%以上であるポリビニルアルコールフィルム。
  2.  偏光フィルム製造用の原反フィルムである、請求項1に記載のポリビニルアルコールフィルム。
  3.  膨潤度(A)が190~230%である厚みが40μm以下のポリビニルアルコールフィルムの製造方法であって、膨潤度(A)が250%以上のポリビニルアルコールフィルムを温度55~100℃、相対湿度80%RH以上の条件下で200秒以上湿熱処理する工程を有する製造方法。
  4.  湿熱処理する工程の後に、温度90~130℃の条件下で10秒以上熱処理する工程をさらに有する、請求項3に記載の製造方法。
  5.  請求項2に記載のポリビニルアルコールフィルムを染色および一軸延伸する工程を有する偏光フィルムの製造方法。
  6.  二色性比が55以上の偏光フィルムであって、配向方向を固定した状態で、温度80℃、相対湿度5%の条件下で1時間経過した際の配向方向の収縮応力が73N/mm以下である、偏光フィルム。
  7.  厚みが20μm以下である、請求項6に記載の偏光フィルム。
  8.  請求項6または7に記載の偏光フィルムを用いて製造した偏光板。
PCT/JP2013/075298 2012-09-26 2013-09-19 ポリビニルアルコールフィルムおよび偏光フィルム WO2014050697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147031926A KR101624072B1 (ko) 2012-09-26 2013-09-19 폴리비닐알코올 필름 및 편광 필름
CN201380049685.2A CN104640912B (zh) 2012-09-26 2013-09-19 聚乙烯醇膜和偏振膜
JP2013558251A JP5563725B1 (ja) 2012-09-26 2013-09-19 ポリビニルアルコールフィルムおよび偏光フィルム
KR1020147031875A KR101571261B1 (ko) 2012-09-26 2013-09-19 폴리비닐알코올 필름 및 편광 필름

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-211925 2012-09-26
JP2012211925 2012-09-26
JP2013165995 2013-08-09
JP2013-165995 2013-08-09

Publications (1)

Publication Number Publication Date
WO2014050697A1 true WO2014050697A1 (ja) 2014-04-03

Family

ID=50388102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075298 WO2014050697A1 (ja) 2012-09-26 2013-09-19 ポリビニルアルコールフィルムおよび偏光フィルム

Country Status (5)

