WO2014034891A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2014034891A1
WO2014034891A1 PCT/JP2013/073416 JP2013073416W WO2014034891A1 WO 2014034891 A1 WO2014034891 A1 WO 2014034891A1 JP 2013073416 W JP2013073416 W JP 2013073416W WO 2014034891 A1 WO2014034891 A1 WO 2014034891A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
substituted
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2013/073416
Other languages
French (fr)
Japanese (ja)
Inventor
池田 剛
裕勝 伊藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014034891A1 publication Critical patent/WO2014034891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic electroluminescence element.
  • organic electroluminescence devices using organic substances are promising for use as solid light-emitting, inexpensive, large-area full-color display devices, and many developments have been made. ing.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the light emitting layer. When an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Further, the electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 discloses an anthracene derivative having dibenzofuran as a substituent. Patent Document 1 describes that an organic EL element using the derivative as a host material is driven at a low voltage and exhibits blue light emission with a short wavelength.
  • the efficiency of the organic EL element described in Patent Document 1 is not sufficient, and further improvement in efficiency is required when the organic EL element is used as a light source of an electronic device such as a lighting device or a display device.
  • an object of the present invention is to provide an organic electroluminescence element that is driven at a low voltage and emits light with high efficiency.
  • An organic electroluminescence device includes a cathode, an anode, and one or more organic layers including at least a light-emitting layer disposed between the cathode and the anode.
  • the light emitting layer includes an anthracene derivative represented by the following general formula (1) and a fluoranthene derivative represented by the following general formula (21).
  • any one of R 1 to R 10 is a single bond used for bonding to L 1 ;
  • R 1 to R 10 not used for bonding to L 1 are respectively Hydrogen atom, A halogen atom, Hydroxyl group, A cyano group, A substituted or unsubstituted amino group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, It is selected from either a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • L 1 is selected from either a single bond or a linking group;
  • the linking group is A substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, A substituted or unsubstituted (a + 1) -valent heterocyclic group having 5 to 30 ring atoms, or Formed by bonding 2 to 4 groups selected from the above substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and the above substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • (A + 1) valent group. a, b and c each represents an integer of 1 to 4;
  • Z 1 is represented by the following general formula (2). ]
  • X 1 is selected from either oxygen atom or sulfur atom.
  • R 111 to R 118 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1). However, at least one pair of adjacent substituents of R 111 and R 112 , R 112 and R 113 , R 113 and R 114 , R 115 and R 116 , R 116 and R 117, or R 117 and R 118 is To form a ring represented by the following general formula (3) or (4). ]
  • y 1 and y 2 represent bonding positions selected from R 111 to R 118 in the general formula (2).
  • y 3 and y 4 represent bonding positions selected from R 111 to R 118 in the general formula (2).
  • R 121 to R 124 and R 125 to R 128 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
  • X 2 is selected from either an oxygen atom or a sulfur atom. Any one of R 111 to R 118 that does not form a ring in the general formula (2) and R 121 to R 124 of the general formula (3), or R 111 to that does not form a ring in the general formula (2). Any one of R 118 and R 125 to R 128 in the general formula (4) is a single bond, and is used for bonding to L 1 in the general formula (1). ]
  • R 21 , R 22 , R 25 , R 26 and R 28 to R 31 are each independently Hydrogen atom, Hydroxyl group, A cyano group, Nitro group, Carboxyl group, A substituted or unsubstituted silyl group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms, It is selected from the first group
  • R 23 is selected from the second group constituted by removing hydrogen atoms from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31 .
  • R 24 is selected from the third group constituted by removing the aromatic hydrocarbon group and the heterocyclic group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31.
  • R 27 and R 32 are each independently a hydrogen atom, a hydroxyl group, a cyano group, a nitro group, a carboxyl group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31.
  • Selected from the fourth group consisting of a group and a silyl group excluded.
  • R 21 and R 22 , R 22 and R 23 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , R 31 and R 32 may be bonded to each other to form a saturated or unsaturated ring and may not form a saturated or unsaturated ring, and the ring is substituted or unsubstituted.
  • R 21 to R 23 and R 25 to R 32 are monovalent groups derived from benzo [k] fluoranthene.
  • R 23 and R 24 are different from each other. Except when either R 23 or R 24 is an ⁇ -naphthyl group. ]
  • Z 1 is preferably represented by any one of the following general formulas (5) to (7).
  • R 131 to R 140 , R 141 to R 150 , and R 151 to R 160 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 . However, any one of R 131 to R 140 , any one of R 141 to R 150 , and any one of R 151 to R 160 is used for bonding to L 1, and bonding to L 1
  • the group used for is a single bond.
  • X 1 and X 2 are respectively synonymous with X 1 in the general formula (2) and X 2 in the general formula (4). X 1 and X 2 are the same or different.
  • Z 1 is represented by any one of the following general formulas (8) to (10).
  • R 161 to R 170 , R 171 to R 180 , and R 181 to R 190 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 . However, any one of R 161 to R 170 , any one of R 171 to R 180 , and any one of R 181 to R 190 are used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
  • X 1 has the same meaning as X 1 in the general formula (2).
  • b in the general formula (1) is preferably 1.
  • a in the general formula (1) is 1 or 2.
  • R 9 and R 10 in the general formula (1) is a single bond used for bonding to L 1 .
  • R 9 in the general formula (1) is A group selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms is preferable.
  • X 1 and X 2 are preferably oxygen atoms.
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (15) to (20).
  • R 161 to R 190 in the general formulas (15) to (20) are respectively synonymous with R 1 to R 8 in the general formula (1).
  • X 1 in the general formula (15) to (20) has the same meaning as X 1 in the general formula (2).
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (31) to (36).
  • R 161 to R 190 in the general formulas (31) to (36) are respectively synonymous with R 1 to R 8 in the general formula (1).
  • X 1 in the general formula (31) - (36) has the same meaning as X 1 in the general formula (2).
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (37) to (42).
  • R 24 in the general formula (21) is preferably a hydrogen atom.
  • R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. preferable.
  • R 27 and R 32 in the general formula (21) are substituted or unsubstituted phenyl groups.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms
  • R 23 , R 27 and R 32 are preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms
  • R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms
  • R 23 in the general formula (21) is —Ar 21 —Ar 22
  • Ar 21 and Ar 22 are preferably each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms
  • R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms
  • R 23 in the general formula (21) is —Ar 21 —Ar 22 —Ar 23
  • Ar 21 , Ar 22 and Ar 23 are preferably each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • the Ar 21 or the Ar 22 is an aromatic hydrocarbon group having a cyano group as a substituent.
  • Ar 21 , Ar 22, or Ar 23 is an aromatic hydrocarbon group having a cyano group as a substituent.
  • an organic electroluminescence element that is driven at a low voltage and emits light with high efficiency.
  • the organic EL element of this embodiment includes an organic layer between a pair of electrodes.
  • This organic layer has at least one layer composed of an organic compound.
  • the organic layer may contain an inorganic compound.
  • at least one of the organic layers has a light emitting layer. Therefore, the organic layer may be composed of, for example, a single light emitting layer, or a known hole injection layer, hole transport layer, electron injection layer, electron transport layer, hole barrier layer, electron barrier layer, or the like. It may have a layer employed in the organic EL element.
  • the configuration (d) is preferably used, but it is of course not limited thereto.
  • the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • hole injection / transport layer means “at least one of a hole injection layer and a hole transport layer”
  • electron injection / transport layer means “an electron injection layer and an electron transport layer”. "At least one of them”.
  • the positive hole injection layer is provided in the anode side.
  • the electron injection layer is provided in the cathode side.
  • the term “electron transport layer” refers to an organic layer having the highest electron mobility among the organic layers in the electron transport region existing between the light emitting layer and the cathode.
  • the layer is an electron transport layer.
  • a barrier layer that does not necessarily have high electron mobility is used to prevent diffusion of excitation energy generated in the light emitting layer.
  • the organic layer adjacent to the light emitting layer does not necessarily correspond to the electron transport layer.
  • the organic EL element 1 includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10 disposed between the anode 3 and the cathode 4.
  • the organic layer 10 has a light emitting layer 5 containing a host material and a dopant material.
  • the organic layer 10 has a hole transport layer 6 between the light emitting layer 5 and the anode 3. Further, the organic layer 10 has an electron transport layer 7 between the light emitting layer 5 and the cathode 4.
  • the light emitting layer contains an anthracene derivative represented by the following general formula (1) and a fluoranthene derivative represented by the following general formula (21).
  • the anthracene derivative represented by following General formula (1) can be used as a host material.
  • any c of R 1 to R 10 is a single bond used for bonding to L 1 ;
  • R 1 to R 10 not used for bonding to L 1 are respectively Hydrogen atom, A halogen atom, Hydroxyl group, A cyano group, A substituted or unsubstituted amino group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, It is selected from either a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • L 1 is selected from either a single bond or a linking group;
  • the linking group is A substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, A substituted or unsubstituted (a + 1) -valent heterocyclic group having 5 to 30 ring atoms, or Formed by bonding 2 to 4 groups selected from the above substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and the above substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • (A + 1) valent group. a, b and c each represents an integer of 1 to 4;
  • Z 1 is represented by the following general formula (2).
  • X 1 is selected from either an oxygen atom or a sulfur atom.
  • R 111 to R 118 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1). However, at least one pair of adjacent substituents of R 111 and R 112 , R 112 and R 113 , R 113 and R 114 , R 115 and R 116 , R 116 and R 117, or R 117 and R 118 is To form a ring represented by the following general formula (3) or (4).
  • y 1 and y 2 represent bonding positions selected from R 111 to R 118 in the general formula (2).
  • y 3 and y 4 represent bonding positions selected from R 111 to R 118 in the general formula (2).
  • R 121 to R 124 and R 125 to R 128 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
  • X 2 is selected from either an oxygen atom or a sulfur atom. Any one of R 111 to R 118 that does not form a ring in the general formula (2) and R 121 to R 124 of the general formula (3), or R 111 to that does not form a ring in the general formula (2). Any one of R 118 and R 125 to R 128 in the general formula (4) is a single bond, and is used for bonding to L 1 in the general formula (1).
  • Z 1 is preferably represented by any one of the following general formulas (5) to (7).
  • y 3 in the general formula (4) corresponds to the position of the carbon atom to which R 114 in the general formula (2) binds
  • y 4 in the general formula (2) It corresponds to the position of the carbon atom to which R 113 is bonded.
  • R 131 to R 140 , R 141 to R 150 , and R 151 to R 160 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1). However, any one of R 131 to R 140 , any one of R 141 to R 150 , and any one of R 151 to R 160 is used for bonding to L 1, and bonding to L 1
  • the group used for is a single bond.
  • X 1 and X 2 are respectively synonymous with X 1 in the general formula (2) and X 2 in the general formula (4). X 1 and X 2 are the same or different.
  • Z 1 is represented by any one of the following general formulas (8) to (10).
  • R 161 to R 170 , R 171 to R 180 , and R 181 to R 190 are not used for bonding to L 1 in the general formula (1). It is synonymous with 1 to R 10 . However, any one of R 161 to R 170 , any one of R 171 to R 180 , and any one of R 181 to R 190 are used for bonding to L 1, and bonding to L 1
  • the group used for is a single bond.
  • X 1 has the same meaning as X 1 in the general formula (2).
  • Z 1 in the general formula (1) is particularly preferably represented by any one of the general formulas (8) to (10).
  • b is preferably 1, and a is preferably 1 or 2. It is more preferable that a is 1. It is preferable that at least one of R 9 and R 10 in the general formula (1) is a single bond used for bonding to L 1 .
  • R 9 in the general formula (1) is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • the selected group is preferable, and the following general formula (11) is more preferable.
  • Ar 1 is And a group selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • Each Ra has the same meaning as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
  • d represents an integer of 1 to 4. When d is 2 to 4, a plurality of Ra are the same or different.
  • R 9 in the general formula (1) is a group selected from these groups, it is more preferable that R 10 in the general formula (1) is a single bond used for bonding to L 1 .
  • R 9 in the general formula (1) is preferably a substituted or unsubstituted condensed aromatic hydrocarbon group having 10 to 30 ring carbon atoms.
  • X 1 and X 2 are oxygen atoms.
  • any one of R 161 to R 164 , any one of R 171 to R 174 , and any one of R 181 to R 184 is L 1 .
  • the group used for bonding and used for bonding to L 1 is preferably a single bond.
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (15) to (20).
  • R 161 to R 190 in the general formulas (15) to (20) have the same meanings as R 1 to R 8 in the general formula (1), respectively.
  • X 1 in the general formula (15) to (20) has the same meaning as X 1 in the general formula (2).
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (31) to (36).
  • R 161 to R 190 in the general formulas (31) to (36) have the same meanings as R 1 to R 8 in the general formula (1), respectively.
  • X 1 in the general formula (31) - (36) has the same meaning as X 1 in the general formula (2).
  • the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (37) to (42).
  • R 161 to R 190 in the general formulas (37) to (42) have the same meanings as R 1 to R 8 in the general formula (1).
  • X 1 in the general formula (37) - (42) has the same meaning as X 1 in the general formula (2).
  • the anthracene derivative represented by any one of the general formulas (37) to (42) corresponds to the case where L 1 in the general formulas (15) to (20) is a phenylene group.
  • the anthracene ring and the condensed ring having X 1 are bonded to the 6-membered carbon atom of the phenylene group.
  • X 1 is preferably an oxygen atom.
  • substituents described in the general formulas (1) to (20) and (31) to (42) include A halogen atom, Hydroxyl group, A cyano group, A substituted or unsubstituted amino group, A substituted or unsubstituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted linear, branched or cyclic haloalkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio
  • Examples of the halogen atom in the general formulas (1) to (20) and (31) to (42) include fluorine, chlorine, bromine and iodine, and fluorine is preferable.
  • Examples of the substituted or unsubstituted amino group in the general formulas (1) to (20) and (31) to (42) include an amino group substituted with an aromatic hydrocarbon group, and a phenylamino group is preferable.
  • Examples of the aromatic hydrocarbon group substituted for the amino group include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) may be linear, branched or cyclic, and linear or branched
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n- Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n- Heptadecyl group, n-octadecyl group, neopentyl group
  • cyclic alkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a 4-methylcyclohexyl group, and 3,5-tetramethylcyclohexyl.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
  • a methyl group, an isopropyl group, a t-butyl group, and a cyclohexyl group are preferable.
  • linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms examples include those in which the alkyl group having 1 to 20 carbon atoms is substituted with one or more halogen atoms.
  • Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, and a trifluoromethylmethyl group.
  • the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —OY 1 .
  • Y 1 include the alkyl group having 1 to 20 carbon atoms.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms is more preferable.
  • Particularly preferred is an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the linear, branched or cyclic haloalkoxy group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) include, for example, the above 1 to 20 carbon atoms. Examples include those in which an alkoxy group is substituted with one or more halogen groups.
  • the aryloxy group having 6 to 30 ring carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —OZ 2 .
  • Z 2 include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  • the aryloxy group include a phenoxy group.
  • the arylthio group having 6 to 30 ring carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —SZ 3 .
  • Examples of Z 3 include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 ring carbon atoms includes a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group. More specifically, phenyl group, naphthyl group, anthryl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, pyrenyl group, triphenylenyl group, phenanthrenyl group, fluorenyl group, 9 , 9-dimethylfluorenyl group, benzo [c] phenanthrenyl group, benzo [a] triphenylenyl group, naphtho [1,2-c] phenanthrenyl group, naphtho [1,2-a] triphenylenyl group, dibenzo [a, c ] Triphenylenyl group, benzo [b] fluoranthenyl group, and the like.
  • aromatic hydrocarbon groups an aromatic hydrocarbon group having 6 to 20 ring carbon atoms is more preferable, and an aromatic hydrocarbon group having 6 to 12 ring carbon atoms is particularly preferable. Further, a phenyl group, a naphthyl group, a terphenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a benzo [c] phenanthrenyl group, and a phenanthrenyl group are preferable.
  • Examples of the aromatic heterocyclic group having 5 to 30 ring atoms in the general formulas (1) to (20) and (31) to (42) include a non-condensed aromatic heterocyclic ring and a condensed aromatic heterocyclic ring. More specifically, pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, Quinoxalinyl group, carbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl group, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, a
  • heterocyclic groups a heterocyclic group having 5 to 20 ring atoms is more preferable, and a heterocyclic group having 5 to 12 ring atoms is particularly preferable. Further, a dibenzofuran ring, a dibenzofuranyl ring, and a carbazole ring are preferable.
  • R 1 to R 10 that are not used for bonding with L 1 are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
  • R 9 is a condensed aromatic hydrocarbon group having 10 to 30 ring carbon atoms, more preferably, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group and 4-methyl-1-anthryl group.
  • L 1 is a linking group
  • a substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms a substituted or unsubstituted ring-forming atom number From a 5 to 10 (a + 1) -valent heterocyclic group, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms (A + 1) -valent group formed by combining 2 to 4 groups selected.
  • (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms include those listed above for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms as the (a + 1) -valent aromatic hydrocarbon group. Based on this. Further, specific examples of the (a + 1) -valent heterocyclic group having 5 to 30 ring atoms include the above-described heterocyclic groups having 5 to 30 ring-forming atoms as the (a + 1) -valent group. The thing which was done is mentioned. When L 1 is an (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, more preferred aromatic hydrocarbon groups are phenyl, biphenyl, naphthyl, 9,9-dimethylfurane.
  • L 1 is an (a + 1) -valent heterocyclic group having 6 to 30 ring atoms
  • more preferable heterocyclic groups include a pyridyl group, a pyrimidyl group, a dibenzofuranyl group, and a carbazolyl group.
  • L 1 is a bond of 2 to 4 groups selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms.
  • aromatic hydrocarbon group and the heterocyclic group include those described above.
  • Aromatic hydrocarbon groups include substituted or unsubstituted phenyl groups, substituted or unsubstituted naphthyl groups, substituted or unsubstituted phenanthryl groups, substituted or unsubstituted anthryl groups, substituted or unsubstituted pyrenyl groups, substituted or It is preferably selected from an unsubstituted fluorenyl group, and the heterocyclic group includes a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted pyridazinyl group, It is preferably selected from a substituted or unsubstituted triazinyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group
  • L 1 is a bond of 2 to 4 groups selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms.
  • Examples of the preferable structure of the anthracene derivative formed as described above include the following.
  • R 111 to R 114 in the general formula (2) are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
  • R 121 to R 124 and R 125 to R 128 in the general formulas (3) and (4) are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
  • R 117 and R 118 are preferably hydrogen atoms
  • R 117 and R 118 are preferably hydrogen atoms
  • R 111 and R 112 are preferably hydrogen atoms.
  • R 111 and R 112 of the general formula (2) or R 117 and R 118 have a substituent instead of a hydrogen atom, a steric exclusion effect is exerted, so that the distance between adjacent molecules in the amorphous thin film is increased, As a result, the drive voltage may increase.
  • R 111 and R 112 in the general formula (2) form the ring represented by the general formula (4)
  • the substituents of R 117 and R 118 , and R 117 and R 118 are When forming the ring represented by the general formula (4), R 111 and R 112 are preferably hydrogen atoms.
  • Ar 1 is particularly preferably a phenyl group, a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, or a biphenyl group.
  • Ra is particularly preferably a hydrogen atom, an aryl group, or a heterocyclic group.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
  • examples of the substituent include the aromatic hydrocarbon group, the heterocyclic group, and the alkyl group (straight chain or branched chain alkyl group, cycloalkyl group, haloalkyl group) as described above.
  • Alkoxy group, aryloxy group, aralkyl group, haloalkoxy group, alkylsilyl group, dialkylarylsilyl group, alkyldiarylsilyl group, triarylsilyl group, halogen atom, cyano group, hydroxyl group, nitro group, and carboxy group Can be mentioned.
  • an alkenyl group and an alkynyl group are also included.
  • an aromatic hydrocarbon group, a heterocyclic group, an alkyl group, a halogen atom, an alkylsilyl group, an arylsilyl group, and a cyano group are preferable, and more preferable in the description of each substituent.
  • the specific substituents are preferred.
  • the term “unsubstituted” in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • the “carbon number ab” in the expression “substituted or unsubstituted XX group having carbon number ab” represents the number of carbons when the XX group is unsubstituted. The number of carbon atoms of the substituent when the XX group is substituted is not included.
  • the case of “substituted or unsubstituted” is the same as described above.
  • anthracene derivative represented by the general formula (1) Specific examples of the anthracene derivative represented by the general formula (1) are shown below, but the present invention is not limited to these exemplified compounds.
  • anthracene derivative represented by the general formula (1) is represented by the following general formula (1X).
  • anthracene derivatives having the structures A and B shown in the uppermost column of the left column of the above table are represented by the following formula.
  • the light emitting layer contains a fluoranthene derivative represented by the following general formula (21) together with the anthracene derivative represented by the general formula (1).
  • the fluoranthene derivative represented by following General formula (21) can be used as a dopant material.
  • R 21 , R 22 , R 25 , R 26 and R 28 to R 31 are each independently Hydrogen atom, Hydroxyl group, A cyano group, Nitro group, Carboxyl group, A substituted or unsubstituted silyl group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms, It is selected from the first group consist
  • R 23 is selected from the second group constituted by removing hydrogen atoms from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. It is. That is, the second group is Hydroxyl group, A cyano group, Nitro group, Carboxyl group, A substituted or unsubstituted silyl group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkoxycarbony
  • R 24 is constituted by removing an aromatic hydrocarbon group and a heterocyclic group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. Selected from the third group. That is, the third group is Hydrogen atom, Hydroxyl group, A cyano group, Nitro group, Carboxyl group, A substituted or unsubstituted silyl group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, It consists of a substituted or unsubstituted alkoxycarbonyl group having
  • R 27 and R 32 are each independently a hydrogen atom or a hydroxyl group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. , A cyano group, a nitro group, a carboxyl group, and a silyl group.
  • the fourth group is A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms, It consists of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • R 21 and R 22 , R 22 and R 23 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , and R 31 and R 32 may be bonded to each other to form a saturated or unsaturated ring, or may not form a saturated or unsaturated ring. Substituted or unsubstituted. However, in the general formula (21), the case where R 21 to R 23 and R 25 to R 32 are monovalent groups derived from benzo [k] fluoranthene is excluded. In the general formula (21), R 23 and R 24 are different from each other. In the general formula (21), the case where any of R 23 and R 24 is an ⁇ -naphthyl group is excluded.
  • R 24 in the general formula (21) is preferably a hydrogen atom.
  • R 27 and R 32 in the general formula (21) are preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. Further, it is preferable that the R 27 and R 32 in the general formula (21) is a substituted or unsubstituted phenyl group.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 23 , R 27 and R 32 in the general formula (21) are substituted.
  • an unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms is preferable.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 27 and R 32 in the general formula (21) are substituted or unsubstituted.
  • An aromatic hydrocarbon group having 6 to 30 ring carbon atoms is preferable.
  • Ar 21 or Ar 22 is an aromatic hydrocarbon group having a cyano group as a substituent.
  • R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 27 and R 32 in the general formula (21) are substituted or not.
  • the Ar 21 , the Ar 22 or the Ar 23 is an aromatic hydrocarbon group having a cyano group as a substituent.
  • the aralkyl group having 7 to 30 carbon atoms is represented by —R X —R Y.
  • R X include an alkylene group corresponding to the alkyl group having 1 to 30 carbon atoms.
  • R Y include the above aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  • the aromatic hydrocarbon group moiety has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the alkyl group moiety has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms.
  • Examples of the aralkyl group include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl.
  • ⁇ -naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ - Naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p-methylbenzyl group, m -Methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromine Benzyl group, m
  • silyl group examples include an unsubstituted silyl group, an alkylsilyl group having 1 to 30 carbon atoms, and an arylsilyl group having 6 to 60 carbon atoms.
  • alkylsilyl group having 1 to 30 carbon atoms examples include a trialkylsilyl group having an alkyl group exemplified as the alkyl group having 1 to 20 carbon atoms, specifically, a trimethylsilyl group, a triethylsilyl group, a tri-n group.
  • arylsilyl group having 6 to 60 ring carbon atoms examples include arylsilyl group, alkylarylsilyl group, dialkylarylsilyl group, diarylsilyl group, alkyldiarylsilyl group, and triarylsilyl group.
  • a plurality of aryl groups or alkyl groups may be the same or different.
  • the dialkylarylsilyl group includes, for example, two alkyl groups exemplified as the alkyl group having 1 to 20 carbon atoms and one dialkylarylsilyl group having one aromatic hydrocarbon group having 6 to 30 ring carbon atoms. Is mentioned.
  • the carbon number of the dialkylarylsilyl group is preferably 8-30.
  • the two alkyl groups may be the same or different.
  • the alkyldiarylsilyl group is, for example, an alkyldiarylsilyl group having one alkyl group exemplified as the alkyl group having 1 to 20 carbon atoms and two aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. Is mentioned.
  • the alkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
  • the two aryl groups may be the same or different.
  • Examples of the triarylsilyl group include a triarylsilyl group having three aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. The carbon number of the triarylsilyl group is preferably 18-30.
  • the three aryl groups may be the same or different from each other. Examples of such an arylsilyl group include a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyl-t-butylsilyl group, and a triphenylsilyl group.
  • the alkoxycarbonyl group is represented as —COOY ′, and examples of Y ′ include the same as the alkyl group.
  • the arylamino group is represented by —NAr 5 Ar 6, and specific examples of Ar 5 and Ar 6 are the same as those described for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • One of Ar 5 and Ar 6 may be a hydrogen atom.
  • the emission color of the dopant material contained in the light emitting layer is not particularly limited, but is preferably a fluorescent light emitting dopant material that emits blue light having a main peak wavelength of 480 nm or less.
  • the main peak wavelength refers to the peak wavelength of the emission spectrum that maximizes the emission intensity in the emission spectrum measured in a toluene solution having a concentration of 10 ⁇ 6 mol / liter to 10 ⁇ 5 mol / liter.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and a compound having a high hole mobility and a low ionization energy is used.
  • a material for forming the hole injecting / transporting layer a material that transports holes to the light emitting layer with lower electric field strength is preferable.
  • an aromatic amine compound is preferably used.
  • the electron injection / transport layer is a layer that assists injection of electrons into the light emitting layer and transports it to the light emitting region, and a compound having a high electron mobility is used.
  • a compound used in the electron injecting / transporting layer for example, an aromatic heterocyclic compound containing one or more hetero atoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • a nitrogen-containing ring derivative a heterocyclic compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton is preferable.
  • an organic compound other than the light emitting layer can be used by selecting any compound from the materials used in the conventional organic EL device in addition to the compounds exemplified above.
  • the organic EL element of this embodiment is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole injection layer, the hole transport layer, or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the light transmittance in the visible region of the anode be greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ (ohm / square) or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode a material having a small work function is preferable for the purpose of injecting electrons into the electron injection layer, the electron transport layer, or the light emitting layer.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering.
  • the aspect which takes out light emission from a cathode side is also employable.
  • the aspect which takes out light emission from a light emitting layer from a cathode side is also employable.
  • the light transmittance in the visible region of the cathode be greater than 10%.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less.
  • the layer thickness of the cathode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 nm to 200 nm.
  • the formation method of each layer of the organic EL element of this embodiment is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic layer used in the organic EL device of the present embodiment includes a vacuum evaporation method, a molecular beam evaporation method (MBE method, MBE; Molecular Beam Epitaxy), a solution dipping method in a solvent, a spin coating method, a casting method, and a bar coating. It can be formed by a known method using a coating method such as a method or a roll coating method.
  • the thickness of the light emitting layer is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm.
  • the film thickness of each of the other organic layers is not particularly limited, but is usually preferably in the range of several nm to 1 ⁇ m.
  • the light emitting layer is not limited to one layer, and a plurality of light emitting layers may be stacked.
  • the organic EL device has a plurality of light emitting layers, at least one light emitting layer contains an anthracene derivative represented by the general formula (1) and a fluoranthene derivative represented by the general formula (21).
  • the other light emitting layer may be a fluorescent light emitting layer or a phosphorescent light emitting layer.
  • these light emitting layers may be provided adjacent to each other, or a so-called tandem organic material in which a plurality of light emitting units are stacked via an intermediate layer. It may be an EL element.
  • the light emitting layer preferably contains a charge injection auxiliary agent.
  • a light emitting layer is formed using a host material having a wide energy gap, the difference between the ionization potential (Ip) of the host material and Ip of the hole injection / transport layer, etc. increases, and holes are injected into the light emitting layer. This may make it difficult to increase the driving voltage for obtaining sufficient luminance.
  • Ip ionization potential
  • the driving voltage for obtaining sufficient luminance.
  • by adding a hole injection / transport charge injection auxiliary agent to the light emitting layer hole injection into the light emitting layer can be facilitated and the driving voltage can be lowered.
  • a general hole injection / transport material or the like can be used as the charge injection auxiliary agent.
  • Specific examples include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, fluorenone derivatives, hydrazone derivatives, stilbenes.
  • Derivatives, silazane derivatives, polysilane-based, aniline-based copolymers, conductive polymer oligomers (particularly thiophene oligomers), and the like can be given.
  • hole-injecting material examples include those described above, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds are preferred.
  • NPD 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (hereinafter abbreviated as NPD) having two condensed aromatic rings in the molecule, or triphenylamine 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA), etc., in which three units are connected in a starburst type. it can.
  • a hexaazatriphenylene derivative or the like can also be suitably used as the hole injecting material.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
  • the organic EL element of the present invention can be suitably used as an electronic device such as a display device such as a television, a mobile phone, or a personal computer, or a light emitting device for lighting or a vehicle lamp.
  • a display device such as a television, a mobile phone, or a personal computer, or a light emitting device for lighting or a vehicle lamp.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the film thickness of ITO was 130 nm.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and compound HA-1 is first deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode.
  • a compound HA-1 film having a thickness of 5 nm was formed. This HA-1 film functions as a hole injection layer.
  • the compound HT-1 was vapor-deposited to form a 95 nm-thick HT-1 film on the HA-1 film.
  • This HT-1 film functions as a hole transport layer.
  • Compound BH-1 (host material) and Compound BD-1 (dopant material) were co-evaporated on the HT-1 film to form a light emitting layer with a thickness of 25 nm.
  • the host material concentration was 95% by mass
  • the dopant material concentration was 5% by mass.
  • ET-1 which is an electron transporting compound was vapor-deposited to form an electron transporting layer having a film thickness of 25 nm.
  • LiF was vapor-deposited on this electron transport layer to form a 1-nm thick LiF layer.
  • Metal Al was vapor-deposited on this LiF film to form a metal Al cathode having a thickness of 80 nm.
  • Comparative Examples 1 to 3 The organic EL elements of Comparative Examples 1 to 3 were produced in the same manner as in Example 1 except that the materials in the light emitting layer were changed as shown in Table 11.
  • V voltage (unit: V) when electricity was passed between the ITO transparent electrode and the metal Al cathode so that the current density was 10 mA / cm 2 was measured.
  • Example 1 is an organic EL device using the anthracene derivative represented by the general formula (1) as a host material and the fluoranthene derivative represented by the general formula (21) as a dopant material. Compared to Comparative Example 1 using the host material and dopant material, the voltage is lower and the efficiency is greatly improved.
  • Comparative Example 2 is an organic EL element using the same host material as in Example 1
  • Comparative Example 3 is an organic EL element using a material other than the host material represented by the general formula (1). Compared to Comparative Examples 2 and 3, the organic EL element of Example 1 has improved efficiency while maintaining a low voltage. In particular, compared with Comparative Example 2, it can be seen that Example 1 has dramatically improved efficiency while being driven at the same low voltage.
  • the organic EL element of the present invention can be used as a light emitting element in a display device or a lighting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This organic electroluminescent element comprises a negative electrode, a positive electrode, and one or more organic layers that are arranged between the negative electrode and the positive electrode and include at least a light emitting layer. This organic electroluminescent element is characterized in that the light emitting layer contains an anthracene derivative represented by general formula (1) and a fluoranthene derivative represented by general formula (21).

