WO2014044516A1 - Bombage de vitrages - Google Patents

Bombage de vitrages Download PDF

Info

Publication number
WO2014044516A1
WO2014044516A1 PCT/EP2013/068058 EP2013068058W WO2014044516A1 WO 2014044516 A1 WO2014044516 A1 WO 2014044516A1 EP 2013068058 W EP2013068058 W EP 2013068058W WO 2014044516 A1 WO2014044516 A1 WO 2014044516A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sheets
cooling
atmosphere
glass
Prior art date
Application number
PCT/EP2013/068058
Other languages
English (en)
Inventor
François LEVEQUE
Original Assignee
Agc Glass Europe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Glass Europe filed Critical Agc Glass Europe
Priority to BR112015006259-8A priority Critical patent/BR112015006259B1/pt
Priority to CN201380048717.7A priority patent/CN104661971B/zh
Priority to EA201590263A priority patent/EA029529B1/ru
Priority to JP2015532360A priority patent/JP6412870B2/ja
Priority to EP13759470.1A priority patent/EP2897916A1/fr
Priority to US14/429,915 priority patent/US10486999B2/en
Publication of WO2014044516A1 publication Critical patent/WO2014044516A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the bending of automotive glazing.
  • Glazing for cars must meet many requirements. In particular, their optical and mechanical characteristics must meet rigorous standards. The many techniques developed for the bending of the glass sheets that compose them strive to meet these requirements while keeping production costs as low as possible.
  • the first is called gravity bending.
  • the or flat glass sheets are brought to softening temperature of the glass. Under their own weight the leaves come to rest on a support.
  • the support is either a frame that holds the sheets at their periphery, or conveyor rolls progressively presenting a more curved profile.
  • the second mode of bending which is often combined with the first, imposes a local or global pressure on the glass sheets to make them marry the shape of the press.
  • the advantage of the contact with the pressing mold is to achieve a better compliance of the sheet with the model fixed in the central part of the glazing. In return the contact of the sheet with the surface of the mold can alter the optical quality of the glazing. Improvements of all sorts have been proposed to try to combine the advantages of these two modes.
  • the invention aims to meet these various needs.
  • it aims to propose means that retain the essential qualities of products, optical qualities and mechanical qualities, by increasing production rates, in other words by reducing the cycle time.
  • each step of the forming process is involved in the determination of the cycle time.
  • the main previous efforts have focused on the steps that relate to formatting.
  • later treatments have been little considered. Nevertheless, these are decisive steps for certain properties, especially mechanical properties.
  • the cooling is necessarily rapid. It is a function of this rapidity that the stresses are developed in the glass by the formation of a temperature gradient between the surface and the inside of the sheet.
  • the presence of surface stresses in the central part of the glazing must be avoided.
  • the presence of these constraints makes the windshield very fragile to impacts such as gravel. If slowing the cooling seems necessary to avoid the formation of constraints, the rigorous maintenance of the shape obtained, also imposes that the time which separates the shaping of that where the sheet reaches the range of glass transition temperature, is sufficiently short, in order to avoid possible post-bending deformation.
  • non-quenched are products such as glass sheets used in the composition of laminated windshields, products which, with regard to their mechanical properties, must have high resistance, in particular to gravel impacts.
  • the method according to the invention aims to maintain a high speed of cooling of the glass sheets until they can no longer be deformed. In this cooling time, to avoid as much as possible the formation of surface stresses, the temperature is maintained substantially uniform over the entire surface of the sheets. To achieve this result the leaves are subjected to cooling by means of an intense gas stream, temperature controlled. The circulation of this flow leads it to the contact of the two faces of the exposed leaves. Increasing the speed of the convection atmosphere on the faces establishes a good balance of thermal exchanges avoiding temperature differences generating constraints that we strive to minimize.
  • the temperature of the atmosphere in contact with the leaves determines the intensity of the exchanges.
  • the operation is done continuously or step by step.
  • the sheets pass continuously in a single chamber and the temperature of the atmosphere is adjusted essentially so that at the outlet the temperature is lower than that of the glass transition.
  • the atmosphere In contact with the glass, the atmosphere necessarily warms up, which can lead to an initial ambient temperature higher than that which prevails, still in the atmosphere, towards the exit of the enclosure.
  • the set temperatures take into account these glass / atmosphere exchanges.
  • successive sections may have different temperature conditions.
  • the temperature of the final cooling step remains in all cases lower than that of glass transition. But for the preceding steps, the choice of the set temperature for the atmosphere is preferably decreasing in steps corresponding to each of these steps. In this case, each temperature is chosen so as to guarantee the desired decay rate.
  • the final temperature in both continuous and step modes is preferably between 360 and 480 ° C and preferably between 400 and 460 ° C.
  • the glass transition temperature for the most usual silico-soda-lime glasses is of the order of 550 ° C.
  • the intensity of the convection is kept sufficient to maintain the desired cooling rate.
  • the cooling is performed in an enclosure in which the gas flows advantageously circulate in a loop. This circulation is ensured by means of powerful fans or turbines. These means ensure a rapid renewal of the contact of the atmosphere with the glass sheets. This renewal ensures the uniformity of the temperature of the leaves.
  • the volume of the atmosphere circulating in contact with the leaves is relatively large and its warming can not usually result from the mere thermal input of the leaves themselves. Heating means in contact with the gas flow ensure temperature maintenance.
  • the circulation of the cooling atmosphere is such that, outside the immediate edges of the sheets, the temperature differences do not exceed 20 ° C., and preferably not 10 ° C.
  • the atmosphere of the chamber is circulated preferably such that a volume at least equal to that of the chamber is stirred every 8 seconds.
  • this stirring is obtained in 5 seconds or less.
  • the conditions of the convection atmosphere, circulating volume, circulation speed near the faces of the sheet, and the maintained temperature of this atmosphere are adjusted so that the temperature of the sheet decreases by at least 1 C. per second and preferably at least 1.5 ° C. per second.
  • the cooling time to a temperature below and close to the glass transition is advantageously at most about 120s and preferably at most 90s. It is preferably as short as allowed to maintain a uniform temperature throughout the entire sheet with the exception of the edges in contact with the support of the sheet.
  • the invention also proposes to ensure that the appearance of these constraints is followed by a step that allows them to be minimized, or even practically to eliminate them.
  • the sheet at first is cooled to a temperature substantially lower than that of glass transition to freeze its shape.
  • cooling may be more intense, for example by using the atmosphere at a lower temperature, and result in faster cooling.
  • this cooling is followed in a second time of a warming of the sheet to a temperature and for a time leading to the relaxation of the surface stresses in question.
  • the sheet is then in a third time brought to lower temperature as before.
  • the temperature for stress relaxation is preferably not more than 20 and preferably 10 ° C higher than the temperature of the glass transition range.
  • This domain is not likely to be precisely defined as its name indicates a "domain" transition between two states. The transition takes place gradually and can extend over twenty degrees.
  • the values indicated for the relaxation temperatures are values determined from the median values of these domains.
  • the treatment involves the temperature but also the time during which this temperature is maintained so that this treatment does not touch only the surface. The higher the imposed temperature, the shorter the time can be. A temperature as low as possible is preferred not to recreate during the subsequent cooling constraints that are strived to remove. A compromise is necessary so that the treatment time is not too long either. In practice, the conditions are set so that the level of temperature is not more than 30 seconds and preferably not more than 20 seconds.
  • FIGS. 1a, 1b and 1c are schematic views illustrating various embodiments of bending installations according to the invention.
  • FIG. 2 is a sectional view of a cooling chamber according to the invention.
  • FIG. 3 represents a temperature curve of sheets subjected to stress relaxation.
  • the installation shown schematically in Figure la comprises an oven 1.
  • the oven is heated by a set of electrical resistors 2.
  • a conveyor 3 carries frames 4 which support the glass sheets 5 in their progression in the oven.
  • the frame carries one or two sheets of glass. In the second case the superimposed sheets are curved simultaneously. The two sheets are intended to be subsequently assembled in a laminated glazing unit.
  • the glass sheets 5 are flat. As they progress they warm up to softening. As shown in 6 the softened leaves curl under their own weight to match the profile of the frame that supports them.
  • the frames carrying the sheets, still on the conveyor then pass into the cooling zone, usually a simple tunnel without heating or substantial thermal insulation, whose walls are intended only to avoid expose glass to too random cooling conditions. After sufficient cooling the frames and the glass sheets in continuing their progress, they cool in the open air until the temperature is close to the ambient temperature. The end of cooling can be done on the storage area. The frames are then returned to the oven entrance for further processing.
  • the cooling zone usually a simple tunnel without heating or substantial thermal insulation, whose walls are intended only to avoid expose glass to too random cooling conditions.
  • the sheets are subjected to forced convection by means of fans 10.
  • the convection gas streams are maintained at the appropriate temperatures by circulating the convection gases on heating means, for example electrical resistors 11.
  • Gaseous convection currents are associated with ducts in the walls, which direct them so that all the leaves, with the possible exception of their edges, are treated as uniformly as possible.
  • the glass sheets are arranged on the same frame in all their progression.
  • Figure lb shows a variant of the.
  • the glass sheets are subjected to a bending by gravity. This bending is not complete.
  • the leaves are taken up by a pressing technique.
  • the sheets are for example conducted on a male form 7 under the traditional conditions.
  • the pressing is for example carried out by a movement bringing the frame 4 and the press 7 closer together. Additional suction means can also complete the contacting of the glass sheet with the surface of the press 7.
  • the pressing is presented as performed in the oven itself 1.
  • Various alternatives are also possible that drive the pressing outside the oven. This solution facilitates the implementation of the pressing means.
  • the temperature conditions in the pressing stage differ slightly to account for this lack of heat input at this stage.
  • the figure shows schematically another form of implementation in which the glass sheets are systematically treated individually.
  • the conveyor drives the softened and preformed sheets by a suitable arrangement of the curved rollers up to a press 7.
  • the glass sheet is applied to the press, for example by means of a frame which lifts it from the conveyor .
  • Various means are known for placing the sheet on the frame, including for example a vacuum gripping system.
  • the glass sheet After bending the glass sheet is preferably arranged on a support 8.
  • the support is constituted by a frame which supports the sheet at its periphery.
  • Other modes are also possible in which the sheet is for example deposited directly on a profile conveyor adapted or not to the curved shape of the sheet.
  • the advantage of using the frame with respect to the other possibilities is that it limits the contact of the glass to the sole periphery of the sheet. In this way, any further deterioration in the quality of the viewing areas is avoided.
  • the only marks, if any, are in a part of the sheet in which these marks do not cause any discomfort.
  • the glass sheets brought back under the conditions indicated previously up to the glass transition temperature can then continue cooling to room temperature outside the chamber in the step referenced 12. If the various steps preceding the final cooling must be carried out as quickly as possible, the quality of the glazing obtained is not linked to the duration of the last stage. The sheets can therefore cool without any particular arrangement simply in contact with the ambient atmosphere.
  • FIG. 2 shows in section an embodiment of the enclosure 9 for the implementation of the invention.
  • the suction by the fans 10 returns the gas in the double side walls of the enclosure.
  • the heating means of the gas stream 11 are arranged in these double walls. The representation puts these means in the vertical walls. It goes without saying that the heating means can be located differently and in particular for all or part of the upper wall of the enclosure.
  • tests are performed on glass sheets entering the windshield composition.
  • the glass sheets are clear soda-lime glass.
  • the thickness of each of these sheets is 2.1mm.
  • the two sheets which are then assembled, are produced individually as indicated with reference to FIG.
  • the press is disposed at the exit of the oven enclosure. At the exit of the press the sheet is placed on a frame to proceed with the cooling.
  • the temperature of the sheet at the exit of the press is not uniform. Deviations can reach 30 ° C enter the edge temperature and that in the center of the sheet. The goal is to achieve as little difference as possible while cooling the sheet, and this in the shortest possible time.
  • the conditions are for an enclosure whose volume is 3m 3 , an air circulation of 1000m 3 / h.
  • the gain obtained is also a function of the temperature of the convection gas.
  • three gas temperatures are tested at 575, 520 and 450 ° C.
  • the time gain to reach the temperature difference of not more than 10 ° C is all the more significant as the intensity of the convection is greater and the temperature of the convection gas is higher.
  • the cooling and uniformization time of the sheet temperature is reduced by 30%.
  • a second series of tests is carried out in which still in the arrangement comprising a bending by gravity followed by pressing, the invention is applied to glass sheets treated in pairs intended to enter into the constitution of a windshield. .
  • the leaves are respectively 2.1 and 1.6 mm thick, the outer leaf being the thickest.
  • the induced edge stresses in the process are measured in relation to the same quantities without using convection. Temperatures in the convection zone are 300, 360 and 450 ° C. The cooling of the glass sheets is fast.
  • the compressive stress of the edge is important, it is even more important to minimize the stress in tension which immediately follows it when one deviates from the edge.
  • the minimum is obtained with convection at 450 ° C is thus established on average at 2, lMPa and does not exceed 3,4MPa, while without convection the stress exceeds 3, lMPa and at most is of the order of 4.3MPa .
  • the fragility is related to the formation of surface stresses during cooling in which the edges of the sheet and its central portion are not at a sufficiently uniform temperature.
  • the presence in particular of a voltage stress value is a certain cause of fragility.
  • the inventors propose, if necessary, to carry out a stress relaxation step before the final cooling.
  • Figure 3 shows an example of a temperature curve associated with subsequent operations.
  • the temperature at the outlet of the bending furnace is about 640 ° C.
  • the process is completed by a warming of the formed sheet at a temperature and for a time that relaxes the constraints without the shape being altered.
  • the heating is conducted for example in a first chamber similar to that used previously for the standardization of the temperature during cooling. Warming is the opportunity to obtain a uniform temperature and, for this purpose, is conducted with intense convection.
  • the atmosphere is brought to about 650 ° C.
  • the stress relaxation temperature is at about 550 ° C. It is reached after about 90 seconds. The temperature is maintained above 550 ° C for about twenty seconds.
  • Subsequent processing again includes decreasing the temperature of the sheet as before. This decrease is made from a substantially lower temperature than at the output of the forming. For this reason, the stresses produced, if the other conditions are preserved, are appreciably lower. This is a substantial advantage with respect to the surface tension stresses that control the resistance especially to gravelling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un procédé de bombage de feuilles de verre entrant dans la composition d'un feuilleté, comprenant l'élévation de la température jusqu'à ramollissement des feuilles, leur mise en forme, procédé dans lequel après cette mise en forme, les feuilles sont refroidies rapidement jusqu'à une température au plus égale à celle du domaine de transition vitreuse, refroidissement effectué en atmosphère à température contrôlée dans une convection forcée traitant les deux faces des feuilles exposées à cette atmosphère et assurant une température homogène sur toute l'étendue de ces feuilles, hors éventuellement les bords de ces feuilles si celles-ci sont au contact du support au cours de ce refroidissement.

Description

Bombage de vitrages
L'invention concerne le bombage de vitrages automobile.
Les vitrages destinés à l'automobile doivent satisfaire à de nombreuses exigences. Leurs caractéristiques optiques et mécaniques notamment, doivent répondre à des normes rigoureuses. Les nombreuses techniques développées pour le bombage des feuilles de verre qui les composent s'efforcent de répondre à ces exigences tout en maintenant les coûts de production aussi réduits que possibles.
Deux modes principaux de bombage des vitrages automobile sont couramment utilisés. Le premier est dénommé bombage par gravité. La, ou les feuilles de verre planes, sont portées à température de ramollissement du verre. Sous leur propre poids les feuilles viennent reposer sur un support. Le support est soit un cadre qui maintien les feuilles à leur périphérie, soit des rouleaux de convoyeur présentant progressivement un profil plus courbé. Le second mode de bombage, qui est souvent combiné au premier, impose une pression locale ou globale aux feuilles de verre pour leur faire épouser la forme de la presse.
Dans ces techniques l'utilisation d'un cadre supportant les feuilles à leur périphérie, lorsque l'opération de bombage ne comporte que l'action de la gravité, permet de conserver une surface sans défauts optiques. En dehors de la périphérie les feuilles de verre n'ont de contact avec aucune pièce susceptible de marquer le verre ramolli. Les zones centrales qui sont aussi celles de vision présentent de ce fait une très grande qualité optique. La contrepartie est le contrôle moins rigoureux de la forme hors la périphérie.
L'avantage du contact avec le moule de pressage est de parvenir à une meilleure conformité de la feuille avec le modèle fixé dans la partie centrale du vitrage. En contrepartie le contact de la feuille avec la surface du moule peut altérer la qualité optique du vitrage. Des perfectionnements de toutes sortes ont été proposés pour tenter de combiner les avantages de ces deux modes.
Les évolutions dans la demande des constructeurs et les nécessités telle que celle d'alléger les vitrages, comme l'ensemble des composants automobile, remettent en question des choix antérieurs.
Dans tous les cas, en dehors des considérations visant strictement les qualités des produits obtenus, des impératifs économiques imposent aussi des choix de compromis. La production des vitrages latéraux, celle de la lunette arrière ou des toits vitrés est, en général, moins contraignante en ce qui concerne la qualité optique. En contrepartie le coût de production doit être le plus possible minimisé, et les cadences de production, déterminantes pour le coût, prennent une importance particulière.
Les exigences spécifiques des vitrages feuilletés, et particulièrement des pare-brise, pour ce qui concerne la qualité, ne peuvent pas conduire à négliger les aspects économiques. Ces derniers se retrouvent particulièrement dans les cadences de production et aussi dans l'économie des investissements. Ces considérations conduisent par exemple à rechercher les possibilités d'utiliser des installations pour toutes les productions, les moins exigeantes en termes de qualité optique des vitrages mais plus en termes de coût, et celles qui inversement donnent la priorité à la qualité optique.
L'invention a pour but de répondre à ces diverses nécessités. Elle a en particulier le but de proposer des moyens qui conservent les qualités essentielles des produits, qualités optiques et qualités mécaniques, en augmentant les cadences de production, autrement dit en réduisant le temps de cycle.
Depuis le stock de feuilles prédécoupées planes, jusqu'à la réception des feuilles bombées et refroidies, chaque étape du processus de formage intervient dans la détermination du temps de cycle. Dans la recherche de la réduction du temps de cycle, les principaux efforts antérieurs ont porté sur les étapes qui concernent la mise en forme. En revanche les traitements postérieurs ont été peu considérés. Il s'agit néanmoins d'étapes déterminantes pour certaines propriétés notamment mécaniques.
S' agissant des produits trempés le refroidissement est nécessairement rapide. C'est fonction de cette rapidité que les contraintes sont développées dans le verre par la formation d'un gradient de température entre la surface et l'intérieur de la feuille. Pour les produits tels que les pare-brise feuilletés, la présence de contraintes superficielles dans la partie centrale du vitrage, doit être évitée. La présence de ces contraintes rend le pare-brise très fragile aux impacts tels que ceux de gravillons. Si ralentir le refroidissement semble nécessaire pour éviter la formation de contraintes, le maintien rigoureux de la forme obtenue, impose aussi que le temps qui sépare la mise en forme de celui où la feuille atteint le domaine de température de transition vitreuse, soit suffisamment court, afin d'éviter une possible déformation postérieure au bombage.
Pour tenter d'améliorer la technique de formage de produits «non trempés», sans sacrifier l'exigence économique de temps de traitement aussi court que possible, les inventeurs proposent le procédé qui fait l'objet de la revendication 1. Par non trempés il faut entendre des produits tels que les feuilles de verre entrant dans la composition des pare -brise feuilletés, produits qui, pour ce qui concerne leur propriétés mécaniques, doivent présenter une grande résistance notamment aux impacts de gravillons.
Le procédé selon l'invention vise à conserver une vitesse élevée de refroidissement des feuilles de verre jusqu'à ce qu'elles ne puissent plus se déformer. Dans ce temps de refroidissement, pour éviter le plus possible la formation de contraintes de surface, la température est maintenue sensiblement homogène sur toute la surface des feuilles. Pour parvenir à ce résultat les feuilles sont soumises à un refroidissement au moyen d'un flux gazeux intense, à température contrôlée. La circulation de ce flux le conduit au contact des deux faces des feuilles exposées. L'accroissement de la vitesse de l'atmosphère de convection sur les faces établit un bon équilibre des échanges thermiques évitant les écarts de température générateurs des contraintes que l'on s'efforce de minimiser.
La température de l'atmosphère au contact des feuilles détermine l'intensité des échanges. Selon les installations dans lesquelles le refroidissement est effectué, l'opération est faite de manière continue ou pas à pas. En continu les feuilles passent dans une enceinte unique et la température de l'atmosphère y est réglée essentiellement de façon qu'à la sortie la température soit inférieure à celle de transition vitreuse. Au contact du verre l'atmosphère se réchauffe nécessairement, ce qui peut conduire à une température d'ambiance initiale supérieure à celle qui règne, toujours dans l'atmosphère, vers la sortie de l'enceinte. Dans tous les cas les températures de consigne tiennent compte de ces échanges verre/atmosphère. Dans les installations fonctionnant pas à pas, les sections qui se succèdent peuvent présenter des conditions de température distinctes. La température de l'étape de refroidissement finale reste dans tous les cas inférieure à celle de transition vitreuse. Mais pour les étapes précédentes le choix de la température de consigne pour l'atmosphère est de préférence décroissante par palier correspondant à chacune de ces étapes. Dans ce cas chaque température est choisie de manière à garantir la vitesse de décroissance recherchée.
La température finale dans les deux modes continu et pas à pas se situe de préférence entre 360 et 480°C et avantageusement entre 400 et 460°C. A titre indicatif la température de transition vitreuse pour les verres silico-sodo-calciques les plus usuels est de l'ordre de 550°C.
Le choix d'utiliser pour la convection une température qui n'est pas trop éloignée de la température du domaine de transition vitreuse, si celle-ci ne favorise pas une vitesse de refroidissement très rapide, garantit la possibilité de maintenir une bonne homogénéité. L'intensité de la convection est maintenue suffisante pour conserver la vitesse de refroidissement recherchée. Le refroidissement est accompli dans une enceinte dans laquelle les flux gazeux circulent avantageusement en boucle. Cette circulation est assurée au moyen de puissants ventilateurs ou turbines. Ces moyens assurent un renouvellement rapide du contact de l'atmosphère avec les feuilles de verre. Ce renouvellement assure l'uniformisation de la température des feuilles. Le volume de l'atmosphère circulant au contact des feuilles est relativement important et sa mise en température ne peut résulter habituellement du seul apport thermique des feuilles elles-mêmes. Des moyens de chauffage au contact du flux gazeux assurent le maintien en température.
La circulation de l'atmosphère de refroidissement est telle que, hors les bords immédiats des feuilles les écarts de température ne dépassent pas 20° C, et de préférence pas 10°C.
Pour atteindre ces objectifs la circulation de l' atmosphère est nécessairement intense. Son renouvellement au contact des feuilles doit être aussi rapide que possible. L'atmosphère de l'enceinte est mise en circulation de préférence de telle sorte qu'un volume au moins égal à celui de l'enceinte soit brassé toute les 8 secondes. Avantageusement ce brassage est obtenu en 5 secondes ou moins.
Selon l'invention, les conditions de l'atmosphère de convection, volume circulant, vitesse de circulation près des faces de la feuille, et température entretenue de cette atmosphère, sont réglés de sorte que la température de la feuille décroisse d'au moins 1°C par seconde et de préférence d'au moins 1,5°C par seconde. Dans ces conditions le temps de refroidissement jusqu'à une température inférieure et voisine de la transition vitreuse est avantageusement au plus d'environ 120s et de préférence d'au plus 90s. Il est de préférence aussi court que le permet le maintien d'une température bien uniforme sur toute l'étendue de la feuille à l'exception des bords au contact du support de la feuille.
Quelles que soient les mesures prises pour éviter la formation de contraintes superficielles sur les parties centrales des feuilles, comme indiqué précédemment, si le niveau de ces contraintes est tel que le vitrage reste trop sensible aux impacts, l'invention propose aussi de faire en sorte que l'apparition de ces contraintes soit suivie d'une étape qui permette de les minimiser, ou même pratiquement de les éliminer.
Dans ce mode particulier comme précédemment la feuille dans un premier temps est refroidie jusqu'à une température sensiblement inférieure à celle de transition vitreuse pour figer sa forme. Compte tenu du fait que des mesures suivent visant à supprimer les contraintes superficielles éventuelles, le refroidissement peut être plus intense encore, par exemple en utilisant l'atmosphère à une température plus basse, et conduire par suite à un refroidissement plus rapide. Pour l'élimination des contraintes superficielles centrales ce refroidissement est suivi dans un deuxième temps d'un réchauffement de la feuille jusqu'à une température et pendant un temps conduisant à la relaxation des contraintes superficielles en question. La feuille est ensuite dans un troisième temps ramenée à température inférieure comme précédemment.
La température pour la relaxation des contraintes n'est pas de préférence supérieure de plus de 20 et de préférence de 10°C, à la température du domaine de transition vitreuse. Ce domaine n'est pas de nature à être défini de manière précise s' agissant comme son nom l'indique d'un «domaine» de transition entre deux états. La transition s'effectue progressivement et peut s'étendre sur une vingtaine de degrés. Les valeurs indiquées pour les températures de relaxation s'entendent des valeurs déterminées à partir des valeurs médianes de ces domaines. Le traitement fait intervenir la température mais aussi la durée pendant laquelle cette température est maintenue de telle sorte que ce traitement ne touche pas seulement la surface. Plus haute est la température imposée plus le temps peut être bref. Une température aussi basse que possible est préférée pour ne pas recréer lors du refroidissement ultérieur les contraintes que l'on s'efforce de supprimer. Un compromis est nécessaire pour que le temps de traitement ne soit pas non plus trop long. Dans la pratique on règle les conditions de telle sorte que le palier de température ne soit pas supérieur à 30 secondes et de préférence pas supérieur à 20 secondes.
L'invention est décrite de façon détaillée dans la suite, en faisant référence aux figures dans lesquelles :
- les figures la, lb et le sont des vues schématiques illustrant diverses modalités de réalisation d'installations de bombage selon l'invention ;
- la figure 2 est une vue en coupe d'une enceinte de refroidissement selon l'invention ;
- la figure 3 représente une courbe de température de feuilles soumises à une relaxation des contraintes.
L'installation schématisée à la figure la comprend un four 1. Le four est chauffé par un ensemble de résistances électriques 2. Un convoyeur 3 transporte des cadres 4 qui supportent les feuilles de verre 5 dans leur progression dans le four. Le cadre porte une ou deux feuilles de verre. Dans le second cas les feuilles superposées sont bombées simultanément. Les deux feuilles sont destinées à être assemblées ultérieurement dans un vitrage feuilleté.
A leur entrée dans le four les feuilles de verre 5 sont planes. En progressant elles s'échauffent jusqu'à ramollissement. Comme représenté en 6 les feuilles ramollies s'incurvent sous leur propre poids jusqu'à épouser le profil du cadre qui les supporte.
Dans la pratique antérieure les cadres portant les feuilles, toujours sur le convoyeur, passent ensuite dans la zone de refroidissement, le plus souvent un simple tunnel sans chauffage ni isolation thermique conséquente, dont les parois n'ont pour but que d'éviter d'exposer de le verre à des conditions de refroidissement trop aléatoires. Après un refroidissement suffisant les cadres et les feuilles de verre en continuant leur progression se refroidissent à l'air libre jusqu'à température proche de la température ambiante. La fin du refroidissement peut s'effectuer sur l'aire de stockage. Les cadres sont ensuite retournés à l'entrée du four pour un nouveau traitement.
Dans le mode illustré à la figure la, schématisant un mode de réalisation selon l'invention, après l'achèvement du bombage le refroidissement est accompli dans l'enceinte 9. Dans cette enceinte une circulation intense de l'atmosphère mise en condition thermique assure le refroidissement le plus rapide possible sans entraîner la formation de contraintes superficielles indésirables.
Dans cette enceinte les feuilles sont soumises à une convection forcée au moyen de ventilateurs 10. Les courants gazeux de convection sont maintenus aux températures adéquates en faisant circuler les gaz de convection sur des moyens de chauffage, par exemple des résistances électriques 11.
Les courants gazeux de convection sont associés à des conduits ménagés dans les parois, qui les dirigent de manière à ce que l'ensemble des feuilles, à l'exception éventuelle de leurs bords, soit traitée aussi uniformément que possible.
Après que la température des feuilles soit retombée en dessous du domaine de transition vitreuse, le refroidissement s'achève à à température ambiante en 12.
Dans le processus de la figure la, les feuilles de verre sont disposées sur un même cadre dans toute leur progression.
La figure lb présente une variante de la. Comme précédemment dans un premier temps les feuilles de verre sont soumises à un bombage par gravité. Ce bombage n'est pas complet. Les feuilles sont reprises par une technique de pressage. Dans le schéma de la figure lb les feuilles sont par exemple conduites sur une forme mâle 7 dans les conditions traditionnelles. Le pressage est par exemple conduit par un mouvement rapprochant le cadre 4 et la presse 7. Des moyens complémentaires d'aspiration peuvent aussi compléter la mise en contact de la feuille de verre avec la surface de la presse 7.
Le pressage est présenté comme effectué dans l'enceinte même du four 1. Différentes alternatives sont également possibles qui conduisent le pressage à l'extérieur du four. Cette solution facilite la mise en oeuvre des moyens de pressage. Les conditions de température dans l'étape de pressage diffèrent un peu pour tenir compte de ce manque d'apport calorifique à ce stade.
La suite concernant le refroidissement du verre est effectué comme pour le procédé illustré en la.
La figure le schématise une autre forme de mise en oeuvre dans laquelle les feuilles de verre sont systématiquement traitées individuellement. Dans la forme en question le convoyeur conduit les feuilles ramollies et préformées par une disposition appropriée des rouleaux incurvés jusque sous une presse 7. La feuille de verre est appliquée sur la presse par exemple au moyen d'un cadre qui vient la soulever depuis le convoyeur. Différents moyens sont connus pour placer la feuille sur le cadre, y compris par exemple un système de préhension par aspiration.
Après le formage sur la presse mâle 7, les feuilles sont déposées sur un cadre pour refroidissement. Ordinairement ce cadre est distinct de celui qui porte les feuilles vers la presse 7. La suite du traitement est analogue à celle précédemment décrite pour les figures schématisées en la et lb.
Après le bombage la feuille de verre est disposée de préférence sur un support 8. Le support est constitué par un cadre qui supporte la feuille à son pourtour. D'autres modes sont également possibles dans lesquels la feuille est par exemple déposée directement sur un convoyeur de profil adapté ou non à la forme bombée de la feuille. L'avantage de l'utilisation du cadre par rapport aux autres possibilités, est qu'il limite le contact du verre à la seule périphérie de la feuille. On évite par ce moyen toute altération supplémentaire de la qualité des zones de vision. Les seules marques, s'il en existe, se trouvent dans une partie de la feuille dans laquelle ces marques n'entraînent aucune gêne.
Les feuilles de verre ramenées dans les conditions indiquées précédemment jusqu'à la température de transition vitreuse peuvent ensuite continuer leur refroidissement jusqu'à température ambiante hors de l'enceinte dans l'étape référencée 12. Si les différentes étapes précédant le refroidissement final doivent être menées aussi rapidement que possible, la qualité des vitrages obtenus n'est pas liée à la durée de la dernière étape. Les feuilles peuvent donc refroidir sans disposition particulière simplement au contact de l'atmosphère ambiante.
Les variantes présentées n'épuisent pas les possibilités de formage de l'art antérieur. Les feuilles, préalablement bombées, quelle que soit la variante choisie, peuvent donner lieu à la mise en oeuvre de l'invention.
La figure 2 présente en coupe un mode de réalisation de l'enceinte 9 pour la mise en oeuvre de l'invention. Dans cette configuration on voit la circulation des gaz assurée de telle sorte que ces gaz soient recyclés pour limiter la consommation énergétique. L'aspiration par les ventilateurs 10 renvoie le gaz dans les doubles parois latérales de l'enceinte. Les moyens de chauffage du flux gazeux 11, sont disposés dans ces doubles parois. La représentation met ces moyens dans les parois verticales. Il va de soi que les moyens de chauffage peuvent être localisés différemment et notamment pour tout ou partie dans la paroi supérieure de l'enceinte.
Pour assurer le meilleur échange thermique possible entre les flux de convection dans l'enceinte et les feuilles de verre, une part importante des gaz est envoyée sous le convoyeur 3 portant les cadres 8.
Dans un exemple de mise en oeuvre sans que cet exemple ait un caractère limitatif, des essais sont effectués sur des feuilles de verre entrant dans la composition de pare -brise. Les feuilles de verre sont de verre clair sodo-calcique. L'épaisseur de chacune de ces feuilles est de 2,1mm. Dans un premier essai les deux feuilles qui sont ensuite assemblées, sont produites individuellement comme indiqué à propos de la figure lb.
La presse est disposée à la sortie de l'enceinte du four. A la sortie de la presse la feuille est posée sur cadre pour procéder au refroidissement. La température de la feuille à la sortie de la presse n'est pas uniforme. Les écarts peuvent atteindre 30°C entrer la température de bord et celle au centre de la feuille. L'objectif est de parvenir à une différence aussi faible que possible tout en refroidissant le feuille, et ceci dans le minimum de temps.
Différentes configurations sont essayées. Les conditions sont pour une enceinte dont le volume est 3m3, une circulation de l'air de 1000m3/h. Le gain obtenu est fonction aussi de la température du gaz de convection. Dans les essais trois températures de gaz sont testées 575, 520 et 450°C. Le gain de temps pour atteindre la différence de température n'excédant pas 10°C est d'autant plus significatif que l'intensité de la convection est plus grande et que la température du gaz de convection est plus élevée. Dans les meilleures conditions, lorsque l'on impose une convection intense dans l'enceinte de refroidissement, le temps de refroidissement et d'uniformisation de la température de la feuille est réduit de 30%.
Une deuxième série d'essais est réalisée dans laquelle toujours dans la disposition comportant un bombage par gravité suivi d'un pressage, on applique l'invention à des feuilles de verre traitées par paires destinées à entrer dans la constitution d'un pare-brise. Les feuilles sont respectivement de 2,1 et 1,6mm d'épaisseur, la feuille externe étant la plus épaisse.
On mesure les contraintes de bord induites dans le procédé par rapport aux mêmes grandeurs sans utiliser de convection. Les températures dans la zone de convection sont établies à 300, 360 et 450°C. Le refroidissement des feuilles de verre est rapide.
Le gain de contrainte de compression sur les bords avec convection est d'autant plus important que la température de l'atmosphère est plus basse. Ceci est induit par le refroidissement plus intense. Avec une atmosphère à 300°C la compression s'établit en moyenne à 25MPa. Sans convection la valeur moyenne obtenue n'est que de 19MPa. Le résultat est aussi significatif si l'on considère non pas la valeur moyenne mais la valeur la moins élevée, celle qui détermine la fragilité la plus importante. Dans la pratique on mesure sans convection une valeur qui est de l'ordre de 12MPa, et avec convection la valeur la plus basse n'est pas inférieure à 16MPa.
Si la contrainte en compression du bord est importante, il convient plus encore de minimiser la contrainte en tension qui lui fait immédiatement suite lorsque l'on s'écarte du bord. Le minimum est obtenu avec convection à 450°C s'établit ainsi en moyenne à 2,lMPa et ne dépasse pas 3,4MPa, alors que sans convection la contrainte dépasse 3,lMPa et au plus est de l'ordre de 4,3MPa.
La mesure des contraintes de surface en tension montre aussi l'avantage de procéder en utilisant la convection, et ce d'autant plus que la température de l'atmosphère est plus basse. A 300°C la mesure la plus élevée avec convection ne dépasse pas 0,4MPa. Sans convection cette valeur est supérieure à 2,6MPa.
Les résultats précédents montrent d'une part, que la convection permet un gain de temps de traitement sans altérer les propriétés mécaniques des feuilles. Ils montrent aussi que le choix de la température de traitement est importante dans les caractéristiques des contraintes induites. Un choix de compromis pour ce qui concerne la température de traitement selon l'invention est possible. C'est la raison pour laquelle, selon l'invention il est préféré de régler cette température entre 420 et 480°C. Le gain de résistance est aussi estimé en effectuant un essai de gravillonnage. Le test utilisé comporte la chute d'une fléchette sur le vitrage. Le poids, la nature de la pointe et la hauteur de chute sont choisis pour reproduire artificiellement les conditions rencontrées en pratique. Le gain de résistance pour des vitrages traités selon l'invention par comparaison à des vitrages identiques pour lesquels aucune convection n'est appliquée, est de l'ordre de 15% et d'autant meilleur que la température de convection est plus élevée.
Comme indiqué précédemment la fragilité est liée à la formation de contraintes superficielles lors d'un refroidissement dans lequel les bords de la feuille et sa partie centrale ne se trouvent pas à une température suffisamment uniforme. La présence en particulier d'une valeur de contrainte en tension est une cause certaine de fragilité.
Si le refroidissement choisi est très rapide, même en utilisant la convection pour minimiser les contraintes indésirables, il n'est pas possible de réduire ces contraintes à des niveaux garantissant une résistance adéquate.
Pour éliminer les contraintes induites qui peuvent aussi résulter en partie du refroidissement trop rapide éventuellement imposé lors de cette opération de convection, les inventeurs proposent, si nécessaire, de procéder à une étape de relaxation des contraintes avant le refroidissement final.
La figure 3 montre un exemple de courbe de température associée à la suite des opérations en question. La température à la sortie du four de bombage s'établit à environ 640°C. La convection intense menée avec une atmosphère dont la température est maintenue à 400°C, ramène la température de la feuille à 450°C en environ 90 secondes, soit une chute de l'ordre d'un peu plus de 2°C/s. Cette chute rapide de température conduit à la formation de contraintes, y compris de contraintes superficielles indésirables.
Pour revenir à des conditions de contraintes compatibles avec les utilisations concernées, le processus est complété par un réchauffement de la feuille formée à une température et pendant un temps qui permet de relâcher les contraintes sans pour autant que la forme soit altérée. Le réchauffement est conduit par exemple dans une première enceinte analogue à celle utilisée précédemment pour l'uniformisation de la température lors du refroidissement. Le réchauffement est l'occasion d'obtenir une température bien uniforme et, à cet effet, est conduit avec une intense convection. Pour écourter le temps de montée en température de la feuille, l'atmosphère est portée à environ 650°C.
La température de relaxation des contraintes se situe à environ 550°C. Elle est atteinte après environ 90 secondes. La température est maintenue supérieure à 550°C pendant une vingtaine de secondes.
Le traitement ultérieur comprend une nouvelle fois la décroissance de la température de la feuille comme précédemment. Cette décroissance s'effectue à partir d'une température sensiblement moindre qu'à la sortie du formage. Pour cette raison les contraintes produites, si les autres conditions sont conservées, sont sensiblement moindres. C'est un avantage substantiel en ce qui concerne les contraintes en tension superficielles qui commandent la résistance notamment au gravillonnage.

Claims

Revendications
1. Procédé de bombage de feuilles de verre entrant dans la composition d'un feuilleté, comprenant l'élévation de la température jusqu'à ramollissement des feuilles, leur mise en forme, dans lequel après cette mise en forme, les feuilles sont refroidies rapidement jusqu'à une température au plus égale à celle du domaine de transition vitreuse, refroidissement effectué en atmosphère à température contrôlée avec une convection forcée traitant les deux faces des feuilles exposées à cette atmosphère, et assurant une température homogène sur toute l'étendue de ces feuilles, hors éventuellement les bords de ces feuilles si celles-ci sont au contact du support au cours de ce refroidissement.
2. Procédé selon la revendication 1 dans lequel les écarts de température, hors les bords des feuilles, sont maintenus au cours du refroidissement, à moins de 20°C et de préférence moins de 10°C.
3. Procédé de bombage selon l'une des revendications précédentes dans lequel l'intensité de convection est réglée de sorte que l'échange thermique conduise à un abaissement de température des feuilles qui n'est pas inférieur à l°C/s, et de préférence pas inférieur à l,5°C/s.
4. Procédé selon l'une des revendications précédentes dans lequel la température de l'atmosphère de convection au moins en fin de refroidissement est maintenue inférieure à la température de transition vitreuse, des températures décroissantes pouvant être appliquées dans les installations comportant une progression pas à pas.
5. Procédé selon l'une des revendications précédentes dans lequel la température de l'atmosphère est maintenue entre 360 et 480°C et de préférence entre 400 et 460°C.
6. Procédé selon l'une des revendications précédentes dans lequel le refroidissement des feuilles conduit celles-ci à une température sensiblement inférieure à la température du domaine de transition vitreuse.
7. Procédé selon l'une des revendications précédentes dans lequel le refroidissement des feuilles conduit celles-ci à une température sensiblement inférieure à la température de transition vitreuse, les feuilles étant ensuite réchauffées au voisinage du domaine de température de transition vitreuse pour une relaxation des contraintes introduites dans l'opération de refroidissement précédente, ce réchauffement étant suivi d'un nouveau refroidissement.
8. Procédé selon la revendication 7 dans lequel le réchauffement des feuilles ne porte pas celles-ci à une température supérieure de 20°C à celle du domaine de transition vitreuse, et de préférence pas supérieure de 10°C.
9. Vitrage feuilleté dont les feuilles de verre sont soumises au cours de leur mise en forme au procédé selon l'une des revendications précédentes.
PCT/EP2013/068058 2012-09-21 2013-09-02 Bombage de vitrages WO2014044516A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112015006259-8A BR112015006259B1 (pt) 2012-09-21 2013-09-02 Processo para arqueamento de vidraças
CN201380048717.7A CN104661971B (zh) 2012-09-21 2013-09-02 用于使玻璃板弧形化的方法
EA201590263A EA029529B1 (ru) 2012-09-21 2013-09-02 Способ сгибания элементов остекления
JP2015532360A JP6412870B2 (ja) 2012-09-21 2013-09-02 グレイジングユニットの曲げ加工
EP13759470.1A EP2897916A1 (fr) 2012-09-21 2013-09-02 Bombage de vitrages
US14/429,915 US10486999B2 (en) 2012-09-21 2013-09-02 Method for cambering glass sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2012/0627A BE1024010B1 (fr) 2012-09-21 2012-09-21 Bombage de vitrages
BEBE2012/0627 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014044516A1 true WO2014044516A1 (fr) 2014-03-27

Family

ID=47074525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/068058 WO2014044516A1 (fr) 2012-09-21 2013-09-02 Bombage de vitrages

Country Status (8)

Country Link
US (1) US10486999B2 (fr)
EP (1) EP2897916A1 (fr)
JP (1) JP6412870B2 (fr)
CN (1) CN104661971B (fr)
BE (1) BE1024010B1 (fr)
BR (1) BR112015006259B1 (fr)
EA (1) EA029529B1 (fr)
WO (1) WO2014044516A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170341970A1 (en) * 2014-12-10 2017-11-30 Asahi Glass Company, Limited Manufacturing method for laminated glass
US11236003B2 (en) 2017-10-18 2022-02-01 Corning Incorporated Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween
US11465927B2 (en) 2017-02-20 2022-10-11 Corning Incorporated Shaped glass laminates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578073B1 (ko) * 2014-07-14 2015-12-16 코닝정밀소재 주식회사 기밀 밀봉 방법 및 기밀 밀봉된 기판 패키지
KR20170000208A (ko) * 2015-06-23 2017-01-02 코닝정밀소재 주식회사 기판 진공성형 금형 및 방법
EP3337771A1 (fr) * 2015-08-21 2018-06-27 Corning Incorporated Procédés et appareil pour le traitement du verre
DE102017008610A1 (de) * 2016-09-14 2018-03-15 Asahi Glass Company, Limited Verfahren zur Herstellung eines gebogenen Glasgegenstands und gebogener Glasgegenstand
US20200325056A1 (en) * 2017-10-06 2020-10-15 Corning Incorporated System and process for forming curved glass laminate article utilizing glass viscosity differential for improved shape matching

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1598242A (fr) * 1968-11-29 1970-07-06
EP0440113A2 (fr) * 1990-01-29 1991-08-07 Wsp Ingenieurgesellschaft Für Wärmetechnik, Strömungstechnik Und Prozesstechnik Mit Beschränkter Haftung Chemin de tuyères à gaz à forte convection pour matériaux plats transportés sur des rouleaux
WO1991011398A1 (fr) * 1990-01-26 1991-08-08 Glasstech, Inc. Appareil pour la trempe de plaques de verre entrainees par un transporteur a rouleaux
US20030233846A1 (en) * 2001-09-19 2003-12-25 Boaz Premakaran T. System and method for simultaneously heating and cooling glass to produce tempered glass
WO2009060120A1 (fr) * 2007-11-08 2009-05-14 Uniglass Engineering Oy Procédé de chauffage d'une plaque de verre et appareil mettant en œuvre le procédé
DE102008017729A1 (de) * 2008-04-07 2009-10-08 Wolfgang Erdmann Anlage zur Wärmebehandlung von Flachglas
WO2011018226A1 (fr) * 2009-08-14 2011-02-17 Leybold Optics Gmbh Dispositif et chambre de traitement pour le traitement thermique de substrats

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2766555A (en) * 1951-04-14 1956-10-16 Libbey Owens Ford Glass Co Glass bending methods and furnaces
NL283300A (fr) * 1961-09-22
US3844757A (en) * 1973-03-05 1974-10-29 L Kaufman Glass sheet heating method
JPS5296611A (en) * 1976-02-10 1977-08-13 Asahi Glass Co Ltd Apparatus for processing of flat glass
US4743285A (en) * 1986-07-30 1988-05-10 Shatterproof Glass Corp. Glass bending apparatus with retractable belts and method for using same
US5209767A (en) * 1991-03-19 1993-05-11 Glasstech, Inc. Glass sheet annealing lehr having gas support conveyor
US5992180A (en) * 1997-08-06 1999-11-30 Asahi Glass Company Ltd. Method and apparatus for bend-shaping a glass plate
JP4835815B2 (ja) * 2000-12-26 2011-12-14 旭硝子株式会社 ガラス板の風冷強化装置
FI20021131A (fi) * 2002-06-12 2003-12-13 Tamglass Ltd Oy Laite lasilevyjen taivuttamiseksi ja karkaisemiseksi
FI116726B (fi) * 2002-06-12 2006-02-15 Tamglass Ltd Oy Laite lasilevyjen taivuttamiseksi
DE10314400A1 (de) * 2003-03-28 2004-10-21 Pilkington Automotive Deutschland Gmbh Verfahren und Anlage zum Behandeln der Glasscheiben eines asymmetrischen Glasscheibenpaares
CN101666200A (zh) * 2009-09-18 2010-03-10 信义超薄玻璃(东莞)有限公司 一种热弯成型的增强玻璃及其加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1598242A (fr) * 1968-11-29 1970-07-06
WO1991011398A1 (fr) * 1990-01-26 1991-08-08 Glasstech, Inc. Appareil pour la trempe de plaques de verre entrainees par un transporteur a rouleaux
EP0440113A2 (fr) * 1990-01-29 1991-08-07 Wsp Ingenieurgesellschaft Für Wärmetechnik, Strömungstechnik Und Prozesstechnik Mit Beschränkter Haftung Chemin de tuyères à gaz à forte convection pour matériaux plats transportés sur des rouleaux
US20030233846A1 (en) * 2001-09-19 2003-12-25 Boaz Premakaran T. System and method for simultaneously heating and cooling glass to produce tempered glass
WO2009060120A1 (fr) * 2007-11-08 2009-05-14 Uniglass Engineering Oy Procédé de chauffage d'une plaque de verre et appareil mettant en œuvre le procédé
DE102008017729A1 (de) * 2008-04-07 2009-10-08 Wolfgang Erdmann Anlage zur Wärmebehandlung von Flachglas
WO2011018226A1 (fr) * 2009-08-14 2011-02-17 Leybold Optics Gmbh Dispositif et chambre de traitement pour le traitement thermique de substrats

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170341970A1 (en) * 2014-12-10 2017-11-30 Asahi Glass Company, Limited Manufacturing method for laminated glass
US11021387B2 (en) * 2014-12-10 2021-06-01 AGC Inc. Manufacturing method for laminated glass
US11465927B2 (en) 2017-02-20 2022-10-11 Corning Incorporated Shaped glass laminates
US11987516B2 (en) 2017-02-20 2024-05-21 Corning Incorporated Shaped glass laminates
US11236003B2 (en) 2017-10-18 2022-02-01 Corning Incorporated Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween

Also Published As

Publication number Publication date
EP2897916A1 (fr) 2015-07-29
CN104661971A (zh) 2015-05-27
EA201590263A1 (ru) 2015-06-30
EA029529B1 (ru) 2018-04-30
BE1024010B1 (fr) 2017-10-27
JP6412870B2 (ja) 2018-10-24
JP2015530350A (ja) 2015-10-15
US20150246839A1 (en) 2015-09-03
US10486999B2 (en) 2019-11-26
BR112015006259B1 (pt) 2021-10-19
BR112015006259A2 (pt) 2017-07-04
CN104661971B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
BE1024010B1 (fr) Bombage de vitrages
EP2766184B1 (fr) Fabrication d'un vitrage feuillete
BE1020051A3 (fr) Vitrage automobile.
EP0660809B1 (fr) Procede et dispositif de formage de plaques de verre et application de ce procede a l'obtention de vitrages de formes complexes
EP0169770B1 (fr) Procédé et dispositif pour le bombage de plaques de verre en position horizontale
EP1349817B2 (fr) Procede de decoupe des bords d'un ruban continu de verre et le dispositif de mise en oeuvre ce procede
EP1836137B1 (fr) Dispositif et procede de cintrage et de refroidissement de vitres a deux trains de supports
FR2909372A1 (fr) Procede de fabrication de produits non plans en vitroceramique
WO2018154247A1 (fr) Vitrage a contrainte d'extension reduite
FR2648803A1 (fr) Procede et dispositif pour le bombage et la trempe par contact
FR2596750A1 (fr) Dispositif de formage du verre
EP3947302A1 (fr) Convoyage de feuilles de verre par des rouleaux conformés
FR2516502A1 (fr) Procede et dispositif pour extraire des feuilles de verre cintrees et trempees d'un poste de refroidissement
BE1016541A3 (fr) Procede et dispositif de bombage de feuilles de verre.
EP4069651A1 (fr) Outil de refroidissement local d'une feuille de verre
FR2536384A1 (fr) Organe en forme de cadre fendu de longueur reglable pour la mise en forme de feuilles de verre
EP0409695B1 (fr) Procédé et dispositif d'obtention de feuilles de verre bombées et/ou émaillées
EP2391588B1 (fr) Couches de silicates alcalins pour vitrages anti-feu
FR3093333A1 (fr) Fabrication de vitrages a contrainte d’extension reduite
CA2143650C (fr) Procede et dispositif de formage de plaques de verre et application de ce procede a l'obtention de vitrages de formes complexes
EP2090549A1 (fr) Bombage de feuilles de verre
FR2546507A1 (fr) Systeme d'ouvertures pour supports a depression pour la mise en forme de feuilles de verre
BE879969A (fr) Procede et appareil pour la mise en forme de feuilles de verre par gravite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13759470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201590263

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2015532360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14429915

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006259

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015006259

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150320