Country Link
JP (2) JP5563725B1 (ja)
KR (2) KR101571261B1 (ja)
CN (1) CN104640912B (ja)
TW (1) TWI611905B (ja)
WO (1) WO2014050697A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076169A1 (ja) * 2013-11-21 2015-05-28 株式会社クラレ ポリビニルアルコールフィルム
JP2016071324A (ja) * 2014-09-29 2016-05-09 住友化学株式会社 偏光板
WO2016167238A1 (ja) * 2015-04-13 2016-10-20 株式会社クラレ ポリビニルアルコールフィルム
JP2016203623A (ja) * 2015-04-24 2016-12-08 日本合成化学工業株式会社 ポリビニルアルコール系フィルムの製造方法、ポリビニルアルコール系フィルム、及び偏光膜
WO2016208652A1 (ja) * 2015-06-24 2016-12-29 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、ポリビニルアルコール系フィルムの製造方法、及び偏光膜
KR20170068443A (ko) 2014-10-16 2017-06-19 닛폰고세이가가쿠고교 가부시키가이샤 폴리비닐 알코올계 필름 및 이의 제조방법, 및 편광 필름, 편광판
WO2017138551A1 (ja) * 2016-02-09 2017-08-17 株式会社クラレ 偏光フィルム及びその製造方法
WO2018164196A1 (ja) * 2017-03-08 2018-09-13 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
WO2018164176A1 (ja) * 2017-03-08 2018-09-13 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2019151206A1 (ja) * 2018-01-30 2019-08-08 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法
KR20200003279A (ko) 2015-09-02 2020-01-08 주식회사 쿠라레 폴리비닐알코올 필름 롤
JP2021121862A (ja) * 2019-02-04 2021-08-26 住友化学株式会社 偏光板および表示装置
JP2021157037A (ja) * 2020-03-26 2021-10-07 株式会社クラレ 偏光フィルム及びその製造方法
WO2023182267A1 (ja) * 2022-03-22 2023-09-28 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076564A (ko) 2013-12-27 2015-07-07 제일모직주식회사 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
KR101802560B1 (ko) * 2014-07-23 2017-11-29 삼성에스디아이 주식회사 편광판 및 그 제조방법
ES2886644T3 (es) * 2014-09-01 2021-12-20 Sekisui Chemical Co Ltd Película de embalaje soluble en agua
JP2020526797A (ja) * 2017-07-25 2020-08-31 エルジー・ケム・リミテッド 偏光板およびこれを含む液晶表示素子
CN107417941A (zh) * 2017-09-04 2017-12-01 重庆云天化瀚恩新材料开发有限公司 Pva薄膜的生产方法与pva偏光片的制备方法
KR20210098988A (ko) * 2018-12-04 2021-08-11 주식회사 쿠라레 폴리비닐알코올 필름 및 이를 이용한 편광필름의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006133A (ja) * 2000-06-19 2002-01-09 Nitto Denko Corp 偏光子、偏光板及びそれを用いた液晶表示装置
JP2004160846A (ja) * 2002-11-13 2004-06-10 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製法およびそれを用いた偏光膜
JP2005031577A (ja) * 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd 偏光膜、偏光板および液晶表示装置
WO2010071093A1 (ja) * 2008-12-18 2010-06-24 株式会社クラレ 偏光フィルムの製造法
WO2010071094A1 (ja) * 2008-12-18 2010-06-24 株式会社クラレ ポリビニルアルコールフィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI247771B (en) * 2000-05-01 2006-01-21 Kuraray Co Process for producing polyvinyl alcohol-based polymer film and polarizing film
ES2236081T3 (es) * 2000-05-02 2005-07-16 Kuraray Co., Ltd. Pelicula de polimero de poli(alcohol vinilico), metodo para producir la misma y pelicula de polarizacion.
TWI245147B (en) * 2000-06-19 2005-12-11 Nitto Denko Corp Polarizing plate and liquid crystal display using the same
TWI240724B (en) * 2001-12-17 2005-10-01 Kuraray Co Polyvinyl alcohol film and polarizing film
KR100508822B1 (ko) * 2002-03-20 2005-08-17 가부시키가이샤 구라레 폴리비닐 알콜계 필름
CN100345010C (zh) * 2002-08-02 2007-10-24 日东电工株式会社 偏振薄膜的制造方法和由该方法制得的偏振薄膜以及光学薄膜
JP4433462B2 (ja) * 2004-05-12 2010-03-17 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法
JP5257645B2 (ja) * 2007-10-25 2013-08-07 住友化学株式会社 偏光フィルムの製造方法および偏光板の製造方法
JP2011203641A (ja) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd 偏光板
TWI437008B (zh) * 2010-07-02 2014-05-11 Nippon Synthetic Chem Ind 聚乙烯醇系膜、聚乙烯醇系膜之製造方法、偏光膜及偏光板
JP5831249B2 (ja) * 2012-01-23 2015-12-09 住友化学株式会社 偏光フィルムとその製造方法及び偏光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006133A (ja) * 2000-06-19 2002-01-09 Nitto Denko Corp 偏光子、偏光板及びそれを用いた液晶表示装置
JP2004160846A (ja) * 2002-11-13 2004-06-10 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製法およびそれを用いた偏光膜
JP2005031577A (ja) * 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd 偏光膜、偏光板および液晶表示装置
WO2010071093A1 (ja) * 2008-12-18 2010-06-24 株式会社クラレ 偏光フィルムの製造法
WO2010071094A1 (ja) * 2008-12-18 2010-06-24 株式会社クラレ ポリビニルアルコールフィルム

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076169A1 (ja) * 2013-11-21 2015-05-28 株式会社クラレ ポリビニルアルコールフィルム
KR101740127B1 (ko) 2014-09-29 2017-05-25 스미또모 가가꾸 가부시키가이샤 편광판
JP2016071324A (ja) * 2014-09-29 2016-05-09 住友化学株式会社 偏光板
JP2016139151A (ja) * 2014-09-29 2016-08-04 住友化学株式会社 偏光板
CN106033135A (zh) * 2014-09-29 2016-10-19 住友化学株式会社 偏振板
CN106033135B (zh) * 2014-09-29 2017-08-08 住友化学株式会社 偏振板
KR20170068443A (ko) 2014-10-16 2017-06-19 닛폰고세이가가쿠고교 가부시키가이샤 폴리비닐 알코올계 필름 및 이의 제조방법, 및 편광 필름, 편광판
CN107406605B (zh) * 2015-04-13 2020-11-20 株式会社可乐丽 聚乙烯醇膜
CN107406605A (zh) * 2015-04-13 2017-11-28 株式会社可乐丽 聚乙烯醇膜
JPWO2016167238A1 (ja) * 2015-04-13 2018-02-08 株式会社クラレ ポリビニルアルコールフィルム
WO2016167238A1 (ja) * 2015-04-13 2016-10-20 株式会社クラレ ポリビニルアルコールフィルム
JP2016203623A (ja) * 2015-04-24 2016-12-08 日本合成化学工業株式会社 ポリビニルアルコール系フィルムの製造方法、ポリビニルアルコール系フィルム、及び偏光膜
WO2016208652A1 (ja) * 2015-06-24 2016-12-29 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、ポリビニルアルコール系フィルムの製造方法、及び偏光膜
JPWO2016208652A1 (ja) * 2015-06-24 2018-04-12 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、ポリビニルアルコール系フィルムの製造方法、及び偏光膜
KR20200003279A (ko) 2015-09-02 2020-01-08 주식회사 쿠라레 폴리비닐알코올 필름 롤
JPWO2017138551A1 (ja) * 2016-02-09 2018-09-06 株式会社クラレ 偏光フィルム及びその製造方法
WO2017138551A1 (ja) * 2016-02-09 2017-08-17 株式会社クラレ 偏光フィルム及びその製造方法
WO2018164176A1 (ja) * 2017-03-08 2018-09-13 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
JP7234105B2 (ja) 2017-03-08 2023-03-07 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
CN110383124B (zh) * 2017-03-08 2021-12-21 株式会社可乐丽 偏振膜、偏振片和它们的制造方法
CN110383124A (zh) * 2017-03-08 2019-10-25 株式会社可乐丽 偏振膜、偏振片和它们的制造方法
WO2018164196A1 (ja) * 2017-03-08 2018-09-13 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
JPWO2018164176A1 (ja) * 2017-03-08 2020-01-09 株式会社クラレ 偏光フィルム、偏光板、及びそれらの製造方法
KR20190139854A (ko) 2017-04-26 2019-12-18 미쯔비시 케미컬 주식회사 폴리비닐알코올계 필름, 편광막 및 편광판, 및 폴리비닐알코올계 필름의 제조 방법
JPWO2018199141A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335697B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2019151206A1 (ja) * 2018-01-30 2019-08-08 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法
JP2021121862A (ja) * 2019-02-04 2021-08-26 住友化学株式会社 偏光板および表示装置
JP2021157037A (ja) * 2020-03-26 2021-10-07 株式会社クラレ 偏光フィルム及びその製造方法
JP7413116B2 (ja) 2020-03-26 2024-01-15 株式会社クラレ 偏光フィルムの製造方法
WO2023182267A1 (ja) * 2022-03-22 2023-09-28 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法

Also Published As

Publication number Publication date
JP2015057629A (ja) 2015-03-26
CN104640912B (zh) 2019-07-26
CN104640912A (zh) 2015-05-20
KR20140139137A (ko) 2014-12-04
JP5563725B1 (ja) 2014-07-30
TWI611905B (zh) 2018-01-21
JP5587517B1 (ja) 2014-09-10
JPWO2014050697A1 (ja) 2016-08-22
KR20140140129A (ko) 2014-12-08
KR101571261B1 (ko) 2015-11-23
TW201416218A (zh) 2014-05-01
KR101624072B1 (ko) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5587517B1 (ja) ポリビニルアルコールフィルムおよび偏光フィルム
KR102163144B1 (ko) 폴리비닐알코올계 중합체 필름 및 그 제조 방법
JP5624803B2 (ja) ポリビニルアルコール系重合体フィルム
JP7234105B2 (ja) 偏光フィルム、偏光板、及びそれらの製造方法
JP2022008895A (ja) 偏光フィルムの製造方法
JP5931125B2 (ja) 偏光フィルムの製造方法
JP7199343B2 (ja) 偏光フィルム、偏光板、及びそれらの製造方法
JP2018135426A (ja) ポリビニルアルコールフィルム及びその製造方法、並びにそれを用いた偏光フィルム
JP6077626B2 (ja) ポリビニルアルコールフィルム
WO2019151206A1 (ja) ポリビニルアルコールフィルム及びその製造方法
JP6592509B2 (ja) ポリビニルアルコールフィルム
JP5606704B2 (ja) 偏光フィルムの製造方法
JP6858499B2 (ja) 光学フィルムの製造方法
JP6667989B2 (ja) 偏光フィルムの製造方法
WO2021132435A1 (ja) ポリビニルアルコールフィルム及び偏光フィルム
JP5832921B2 (ja) ポリビニルアルコールフィルム
JP6735541B2 (ja) 偏光フィルム
JP7413116B2 (ja) 偏光フィルムの製造方法
JP5179646B2 (ja) 偏光フィルム
WO2023182267A1 (ja) ポリビニルアルコールフィルム及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013558251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031875

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842640

Country of ref document: EP

Kind code of ref document: A1