WO2014034704A1 - 熱収縮性ポリエステル系フィルム - Google Patents

熱収縮性ポリエステル系フィルム Download PDF

Info

Publication number
WO2014034704A1
WO2014034704A1 PCT/JP2013/072971 JP2013072971W WO2014034704A1 WO 2014034704 A1 WO2014034704 A1 WO 2014034704A1 JP 2013072971 W JP2013072971 W JP 2013072971W WO 2014034704 A1 WO2014034704 A1 WO 2014034704A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
less
width direction
shrinkable polyester
Prior art date
Application number
PCT/JP2013/072971
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
慎太郎 石丸
卓郎 遠藤
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013540160A priority Critical patent/JP6244915B2/ja
Priority to CN201380045470.3A priority patent/CN104582937B/zh
Priority to KR1020157001462A priority patent/KR102116052B1/ko
Priority to US14/424,339 priority patent/US9920162B2/en
Publication of WO2014034704A1 publication Critical patent/WO2014034704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • Y10T428/1331Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a heat-shrinkable polyester film, and is particularly suitable for a dry battery exterior label and similar applications, and a heat-shrinkable polyester film having good tensile elongation at break after aging, and production thereof It is about the method.
  • heat-shrinkable polyester films have been widely used for purposes such as label packaging that improves the appearance of PET bottles and glass containers, protects contents, and displays products. Many of such heat-shrinkable polyester films usually shrink greatly in the width direction, and are often produced mainly by stretching only in the transverse direction (see Patent Document 1).
  • a heat-shrinkable polyester film laminated with a heat-sensitive adhesive has been used for exterior applications of dry batteries.
  • a heat-shrinkable polyester film laminated with a heat-sensitive adhesive is attached to the outside of the dry battery, the film is wound around the outside of the dry battery using a drum heated to about 70 ° C to 110 ° C.
  • the dry battery is heated to about 140 ° C. to heat the film.
  • a processing method is adopted in which the film is brought into close contact with the outside of the dry battery by shrinking.
  • a label when attached to a cylindrical body such as a dry battery, it must be heat-shrinked in the circumferential direction after being annularly attached to the cylindrical body.
  • the annular body When using as a label, after forming an annular body so that the width direction of a film may turn into the circumferential direction, the annular body must be cut
  • the longitudinal direction is the main shrinkage direction
  • the low temperature region about 60 ° C. to 80 ° C.
  • the high temperature region about (130 ° C to 150 ° C) exhibits high shrinkage characteristics and extremely high mechanical strength in the main shrinkage direction and width direction, and is not easily broken during processing, and is particularly suitable for a film for forming a dry battery exterior label and similar applications.
  • a heat-shrinkable polyester film that can be used is also shown (see Patent Document 2).
  • the film described in Patent Document 2 is a film in which the problems of the film described in Patent Document 1 are improved.
  • the film described in Patent Document 2 has ethylene terephthalate as a main constituent, and contains one or more monomer components that can be an amorphous component of 1 mol% or more and 12 mol% or less in a glycol component. It is formed of a polyester resin (hereinafter referred to as amorphous PET raw material).
  • the film described in Patent Document 2 uses an amorphous PET raw material, for example, when it is aged at a high temperature and long time such as 60 ° C. and 672 hours in consideration of storage in a warehouse in the summer, the main shrinkage direction In some cases, the tensile elongation at break in the width direction, which is the direction perpendicular to the lower limit, may be less than 25%, which is not preferable because the decrease in elongation is large. Similarly, when aging is performed at 60 ° C. and 672 hours considering storage in a summer warehouse or the like, the films are blocked from each other, and are electrostatically peeled off when printed from a film product roll. Since a solvent is often used in the printing process, it is not preferable to generate static electricity because dust and dust are easily attached.
  • the object of the present invention is to solve the problems of the heat-shrinkable polyester films of Patent Document 1 and Patent Document 2, have high mechanical strength in the width direction perpendicular to the main shrinkage direction, and 60 ° C. and 672 hours.
  • the tensile elongation at break in the film width direction after high-temperature aging treatment for a long time is high, and peeling electrification occurs when printing and processing product rolls after long-time aging treatment at high temperatures such as 60 ° C and 672 hours.
  • the present invention has the following configuration.
  • the main constituent component is ethylene terephthalate, and is formed of a polyester resin in which a monomer component that can be an amorphous component in all polyester resin components is contained in an amount of 0 mol% to less than 1 mol%, and the following requirement (1)
  • (1) The thermal shrinkage in the longitudinal direction when treated in a hot air oven at 90 ° C. for 5 minutes is ⁇ 1% to 5%.
  • Shrinkage is -5% or more and 5% or less (4)
  • the elongation at break in the film width direction is 25% or more and 80% or less after aging for 672 hours in a thermo-hygrostat set at 60 ° C. 2.
  • the heat-shrinkable polyester film of the present invention has a main shrinkage direction in the longitudinal direction, and in the low-temperature region (90 ° C. or less, for example, 60 ° C. to 80 ° C.), although it hardly shrinks in the longitudinal direction, the high-temperature region (130 C. to 150.degree. C.) exhibit high shrinkage characteristics and extremely high mechanical strength in the width direction and are difficult to break during processing. Therefore, in particular, it can be suitably used for a film for forming a dry battery exterior label and similar applications, and can be mounted very efficiently around the dry battery within a short time, and when it is heat-shrinked after mounting In addition, it is possible to develop a good finish with very little wrinkles due to thermal shrinkage and very little shrinkage.
  • the tensile elongation at break in the width direction which is the direction perpendicular to the main shrinkage direction after aging at 672 hours at 60 ° C., is 25% or more, even if the film is stored in a warehouse at high room temperature in summer, etc. Since the tensile elongation at break in the film width direction is high, there is little risk of bag breakage after mounting even when a film stored at high temperature is used. Further, since static electricity is hardly generated in the printing process or the like, foreign matters such as dust and dirt are difficult to adhere.
  • the following production methods can be mentioned. That is, after the unstretched film is stretched at a magnification of 3.5 times or more and 6.0 times or less in the transverse direction at a temperature of Tg + 5 ° C. or more and Tg + 40 ° C. or less in a state where both ends in the width direction are held by clips in the tenter. The film was stretched at a magnification of 1.5 to 2.5 times in the longitudinal direction at a temperature of Tg + 5 ° C. or more and Tg + 40 ° C. or less using a heated roll having a speed difference, and then both ends of the film were gripped with clips. In this state, the heat treatment is performed at a temperature of Tg + 35 ° C. or more and Tg + 70 ° C. or less, and relaxation is 0% or more and 15% or less in the lateral direction.
  • the film of the present invention is preferably made of polyethylene terephthalate.
  • the polyethylene terephthalate is a polymer mainly composed of an ethylene terephthalate unit containing ethylene glycol and terephthalic acid as main components.
  • poly (ethylene terephthalate) excellent mechanical strength and transparency as a protective film can be obtained.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET is also preferably a polyester comprising only ethylene terephthalate units, but is not actively copolymerized and contains less than 1 mol% of by-products.
  • a typical example is the above-mentioned diethylene glycol.
  • diethylene glycol for example, neopentyl glycol, 1,4-cyclohexane Dimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2-diethyl 1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, and hexanediol.
  • all dicarboxylic acid components or all diol components It is preferably suppressed to less than 1 mol%.
  • the intrinsic viscosity of polyethylene terephthalate is preferably in the range of 0.60 to 0.75.
  • the intrinsic viscosity is lower than 0.60, the effect of improving the tear resistance is lowered.
  • the intrinsic viscosity is higher than 0.75, the increase in the filtration pressure is increased, and high-precision filtration becomes difficult.
  • the heat-shrinkable polyester film of the present invention is a longitudinal direction of the film calculated from the length before and after the shrinkage when treated for 5 minutes in a hot air at 90 ° C. for 5 minutes.
  • the thermal shrinkage rate (that is, 90 ° C. thermal shrinkage rate) is preferably ⁇ 1% or more and 5% or less.
  • Thermal shrinkage rate ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%) ⁇ Equation 1
  • the thermal shrinkage in the longitudinal direction at 90 ° C. is less than ⁇ 1%, the label will loosen on the heated drum for activating the heat-sensitive adhesive, making it difficult to wind the battery cleanly.
  • the hot water thermal shrinkage in the longitudinal direction at 90 ° C. exceeds 5%, the heated drum for activating the heat-sensitive adhesive It is not preferable because it shrinks above and it becomes difficult to wrap around the dry battery neatly.
  • the upper limit of the heat shrinkage rate in the longitudinal direction at 90 ° C. is preferably 4% or less, and more preferably 3% or less.
  • the heat-shrinkable polyester film of the present invention is a longitudinal direction of the film calculated by the above formula 1 from the length before and after shrinkage when treated in hot air at 140 ° C. for 5 minutes under no load. It is preferable that the heat shrinkage rate (that is, the 140 ° C. heat shrinkage rate) of the resin is 15% or more and 40% or less.
  • the shrinkage rate in the longitudinal direction at 140 ° C. is less than 15%, the shrinkage amount is small, so that it is not preferable because wrinkles and tarmi are likely to occur on the label after heat shrinkage.
  • the heat shrinkage rate in the direction exceeds 40%, it is not preferable because distortion (shrinkage strain) easily occurs during heat shrinkage when used as a label.
  • the lower limit of the heat shrinkage rate in the longitudinal direction at 140 ° C. is preferably 17% or more, more preferably 19% or more, and particularly preferably 21% or more.
  • the upper limit value of the heat shrinkage rate in the longitudinal direction at 140 ° C. is preferably 38% or less, more preferably 36% or less, and particularly preferably 34% or less.
  • the heat-shrinkable polyester film of the present invention is a film width direction calculated by the above formula 1 from the length before and after shrinkage when treated for 5 minutes in a hot air at 140 ° C. under no load. It is preferable that the heat shrinkage rate (that is, the 140 ° C. heat shrinkage rate in the width direction) in the (perpendicular to the longitudinal direction) is ⁇ 5% or more and 5% or less.
  • the thermal shrinkage in the width direction at 140 ° C. is less than ⁇ 5% (for example, ⁇ 10%), it is difficult to obtain a good shrink appearance when used as a label for a dry battery. If the glycerin immersion heat shrinkage rate in the width direction of the film exceeds 5%, distortion (shrinkage strain) is likely to occur during heat shrinkage when used as a label.
  • the lower limit value of the thermal shrinkage in the width direction at 140 ° C. is preferably ⁇ 4% or more, more preferably ⁇ 3% or more, and particularly preferably ⁇ 2% or more.
  • the upper limit of the heat shrinkage rate in the width direction at 140 ° C. is preferably 4% or less, more preferably 3% or less, and particularly preferably 2% or less.
  • the heat-shrinkable polyester film of the present invention preferably has a tensile elongation at break in the film width direction of 25% or more and 80% or less after aging for 672 hours in an atmosphere of 60 ° C. and 65% RH. . If the tensile elongation at break in the film width direction after ace is less than 25%, cracks are likely to occur when the film after being stored in a warehouse in summer or the like is used as a label for a dry battery.
  • the lower limit of the tensile elongation at break in the width direction after aging at 60 ° C. for 672 hours is preferably 27% or more, more preferably 29% or more, and particularly preferably 31% or more.
  • the upper limit of the tensile elongation at break in the width direction after aging at 60 ° C. and 672 hours is preferably as high as possible and preferably higher than 80%, but the upper limit that can be adjusted is about 80% at present. I believe.
  • the heat-shrinkable polyester film of the present invention preferably has a tensile breaking strength in the film width direction of 200 MPa or more and 400 MPa or less.
  • the width direction is a direction orthogonal to the main shrinkage direction. If the tensile strength at break in the width direction is lower than 200 MPa, the so-called low feeling is reduced, and wrinkles are likely to occur when used as a label of a dry battery, which is not preferable.
  • the lower limit value of the tensile strength at break in the width direction is preferably 220 MPa or more, more preferably 240 MPa or more, and particularly preferably 260 MPa or more.
  • the upper limit of the tensile strength in the width direction is preferably higher, and even if it is higher than 400 MPa, there is no problem, but at present, the upper limit that can be adjusted is considered to be about 400 MPa.
  • the heat-shrinkable polyester film of the present invention preferably has a refractive index in the film width direction of 1.62 or more and 1.66 or less. If the refractive index is less than 1.62, the shrinkage rate in the width direction becomes high, and the mechanical strength in the width direction becomes low, which is not preferable.
  • the lower limit value of the refractive index in the film width direction is preferably 1.625 or more, and more preferably 1.63 or more. Further, when the refractive index in the width direction is higher than 1.66, it is preferable because the mechanical strength in the width direction becomes high and the shrinkage rate becomes low. However, the upper limit that can be adjusted at present is about 1.66.
  • the heat-shrinkable polyester film of the present invention preferably has a refractive index in the film longitudinal direction of 1.59 or more and 1.64 or less. If the refractive index is less than 1.59, the longitudinal shrinkage at 90 ° C. is undesirably high.
  • the lower limit value of the refractive index in the film longitudinal direction is preferably 1.595 or more, and more preferably 1.6 or more.
  • the refractive index in the longitudinal direction is higher than 1.64, the shrinkage at 140 ° C. is lowered, which is not preferable.
  • the upper limit of the refractive index in the film longitudinal direction is preferably 1.635 or less, and more preferably 1.63 or less.
  • the heat-shrinkable polyester film of the present invention preferably has a thickness variation of 15% or less in the longitudinal direction. If the thickness unevenness in the longitudinal direction is more than 15%, it is not preferable because printing spots are likely to occur during printing at the time of label production or shrinkage spots after heat shrinkage are likely to occur.
  • the thickness variation in the longitudinal direction is more preferably 13% or less, and more preferably 11% or less.
  • the thickness variation in the longitudinal direction is better as it approaches 0%, but the lower limit is 2%, which is practically acceptable.
  • the thickness of the heat-shrinkable polyester film of the present invention is not particularly limited, but the heat-shrinkable film for labels is preferably 10 to 100 ⁇ m, more preferably 15 to 95 ⁇ m.
  • the heat-shrinkable polyester film of the present invention is 10% shrunk with hot air at 140 ° C., and when the right-angle tear strength per unit thickness is determined by the following method, the right-angle tear strength in the width direction is It is preferable that it is 100 N / mm or more and 300 N / mm or less.
  • the right-angled tear strength after shrinking by 10% in the longitudinal direction in hot air at 140 ° C. is less than 100 N / mm, it may be easily broken by an impact such as dropping during transportation when used as a label. On the contrary, if the right-angled tear strength exceeds 300 N / mm, it is not preferable in that the cut property (easy to tear) at the initial stage when tearing the label tends to be insufficient.
  • the lower limit of the right-angled tear strength is preferably 125 N / mm or more, more preferably 150 N / mm or more, and particularly preferably 175 N / mm or more.
  • the upper limit of the right-angled tear strength is preferably 275 N / mm or less, more preferably 250 N / mm or less, and particularly preferably 225 N / mm or less.
  • the heat-shrinkable polyester film of the present invention preferably has a haze of 2% to 12%.
  • a lower haze of the film is preferable, but a lubricant may be added to lower the friction coefficient, and the lower limit is substantially 2%.
  • the haze exceeds 12%, the transparency is impaired.
  • the upper limit of haze is preferably 11% or less, more preferably 10% or less, and particularly preferably 9% or less.
  • the heat-shrinkable polyester film of the present invention preferably has a coefficient of dynamic friction between one surface and the other surface that is the back surface of 0.1 to 0.7.
  • a lower dynamic friction coefficient of the film is preferable because it is less likely to be peeled and charged. However, if it is less than 0.1, it is not preferable because winding deviation easily occurs during winding during processing.
  • the lower limit value of the dynamic friction coefficient is preferably 0.11 or more, more preferably 0.12 or more, and particularly preferably 0.13 or more. On the other hand, if the dynamic friction coefficient exceeds 0.7, blocking tends to occur, which is not preferable.
  • the upper limit value of the dynamic friction coefficient is preferably 0.68 or less, more preferably 0.66 or less, and particularly preferably 0.64 or less.
  • the heat-shrinkable polyester film of the present invention preferably has an electrostatic charge of 5 kV or less when the product roll is unwound at a speed of 200 m / min after aging in an environmental test chamber set at 60 ° C. for 672 hours. .
  • an organic solvent is used, and if the static electricity is high, dust and dust adhere to the film.
  • the upper limit of static electricity is preferably 4.5 kV or less, more preferably 4.0 kV or less, and particularly preferably 3.5 kV or less.
  • the static electricity is preferably as small as possible, polyester inherently tends to generate static electricity, and the lower limit is about 0.5 kV, and may be about 1.0 kV or more.
  • the heat-shrinkable polyester film of the present invention is not limited by its production method.
  • the polyester raw material (PET) described above is melt-extruded by an extruder to form an unstretched film
  • the unstretched film can be obtained by biaxial stretching and heat treatment by the method shown below.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
  • the polyester raw material is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying it can be suitably employed.
  • the obtained unstretched film is stretched in the transverse direction under a predetermined condition, and then heat-treated once (the heat treatment may or may not be performed), and thereafter, the film is elongated under the predetermined condition.
  • the heat-shrinkable polyester film of the present invention can be obtained by stretching in the direction and performing a relaxation heat treatment.
  • a preferred biaxial stretching / heat treatment method for obtaining the heat-shrinkable polyester film of the present invention will be described in detail in consideration of the difference from the conventional biaxial stretching / heat treatment method of the heat-shrinkable polyester film. .
  • a normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction in which it is desired to shrink.
  • JP-A-1-127317 discloses a film that shrinks in the longitudinal direction, but is not stretched in the transverse direction, so the mechanical strength in the width direction is low, and the right-angle tear strength is high, It is insufficient for use as a label for a dry battery exterior. Further, the thickness unevenness in the longitudinal direction was large.
  • the draw ratio is 3.5 times or more and 6 times or less at the temperature of Tg + 5 ° C. or more and Tg + 40 ° C. or less at the time of the first transverse drawing. It is preferable to stretch by. If it is lower than 3.5 times, it is not necessarily sufficient to reduce the shrinkage in the width direction, which is not preferable. Further, the upper limit of the transverse stretching ratio is not particularly limited, but if it is higher than 6 times, it is not preferable because it becomes difficult to stretch in the longitudinal direction (breaking easily occurs).
  • the stretching temperature in the transverse direction is less than Tg + 5 ° C., breakage tends to occur during stretching, which is not preferable.
  • Tg + 40 ° C. the tensile rupture strength in the width direction may be lowered, which is not preferable. More preferably, it is Tg + 8 degreeC or more and Tg + 37 degreeC or less, More preferably, it is Tg + 11 degreeC or more and Tg + 34 degreeC or less.
  • Stretch ratio in the longitudinal direction At the time of longitudinal stretching after transverse stretching, stretching is preferably performed at a stretching ratio of 1.5 to 2.5 times at a temperature of Tg + 5 ° C. or more and Tg + 40 ° C. or less. If it is less than 1.5 times, the shrinkage rate is insufficient, and if it exceeds 2.5 times, the shrinkage rate in the width direction becomes high, which is not preferable as a uniaxial shrink film in the longitudinal direction. More preferably, they are 1.6 times or more and 2.4 times or less, More preferably, they are 1.8 times or more and 2.3 times or less.
  • the stretching temperature in the longitudinal direction is less than Tg + 5 ° C., breakage tends to occur during stretching, which is not preferable.
  • Tg + 40 ° C. the thermal crystallization of the film proceeds and the shrinkage rate is lowered, which is not preferable. More preferably, it is Tg + 8 degreeC or more and Tg + 37 degreeC or less, More preferably, it is Tg + 11 degreeC or more and Tg + 34 degreeC or less.
  • the film is preferably relaxed by 0% or more and 15% or less in the transverse direction while heat-treating at a temperature of Tg + 35 ° C. or more and Tg + 100 ° C. or less while holding both ends of the film with clips.
  • Tg + 35 ° C. the 90 ° C. heat shrinkage rate in the longitudinal direction is increased, which is not preferable.
  • Tg + 100 ° C. the thermal crystallization of the film proceeds and the 140 ° C. shrinkage in the longitudinal direction decreases, which is not preferable.
  • the relaxation rate in the transverse direction is lower than 0%, it is not preferable because the film is substantially stretched in the transverse direction.
  • the relaxation rate may be higher than 15%.
  • the relaxation rate is high, the final film width becomes narrow, which is not preferable. More preferably, they are 1% or more and 14% or less, More preferably, they are 2% or more and 13% or less.
  • the preferred stretching method in the present invention is exemplified by making the stretching ratio in the longitudinal direction smaller than the stretching ratio in the transverse direction.
  • the main shrinkage direction may be the direction in which the refractive index is high by adopting a high draw ratio in the machine direction and the transverse direction.
  • the present invention is not necessarily so. This is considered to be related to the property of crystalline PET that does not contain many monomer components that can be amorphous components in the present invention.
  • the molecular chains are oriented and the crystallization of the molecular chains proceeds, which increases the thermal shrinkage in the width direction. It is assumed that it works as a factor for lowering.
  • the draw ratio of about 1.5 to 2.5 times in the longitudinal direction is a region where crystallization does not proceed much even if molecular chains are oriented to some extent in the longitudinal direction. It is estimated that the rate will be obtained.
  • the structure of the molecular chain is determined by the thermal contraction rate in the longitudinal direction and the width direction, the refractive index, and its magnitude relationship. It is expressed as a substitute measure.
  • the relaxation heat treatment in the lateral direction also makes a certain contribution in reducing the thermal contraction rate in the width direction.
  • Tables 1 and 2 show the properties, compositions, examples, and film production conditions (stretching / heat treatment conditions, etc.) of the raw materials used in the examples and comparative examples, respectively.
  • the evaluation method of the film is as follows.
  • Aging treatment (1) treatment by a thermo-hygrostat before measuring the breaking elongation in the width direction
  • the temperature-and-humidity machine ⁇ manufacturer Yamato Scientific Co., Ltd., model IG43M> was placed in an environment at a temperature of 60 ° C. and a humidity of 65%, and the A4 size sampled film was aged for 672 hours.
  • Aging treatment (2) treatment in an environmental test room before measuring static electricity]
  • the environment test chamber was set to an environment with a temperature of 60 ° C. and a humidity of 65%, and in that environment, a product roll having a winding length of 1000 m was aged for 672 hours.
  • the dynamic friction coefficient ⁇ d was determined when the front and back surfaces of the film were joined in a 23 ° C./65% RH environment using a tensile tester (TENSILON manufactured by ORIENTEC).
  • the weight of the thread (weight) wound with the upper film was 1.5 kg, and the size of the bottom area of the thread was 63 mm long ⁇ 63 mm wide.
  • the tensile speed at the time of friction measurement is 200 mm / min. Met.
  • Tg glass transition point
  • DSC220 differential scanning calorimeter
  • Seiko Denshi Kogyo Co., Ltd. 5 mg of the unstretched film was heated from ⁇ 40 ° C. to 120 ° C. at a heating rate of 10 ° C./min, and the endotherm obtained. Obtained from the curve. A tangent line was drawn before and after the inflection point of the endothermic curve, and the intersection was defined as Tg (glass transition point).
  • the longitudinal direction of the film was sampled into a long roll having a length of 30 m and a width of 40 mm, and the film was measured at a speed of 5 (m / min) using a continuous contact thickness meter manufactured by Micron Measuring Instruments Co., Ltd.
  • the length direction of the film sample was set as the main shrinkage direction of the film.
  • the maximum thickness at the time of measurement was Tmax.
  • the minimum thickness was Tmin.
  • the average thickness was Tave.
  • Thickness unevenness ⁇ (Tmax. ⁇ Tmin.) / Tave. ⁇ ⁇ 100 (%)
  • Perforation opening A label having a perforation in advance in a direction perpendicular to the main shrinkage direction was attached to the dry cell under the same conditions as those for measuring the shrinkage finish. However, the perforation was formed by putting holes having a length of 1 mm at intervals of 1 mm, and two perforations having a width of 22 mm were provided in the width direction of the film. Then, the perforation of the label was torn with a fingertip, and the number of labels that could be beautifully torn along the perforation in the width direction and removed from the dry battery was counted, and the ratio (%) to 50 samples was calculated. A defect rate of 10% or less was accepted.
  • the peak intensity of a given proton is calculated, and the amount of monomer that can be an amorphous component such as diethylene glycol or neopentyl glycol in 100 mol% of a polyhydric alcohol component, or isophthalic acid in 100 mol% of a dicarboxylic acid component
  • the amount of monomer that can be an amorphous component such as, the content (mol%) of the amorphous component constituting unit in 100 mol% of all constituting units was measured.
  • polyesters used in the examples and comparative examples are as follows.
  • Polyester 1 Polyethylene terephthalate (IV 0.75 dl / g)
  • Polyester 2 Polyethylene terephthalate (IV 0.75 dl / g) in which SiO 2 (Silicia 266 manufactured by Fuji Silysia Co., Ltd.) was added as a lubricant at a ratio of 8,000 ppm with respect to the polyester in the production of the above polyester 2.
  • Polyester 3 70% by mole of ethylene glycol, 30% by mole of neopentyl glycol And IV polyester (IV 0.72dl / g)
  • polyesters 1 to 3 described above are a structural unit whose main structural unit is composed of terephthalic acid and ethylene glycol. However, as a by-product, the structural unit composed of terephthalic acid and diethylene glycol is also 0.4 mole relative to all the structural units. About% is contained.
  • Polyester 1 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 240 ⁇ m.
  • the take-up speed of the unstretched film (rotational speed of the metal roll) is about 20 m / min. Met.
  • the Tg of the unstretched film was 75 ° C.
  • the unstretched film was guided to a tenter (first tenter) in which a transverse stretching zone, an intermediate zone, and an intermediate heat treatment zone were continuously provided.
  • the film is stretched 4 times at 85 ° C. in the transverse direction in the transverse stretching zone, and heat-treated at 70 ° C. A laterally stretched film having a thickness of 60 ⁇ m was obtained.
  • the obtained transversely stretched film is led to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated until the film temperature reaches 80 ° C. on the preheating roll, and then the stretching roll set to a surface temperature of 95 ° C.
  • the film was stretched 2.0 times. Thereafter, the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C.
  • the surface temperature of the film before cooling was about 85 degreeC
  • the surface temperature of the film after cooling was about 25 degreeC.
  • the time required for cooling from 70 ° C. to 25 ° C. was about 1.0 second, and the film cooling rate was 45 ° C./second.
  • the cooled film was guided to a tenter (second tenter), and heat-treated for 5.0 seconds in an atmosphere at 140 ° C. with both ends in the width direction held by clips in the second tenter.
  • the relaxation rate at this time was 0%.
  • the film was cooled, and both edges were cut and removed to continuously form a biaxially stretched film of about 30 ⁇ m over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .
  • the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. It was an excellent film that was balanced in terms of shrink finish, perforation opening rate, and breaking elongation in the width direction after aging.
  • Example 2 A biaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the transverse stretch ratio in the first tenter was changed to 4.1 times and the relaxation rate in the second tenter was changed to 2.5%. .
  • the evaluation results are shown in Table 3. It was an excellent film with a good balance of shrink finish, perforation opening rate, and elongation in the width direction after aging.
  • Example 3 A biaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was 285 ⁇ m, the longitudinal stretching ratio was 2.5 times, and the relaxation rate in the second tenter was changed to 5%. It was. The evaluation results are shown in Table 3. It was an excellent film with a good balance of shrink finish, perforation opening rate, and elongation in the width direction after aging.
  • Example 4 A biaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to 203 ⁇ m and the longitudinal stretch ratio was changed to 1.5 times.
  • the evaluation results are shown in Table 3. It was an excellent film with a good balance of shrink finish, perforation opening rate, and elongation in the width direction after aging.
  • Example 5 A biaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the temperature in the second tenter was changed to 160 ° C. The evaluation results are shown in Table 3. It was an excellent film with a good balance of shrink finish, perforation opening rate, and elongation in the width direction after aging.
  • Example 6 The thickness of the unstretched film was 189 ⁇ m, the transverse stretch ratio in the first tenter was changed to 3.5 times, and the relaxation rate in the second tenter was changed to 10%. An axially stretched film was obtained. The evaluation results are shown in Table 3. It was an excellent film with a good balance of shrink finish, perforation opening rate, and elongation in the width direction after aging.
  • Example 1 A uniaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was 60 ⁇ m, the first tenter step was skipped, and the longitudinal stretching temperature was changed to 85 ° C. The evaluation results are shown in Table 3. The film was inferior to Example 1 in terms of perforation opening rate and elongation in the width direction after aging.
  • Example 2 A biaxially stretched film of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the temperature of the second tenter was 110 ° C. The evaluation results are shown in Table 3. It was a film having a high shrinkage ratio in the longitudinal direction at 90 ° C. and inferior shrinkage finishability to that of Example 1.
  • Example 3 A biaxially stretched film having a thickness of about 30 ⁇ m was obtained in the same manner as in Example 1 except that the raw material ratio was changed from polyester 1, polyester 2, and polyester 3 to a weight ratio of 68: 7: 25. The evaluation results are shown in Table 3. The film was inferior in tensile elongation at break in the film width direction after aging, and was concerned about deterioration after aging from Example 1. In addition, high static electricity was generated during unwinding.
  • thermoshrinkable polyester film of the present invention has excellent processing characteristics as described above, it can be suitably used especially for labels for exterior batteries and similar applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 主収縮方向と直交する幅方向における機械的強度が高い上、高温環境で長時間エージング処理された後のフィルム幅方向の引張り破断伸度が高く、非晶PET原料を実質的に使用せず、ホモPETのみからでも製造可能な熱収縮性ポリエステルフィルムを提供する。 エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分が0モル%以上1モル%未満含有されているポリエステル系樹脂によって形成されているとともに、90℃及び140℃の長手方向の熱風収縮率、140℃の幅方向の熱風収縮率、及び、60℃で672時間エージング後の幅方向の破断伸度が特定の範囲に調節された熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルム
 本発明は、熱収縮性ポリエステル系フィルムに関するものであり、特に、乾電池の外装用ラベルやその類似用途に好適で、エージング後の引張破断伸度が良好な熱収縮性ポリエステル系フィルム、およびその製造方法に関するものである。
 近年、PETボトルやガラス容器等の外観向上、内容物の保護と商品の表示を兼ねたラベル包装等の用途に、熱収縮性ポリエステル系フィルムが広汎に利用されるようになってきた。かかる熱収縮性ポリエステル系フィルムは、通常、幅方向に大きく収縮するものが多く、主として横方向のみに延伸されて製造されることが多い(特許文献1参照)。
 最近、乾電池の外装用途に、感熱性の接着剤を積層した熱収縮性ポリエステル系フィルムが使用されるようになってきている。そのように感熱性接着剤を積層した熱収縮性ポリエステル系フィルムを乾電池の外側に装着させる際には、70℃~110℃程度に加熱されたドラムを利用してフィルムを乾電池の外側に捲回させ(胴巻き)、積層し合った部分において感熱性接着剤を溶融させる(ヒートシールする)ことによって、フィルムを乾電池の外側に緩く巻き付けた後、当該乾電池を140℃程度に加熱してフィルムを熱収縮させることによって、フィルムを乾電池の外側に密着させる、という加工方法が採用される。しかしながら、特許文献1の如き横方向にのみ延伸を施したフィルムは、60℃~80℃程度の低温領域における収縮率や熱収縮応力が高すぎるため、加熱されたドラムを利用して乾電池の周囲に捲回させる際にフィルムが収縮してしまうので、最終的に熱収縮させた際の収縮仕上り性が良くない。
 また、乾電池のような円柱状体にラベルを装着する際には、環状にして円柱状体に装着した後に周方向に熱収縮させなければならないため、幅方向に熱収縮する熱収縮性フィルムをラベルとして用いる場合には、フィルムの幅方向が周方向となるように環状体を形成した上で、その環状体を所定の長さ毎に切断して円柱状体に装着しなければならない。したがって、幅方向に熱収縮する熱収縮性フィルムからなるラベルを高速で円柱状体に装着するのは困難である。それゆえ、最近では、フィルムロールから直接円柱状体の周囲に装着すること(所謂、胴巻き)が可能な長手方向に熱収縮するフィルムが求められているが、特許文献1に記載されるが如き横方向にのみ延伸を施したフィルムは、このようなニーズに対応できるものではない。
 加えて、特許文献1に記載されるが如き横方向にのみ延伸を施したフィルムは、長手方向の機械的強度が低いため、加工時に破断し易い、という不具合もある。
 特許文献1に記載されるフィルムが有する問題点を解消し、長手方向が主収縮方向であり、低温領域(約60℃~80℃)では長手方向に収縮しないにも拘わらず、高温領域(約130℃~150℃)では高い収縮特性を示す上、主収縮方向および幅方向における機械的強度がきわめて高く、加工時に破断しにくく、特に、乾電池外装ラベル形成用のフィルムおよびその類似用途に好適に用いることが可能な熱収縮性ポリエステル系フィルムも示されている(特許文献2参照)。
 特許文献2に記載されるフィルムは特許文献1に記載されたフィルムの問題点を改善したフィルムである。しかし、特許文献2に記載されるフィルムは、エチレンテレフタレートを主たる構成成分としており、グリコール成分中に1モル%以上12モル%以下の非晶成分となりうる1種以上のモノマー成分を含有してなるポリエステル系樹脂(以下非晶PET原料と記す)によって形成されている。
 特許文献2に記載されるフィルムは非晶PET原料を用いているので、例えば夏場の倉庫等での保管を考慮した例えば60℃・672時間といった高温長時間のエージングをされると、主収縮方向と直交する方向である幅方向の引張破断伸度が低下して25%未満となる場合があり、伸度低下が大きいため好ましくない。また同様に夏場の倉庫等での保管を考慮した60℃・672時間でエージングをされると、フィルム同士がブロッキングし、フィルム製品ロールから印刷加工する時に剥離帯電して静電気が生じる。印刷工程では溶剤を使用することが多いので、静電気を生じることは埃やゴミが付きやすくなり、好ましくない。
特開平9-239833号公報 特開2009-160921号公報
 本発明の目的は、上記特許文献1、特許文献2の熱収縮性ポリエステルフィルムが有する問題点を解消し、主収縮方向と直交する幅方向における機械的強度が高い上、60℃・672時間といった高温環境で長時間エージング処理された後のフィルム幅方向の引張り破断伸度が高く、60℃・672時間といった高温環境で長時間エージング処理された後の製品ロールを印刷、加工する際に剥離帯電による静電気が生じ難く、非晶PET原料を実質的に使用せず、ホモPETのみからでも製造可能な熱収縮性ポリエステルフィルムを提供することにある。
 即ち、本発明は以下の構成よりなる。
1. エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分が0モル%以上1モル%未満含有されているポリエステル系樹脂によって形成されているとともに、下記要件(1)~(4)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)90℃の熱風オーブン中で5分に亘って処理した場合における長手方向の熱収縮率が-1%以上5%以下であること
(2)140℃に加温した熱風オーブン中で5分に亘って処理した場合における長手方向の熱収縮率が15%以上40%以下であること
(3)140℃に加温した熱風オーブン中で5分に亘って処理した場合における幅方向の熱収縮率が-5%以上5%以下であること
(4)60℃に設定された恒温恒湿機で672時間エージングした後のフィルム幅方向の破断伸度が25%以上80%以下であること
2. 幅方向の引張破断強度が200MPa以上400MPa以下であることを特徴とする上記第1に記載の熱収縮性ポリエステル系フィルム。
3. 幅方向の屈折率が1.62以上1.66以下であることを特徴とする上記第1又は第2に記載の熱収縮性ポリエステル系フィルム。
4. ヘイズが2%以上12%以下であることを特徴とする上記第1~第3のいずれかに記載の熱収縮性ポリエステル系フィルム。
5. フィルムの一方の面とその裏側の面との動摩擦係数が0.1以上0.7以下であることを特徴とする上記第1~第4のいずれかに記載の熱収縮性ポリエステル系フィルム。
6. 60℃に設定された環境試験室内で672時間エージングした後、製品ロールを速度200m/minで巻き出した時の静電気が5kV以下であることを特徴とする上記第1~第5のいずれかに記載の熱収縮性ポリエステル系フィルム。
 本発明の熱収縮性ポリエステル系フィルムは、長手方向が主収縮方向であり、低温領域(90℃以下の例えば60℃~80℃)では長手方向に殆ど収縮しないにも拘わらず、高温領域(130℃~150℃)では高い収縮特性を示す上、幅方向における機械的強度もきわめて高く、加工時に破断しにくい。したがって、特に、乾電池外装ラベル形成用のフィルムおよびその類似用途に好適に用いることができ、乾電池の周囲に短時間の内に非常に効率良く装着することができる上、装着後に熱収縮させた場合に、熱収縮によるシワや収縮不足のきわめて少ない良好な仕上りを発現させることができる。
 また60℃で672時間エージング後の主収縮方向と直交する方向である幅方向の引張破断伸度が25%以上あることから、夏場等に高い室温になった倉庫等でフィルムを保管しても、フィルム幅方向の引張破断伸度が高いので、高温で保管されたフィルムを用いても、装着後の破袋等の恐れが小さい。また、印刷工程等において静電気を生じ難いので、埃やゴミなどの異物が付着しにくい。
直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中における試験片の各部分の長さの単位はmmであり、Rは半径を表す)。
 上記第1~第6のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するため好ましい製造方法として、以下の製造方法を挙げることができる。即ち、未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態でTg+5℃以上Tg+40℃以下の温度で横方向に3.5倍以上6.0倍以下の倍率で延伸した後、速度差がある加熱されたロールを用いてTg+5℃以上Tg+40℃以下の温度で長手方向に1.5倍以上2.5倍以下の倍率で延伸し、しかる後、フィルム両端をクリップで把持した状態で、Tg+35℃以上Tg+70℃以下の温度で熱処理をしながら、横方向に0%以上15%以下の弛緩をするものである。
 本発明のフィルムは、ポリエチレンテレフタレートよりなることが好ましい。ここで、ポリエチレンテレフタレートは、エチレングリコールおよびテレフタル酸を主な構成成分として含有するエチレンテレフタレートユニットから主に構成されるポリマーである。ポリチレンテレフタレートを用いることにより、保護フィルムとして優れた機械的強度と透明性を得ることができる。
 このようなポリエチレンテレフタレート(以下、単にPETという)には、エチレンテレフタレートユニットのみからなるポリエステルであることも好ましいが、積極的に共重合するわけではなく、副生成物として1モル%未満含まれるテレフタル酸とジエチレングリコールによる構成ユニットがエチレンエレフタレートユニット中に存在することは差し支えない。
 本発明において、用いられることは普通ない非晶PET原料を構成するような非晶質成分となり得るモノマーとしては、代表例は上記のジエチレングリコールであるが、例えば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることもでき、全ジカルボン酸成分中又は全ジオール成分中で1モル%未満に抑制されていることが好ましい。
 ポリエチレンテレフタレートの固有粘度は、0.60から0.75の範囲が好ましい。固有粘度が0.60よりも低いと、耐引き裂き性向上効果が低下し、0.75より大きいと濾圧上昇が大きくなり高精度濾過が困難となり、好ましくない。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の熱風中で無荷重状態で5分間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの長手方向の熱収縮率(すなわち、90℃熱収縮率)が、-1%以上5%以下であることが好ましい。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)・・式1
 90℃における長手方向の熱収縮率が-1%未満であると、感熱接着剤を活性化させるための加熱されたドラム上でラベルが弛んでしまうため、乾電池に綺麗に巻きつけづらくなり、最終的に熱収縮させた後の収縮仕上り性の点で好ましくなく、反対に、90℃における長手方向の湯温熱収縮率が5%を超えると、感熱接着剤を活性化させるための加熱されたドラム上で収縮してしまい、乾電池の周囲に綺麗に巻き付けづらくなるので好ましくない。なお、90℃における長手方向の熱収縮率の上限値は、4%以下であると好ましく、3%以下であるとより好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、140℃の熱風中で無荷重状態で5分間に亘って処理したときに、収縮前後の長さから、上式1により算出したフィルムの長手方向の熱収縮率(すなわち、140℃熱収縮率)が、15%以上40%以下であることが好ましい。
 140℃における長手方向の熱収縮率が15%未満であると、収縮量が小さいために、熱収縮させた後のラベルにシワやタルミが生じ易くなるので好ましくなく、反対に、140℃における長手方向の熱収縮率が40%を上回ると、ラベルとして用いて場合に熱収縮時に歪み(収縮歪み)が生じ易くなるので好ましくない。なお、140℃における長手方向の熱収縮率の下限値は、17%以上であると好ましく、19%以上であるとより好ましく、21%以上であると特に好ましい。また、140℃における長手方向の熱収縮率の上限値は、38%以下であると好ましく、36%以下であるとより好ましく、34%以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、140℃の熱風中で無荷重状態で5分間に亘って処理したときに、収縮前後の長さから、上式1により算出したフィルムの幅方向(長手方向と直交する方向)の熱収縮率(すなわち、幅方向の140℃熱収縮率)が、-5%以上5%以下であることが好ましい。
 140℃における幅方向の熱収縮率が-5%未満(例えば、-10%)であると、乾電池のラベルとして使用する際に良好な収縮外観を得づらくなるので好ましくなく、反対に、140℃における幅方向のグリセリン浸漬熱収縮率が5%を上回ると、ラベルとして用いた場合に熱収縮時に歪み(収縮歪み)が生じ易くなるので好ましくない。なお、140℃における幅方向の熱収縮率の下限値は、-4%以上であると好ましく、-3%以上であるとより好ましく、-2%以上であると特に好ましい。また、140℃における幅方向の熱収縮率の上限値は、4%以下であると好ましく、3%以下であるとより好ましく、2%以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、60℃65%RHの雰囲気下で672時間に亘ってエージングした後のフィルム幅方向の引張破断伸度は25%以上80%以下であると好ましい。エーシング後のフィルム幅方向の引張破断伸度が25%より小さいと、夏場等に倉庫で保管した後のフィルムを乾電池のラベルとして使用した際に、クラックが生じやすくなり好ましくない。なお、60℃・672時間におけるエージング後の幅方向の引張破断伸度の下限値は27%以上であると好ましく、29%以上であるとより好ましく、31%以上であると特に好ましい。また、60℃・672時間におけるエージング後の幅方向の引張破断伸度の上限値は、高い方が好ましく80%より高くても問題は無いが、現状では調節可能な上限は80%程度であると考えている。
 また、本発明の熱収縮性ポリエステル系フィルムは、フィルム幅方向の引張破断強度が200MPa以上400MPa以下であると好ましい。幅方向は主収縮方向と直交する方向であり、幅方向の引張破断強度が200MPaより低いと 所謂腰感が小さくなり、乾電池のラベルとして使用する際にシワ等が生じやすくなり好ましくない。なお幅方向の引張破断強度の下限値は220MPa以上であると好ましく、240MPa以上であるとより好ましく、260MPa以上であると特に好ましい。また幅方向の引張破断強度の上限値は、高い方が好ましく400MPaより高くても問題は無いが、現状では調節可能な上限は400MPa程度であると考えている。
 また、本発明の熱収縮性ポリエステル系フィルムは、フィルム幅方向の屈折率が1.62以上1.66以下であると好ましい。屈折率が1.62未満であると幅方向の収縮率は高くなり、また幅方向の機械的強度が低くなり好ましくない。フィルム幅方向の屈折率の下限値は1.625以上であると好ましく、1.63以上であるとより好ましい。また幅方向の屈折率が1.66より高いと 幅方向の機械的強度は高くなり、収縮率も低くなり好ましいが、現状で調節可能な上限は1.66程度である。
 また、本発明の熱収縮性ポリエステル系フィルムは、フィルム長手方向の屈折率が1.59以上1.64以下であると好ましい。屈折率が1.59未満であると90℃での長手方向の収縮率が高くなり好ましくない。フィルム長手方向の屈折率の下限値は1.595以上であると好ましく、1.6以上であるとより好ましい。また長手方向の屈折率が1.64より高いと140℃の収縮率が低くなり好ましくない。フィルム長手方向の屈折率の上限値は1.635以下であると好ましく、1.63以下であるとより好ましい。
 加えて、本発明の熱収縮性ポリエステル系フィルムは、長手方向の厚み斑が15%以下であることが好ましい。長手方向の厚み斑が15%を超える値であると、ラベル作成の際の印刷時に印刷斑が発生し易くなったり、熱収縮後の収縮斑が発生し易くなったりするので好ましくない。なお、長手方向の厚み斑は、13%以下であるとより好ましく、11%以下であるとより好ましい。長手方向の厚み斑は0%に近づくほど良いが、下限は2%であって実用上構わない。
 本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定されるものではないが、ラベル用熱収縮性フィルムとして10~100μmが好ましく、15~95μmがより好ましい。
 また本発明の熱収縮性ポリエステルフィルムは 140℃の熱風で10%収縮させた後に、以下の方法で単位厚み当りの幅方向の直角引裂強度を求めたときに、その幅方向の直角引裂き強度が100N/mm以上300N/mm以下であると好ましい。
[直角引裂強度の測定方法]
 140℃に調整された熱風オーブン中でフィルムを長手方向に10%収縮させた後に、JIS-K-7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて引張試験を行い、フィルムが長手方向に完全に引き裂かれたときの最大荷重を測定した。この最大荷重をフィルムの厚みで除して、単位厚み当たりの直角引裂強度を算出した。
 140℃の熱風中で長手方向に10%収縮させた後の直角引裂強度が100N/mm未満であると、ラベルとして使用した場合に運搬中の落下等の衝撃によって簡単に破れてしまう恐れがあるので好ましくなく、反対に、直角引裂強度が300N/mmを上回ると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不十分になり易い点で好ましくない。なお、直角引裂強度の下限値は、125N/mm以上であると好ましく、150N/mm以上であるとより好ましく、175N/mm以上であると特に好ましい。また、直角引裂強度の上限値は、275N/mm以下であると好ましく、250N/mm以下であるとより好ましく、225N/mm以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、ヘイズが2%以上12%以下であると好ましい。フィルムのヘイズは低い方が好ましいが、摩擦係数を低くするために滑剤を添加する場合があり、実質上2%が下限値である。一方、ヘイズが12%を超えると、透明性が損なわれるので好ましくない。ヘイズの上限値は11%以下であると好ましく、10%以下であるとより好ましく、9%以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、一方の面とその裏面である他方の面との動摩擦係数が0.1以上0.7以下であると好ましい。フィルムの動摩擦係数は低い方が剥離帯電し難くて好ましいが、0.1未満であると加工時に巻き取る際に巻きズレが生じ易くなり好ましくない。動摩擦係数の下限値は0.11以上であると好ましく、0.12以上であるとより好ましく、0.13以上であると特に好ましい。一方、動摩擦係数が0.7を超えると、ブロッキングを生じやすくなり、好ましくない。動摩擦係数の上限値は0.68以下であると好ましく、0.66以下であるとより好ましく、0.64以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、60℃に設定された環境試験室内で672時間エージングした後、製品ロールを速度200m/minで巻き出した時の静電気が5kV以下であると好ましい。印刷工程では有機溶剤を使用し、また静電気が高いとゴミやほこりがフィルムに付着するので、静電気は低い方が好ましい。静電気の上限値は4.5kV以下であると好ましく、4.0kV以下であるとより好ましく、3.5kV以下であると特に好ましい。静電気は小さいほど好ましいが、本質的にポリエステルは静電気を生じ易く、下限値は0.5kV程度であり、1.0kV程度以上でも構わない。
 また、本発明の熱収縮性ポリエステル系フィルムは、その製造方法によって限定されるものではないが、例えば、上記したポリエステル原料(PET)を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す方法により、二軸延伸して熱処理することによって得ることができる。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。かかる押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 さらに、得られた未延伸フィルムを、後述するように、所定の条件で横方向に延伸した後に、一旦、熱処理し(前記熱処理はしてもしなくてもよい)、しかる後に所定の条件で長手方向に延伸し、弛緩熱処理することによって、本発明の熱収縮性ポリエステル系フィルムを得ることができる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい二軸延伸・熱処理方法について、従来の熱収縮性ポリエステル系フィルムの二軸延伸・熱処理方法との差異を考慮しつつ詳細に説明する。
[好ましい逐次二軸延伸方法]
 通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを延伸することによって製造される。従来から長手方向に収縮する熱収縮性ポリエステル系フィルムについての要求は高かったものの、未延伸フィルムを単純に長手方向に延伸するだけでは、幅の広いフィルムが製造できないため生産性が悪い。また、特開平1-127317号公報には、長手方向には収縮するフィルムが開示されているが、横方向に延伸されていないので幅方向の機械的強度が低く、かつ直角引裂き強度は高く、乾電池外装用ラベルとして使用するには不十分である。また長手方向の厚み斑も大きかった。
[延伸倍率と収縮率との関係]
 本発明者らは、60℃での672時間エージング後のフィルムの非収縮方向の破断伸度が25%以上となるよう研究した結果、非晶PET原料を使用しないフィルムにすれば良いことを発見した。しかし これまで熱収縮フィルムは 非晶PET原料を用いて、収縮させたい方向に高い倍率で延伸を実施し、分子鎖を配向させて収縮させるというのが常識であった。しかし発明者らは研究の結果、非晶性の原料を使用せず、実質的なホモPETだけを使用する場合でも、延伸倍率2倍前後にすることにより、熱収縮させることが可能であることを発見した。この結晶性ホモPETだけを使用する場合には、延伸倍率を3倍程度より高くすると 延伸方向の収縮率は低下していくことがわかった。
[横方向の延伸倍率]
 上記の研究結果より、二軸に延伸して長手方向を主収縮方向として収縮させるには、最初の横延伸時にTg+5℃以上Tg+40℃以下の温度で、3.5倍以上6倍以下の延伸倍率で延伸することが好ましい。3.5倍より低いと幅方向の収縮率を低下させるには必ずしも十分で無いので好ましくない。また、横延伸倍率の上限は特に限定されるものでもないが、6倍より高いと、長手方向に延伸しにくくなる(破断を生じやすくなる)ので好ましくない。より好ましくは3.7倍以上5.8倍以下であり、更に好ましくは 3.9倍以上5.6倍以下である。このように非晶PET原料を使用しないフィルムの横延伸倍率と幅方向の収縮率の関係は上記のようになるので、上記特許文献2で示されているような横方向延伸後の熱処理は、実施してもしなくても、どちらでも構わない。
 また横方向の延伸温度がTg+5℃未満であると、延伸時に破断が生じやすくなり、好ましくない。またTg+40℃より高いと、幅方向の引張破断強度が低くなる場合があり、あまり好ましくない。より好ましくはTg+8℃以上Tg+37℃以下であり、更に好ましくはTg+11℃以上Tg+34℃以下である。
[長手方向の延伸倍率]
 横延伸後の縦延伸時には、Tg+5℃以上Tg+40℃以下の温度で、1.5倍以上2.5倍以下の延伸倍率で延伸することが好ましい。1.5倍未満では収縮率が不足し、2.5倍を超えると、幅方向の収縮率が高くなってくるので 長手方向への一軸収縮フィルムとして好ましくない。より好ましくは1.6倍以上2.4倍以下であり、更に好ましくは1.8倍以上2.3倍以下である。
 また縦方向の延伸温度がTg+5℃未満であると、延伸時に破断が生じやすくなり、好ましくない。またTg+40℃より高いと、フィルムの熱結晶化が進んで収縮率が低下するので好ましくない。より好ましくはTg+8℃以上Tg+37℃以下であり、更に好ましくはTg+11℃以上Tg+34℃以下である。
[熱処理と横方向への弛緩]
 縦延伸後、フィルム両端をクリップで把持した状態で、Tg+35℃以上Tg+100℃以下の温度で熱処理をしながら、横方向に0%以上15%以下の弛緩をすることが好ましい。熱処理温度がTg+35℃未満であると、長手方向の90℃熱収縮率が高くなり好ましくない。またTg+100℃より高いと、フィルムの熱結晶化が進んで長手方向の140℃収縮率が低下するので好ましくない。より好ましくはTg+38℃以上Tg+97℃以下であり、更に好ましくはTg+41℃以上Tg+94℃以下である。また横方向の弛緩率は0%より低いと、実質的に横方向に延伸することとなりとして好ましくない。また弛緩率は15%より高くても構わないが、弛緩率が高いと最終的に製品となるフィルム幅が狭くなるので好ましくない。より好ましくは1%以上14%以下であり、更に好ましくは2%以上13%以下である。
 上記のように、本発明における好ましい延伸方法としては、縦方向の延伸倍率を横方向の延伸倍率より小さくすることが例示される。従来の多くの非晶PET原料を使用する熱収縮性ポリエステル系フィルムにおいては、縦方向、横方向で、高い延伸倍率を採用して屈折率が高くなっている方向が主収縮方向になる場合が多かったが、本発明は必ずしもそのようにならない。これは、本発明においては非晶質成分となり得るモノマー成分を多くは含まない結晶性のPETの性質が関係しているものと考えられる。即ち、結晶性のPETについては、例えば横方向に3.5倍以上といった高い延伸倍率で延伸されると、分子鎖が配向すると共に分子鎖の結晶化が進み、これが幅方向の熱収縮率を低くする要因として働いているものと推察される。この点、縦方向の1.5倍~2.5倍程度の延伸倍率は、長手方向にある程度分子鎖が配向しても、結晶化があまり進まない領域であるので、相対的に高い熱収縮率が得られるものと推定している。本発明においては、分子鎖の配向性と結晶化度の関係を簡単に表すことが困難であるので、それを長手方向及び幅方向の熱収縮率、屈折率とその大小関係により分子鎖の構造の代用メジャーとして表現しているものである。もちろん、横方向への弛緩熱処理も幅方向の熱収縮率を低下させる上で一定の寄与をしていると考えている。
 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。実施例、比較例で使用した原料の性状、組成、実施例、比較例におけるフィルムの製造条件(延伸・熱処理条件等)を、それぞれ表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 フィルムの評価方法は下記の通りである。
[熱収縮率]
 90±0.5℃、140±0.5℃の所定の温度の熱風オーブンを用いて、JIS C 2318-1997 5.3.4(寸法変化)に準拠し、長手方向、幅方向の寸法変化率(%)を測定し、上式1より求めた。
 [固有粘度 (IV)]
 ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/g。
[屈折率]
 アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
[直角引裂強度]
 140℃に調整された熱風オーブン中にてフィルムを主収縮方向に10%収縮させた後に、JIS-K-7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した(なお、サンプリングにおいては、試験片の長手方向をフィルムの主収縮方向とした)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ(登録商標))で試験片の両端を掴み、引張速度200mm/分の条件にて引張試験を行い、フィルムが長手方向に完全に引き裂かれたときの最大荷重を測定した。この最大荷重をフィルムの厚みで除して、単位厚み当たりの直角引裂強度を算出した。
[引張破壊強度、引張破断伸度の測定方法]
 JIS-K-7127に準じて、主収縮方向と直交する方向(フィルム幅方向)の長さ50mm×主収縮方向(フィルム長手方向)の長さ20mmの長方形状にサンプリングして試験片とし、万能引張試験機((株)島津製作所製 オートグラフ(登録商標))を利用して、試験片の両端(長尺方向の両端)を掴み、引張速度200mm/分の条件にて引張試験を行い、破断時の応力値を引張破壊強度として算出した。また破断時の伸びを破断伸度とした。
[エージング処理(1):幅方向の破断伸度を測定する前の恒温恒湿機による処理]
 恒温恒湿機<メーカー ヤマト科学株式会社,型式 IG43M>の内を 温度60℃、湿度65%の環境にし、その環境下でA4サイズにサンプリングされたフィルムを672時間、静置でエージング処理した。
[エージング処理(2):静電気を測定する前の環境試験室での処理]
 環境試験室の内を 温度60℃、湿度65%の環境にし、その環境下で巻長1000mの製品ロールを672時間 静置でエージング処理した。
[ヘイズ]
 JIS-K-7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
[動摩擦係数]
 JIS K-7125に準拠し、引張試験機(ORIENTEC社製テンシロン)を用
い、23℃・65%RH環境下で、フィルムの表面と裏面とを接合させた場合の動摩擦係数μdを求めた。なお、上側のフィルムを巻き付けたスレッド(錘)の重量は、1.5kgであり、スレッドの底面積の大きさは、縦63mm×横63mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
[静電気]
 上記エージング処理された製品ロールを 片岡機器製作所製2次SL(型式 KE70)に設置し、巻き取り速度200m/minで巻き取りを行いながら、春日電機(株)製デジタル静電電位測定器(型式 KSD-1000)で測定した。
[Tg(ガラス転移点)]
 セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを、-40℃から120℃まで、昇温速度10℃/分で昇温し、得られた吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移点)とした。
[長手方向の厚み斑]
 フィルム長手方向を長さ30m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で測定した。なお、上記したロール状のフィルム試料のサンプリングにおいては、フィルム試料の長さ方向をフィルムの主収縮方向とした。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式2からフィルムの長手方向の厚み斑を算出した。
 厚み斑={(Tmax.-Tmin.)/Tave.}×100 (%)  ・・式2
[収縮仕上り性]
 得られた熱収縮性フィルムを、長手方向が縦になるように、縦105mm×横40mmのサイズで切り出した。そして、単一乾電池の上端際の外周に両面テープを張り付け、その両面テープの外側に、切り出したフィルムを、図1の如く、当該フィルムの長辺の一方が乾電池の端部より3mmだけはみ出るようにフィルムを巻き付けた。そして、そのようにフィルムを巻き付けた乾電池に、200℃(風速10m/秒)の熱風を10秒間当て続けてフィルムを熱収縮させた。しかる後に、収縮後の仕上り性を目視により下記の2段階で評価した。
○:収縮不足、収縮斑がほとんどない
×:収縮不足、又は 収縮斑のどちらかが生じた
[ミシン目開封性]
 予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収縮仕上り性の測定条件と同一の条件で乾電池に装着した。ただし、ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、フィルムの幅方向に幅22mmで2本設けた。その後、ラベルのミシン目を指先で引裂き、幅方向にミシン目に沿って綺麗に裂け、ラベルを乾電池から外すことができた本数を数え、全サンプル50本に対する割合(%)を算出した。不良率10%以下を合格とした。
[非晶成分構成ユニットの含有率(モル%)]
 各試料を、クロロホルムD(ユーリソップ社製)とトリフルオロ酢酸D1(ユーリソップ社製)を10:1(体積比)で混合した溶媒に溶解させて、試料溶液を調製し、NMR(「GEMINI-200」;Varian社製)を用いて、温度23℃、積算回数32回の測定条件で試料溶液のプロトンのNMRを測定した。NMR測定では、所定のプロトンのピーク強度を算出して、多価アルコール成分100モル%中のジエチレングリコールやネオペンチルグリコールなどの非晶成分となりうるモノマー量、又はジカルボン酸成分100モル%中のイソフタル酸などのような非晶成分となりうるモノマー量を測定することで、全構成ユニット100モル%中の非晶成分構成ユニットの含有率(モル%)を測定した。
 また、実施例および比較例に用いたポリエステルは以下の通りである。
ポリエステル1:ポリエチレンテレフタレート(IV 0.75dl/g)
ポリエステル2:上記ポリエステル2の製造の際に、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して8,000ppmの割合で添加したポリエチレンテレフタレート(IV 0.75dl/g)
ポリエステル3:エチレングリコール70モル%,ネオペンチルグリコール30モル%
とテレフタル酸とからなるポリエステル(IV 0.72dl/g)
[実施例1]
 上記したポリエステル1~3の各々は、主構成ユニットがテレフタル酸とエチレングリコールからなる構成ユニットであるが、副生成物として、テレフタル酸とジエチレングリコールからなる構成ユニットも全構成ユニットに対し0.4モル%程度含有されている。ポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが240μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/min.であった。また、未延伸フィルムのTgは75℃であった。しかる後、その未延伸フィルムを、横延伸ゾーン、中間ゾーン、中間熱処理ゾーンを連続的に設けたテンター(第1テンター)に導いた。
 そして、テンターに導かれた未延伸フィルムを、フィルム温度が90℃になるまで予備加熱した後、横延伸ゾーンで横方向に85℃で4倍に延伸し、70℃で熱処理し(この熱処理はしなくてもよい)、厚み60μmの横延伸フィルムを得た。
 得られた横延伸フィルムを複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が80℃になるまで予備加熱した後に、表面温度95℃に設定された延伸ロール間で2.0倍に延伸した。しかる後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。なお、冷却前のフィルムの表面温度は約85℃であり、冷却後のフィルムの表面温度は約25℃であった。また、70℃から25℃に冷却するまでに要した時間は約1.0秒であり、フィルムの冷却速度は、45℃/秒であった。
 そして、冷却後のフィルムをテンター(第2テンター)へ導き、当該第2テンター内で幅方向の両端際をクリップによって把持した状態で140℃の雰囲気下で5.0秒間に亘って熱処理した。この時の弛緩率は0%であった。その後に冷却し、両縁部を裁断除去することによって、約30μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスが取れた優れたフィルムであった。
[実施例2]
 第1テンターでの横延伸倍率を4.1倍、第2テンターでの弛緩率を2.5%に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスがとれた優れたフィルムであった。
[実施例3]
 未延伸フィルムの厚みを285μm、縦延伸倍率を2.5倍、第2テンターでの弛緩率を5%に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスがとれた優れたフィルムであった。
[実施例4]
 未延伸フィルムの厚みを203μm、縦延伸倍率を1.5倍に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスがとれた優れたフィルムであった。
[実施例5]
 第2テンターでの温度を160℃に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスがとれた優れたフィルムであった。
[実施例6]
 未延伸フィルムの厚みを189μm、第1テンターでの横延伸倍率を3.5倍、第2テンターでの弛緩率を10%に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。収縮仕上り性、ミシン目開封率、エージング後の幅方向破断伸度についてバランスがとれた優れたフィルムであった。
[比較例1]
 未延伸フィルムの厚みを60μm、第1テンター工程をとばし、縦延伸温度を85℃に変更した以外は実施例1と同様の方法によって、約30μmの一軸延伸フィルムを得た。評価結果を表3に示す。ミシン目開封率、エージング後の幅方向破断伸度が実施例1より劣るフィルムであった。
[比較例2]
 第2テンターの温度を110℃とした以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。90℃の長手方向の収縮率が高く、実施例1より収縮仕上り性が劣るフィルムであった。
[比較例3]
 原料比率をポリエステル1とポリエステル2とポリエステル3を重量比68:7:25に変更した以外は実施例1と同様の方法によって、約30μmの二軸延伸フィルムを得た。評価結果を表3に示す。エージング後のフィルム幅方向の引張破断伸度が劣り、実施例1より経時後の劣化が懸念されるフィルムであった。また、巻き出し時の静電気も高く発生した。
[比較例4]
 押出機に投入するポリエステル1とポリエステル2とポリエステル3の混合割合を重量比86:7:7に変更した。また未延伸フィルムの厚みを198μmとして、第一テンターでの横延伸倍率を3.3倍に変更した。次いで縦延伸機での表面温度105℃に変更して2倍延伸した。また第2テンターでの温度を125℃に変更した他は実施例1と同様にして約30μmの二軸延伸フィルムを得た。そして、得られたフィルムの特性を上記の方法によって評価した。評価結果を表3に示す。実施例1に対し、高温経時後の劣化に課題が残るフィルムであった。また巻き出し時の静電気も高く発生した。
Figure JPOXMLDOC01-appb-T000003
 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた加工特性を有しているので、特に、乾電池の外装用のラベルやその類似用途に好適に用いることができる。
  F : フィルム
 

Claims (6)

  1.  エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分が0モル%以上1モル%未満含有されているポリエステル系樹脂によって形成されているとともに、下記要件(1)~(4)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
    (1)90℃の熱風オーブン中で5分に亘って処理した場合における長手方向の熱収縮率が-1%以上5%以下であること
    (2)140℃に加温した熱風オーブン中で5分に亘って処理した場合における長手方向の熱収縮率が15%以上40%以下であること
    (3)140℃に加温した熱風オーブン中で5分に亘って処理した場合における幅方向の熱収縮率が-5%以上5%以下であること
    (4)60℃に設定された恒温恒湿機で672時間エージングした後のフィルム幅方向の破断伸度が25%以上80%以下であること
  2.  幅方向の引張破断強度が200MPa以上400MPa以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
  3.  幅方向の屈折率が1.62以上1.66以下であることを特徴とする請求項1又は2に記載の熱収縮性ポリエステル系フィルム。
  4.  ヘイズが2%以上12%以下であることを特徴とする請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  フィルムの一方の面とその裏側の面との動摩擦係数が0.1以上0.7以下であることを特徴とする請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルム。
  6.  60℃に設定された環境試験室内で672時間エージングした後、製品ロールを速度200m/minで巻き出した時の静電気が5kV以下であることを特徴とする請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルム。
     
PCT/JP2013/072971 2012-08-29 2013-08-28 熱収縮性ポリエステル系フィルム WO2014034704A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013540160A JP6244915B2 (ja) 2012-08-29 2013-08-28 熱収縮性ポリエステル系フィルム
CN201380045470.3A CN104582937B (zh) 2012-08-29 2013-08-28 热收缩性聚酯系薄膜
KR1020157001462A KR102116052B1 (ko) 2012-08-29 2013-08-28 열수축성 폴리에스테르계 필름
US14/424,339 US9920162B2 (en) 2012-08-29 2013-08-28 Heat-shrinkable polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188508 2012-08-29
JP2012-188508 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034704A1 true WO2014034704A1 (ja) 2014-03-06

Family

ID=50183512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072971 WO2014034704A1 (ja) 2012-08-29 2013-08-28 熱収縮性ポリエステル系フィルム

Country Status (6)

Country Link
US (1) US9920162B2 (ja)
JP (1) JP6244915B2 (ja)
KR (1) KR102116052B1 (ja)
CN (1) CN104582937B (ja)
TW (1) TWI576367B (ja)
WO (1) WO2014034704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022703A1 (ja) * 2015-08-05 2017-02-09 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JPWO2017022742A1 (ja) * 2015-08-06 2018-05-24 日東電工株式会社 ポリエステルフィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459533B2 (ja) * 2014-04-01 2019-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
CN107428965B (zh) * 2015-03-20 2020-12-08 东洋纺株式会社 热收缩性聚酯系薄膜及包装体
TWI652306B (zh) * 2017-11-28 2019-03-01 遠東新世紀股份有限公司 Heat shrinkable polyester film
JP6927124B2 (ja) * 2018-03-30 2021-08-25 東洋紡株式会社 熱収縮性ポリエステル系フィルム
CN110116538B (zh) * 2019-06-03 2020-11-03 杭州和顺科技股份有限公司 一种抗菌止滑双向拉伸聚酯薄膜及其制备方法
DE112020007527T5 (de) * 2020-11-30 2023-06-07 Bonset America Corporation Wärmeschrumpfbare polyesterfolie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239833A (ja) * 1996-03-05 1997-09-16 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよびその製造法
WO2009075333A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2011125435A1 (ja) * 2010-04-08 2011-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059667A (en) * 1975-10-20 1977-11-22 E. I. Du Pont De Nemours And Company Biaxially oriented polyethylene terephthalate film and method of making such film
JPH0729377B2 (ja) 1987-11-13 1995-04-05 株式会社興人 熱収縮性ポリエステル系フィルム
US5223544A (en) * 1992-03-31 1993-06-29 Shell Oil Company Process for the removal of foreign materials from a post-consumer plyethylene terephthalate feed stream
US6623821B1 (en) * 1995-03-31 2003-09-23 E. I. Du Pont De Nemours And Company Heat-shrinkable, heat-sealable polyester film for packaging
JP4649710B2 (ja) * 2000-07-28 2011-03-16 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、熱収縮性チューブとその製造方法、およびラベルとそれを装着した容器
US6599994B2 (en) * 2001-07-18 2003-07-29 Eastman Chemical Company Polyester blends and heat shrinkable films made therefrom
JP4284959B2 (ja) * 2002-02-14 2009-06-24 東洋紡績株式会社 和紙の外観を有する熱収縮性ポリエステル系フィルム及びラベル
KR101069495B1 (ko) * 2002-12-24 2011-09-30 도요 보세키 가부시키가이샤 열수축성 폴리에스테르계 필름
KR100549111B1 (ko) * 2003-06-23 2006-02-02 도레이새한 주식회사 결정성이 우수한 열수축성 폴리에스테르 필름
EP1698461B1 (en) * 2003-12-26 2010-02-10 Toyo Boseki Kabushiki Kaisha Heat shrinkable polyester film and heat shrinkable label
JP4411556B2 (ja) * 2006-06-14 2010-02-10 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4560740B2 (ja) * 2007-09-25 2010-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
KR101190348B1 (ko) * 2007-12-11 2012-10-11 코오롱인더스트리 주식회사 열수축성 폴리에스테르계 필름
JP5286829B2 (ja) * 2007-12-13 2013-09-11 東洋紡株式会社 ラベル
JP4524718B2 (ja) * 2008-08-08 2010-08-18 東洋紡績株式会社 熱収縮性ポリエステル系フィルム
EP2548913B1 (en) * 2010-03-15 2016-03-02 Toyobo Co., Ltd. Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film
US9074092B2 (en) * 2010-12-20 2015-07-07 Eastman Chemical Company Miscible polyester blends utilizing recycled polyesters
JP5240387B1 (ja) * 2012-07-26 2013-07-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2014021120A1 (ja) * 2012-08-03 2014-02-06 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6269399B2 (ja) * 2014-02-04 2018-01-31 東洋紡株式会社 熱収縮性ポリエステル系フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239833A (ja) * 1996-03-05 1997-09-16 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよびその製造法
WO2009075333A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2011125435A1 (ja) * 2010-04-08 2011-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022703A1 (ja) * 2015-08-05 2017-02-09 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JPWO2017022703A1 (ja) * 2015-08-05 2018-06-07 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10421231B2 (en) 2015-08-05 2019-09-24 Toyobo Co., Ltd. Heat-shrinkable polyester film and package
JP2020073637A (ja) * 2015-08-05 2020-05-14 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JPWO2017022742A1 (ja) * 2015-08-06 2018-05-24 日東電工株式会社 ポリエステルフィルム

Also Published As

Publication number Publication date
KR102116052B1 (ko) 2020-05-27
US9920162B2 (en) 2018-03-20
JP6244915B2 (ja) 2017-12-13
JPWO2014034704A1 (ja) 2016-08-08
US20150218308A1 (en) 2015-08-06
TW201414765A (zh) 2014-04-16
CN104582937B (zh) 2016-10-26
CN104582937A (zh) 2015-04-29
KR20150048704A (ko) 2015-05-07
TWI576367B (zh) 2017-04-01

Similar Documents

Publication Publication Date Title
JP7254730B2 (ja) 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP6244915B2 (ja) 熱収縮性ポリエステル系フィルム
US8673414B2 (en) Heat-shrinkable polyester film, process for production thereof, and package
US9080027B2 (en) Heat-shrinkable polyester film, packages, and process for production of heat-shrinkable polyester film
JP5633808B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
US9296867B2 (en) Heat-shrinkable polyester-based film
JP5408250B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2019188922A1 (ja) 熱収縮性ポリエステル系フィルム
JP6197333B2 (ja) 熱収縮性ポリエステル系フィルム
JP2023178331A (ja) 熱収縮性ポリエステルフィルム、熱収縮性ラベル、及び包装体
WO2018021212A1 (ja) 熱収縮性フィルム、熱収縮ラベル、および包装体
JP2011001476A (ja) 熱収縮性ポリエステル系フィルム
JP5067473B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
KR20230009902A (ko) 필름용 공중합 폴리에스테르 원료, 열수축성 폴리에스테르계 필름, 열수축성 라벨, 및 포장체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013540160

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001462

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833850

Country of ref document: EP

Kind code of ref document: A1