WO2014041589A1 - リニア直流モータ - Google Patents

リニア直流モータ Download PDF

Info

Publication number
WO2014041589A1
WO2014041589A1 PCT/JP2012/005910 JP2012005910W WO2014041589A1 WO 2014041589 A1 WO2014041589 A1 WO 2014041589A1 JP 2012005910 W JP2012005910 W JP 2012005910W WO 2014041589 A1 WO2014041589 A1 WO 2014041589A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
motor
coil
linear
yoke
Prior art date
Application number
PCT/JP2012/005910
Other languages
English (en)
French (fr)
Inventor
丸山 利喜
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to PCT/JP2012/005910 priority Critical patent/WO2014041589A1/ja
Priority to CN201380047179.XA priority patent/CN104641542B/zh
Priority to DE112013004493.5T priority patent/DE112013004493T5/de
Priority to PCT/JP2013/000238 priority patent/WO2014041711A1/ja
Priority to JP2014535346A priority patent/JP6095673B2/ja
Priority to US14/423,228 priority patent/US9800128B2/en
Publication of WO2014041589A1 publication Critical patent/WO2014041589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby

Definitions

  • the present invention relates to a linear DC motor suitable for use in positioning a lens or the like, and more particularly to a linear DC motor capable of positioning with high response and high accuracy.
  • a linear actuator that uses a voice coil motor to move the lens with good responsiveness and perform operations such as focusing is widely used.
  • the linear actuator disclosed in Patent Document 1 improves positioning accuracy and durability by matching the center of gravity of a mover that linearly reciprocates with the center of a linear guide that guides the mover.
  • the linear actuator disclosed in Patent Document 1 includes a coil and a coil assembly including a rectangular frame-shaped coil frame that supports the coil. Inside the coil assembly, members such as a linear guide, a lens mounting frame, and a mover position detection sensor are arranged.
  • each component is incorporated inside a rectangular frame-shaped coil assembly.
  • the dimension of a coil assembly may become comparatively large and rigidity may fall.
  • the rectangular frame-shaped coil assembly may be deformed without being able to withstand the thrust. . If the rectangular frame-shaped coil assembly is deformed during the movement of the movable part, a slight delay occurs in the movement of the movable element, which may reduce the responsiveness. In addition, resonance occurs in the coil assembly, and the positioning response and positioning accuracy of the mover may be reduced.
  • an object of the present invention is to propose a linear DC motor capable of performing a positioning operation with high response and high accuracy by increasing the rigidity of a mover.
  • the linear direct current motor of the present invention is A slide member on which the moving object is mounted; A linear guide supporting the slide member in a slidable state along a linearly extending guide rail; A motor mover attached to the slide member and provided with a first drive coil and a second drive coil; A motor stator including a first drive magnet and a second drive magnet for generating a magnetic drive force in a sliding direction along the guide rail between the first and second drive coils; A detection unit for detecting a position of the slide member in the slide direction; The linear guide, the motor stator and a base member to which the detection unit is attached, Each of the first drive coil and the second drive coil is a cylindrical coil having the same shape and the same size in which a coil winding is wound in a cylindrical shape around a coil central axis extending parallel to the sliding direction.
  • the first drive coil and the second drive coil are disposed at symmetrical positions around a motor center axis extending through the center of the slide member and parallel to the slide direction,
  • the first drive magnet and the second drive magnet are opposed to the first drive coil and the second drive coil at a symmetrical position about the motor center axis.
  • the guide rail is disposed on one side with respect to a plane including the coil center axis of both the first and second drive coils, and the detection unit is disposed on the other side. .
  • the cylindrical first and second drive coils and the first drive coil are positioned symmetrically with respect to the motor center axis passing through the center of the slide member on which the moving object such as a lens is mounted.
  • the second drive magnet is arranged.
  • the first and second drive coils on the movable side are located on both sides of the slide member. Therefore, the first and second drive coils can be designed independently of the shape, size, arrangement position, and the like of the slide member, linear guide, detection unit, and the like.
  • the magnetic driving force is generated at a symmetrical position with respect to the motor center axis passing through the center of the slide member.
  • linear guides and detectors are arranged on both sides of the direction perpendicular to the direction in which the first and second drive coils are arranged with the slide member as the center. Therefore, it is easy to arrange the member that slides along the linear guide attached to the slide member and the member attached to the slide member side in the detection unit in a well-balanced manner around the slide member.
  • FIG. 2 is a perspective view when the linear DC motor of FIG. 1 is viewed from the front side and a perspective view when viewed from the back side.
  • FIG. 2 is a cross-sectional view when the linear DC motor of FIG. 1 is cut along line AA, a cross-sectional view when cut along line BB, and a cross-sectional view when cut along line CC.
  • It is a perspective view of the linear direct current motor of FIG. 1, and shows the state which took out the part by the side of the slide.
  • It is a schematic cross-sectional view of the principal part which shows the modification of the linear direct current motor of FIG.
  • linear DC motor to which the present invention is applied will be described with reference to the drawings.
  • the linear DC motor according to the present embodiment is used as, for example, a linear actuator for driving a lens for performing lens focusing.
  • the linear DC motor of the present invention can be used to linearly reciprocate a moving object other than the lens.
  • FIGS. 1A, 1B, and 1C are a front view, a bottom view, and a side view of a linear DC motor according to the present embodiment.
  • 2A and 2B are a perspective view when the linear DC motor is viewed from the front side and a perspective view when viewed from the back side.
  • the linear DC motor 1 has a rectangular parallelepiped shape as a whole, and the back surface thereof is defined by a base plate 2 having a rectangular outline with a constant thickness.
  • the base plate 2 is provided with components on the fixed side of the linear DC motor 1.
  • the base plate 2 is provided with a linear guide 3 which is a fixed component.