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 有機物質を使用した有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する場合がある。)は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層および該発光層を挟んだ一対の対向電極から構成されている。両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。 Organic electroluminescence devices using organic substances (hereinafter sometimes abbreviated as “organic EL devices”) are promising for use as solid light-emitting, inexpensive, large-area full-color display devices, and many developments have been made. ing. In general, an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the light emitting layer. When an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Further, the electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
 従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、さらなる高発光効率、色再現性の向上等が要求されている。 Conventional organic EL elements have a higher driving voltage and lower luminance and luminous efficiency than inorganic light emitting diodes. Further, the characteristic deterioration has been remarkably not put into practical use. Although recent organic EL elements have been gradually improved, there is a demand for higher luminous efficiency, improved color reproducibility, and the like.
 有機EL用発光材料の改良により有機EL素子の性能は徐々に改善されてきている。特に青色有機EL素子の色純度向上(発光波長の短波長化)はディスプレイの色再現性向上につながる重要な技術である。
 発光層に使用される材料の例として、特許文献1にはジベンゾフランを置換基に持つアントラセン誘導体が開示されている。そして、特許文献1には、当該誘導体をホスト材料として用いた有機EL素子は、低電圧で駆動し、短波長の青色発光を示すことが記載されている。
The performance of organic EL elements has been gradually improved by improving the light emitting material for organic EL. In particular, improving the color purity of blue organic EL elements (shortening the emission wavelength) is an important technique that leads to improved color reproducibility of displays.
As an example of the material used for the light emitting layer, Patent Document 1 discloses an anthracene derivative having dibenzofuran as a substituent. Patent Document 1 describes that an organic EL element using the derivative as a host material is driven at a low voltage and exhibits blue light emission with a short wavelength.
国際公開第2010/137285号International Publication No. 2010/137285
 しかしながら、特許文献1に記載の有機EL素子は、効率が十分ではなく、有機EL素子を照明装置や表示装置等の電子機器の光源に採用するにあたっては、さらなる効率の向上が必要である。 However, the efficiency of the organic EL element described in Patent Document 1 is not sufficient, and further improvement in efficiency is required when the organic EL element is used as a light source of an electronic device such as a lighting device or a display device.
 そこで、本発明の目的は、低電圧で駆動し、高効率で発光する有機エレクトロルミネッセンス素子を提供することにある。 Therefore, an object of the present invention is to provide an organic electroluminescence element that is driven at a low voltage and emits light with high efficiency.
[1]本発明の一実施形態に係る有機エレクトロルミネッセンス素子は、陰極と、陽極と、前記陰極と前記陽極との間に配置された、少なくとも発光層を含む1層以上の有機層と、を有し、前記発光層が、下記一般式(1)で表されるアントラセン誘導体と、下記一般式(21)で表されるフルオランテン誘導体と、を含むことを特徴とする。 [1] An organic electroluminescence device according to an embodiment of the present invention includes a cathode, an anode, and one or more organic layers including at least a light-emitting layer disposed between the cathode and the anode. The light emitting layer includes an anthracene derivative represented by the following general formula (1) and a fluoranthene derivative represented by the following general formula (21).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[前記一般式(1)中、R~R10のいずれかc個はLとの結合に用いられる単結合であり、
 Lとの結合に用いられないR~R10は、それぞれ、
 水素原子、
 ハロゲン原子、
 ヒドロキシル基、
 シアノ基、
 置換もしくは無置換のアミノ基、
 置換もしくは無置換の炭素数1~20のアルキル基、
 置換もしくは無置換の炭素数1~20のアルコキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は
 置換もしくは無置換の環形成原子数5~30の複素環基のいずれかから選ばれる。
 Lは単結合又は連結基のいずれかから選ばれ、
 前記連結基は、
 置換もしくは無置換の環形成炭素数6~30の(a+1)価の芳香族炭化水素基、
 置換もしくは無置換の環形成原子数5~30の(a+1)価の複素環基、または、
 前記置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基及び前記置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基が2~4個結合して形成される(a+1)価の基である。
 a、b、cはそれぞれ1~4の整数を示す。
 Zは下記一般式(2)で表される。]
[In the general formula (1), any one of R 1 to R 10 is a single bond used for bonding to L 1 ;
R 1 to R 10 not used for bonding to L 1 are respectively
Hydrogen atom,
A halogen atom,
Hydroxyl group,
A cyano group,
A substituted or unsubstituted amino group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
It is selected from either a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
L 1 is selected from either a single bond or a linking group;
The linking group is
A substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted (a + 1) -valent heterocyclic group having 5 to 30 ring atoms, or
Formed by bonding 2 to 4 groups selected from the above substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and the above substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. (A + 1) valent group.
a, b and c each represents an integer of 1 to 4;
Z 1 is represented by the following general formula (2). ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[前記一般式(2)において、Xは酸素原子又は硫黄原子のいずれかから選ばれる。
 R111~R118は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R111とR112、R112とR113、R113とR114、R115とR116、R116とR117またはR117とR118のうち少なくとも1組の隣接する2つの置換基は、互いに結合して、下記一般式(3)又は(4)で表される環を形成する。]
[In the general formula (2), X 1 is selected from either oxygen atom or sulfur atom.
R 111 to R 118 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
However, at least one pair of adjacent substituents of R 111 and R 112 , R 112 and R 113 , R 113 and R 114 , R 115 and R 116 , R 116 and R 117, or R 117 and R 118 is To form a ring represented by the following general formula (3) or (4). ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[前記一般式(3)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
 前記一般式(4)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
 R121~R124、R125~R128はそれぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 Xは酸素原子又は硫黄原子のいずれかから選ばれる。
 前記一般式(2)において環を形成しないR111~R118および前記一般式(3)のR121~R124のいずれか1つ、または前記一般式(2)において環を形成しないR111~R118および一般式(4)のR125~R128のいずれか1つは単結合であり、前記一般式(1)のLとの結合に用いられる。]
[In the general formula (3), y 1 and y 2 represent bonding positions selected from R 111 to R 118 in the general formula (2).
In the general formula (4), y 3 and y 4 represent bonding positions selected from R 111 to R 118 in the general formula (2).
R 121 to R 124 and R 125 to R 128 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
X 2 is selected from either an oxygen atom or a sulfur atom.
Any one of R 111 to R 118 that does not form a ring in the general formula (2) and R 121 to R 124 of the general formula (3), or R 111 to that does not form a ring in the general formula (2). Any one of R 118 and R 125 to R 128 in the general formula (4) is a single bond, and is used for bonding to L 1 in the general formula (1). ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[前記一般式(21)において、R21、R22、R25、R26及びR28~R31は、それぞれ独立に、
  水素原子、
  ヒドロキシル基、
  シアノ基、
  ニトロ基、
  カルボキシル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールアミノ基、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および
  置換もしくは無置換の環形成原子数5~30の複素環基からなる第一群から選ばれる。
 R23は、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子を除いて構成される第二群から選ばれる。
 R24は、R21、R22、R25、R26及びR28~R31について示した前記第一群から芳香族炭化水素基および複素環基を除いて構成される第三群から選ばれる。
 前記R27及びR32は、それぞれ独立に、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基およびシリル基を除いて構成される第四群から選ばれる。
 また、R21とR22、R22とR23、R25とR26、R26とR27、R27とR28、R28とR29、R29とR30、R30とR31、およびR31とR32は、互いに結合して飽和もしくは不飽和の環を形成する場合と、飽和もしくは不飽和の環を形成しない場合とがあり、当該環は、置換もしくは無置換である。
 R21~R23およびR25~R32が、ベンゾ[k]フルオランテンから誘導される1価の基である場合を除く。
 R23とR24とは、互いに異なる。
 R23およびR24のうちいずれかが、α-ナフチル基である場合を除く。]
[In the general formula (21), R 21 , R 22 , R 25 , R 26 and R 28 to R 31 are each independently
Hydrogen atom,
Hydroxyl group,
A cyano group,
Nitro group,
Carboxyl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms,
A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms,
It is selected from the first group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
R 23 is selected from the second group constituted by removing hydrogen atoms from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31 .
R 24 is selected from the third group constituted by removing the aromatic hydrocarbon group and the heterocyclic group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. .
R 27 and R 32 are each independently a hydrogen atom, a hydroxyl group, a cyano group, a nitro group, a carboxyl group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. Selected from the fourth group consisting of a group and a silyl group excluded.
R 21 and R 22 , R 22 and R 23 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , R 31 and R 32 may be bonded to each other to form a saturated or unsaturated ring and may not form a saturated or unsaturated ring, and the ring is substituted or unsubstituted.
Except when R 21 to R 23 and R 25 to R 32 are monovalent groups derived from benzo [k] fluoranthene.
R 23 and R 24 are different from each other.
Except when either R 23 or R 24 is an α-naphthyl group. ]
[2] 前述した本発明の有機エレクトロルミネッセンス素子において、Zが下記一般式(5)~(7)のいずれかで表されることが好ましい。 [2] In the above-described organic electroluminescence device of the present invention, Z 1 is preferably represented by any one of the following general formulas (5) to (7).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[前記一般式(5)~(7)中、R131~R140、R141~R150、R151~R160は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R131~R140のいずれか1つ、R141~R150のいずれか1つ、R151~R160のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
 X、Xはそれぞれ、前記一般式(2)におけるX、前記一般式(4)におけるXと同義である。XとXは、同一または異なる。]
[In the general formulas (5) to (7), R 131 to R 140 , R 141 to R 150 , and R 151 to R 160 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 .
However, any one of R 131 to R 140 , any one of R 141 to R 150 , and any one of R 151 to R 160 is used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
X 1 and X 2 are respectively synonymous with X 1 in the general formula (2) and X 2 in the general formula (4). X 1 and X 2 are the same or different. ]
[3] 前述した本発明の有機エレクトロルミネッセンス素子において、Zが下記一般式(8)~(10)のいずれかで表されることが好ましい。 [3] In the above-described organic electroluminescence device of the present invention, it is preferable that Z 1 is represented by any one of the following general formulas (8) to (10).
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
[前記一般式(8)~(10)中、R161~R170、R171~R180、R181~R190は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R161~R170のいずれか1つ、R171~R180のいずれか1つ、R181~R190のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
 Xは、前記一般式(2)におけるXと同義である。]
[In the general formulas (8) to (10), R 161 to R 170 , R 171 to R 180 , and R 181 to R 190 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 .
However, any one of R 161 to R 170 , any one of R 171 to R 180 , and any one of R 181 to R 190 are used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
X 1 has the same meaning as X 1 in the general formula (2). ]
[4] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)のbが1であることが好ましい。 [4] In the above-described organic electroluminescence element of the present invention, b in the general formula (1) is preferably 1.
[5] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)のaが1又は2であることが好ましい。 [5] In the organic electroluminescence device of the present invention described above, it is preferable that a in the general formula (1) is 1 or 2.
[6] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)のR及びR10の少なくともいずれかがLとの結合に用いられる単結合であることが好ましい。 [6] In the organic electroluminescence element of the present invention described above, it is preferable that at least one of R 9 and R 10 in the general formula (1) is a single bond used for bonding to L 1 .
[7] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)のRが、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は
 置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基であることが好ましい。
[8] 前述した本発明の有機エレクトロルミネッセンス素子において、X及びXが酸素原子であることが好ましい。
[7] In the organic electroluminescence element of the present invention described above, R 9 in the general formula (1) is
A group selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms is preferable.
[8] In the organic electroluminescence element of the present invention described above, X 1 and X 2 are preferably oxygen atoms.
[9] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(8)~(10)中、R161~R164のいずれか1つ、R171~R174のいずれか1つ、R181~R184のいずれか1つがLとの結合に用いられ、Lとの結合に用いられる基は単結合であることが好ましい。 [9] In the organic electroluminescence device of the present invention described above, in the general formulas (8) to (10), any one of R 161 to R 164 , any one of R 171 to R 174 , R 181 one of ~ R 184 is used for binding to L 1, it is preferable groups for use in binding to L 1 is a single bond.
[10] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)で表されるアントラセン誘導体は、下記一般式(15)~(20)のいずれかで表されることが好ましい。 [10] In the organic electroluminescence element of the present invention described above, the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (15) to (20).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[前記一般式(15)~(20)におけるR161~R190は、それぞれ、前記一般式(1)におけるR~Rと同義である。
 前記一般式(15)~(20)におけるXは、前記一般式(2)におけるXと同義である。]
[R 161 to R 190 in the general formulas (15) to (20) are respectively synonymous with R 1 to R 8 in the general formula (1).
X 1 in the general formula (15) to (20) has the same meaning as X 1 in the general formula (2). ]
 [11] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)で表されるアントラセン誘導体は、下記一般式(31)~(36)のいずれかで表されることが好ましい。 [11] In the organic electroluminescence device of the present invention described above, the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (31) to (36).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[前記一般式(31)~(36)におけるR161~R190は、それぞれ、前記一般式(1)におけるR~Rと同義である。
 前記一般式(31)~(36)におけるXは、前記一般式(2)におけるXと同義である。]
[R 161 to R 190 in the general formulas (31) to (36) are respectively synonymous with R 1 to R 8 in the general formula (1).
X 1 in the general formula (31) - (36) has the same meaning as X 1 in the general formula (2). ]
[12] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(1)で表されるアントラセン誘導体は、下記一般式(37)~(42)のいずれかで表されることが好ましい。 [12] In the organic electroluminescence device of the present invention described above, the anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (37) to (42).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[前記一般式(37)~(42)におけるR161~R190は、前記一般式(1)におけるR~Rと同義である。
 前記一般式(37)~(42)におけるXは、前記一般式(2)におけるXと同義である。]
[R 161 to R 190 in the general formulas (37) to (42) have the same meanings as R 1 to R 8 in the general formula (1).
X 1 in the general formula (37) - (42) has the same meaning as X 1 in the general formula (2). ]
[13] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(21)のR24が、水素原子であることが好ましい。
[14] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
[13] In the above-described organic electroluminescence device of the present invention, R 24 in the general formula (21) is preferably a hydrogen atom.
[14] In the organic electroluminescence device of the present invention described above, R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. preferable.
[15] 前述した本発明の有機エレクトロルミネッセンス素子において、前記一般式(21)のR27およびR32が置換もしくは無置換のフェニル基であることが好ましい。
[16] 前述した本発明の有機エレクトロルミネッセンス素子において、
 前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、
 前記一般式(21)のR23、R27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
[15] In the organic electroluminescence element of the present invention described above, it is preferable that R 27 and R 32 in the general formula (21) are substituted or unsubstituted phenyl groups.
[16] In the organic electroluminescence device of the present invention described above,
R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
In the general formula (21), R 23 , R 27 and R 32 are preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
[17] 前述した本発明の有機エレクトロルミネッセンス素子において、
 前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、
 前記一般式(21)のR27およびR32が置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、
 前記一般式(21)のR23が、-Ar21-Ar22であり、
 Ar21およびAr22は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
[17] In the organic electroluminescence device of the present invention described above,
R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms,
R 23 in the general formula (21) is —Ar 21 —Ar 22 ,
Ar 21 and Ar 22 are preferably each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
[18] 前述した本発明の有機エレクトロルミネッセンス素子において、
 前記一般式(21)のR21~R22、R24~R26およびR28~R31が、水素原子であり、
 前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、
 前記一般式(21)のR23が、-Ar21-Ar22-Ar23であり、
 Ar21、Ar22およびAr23は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
[18] In the organic electroluminescence device of the present invention described above,
R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms,
R 23 in the general formula (21) is —Ar 21 —Ar 22 —Ar 23 ,
Ar 21 , Ar 22 and Ar 23 are preferably each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
[19] 前述した本発明の有機エレクトロルミネッセンス素子において、前記Ar21又は前記Ar22が、シアノ基を置換基として有する芳香族炭化水素基であることが好ましい。
[20] 前述した本発明の有機エレクトロルミネッセンス素子において、前記Ar21、前記Ar22又は前記Ar23が、シアノ基を置換基として有する芳香族炭化水素基であることが好ましい。
[19] In the organic electroluminescence device of the present invention described above, it is preferable that the Ar 21 or the Ar 22 is an aromatic hydrocarbon group having a cyano group as a substituent.
[20] In the organic electroluminescence device of the present invention described above, it is preferable that Ar 21 , Ar 22, or Ar 23 is an aromatic hydrocarbon group having a cyano group as a substituent.
 本発明によれば、低電圧で駆動し、高効率で発光する有機エレクトロルミネッセンス素子を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence element that is driven at a low voltage and emits light with high efficiency.
本発明の実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the organic electroluminescent element which concerns on embodiment of this invention.
 (有機EL素子の素子構成)
 以下、本発明の一実施形態に係る有機EL素子の素子構成について説明する。
 本実施形態の有機EL素子は、一対の電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一層、有する。有機層は、無機化合物を含んでいてもよい。
 本実施形態の有機EL素子において、有機層のうち少なくとも1層は、発光層を有する。そのため、有機層は、例えば、一層の発光層で構成されていてもよいし、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、電子障壁層等の公知の有機EL素子で採用される層を有していてもよい。
(Element structure of organic EL element)
Hereinafter, the element structure of the organic EL element which concerns on one Embodiment of this invention is demonstrated.
The organic EL element of this embodiment includes an organic layer between a pair of electrodes. This organic layer has at least one layer composed of an organic compound. The organic layer may contain an inorganic compound.
In the organic EL device of the present embodiment, at least one of the organic layers has a light emitting layer. Therefore, the organic layer may be composed of, for example, a single light emitting layer, or a known hole injection layer, hole transport layer, electron injection layer, electron transport layer, hole barrier layer, electron barrier layer, or the like. It may have a layer employed in the organic EL element.
 有機EL素子の代表的な素子構成としては、
(a)陽極/発光層/陰極
(b)陽極/正孔注入・輸送層/発光層/陰極
(c)陽極/発光層/電子注入・輸送層/陰極
(d)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
(e)陽極/正孔注入・輸送層/発光層/障壁層/電子注入・輸送層/陰極などの構造を挙げることができる。
 上記の中で(d)の構成が好ましく用いられるが、もちろんこれらに限定されるものではない。
 なお、上記「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 上記「正孔注入・輸送層」は「正孔注入層および正孔輸送層のうちの少なくともいずれか1つ」を意味し、「電子注入・輸送層」は「電子注入層および電子輸送層のうちの少なくともいずれか1つ」を意味する。ここで、正孔注入層および正孔輸送層を有する場合には、陽極側に正孔注入層が設けられていることが好ましい。また、電子注入層および電子輸送層を有する場合には、陰極側に電子注入層が設けられていることが好ましい。
As a typical element configuration of the organic EL element,
(A) Anode / light emitting layer / cathode (b) Anode / hole injection / transport layer / light emitting layer / cathode (c) Anode / light emitting layer / electron injection / transport layer / cathode (d) Anode / hole injection / transport Examples of the structure include layer / light emitting layer / electron injection / transport layer / cathode (e) anode / hole injection / transport layer / light emitting layer / barrier layer / electron injection / transport layer / cathode.
Among the above, the configuration (d) is preferably used, but it is of course not limited thereto.
The “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed. At this time, the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function. In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
The above “hole injection / transport layer” means “at least one of a hole injection layer and a hole transport layer”, and “electron injection / transport layer” means “an electron injection layer and an electron transport layer”. "At least one of them". Here, when it has a positive hole injection layer and a positive hole transport layer, it is preferable that the positive hole injection layer is provided in the anode side. Moreover, when it has an electron injection layer and an electron carrying layer, it is preferable that the electron injection layer is provided in the cathode side.
 本実施形態において電子輸送層といった場合には、発光層と陰極との間に存在する電子輸送領域の有機層のうち、最も電子移動度の高い有機層をいう。電子輸送領域が一層で構成されている場合には、当該層が電子輸送層である。また、燐光型の有機EL素子においては、構成(e)に示すように発光層で生成された励起エネルギーの拡散を防ぐ目的で必ずしも電子移動度が高くない障壁層を発光層と電子輸送層との間に採用することがあり、発光層に隣接する有機層が電子輸送層に必ずしも該当しない。 In the present embodiment, the term “electron transport layer” refers to an organic layer having the highest electron mobility among the organic layers in the electron transport region existing between the light emitting layer and the cathode. When the electron transport region is composed of one layer, the layer is an electron transport layer. In addition, in the phosphorescent organic EL device, as shown in the configuration (e), a barrier layer that does not necessarily have high electron mobility is used to prevent diffusion of excitation energy generated in the light emitting layer. The organic layer adjacent to the light emitting layer does not necessarily correspond to the electron transport layer.
 図1に、本実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を有する。
 有機層10は、ホスト材料およびドーパント材料を含む発光層5を有する。また、有機層10は、発光層5と陽極3との間に、正孔輸送層6を有する。さらに、有機層10は、発光層5と陰極4との間に、電子輸送層7を有する。
In FIG. 1, schematic structure of an example of the organic EL element in this embodiment is shown.
The organic EL element 1 includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10 disposed between the anode 3 and the cathode 4.
The organic layer 10 has a light emitting layer 5 containing a host material and a dopant material. The organic layer 10 has a hole transport layer 6 between the light emitting layer 5 and the anode 3. Further, the organic layer 10 has an electron transport layer 7 between the light emitting layer 5 and the cathode 4.
(発光層)
 本実施形態の有機EL素子において、発光層には、下記一般式(1)で表されるアントラセン誘導体、および下記一般式(21)で表されるフルオランテン誘導体が含有される。
(Light emitting layer)
In the organic EL device of the present embodiment, the light emitting layer contains an anthracene derivative represented by the following general formula (1) and a fluoranthene derivative represented by the following general formula (21).
・ホスト材料
 本実施形態の有機EL素子では、下記一般式(1)で表されるアントラセン誘導体をホスト材料として用いることができる。
-Host material In the organic EL element of this embodiment, the anthracene derivative represented by following General formula (1) can be used as a host material.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記一般式(1)中、R~R10のいずれかc個はLとの結合に用いられる単結合であり、
 Lとの結合に用いられないR~R10は、それぞれ、
 水素原子、
 ハロゲン原子、
 ヒドロキシル基、
 シアノ基、
 置換もしくは無置換のアミノ基、
 置換もしくは無置換の炭素数1~20のアルキル基、
 置換もしくは無置換の炭素数1~20のアルコキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は
 置換もしくは無置換の環形成原子数5~30の複素環基のいずれかから選ばれる。
 Lは単結合又は連結基のいずれかから選ばれ、
 前記連結基は、
置換もしくは無置換の環形成炭素数6~30の(a+1)価の芳香族炭化水素基、
 置換もしくは無置換の環形成原子数5~30の(a+1)価の複素環基、または、
 前記置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基及び前記置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基が2~4個結合して形成される(a+1)価の基である。
 a、b、cはそれぞれ1~4の整数を示す。
 Zは下記一般式(2)で表される。
In the general formula (1), any c of R 1 to R 10 is a single bond used for bonding to L 1 ;
R 1 to R 10 not used for bonding to L 1 are respectively
Hydrogen atom,
A halogen atom,
Hydroxyl group,
A cyano group,
A substituted or unsubstituted amino group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
It is selected from either a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
L 1 is selected from either a single bond or a linking group;
The linking group is
A substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted (a + 1) -valent heterocyclic group having 5 to 30 ring atoms, or
Formed by bonding 2 to 4 groups selected from the above substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and the above substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. (A + 1) valent group.
a, b and c each represents an integer of 1 to 4;
Z 1 is represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 前記一般式(2)において、Xは酸素原子又は硫黄原子のいずれかから選ばれる。
 R111~R118は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R111とR112、R112とR113、R113とR114、R115とR116、R116とR117またはR117とR118のうち少なくとも1組の隣接する2つの置換基は、互いに結合して、下記一般式(3)又は(4)で表される環を形成する。
In the general formula (2), X 1 is selected from either an oxygen atom or a sulfur atom.
R 111 to R 118 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
However, at least one pair of adjacent substituents of R 111 and R 112 , R 112 and R 113 , R 113 and R 114 , R 115 and R 116 , R 116 and R 117, or R 117 and R 118 is To form a ring represented by the following general formula (3) or (4).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 前記一般式(3)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
 前記一般式(4)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
 R121~R124、R125~R128はそれぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 Xは酸素原子又は硫黄原子のいずれかから選ばれる。
 前記一般式(2)において環を形成しないR111~R118および前記一般式(3)のR121~R124のいずれか1つ、または前記一般式(2)において環を形成しないR111~R118および前記一般式(4)のR125~R128のいずれか1つは単結合であり、前記一般式(1)のLとの結合に用いられる。
In the general formula (3), y 1 and y 2 represent bonding positions selected from R 111 to R 118 in the general formula (2).
In the general formula (4), y 3 and y 4 represent bonding positions selected from R 111 to R 118 in the general formula (2).
R 121 to R 124 and R 125 to R 128 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
X 2 is selected from either an oxygen atom or a sulfur atom.
Any one of R 111 to R 118 that does not form a ring in the general formula (2) and R 121 to R 124 of the general formula (3), or R 111 to that does not form a ring in the general formula (2). Any one of R 118 and R 125 to R 128 in the general formula (4) is a single bond, and is used for bonding to L 1 in the general formula (1).
 さらに、前記一般式(1)において、Zが下記一般式(5)~(7)のいずれかで表されることが好ましい。例えば、下記一般式(5)は、前記一般式(4)のy3が、前記一般式(2)におけるR114が結合する炭素原子の位置に当たり、yが、前記一般式(2)におけるR113が結合する炭素原子の位置に当たる。 Further, in the general formula (1), Z 1 is preferably represented by any one of the following general formulas (5) to (7). For example, in the following general formula (5), y 3 in the general formula (4) corresponds to the position of the carbon atom to which R 114 in the general formula (2) binds, and y 4 in the general formula (2) It corresponds to the position of the carbon atom to which R 113 is bonded.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記一般式(5)~(7)中、
 R131~R140、R141~R150、R151~R160は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R131~R140のいずれか1つ、R141~R150のいずれか1つ、R151~R160のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
 X、Xはそれぞれ、前記一般式(2)におけるX、前記一般式(4)におけるXと同義である。XとXは、同一または異なる。
In the general formulas (5) to (7),
R 131 to R 140 , R 141 to R 150 , and R 151 to R 160 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
However, any one of R 131 to R 140 , any one of R 141 to R 150 , and any one of R 151 to R 160 is used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
X 1 and X 2 are respectively synonymous with X 1 in the general formula (2) and X 2 in the general formula (4). X 1 and X 2 are the same or different.
 また、前記一般式(1)において、Zが下記一般式(8)~(10)のいずれかで表されても好ましい。 In the general formula (1), it is also preferable that Z 1 is represented by any one of the following general formulas (8) to (10).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記一般式(8)~(10)中、R161~R170、R171~R180、R181~R190は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 ただし、R161~R170のいずれか1つ、R171~R180のいずれか1つ、R181~R190のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
 Xは、前記一般式(2)におけるXと同義である。
In the general formulas (8) to (10), R 161 to R 170 , R 171 to R 180 , and R 181 to R 190 are not used for bonding to L 1 in the general formula (1). It is synonymous with 1 to R 10 .
However, any one of R 161 to R 170 , any one of R 171 to R 180 , and any one of R 181 to R 190 are used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
X 1 has the same meaning as X 1 in the general formula (2).
 前記一般式(1)におけるZとしては、特に前記一般式(8)~(10)のいずれかで表されることが好ましい。 Z 1 in the general formula (1) is particularly preferably represented by any one of the general formulas (8) to (10).
 前記一般式(1)において、bは1であることが好ましく、aは、1又は2であることが好ましい。aは1であることがより好ましい。
 前記一般式(1)のR及びR10の少なくともいずれかがLとの結合に用いられる単結合であることが好ましい。
In the general formula (1), b is preferably 1, and a is preferably 1 or 2. It is more preferable that a is 1.
It is preferable that at least one of R 9 and R 10 in the general formula (1) is a single bond used for bonding to L 1 .
 さらに、前記一般式(1)のRが、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基であることが好ましく、下記一般式(11)で表されることがより好ましい。 Further, R 9 in the general formula (1) is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. The selected group is preferable, and the following general formula (11) is more preferable.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 前記一般式(11)中、Arは、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は
 置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基を示す。
 Raは、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
 dは1~4の整数を示す。
 dが2~4の場合、複数のRaは、同一または異なる。
In the general formula (11), Ar 1 is
And a group selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
Each Ra has the same meaning as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
d represents an integer of 1 to 4.
When d is 2 to 4, a plurality of Ra are the same or different.
 前記一般式(1)のRがこれらの基から選ばれる基である場合、前記一般式(1)のR10がLとの結合に用いられる単結合であることがより好ましい。 When R 9 in the general formula (1) is a group selected from these groups, it is more preferable that R 10 in the general formula (1) is a single bond used for bonding to L 1 .
 さらに、前記一般式(1)のRは、置換または無置換の環形成炭素数10~30の縮合芳香族炭化水素基であることが好ましい。 Further, R 9 in the general formula (1) is preferably a substituted or unsubstituted condensed aromatic hydrocarbon group having 10 to 30 ring carbon atoms.
 さらに、前記一般式(1)において、X及びXが酸素原子であることが好ましい。 Further, in the general formula (1), it is preferred X 1 and X 2 are oxygen atoms.
 また、前記一般式(8)~(10)中、R161~R164のいずれか1つ、R171~R174のいずれか1つ、R181~R184のいずれか1つがLとの結合に用いられ、Lとの結合に用いられる基は単結合であることが好ましい。 In the general formulas (8) to (10), any one of R 161 to R 164 , any one of R 171 to R 174 , and any one of R 181 to R 184 is L 1 . The group used for bonding and used for bonding to L 1 is preferably a single bond.
 前記一般式(1)で表されるアントラセン誘導体は、下記一般式(15)~(20)のいずれかで表されることが好ましい。 The anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (15) to (20).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記一般式(15)~(20)におけるR161~R190は、それぞれ、前記一般式(1)におけるR~Rと同義である。
 前記一般式(15)~(20)におけるXは、前記一般式(2)におけるXと同義である。
R 161 to R 190 in the general formulas (15) to (20) have the same meanings as R 1 to R 8 in the general formula (1), respectively.
X 1 in the general formula (15) to (20) has the same meaning as X 1 in the general formula (2).
 前記一般式(1)で表されるアントラセン誘導体は、下記一般式(31)~(36)のいずれかで表されることが好ましい。 The anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (31) to (36).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記一般式(31)~(36)におけるR161~R190は、それぞれ、前記一般式(1)におけるR~Rと同義である。
 前記一般式(31)~(36)におけるXは、前記一般式(2)におけるXと同義である。
R 161 to R 190 in the general formulas (31) to (36) have the same meanings as R 1 to R 8 in the general formula (1), respectively.
X 1 in the general formula (31) - (36) has the same meaning as X 1 in the general formula (2).
前記一般式(1)で表されるアントラセン誘導体は、下記一般式(37)~(42)のいずれかで表されることが好ましい。 The anthracene derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (37) to (42).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記一般式(37)~(42)におけるR161~R190は、前記一般式(1)におけるR~Rと同義である。
 前記一般式(37)~(42)におけるXは、前記一般式(2)におけるXと同義である。
 なお、前記一般式(37)~(42)のいずれかで表されるアントラセン誘導体は、前記一般式(15)~(20)におけるLがフェニレン基である場合に相当する。前記一般式(37)~(42)において、当該フェニレン基の6員環の炭素原子に対し、アントラセン環と前記Xを有する縮合環とが結合する。
R 161 to R 190 in the general formulas (37) to (42) have the same meanings as R 1 to R 8 in the general formula (1).
X 1 in the general formula (37) - (42) has the same meaning as X 1 in the general formula (2).
The anthracene derivative represented by any one of the general formulas (37) to (42) corresponds to the case where L 1 in the general formulas (15) to (20) is a phenylene group. In the general formulas (37) to (42), the anthracene ring and the condensed ring having X 1 are bonded to the 6-membered carbon atom of the phenylene group.
 前記一般式(13)~(20),(31)~(42)において、Xは、酸素原子であることが好ましい。 In the general formulas (13) to (20) and (31) to (42), X 1 is preferably an oxygen atom.
 次に前記一般式(1)~(20),(31)~(42)に記載の各置換基について説明する。
 前記一般式(1)~(20),(31)~(42)に記載の置換基の具体例としては、
  ハロゲン原子、
  ヒドロキシル基、
  シアノ基、
  置換もしくは無置換のアミノ基、
  置換もしくは無置換の炭素数1~20の直鎖状、分岐鎖状又は環状のアルキル基、
  置換もしくは無置換の炭素数1~20の直鎖状、分岐鎖状または環状のハロアルキル基、
  置換もしくは無置換の炭素数1~20の直鎖状、分岐鎖状または環状のアルコキシ基、
  置換もしくは無置換の炭素数1~20の直鎖状、分岐鎖状または環状のハロアルコキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、
  置換もしくは無置換の環形成原子数5~30の複素環基が挙げられる。
Next, each substituent described in the general formulas (1) to (20) and (31) to (42) will be described.
Specific examples of the substituents described in the general formulas (1) to (20) and (31) to (42) include
A halogen atom,
Hydroxyl group,
A cyano group,
A substituted or unsubstituted amino group,
A substituted or unsubstituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted linear, branched or cyclic haloalkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
Examples thereof include a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
 前記一般式(1)~(20),(31)~(42)におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、フッ素であることが好ましい。 Examples of the halogen atom in the general formulas (1) to (20) and (31) to (42) include fluorine, chlorine, bromine and iodine, and fluorine is preferable.
 前記一般式(1)~(20),(31)~(42)における置換もしくは無置換のアミノ基としては、芳香族炭化水素基で置換されたアミノ基、が挙げられ、フェニルアミノ基が好ましい。アミノ基に置換する芳香族炭化水素基としては、下記環形成炭素数6~30の芳香族炭化水素基が挙げられる。 Examples of the substituted or unsubstituted amino group in the general formulas (1) to (20) and (31) to (42) include an amino group substituted with an aromatic hydrocarbon group, and a phenylamino group is preferable. . Examples of the aromatic hydrocarbon group substituted for the amino group include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
 前記一般式(1)~(20),(31)~(42)における炭素数1~20のアルキル基としては、直鎖、分岐鎖又は環状のいずれであってもよく、直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、1,2-ジニトロエチル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基等が挙げられる。
 環状のアルキル基(シクロアルキル基)としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、4-メチルシクロヘキシル基、3,5-テトラメチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 上記アルキル基の中でも、炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~4のアルキル基が特に好ましい。中でも、メチル基、イソプロピル基、t-ブチル基、シクロヘキシル基が好ましい。
The alkyl group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) may be linear, branched or cyclic, and linear or branched Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n- Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n- Heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methyl Pentyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl Group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2-dichloroethyl group, 1,3-dichloroisopropyl group, 2 , 3-dichloro-t-butyl group, 1,2,3-trichloropropyl group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3 -Dibromoisopropyl group, 2,3-dibromo-t-butyl group, 1,2,3-tribromopropyl group, iodome Group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobutyl group, 1,2-diiodoethyl group, 1,3-diiodoisopropyl group, 2,3-diiodo-t-butyl group, 1,2, 3-triiodopropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1,2-diaminoethyl group, 1,3-diaminoisopropyl group, 2,3-diamino -T-butyl group, 1,2,3-triaminopropyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl Group, 2,3-dicyano-t-butyl group, 1,2,3-tricyanopropyl group, nitromethyl group, 1-nitroethyl group, 2-nitroethyl group, 1,2- Dinitroethyl group, 2,3-dinitro-t-butyl group, 1,2,3-trinitropropyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,1,3 Examples include 3,3-hexafluoro-2-propyl group.
Examples of the cyclic alkyl group (cycloalkyl group) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a 4-methylcyclohexyl group, and 3,5-tetramethylcyclohexyl. Group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
Among the above alkyl groups, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable. Of these, a methyl group, an isopropyl group, a t-butyl group, and a cyclohexyl group are preferable.
 炭素数1~20の直鎖状、分岐鎖状または環状のハロアルキル基としては、例えば、前記炭素数1~20のアルキル基が1以上のハロゲン原子で置換されたものが挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基等が挙げられる。 Examples of the linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms include those in which the alkyl group having 1 to 20 carbon atoms is substituted with one or more halogen atoms. Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, and a trifluoromethylmethyl group.
 前記一般式(1)~(20),(31)~(42)における炭素数1~20の直鎖状、分岐鎖状または環状のアルコキシ基は、-OYと表される。このYの例として、前記炭素数1~20のアルキル基が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基があげられる。上記アルコキシ基の中でも、炭素数1~10のアルコキシ基が好ましく、炭素数1~8のアルコキシ基がより好ましい。特に好ましくは炭素数1~4のアルコキシ基である。
 前記一般式(1)~(20),(31)~(42)における炭素数1~20の直鎖状、分岐鎖状または環状のハロアルコキシ基としては、例えば、前記炭素数1~20のアルコキシ基が1以上のハロゲン基で置換されたものが挙げられる。
The linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —OY 1 . Examples of Y 1 include the alkyl group having 1 to 20 carbon atoms. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group. Among the alkoxy groups, an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms is more preferable. Particularly preferred is an alkoxy group having 1 to 4 carbon atoms.
Examples of the linear, branched or cyclic haloalkoxy group having 1 to 20 carbon atoms in the general formulas (1) to (20) and (31) to (42) include, for example, the above 1 to 20 carbon atoms. Examples include those in which an alkoxy group is substituted with one or more halogen groups.
 前記一般式(1)~(20),(31)~(42)における環形成炭素数6~30のアリールオキシ基は、-OZと表される。このZの例として、下記環形成炭素数6~30の芳香族炭化水素基が挙げられる。このアリールオキシ基としては、例えば、フェノキシ基が挙げられる。
 前記一般式(1)~(20),(31)~(42)における環形成炭素数6~30のアリールチオ基は、-SZと表される。このZの例として、下記環形成炭素数6~30の芳香族炭化水素基が挙げられる。
The aryloxy group having 6 to 30 ring carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —OZ 2 . Examples of Z 2 include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. Examples of the aryloxy group include a phenoxy group.
The arylthio group having 6 to 30 ring carbon atoms in the general formulas (1) to (20) and (31) to (42) is represented by —SZ 3 . Examples of Z 3 include the following aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
 前記一般式(1)~(20),(31)~(42)における環形成炭素数6~30の芳香族炭化水素基としては、非縮合芳香族炭化水素基及び縮合芳香族炭化水素基が挙げられ、より具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、ピレニル基、トリフェニレニル基、フェナントレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾ[c]フェナントレニル基、ベンゾ[a]トリフェニレニル基、ナフト[1,2-c]フェナントレニル基、ナフト[1,2-a]トリフェニレニル基、ジベンゾ[a,c]トリフェニレニル基、ベンゾ[b]フルオランテニル基、などが挙げられる。上記芳香族炭化水素基の中でも、環形成炭素数6~20の芳香族炭化水素基がより好ましく、環形成炭素数6~12の芳香族炭化水素基が特に好ましい。また、フェニル基、ナフチル基、ターフェニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾ[c]フェナントレニル基、フェナントレニル基が好ましい。 In the general formulas (1) to (20) and (31) to (42), the aromatic hydrocarbon group having 6 to 30 ring carbon atoms includes a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group. More specifically, phenyl group, naphthyl group, anthryl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, pyrenyl group, triphenylenyl group, phenanthrenyl group, fluorenyl group, 9 , 9-dimethylfluorenyl group, benzo [c] phenanthrenyl group, benzo [a] triphenylenyl group, naphtho [1,2-c] phenanthrenyl group, naphtho [1,2-a] triphenylenyl group, dibenzo [a, c ] Triphenylenyl group, benzo [b] fluoranthenyl group, and the like. Among the aromatic hydrocarbon groups, an aromatic hydrocarbon group having 6 to 20 ring carbon atoms is more preferable, and an aromatic hydrocarbon group having 6 to 12 ring carbon atoms is particularly preferable. Further, a phenyl group, a naphthyl group, a terphenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a benzo [c] phenanthrenyl group, and a phenanthrenyl group are preferable.
 前記一般式(1)~(20),(31)~(42)における環形成原子数5~30の芳香族複素環基としては、非縮合芳香族複素環及び縮合芳香族複素環が挙げられ、より具体的には、ピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、チエニル基、およびピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環、ベンゾ[c]ジベンゾフラン環から形成される基が挙げられる。上記複素環基の中でも、環形成原子数5~20の複素環基がより好ましく、環形成原子数5~12の複素環基が特に好ましい。また、ジベンゾフラン環、ジベンゾフラニル環、カルバゾール環が好ましい。 Examples of the aromatic heterocyclic group having 5 to 30 ring atoms in the general formulas (1) to (20) and (31) to (42) include a non-condensed aromatic heterocyclic ring and a condensed aromatic heterocyclic ring. More specifically, pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, Quinoxalinyl group, carbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl group, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, acridine ring, pyrrolidine Ring, dioxane ring, piperidine ring, morpholine ring, piperazine ring, carbazole ring Furan ring, thiophene ring, oxazole ring, oxadiazole ring, benzoxazole ring, thiazole ring, thiadiazole ring, benzothiazole ring, triazole ring, imidazole ring, benzimidazole ring, pyran ring, dibenzofuran ring, benzo [c] dibenzofuran ring The group formed from is mentioned. Among the above heterocyclic groups, a heterocyclic group having 5 to 20 ring atoms is more preferable, and a heterocyclic group having 5 to 12 ring atoms is particularly preferable. Further, a dibenzofuran ring, a dibenzofuranyl ring, and a carbazole ring are preferable.
 前記一般式(1)において、Lとの結合に用いられないR~R10としては、水素原子またはアルキル基等であることがより好ましく、水素原子であることが特に好ましい。
 Rが環形成炭素数10~30の縮合芳香族炭化水素基である場合、より好ましくは、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基及び4-メチル-1-アントリル基である。
In the general formula (1), R 1 to R 10 that are not used for bonding with L 1 are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
When R 9 is a condensed aromatic hydrocarbon group having 10 to 30 ring carbon atoms, more preferably, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group and 4-methyl-1-anthryl group.
 前記一般式(1)において、Lが連結基である場合、置換もしくは無置換の環形成炭素数6~30の(a+1)価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~10の(a+1)価の複素環基、又は置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基および置換もしくは無置換の環形成原子数5~10の複素環基から選ばれる基が2~4個結合して形成される(a+1)価の基が挙げられる。
 環形成炭素数6~30の(a+1)価の芳香族炭化水素基の具体例としては、上述の環形成炭素数6~30の芳香族炭化水素基として挙げられたものを(a+1)価の基としたものが挙げられる。
 また、環形成原子数5~30の(a+1)価の複素環基の具体例としては、上述の環形成原子数5~30の複素環基として挙げられたものを(a+1)価の基としたものが挙げられる。
 Lが環形成炭素数6~30の(a+1)価の芳香族炭化水素基である場合、より好ましい芳香族炭化水素基としては、フェニル基、ビフェニル基、ナフチル基、9,9-ジメチルフルオレニル基が挙げられる。
 Lが環形成原子数6~30の(a+1)価の複素環基である場合、より好ましい複素環基としては、ピリジル基、ピリミジル基、ジベンゾフラニル基、カルバゾリル基が挙げられる。
In the general formula (1), when L 1 is a linking group, a substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring-forming atom number From a 5 to 10 (a + 1) -valent heterocyclic group, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms (A + 1) -valent group formed by combining 2 to 4 groups selected.
Specific examples of the (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms include those listed above for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms as the (a + 1) -valent aromatic hydrocarbon group. Based on this.
Further, specific examples of the (a + 1) -valent heterocyclic group having 5 to 30 ring atoms include the above-described heterocyclic groups having 5 to 30 ring-forming atoms as the (a + 1) -valent group. The thing which was done is mentioned.
When L 1 is an (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, more preferred aromatic hydrocarbon groups are phenyl, biphenyl, naphthyl, 9,9-dimethylfurane. An oleenyl group is mentioned.
When L 1 is an (a + 1) -valent heterocyclic group having 6 to 30 ring atoms, more preferable heterocyclic groups include a pyridyl group, a pyrimidyl group, a dibenzofuranyl group, and a carbazolyl group.
 Lが、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基および置換もしくは無置換の環形成原子数5~10の複素環基から選ばれる基が2~4個結合して形成される(a+1)価の基である場合、芳香族炭化水素基及び複素環基としては、それぞれ上述したものが挙げられる。芳香族炭化水素基としては、置換又は無置換のフェニル基、置換又は無置換のナフチル基、置換又は無置換のフェナントリル基、置換又は無置換のアントリル基、置換又は無置換のピレニル基、置換又は無置換のフルオレニル基から選ばれることが好ましく、複素環基としては、置換又は無置換のピリジニル基、置換又は無置換のピリミジニル基、置換又は無置換のピラジニル基、置換又は無置換のピリダジニル基、置換又は無置換のトリアジニル基、置換又は無置換のジベンゾフラニル基、置換又は無置換のジベンゾチオフェニル基、置換又は無置換のカルバゾリル基から選ばれるのが好ましい。(a+1)価は、2価であることがより好ましい。
 より好ましくは、以下の構造または以下の構造から誘導される(a+1)価の構造が好ましい。
L 1 is a bond of 2 to 4 groups selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms. In the case of the (a + 1) valent group formed as described above, examples of the aromatic hydrocarbon group and the heterocyclic group include those described above. Aromatic hydrocarbon groups include substituted or unsubstituted phenyl groups, substituted or unsubstituted naphthyl groups, substituted or unsubstituted phenanthryl groups, substituted or unsubstituted anthryl groups, substituted or unsubstituted pyrenyl groups, substituted or It is preferably selected from an unsubstituted fluorenyl group, and the heterocyclic group includes a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted pyridazinyl group, It is preferably selected from a substituted or unsubstituted triazinyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, and a substituted or unsubstituted carbazolyl group. The (a + 1) value is more preferably divalent.
More preferably, the following structure or (a + 1) -valent structure derived from the following structure is preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 Lとして、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基および置換もしくは無置換の環形成原子数5~10の複素環基から選ばれる基が2~4個結合して形成されたアントラセン誘導体の好ましい構造としては、例えば、以下のものが挙げられる。 L 1 is a bond of 2 to 4 groups selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 10 ring atoms. Examples of the preferable structure of the anthracene derivative formed as described above include the following.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 前記一般式(2)におけるR111~R114としては、水素原子またはアルキル基であることがより好ましく、水素原子であることが特に好ましい。
 前記一般式(3)および(4)におけるR121~R124、R125~R128、としては、水素原子またはアルキル基であることがより好ましく、水素原子であることが特に好ましい。
R 111 to R 114 in the general formula (2) are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
R 121 to R 124 and R 125 to R 128 in the general formulas (3) and (4) are more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
 前記一般式(2)においてR111及びR112の置換基が前記一般式(4)で表される環を形成する場合、R117及びR118は水素原子であることが好ましく、R117及びR118の置換基が前記一般式(4)で表される環を形成する場合、R111及びR112は水素原子であることが好ましい。一般式(2)のR111とR112、またはR117とR118が水素原子ではなく、置換基を有する場合、立体排除効果が出るため、アモルファス薄膜において隣接する分子との距離が大きくなり、その結果、駆動電圧の上昇につながる可能性がある。したがって、一般式(2)のR111及びR112の置換基が前記一般式(4)で表される環を形成する場合のR117とR118、及び、R117及びR118の置換基が前記一般式(4)で表される環を形成する場合のR111とR112は、水素原子であることが好ましい。 In the general formula (2), when the substituents of R 111 and R 112 form a ring represented by the general formula (4), R 117 and R 118 are preferably hydrogen atoms, and R 117 and R When the substituent of 118 forms the ring represented by the general formula (4), R 111 and R 112 are preferably hydrogen atoms. When R 111 and R 112 of the general formula (2) or R 117 and R 118 have a substituent instead of a hydrogen atom, a steric exclusion effect is exerted, so that the distance between adjacent molecules in the amorphous thin film is increased, As a result, the drive voltage may increase. Therefore, when the substituents of R 111 and R 112 in the general formula (2) form the ring represented by the general formula (4), the substituents of R 117 and R 118 , and R 117 and R 118 are When forming the ring represented by the general formula (4), R 111 and R 112 are preferably hydrogen atoms.
 前記一般式(11)において、Arとして、特に好ましくは、フェニル基、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ビフェニル基である。
 Raとしては、水素原子、アリール基、または複素環基であることが特に好ましい。
In the general formula (11), Ar 1 is particularly preferably a phenyl group, a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, or a biphenyl group.
Ra is particularly preferably a hydrogen atom, an aryl group, or a heterocyclic group.
 本発明において、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、および芳香環を含む)を構成する炭素原子およびヘテロ原子を意味する。
 また、本発明において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
In the present invention, “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring. “Ring-forming atom” means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
In the present invention, the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
 また、「置換もしくは無置換の」という場合における置換基としては、上述のような芳香族炭化水素基、複素環基、アルキル基(直鎖または分岐鎖のアルキル基、シクロアルキル基、ハロアルキル基)、アルコキシ基、アリールオキシ基、アラルキル基、ハロアルコキシ基、アルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基、トリアリールシリル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、およびカルボキシ基が挙げられる。その他、アルケニル基やアルキニル基も挙げられる。
 ここで挙げた置換基の中では、芳香族炭化水素基、複素環基、アルキル基、ハロゲン原子、アルキルシリル基、アリールシリル基、シアノ基が好ましく、さらには、各置換基の説明において好ましいとした具体的な置換基が好ましい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 なお、本明細書において、「置換もしくは無置換の炭素数a~bのXX基」という表現における「炭素数a~b」は、XX基が無置換である場合の炭素数を表すものであり、XX基が置換されている場合の置換基の炭素数は含めない。
 以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
In the case of “substituted or unsubstituted”, examples of the substituent include the aromatic hydrocarbon group, the heterocyclic group, and the alkyl group (straight chain or branched chain alkyl group, cycloalkyl group, haloalkyl group) as described above. , Alkoxy group, aryloxy group, aralkyl group, haloalkoxy group, alkylsilyl group, dialkylarylsilyl group, alkyldiarylsilyl group, triarylsilyl group, halogen atom, cyano group, hydroxyl group, nitro group, and carboxy group Can be mentioned. In addition, an alkenyl group and an alkynyl group are also included.
Among the substituents mentioned here, an aromatic hydrocarbon group, a heterocyclic group, an alkyl group, a halogen atom, an alkylsilyl group, an arylsilyl group, and a cyano group are preferable, and more preferable in the description of each substituent. The specific substituents are preferred.
The term “unsubstituted” in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
In the present specification, the “carbon number ab” in the expression “substituted or unsubstituted XX group having carbon number ab” represents the number of carbons when the XX group is unsubstituted. The number of carbon atoms of the substituent when the XX group is substituted is not included.
In the compound described below or a partial structure thereof, the case of “substituted or unsubstituted” is the same as described above.
 以下に一般式(1)で表されるアントラセン誘導体の具体例を示すが、本発明は、これらの例示化合物に限定されるものではない。 Specific examples of the anthracene derivative represented by the general formula (1) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037

 
Figure JPOXMLDOC01-appb-C000037

 
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 また、前記一般式(1)で表されるアントラセン誘導体の具体例としては、下記一般式(1X)で表される。 Further, a specific example of the anthracene derivative represented by the general formula (1) is represented by the following general formula (1X).
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 前記一般式(1X)におけるAおよびBについては、下記表のとおりである。 In the general formula (1X), A and B are as shown in the following table.
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
 なお、上記表中の各欄に示されたAおよびBの構造が有する結合の先に示された下記記号(下記(10X)を参照)は、それぞれアントラセン環への結合位置を示している。 In addition, the following symbols (see (10X) below) shown at the tip of the bonds of the structures A and B shown in the respective columns in the above table indicate the bonding positions to the anthracene ring.
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 したがって、例えば、上記表の左列の最上段の欄に示されたAおよびBの構造を備えたアントラセン誘導体は、下記式で表される。 Therefore, for example, anthracene derivatives having the structures A and B shown in the uppermost column of the left column of the above table are represented by the following formula.
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 その他の前記一般式(1X)で表されるアントラセン誘導体も下記表中に記載されたAおよびBの構造について、前述と同様に適用される。 Other anthracene derivatives represented by the general formula (1X) are also applied to the structures of A and B described in the following table in the same manner as described above.
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
・ドーパント材料
 本実施形態の有機EL素子において、発光層には、前記一般式(1)で表されるアントラセン誘導体とともに、下記一般式(21)で表されるフルオランテン誘導体が含有される。そして、本実施形態の有機EL素子では、下記一般式(21)で表されるフルオランテン誘導体をドーパント材料として用いることができる。
-Dopant material In the organic EL element of this embodiment, the light emitting layer contains a fluoranthene derivative represented by the following general formula (21) together with the anthracene derivative represented by the general formula (1). And in the organic EL element of this embodiment, the fluoranthene derivative represented by following General formula (21) can be used as a dopant material.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 前記一般式(21)において、R21、R22、R25、R26及びR28~R31は、それぞれ独立に、
  水素原子、
  ヒドロキシル基、
  シアノ基、
  ニトロ基、
  カルボキシル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールアミノ基、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および
  置換もしくは無置換の環形成原子数5~30の複素環基からなる第一群から選ばれる。
In the general formula (21), R 21 , R 22 , R 25 , R 26 and R 28 to R 31 are each independently
Hydrogen atom,
Hydroxyl group,
A cyano group,
Nitro group,
Carboxyl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms,
A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms,
It is selected from the first group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
 前記一般式(21)において、R23は、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子を除いて構成される第二群から選ばれる。すなわち、当該第二群は、
  ヒドロキシル基、
  シアノ基、
  ニトロ基、
  カルボキシル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールアミノ基、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および
  置換もしくは無置換の環形成原子数5~30の複素環基からなる。
In the general formula (21), R 23 is selected from the second group constituted by removing hydrogen atoms from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. It is. That is, the second group is
Hydroxyl group,
A cyano group,
Nitro group,
Carboxyl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms,
A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms,
It consists of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
 前記一般式(21)において、R24は、R21、R22、R25、R26及びR28~R31について示した前記第一群から芳香族炭化水素基および複素環基を除いて構成される第三群から選ばれる。すなわち、当該第三群は、
  水素原子、
  ヒドロキシル基、
  シアノ基、
  ニトロ基、
  カルボキシル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、および
  置換もしくは無置換の環形成炭素数6~30のアリールアミノ基からなる。
In the general formula (21), R 24 is constituted by removing an aromatic hydrocarbon group and a heterocyclic group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. Selected from the third group. That is, the third group is
Hydrogen atom,
Hydroxyl group,
A cyano group,
Nitro group,
Carboxyl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
It consists of a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms and a substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms.
 前記一般式(21)において、前記R27及びR32は、それぞれ独立に、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基およびシリル基を除いて構成される第四群から選ばれる。すなわち、当該第四群は、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールアミノ基、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および
  置換もしくは無置換の環形成原子数5~30の複素環基からなる。
In the general formula (21), R 27 and R 32 are each independently a hydrogen atom or a hydroxyl group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. , A cyano group, a nitro group, a carboxyl group, and a silyl group. That is, the fourth group is
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms,
A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms,
It consists of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
 また、前記一般式(21)において、R21とR22、R22とR23、R25とR26、R26とR27、R27とR28、R28とR29、R29とR30、R30とR31、およびR31とR32は、互いに結合して飽和もしくは不飽和の環を形成する場合と、飽和もしくは不飽和の環を形成しない場合とがあり、当該環は、置換もしくは無置換である。
 ただし、前記一般式(21)において、R21~R23およびR25~R32が、ベンゾ[k]フルオランテンから誘導される1価の基である場合を除く。
 また、前記一般式(21)において、R23とR24とは、互いに異なる。
 また、前記一般式(21)において、R23およびR24のうちいずれかが、α-ナフチル基である場合を除く。
In the general formula (21), R 21 and R 22 , R 22 and R 23 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , and R 31 and R 32 may be bonded to each other to form a saturated or unsaturated ring, or may not form a saturated or unsaturated ring. Substituted or unsubstituted.
However, in the general formula (21), the case where R 21 to R 23 and R 25 to R 32 are monovalent groups derived from benzo [k] fluoranthene is excluded.
In the general formula (21), R 23 and R 24 are different from each other.
In the general formula (21), the case where any of R 23 and R 24 is an α-naphthyl group is excluded.
 前記一般式(21)のR24が、水素原子であることが好ましい。
 前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。さらに、前記一般式(21)のR27およびR32が置換もしくは無置換のフェニル基であることが好ましい。
R 24 in the general formula (21) is preferably a hydrogen atom.
R 27 and R 32 in the general formula (21) are preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. Further, it is preferable that the R 27 and R 32 in the general formula (21) is a substituted or unsubstituted phenyl group.
 または、前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、前記一般式(21)のR23、R27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。 Alternatively, R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 23 , R 27 and R 32 in the general formula (21) are substituted. Alternatively, an unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms is preferable.
 前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、前記一般式(21)のR27およびR32が置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、前記一般式(21)のR23が、-Ar21-Ar22であり、Ar21およびAr22は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
 この場合、前記Ar21又は前記Ar22が、シアノ基を置換基として有する芳香族炭化水素基であることが好ましい。
R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 27 and R 32 in the general formula (21) are substituted or unsubstituted. An aromatic hydrocarbon group having 6 to 30 carbon atoms, wherein R 23 in the general formula (21) is —Ar 21 —Ar 22 , and Ar 21 and Ar 22 are each independently substituted or unsubstituted. An aromatic hydrocarbon group having 6 to 30 ring carbon atoms is preferable.
In this case, it is preferable that Ar 21 or Ar 22 is an aromatic hydrocarbon group having a cyano group as a substituent.
 または、前記一般式(21)のR21~R22、R24~R26およびR28~R31が、水素原子であり、前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、前記一般式(21)のR23が、-Ar21-Ar22-Ar23であり、Ar21、Ar22およびAr23は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。
 この場合、前記Ar21、前記Ar22又は前記Ar23が、シアノ基を置換基として有する芳香族炭化水素基であることが好ましい。
Alternatively, R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms, and R 27 and R 32 in the general formula (21) are substituted or not. A substituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, wherein R 23 in the general formula (21) is —Ar 21 —Ar 22 —Ar 23 , and Ar 21 , Ar 22 and Ar 23 are Each independently is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
In this case, it is preferable that the Ar 21 , the Ar 22 or the Ar 23 is an aromatic hydrocarbon group having a cyano group as a substituent.
 前記一般式(21)のR21~R32について選択される第一群~第四群に列挙された基等の具体例については、前記一般式(1)~(20),(31)~(42)における説明で例示したものおよび以下に説明するものが挙げられる。 Specific examples of the groups listed in the first to fourth groups selected for R 21 to R 32 of the general formula (21) include the general formulas (1) to (20), (31) to Examples illustrated in the description of (42) and those described below can be given.
 炭素数7~30のアラルキル基は、-R-Rと表される。このRの例として、上記炭素数1~30のアルキル基に対応するアルキレン基が挙げられる。このRの例として、上記環形成炭素数6~30の芳香族炭化水素基の例が挙げられる。このアラルキル基において、芳香族炭化水素基部分は炭素数が6~30、好ましくは6~20、より好ましくは6~12である。また、このアラルキル基において、アルキル基部分は炭素数が1~30、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6である。このアラルキル基としては、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられる。 The aralkyl group having 7 to 30 carbon atoms is represented by —R X —R Y. Examples of this R X include an alkylene group corresponding to the alkyl group having 1 to 30 carbon atoms. Examples of this R Y include the above aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. In this aralkyl group, the aromatic hydrocarbon group moiety has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. In this aralkyl group, the alkyl group moiety has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms. Examples of the aralkyl group include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl. Group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group, 1-β- Naphthylethyl group, 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, 2-β-naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p-methylbenzyl group, m -Methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromine Benzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group P-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o -Cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group.
 シリル基としては、無置換のシリル基、炭素数1~30のアルキルシリル基および炭素数6~60のアリールシリル基が挙げられる。 Examples of the silyl group include an unsubstituted silyl group, an alkylsilyl group having 1 to 30 carbon atoms, and an arylsilyl group having 6 to 60 carbon atoms.
 炭素数1~30のアルキルシリル基としては、上記炭素数1~20のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリイソプロピルシリル基等が挙げられる。3つのアルキル基は、それぞれ同一でも異なっていてもよい。
 環形成炭素数6~60のアリールシリル基としては、アリールシリル基、アルキルアリールシリル基、ジアルキルアリールシリル基、ジアリールシリル基、アルキルジアリールシリル基、トリアリールシリル基が挙げられる。複数のアリール基同士、またはアルキル基同士は、同一でも異なっていてもよい。
Examples of the alkylsilyl group having 1 to 30 carbon atoms include a trialkylsilyl group having an alkyl group exemplified as the alkyl group having 1 to 20 carbon atoms, specifically, a trimethylsilyl group, a triethylsilyl group, a tri-n group. -Butylsilyl group, tri-n-octylsilyl group, triisobutylsilyl group, dimethylethylsilyl group, dimethylisopropylsilyl group, dimethyl-n-propylsilyl group, dimethyl-n-butylsilyl group, dimethyl-t-butylsilyl group, diethyl Examples include isopropylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triisopropylsilyl group and the like. The three alkyl groups may be the same or different from each other.
Examples of the arylsilyl group having 6 to 60 ring carbon atoms include arylsilyl group, alkylarylsilyl group, dialkylarylsilyl group, diarylsilyl group, alkyldiarylsilyl group, and triarylsilyl group. A plurality of aryl groups or alkyl groups may be the same or different.
 ジアルキルアリールシリル基は、例えば、上記炭素数1~20のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6~30の芳香族炭化水素基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8~30であることが好ましい。2つのアルキル基は、それぞれ同一でも異なっていてもよい。
 アルキルジアリールシリル基は、例えば、上記炭素数1~20のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6~30の芳香族炭化水素基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13~30であることが好ましい。2つのアリール基は、それぞれ同一でも異なっていてもよい。
 トリアリールシリル基は、例えば、上記環形成炭素数6~30の芳香族炭化水素基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18~30であることが好ましい。3つのアリール基は、それぞれ同一でも異なっていてもよい。
 このようなアリールシリル基としては、例えば、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニル-t-ブチルシリル基、トリフェニルシリル基が挙げられる。
The dialkylarylsilyl group includes, for example, two alkyl groups exemplified as the alkyl group having 1 to 20 carbon atoms and one dialkylarylsilyl group having one aromatic hydrocarbon group having 6 to 30 ring carbon atoms. Is mentioned. The carbon number of the dialkylarylsilyl group is preferably 8-30. The two alkyl groups may be the same or different.
The alkyldiarylsilyl group is, for example, an alkyldiarylsilyl group having one alkyl group exemplified as the alkyl group having 1 to 20 carbon atoms and two aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. Is mentioned. The alkyldiarylsilyl group preferably has 13 to 30 carbon atoms. The two aryl groups may be the same or different.
Examples of the triarylsilyl group include a triarylsilyl group having three aromatic hydrocarbon groups having 6 to 30 ring carbon atoms. The carbon number of the triarylsilyl group is preferably 18-30. The three aryl groups may be the same or different from each other.
Examples of such an arylsilyl group include a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyl-t-butylsilyl group, and a triphenylsilyl group.
 アルコキシカルボニル基は-COOY’と表され、Y’の例としては前記アルキル基と同様のものが挙げられる。
 アリールアミノ基は-NArArと表され、ArおよびArの具体例としては、それぞれ独立に前記環形成炭素数6~30の芳香族炭化水素基で説明した基と同様である。ArおよびArの一方は水素原子であってもよい。
The alkoxycarbonyl group is represented as —COOY ′, and examples of Y ′ include the same as the alkyl group.
The arylamino group is represented by —NAr 5 Ar 6, and specific examples of Ar 5 and Ar 6 are the same as those described for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms. One of Ar 5 and Ar 6 may be a hydrogen atom.
 以下に前記一般式(21)で表されるフルオランテン誘導体の具体例を示すが、本発明は、これらの例示化合物に限定されるものではない。 Specific examples of the fluoranthene derivative represented by the general formula (21) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
 ドーパント材料の発光層における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1質量%以上70質量%以下が好ましく、1質量%以上30質量%以下がより好ましい。ドーパント材料の含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。 There is no restriction | limiting in particular in content in the light emitting layer of dopant material, Although it can select suitably according to the objective, For example, 0.1 to 70 mass% is preferable, and 1 to 30 mass% is preferable. Is more preferable. When the content of the dopant material is 0.1% by mass or more, sufficient light emission can be obtained, and when it is 70% by mass or less, concentration quenching can be avoided.
 本実施形態では、発光層に含まれるドーパント材料としては、発光色は特に限定されないが、主ピーク波長が480nm以下の青色発光を示す蛍光発光性のドーパント材料であることが好ましい。主ピーク波長とは、濃度10-6モル/リットル以上10-5モル/リットル以下のトルエン溶液中で測定した発光スペクトルにおける発光強度が最大となる発光スペクトルのピーク波長をいう。
 このような主ピーク波長のドーパント材料を、前記一般式(1)で表されるホスト材料にドープして発光層を構成することにより、有機EL素子は、高効率となる。
In the present embodiment, the emission color of the dopant material contained in the light emitting layer is not particularly limited, but is preferably a fluorescent light emitting dopant material that emits blue light having a main peak wavelength of 480 nm or less. The main peak wavelength refers to the peak wavelength of the emission spectrum that maximizes the emission intensity in the emission spectrum measured in a toluene solution having a concentration of 10 −6 mol / liter to 10 −5 mol / liter.
By doping the dopant material having such a main peak wavelength into the host material represented by the general formula (1) to form a light emitting layer, the organic EL element becomes highly efficient.
・ホスト材料およびドーパント材料の組み合わせ
 本実施形態では、ホスト材料として、前記一般式(1)のZが前記一般式(5)~(10)で表されるアントラセン誘導体を用いることが好ましく、特にZに前記一般式(8)~(10)で表されるナフトベンゾフランを用いることが好ましい。アントラセンにナフトベンゾフランを置換した場合、ナフトベンゾフランの平面性から、発光層における分子間のパッキングが向上し、電荷移動度が高くなることが予想される。その場合、電荷が発光層から漏れ出し、効率および寿命が低下するおそれがある。よって、電子もしくは正孔トラップ性を有し、かつ縮合環構造を有するドーパントを使用することにより、発光層内にキャリアを閉じ込め、高効率かつ長寿命を達成できると考えられる。そこで、電子トラップ性を有し、かつ縮合環構造を有する一般式(21)で表される化合物(ベンゾフルオランテン誘導体)をドーパント材料として使用することにより、発光層内に電荷を閉じ込めることができ、高効率化および長寿命化を達成できると考えられる。
-Combination of host material and dopant material In this embodiment, it is preferable to use an anthracene derivative in which Z 1 in the general formula (1) is represented by the general formulas (5) to (10) as the host material. It is preferable to use naphthobenzofuran represented by the general formulas (8) to (10) as Z 1 . When naphthobenzofuran is substituted for anthracene, the intermolecular packing in the light-emitting layer is improved and the charge mobility is expected to be high due to the planarity of naphthobenzofuran. In that case, electric charges may leak from the light emitting layer, and efficiency and lifetime may be reduced. Therefore, it is considered that high efficiency and long life can be achieved by confining carriers in the light emitting layer by using a dopant having an electron or hole trapping property and a condensed ring structure. Therefore, by using a compound (benzofluoranthene derivative) represented by the general formula (21) having an electron trapping property and having a condensed ring structure as a dopant material, it is possible to confine charges in the light emitting layer. It is considered that high efficiency and long life can be achieved.
(正孔注入・輸送層)
 正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが小さい化合物が用いられる。
 正孔注入・輸送層を形成する材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、例えば、芳香族アミン化合物が好適に用いられる。
(Hole injection / transport layer)
The hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and a compound having a high hole mobility and a low ionization energy is used.
As a material for forming the hole injecting / transporting layer, a material that transports holes to the light emitting layer with lower electric field strength is preferable. For example, an aromatic amine compound is preferably used.
(電子注入・輸送層)
 電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい化合物が用いられる。
 電子注入・輸送層に用いられる化合物としては、例えば、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する複素環化合物が好ましい。
(Electron injection / transport layer)
The electron injection / transport layer is a layer that assists injection of electrons into the light emitting layer and transports it to the light emitting region, and a compound having a high electron mobility is used.
As the compound used in the electron injecting / transporting layer, for example, an aromatic heterocyclic compound containing one or more hetero atoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable. As the nitrogen-containing ring derivative, a heterocyclic compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton is preferable.
 本発明の有機EL素子において、発光層以外の有機層には、上述の例示した化合物以外に、従来の有機EL素子において使用される材料の中から任意の化合物を選択して用いることができる。 In the organic EL device of the present invention, an organic compound other than the light emitting layer can be used by selecting any compound from the materials used in the conventional organic EL device in addition to the compounds exemplified above.
(基板)
 本実施形態の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。
 またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(substrate)
The organic EL element of this embodiment is produced on a translucent substrate. Here, the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
Specifically, a glass plate, a polymer plate, etc. are mentioned.
Examples of the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
Examples of the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
(陽極および陰極)
 有機EL素子の陽極は、正孔を正孔注入層、正孔輸送層または発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。
 陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。
 陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
 本実施形態のように、発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□(オーム/スクエア)以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(Anode and cathode)
The anode of the organic EL element plays a role of injecting holes into the hole injection layer, the hole transport layer, or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
When light emitted from the light emitting layer is extracted from the anode as in the present embodiment, it is preferable that the light transmittance in the visible region of the anode be greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ (ohm / square) or less. The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
 陰極としては、電子注入層、電子輸送層または発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。
 陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。
 陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、陰極側から、発光を取り出す態様を採用することもできる。また、陰極側から、発光層からの発光を取り出す態様を採用することもできる。発光層からの発光を陰極側から取り出す場合、陰極の可視領域の光の透過率を10%より大きくすることが好ましい。
 陰極のシート抵抗は、数百Ω/□以下が好ましい。
 陰極の層厚は材料にもよるが、通常10nm以上1μm以下、好ましくは50nm以上200nm以下の範囲で選択される。
As the cathode, a material having a small work function is preferable for the purpose of injecting electrons into the electron injection layer, the electron transport layer, or the light emitting layer.
The cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
Similarly to the anode, the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, the aspect which takes out light emission from a cathode side is also employable. Moreover, the aspect which takes out light emission from a light emitting layer from a cathode side is also employable. When light emitted from the light emitting layer is extracted from the cathode side, it is preferable that the light transmittance in the visible region of the cathode be greater than 10%.
The sheet resistance of the cathode is preferably several hundred Ω / □ or less.
The layer thickness of the cathode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 50 nm to 200 nm.
(有機EL素子の各層の形成方法)
 本実施形態の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本実施形態の有機EL素子に用いる有機層は、真空蒸着法、分子線蒸着法(MBE法、MBE; Molecular Beam Epitaxy)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
(Method for forming each layer of organic EL element)
The formation method of each layer of the organic EL element of this embodiment is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used. The organic layer used in the organic EL device of the present embodiment includes a vacuum evaporation method, a molecular beam evaporation method (MBE method, MBE; Molecular Beam Epitaxy), a solution dipping method in a solvent, a spin coating method, a casting method, and a bar coating. It can be formed by a known method using a coating method such as a method or a roll coating method.
(有機EL素子の各層の膜厚)
 発光層の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。発光層の膜厚を5nm以上とすることで、発光層を形成し易くなり、色度を調整し易くなる。発光層の膜厚を50nm以下とすることで、駆動電圧の上昇を抑制できる。
 その他の各有機層の膜厚は特に制限されないが、通常は数nmから1μmの範囲が好ましい。このような膜厚範囲とすることで、膜厚が薄すぎることに起因するピンホール等の欠陥を防止するとともに、膜厚が厚すぎることに起因する駆動電圧の上昇を抑制し、効率の悪化を防止できる。
(Thickness of each layer of organic EL element)
The thickness of the light emitting layer is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm. By setting the thickness of the light emitting layer to 5 nm or more, it becomes easy to form the light emitting layer and adjust the chromaticity. By setting the film thickness of the light emitting layer to 50 nm or less, an increase in driving voltage can be suppressed.
The film thickness of each of the other organic layers is not particularly limited, but is usually preferably in the range of several nm to 1 μm. By making such a film thickness range, defects such as pinholes caused by the film thickness being too thin are prevented, and an increase in driving voltage caused by the film thickness being too thick is suppressed, resulting in deterioration of efficiency. Can be prevented.
[実施形態の変形]
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれるものである。
[Modification of Embodiment]
In addition, this invention is not limited to the above-mentioned embodiment, The change in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.
 発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が、前記一般式(1)で表されるアントラセン誘導体と前記一般式(21)で表されるフルオランテン誘導体を含有していればよく、その他の発光層が蛍光発光型の発光層であっても、燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
The light emitting layer is not limited to one layer, and a plurality of light emitting layers may be stacked. When the organic EL device has a plurality of light emitting layers, at least one light emitting layer contains an anthracene derivative represented by the general formula (1) and a fluoranthene derivative represented by the general formula (21). In addition, the other light emitting layer may be a fluorescent light emitting layer or a phosphorescent light emitting layer.
In addition, when the organic EL element has a plurality of light emitting layers, these light emitting layers may be provided adjacent to each other, or a so-called tandem organic material in which a plurality of light emitting units are stacked via an intermediate layer. It may be an EL element.
 本発明では、前記発光層が電荷注入補助剤を含有していることも好ましい。
 エネルギーギャップが広いホスト材料を用いて発光層を形成した場合、ホスト材料のイオン化ポテンシャル(Ip)と正孔注入・輸送層等のIpとの差が大きくなり、発光層への正孔の注入が困難となり、十分な輝度を得るための駆動電圧が上昇するおそれがある。
 このような場合、発光層に、正孔注入・輸送性の電荷注入補助剤を含有させることで、発光層への正孔注入を容易にし、駆動電圧を低下させることができる。
In the present invention, the light emitting layer preferably contains a charge injection auxiliary agent.
When a light emitting layer is formed using a host material having a wide energy gap, the difference between the ionization potential (Ip) of the host material and Ip of the hole injection / transport layer, etc. increases, and holes are injected into the light emitting layer. This may make it difficult to increase the driving voltage for obtaining sufficient luminance.
In such a case, by adding a hole injection / transport charge injection auxiliary agent to the light emitting layer, hole injection into the light emitting layer can be facilitated and the driving voltage can be lowered.
 電荷注入補助剤としては、例えば、一般的な正孔注入・輸送材料等が利用できる。
 具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
As the charge injection auxiliary agent, for example, a general hole injection / transport material or the like can be used.
Specific examples include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, fluorenone derivatives, hydrazone derivatives, stilbenes. Derivatives, silazane derivatives, polysilane-based, aniline-based copolymers, conductive polymer oligomers (particularly thiophene oligomers), and the like can be given.
 正孔注入性の材料としては前記のものを挙げることができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物が好ましい。 Examples of the hole-injecting material include those described above, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds are preferred.
 また、2個の縮合芳香族環を分子内に有する、例えば、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(以下NPDと略記する)、またトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を挙げることができる。
 また、ヘキサアザトリフェニレン誘導体等も正孔注入性の材料として好適に用いることができる。
 また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。
In addition, for example, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (hereinafter abbreviated as NPD) having two condensed aromatic rings in the molecule, or triphenylamine 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA), etc., in which three units are connected in a starburst type. it can.
A hexaazatriphenylene derivative or the like can also be suitably used as the hole injecting material.
In addition, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
 本発明の有機EL素子は、テレビ、携帯電話、若しくはパーソナルコンピュータ等の表示装置、又は照明、若しくは車両用灯具の発光装置等の電子機器として好適に使用できる。 The organic EL element of the present invention can be suitably used as an electronic device such as a display device such as a television, a mobile phone, or a personal computer, or a light emitting device for lighting or a vehicle lamp.
 以下、本発明に係る実施例を説明するが、本発明はこれらの実施例によって限定されない。
 使用した化合物は、以下の通りである。
Hereinafter, examples according to the present invention will be described, but the present invention is not limited to these examples.
The compounds used are as follows.
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HA-1を蒸着し、膜厚5nmの化合物HA-1膜を形成した。このHA-1膜は、正孔注入層として機能する。
 このHA-1膜の成膜に続けて、化合物HT-1を蒸着し、HA-1膜上に膜厚95nmのHT-1膜を成膜した。このHT-1膜は、正孔輸送層として機能する。
 さらにHT-1膜上に、化合物BH-1(ホスト材料)および化合物BD-1(ドーパント材料)を共蒸着し、膜厚25nmの発光層を成膜した。この発光層において、ホスト材料濃度は、95質量%とし、ドーパント材料濃度は、5質量%とした。
 この発光層上に電子輸送性化合物であるET-1を蒸着し、膜厚25nmの電子輸送層を形成した。
 この電子輸送層上にLiFを蒸着して、膜厚1nmのLiF層を形成した。
 このLiF膜上に金属Alを蒸着して、膜厚80nmの金属Al陰極を形成した。
(Example 1)
A 25 mm × 75 mm × 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The film thickness of ITO was 130 nm.
A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and compound HA-1 is first deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode. A compound HA-1 film having a thickness of 5 nm was formed. This HA-1 film functions as a hole injection layer.
Following the formation of the HA-1 film, the compound HT-1 was vapor-deposited to form a 95 nm-thick HT-1 film on the HA-1 film. This HT-1 film functions as a hole transport layer.
Further, Compound BH-1 (host material) and Compound BD-1 (dopant material) were co-evaporated on the HT-1 film to form a light emitting layer with a thickness of 25 nm. In this light emitting layer, the host material concentration was 95% by mass, and the dopant material concentration was 5% by mass.
On this light emitting layer, ET-1 which is an electron transporting compound was vapor-deposited to form an electron transporting layer having a film thickness of 25 nm.
LiF was vapor-deposited on this electron transport layer to form a 1-nm thick LiF layer.
Metal Al was vapor-deposited on this LiF film to form a metal Al cathode having a thickness of 80 nm.
(比較例1~3)
 比較例1~3の有機EL素子は、それぞれ表11に示すように、発光層における材料を変更し、それ以外については実施例1と同様にして作製した。
(Comparative Examples 1 to 3)
The organic EL elements of Comparative Examples 1 to 3 were produced in the same manner as in Example 1 except that the materials in the light emitting layer were changed as shown in Table 11.
〔有機EL素子の評価〕
 作製した有機EL素子について、電流密度が10mA/cmとなるように電圧を印加し、駆動電圧、CIE1931色度、電流効率L/J、外部量子効率EQE、および主ピーク波長λの評価を行った。結果を表11に示す。CIE1931色度および主ピーク波長λ以外の各評価項目については、比較例1の各評価項目の値に対する実施例1および比較例1~3の各評価項目の値の比を算出して得た値である。
[Evaluation of organic EL elements]
A voltage is applied to the produced organic EL element so that the current density is 10 mA / cm 2, and the drive voltage, CIE 1931 chromaticity, current efficiency L / J, external quantum efficiency EQE, and main peak wavelength λ p are evaluated. went. The results are shown in Table 11. For each evaluation items other than CIE1931 chromaticity and the main peak wavelength lambda p, obtained by calculating the ratio of the value of each evaluation item in Example 1 and Comparative Examples 1 to 3 with respect to the value of each evaluation item of Comparative Example 1 Value.
・駆動電圧
 電流密度が10mA/cmとなるようにITO透明電極と金属Al陰極との間に通電したときの電圧(単位:V)を計測した。
-Driving voltage The voltage (unit: V) when electricity was passed between the ITO transparent electrode and the metal Al cathode so that the current density was 10 mA / cm 2 was measured.
・CIE1931色度
 電流密度が10mA/cmとなるように素子に電圧を印加した時のCIE1931色度座標(x、y)を分光放射輝度計CS-1000(コニカミノルタ社製)で計測した。
CIE1931 chromaticity CIE1931 chromaticity coordinates (x, y) when a voltage was applied to the device so that the current density was 10 mA / cm 2 were measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta).
・電流効率L/J
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを上記分光放射輝度計で計測し、得られた分光放射輝度スペクトルから、電流効率(単位:cd/A)を算出した。
・ Current efficiency L / J
The spectral radiance spectrum when a voltage was applied to the device so that the current density was 10 mA / cm 2 was measured with the above spectral radiance meter, and the current efficiency (unit: cd / A) was calculated from the obtained spectral radiance spectrum. ) Was calculated.
・外部量子効率EQE
 得られた上記分光放射輝度スペクトルから、ランバシアン放射を行なったと仮定し外部量子効率EQE(単位:%)を算出した。
・主ピーク波長λ
 得られた上記分光放射輝度スペクトルから主ピーク波長λ(単位:nm)を求めた。
・ External quantum efficiency EQE
From the obtained spectral radiance spectrum, the external quantum efficiency EQE (unit:%) was calculated on the assumption that Lambtian radiation was performed.
・ Main peak wavelength λ p
The main peak wavelength λ p (unit: nm) was determined from the obtained spectral radiance spectrum.
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000138
 上記実施例1は、前記一般式(1)で表されるアントラセン誘導体をホスト材料として用い、前記一般式(21)で表されるフルオランテン誘導体をドーパント材料として用いた有機EL素子であり、本願以外のホスト材料およびドーパント材料を用いた比較例1に対して、より低電圧であり、かつ、効率も大幅に向上している。比較例2は、実施例1と同じホスト材料を用いた有機EL素子であり、比較例3は、前記一般式(1)で表されるホスト材料以外の材料を用いた有機EL素子である。比較例2,3に比べても、実施例1の有機EL素子は、低電圧を維持しつつ、効率が向上している。特に、比較例2と比べると、実施例1は、同等の低電圧駆動でありながら、効率が飛躍的に向上していることがわかる。 Example 1 is an organic EL device using the anthracene derivative represented by the general formula (1) as a host material and the fluoranthene derivative represented by the general formula (21) as a dopant material. Compared to Comparative Example 1 using the host material and dopant material, the voltage is lower and the efficiency is greatly improved. Comparative Example 2 is an organic EL element using the same host material as in Example 1, and Comparative Example 3 is an organic EL element using a material other than the host material represented by the general formula (1). Compared to Comparative Examples 2 and 3, the organic EL element of Example 1 has improved efficiency while maintaining a low voltage. In particular, compared with Comparative Example 2, it can be seen that Example 1 has dramatically improved efficiency while being driven at the same low voltage.
 本発明の有機EL素子は、表示装置や照明装置における発光素子として利用できる。 The organic EL element of the present invention can be used as a light emitting element in a display device or a lighting device.
  1…有機EL素子
  2…基板
  3…陽極
  4…陰極
  5…発光層
  6…正孔輸送層
  7…電子輸送層
  10…有機層
DESCRIPTION OF SYMBOLS 1 ... Organic EL element 2 ... Substrate 3 ... Anode 4 ... Cathode 5 ... Light emitting layer 6 ... Hole transport layer 7 ... Electron transport layer 10 ... Organic layer

Claims (20)

  1.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された、少なくとも発光層を含む1層以上の有機層と、
    を有し、
     前記発光層が、下記一般式(1)で表されるアントラセン誘導体と、下記一般式(21)で表されるフルオランテン誘導体と、を含む
     ことを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    [前記一般式(1)中、R~R10のいずれかc個はLとの結合に用いられる単結合であり、
     Lとの結合に用いられないR~R10は、それぞれ、
     水素原子、
     ハロゲン原子、
     ヒドロキシル基、
     シアノ基、
     置換もしくは無置換のアミノ基、
     置換もしくは無置換の炭素数1~20のアルキル基、
     置換もしくは無置換の炭素数1~20のアルコキシ基、
     置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
     置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
     置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は
     置換もしくは無置換の環形成原子数5~30の複素環基のいずれかから選ばれる。
     Lは単結合又は連結基のいずれかから選ばれ、
     前記連結基は、
    置換もしくは無置換の環形成炭素数6~30の(a+1)価の芳香族炭化水素基、
     置換もしくは無置換の環形成原子数5~30の(a+1)価の複素環基、または、
     前記置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基及び前記置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基が2~4個結合して形成される(a+1)価の基である。
     a、b、cはそれぞれ1~4の整数を示す。
     Zは下記一般式(2)で表される。]
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(2)において、Xは酸素原子又は硫黄原子のいずれかから選ばれる。
     R111~R118は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
     ただし、R111とR112、R112とR113、R113とR114、R115とR116、R116とR117またはR117とR118のうち少なくとも1組の隣接する2つの置換基は、互いに結合して、下記一般式(3)又は(4)で表される環を形成する。]
    Figure JPOXMLDOC01-appb-C000003

    [前記一般式(3)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
     前記一般式(4)において、y、yは、前記一般式(2)のR111~R118から選ばれる結合位置を示す。
     R121~R124、R125~R128はそれぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
     Xは酸素原子又は硫黄原子のいずれかから選ばれる。
     前記一般式(2)において環を形成しないR111~R118および前記一般式(3)のR121~R124のいずれか1つ、または前記一般式(2)において環を形成しないR111~R118および前記一般式(4)のR125~R128のいずれか1つは単結合であり、前記一般式(1)のLとの結合に用いられる。]
    Figure JPOXMLDOC01-appb-C000004

    [前記一般式(21)において、R21、R22、R25、R26及びR28~R31は、それぞれ独立に、
      水素原子、
      ヒドロキシル基、
      シアノ基、
      ニトロ基、
      カルボキシル基、
      置換もしくは無置換のシリル基、
      置換もしくは無置換の炭素数1~20のアルキル基、
      置換もしくは無置換の炭素数1~20のアルコキシ基、
      置換もしくは無置換の炭素数7~30のアラルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、
      置換もしくは無置換の環形成炭素数6~30のアリールアミノ基、
      置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および
      置換もしくは無置換の環形成原子数5~30の複素環基からなる第一群から選ばれる。
     R23は、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子を除いて構成される第二群から選ばれる。
     R24は、R21、R22、R25、R26及びR28~R31について示した前記第一群から芳香族炭化水素基および複素環基を除いて構成される第三群から選ばれる。
     前記R27及びR32は、それぞれ独立に、R21、R22、R25、R26及びR28~R31について示した前記第一群から水素原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基およびシリル基を除いて構成される第四群から選ばれる。
     また、R21とR22、R22とR23、R25とR26、R26とR27、R27とR28、R28とR29、R29とR30、R30とR31、およびR31とR32は、互いに結合して飽和もしくは不飽和の環を形成する場合と、飽和もしくは不飽和の環を形成しない場合とがあり、当該環は、置換もしくは無置換である。
     R21~R23およびR25~R32が、ベンゾ[k]フルオランテンから誘導される1価の基である場合を除く。
     R23とR24とは、互いに異なる。
     R23およびR24のうちいずれかが、α-ナフチル基である場合を除く。]
    A cathode,
    The anode,
    One or more organic layers including at least a light-emitting layer, disposed between the cathode and the anode;
    Have
    The said light emitting layer contains the anthracene derivative represented by following General formula (1), and the fluoranthene derivative represented by following General formula (21). The organic electroluminescent element characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001

    [In the general formula (1), any one of R 1 to R 10 is a single bond used for bonding to L 1 ;
    R 1 to R 10 not used for bonding to L 1 are respectively
    Hydrogen atom,
    A halogen atom,
    Hydroxyl group,
    A cyano group,
    A substituted or unsubstituted amino group,
    A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
    A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
    A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
    It is selected from either a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
    L 1 is selected from either a single bond or a linking group;
    The linking group is
    A substituted or unsubstituted (a + 1) -valent aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted (a + 1) -valent heterocyclic group having 5 to 30 ring atoms, or
    Formed by bonding 2 to 4 groups selected from the above substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and the above substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. (A + 1) valent group.
    a, b and c each represents an integer of 1 to 4;
    Z 1 is represented by the following general formula (2). ]
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (2), X 1 is selected from either oxygen atom or sulfur atom.
    R 111 to R 118 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
    However, at least one pair of adjacent substituents of R 111 and R 112 , R 112 and R 113 , R 113 and R 114 , R 115 and R 116 , R 116 and R 117, or R 117 and R 118 is To form a ring represented by the following general formula (3) or (4). ]
    Figure JPOXMLDOC01-appb-C000003

    [In the general formula (3), y 1 and y 2 represent bonding positions selected from R 111 to R 118 in the general formula (2).
    In the general formula (4), y 3 and y 4 represent bonding positions selected from R 111 to R 118 in the general formula (2).
    R 121 to R 124 and R 125 to R 128 have the same meanings as R 1 to R 10 that are not used for bonding to L 1 in the general formula (1).
    X 2 is selected from either an oxygen atom or a sulfur atom.
    Any one of R 111 to R 118 that does not form a ring in the general formula (2) and R 121 to R 124 of the general formula (3), or R 111 to that does not form a ring in the general formula (2). Any one of R 118 and R 125 to R 128 in the general formula (4) is a single bond, and is used for bonding to L 1 in the general formula (1). ]
    Figure JPOXMLDOC01-appb-C000004

    [In the general formula (21), R 21 , R 22 , R 25 , R 26 and R 28 to R 31 are each independently
    Hydrogen atom,
    Hydroxyl group,
    A cyano group,
    Nitro group,
    Carboxyl group,
    A substituted or unsubstituted silyl group,
    A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
    A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
    A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms,
    A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms,
    A substituted or unsubstituted arylamino group having 6 to 30 ring carbon atoms,
    It is selected from the first group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
    R 23 is selected from the second group constituted by removing hydrogen atoms from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31 .
    R 24 is selected from the third group constituted by removing the aromatic hydrocarbon group and the heterocyclic group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. .
    R 27 and R 32 are each independently a hydrogen atom, a hydroxyl group, a cyano group, a nitro group, a carboxyl group from the first group shown for R 21 , R 22 , R 25 , R 26 and R 28 to R 31. Selected from the fourth group consisting of a group and a silyl group excluded.
    R 21 and R 22 , R 22 and R 23 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , R 31 and R 32 may be bonded to each other to form a saturated or unsaturated ring and may not form a saturated or unsaturated ring, and the ring is substituted or unsubstituted.
    Except when R 21 to R 23 and R 25 to R 32 are monovalent groups derived from benzo [k] fluoranthene.
    R 23 and R 24 are different from each other.
    Except when either R 23 or R 24 is an α-naphthyl group. ]
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     Zが下記一般式(5)~(7)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    [前記一般式(5)~(7)中、R131~R140、R141~R150、R151~R160は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
     ただし、R131~R140のいずれか1つ、R141~R150のいずれか1つ、R151~R160のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
     X、Xはそれぞれ、前記一般式(2)におけるX、前記一般式(4)におけるXと同義である。XとXは、同一または異なる。]
    The organic electroluminescent device according to claim 1,
    Z 1 is represented by any one of the following general formulas (5) to (7), an organic electroluminescence device.
    Figure JPOXMLDOC01-appb-C000005

    [In the general formulas (5) to (7), R 131 to R 140 , R 141 to R 150 , and R 151 to R 160 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 .
    However, any one of R 131 to R 140 , any one of R 141 to R 150 , and any one of R 151 to R 160 is used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
    X 1 and X 2 are respectively synonymous with X 1 in the general formula (2) and X 2 in the general formula (4). X 1 and X 2 are the same or different. ]
  3.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     Zが下記一般式(8)~(10)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006

    [前記一般式(8)~(10)中、R161~R170、R171~R180、R181~R190は、それぞれ、前記一般式(1)においてLとの結合に用いられないR~R10と同義である。
     ただし、R161~R170のいずれか1つ、R171~R180のいずれか1つ、R181~R190のいずれか1つは、Lとの結合に用いられ、Lとの結合に用いられる基は単結合である。
     Xは、前記一般式(2)におけるXと同義である。]
    The organic electroluminescent device according to claim 1,
    Z 1 is represented by any one of the following general formulas (8) to (10).
    Figure JPOXMLDOC01-appb-C000006

    [In the general formulas (8) to (10), R 161 to R 170 , R 171 to R 180 , and R 181 to R 190 are not used for bonding to L 1 in the general formula (1). It is synonymous with R 1 to R 10 .
    However, any one of R 161 to R 170 , any one of R 171 to R 180 , and any one of R 181 to R 190 are used for bonding to L 1, and bonding to L 1 The group used for is a single bond.
    X 1 has the same meaning as X 1 in the general formula (2). ]
  4.  請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)のbが1であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 3,
    B of said General formula (1) is 1, The organic electroluminescent element characterized by the above-mentioned.
  5.  請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)のaが1又は2であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 4,
    A in the general formula (1) is 1 or 2, and the organic electroluminescence element.
  6.  請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)のR及びR10の少なくともいずれかがLとの結合に用いられる単結合であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 5,
    An organic electroluminescence device, wherein at least one of R 9 and R 10 in the general formula (1) is a single bond used for bonding to L 1 .
  7.  請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)のRが、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基から選ばれる基であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 6,
    R 9 in the general formula (1) is selected from a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. An organic electroluminescence element characterized by being a group.
  8.  請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     X及びXが酸素原子であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 7,
    The organic electroluminescent device, characterized in that X 1 and X 2 are oxygen atoms.
  9.  請求項3に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(8)~(10)中、R161~R164のいずれか1つ、R171~R174のいずれか1つ、R181~R184のいずれか1つがLとの結合に用いられ、Lとの結合に用いられる基は単結合であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to claim 3,
    In the general formulas (8) to (10), any one of R 161 to R 164 , any one of R 171 to R 174 , and any one of R 181 to R 184 are bonded to L 1. An organic electroluminescent device, wherein the group used for bonding to L 1 is a single bond.
  10.  請求項9に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)で表されるアントラセン誘導体は、下記一般式(15)~(20)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007

    [前記一般式(15)~(20)におけるR161~R190は、それぞれ、前記一般式(1)におけるR~Rと同義である。
     前記一般式(15)~(20)におけるXは、前記一般式(2)におけるXと同義である。]
    The organic electroluminescence device according to claim 9,
    The organic electroluminescence device, wherein the anthracene derivative represented by the general formula (1) is represented by any one of the following general formulas (15) to (20).
    Figure JPOXMLDOC01-appb-C000007

    [R 161 to R 190 in the general formulas (15) to (20) are respectively synonymous with R 1 to R 8 in the general formula (1).
    X 1 in the general formula (15) to (20) has the same meaning as X 1 in the general formula (2). ]
  11.  請求項9に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)で表されるアントラセン誘導体は、下記一般式(31)~(36)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008

    [前記一般式(31)~(36)におけるR161~R190は、前記一般式(1)におけるR~Rと同義である。
     前記一般式(31)~(36)におけるXは、前記一般式(2)におけるXと同義である。]
    The organic electroluminescence device according to claim 9,
    The anthracene derivative represented by the general formula (1) is represented by any one of the following general formulas (31) to (36).
    Figure JPOXMLDOC01-appb-C000008

    [R 161 to R 190 in the general formulas (31) to (36) have the same meanings as R 1 to R 8 in the general formula (1).
    X 1 in the general formula (31) - (36) has the same meaning as X 1 in the general formula (2). ]
  12.  請求項9に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)で表されるアントラセン誘導体は、下記一般式(37)~(42)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009

    [前記一般式(37)~(42)におけるR161~R190は、前記一般式(1)におけるR~Rと同義である。
     前記一般式(37)~(42)におけるXは、前記一般式(2)におけるXと同義である。]
    The organic electroluminescence device according to claim 9,
    The organic electroluminescence device, wherein the anthracene derivative represented by the general formula (1) is represented by any one of the following general formulas (37) to (42).
    Figure JPOXMLDOC01-appb-C000009

    [R 161 to R 190 in the general formulas (37) to (42) have the same meanings as R 1 to R 8 in the general formula (1).
    X 1 in the general formula (37) - (42) has the same meaning as X 1 in the general formula (2). ]
  13.  請求項1から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR24が、水素原子であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 12,
    Wherein R 24 in formula (21) The organic electroluminescent device which is a hydrogen atom.
  14.  請求項1から請求項13までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 13,
    An organic electroluminescent device, wherein R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  15.  請求項14に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR27およびR32が置換もしくは無置換のフェニル基であることを特徴とする有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to claim 14,
    R 27 and R 32 in the general formula (21) are substituted or unsubstituted phenyl groups.
  16.  請求項1から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、
     前記一般式(21)のR23、R27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 12,
    R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
    An organic electroluminescence device, wherein R 23 , R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  17.  請求項1から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR21~R22、R24~R26およびR28~R31が水素原子であり、
     前記一般式(21)のR27およびR32が置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、
     前記一般式(21)のR23が、-Ar21-Ar22であり、
     Ar21およびAr22は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 12,
    R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
    R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms,
    R 23 in the general formula (21) is —Ar 21 —Ar 22 ,
    Ar 21 and Ar 22 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and the organic electroluminescence device.
  18.  請求項1から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(21)のR21~R22、R24~R26およびR28~R31が、水素原子であり、
     前記一般式(21)のR27およびR32が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であり、
     前記一般式(21)のR23が、-Ar21-Ar22-Ar23であり、
     Ar21、Ar22およびAr23は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    In the organic electroluminescent element according to any one of claims 1 to 12,
    R 21 to R 22 , R 24 to R 26 and R 28 to R 31 in the general formula (21) are hydrogen atoms,
    R 27 and R 32 in the general formula (21) are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms,
    R 23 in the general formula (21) is —Ar 21 —Ar 22 —Ar 23 ,
    Ar 21 , Ar 22, and Ar 23 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and the organic electroluminescence device.
  19.  請求項17に記載の有機エレクトロルミネッセンス素子において、
     前記Ar21又は前記Ar22が、シアノ基を置換基として有する芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to claim 17,
    The organic electroluminescence device, wherein Ar 21 or Ar 22 is an aromatic hydrocarbon group having a cyano group as a substituent.
  20.  請求項18に記載の有機エレクトロルミネッセンス素子において、
     前記Ar21、前記Ar22又は前記Ar23が、シアノ基を置換基として有する芳香族炭化水素基であることを特徴とする有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to claim 18,
    Ar 21 , Ar 22, or Ar 23 is an aromatic hydrocarbon group having a cyano group as a substituent.
PCT/JP2013/073416 2012-08-31 2013-08-30 Organic electroluminescent element WO2014034891A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012192674 2012-08-31
JP2012-192674 2012-08-31
JP2013084411 2013-04-12
JP2013-084411 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014034891A1 true WO2014034891A1 (en) 2014-03-06

Family

ID=50183694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073416 WO2014034891A1 (en) 2012-08-31 2013-08-30 Organic electroluminescent element

Country Status (2)

Country Link
TW (1) TW201418238A (en)
WO (1) WO2014034891A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151965A1 (en) * 2014-03-31 2015-10-08 出光興産株式会社 Organic electroluminescent element and electronic device
WO2017010489A1 (en) * 2015-07-14 2017-01-19 出光興産株式会社 Organic electroluminescence element and electronic device
US20210020842A1 (en) * 2018-06-08 2021-01-21 Lg Chem, Ltd. Organic light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047087B (en) * 2018-01-18 2020-06-05 河南省科学院化学研究所有限公司 3 '- (4-bromonaphthalene-1-yl) [1, 1' -biphenyl ] -4-nitrile and synthesis method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100010A1 (en) * 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008059713A1 (en) * 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2010137285A1 (en) * 2009-05-29 2010-12-02 出光興産株式会社 Anthracene derivative and organic electroluminescent element using the same
JP2012503027A (en) * 2008-09-23 2012-02-02 エルジー・ケム・リミテッド NOVEL COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTRONIC DEVICE USING THE SAME
JP2012522040A (en) * 2009-03-31 2012-09-20 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Novel compounds for organic electronic materials and organic electronic devices using the same
KR20130075982A (en) * 2011-12-28 2013-07-08 주식회사 두산 Anthracene-based compound and organic electroluminescence device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100010A1 (en) * 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008059713A1 (en) * 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2012503027A (en) * 2008-09-23 2012-02-02 エルジー・ケム・リミテッド NOVEL COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTRONIC DEVICE USING THE SAME
JP2012522040A (en) * 2009-03-31 2012-09-20 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Novel compounds for organic electronic materials and organic electronic devices using the same
WO2010137285A1 (en) * 2009-05-29 2010-12-02 出光興産株式会社 Anthracene derivative and organic electroluminescent element using the same
KR20130075982A (en) * 2011-12-28 2013-07-08 주식회사 두산 Anthracene-based compound and organic electroluminescence device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151965A1 (en) * 2014-03-31 2015-10-08 出光興産株式会社 Organic electroluminescent element and electronic device
US10135000B2 (en) 2014-03-31 2018-11-20 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
WO2017010489A1 (en) * 2015-07-14 2017-01-19 出光興産株式会社 Organic electroluminescence element and electronic device
US20210020842A1 (en) * 2018-06-08 2021-01-21 Lg Chem, Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
TW201418238A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
US20230106293A1 (en) Organic electroluminescent element and electronic device
JP6167105B2 (en) Novel compounds, materials for organic electroluminescence elements, organic electroluminescence elements and electronic devices
KR102522581B1 (en) A material for organic electroluminescent device and organic electroluminescent device including the same
JP6148621B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT
WO2014073306A1 (en) Organic electroluminescence element and electronic device
WO2014129048A1 (en) Anthracene derivative, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2013039184A1 (en) Aromatic amine derivative and organic electroluminescence element using same
WO2013039221A1 (en) Aromatic amine derivative and organic electroluminescence element using same
JP2017022196A (en) Material for organo electroluminescent element and organo electroluminescent element using the same
US9312500B2 (en) Organic electroluminescence device
JP6376727B2 (en) Organic electroluminescence device and electronic device
WO2014024880A1 (en) Organic electroluminescent element and electronic apparatus
WO2013042775A1 (en) Aromatic amine derivative and organic electroluminescence element using same
JP2017022194A (en) Material for organic electroluminescence element and organic electroluminescence element using the same
WO2013042769A1 (en) Aromatic amine derivative and organic electroluminescent element using same
KR20160041738A (en) Material for organic electroluminescent device and organic electroluminescent device including the same
WO2014034891A1 (en) Organic electroluminescent element
WO2014034893A1 (en) Organic electroluminescent element
WO2014073307A1 (en) Organic electroluminescent element and electronic device
WO2014034864A1 (en) Organic electroluminescence element
WO2014034869A1 (en) Organic electroluminescence element
WO2017043652A1 (en) Organic electroluminescent element, illumination device, display device, and mixed material
JP6047116B2 (en) Novel anthracene compound and organic electroluminescence device using the same
JP2016124792A (en) Material for organic electroluminescent element and organic electroluminescent element prepared therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP