WO2014038395A1 - Laser processing head - Google Patents

Laser processing head Download PDF

Info

Publication number
WO2014038395A1
WO2014038395A1 PCT/JP2013/072533 JP2013072533W WO2014038395A1 WO 2014038395 A1 WO2014038395 A1 WO 2014038395A1 JP 2013072533 W JP2013072533 W JP 2013072533W WO 2014038395 A1 WO2014038395 A1 WO 2014038395A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
glass
processing head
laser
protective glass
Prior art date
Application number
PCT/JP2013/072533
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 和隆
俊英 加藤
加藤 博之
省吾 田川
洋 古清水
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Publication of WO2014038395A1 publication Critical patent/WO2014038395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1494Maintenance of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1488Means for protecting nozzles, e.g. the tip surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power

Definitions

  • the present invention relates to a laser processing head for performing laser processing such as laser cutting processing or laser welding of the workpiece by condensing and irradiating the workpiece with laser light oscillated from a laser oscillator.
  • the present invention relates to a laser processing head that is rotatably provided with a glass with a wedge for refracting and decentering the optical axis of laser light when performing laser welding.
  • the laser light oscillated from the laser oscillator is guided to a laser processing head using an optical fiber, and the laser light emitted from the output end of the optical fiber is incident on an inclined glass inclined with respect to the optical axis to be laser light.
  • the optical axis is refracted and decentered, and the tilted glass is rotated around the optical axis (see, for example, Patent Document 1).
  • the laser processing head described in Patent Document 1 has the configuration shown in FIG. That is, the laser processing head 1 is attached to the tip of a robot arm 3 in an industrial robot (not shown) via a bracket 5 having an appropriate configuration.
  • the laser processing head 1 includes a cylindrical processing head main body 7 attached to the bracket 5.
  • An optical fiber 9 having one end connected to a laser oscillator (not shown) is connected to the upper portion of the processing head main body 7.
  • An optical fiber holder 11 holding the other end of the optical fiber is mounted.
  • the processing head body 7 is provided with a collimation lens 13 for collimating the laser beam LB emitted from the other end side (exit end) of the optical fiber 9.
  • a condensing lens 15 that condenses the laser beam LB and irradiates the workpiece W is provided at a position below the collimation lens 13, and a laser nozzle 17 that ejects assist gas to the laser processing position of the workpiece. It has been.
  • a cylindrical glass holder 21 having an inclined glass 19 inclined with respect to the optical axis LA of the laser beam LB rotates into the gear holder case 23. It is possible to reciprocate in an arc-shaped elongated hole (not shown) formed in the gear holder case 23.
  • the inclined glass 19 functions to refract and decenter the optical axis LA of the laser beam LB. Accordingly, by rotating the glass holder 21, the optical axis (optical path) LA of the laser beam LB can be eccentrically rotated, and the beam width when performing laser welding can be expanded.
  • a gear 21G is provided on the outer peripheral surface of the glass holder 21, and a driving gear 27 rotated by a motor 25 attached to the gear holder case 23 is provided on the gear 21G. Meshed. That is, the glass holder 21 and the motor 25 are connected so as to always be interlocked. The glass holder 21 moves in and out of the optical path of the laser beam LB, that is, the optical axis LA, by reciprocating in the elongated hole.
  • the inclined glass 19 is disposed between the exit end of the optical fiber 9 and the collimation lens 13. Therefore, the diameter of the laser beam LB incident on the inclined glass 19 is small.
  • a fiber laser has been developed, and this fiber laser is used for laser processing such as laser cutting and laser welding of a metal plate as a workpiece. Since the fiber laser has a high output and a high energy density, if the inclined glass 19 is used at a position close to the emission end of the optical fiber 9 as described in Patent Document 1, the inclined glass 19 is damaged. Sometimes.
  • the tilted glass 19 when the tilted glass 19 is disposed and rotated between the collimation lens 13 and the condensing lens 15 in a region where the beam diameter of the laser beam LB is large, damage to the tilted glass 19 can be effectively suppressed.
  • the laser beam LB is a parallel beam, the optical axis LB in the laser beam LB cannot be greatly refracted and decentered.
  • the tilted glass has a non-uniform center of gravity
  • a high speed for example, a speed exceeding 3000 rpm
  • the part that holds the tilted glass and rotates at the same time as the eccentricity wears and fretting occurs.
  • Fine metal powder generated by this fretting adheres to the tilted glass, and when the deposited metal powder hits the laser beam, heat absorption occurs, and the surface coating of the tilted glass may be damaged.
  • the inclined glass itself is damaged due to processing defects and excessive heat.
  • a laser processing head collects and irradiates a collimation lens that collimates laser light emitted from an emission end of an optical fiber and collimated laser light on a workpiece.
  • the glass with the wedge is rotatably provided between the collimation lens and the condenser lens, the glass with the wedge is arranged in a region where the beam diameter of the laser beam is large, and the wedge is provided. It is possible to effectively prevent damage to the attached glass. Since the glass with a wedge that refracts and decenters the optical axis in the laser light has a configuration in which one surface is inclined with respect to the optical axis, the optical axis of the laser light is set to a glass plate having both surfaces parallel to the optical axis. Compared to the case of tilting, it can be greatly refracted and decentered.
  • the glass with a wedge has less unevenness in the center of gravity than the inclined glass, the occurrence of fretting is small, and damage to the surface coating of the glass with a wedge and breakage of the glass with a wedge can be prevented.
  • FIG. 1 is an elevational sectional view of a laser processing head according to an embodiment of the present invention.
  • FIG. 2 is an elevational sectional view of the laser processing head, and is an enlarged elevational sectional view enlarging the periphery of the imaging means.
  • FIG. 3 is a plan view of a glass with wedges traversing the optical path and means for driving the glass.
  • FIG. 4 is a plan view of a glass with a wedge that traverses the optical path and a means for driving the glass, and shows a state in which the glass holder overlaps the rotating member.
  • FIG. 5 is a plan view of a means for rotating the glass with a wedge and the rotating member integrally.
  • FIG. 6 is an elevational sectional view of a laser processing head according to the prior art.
  • a laser processing head 1 according to an embodiment of the present invention is provided at the tip of a robot arm in an industrial robot (not shown), like the conventional laser processing head described above. It is.
  • the attachment structure of the laser processing head 1 with respect to the said robot arm may be a general structure, description about the attachment structure of the laser processing head 1 with respect to a robot arm is abbreviate
  • the laser processing head 1 is provided with a box main body 29, and a lid member 31 is attached to the upper side of the box main body 29 by a fixing tool such as a bolt.
  • a cylindrical lens holder 33 is integrally erected on the upper portion of the lid member 31, and an optical fiber holder 37 holding an end portion of the optical fiber 35 is provided on the upper end portion of the lens holder 33. It is detachable.
  • a collimation lens 39 for converting the laser beam LB emitted from the emission end of the optical fiber 35 into parallel rays is provided.
  • a bearing box 41 is integrally attached to the lower surface of the bottom 29B of the box main body 29 by a fixing tool such as a bolt, and a cylindrical rotating body 43 is provided in the bearing box 41 with the light of the laser beam LB. It is provided so as to be rotatable around an axis. As will be described later, the rotating body 43 is driven and rotated by a motor.
  • the housing box 45 is integrally provided at the bottom of the bearing box 41 with a fixing tool such as a bolt.
  • a condensing lens 47 that condenses the laser beam LB collimated by the collimation lens 39 and irradiates the workpiece W is held by a lens holder 49, and the entire interior is internally provided. Has been.
  • the glass with a wedge corresponding to the conventional inclined glass 19 is used to refract and decenter the optical axis of the laser beam LB.
  • the box body 29 is formed in a box shape having an annular peripheral wall 51 as shown in FIG.
  • a vertical through hole 53 is formed in the bottom portion 29B of the box body 29 at a portion coinciding with the optical axis of the laser beam LB, and the cylindrical hole is formed in the through hole 53 portion.
  • a rotating body 43 is rotatably provided.
  • a rotating member 55 such as a ring plate that can rotate in the box body 29 is integrally fixed to the upper end of the rotating body 43 by a fixing tool such as a bolt. Therefore, the rotating member 55 can be regarded as a part of the rotating body 43.
  • the rotating member 55 includes a plurality of projecting portions 57 projecting radially outward, and a recess 59 is disposed between the projecting portions 57.
  • an endless belt 65 that is wound around a driving pulley 63 of a motor 61 provided at an appropriate position of the laser processing head 1 is wound around the rotating body 43. Therefore, by driving the motor 61, the rotating body 43 can be driven and rotated.
  • a rotation actuator 67 such as a motor is mounted on the lid member 31 of the box body 29, and a support arm is attached to a rotation shaft 69 (see FIG. 3) of the rotation actuator 67.
  • the base end side of 71 is fixed integrally.
  • the distal end side of the support arm 71 can be positioned at a position corresponding to the rotating member 55 by rotating the rotating shaft 69, and can be retracted from a position corresponding to the rotating member 55.
  • the distal end side of the support arm 71 is configured to be able to enter and exit the optical path of the laser beam LB.
  • a ring-shaped glass holder 73 rotatably supported by a through hole portion formed on the distal end side of the support arm 71 has a wedged glass 75 for refracting and decentering the optical axis of the laser beam LB. Is provided.
  • the glass 75 with a wedge one surface of the upper surface or the lower surface is formed on a surface inclined with respect to the optical axis (surface with a wedge), and the other surface is formed on a plane perpendicular to the optical axis. It is.
  • the optical axis of the laser beam LB is refracted and decentered. Therefore, when the wedged glass 75 is rotated, the optical axis of the laser beam LB is eccentrically rotated.
  • the wedged glass 75 is retracted from the optical path of the laser beam LB, that is, the support arm 71 is in contact with the stopper 77, and the wedged glass 75 is separated from the rotating member 55.
  • the laser beam LB that has been collimated by the collimation lens 39 passes through the rotating member 55 and is directly incident on the condenser lens 47. Accordingly, the laser beam LB emitted from the emission end of the optical fiber 35 is converted into parallel rays by the collimation lens 39 and travels straight, and is collected by the condenser lens 47 and applied to the workpiece W. Therefore, laser cutting of the workpiece W is performed.
  • the glass holder provided on the distal end side of the support arm 71. 73 is positioned so as to overlap the rotating member 55 (see FIG. 4). As described above, when the rotating member 55 and the glass holder 73 are positioned so as to overlap with each other, the rotating member 55 and the glass holder 73 are integrally rotated with the rotating member 55.
  • An engaging member 79 that can be engaged and disengaged with respect to the concave portion 59 provided in 55 is provided (see FIGS. 3 and 5).
  • the rotating member 55 is rotated while the engaging member 79 is engaged with the recess 59, the glass holder 73 is rotated via the engaging member 79. Therefore, the laser beam LB whose optical axis is refracted and decentered by passing through the wedged glass 75 provided in the glass holder 73 is eccentrically rotated. In this way, laser welding of the workpiece can be easily performed by refracting and decentering the optical axis of the laser beam LB and rotating it decenteringly.
  • the glass holder 73 includes the rotating member 55 and the rotating body 43 includes the engaging member 79.
  • the rotating member 55 is provided with a plurality of protrusions 57 so that the recess 59 is provided.
  • only one protrusion 57 may be provided.
  • the engaging member 79 is integrally pressed and rotated by coming into contact with the protruding portion 57, so the engaging member 79 can also be called a kind of abutting member or a pressed member. It is.
  • the front end side of the support arm 71 provided in the laser processing head 1 according to the present embodiment can enter and exit the optical path of the laser beam LB.
  • the laser processing head 1 which concerns on this embodiment can be used for both a laser cutting process and a laser welding. It can be done.
  • the wedged glass 75 is positioned in the optical path of the laser beam LB, the laser beam LB is collimated by the collimation lens 39 between the collimation lens 39 and the condensing lens 47. Therefore, the diameter of the laser beam LB is large.
  • the laser beam LB is a fiber laser and is a high-power laser beam LB
  • the laser beam LB incident on the wedged glass 75 has a large diameter and a small energy density, and has a wedge.
  • the glass 75 is not damaged.
  • the glass 75 with wedges is a glass whose both surfaces are non-parallel, so that the optical axis of the laser beam LB is effectively refracted and decentered. It can be made to.
  • the glass with a wedge has less unevenness of the center of gravity than the inclined glass, the occurrence of fretting is small, and the damage of the surface coating of the glass with the wedge and the breakage of the glass with the wedge can be prevented.
  • an image pickup means 81 such as a CCD camera for picking up an image of the laser processing position is provided on the side surface of the housing box 45.
  • a reflecting mirror that reflects light from the laser processing position of the workpiece W toward the CCD camera 81 is positioned below the condenser lens 47 in the housing box and corresponding to the CCD camera 81.
  • 83 is provided. The reflecting mirror 83 can enter and exit the optical path of the laser beam LB.
  • the housing box 45 is a mirror that is perpendicular to the optical axis of the laser beam LB (a direction perpendicular to the paper surface in FIGS.
  • An entrance / exit slider 85 is provided, and the reflecting mirror 83 is inclined and provided on the mirror entrance / exit slider 85.
  • the mirror entry / exit slider 85 is reciprocated by the operation of an appropriate linear actuator (not shown) such as a linear motor or a fluid pressure cylinder.
  • the reflecting mirror 83 is retracted from the optical path of the laser beam LB when the workpiece W is irradiated with the laser beam LB to perform laser processing. Then, when the machining position is imaged by the CCD camera 81, it is moved and positioned in the optical path of the laser beam LB so as to correspond to the CCD camera 81. Therefore, the portion subjected to the laser processing by irradiating the laser beam LB can be imaged by the CCD camera 81, and the laser processing state after the laser processing can be observed.
  • An illuminating means 87 for illuminating the imaging position of the CCD camera 81 is provided below the housing box 45.
  • a protective glass 89 that protects the condenser lens 47 from sputtering and the like scattered from the irradiation position of the laser beam LB is provided below the illumination unit 87.
  • an annular illumination housing 91 is integrally attached to the lower surface of the housing box 45 by a fixture such as a bolt.
  • a ring-shaped light source 95 provided with a plurality of point light sources 93 such as LEDs on the same circle is provided.
  • the illumination housing 91 is provided with a light shielding member 97 in order to prevent illumination light irradiated from the respective point light sources 93 toward the center from directly entering the reflecting mirror 83.
  • the light shielding member 97 is formed in a tapered cylindrical body having a small diameter on the lower side, and is provided inside the ring-shaped light source 95.
  • the lower end portion of the cylindrical light shielding member 97 is located below the point light sources 93.
  • An annular light reflecting surface 99 for reflecting the illumination light from the point light source 93 toward the tip end side (downward in FIGS. 1 and 2) of the laser processing head is provided on the outer peripheral surface of the light shielding member 97. . Therefore, the illumination light from each point light source 93 is reflected only downward (on the tip side of the laser processing head) by the light reflecting surface 99 of the light shielding member 97.
  • the protective glass 89 is held by a ring-shaped glass holder 101 that is detachably provided on the lower surface of the illumination housing 91 and is disposed close to the lower end of the light shielding member 97.
  • the glass holder 101 is provided with an optical fiber 103 as a dirt detecting means for detecting dirt on the protective glass 89.
  • the processing position is illuminated by each point light source 93 in order to image the processing position by the CCD camera 81
  • the reflected light from the processing position is reflected by the reflecting mirror 83 positioned in the optical path by the CCD. Reflected in the direction of the camera 81, the processing position is imaged.
  • the irradiation light from each point light source 93 is reflected downward by the annular light reflecting surface 99 provided on the outer peripheral surface of the light shielding member 97, passes through the protective glass 89, and is irradiated to the processing position of the workpiece W. Will be.
  • the air jet housing 105 (see FIG. 1) is provided, and a laser nozzle 107 is detachably attached to the lower portion of the air jet housing 105.
  • the air ejection housing 105 is provided in the laser processing head 1 via a fixture such as a bolt, for example, and the air ejection housing 105 is arranged with respect to the optical axis of the laser beam LB. And an opening 109 that opens in a direction orthogonal to the right side (the right side in FIG. 1).
  • the lower part of the air ejection housing 105 is provided with an air ejection part 111 for blowing contaminants scattered from the processing part of the workpiece W toward the condenser lens 47 to the outside along the opening 109. ing.
  • a laser processing head that effectively prevents damage to glass with a wedge is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A laser processing head is provided with: a collimating lens that makes laser light output by an optical fiber output end parallel and linear; a collecting lens that collects the laser light that has been made parallel and linear and outputs the same toward a workpiece; and glass with a wedge that is disposed rotatably between the collimating lens and the collecting lens and has a wedge on one surface thereof.

Description

レーザ加工ヘッドLaser processing head
 本発明は、レーザ発振器から発振されたレーザ光を集光してワークへ照射することにより、上記ワークのレーザ切断加工やレーザ溶接などのレーザ加工を行うレーザ加工ヘッドに係り、さらに詳細には、レーザ溶接を行うときに、レーザ光の光軸を屈折し偏心させるためのウエッジ付ガラスを回転可能に備えたレーザ加工ヘッドに関する。 The present invention relates to a laser processing head for performing laser processing such as laser cutting processing or laser welding of the workpiece by condensing and irradiating the workpiece with laser light oscillated from a laser oscillator. The present invention relates to a laser processing head that is rotatably provided with a glass with a wedge for refracting and decentering the optical axis of laser light when performing laser welding.
 レーザ発振器から発振されたレーザ光を、光ファイバを用いてレーザ加工ヘッドに導き、この光ファイバの出射端から出射されたレーザ光を、光軸に対して傾斜した傾斜ガラスに入射してレーザ光の光軸を屈折し偏心させると共に、前記傾斜ガラスを光軸回りに回転することが行われている(例えば特許文献1参照)。 The laser light oscillated from the laser oscillator is guided to a laser processing head using an optical fiber, and the laser light emitted from the output end of the optical fiber is incident on an inclined glass inclined with respect to the optical axis to be laser light. The optical axis is refracted and decentered, and the tilted glass is rotated around the optical axis (see, for example, Patent Document 1).
日本国特許出願公開2002-137083号Japanese Patent Application Publication No. 2002-137083
 前記特許文献1に記載のレーザ加工ヘッドは、図6に示す構成である。すなわち、レーザ加工ヘッド1は産業用ロボット(図示省略)におけるロボットアーム3の先端部に適宜構成のブラケット5を介して取付けてある。前記レーザ加工ヘッド1は、前記ブラケット5に取付けた筒状の加工ヘッド本体7を備えており、この加工ヘッド本体7の上部には、レーザ発振器(図示省略)に一端側を接続した光ファイバ9の他端側を保持した光ファイバホルダ11が装着してある。 The laser processing head described in Patent Document 1 has the configuration shown in FIG. That is, the laser processing head 1 is attached to the tip of a robot arm 3 in an industrial robot (not shown) via a bracket 5 having an appropriate configuration. The laser processing head 1 includes a cylindrical processing head main body 7 attached to the bracket 5. An optical fiber 9 having one end connected to a laser oscillator (not shown) is connected to the upper portion of the processing head main body 7. An optical fiber holder 11 holding the other end of the optical fiber is mounted.
 そして、前記加工ヘッド本体7には、前記光ファイバ9の他端側(出射端)から出射されたレーザ光LBを平行光線化するためのコリメーションレンズ13が備えられている。このコリメーションレンズ13の下方位置には、レーザ光LBを集光してワークWへ照射する集光レンズ15が備えられていると共に、アシストガスをワークのレーザ加工位置へ噴出するレーザノズル17が備えられている。 The processing head body 7 is provided with a collimation lens 13 for collimating the laser beam LB emitted from the other end side (exit end) of the optical fiber 9. A condensing lens 15 that condenses the laser beam LB and irradiates the workpiece W is provided at a position below the collimation lens 13, and a laser nozzle 17 that ejects assist gas to the laser processing position of the workpiece. It has been.
 前記光ファイバ9の出射端と前記コリメーションレンズ13との間には、レーザ光LBの光軸LAに対して傾斜した傾斜ガラス19を備えた筒状のガラスホルダ21がギアホルダケース23内に回転可能に、かつ前記ギアホルダケース23に形成した円弧状の長穴(図示省略)内に往復動可能に備えられている。前記傾斜ガラス19は、レーザ光LBの光軸LAを屈折し偏心させる作用をなすものである。したがって前記ガラスホルダ21を回転することにより、レーザ光LBの光軸(光路)LAを偏心回転することができ、レーザ溶接を行うときのビーム幅を拡大することができるものである。 Between the exit end of the optical fiber 9 and the collimation lens 13, a cylindrical glass holder 21 having an inclined glass 19 inclined with respect to the optical axis LA of the laser beam LB rotates into the gear holder case 23. It is possible to reciprocate in an arc-shaped elongated hole (not shown) formed in the gear holder case 23. The inclined glass 19 functions to refract and decenter the optical axis LA of the laser beam LB. Accordingly, by rotating the glass holder 21, the optical axis (optical path) LA of the laser beam LB can be eccentrically rotated, and the beam width when performing laser welding can be expanded.
 前記ガラスホルダ21を回転するために、ガラスホルダ21の外周面にはギア21Gが備えられており、このギア21Gには、前記ギアホルダケース23に装着したモータ25によって回転される駆動ギア27が噛合している。すなわち、ガラスホルダ21とモータ25は常に連動するように連結している。そして、前記ガラスホルダ21は、前記長穴内において往復動することにより、レーザ光LBの光路すなわち光軸LAに対して出入する。 In order to rotate the glass holder 21, a gear 21G is provided on the outer peripheral surface of the glass holder 21, and a driving gear 27 rotated by a motor 25 attached to the gear holder case 23 is provided on the gear 21G. Meshed. That is, the glass holder 21 and the motor 25 are connected so as to always be interlocked. The glass holder 21 moves in and out of the optical path of the laser beam LB, that is, the optical axis LA, by reciprocating in the elongated hole.
 前記構成より明らかなように、傾斜ガラス19は、光ファイバ9の出射端とコリメーションレンズ13との間に配置してある。したがって、前記傾斜ガラス19に入射されるレーザ光LBの径は小径である。 As is clear from the above configuration, the inclined glass 19 is disposed between the exit end of the optical fiber 9 and the collimation lens 13. Therefore, the diameter of the laser beam LB incident on the inclined glass 19 is small.
 近年、ファイバレーザが開発され、このファイバレーザがワークとしての金属板のレーザ切断加工やレーザ溶接などのレーザ加工に使用されている。ファイバレーザは高出力であり、エネルギー密度が大きいので、前記特許文献1に記載のごとく、光ファイバ9の出射端に近接した位置に傾斜ガラス19を配置して使用すると、傾斜ガラス19が損傷することがある。 Recently, a fiber laser has been developed, and this fiber laser is used for laser processing such as laser cutting and laser welding of a metal plate as a workpiece. Since the fiber laser has a high output and a high energy density, if the inclined glass 19 is used at a position close to the emission end of the optical fiber 9 as described in Patent Document 1, the inclined glass 19 is damaged. Sometimes.
 そこで、コリメーションレンズ13と集光レンズ15との間であってレーザ光LBのビーム径の大きな領域に傾斜ガラス19を配置して回転したところ、傾斜ガラス19の損傷は効果的に抑制することができるものの、レーザ光LBが平行光線であるために、レーザ光LBにおける光軸LBを大きく屈折し偏心することができないものであった。 Therefore, when the tilted glass 19 is disposed and rotated between the collimation lens 13 and the condensing lens 15 in a region where the beam diameter of the laser beam LB is large, damage to the tilted glass 19 can be effectively suppressed. Although it is possible, since the laser beam LB is a parallel beam, the optical axis LB in the laser beam LB cannot be greatly refracted and decentered.
 また、傾斜ガラスは重心が不均一なため、傾斜ガラスを高速(例えば3000rpmを越える速度)で回転した場合、偏心にともない傾斜ガラスを保持し同時に回転する部品が磨耗しフレッチングが発生する。このフレッチングで発生した細かい金属粉などが傾斜ガラスに付着し、この付着した金属粉などにレーザ光が当たることで熱吸収が発生し、傾斜ガラスの表面コーティングが損傷してしまうことがある。ひいては加工不良や過大な熱が発生し傾斜ガラス自体が破損するという問題がある。 In addition, since the tilted glass has a non-uniform center of gravity, when the tilted glass is rotated at a high speed (for example, a speed exceeding 3000 rpm), the part that holds the tilted glass and rotates at the same time as the eccentricity wears and fretting occurs. Fine metal powder generated by this fretting adheres to the tilted glass, and when the deposited metal powder hits the laser beam, heat absorption occurs, and the surface coating of the tilted glass may be damaged. As a result, there is a problem that the inclined glass itself is damaged due to processing defects and excessive heat.
 本発明は、前述のごとき問題に鑑みてなされたものである。本発明の一局面によれば、レーザ加工ヘッドは、光ファイバの出射端から出射されたレーザ光を平行光線化するコリメーションレンズと、平行光線化されたレーザ光を集光してワークへ照射する集光レンズと、前記コリメーションレンズと集光レンズとの間に回転可能に配置され、一方の面にウエッジを付けたウエッジ付ガラスと、を備える。 The present invention has been made in view of the above problems. According to one aspect of the present invention, a laser processing head collects and irradiates a collimation lens that collimates laser light emitted from an emission end of an optical fiber and collimated laser light on a workpiece. A condensing lens, and a glass with a wedge, which is rotatably disposed between the collimation lens and the condensing lens and has a wedge on one surface.
 本発明によれば、コリメーションレンズと集光レンズとの間にウエッジ付ガラスを回転可能に備えた構成であるから、前記ウエッジ付ガラスはレーザ光のビーム径が大きな領域に配置してあり、ウエッジ付ガラスの損傷を効果的に防止することができるものである。そして、レーザ光における光軸の屈折し偏心させるウエッジ付ガラスは、一方の面が光軸に対して傾斜した構成であるので、レーザ光の光軸を、両面が平行なガラス板を光軸に対して傾斜した場合に比較して、大きく屈折し偏心させることができるものである。 According to the present invention, since the glass with the wedge is rotatably provided between the collimation lens and the condenser lens, the glass with the wedge is arranged in a region where the beam diameter of the laser beam is large, and the wedge is provided. It is possible to effectively prevent damage to the attached glass. Since the glass with a wedge that refracts and decenters the optical axis in the laser light has a configuration in which one surface is inclined with respect to the optical axis, the optical axis of the laser light is set to a glass plate having both surfaces parallel to the optical axis. Compared to the case of tilting, it can be greatly refracted and decentered.
 また、ウエッジ付ガラスは傾斜ガラスに比べて重心に不均一は少なく、フレッチングの発生は少なく、ウエッジ付ガラスの表面コーティングの損傷やウエッジ付ガラスの破損を防止できる。 Also, the glass with a wedge has less unevenness in the center of gravity than the inclined glass, the occurrence of fretting is small, and damage to the surface coating of the glass with a wedge and breakage of the glass with a wedge can be prevented.
図1は、本発明の一実施形態に係るレーザ加工ヘッドの立面断面図である。FIG. 1 is an elevational sectional view of a laser processing head according to an embodiment of the present invention. 図2は、前記レーザ加工ヘッドの立面断面図であって、撮像手段の周囲を拡大した拡大立面断面図である。FIG. 2 is an elevational sectional view of the laser processing head, and is an enlarged elevational sectional view enlarging the periphery of the imaging means. 図3は、光路を横切るウエッジ付ガラスと、これを駆動する手段の平面図である。FIG. 3 is a plan view of a glass with wedges traversing the optical path and means for driving the glass. 図4は、光路を横切るウエッジ付ガラスと、これを駆動する手段の平面図であって、ガラスホルダが回転部材に重なった状態を表す図である。FIG. 4 is a plan view of a glass with a wedge that traverses the optical path and a means for driving the glass, and shows a state in which the glass holder overlaps the rotating member. 図5は、ウエッジ付ガラスと回転部材とを一体的に回転させる手段の平面図である。FIG. 5 is a plan view of a means for rotating the glass with a wedge and the rotating member integrally. 図6は、従来技術によるレーザ加工ヘッドの立面断面図である。FIG. 6 is an elevational sectional view of a laser processing head according to the prior art.
 添付の図面を参照して以下に本発明の幾つかの例示的な実施形態を説明する。 Several exemplary embodiments of the present invention are described below with reference to the accompanying drawings.
 図1を参照するに、本発明の実施形態に係るレーザ加工ヘッド1は、前述した従来のレーザ加工ヘッドと同様に、産業用ロボット(図示省略)におけるロボットアームの先端部に備えられているものである。なお、前記ロボットアームに対するレーザ加工ヘッド1の取付け構造は一般的な構成であってよいものであるから、ロボットアームに対するレーザ加工ヘッド1の取付け構造についての説明は省略する。 Referring to FIG. 1, a laser processing head 1 according to an embodiment of the present invention is provided at the tip of a robot arm in an industrial robot (not shown), like the conventional laser processing head described above. It is. In addition, since the attachment structure of the laser processing head 1 with respect to the said robot arm may be a general structure, description about the attachment structure of the laser processing head 1 with respect to a robot arm is abbreviate | omitted.
 前記レーザ加工ヘッド1には、ボックス本体29が備えられており、このボックス本体29の上側にはボルト等の固定具によって蓋部材31が取付けてある。そして、この蓋部材31の上部には筒状のレンズホルダ33が一体的に立設してあり、このレンズホルダ33の上端部には、光ファイバ35の端部を保持した光ファイバホルダ37が着脱可能に備えられている。そして、前記レンズホルダ33内には、前記光ファイバ35の出射端から出射されたレーザ光LBを平行光線化するコリメーションレンズ39が備えられている。 The laser processing head 1 is provided with a box main body 29, and a lid member 31 is attached to the upper side of the box main body 29 by a fixing tool such as a bolt. A cylindrical lens holder 33 is integrally erected on the upper portion of the lid member 31, and an optical fiber holder 37 holding an end portion of the optical fiber 35 is provided on the upper end portion of the lens holder 33. It is detachable. In the lens holder 33, a collimation lens 39 for converting the laser beam LB emitted from the emission end of the optical fiber 35 into parallel rays is provided.
 前記ボックス本体29における底部29Bの下面には、ボルト等のごとき固定具によって軸受ボックス41が一体的に取付けてあり、この軸受ボックス41内には、筒状の回転体43がレーザ光LBの光軸回りに回転可能に備えられている。この回転体43は、後述するように、モータによって駆動されて回転するものである。 A bearing box 41 is integrally attached to the lower surface of the bottom 29B of the box main body 29 by a fixing tool such as a bolt, and a cylindrical rotating body 43 is provided in the bearing box 41 with the light of the laser beam LB. It is provided so as to be rotatable around an axis. As will be described later, the rotating body 43 is driven and rotated by a motor.
 前記軸受ボックス41の下部にはボルト等のごとき固定具によってハウジングボックス45が一体的に備えられている。そして、このハウジングボックス45内には、前記コリメーションレンズ39によって平行光線化されたレーザ光LBを集光してワークWへ照射する集光レンズ47が、レンズホルダ49に保持され、その全体が内装されている。 The housing box 45 is integrally provided at the bottom of the bearing box 41 with a fixing tool such as a bolt. In the housing box 45, a condensing lens 47 that condenses the laser beam LB collimated by the collimation lens 39 and irradiates the workpiece W is held by a lens holder 49, and the entire interior is internally provided. Has been.
 前記集光レンズ47によってレーザ光LBを集光してワークWに照射するとき、レーザ光LBの光軸を屈折し偏心させると共に回転するために、従来の前記傾斜ガラス19に相当するウエッジ付ガラスが前記ボックス本体29内に備えられている。より詳細には、前記ボックス本体29は、図3に示すように、環状の周壁部51を備えた箱状に形成してある。そして、このボックス本体29の前記底部29Bであって、前記レーザ光LBの光軸に一致する部分に上下方向の貫通穴53が形成してあり、この貫通穴53の部分に、筒状の前記回転体43が回転可能に備えられている。 When condensing the laser beam LB by the condenser lens 47 and irradiating the work W, the glass with a wedge corresponding to the conventional inclined glass 19 is used to refract and decenter the optical axis of the laser beam LB. Is provided in the box body 29. More specifically, the box body 29 is formed in a box shape having an annular peripheral wall 51 as shown in FIG. A vertical through hole 53 is formed in the bottom portion 29B of the box body 29 at a portion coinciding with the optical axis of the laser beam LB, and the cylindrical hole is formed in the through hole 53 portion. A rotating body 43 is rotatably provided.
 そして、前記回転体43の上端部には、前記ボックス本体29内において回転可能なリング板等のごとき回転部材55がボルト等のごとき固定具によって一体的に固定してある。したがって、前記回転部材55は回転体43の一部と見なすことができるものである。前記回転部材55には、図3に示すように、放射外方向へ突出した複数の突出部57が備えられており、上記各突出部57の間には凹部59が備えられている。そして、前記回転体43を駆動して回転させるために、レーザ加工ヘッド1の適宜位置に備えたモータ61の駆動プーリ63に掛回したエンドレスベルト65が前記回転体43に掛回してある。したがって、前記モータ61を駆動することにより、前記回転体43を駆動して回転させることができるものである。 A rotating member 55 such as a ring plate that can rotate in the box body 29 is integrally fixed to the upper end of the rotating body 43 by a fixing tool such as a bolt. Therefore, the rotating member 55 can be regarded as a part of the rotating body 43. As shown in FIG. 3, the rotating member 55 includes a plurality of projecting portions 57 projecting radially outward, and a recess 59 is disposed between the projecting portions 57. In order to drive and rotate the rotating body 43, an endless belt 65 that is wound around a driving pulley 63 of a motor 61 provided at an appropriate position of the laser processing head 1 is wound around the rotating body 43. Therefore, by driving the motor 61, the rotating body 43 can be driven and rotated.
 前記ボックス本体29における前記蓋部材31には、モータなどのごとき回転用アクチュエータ67(図1参照)が装着してあり、この回転用アクチュエータ67における回動軸69(図3参照)には支持アーム71の基端部側が一体的に固定してある。前記支持アーム71の先端側は、前記回動軸69を回動することにより、前記回転部材55に対応した位置へ位置決め可能であり、かつ回転部材55に対応した位置から退避可能である。 A rotation actuator 67 (see FIG. 1) such as a motor is mounted on the lid member 31 of the box body 29, and a support arm is attached to a rotation shaft 69 (see FIG. 3) of the rotation actuator 67. The base end side of 71 is fixed integrally. The distal end side of the support arm 71 can be positioned at a position corresponding to the rotating member 55 by rotating the rotating shaft 69, and can be retracted from a position corresponding to the rotating member 55.
 換言すれば、前記支持アーム71の先端側は、レーザ光LBの光路に対して出入可能な構成である。そして、前記支持アーム71の先端側に形成した貫通穴の部分に回転可能に支持されたリング状のガラスホルダ73には、前記レーザ光LBの光軸を屈折し偏心させるためのウエッジ付ガラス75が備えられている。このウエッジ付ガラス75は、上面又は下面の一方の面は光軸に対して傾斜した面(ウエッジを付けた面)に形成してあり、他方の面は、光軸に垂直な平面に形成してある。 In other words, the distal end side of the support arm 71 is configured to be able to enter and exit the optical path of the laser beam LB. A ring-shaped glass holder 73 rotatably supported by a through hole portion formed on the distal end side of the support arm 71 has a wedged glass 75 for refracting and decentering the optical axis of the laser beam LB. Is provided. In the glass 75 with a wedge, one surface of the upper surface or the lower surface is formed on a surface inclined with respect to the optical axis (surface with a wedge), and the other surface is formed on a plane perpendicular to the optical axis. It is.
 したがって、前記ウエッジ付ガラス75にレーザ光LBが入射されると、レーザ光LBの光軸は屈折し偏心されるものである。よって、前記ウエッジ付ガラス75を回転すると、レーザ光LBの光軸は偏心して回転されることになる。 Therefore, when the laser beam LB is incident on the wedged glass 75, the optical axis of the laser beam LB is refracted and decentered. Therefore, when the wedged glass 75 is rotated, the optical axis of the laser beam LB is eccentrically rotated.
 図3に示すように、レーザ光LBの光路から前記ウエッジ付ガラス75が退避した位置、すなわち前記支持アーム71がストッパ77に当接し、前記ウエッジ付ガラス75が前記回転部材55から離反した位置にあるときは、前記コリメーションレンズ39によって平行光線化されたレーザ光LBは、前記回転部材55を通過して、前記集光レンズ47に直接入射される。したがって、光ファイバ35の出射端から出射されたレーザ光LBは、コリメーションレンズ39によって平行光線化されて直進し、前記集光レンズ47によって集光されてワークWへ照射される。よって、ワークWのレーザ切断加工が行われることになる。 As shown in FIG. 3, the wedged glass 75 is retracted from the optical path of the laser beam LB, that is, the support arm 71 is in contact with the stopper 77, and the wedged glass 75 is separated from the rotating member 55. In some cases, the laser beam LB that has been collimated by the collimation lens 39 passes through the rotating member 55 and is directly incident on the condenser lens 47. Accordingly, the laser beam LB emitted from the emission end of the optical fiber 35 is converted into parallel rays by the collimation lens 39 and travels straight, and is collected by the condenser lens 47 and applied to the workpiece W. Therefore, laser cutting of the workpiece W is performed.
 図3に示すごとき状態から、支持アーム71を時計回り方向に回動して、支持アーム71の先端側をレーザ光LBの光路内に進入すると、支持アーム71の先端側に備えられたガラスホルダ73は前記回転部材55に重なるように位置決めされる(図4参照)。上述のように、前記回転部材55とガラスホルダ73とが重なるように位置決めしたとき、当該回転部材55とガラスホルダ73とを一体的に回転するために、前記ガラスホルダ73には、前記回転部材55に備えた前記凹部59に対して係合離脱可能な係合部材79が備えられている(図3,5参照)。 When the support arm 71 is rotated clockwise from the state shown in FIG. 3 and the distal end side of the support arm 71 enters the optical path of the laser beam LB, the glass holder provided on the distal end side of the support arm 71. 73 is positioned so as to overlap the rotating member 55 (see FIG. 4). As described above, when the rotating member 55 and the glass holder 73 are positioned so as to overlap with each other, the rotating member 55 and the glass holder 73 are integrally rotated with the rotating member 55. An engaging member 79 that can be engaged and disengaged with respect to the concave portion 59 provided in 55 is provided (see FIGS. 3 and 5).
 したがって、前記凹部59に前記係合部材79が係合した状態にあるときに、前記回転部材55を回転すると、係合部材79を介してガラスホルダ73が回転されることになる。よって、前記ガラスホルダ73に備えたウエッジ付ガラス75を透過することによって光軸が屈折し偏心されたレーザ光LBは偏心回動されることになる。このように、レーザ光LBの光軸を屈折し偏心させて、偏心して回動することにより、ワークのレーザ溶接が容易に行われ得るものである。 Therefore, when the rotating member 55 is rotated while the engaging member 79 is engaged with the recess 59, the glass holder 73 is rotated via the engaging member 79. Therefore, the laser beam LB whose optical axis is refracted and decentered by passing through the wedged glass 75 provided in the glass holder 73 is eccentrically rotated. In this way, laser welding of the workpiece can be easily performed by refracting and decentering the optical axis of the laser beam LB and rotating it decenteringly.
 ところで、前記回転部材55と前記係合部材79との位置的関係は相対的なものであるから、前記ガラスホルダ73に回転部材55を備えて、回転体43に係合部材79を備えた構成とすることも可能なものである。なお、前記説明においては、回転部材55に複数の突出部57を備えることによって凹部59を備えた場合について説明した。しかし、前記突出部57は1個であってもよいものである。この場合、前記係合部材79が突出部57に当接することによって一体的に押圧回転されることになるので、前記係合部材79は一種の当接部材又は被押圧部材と称することもできるものである。 By the way, since the positional relationship between the rotating member 55 and the engaging member 79 is relative, the glass holder 73 includes the rotating member 55 and the rotating body 43 includes the engaging member 79. Is also possible. In the above description, a case has been described in which the rotating member 55 is provided with a plurality of protrusions 57 so that the recess 59 is provided. However, only one protrusion 57 may be provided. In this case, the engaging member 79 is integrally pressed and rotated by coming into contact with the protruding portion 57, so the engaging member 79 can also be called a kind of abutting member or a pressed member. It is.
 前述のごとき説明より理解されるように、本実施形態に係るレーザ加工ヘッド1に備えられた支持アーム71の先端側は、レーザ光LBの光路に対して出入可能である。そして、この支持アーム71の先端側に、ウエッジ付ガラス75を回転可能に備えた構成であるから、本実施形態に係るレーザ加工ヘッド1は、レーザ切断加工とレーザ溶接の両方に使用することができるものである。そして、前記ウエッジ付ガラス75をレーザ光LBの光路に位置決めしたときには、コリメーションレンズ39と集光レンズ47との間であって、前記コリメーションレンズ39によってレーザ光LBが平行光線化された領域内であるから、レーザ光LBの径は大径である。 As understood from the above description, the front end side of the support arm 71 provided in the laser processing head 1 according to the present embodiment can enter and exit the optical path of the laser beam LB. And since it is the structure which provided the glass 75 with a wedge rotatably at the front end side of this support arm 71, the laser processing head 1 which concerns on this embodiment can be used for both a laser cutting process and a laser welding. It can be done. When the wedged glass 75 is positioned in the optical path of the laser beam LB, the laser beam LB is collimated by the collimation lens 39 between the collimation lens 39 and the condensing lens 47. Therefore, the diameter of the laser beam LB is large.
 したがって、レーザ光LBがファイバレーザであって高出力のレーザ光LBであっても、前記ウエッジ付ガラス75に入射されるレーザ光LBは大径であってエネルギー密度は小さなものであり、ウエッジ付ガラス75を損傷するようなことがないものである。また、コリメーションレンズ39によって平行光線化されたレーザ光LB内の領域であっても、ウエッジ付ガラス75は両面が非平行なガラスであるから、レーザ光LBの光軸を効果的に屈折し偏心させることができるものである。また、ウエッジ付ガラスは傾斜ガラスに比べて重心の不均一は少なく、フレッチングの発生は少なく、ウエッジ付ガラスの表面コーティングの損傷やウエッジ付ガラスの破損を防止できる。 Therefore, even if the laser beam LB is a fiber laser and is a high-power laser beam LB, the laser beam LB incident on the wedged glass 75 has a large diameter and a small energy density, and has a wedge. The glass 75 is not damaged. Even in the region in the laser beam LB that has been collimated by the collimation lens 39, the glass 75 with wedges is a glass whose both surfaces are non-parallel, so that the optical axis of the laser beam LB is effectively refracted and decentered. It can be made to. Further, the glass with a wedge has less unevenness of the center of gravity than the inclined glass, the occurrence of fretting is small, and the damage of the surface coating of the glass with the wedge and the breakage of the glass with the wedge can be prevented.
 前記レーザ加工ヘッド1において、前記ハウジングボックス45の側面にはレーザ加工位置の撮像を行うCCDカメラ等のごとき撮像手段81が備えられている。そして、前記ハウジングボックス内において前記集光レンズ47より下方位置であって、前記CCDカメラ81に対応した位置には、ワークWのレーザ加工位置からの光を前記CCDカメラ81方向へ反射する反射鏡83が備えられている。上記反射鏡83は、レーザ光LBの光路に対して出入可能である。 In the laser processing head 1, an image pickup means 81 such as a CCD camera for picking up an image of the laser processing position is provided on the side surface of the housing box 45. A reflecting mirror that reflects light from the laser processing position of the workpiece W toward the CCD camera 81 is positioned below the condenser lens 47 in the housing box and corresponding to the CCD camera 81. 83 is provided. The reflecting mirror 83 can enter and exit the optical path of the laser beam LB.
 すなわち、前記ハウジングボックス45には、レーザ光LBの光軸に対して直交する方向(図1,2において紙面に対して垂直な方向)であって、前記ハウジングボックス45に対して出入可能なミラー出入用スライダ85が備えられており、このミラー出入用スライダ85に前記反射鏡83が傾斜して備えられている。なお、前記ミラー出入用スライダ85は、例えばリニアモータ、流体圧シリンダなどのごとき適宜のリニアアクチュエータ(図示省略)の作動によって往復動されるものである。 That is, the housing box 45 is a mirror that is perpendicular to the optical axis of the laser beam LB (a direction perpendicular to the paper surface in FIGS. An entrance / exit slider 85 is provided, and the reflecting mirror 83 is inclined and provided on the mirror entrance / exit slider 85. The mirror entry / exit slider 85 is reciprocated by the operation of an appropriate linear actuator (not shown) such as a linear motor or a fluid pressure cylinder.
 上記構成より理解されるように、前記反射鏡83は、ワークWへレーザ光LBを照射してレーザ加工を行うときには、レーザ光LBの光路から退避されている。そして、前記CCDカメラ81によって加工位置を撮像するときに、前記CCDカメラ81に対応するように、レーザ光LBの光路内に移動位置決めされるものである。したがって、レーザ光LBを照射してレーザ加工を行った部分を、CCDカメラ81によって撮像することができ、レーザ加工を行った後のレーザ加工状態を観察することができるものである。 As understood from the above configuration, the reflecting mirror 83 is retracted from the optical path of the laser beam LB when the workpiece W is irradiated with the laser beam LB to perform laser processing. Then, when the machining position is imaged by the CCD camera 81, it is moved and positioned in the optical path of the laser beam LB so as to correspond to the CCD camera 81. Therefore, the portion subjected to the laser processing by irradiating the laser beam LB can be imaged by the CCD camera 81, and the laser processing state after the laser processing can be observed.
 前記ハウジングボックス45の下側には、前記CCDカメラ81による撮像位置を照明する照明手段87が備えられている。そして、この照明手段87の下側には、レーザ光LBの照射位置から飛散するスパッタ等から前記集光レンズ47を保護する保護ガラス89が備えられている。より詳細には、前記ハウジングボックス45の下面には、環状の照明ハウジング91がボルト等のごとき固定具によって一体的に取付けられている。 An illuminating means 87 for illuminating the imaging position of the CCD camera 81 is provided below the housing box 45. A protective glass 89 that protects the condenser lens 47 from sputtering and the like scattered from the irradiation position of the laser beam LB is provided below the illumination unit 87. More specifically, an annular illumination housing 91 is integrally attached to the lower surface of the housing box 45 by a fixture such as a bolt.
 前記照明ハウジング91内には、例えばLEDなどのごとき複数の点光源93を同一円上に備えたリング状光源95が備えられている。そして、前記各点光源93から中心に向かって照射される照明光が前記反射鏡83へ直接入射することを防止するために、前記照明ハウジング91には遮光部材97が備えられている。上記遮光部材97は、下側が小径となるテーパ状の筒体に形成してあって前記リング状光源95の内側に備えられている。 In the illumination housing 91, a ring-shaped light source 95 provided with a plurality of point light sources 93 such as LEDs on the same circle is provided. The illumination housing 91 is provided with a light shielding member 97 in order to prevent illumination light irradiated from the respective point light sources 93 toward the center from directly entering the reflecting mirror 83. The light shielding member 97 is formed in a tapered cylindrical body having a small diameter on the lower side, and is provided inside the ring-shaped light source 95.
 筒状の前記遮光部材97の下端部は前記各点光源93よりも下側に位置してある。そして、前記遮光部材97の外周面には、前記点光源93からの照明光をレーザ加工ヘッドの先端側(図1,2において下方向)へ反射する環状の光反射面99が備えられている。したがって、各点光源93からの照明光は、遮光部材97の光反射面99によって下方向(レーザ加工ヘッドの先端側)のみへ反射されるものである。 The lower end portion of the cylindrical light shielding member 97 is located below the point light sources 93. An annular light reflecting surface 99 for reflecting the illumination light from the point light source 93 toward the tip end side (downward in FIGS. 1 and 2) of the laser processing head is provided on the outer peripheral surface of the light shielding member 97. . Therefore, the illumination light from each point light source 93 is reflected only downward (on the tip side of the laser processing head) by the light reflecting surface 99 of the light shielding member 97.
 前記保護ガラス89は、前記照明ハウジング91の下面に着脱可能に備えられたリング状のガラスホルダ101に保持され、かつ前記遮光部材97の下端部に近接して配置されている。そして、前記ガラスホルダ101には、前記保護ガラス89の汚れを検出するための汚れ検出手段としての光ファイバ103が備えられている。 The protective glass 89 is held by a ring-shaped glass holder 101 that is detachably provided on the lower surface of the illumination housing 91 and is disposed close to the lower end of the light shielding member 97. The glass holder 101 is provided with an optical fiber 103 as a dirt detecting means for detecting dirt on the protective glass 89.
 したがって、前記各点光源93からの照明光が保護ガラス89へ照射され、保護ガラス89に付着している汚れ物質の部分において反射されると、保護ガラス89内を伝搬して前記光ファイバ103の端部に入射されることになる。よって、保護ガラス89に対する汚れ物質の付着量が多くなり、前記光ファイバ103に接続した光センサの検出値が予め設定した基準値より大きくなると、保護ガラス89の交換が行われるものである。 Therefore, when the illumination light from each point light source 93 is applied to the protective glass 89 and is reflected by the portion of the dirt substance adhering to the protective glass 89, the light propagates through the protective glass 89 and passes through the optical fiber 103. It will be incident on the end. Therefore, when the amount of dirt attached to the protective glass 89 increases and the detection value of the optical sensor connected to the optical fiber 103 becomes larger than a preset reference value, the protective glass 89 is replaced.
 既に理解されるように、前記CCDカメラ81によって加工位置を撮像すべく、各点光源93によって加工位置を照明すると、加工位置からの反射光は、光路中に位置決めされている反射鏡83によってCCDカメラ81方向へ反射され、加工位置の撮像が行われることになる。この際、各点光源93からの照射光は遮光部材97の外周面に備えた環状の光反射面99によって下方向へ反射され、前記保護ガラス89を透過してワークWの加工位置へ照射されることになる。 As already understood, when the processing position is illuminated by each point light source 93 in order to image the processing position by the CCD camera 81, the reflected light from the processing position is reflected by the reflecting mirror 83 positioned in the optical path by the CCD. Reflected in the direction of the camera 81, the processing position is imaged. At this time, the irradiation light from each point light source 93 is reflected downward by the annular light reflecting surface 99 provided on the outer peripheral surface of the light shielding member 97, passes through the protective glass 89, and is irradiated to the processing position of the workpiece W. Will be.
 上述のように、ワークWの加工位置を照明するとき、照明光の一部は前記保護ガラス89の上面でもって反射される。しかし、前記遮光部材97の下端部(先端部)と前記保護ガラス89は近接してあるので、前記保護ガラス89の上面での反射光が前記反射鏡83へ入射されることが抑制される。したがって、CCDカメラ81による撮像時に、保護ガラス89の上面での反射光が入射されて、画面が白くぼやける現象、すなわちハレーションを防止でき、ワークWの加工位置を鮮明に撮像することができるものである。 As described above, when the processing position of the workpiece W is illuminated, a part of the illumination light is reflected by the upper surface of the protective glass 89. However, since the lower end portion (tip portion) of the light shielding member 97 and the protective glass 89 are close to each other, the reflected light from the upper surface of the protective glass 89 is prevented from entering the reflecting mirror 83. Therefore, a phenomenon in which reflected light from the upper surface of the protective glass 89 is incident upon imaging by the CCD camera 81 and the screen is blurred in white, that is, halation can be prevented, and the processing position of the workpiece W can be imaged clearly. is there.
 前述のごとく、ワークWの加工位置を照明する際、各点光源93の照明光が保護ガラス89を透過するとき、保護ガラス89にスパッタ等の汚れ物質が付着していると、この汚れ物質部分で乱反射された反射光の一部が保護ガラス89内を伝搬し、光ファイバ103の端部に入射されることにより、保護ガラス89の汚れを検出することができるものである。 As described above, when illuminating the processing position of the workpiece W, when the illuminating light of each point light source 93 is transmitted through the protective glass 89, if the contaminant such as spatter adheres to the protective glass 89, this dirty substance portion Part of the reflected light irregularly reflected by the light propagates through the protective glass 89 and is incident on the end of the optical fiber 103, whereby the contamination of the protective glass 89 can be detected.
 レーザ加工位置から飛散するスパッタ等の汚れ物質が前記保護ガラス89に付着することを防止するために、前記保護ガラス89の下側には、保護ガラス89に付着する傾向にある汚染物質を吹き飛ばすためのエアー噴出ハウジング105(図1参照)が備えられており、エアー噴出ハウジング105の下部に、レーザノズル107が着脱交換可能に備えられている。 In order to prevent contaminants such as spatter scattered from the laser processing position from adhering to the protective glass 89, the contaminants that tend to adhere to the protective glass 89 are blown off under the protective glass 89. The air jet housing 105 (see FIG. 1) is provided, and a laser nozzle 107 is detachably attached to the lower portion of the air jet housing 105.
 より詳細には、前記エアー噴出ハウジング105は、例えばボルト等のごとき取付具を介してレーザ加工ヘッド1に備えられているものであり、このエアー噴出ハウジング105は、レーザ光LBの光軸に対して直交する方向(図1において右側方向)に開口した開口部109を備えた構成である。そして、前記エアー噴出ハウジング105の下部には、ワークWの加工部から前記集光レンズ47方向へ飛散する汚染物質を、前記開口部109に沿って外部へ吹き飛ばすためのエアー噴出部111が備えられている。 More specifically, the air ejection housing 105 is provided in the laser processing head 1 via a fixture such as a bolt, for example, and the air ejection housing 105 is arranged with respect to the optical axis of the laser beam LB. And an opening 109 that opens in a direction orthogonal to the right side (the right side in FIG. 1). The lower part of the air ejection housing 105 is provided with an air ejection part 111 for blowing contaminants scattered from the processing part of the workpiece W toward the condenser lens 47 to the outside along the opening 109. ing.
 したがって、レーザ光LBをワークWへ照射してレーザ加工を行うとき、レーザ加工位置から集光レンズ47方向へ飛散したスパッタ等の汚染物質は、エアー噴出部111から吹出されるエアーによって外部へ吹き飛ばされる。よって、保護ガラス89に付着する汚染物質を抑制することができるものである。 Therefore, when performing laser processing by irradiating the workpiece W with the laser beam LB, contaminants such as spatter scattered from the laser processing position toward the condenser lens 47 are blown out to the outside by the air blown from the air blowing portion 111. It is. Therefore, contaminants adhering to the protective glass 89 can be suppressed.
 前記説明より理解されるように、前記構成によれば、レーザ加工ヘッド1に備えたCCDカメラ81によってレーザ加工位置を撮像する際、各点光源93によって前記レーザ加工位置を照明するとき、保護ガラス89からの反射光によってハレーションを生じることが防止され、レーザ加工位置を鮮明に撮像することができるものである。また、前記構成によれば、保護ガラス89の汚れを検出することができると共に、保護ガラス89に対する汚れ物質の付着を抑制することができるものである。 As understood from the above description, according to the above configuration, when the laser processing position is illuminated by each point light source 93 when the laser processing position is imaged by the CCD camera 81 provided in the laser processing head 1, protective glass is used. It is possible to prevent halation from being reflected by the reflected light from 89 and to clearly image the laser processing position. Moreover, according to the said structure, while being able to detect the stain | pollution | contamination of the protective glass 89, adhesion of the dirt substance with respect to the protective glass 89 can be suppressed.
 好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。 Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.
 ウエッジ付ガラスの損傷を効果的に防止するレーザ加工ヘッドが提供される。 A laser processing head that effectively prevents damage to glass with a wedge is provided.

Claims (7)

  1.  光ファイバの出射端から出射されたレーザ光を平行光線化するコリメーションレンズと、
     平行光線化されたレーザ光を集光してワークへ照射する集光レンズと、
     前記コリメーションレンズと集光レンズとの間に回転可能に配置され、一方の面にウエッジを付けたウエッジ付ガラスと、
     を備えたレーザ加工ヘッド。
    A collimation lens that collimates the laser light emitted from the exit end of the optical fiber;
    A condensing lens that condenses the collimated laser beam and irradiates the workpiece;
    A glass with a wedge, which is rotatably arranged between the collimation lens and the condenser lens and has a wedge on one surface;
    Laser processing head with
  2.  請求項1に記載のレーザ加工ヘッドであって、
     レーザ光の光路に対して先端側が出入可能な支持アームであって、前記先端側に回転可能に取り付けられたガラスホルダを備えた支持アームをさらに備え、
     前記ウエッジ付ガラスは前記ガラスホルダに支持されている、レーザ加工ヘッド。
    The laser processing head according to claim 1,
    A support arm that is capable of entering and exiting the tip side with respect to the optical path of the laser light, further comprising a support arm including a glass holder rotatably attached to the tip side;
    The glass with wedge is a laser processing head supported by the glass holder.
  3.  請求項2に記載のレーザ加工ヘッドであって、
     前記コリメーションレンズと集光レンズとの間であってレーザ光の光路に対応して回転可能に備えた筒状の回転体又は前記ガラスホルダの一方に放射外方へ突出した突出部と、
     前記ガラスホルダ又は前記回転体の他方に、前記突出部に当接して一体的に回転される当接部材と、をさらに備えた、レーザ加工ヘッド。
    The laser processing head according to claim 2,
    A cylindrical rotating body provided between the collimation lens and the condensing lens so as to be rotatable corresponding to the optical path of the laser beam or a protruding portion protruding radially outward to one of the glass holders;
    A laser processing head, further comprising: an abutting member that abuts on the protrusion and rotates integrally with the other of the glass holder or the rotating body.
  4.  請求項1,2又は3に記載のレーザ加工ヘッドであって、
     前記集光レンズを間にして前記コリメーションレンズの反対側に、前記集光レンズを保護するための保護ガラスと、
     前記保護ガラスを透過してレーザ加工位置を照明するリング状の照明手段と、
     当該保護ガラスの上方に備えた撮像手段への前記照明光の直接入射を防止するために、リング状の前記照明手段の内側に、照明光をレーザ加工ヘッドの先端方向へ反射する反射筒体と、をさらに備えた、レーザ加工ヘッド。
    The laser processing head according to claim 1, 2 or 3,
    Protective glass for protecting the condenser lens on the opposite side of the collimation lens with the condenser lens in between,
    A ring-shaped illumination means for illuminating the laser processing position through the protective glass;
    In order to prevent the illumination light from being directly incident on the imaging means provided above the protective glass, a reflecting cylinder that reflects the illumination light toward the tip of the laser processing head is provided inside the ring-shaped illumination means. And a laser processing head.
  5.  請求項4に記載のレーザ加工ヘッドであって、
     レーザ加工位置からの光を前記撮像手段方向へ反射する反射鏡であって、レーザ光の光路に対して出入可能に配置された反射鏡を、さらに備え、
     前記撮像手段は、前記集光レンズと前記保護ガラスとの間の高さ位置であってレーザ光の光路から離反した位置に配置されている、レーザ加工ヘッド。
    The laser processing head according to claim 4,
    A reflecting mirror that reflects light from a laser processing position toward the imaging means, and further includes a reflecting mirror arranged so as to be capable of entering and exiting the optical path of the laser light;
    The laser processing head, wherein the imaging means is disposed at a height position between the condenser lens and the protective glass and at a position away from an optical path of laser light.
  6.  請求項4に記載のレーザ加工ヘッドであって、
     前記保護ガラスの下側に、当該保護ガラス方向へ飛散する汚染物質を外部へ吹き飛ばすためのエアー噴出部を、さらに備えた、レーザ加工ヘッド。
    The laser processing head according to claim 4,
    A laser processing head, further comprising an air jetting part for blowing out contaminants scattered in the direction of the protective glass to the outside below the protective glass.
  7.  請求項5に記載のレーザ加工ヘッドであって、
     前記保護ガラスの下側に、当該保護ガラス方向へ飛散する汚染物質を外部へ吹き飛ばすためのエアー噴出部を、さらに備えた、レーザ加工ヘッド。
    The laser processing head according to claim 5,
    A laser processing head, further comprising an air jetting part for blowing out contaminants scattered in the direction of the protective glass to the outside below the protective glass.
PCT/JP2013/072533 2012-09-04 2013-08-23 Laser processing head WO2014038395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012193809A JP6159513B2 (en) 2012-09-04 2012-09-04 Laser processing head
JP2012-193809 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038395A1 true WO2014038395A1 (en) 2014-03-13

Family

ID=50237008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072533 WO2014038395A1 (en) 2012-09-04 2013-08-23 Laser processing head

Country Status (2)

Country Link
JP (1) JP6159513B2 (en)
WO (1) WO2014038395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120327A1 (en) 2015-01-28 2016-08-04 Precitec Gmbh & Co. Kg Device for machining material by means of laser radiation
EP3575029A4 (en) * 2017-01-25 2019-12-25 Panasonic Intellectual Property Management Co., Ltd. Laser processing head and laser processing device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223642B2 (en) * 2019-06-13 2023-02-16 株式会社アマダ laser welder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263273A (en) * 1999-03-19 2000-09-26 Amada Co Ltd Teaching method and its device for yag laser beam machine
JP2002248592A (en) * 2001-02-22 2002-09-03 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2007020342A (en) * 2005-07-08 2007-01-25 Shibuya Kogyo Co Ltd Coaxial cable processing method and its device
JP2008000801A (en) * 2006-06-23 2008-01-10 Tokyu Car Corp Laser beam machining apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177945B2 (en) * 2000-03-06 2008-11-05 日本航空電子工業株式会社 Glass bonding method and apparatus using laser light
JP2004136307A (en) * 2002-10-16 2004-05-13 Toshiba Corp Method and device of laser beam machining
JP3825433B2 (en) * 2003-10-03 2006-09-27 三菱重工業株式会社 Laser welding apparatus and laser welding method
JP5099599B2 (en) * 2008-10-14 2012-12-19 株式会社ニコン Transmission type optical element, laser oscillator and laser processing machine
US10072971B2 (en) * 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263273A (en) * 1999-03-19 2000-09-26 Amada Co Ltd Teaching method and its device for yag laser beam machine
JP2002248592A (en) * 2001-02-22 2002-09-03 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2007020342A (en) * 2005-07-08 2007-01-25 Shibuya Kogyo Co Ltd Coaxial cable processing method and its device
JP2008000801A (en) * 2006-06-23 2008-01-10 Tokyu Car Corp Laser beam machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120327A1 (en) 2015-01-28 2016-08-04 Precitec Gmbh & Co. Kg Device for machining material by means of laser radiation
EP3575029A4 (en) * 2017-01-25 2019-12-25 Panasonic Intellectual Property Management Co., Ltd. Laser processing head and laser processing device using same

Also Published As

Publication number Publication date
JP2014046361A (en) 2014-03-17
JP6159513B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5997965B2 (en) Laser processing head
CN106029290B (en) Laser processing system
KR20130012557A (en) Method for detecting laser beam spot shape
WO2014038395A1 (en) Laser processing head
JP4633499B2 (en) Appearance inspection apparatus and appearance inspection method
JP6895613B2 (en) Laser processing head and laser processing equipment using it
JP6122347B2 (en) Method for detecting dirt on protective glass and laser processing head
JP2007309696A (en) Surface inspection head device
JP6018835B2 (en) Laser processing head
JP2016161317A (en) Inspection device
JP6157245B2 (en) Laser processing apparatus and laser optical axis adjustment method
JP6839916B2 (en) Internal inspection system and its optical system
JP4584566B2 (en) Imaging device for grinding machine
JP2009103462A (en) Observation apparatus
JP5371534B2 (en) Laser processing method, laser processing apparatus, and solar panel manufacturing method
JP2007315821A (en) Surface inspection device
JP2007315805A (en) Surface inspection device
JP6076919B2 (en) Laser soldering head
JP2013039594A (en) Laser machining head
JP6948747B2 (en) Inspection system
JPH05323198A (en) Lighting device
JP5359705B2 (en) Mirror unit and in-hole inspection apparatus provided with the same
JPH10314968A (en) Laser beam machining device
JP3479876B2 (en) Laser emission optical system
JP2011110558A (en) Welding head of yag laser beam machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834618

Country of ref document: EP

Kind code of ref document: A1