  • the linear guide 3 extends forward along the front-rear direction Z from the center of the width direction X of the base plate 2.
  • the linear guide 3 includes a linear plate 4 and a guide rail 5 attached to the upper surface.
  • the linear guide 3 is mounted with a slide member 6 that is a movable component of the linear DC motor 1 so as to be slidable in the front-rear direction Z along the guide rail 5.
  • the slide member 6 includes a slider 7 that is slidably mounted on the guide rail 5 and a rectangular parallelepiped lens frame 8 that is fixed thereon.
  • a circular opening 8a penetrates in the front-rear direction Z.
  • a lens 9 is fixed concentrically in the circular opening 8a.
  • a circular opening 2a (see FIG. 2 (b)) is also formed in the center of the base plate 2, thereby forming an optical path extending through the linear DC motor 1 in the front-rear direction Z through the lens 9. ing.
  • FIGS. 3A to 3C are cross-sectional views when the linear DC motor 1 is cut along the lines AA, BB, and CC.
  • FIG. 4 is a perspective view of the linear DC motor 1 and shows a state in which a portion on the slide side is taken out.
  • the motor movable element 10 of the linear DC motor 1 is mounted on the slide member 6.
  • the motor mover 10 includes a first drive coil 11 disposed on one side in the width direction X of the slide member 6 and a second drive coil 12 disposed on the other side.
  • the first and second drive coils 11 and 12 are arranged at symmetrical positions around the motor center axis 1a.
  • the motor center axis 1 a extends in the front-rear direction Z, which is the sliding direction of the slide member 6, through the center of the circular opening 8 a that is the center of the slide member 6.
  • the motor stator 13 of the linear DC motor 1 includes a plurality of first drive magnets 14 and a plurality of second drive magnets 15.
  • the 1st drive magnet 14 and the 2nd drive magnet 15 are arrange
  • the linear DC motor 1 is equipped with a detection unit 16 for detecting the slide position of the slide member 6.
  • the detection unit 16 includes a movable side detection unit 17 mounted on the upper surface of the slide member 6 and a fixed side detection unit 18 attached to the base plate 2 side. Yes.
  • the fixed side detection unit 18 is mounted on a sensor plate 19 fixed to the base plate 2.
  • the detection unit 16 is, for example, an optical position detector including a light emitting unit mounted on the movable side detection unit 17 and a light receiving unit mounted on the fixed side detection unit 18.
  • the movable part of the linear direct current motor 1 is constituted by the slide member 6, the lens 9, the motor movable element 10 and the movable side detecting part 17 mounted therein.
  • the linear guide 3 attached to the base plate 2, the motor stator 13, and the fixed side detection unit 18 constitute a fixed part of the linear DC motor 1.
  • the configuration of the motor mover 10 and the motor stator 13 will be further described.
  • the first drive coil 11 of the motor movable element 10 is a cylindrical coil, and its coil winding is wound in a cylindrical shape around a coil center axis 11a extending in parallel with the slide direction (front-rear direction Z) of the slide member 6.
  • a first cylindrical coil frame 21 made of a nonmagnetic material is attached to one side surface of the lens frame 8. Coil windings are wound along the circular outer peripheral surface of the first cylindrical coil frame 21.
  • the other second drive coil 12 has the same configuration.
  • the second drive coil 12 is a cylindrical coil, and its coil winding is wound in a cylindrical shape around a coil center axis 12a extending in parallel with the slide direction (front-rear direction Z) of the slide member 6.
  • a second cylindrical coil frame 22 made of a nonmagnetic material is attached to the other side surface of the lens frame 8.
  • a coil winding is wound along the circular outer peripheral surface of the second cylindrical coil frame 22.
  • the first and second drive coils 11 and 12 are cylindrical coils having the same shape and the same size. Further, as described above, the first drive coil 11 and the second drive coil 12 pass through the center of the slide member 6 (center of the circular opening 8a) and extend in parallel to the slide direction (front-rear direction Z). With respect to the central axis 1a, they are arranged at symmetrical positions in the width direction X.
  • the motor stator 13 will be described.
  • the first drive magnet 14 and the second drive magnet 15 of the motor stator 13 are disposed at symmetrical positions around the motor center axis 1a corresponding to the first and second drive coils 11 and 12.
  • the motor stator 13 includes first and second outer yokes 23 and 24 and first and second inner yokes 25 and 26.
  • the first and second outer yokes 23 and 24 are arranged at symmetrical positions about the motor center axis 1a, and have the same shape and the same size.
  • the first and second inner yokes 25 and 26 are disposed at symmetrical positions around the motor center axis 1a, and have the same shape and the same size.
  • the first outer yoke 23 has a rectangular parallelepiped outline as a whole, and has a laminated structure in which ferromagnetic plates are laminated.
  • the first outer yoke 23 of the present example includes a first yoke portion 23A and a second yoke portion 23B having the same shape that is continuous before and after the first yoke portion 23A.
  • the rear end of the second yoke portion 23B on the rear side in the front-rear direction Z is fixed to the base plate 2, and the first end yoke 27 having the same contour is fixed to the front end of the second yoke portion 23B on the rear side. .
  • a hollow portion having a circular cross section extends in the front-rear direction Z inside the first outer yoke 23 having this configuration.
  • the circular inner peripheral surface of the hollow portion opens to the slide member 6 side.
  • a first cylindrical coil frame 21 to which the first drive coil 11 is mounted is inserted in the hollow portion in a coaxial state.
  • the yoke circular inner peripheral surface 23a of the first yoke portion 23A defining the hollow portion is opposed to the first drive coil 11 with a certain gap.
  • the yoke circular inner peripheral surface 23b of the front and rear second yoke portions 23B has a larger inner diameter than the yoke circular inner peripheral surface 23a and faces the circular outer peripheral surface of the first inner yoke 25 with a large gap. Yes. As a result, the magnet magnetic path is prevented from being short-circuited between the motor movable element 10 and the motor stator 13.
  • a plurality of, for example, five first drive magnets 14 are embedded in the first yoke portion 23A at equal angular intervals in the circumferential direction along the yoke circular inner peripheral surface 23a.
  • the first drive magnet 14 having a flat rectangular cross section extends over substantially the entire length in the front-rear direction Z of the first yoke portion 23A.
  • each first drive magnet 14 is arranged inside the yoke circular inner peripheral surface 23a so as to extend in a tangential direction drawn to the closest point on the yoke circular inner peripheral surface 23a.
  • the first inner yoke 25 extends concentrically through the hollow portion of the first drive coil 11.
  • the rear end of the first inner yoke 25 is fixed to the base plate 2, and the front end surface 25 a is exposed forward from a circular through hole 27 a formed in the first end yoke 27.
  • the other second outer yoke 24 has the same configuration as the first outer yoke 23.
  • the second outer yoke 24 of this example includes a first yoke portion 24A and a second yoke portion 24B having the same shape that is continuous before and after the first yoke portion 24A.
  • the rear end of the second yoke portion 24B on the rear side in the front-rear direction Z is fixed to the base plate 2, and the second end yoke 28 having the same contour is fixed to the front end of the second yoke portion 23B on the rear side. .
  • a hollow portion having a circular cross section extends in the front-rear direction Z inside the second outer yoke 24.
  • the circular inner peripheral surface of the hollow portion opens to the slide member 6 side.
  • a second cylindrical coil frame 22 to which the second drive coil 12 is mounted is inserted in the hollow portion in a coaxial state.
  • the yoke circular inner peripheral surface 24a of the first yoke portion 24A defining the hollow portion is opposed to the second drive coil 12 with a certain gap.
  • the yoke circular inner peripheral surface 24b of the front and rear second yoke portions 24B has a larger inner diameter than the yoke circular inner peripheral surface 24a and faces the circular outer peripheral surface of the second inner yoke 26 with a large gap. Yes. As a result, the magnet magnetic path is prevented from being short-circuited between the motor movable element 10 and the motor stator 13.
  • a plurality of, for example, five second drive magnets 15 are embedded in the first yoke portion 24A at equal angular intervals in the circumferential direction along the yoke inner circumferential surface 24a.
  • the second drive magnet 15 having a flat rectangular cross section extends over substantially the entire length in the front-rear direction Z of the first yoke portion 24A.
  • Each of the second drive magnets 15 is arranged inside the yoke circular inner peripheral surface 24a so as to extend in the direction of a tangent drawn to the nearest point on the yoke circular inner peripheral surface 24a.
  • the second inner yoke 26 extends concentrically through the hollow portion of the second drive coil 12.
  • the rear end of the second inner yoke 26 is fixed to the base plate 2, and the front end face 26 a is exposed forward from a circular through hole 28 a formed in the second end yoke 28.
  • the front and rear portions between the first inner yoke 25 and the first outer yoke 23 and the front and rear portions between the second inner yoke 26 and the second outer yoke 24 are respectively buffered.
  • Stoppers 30 and 31 made of a material are arranged.
  • the front stopper 30 is attached to the first and second end yokes 27 and 28, and the rear stopper 31 is attached to the base plate 2.
  • the slide member 6 slides in the front-rear direction Z between the front and rear stoppers 30 and 31.
  • the linear DC motor 1 includes the coil center axes 11a and 12a of both the first and second drive coils 11 and 12.
  • the linear guide 3 is disposed on one side, and the detection unit 16 is disposed on the other side.
  • the slider 7 is attached to one side of the slide member 6 in the vertical direction Y, and the movable side detection unit 17 is mounted on the other side.
  • the first and second drive coils 11 and 12 of the motor movable element 10 are attached to both sides of the width direction X in a symmetric state. Due to the magnetic driving force generated between the first and second drive magnets 14 and 15 of the motor stator 13 and the first and second drive coils 11 and 12 of the motor mover 10, the slide member 6 is moved in the sliding direction. Thrust acts. The center of the thrust acting on the slide member 6 is located on the motor center axis 1a, and the center of gravity of the motor movable element 10 is also located on the motor center axis 1a (center of the slide member 6).
  • the position of the center of gravity of the slide member 6 itself is positioned at the center (motor center axis 1a). Can do. In this way, an excessive force does not act on the linear guide or the like when the slide member 6 slides, and the slide member 6 can be moved with good responsiveness and positioned with high accuracy. Moreover, since it can suppress that an excessive force arises in each part, durability can also be improved.
  • FIG. 5 is a schematic cross-sectional view showing the main part of a linear DC motor according to a modification of the linear DC motor 1 described above.
  • the linear DC motor 1A according to the modified example has basically the same configuration as the linear DC motor 1 described above. Therefore, in FIG. 5, parts of the linear DC motor 1 ⁇ / b> A corresponding to the respective parts of the linear DC motor 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the first and second drive magnets 14A and 15A of the motor stator 13 are formed of C-shaped magnets having a constant thickness and a constant width. That is, the first drive magnet 14A made of a C-shaped magnet that opens to the slide member 6 side is concentrically fixed to the circular inner peripheral surface 23a of the yoke portion 23A of the first outer yoke 23.
  • the first drive magnet 14A has, for example, an arc shape extending at an angle of about 270 degrees, and the circular inner peripheral surface 14a faces the first drive coil 11 with a certain gap.
  • a second drive magnet 15A made of a C-shaped magnet that opens toward the slide member 6 is concentrically fixed to the circular inner peripheral surface 24a of the yoke portion 24A of the second outer yoke 24.
  • the second drive magnet 15A has, for example, an arc shape extending at an angle of about 270 degrees, and the circular inner peripheral surface 15a faces the second drive coil 12 with a certain gap.
  • the first and second drive magnets 14A and 15A have the same shape and the same size, and are arranged in a symmetric state at a symmetric position with respect to the motor central axis 1a.
  • the linear DC motor 1 ⁇ / b> A having this configuration has the same effects as the linear DC motor 1 described above.
  • the first and second outer yokes 23 and 24 are configured as a laminated structure of ferromagnetic plates.
  • the first and second outer yokes 23 and 24 may be of an integral structure, for example, an integral body made of a sintered body. Even in this case, the same effects as those of the linear DC motors 1 and 1A can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Linear Motors (AREA)
  • Lens Barrels (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

 リニア直流モータ(1)では、レンズ(9)を搭載したスライド部材(6)の中心を通るモータ中心軸線(1a)に対して、左右対称の状態で、第1、第2駆動コイル(11、12)、第1、第2駆動マグネット(14、15)が配置されている。可動側の第1、第2駆動コイル(11、12)はスライド部材(6)の左右両側に位置する。スライド部材(6)、リニアガイド(3)、検出部(16)の形状、大きさ、配置位置等の影響を受けずに独立して、第1、第2駆動コイル(11、12)が設計される。第1、第2駆動コイル(11、12)は、剛性が高く、スライド部材(6)のスライド時に変形しない。よって、可動部の剛性が高く、高応答、高精度で位置決め動作を行うリニア直流モータを実現できる。

Description

リニア直流モータ
 本発明は、レンズなどの位置決めに用いるのに適したリニア直流モータに関し、特に、高応答および高精度で位置決めを行うことのできるリニア直流モータに関する。
 ボイスコイルモータを利用して、応答性良くレンズを移動させて焦点合わせ等の動作を行うリニアアクチュエータが広く用いられている。特許文献1に開示のリニアアクチュエータは、直線往復移動する可動子の重心と、この可動子をガイドするリニアガイドの中心を一致させて、位置決め精度および耐久性を向上させている。
 特許文献1に開示のリニアアクチュエータは、コイル、および、これを支持する矩形枠状のコイルフレームからなるコイルアセンブリを有している。コイルアセンブリの内側に、リニアガイド、レンズ取り付け用のフレーム、可動子の位置検出用のセンサ等の部材が配置されている。
特開2008-35645号公報
 特許文献1のリニアアクチュエータにおいては、矩形枠状のコイルアセンブリの内側に各部品が組み込まれる。このため、コイルアセンブリの寸法が比較的大きくなり、剛性が低下することがある。コイルアセンブリと固定子側の永久磁石との間で発生する推力で、レンズフレーム、センサ等の可動部を移動させる際に、矩形枠状のコイルアセンブリが推力に耐えられずに変形することがある。可動部の移動時に矩形枠状のコイルアセンブリが変形すると、可動子の移動に僅かな遅れが生じ、応答性が低下するおそれがある。また、コイルアセンブリに共振が発生し、可動子の位置決め応答性、位置決め精度が低下するおそれがある。
 本発明の課題は、このような点に鑑みて、可動子の剛性を高めて高応答および高精度で位置決め動作を行うことのできるリニア直流モータを提案することにある。
 上記の課題を解決するために、本発明のリニア直流モータは、
 移動対象物が搭載されるスライド部材と、
 前記スライド部材を、直線状に延びるガイドレールに沿ってスライド可能な状態で支持しているリニアガイドと、
 前記スライド部材に取り付けられていると共に、第1駆動コイルおよび第2駆動コイルを備えたモータ可動子と、
 前記第1、第2駆動コイルとの間に前記ガイドレールに沿ったスライド方向への磁気駆動力を発生させる第1駆動マグネットおよび第2駆動マグネットを備えたモータ固定子と、
 前記スライド部材の前記スライド方向の位置を検出する検出部と、
 前記リニアガイド、前記モータ固定子および前記検出部が取り付けられているベース部材とを有しており、
 前記第1駆動コイルおよび前記第2駆動コイルは、それぞれ、前記スライド方向に平行に延びるコイル中心軸線を中心として円筒状にコイル巻線が巻回されている同一形状および同一大きさの円筒状コイルであり、
 前記第1駆動コイルおよび前記第2駆動コイルは、前記スライド部材の中心を通り前記スライド方向に平行に延びるモータ中心軸線を中心として、左右対称の位置に配置されており、
 前記第1駆動マグネットおよび前記第2駆動マグネットは、前記モータ中心軸線を中心として、左右対称の位置において、前記第1駆動コイルおよび前記第2駆動コイルに対峙しており、
 前記第1、第2駆動コイルの双方の前記コイル中心軸線を含む平面に対して、一方の側に前記ガイドレールが配置され、他方の側に前記検出部が配置されていることを特徴とする。
 本発明のリニア直流モータでは、レンズ等の移動対象物が搭載されるスライド部材の中心を通るモータ中心軸線に対して、左右対称の位置に、円筒状の第1、第2駆動コイルおよび第1、第2駆動マグネットを配置している。可動側の第1、第2駆動コイルは、スライド部材の両側に位置している。よって、スライド部材、リニアガイド、検出部などの形状、大きさ、配置位置等の影響を受けることなく、これらとは独立に、第1、第2駆動コイルを設計できる。この結果、スライド部材を磁気駆動力によってスライドさせる際に、第1、第2駆動コイルに変形が生じないように、これらの駆動コイルに十分な剛性をもたせることが容易になる。また、スライド部材に必要とされる推力が得られるように、第1、第2駆動コイルおよび第1、第2駆動マグネットを設計することも容易になる。
 本発明では、磁気駆動力は、スライド部材の中心を通るモータ中心軸線に対して左右対称の位置において発生する。また、スライド部材を中心として、第1、第2駆動コイルが配置されている方向とは直交する方向の両側には、リニアガイドおよび検出部が配置されている。よって、スライド部材に取り付けられるリニアガイドに沿ってスライドする部材、検出部におけるスライド部材の側に取り付けられる部材を、スライド部材を中心として、バランス良く配置することが容易である。
 この結果、磁気駆動力によってスライド部材に作用するスライド方向への推力の中心を、スライド部材の重心に一致させるように設計することが容易である。これらを一致させることで、スライド部材に推力が作用する場合に、スライド部材をスライド可能に支持しているリニアガイドに無理な応力が加わることを防止あるいは抑制でき、スライド部材とリニアガイドの間のスライド抵抗を低減できる。これにより、スライド部材を応答性良くスライドさせ、精度良く位置決めすることができる。また、リニアガイド等に無理な応力が生じないので、これらの部位の寿命も向上する。
本発明を適用したリニア直流モータの正面図、底面図および側面図である。 図1のリニア直流モータを正面側から見た場合の斜視図および背面側から見た場合の斜視図である。 図1のリニア直流モータをA-A線で切断した場合の断面図、B-B線で切断した場合の断面図およびC-C線で切断した場合の断面図である。 図1のリニア直流モータの斜視図であり、そのスライド側の部分を取り出した状態を示す。 図1のリニア直流モータの改変例を示す要部の概略横断面図である。
 以下に、図面を参照して、本発明を適用したリニア直流モータの実施の形態を説明する。本実施の形態に係るリニア直流モータは、例えばレンズの焦点合わせを行うためのレンズ駆動用のリニアアクチュエータとして用いられるものである。レンズ以外の移動対象物を直線往復移動させるために本発明のリニア直流モータを用いることが可能なことは勿論である。
 図1(a)、(b)および(c)は、本実施の形態に係るリニア直流モータの正面図、底面図および側面図である。図2(a)および(b)は、リニア直流モータを正面側から見た場合の斜視図および背面側から見た場合の斜視図である。
 これらの図に示すように、リニア直流モータ1は全体として直方体形状をしており、その背面は、一定厚さの長方形輪郭をしたベースプレート2によって規定されている。ベースプレート2には、リニア直流モータ1の固定側の構成部品が取り付けられている。
 ベースプレート2には、固定側の構成部品であるリニアガイド3が取り付けられている。リニアガイド3は、ベースプレート2における幅方向Xの中央から、前後方向Zに沿って前方に向かって延びている。リニアガイド3は、リニアプレート4と、この上面に取り付けたガイドレール5を備えている。リニアガイド3には、ガイドレール5に沿って前後方向Zにスライド自在の状態で、リニア直流モータ1の可動側の構成部品であるスライド部材6が搭載されている。
 スライド部材6は、ガイドレール5にスライド自在の状態で搭載されているスライダ7と、この上に固定されている直方体形状のレンズフレーム8を備えている。レンズフレーム8の中央には前後方向Zに円形開口部8aが貫通している。円形開口部8aには、レンズ9が同心状態に固定されている。ベースプレート2の中心部にも円形開口部2a(図2(b)参照)が形成されており、これによって、レンズ9を通って前後方向Zにリニア直流モータ1を貫通して延びる光路が形成されている。
 図3(a)~(c)はリニア直流モータ1をA-A線、B-B線およびC-C線で切断した場合の断面図である。図4はリニア直流モータ1の斜視図であり、そのスライド側の部分を取り出した状態を示す。
 これらの図も参照して説明すると、スライド部材6にはリニア直流モータ1のモータ可動子10が搭載されている。モータ可動子10は、スライド部材6の幅方向Xの一方の側に配置した第1駆動コイル11と、他方の側に配置した第2駆動コイル12を備えている。第1、第2駆動コイル11、12は、モータ中心軸線1aを中心として、左右対称の位置に配置されている。モータ中心軸線1aは、スライド部材6の中心である円形開口部8aの中心を通って、当該スライド部材6のスライド方向である前後方向Zに延びている。
 リニア直流モータ1のモータ固定子13は、複数個の第1駆動マグネット14および複数個の第2駆動マグネット15を備えている。第1駆動マグネット14と第2駆動マグネット15は、モータ中心軸線1aを中心として、左右対称の状態に配置されている。第1、第2駆動コイル11、12を励磁すると、第1、第2駆動コイル11、12と第1、第2駆動マグネット14、15の間に、それぞれ、ガイドレール5に沿ったスライド方向(前後方向Z)への磁気駆動力が発生する。
 リニア直流モータ1には、スライド部材6のスライド位置を検出するための検出部16が搭載されている。検出部16は、図2、図4から分かるように、スライド部材6の上面に搭載されている可動側検出部17と、ベースプレート2の側に取り付けられている固定側検出部18とを備えている。固定側検出部18は、ベースプレート2に固定したセンサプレート19に搭載されている。検出部16は、例えば、可動側検出部17に搭載された発光部と固定側検出部18に搭載されている受光部とを備えた光学式の位置検出器である。
 スライド部材6と、ここに搭載されているレンズ9、モータ可動子10および可動側検出部17によって、リニア直流モータ1の可動部が構成されている。これに対して、ベースプレート2に取り付けられているリニアガイド3、モータ固定子13および固定側検出部18によって、リニア直流モータ1の固定部が構成されている。
 モータ可動子10およびモータ固定子13の構成を更に説明する。まず、モータ可動子10について説明する。モータ可動子10の第1駆動コイル11は円筒コイルであり、そのコイル巻線は、スライド部材6のスライド方向(前後方向Z)に平行に延びるコイル中心軸線11aを中心として、円筒状に巻回されている。本例では、非磁性材からなる第1円筒状コイルフレーム21がレンズフレーム8の一方の側面に取り付けられている。この第1円筒状コイルフレーム21の円形外周面に沿ってコイル巻線が巻回されている。
 他方の第2駆動コイル12も同一構成である。第2駆動コイル12は円筒コイルであり、そのコイル巻線は、スライド部材6のスライド方向(前後方向Z)に平行に延びるコイル中心軸線12aを中心として、円筒状に巻回されている。非磁性材からなる第2円筒状コイルフレーム22がレンズフレーム8の他方の側面に取り付けられている。この第2円筒状コイルフレーム22の円形外周面に沿ってコイル巻線が巻回されている。
 第1、第2駆動コイル11、12は、同一形状および同一大きさの円筒状コイルである。また、先に述べたように、第1駆動コイル11および第2駆動コイル12は、スライド部材6の中心(円形開口部8aの中心)を通ってスライド方向(前後方向Z)に平行に延びるモータ中心軸線1aを中心として、幅方向Xにおいて左右対称の位置に配置されている。
 次に、モータ固定子13について説明する。モータ固定子13の第1駆動マグネット14および第2駆動マグネット15は、第1、第2駆動コイル11、12に対応して、モータ中心軸線1aを中心として、左右対称の位置に配置されている。モータ固定子13は、第1、第2アウターヨーク23、24と、第1、第2インナーヨーク25、26を備えている。第1、第2アウターヨーク23、24は、モータ中心軸線1aを中心として左右対称の位置に配置されており、同一形状および同一大きさのものである。同様に、第1、第2インナーヨーク25、26は、モータ中心軸線1aを中心として左右対称の位置に配置されており、同一形状および同一大きさのものである。
 第1アウターヨーク23は、全体として直方体の輪郭をしており、強磁性板を積層した積層構造のものである。本例の第1アウターヨーク23は、第1ヨーク部分23Aと、この第1ヨーク部分23Aの前後に連続している同一形状の第2ヨーク部分23Bとを備えている。前後方向Zの後側の第2ヨーク部分23Bの後端はベースプレート2に固定されており、後側の第2ヨーク部分23Bの前端には、同一輪郭の第1エンドヨーク27が固定されている。
 この構成の第1アウターヨーク23の内部には、図4から分かるように、円形断面の中空部が前後方向Zに延びている。この中空部の円形内周面は、スライド部材6の側に開口している。また、中空部内には、同軸状態で、第1駆動コイル11が装着された第1円筒状コイルフレーム21が挿入されている。第1駆動コイル11に対しては、中空部を規定している第1ヨーク部分23Aのヨーク円形内周面23aが一定のギャップで対峙している。これに対して、前後の第2ヨーク部分23Bのヨーク円形内周面23bは、ヨーク円形内周面23aよりも内径が大きく、大きなギャップで、第1インナーヨーク25の円形外周面に対峙している。これにより、モータ可動子10とモータ固定子13の間でマグネット磁路が短絡しないようにしている。
 第1ヨーク部分23Aの内部には、そのヨーク円形内周面23aに沿って、円周方向に等角度間隔で、複数個、例えば5個の第1駆動マグネット14が埋め込まれている。本例では、偏平な矩形断面の第1駆動マグネット14が、第1ヨーク部分23Aの前後方向Zの略全長に亘って延びている。また、各第1駆動マグネット14は、ヨーク円形内周面23aの内側において、当該ヨーク円形内周面23aにおける最も近い点に引いた接線の方向に延びる姿勢で配置されている。
 第1インナーヨーク25は、第1駆動コイル11の中空部を同心状態で貫通して延びている。第1インナーヨーク25の後端はベースプレート2に固定されており、その前端面25aは、第1エンドヨーク27に形成されている円形貫通穴27aから前方に露出している。
 他方の第2アウターヨーク24も第1アウターヨーク23と同一構成のものである。本例の第2アウターヨーク24は、第1ヨーク部分24Aと、この第1ヨーク部分24Aの前後に連続している同一形状の第2ヨーク部分24Bとを備えている。前後方向Zの後側の第2ヨーク部分24Bの後端はベースプレート2に固定されており、後側の第2ヨーク部分23Bの前端には、同一輪郭の第2エンドヨーク28が固定されている。
 第2アウターヨーク24の内部には、円形断面の中空部が前後方向Zに延びている。この中空部の円形内周面は、スライド部材6の側に開口している。また、中空部内には、同軸状態で、第2駆動コイル12が装着された第2円筒状コイルフレーム22が挿入されている。第2駆動コイル12に対しては、中空部を規定している第1ヨーク部分24Aのヨーク円形内周面24aが一定のギャップで対峙している。これに対して、前後の第2ヨーク部分24Bのヨーク円形内周面24bは、ヨーク円形内周面24aよりも内径が大きく、大きなギャップで、第2インナーヨーク26の円形外周面に対峙している。これにより、モータ可動子10とモータ固定子13の間でマグネット磁路が短絡しないようにしている。
 第1ヨーク部分24Aの内部には、そのヨーク円形内周面24aに沿って、円周方向に等角度間隔で、複数個、例えば5個の第2駆動マグネット15が埋め込まれている。偏平な矩形断面の第2駆動マグネット15が、第1ヨーク部分24Aの前後方向Zの略全長に亘って延びている。また、各第2駆動マグネット15は、ヨーク円形内周面24aの内側において、当該ヨーク円形内周面24aにおける最も近い点に引いた接線の方向に延びる姿勢で配置されている。
 第2インナーヨーク26は、第2駆動コイル12の中空部を同心状態で貫通して延びている。第2インナーヨーク26の後端はベースプレート2に固定されており、その前端面26aは、第2エンドヨーク28に形成されている円形貫通穴28aから前方に露出している。
 なお、図3に示すように、第1インナーヨーク25と第1アウターヨーク23の間の前後の部位、および第2インナーヨーク26と第2アウターヨーク24の間の前後の部位には、それぞれ緩衝材からなるストッパ30、31が配置されている。前側のストッパ30は第1、第2エンドヨーク27、28に取り付けられており、後側のストッパ31はベースプレート2に取り付けられている。前後のストッパ30、31の間で、スライド部材6が前後方向Zにスライドする。
 次に、図1(a)、図3(a)、(b)から分かるように、リニア直流モータ1では、第1、第2駆動コイル11、12の双方のコイル中心軸線11a、12aを含む平面Pに対して、一方の側にリニアガイド3が配置され、他方の側に検出部16が配置されている。すなわち、スライド部材6における上下方向Yの一方の側にはスライダ7が取り付けられ、他方の側には可動側検出部17が搭載されている。
 スライド部材6においては、その幅方向Xの両側に左右対称の状態でモータ可動子10の第1、第2駆動コイル11、12が取り付けられている。モータ固定子13の第1、第2駆動マグネット14、15とモータ可動子10の第1、第2駆動コイル11、12の間にそれぞれ発生する磁気駆動力によって、スライド部材6にはスライド方向の推力が作用する。スライド部材6に作用する推力の中心は、モータ中心軸線1a上に位置し、モータ可動子10の重心もモータ中心軸線1a(スライド部材6の中心)に位置する。
 したがって、スライド部材6を挟み上下に配置されているスライダ7および可動側検出部17をバランス良く配置することで、スライド部材6自体の重心位置を、その中心(モータ中心軸線1a)に位置させることができる。このようにすれば、スライド部材6のスライド時に無理な力がリニアガイド等に作用することが無く、スライド部材6を応答性良く移動させ、精度良く位置決めすることができる。また、無理な力が各部に生ずることを抑制できるので、耐久性を高めることもできる。
(改変例)
 図5は、上記のリニア直流モータ1の改変例に係るリニア直流モータの主要部を示す概略横断面図である。改変例に係るリニア直流モータ1Aは、基本的に、上記のリニア直流モータ1と同一構成である。よって、図5においては、リニア直流モータ1の各部に対応するリニア直流モータ1Aの部位には同一の符号を付し、それら説明を省略する。
 リニア直流モータ1Aでは、モータ固定子13の第1、第2駆動マグネット14A、15Aが、一定厚および一定幅のC形マグネットから形成されている。すなわち、第1アウターヨーク23のヨーク部分23Aの円形内周面23aに、スライド部材6の側に開口しているC形マグネットからなる第1駆動マグネット14Aが同心状に固定されている。第1駆動マグネット14Aは、例えば、略270度の角度を張る円弧形状をしており、その円形内周面14aが一定のギャップで第1駆動コイル11に対峙している。
 同様に、第2アウターヨーク24のヨーク部分24Aの円形内周面24aに、スライド部材6の側に開口しているC形マグネットからなる第2駆動マグネット15Aが同心状に固定されている。第2駆動マグネット15Aは、例えば、略270度の角度を張る円弧形状をしており、その円形内周面15aが一定のギャップで第2駆動コイル12に対峙している。
 第1、第2駆動マグネット14A、15Aは同一形状および同一大きさのものであり、モータ中心軸線1aに対して左右対称な位置に、左右対称な状態で配置されている。
 この構成のリニア直流モータ1Aは、前述のリニア直流モータ1と同様な作用効果を奏する。
 なお、上記のリニア直流モータ1、1Aにおいては、第1、第2アウターヨーク23、24は、強磁性板の積層構造体として構成されている。この代わりに、第1、第2アウターヨーク23、24を一体構造のもの、例えば焼結体からなる一体物とすることもできる。この場合においても、上記のリニア直流モータ1、1Aの場合と同様な作用効果が得られる。

Claims (4)

  1.  移動対象物(9)が搭載されるスライド部材(6)と、
     前記スライド部材(6)を、直線状に延びるガイドレール(5)に沿ってスライド可能な状態で支持しているリニアガイド(3)と、
     前記スライド部材(6)に取り付けられていると共に、第1駆動コイル(11)および第2駆動コイル(12)を備えたモータ可動子(10)と、
     前記第1、第2駆動コイル(11、12)との間に前記ガイドレール(5)に沿ったスライド方向への磁気駆動力を発生させる第1駆動マグネット(14)および第2駆動マグネット(15)を備えたモータ固定子(13)と、
     前記スライド部材(6)の前記スライド方向の位置を検出する検出部(16)と、
     前記リニアガイド(3)、前記モータ固定子(13)および前記検出部(16)の固定側の部位が取り付けられているベース部材(2)とを有しており、
     前記第1駆動コイル(11)および前記第2駆動コイル(12)は、それぞれ、前記スライド方向に平行に延びるコイル中心軸線(11a、12a)を中心として円筒状にコイル巻線が巻回されている同一形状および同一大きさの円筒状コイルであり、
     前記第1駆動コイル(11)および前記第2駆動コイル(12)は、前記スライド部材(6)の中心を通り前記スライド方向に平行に延びるモータ中心軸線(1a)を中心として、左右対称の位置に配置されており、
     前記第1駆動マグネット(14、14A)および前記第2駆動マグネット(15、15A)は、前記モータ中心軸線(1a)を中心として、左右対称の位置において、前記第1駆動コイル(11)および前記第2駆動コイル(12)に対峙しており、
     前記第1、第2駆動コイル(11、12)の双方の前記コイル中心軸線(11a、12a)を含む平面(P)に対して、一方の側に前記リニアガイド(3)が配置され、他方の側に前記検出部(16)が配置されていることを特徴とするリニア直流モータ(1、1A)。
  2.  請求項1において、
     前記モータ可動子(10)は、前記スライド部材(6)に対して、前記モータ中心軸線(1a)を中心として左右対称の位置に取り付けた非磁性材からなる第1、第2円筒状コイルフレーム(21、22)を備え、前記第1、第2駆動コイル(11、12)は、前記第1、第2円筒状コイルフレーム(21、22)の円筒状外周面に巻回されたものであり、
     前記モータ固定子(13)は、前記モータ中心軸線(1a)を中心として左右対称の位置に配置されている同一形状および同一大きさの第1アウターヨーク(23)および第2アウターヨーク(24)と、前記モータ中心軸線(1a)を中心として左右対称の位置に配置されている同一形状および同一大きさの第1インナーヨーク(25)および第2インナーヨーク(26)とを備えており、
     前記第1アウターヨーク(23)および前記第2アウターヨーク(24)のそれぞれは、前記第1駆動コイル(11)および前記第2駆動コイル(12)を同心状に取り囲んでおり、
     前記第1インナーヨーク(25)および前記第2インナーヨーク(26)のそれぞれは、前記第1円筒状コイルフレーム(21)および前記第2円筒状コイルフレーム(22)の中空部を同心状に貫通して延びている円柱状のインナーヨークであるリニア直流モータ(1、1A)。
  3.  請求項2において、
     前記第1駆動マグネット(14)および前記第2駆動マグネット(15)のそれぞれは、前記第1アウターヨーク(23)および前記第2アウターヨーク(24)の内部において、これらの内周面(23a、24a)に沿って、等角度間隔で配置されている複数の駆動マグネットであるリニア直流モータ(1)。
  4.  請求項2において、
     前記第1駆動マグネット(14A)および前記第2駆動マグネット(15A)のそれぞれは、前記第1駆動コイル(11)および前記第2駆動コイル(12)を同心状に取り囲む状態で、前記第1アウターヨーク(23)および前記第2アウターヨーク(24)の内周面(23a、24a)に固定したC形マグネットであるリニア直流モータ(1A)。
PCT/JP2012/005910 2012-09-14 2012-09-14 リニア直流モータ WO2014041589A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/005910 WO2014041589A1 (ja) 2012-09-14 2012-09-14 リニア直流モータ
CN201380047179.XA CN104641542B (zh) 2012-09-14 2013-01-18 线性直流电动机
DE112013004493.5T DE112013004493T5 (de) 2012-09-14 2013-01-18 Gleichstrom-Linearmotor
PCT/JP2013/000238 WO2014041711A1 (ja) 2012-09-14 2013-01-18 リニア直流モータ
JP2014535346A JP6095673B2 (ja) 2012-09-14 2013-01-18 リニア直流モータ
US14/423,228 US9800128B2 (en) 2012-09-14 2013-01-18 Linear DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/005910 WO2014041589A1 (ja) 2012-09-14 2012-09-14 リニア直流モータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/423,228 Continuation-In-Part US9800128B2 (en) 2012-09-14 2013-01-18 Linear DC motor

Publications (1)

Publication Number Publication Date
WO2014041589A1 true WO2014041589A1 (ja) 2014-03-20

Family

ID=50277748

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/005910 WO2014041589A1 (ja) 2012-09-14 2012-09-14 リニア直流モータ
PCT/JP2013/000238 WO2014041711A1 (ja) 2012-09-14 2013-01-18 リニア直流モータ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000238 WO2014041711A1 (ja) 2012-09-14 2013-01-18 リニア直流モータ

Country Status (5)

Country Link
US (1) US9800128B2 (ja)
JP (1) JP6095673B2 (ja)
CN (1) CN104641542B (ja)
DE (1) DE112013004493T5 (ja)
WO (2) WO2014041589A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284625B2 (ja) * 2014-04-07 2018-02-28 株式会社ハーモニック・ドライブ・システムズ リニアアクチュエータ
KR102042097B1 (ko) * 2016-02-02 2019-11-07 가부시키가이샤 하모닉 드라이브 시스템즈 가동코일형 리니어 모터
IT202200004877A1 (it) * 2022-03-14 2023-09-14 El En Spa Dispositivo per il movimento di un gruppo ottico, testa di processo laser comprendente il dispositivo e apparecchiatura comprendente la testa di processo laser
CN115912812B (zh) * 2022-12-21 2023-10-13 阿帕斯数控机床制造(上海)有限公司 直线电机安装方法、结构及其用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211363A (ja) * 1982-06-01 1983-12-08 Mitsubishi Electric Corp キヤリツジ組立体
JPH01129750A (ja) * 1987-11-13 1989-05-23 Fuji Xerox Co Ltd 駆動装置
JPH0562383A (ja) * 1991-08-30 1993-03-12 Sony Corp デイスクドライブ装置
JPH05328696A (ja) * 1992-05-18 1993-12-10 Sony Corp 可動コイル型アクチュエータ装置
JP2003088082A (ja) * 2001-03-16 2003-03-20 Matsushita Electric Ind Co Ltd リニアモータ
JP2008035645A (ja) * 2006-07-31 2008-02-14 Harmonic Drive Syst Ind Co Ltd リニアアクチュエータ
JP2011237507A (ja) * 2010-05-07 2011-11-24 Tamron Co Ltd リニアアクチュエータ、及びそれを備えたレンズユニット、カメラ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265645A (ja) 1988-08-30 1990-03-06 Canon Inc リニアモータ装置
US5265079A (en) * 1991-02-15 1993-11-23 Applied Magnetics Corporation Seek actuator for optical recording
JPH0323523A (ja) * 1989-06-21 1991-01-31 Sony Corp 光学ヘッド装置
US5677899A (en) * 1991-02-15 1997-10-14 Discovision Associates Method for moving carriage assembly from initial position to target position relative to storage medium
JP4277921B2 (ja) * 2007-06-05 2009-06-10 セイコーエプソン株式会社 アクチュエータ、光スキャナおよび画像形成装置
JP5265591B2 (ja) * 2010-01-29 2013-08-14 山洋電気株式会社 リニア同期モータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211363A (ja) * 1982-06-01 1983-12-08 Mitsubishi Electric Corp キヤリツジ組立体
JPH01129750A (ja) * 1987-11-13 1989-05-23 Fuji Xerox Co Ltd 駆動装置
JPH0562383A (ja) * 1991-08-30 1993-03-12 Sony Corp デイスクドライブ装置
JPH05328696A (ja) * 1992-05-18 1993-12-10 Sony Corp 可動コイル型アクチュエータ装置
JP2003088082A (ja) * 2001-03-16 2003-03-20 Matsushita Electric Ind Co Ltd リニアモータ
JP2008035645A (ja) * 2006-07-31 2008-02-14 Harmonic Drive Syst Ind Co Ltd リニアアクチュエータ
JP2011237507A (ja) * 2010-05-07 2011-11-24 Tamron Co Ltd リニアアクチュエータ、及びそれを備えたレンズユニット、カメラ

Also Published As

Publication number Publication date
DE112013004493T5 (de) 2015-06-11
US20150229196A1 (en) 2015-08-13
JP6095673B2 (ja) 2017-03-15
US9800128B2 (en) 2017-10-24
CN104641542B (zh) 2017-07-04
WO2014041711A1 (ja) 2014-03-20
CN104641542A (zh) 2015-05-20
JPWO2014041711A1 (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
US7884509B2 (en) Linear motor and tool moving device with the same
US10790736B2 (en) Voice coil motor, lens moving device, and imaging apparatus
JPWO2005122369A1 (ja) ムービングマグネット形リニアスライダ
WO2014041589A1 (ja) リニア直流モータ
US20160018625A1 (en) Electromagnetic actuator
JP2001352747A (ja) リニアモータおよびこれを駆動源とするプレス成形装置
US10819207B2 (en) Voice coil motor and lens moving device
WO2017175505A1 (ja) レンズ駆動装置
JP2013182165A (ja) レンズ鏡筒および光学装置
JP6412780B2 (ja) レンズ鏡筒
JP2006162876A (ja) 駆動装置およびそれを用いたレンズ駆動装置
JP2009230025A (ja) コイル駆動ユニット、ブレ補正機構および撮像装置
JP5031666B2 (ja) レンズ鏡筒及びそれを有する撮像装置
US11754909B2 (en) Lens drive unit and lens barrel comprising same
JP2016144257A (ja) 磁石装置
JP6364337B2 (ja) レンズ駆動用リニアアクチュエーター
JPH07146430A (ja) 電磁駆動装置及び電磁駆動装置を用いたフォーカス制御装置
JP2009288385A5 (ja)
JP6253501B2 (ja) リニアアクチュエータ
JP5959425B2 (ja) リニアモータ
JP5403007B2 (ja) リニアモータの電機子およびリニアモータ
TWI426684B (zh) 線型馬達
JP5696403B2 (ja) リニアアクチュエータ
JP2018189936A (ja) レンズ鏡筒
JP2014089391A (ja) 位置検出装置、レンズ鏡筒及びそのレンズ鏡筒を備えるデジタルカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP