WO2014033515A1 - 预编码矩阵构造和索引值反馈方法及相关通信设备 - Google Patents

预编码矩阵构造和索引值反馈方法及相关通信设备 Download PDF

Info

Publication number
WO2014033515A1
WO2014033515A1 PCT/IB2013/001744 IB2013001744W WO2014033515A1 WO 2014033515 A1 WO2014033515 A1 WO 2014033515A1 IB 2013001744 W IB2013001744 W IB 2013001744W WO 2014033515 A1 WO2014033515 A1 WO 2014033515A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
dimensional
index value
component
communication device
Prior art date
Application number
PCT/IB2013/001744
Other languages
English (en)
French (fr)
Inventor
丁铭
刘仁茂
黄磊
Original Assignee
夏普株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社 filed Critical 夏普株式会社
Priority to JP2015529135A priority Critical patent/JP2015528669A/ja
Priority to US14/425,238 priority patent/US20150244438A1/en
Priority to EP13833257.2A priority patent/EP2894802A4/en
Publication of WO2014033515A1 publication Critical patent/WO2014033515A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly to a method for constructing a three-dimensional multiple-input multiple-output (MO) precoding matrix, a method for feeding back three-dimensional ⁇ precoding matrix index values, and related communication devices.
  • MO three-dimensional multiple-input multiple-output
  • Modern wireless mobile communication systems present two distinctive features.
  • One is broadband high speed.
  • the fourth generation wireless mobile communication system has a bandwidth of up to 100 MHz and a downlink rate of up to 1 Gbps.
  • the second is mobile internet, which promotes mobile Internet access and mobile video on demand. , online navigation and other emerging businesses.
  • These two characteristics put forward high requirements for wireless mobile communication technologies, including: ultra-high-rate wireless transmission, inter-region interference suppression, reliable transmission signals in motion, distributed/centralized signal processing, and so on.
  • 4G fourth generation
  • 5G fifth generation
  • the number of users of mobile communication systems is about 5.5 billion. It is estimated that the number will rise to 7.3 billion by 2015. Among them, the growth of the number of smartphone users is particularly significant. In 2011, there were approximately 428 million smartphone terminals in the world, and by 2015, the number will double to 1 billion.
  • the popularity of powerful smartphones has driven the rapid growth of wireless mobile communication rates. In recent years, the global wireless communication rate has steadily increased by an average of 2 times per year. According to this trend, after 10 years, the wireless mobile communication system must have a rate increase of more than 1000 times than the current system to meet the basic needs of future users in terms of communication speed.
  • the rate mainly refers to data services (currently accounting for about 90% of the total traffic), such as downloading of smart phone software, real-time navigation, synchronization and sharing of personal data clouds, and the like.
  • the voice business is subject to the objective conditions of relatively slow population growth, and there will be no significant growth in the next 10 years. '
  • 3D MIMO technology is a new method to improve the efficiency of spectrum utilization.
  • the conventional transmitting antenna and receiving antenna generally adopt a horizontal linear array placement method, so that only the horizontal angle can be resolved, thereby generating a horizontal beam and performing multi-user MIMO operation.
  • a grid surface array method to arrange the transmitting antennas and the receiving antennas to simultaneously generate horizontal and vertical beams so that the buildings are located on different floors.
  • the user can communicate with the base station at the same time.
  • There are two main research topics in 3D MIMO technology On the one hand, the modeling of three-dimensional channels requires the study of theoretical models and fitting with the results of actual tests.
  • Non-Private Ij Literature 1 Vincent Lau, Youjian Liu, and Tai-Ann Chen, On the Design of MEMO Block-Fading Channels with Feedback-Link Capacity Constraint, IEEE Transactions on Communications, vol. 52, no. 1, pp. 62-70, Jan. 2004
  • Non-Patent Document 2 3GPP TS 36.211 V10.1.0 (2011-03) ' Summary of the Invention
  • This application focuses on the above three-dimensional MIMO technology, with particular attention to the following two aspects: (1) how to design an effective three-dimensional precoding codebook for the precoding matrix W; and (2) how to implement feedback of low overhead channel state information .
  • Non-Patent Document 1 proposes a theoretical scheme based on the Lloyd algorithm (also known as Voronoi iteration or relaxation) to find the optimal codebook.
  • the method proposed in Non-Patent Document 1 can mathematically give an optimal codebook design, the following reasons have not been adopted in practical systems:
  • the codebook given by the Lloyd algorithm does not have the expected attributes (eg, nested structure, unit specification weight, etc.), and the actual system implementation complexity is high;
  • Non-Patent Document 2 specifies in Section 6.3.4.23: For a one-dimensional cross-polarized linear antenna array as shown in Fig. 1, a suboptimal codebook design is employed. As an example, Tables 1 and 2 below list the precoding codebooks used when the MIMO channel rank is 1 and the rank is 2. Where ⁇ and ⁇ are the index numbers of the double code words W1 and W2, respectively.
  • the beamforming direction of each group of antennas with the same polarization component direction is characterized by a single "Difference Fourier Transform (DFT) vector, and the phase weighting factor vector is used to characterize how to different groups from the polarization component direction.
  • the signals of the antenna are coherently combined.
  • the specific formulas of the phase weighting factor and the DFT vector are as follows:
  • e iml2 (phase weighting factor)
  • v m [le J2m " /32 4 32 e J 6m '/ 32 (DFT vector)
  • Non-Patent Document 2 actually proposes a dual precoder (gp, DFT vector representation precoding) corresponding to the double code words W1 and W2 for the case of the one-dimensional antenna array. And the method of precoding the phase weighting factor vector representation to construct the precoding matrix. Since the one-dimensional antenna array can only distinguish the direction angle and cannot distinguish the elevation angle, and considers one spatial dimension less, the solution in Non-Patent Document 2 is only applicable to a specific propagation environment that can be modeled as a two-dimensional channel model, and is not suitable for Standardly modeled as a general propagation environment for a three-dimensional channel model. For a two-dimensional antenna array using both the direction angle and the elevation angle as shown in Fig. 2, this means that the scheme in Non-Patent Document 2 is only applicable to the radius of the cell so that most users have a minimum size that can be ignored. The special case of the elevation angle.
  • gp DFT vector representation precoding
  • a method for constructing a three-dimensional MIMO precoding matrix comprising: constructing a first component matrix having a block diagonal matrix form, the diagonal submatrix representation pair of the first component matrix Three-dimensional beamforming of a two-dimensional antenna array; constructing a second component matrix, the second component matrix comprising a phase weighting factor as a matrix element, the phase weighting factor characterizing a phase combination of signals from the two-dimensional antenna array; The first component matrix and the second component matrix are constructed to construct a three-dimensional MIMO precoding matrix.
  • a method for feeding back a three-dimensional MIMO precoding matrix index value including: estimating a MIMO channel; and selecting and feeding back a first index value according to a channel estimation result, a second index value and a third index value, so that a precoding matrix in the three-dimensional MIMO precoding codebook can be constructed according to the foregoing method, wherein the first index value indicates a first DFT vector in the first DFT vector set, The second index value indicates a second DFT vector in the second set of DFT vectors, the third index value indicating a second component matrix in the second component matrix set.
  • a communication device adapted to construct a three-dimensional MIMO precoding matrix
  • the communication device comprising: a first component matrix construction unit for constructing a first component having a block diagonal matrix form a matrix, a diagonal submatrix of the first component matrix characterizing a three-dimensional wave shape shaping of a two-dimensional antenna array; a second component matrix construction unit, _ for fabricating a second component matrix, the second component matrix including a phase a weighting factor as a matrix element, the phase weighting factor characterizing coherent combining of signals from the two-dimensional antenna array; and a precoding matrix construction unit for constructing three-dimensional MIMO according to the constructed first component matrix and second component matrix Precoding matrix.
  • a communication device which is adapted to feed back a three-dimensional MIMO precoding matrix index value, the communication device comprising: a channel estimation unit for estimating a MIMO channel; and a feedback unit, configured to: Selecting and feeding back the first index value, the second index value, and the third index value according to the channel estimation result, so that the communication device according to claim 9 can construct a precoding matrix in the three-dimensional MIMO precoding codebook, where The first index value indicates a first DFT vector in the first DFT vector set, the second index value indicates a second DFT vector in the second DFT vector set, and the third cable I value indicates a second component matrix The second component matrix in the set.
  • the precoding matrix is constructed from two component matrices with low implementation complexity
  • FIG. 1 is a schematic diagram of a one-dimensional cross-polarized linear antenna array capable of only distinguishing the direction angle and not distinguishing the elevation angle
  • FIG. 2 is a schematic diagram of a two-dimensional cross-polarized linear antenna array capable of distinguishing both the direction angle and the elevation angle;
  • FIG. 3 is a diagram showing a method for constructing a three-dimensional MIMO precoding matrix according to the present invention
  • FIG. 4 is a schematic diagram showing an example matrix of a first component matrix constructed according to the method shown in FIG.
  • FIG. 5 is a diagram showing a method for feeding back a three-dimensional MIMO precoding matrix index value according to the present invention
  • FIG. 6 is a schematic structural block diagram showing a communication device suitable for constructing a three-dimensional MIMO precoding matrix according to the present invention
  • FIG. 7 is a diagram showing communication suitable for feeding back a three-dimensional MIMO precoding matrix index value according to the present invention.
  • the method begins in step S310.
  • a first component matrix WUD in the form of a block diagonal matrix is constructed, the diagonal submatrix of the first component matrix being used to characterize the three dimensional beamforming of the two dimensional antenna array.
  • the first component matrix W UD may have the form shown in FIG. 4 , wherein the diagonal sub-matrices f 3D , re ( ⁇ nf 3D , blue respectively correspond to different polarization components of the antenna array Direction.
  • f 3D can be expressed as the Kronecker product of two discrete Fourier transform (DFT) vectors.
  • DFT discrete Fourier transform
  • the first DFT vector and the second DFT vector are particularly suitable for horizontal and vertical antenna arrays applied to a two-dimensional antenna array, respectively, and are denoted as f. H and ⁇ , respectively.
  • f 3D has the following mathematical form
  • a second component matrix W2 is constructed, the second component matrix containing a phase weighting factor as a matrix element. Consistent with the scheme in Non-Patent Document 2, the phase weighting factor characterizes the coherent combining of signals from a two-dimensional antenna array.
  • step S330 a three-dimensional MO precoding matrix is constructed using the first component matrix constructed in step S310 and the second component matrix constructed in step S320.
  • the method for constructing a three-dimensional ⁇ precoding matrix according to the present invention requires only three index values, 'and 1 2' to construct a precoding matrix.
  • the signaling overhead required to feed back the index value is small.
  • Figure 5 illustrates a method for feeding back three-dimensional MIMO precoding matrix index values in accordance with the present invention.
  • the method begins in step S510.
  • the MIMO channel is estimated.
  • step S520 is performed to select and feed back the first index value, the second index value, and the third index value according to the channel estimation result in step S510, so that the three-dimensional MIMO precoding matrix can be constructed according to the method proposed by the present invention, where
  • the first index value indicates a first DFT vector in a first DFT vector set
  • the second index value indicates a second DFT vector in a second DFT vector set
  • the third index value indicates a second component matrix set The second component matrix in .
  • the present invention provides a communication device 600 suitable for constructing a three-dimensional MIMO precoding matrix.
  • Fig. 6 shows a schematic block diagram of the communication device 600.
  • the communication device 600 includes: a first component matrix construction unit 610, configured to construct a first component matrix having a block diagonal matrix form, and a diagonal submatrix of the first component matrix is characterized by a two-dimensional antenna array Three-dimensional beamforming; a second component matrix construction unit 620, configured to construct a second component matrix, the second component matrix including a phase weighting factor as a matrix element, the phase weighting factor characterizing a signal from a two-dimensional antenna array And a pre-coding matrix construction unit 630, configured to construct a three-dimensional MIMO precoding matrix according to the constructed first component matrix and second component matrix.
  • the communication device can be a transmission point and/or a user equipment. Each transmission point consists of all or part of the transmit ports of one or more base stations. In a particular case, one transmission point corresponds to
  • the present invention also provides a communication device 700 adapted to feed back a three-dimensional MIMO precoding matrix index value.
  • FIG. 7 shows a schematic structural block diagram of the communication device 700.
  • the communication device 700 includes: a channel estimation unit 710 for estimating a MIMO channel; and a feedback unit 720, configured to select and according to the channel estimation result.
  • the communication device can be a user device.
  • a method for constructing a three-dimensional MIMO precoding matrix comprising: constructing a first component matrix having a block diagonal matrix form, the diagonal submatrix representation pair of the first component matrix Three-dimensional beamforming of a two-dimensional antenna array; constructing a second component matrix, the second component matrix comprising a phase weighting factor as a matrix element, the phase weighting factor characterizing coherent combining of signals from the two-dimensional antenna array; Constructing a first component matrix and a second component matrix to construct a three-dimensional MIMO precoding matrix.
  • the diagonal submatrix of the first component matrix is a Kronecker product of the first DFT vector and the second DFT vector.
  • the first DFT vector and the second DFT vector are respectively applied to horizontal and vertical antenna arrays of the two-dimensional antenna array.
  • the set of first DFT vectors, the set of second DFT vectors, and the set of second component matrices define a three-dimensional MIMO precoding codebook.
  • a method for feeding back a three-dimensional MIMO precoding matrix index value including: estimating a MIMO channel; and selecting and feeding back a first index value according to a channel estimation result, a second index value and a third index value, so that a precoding matrix in the three-dimensional MIMO precoding codebook can be constructed according to the foregoing method, wherein the first index value indicates a first DFT vector in the first DFT vector set, The second index value indicates a second DFT vector in the second set of DFT vectors, the third index value indicating a second component matrix in the second component matrix set.
  • a communication device adapted to construct a three-dimensional MIMO precoding matrix
  • the communication device comprising: a first component matrix construction unit for constructing a first component having a block diagonal matrix form a matrix, a diagonal submatrix of the first component matrix characterizing three-dimensional beamforming of a two-dimensional antenna array; a second component matrix construction unit ⁇ for constructing a second component matrix, the second component matrix including a phase weighting factor as a matrix An element, the phase weighting factor characterizing coherent combining of signals from the two-dimensional antenna array; and a precoding matrix construction unit for constructing three-dimensional MIMO according to the constructed first component matrix and second component matrix Precoding matrix.
  • the communication device is a transmission point and/or a user equipment, and the transmission point may be a base station.
  • a communication device which is adapted to feed back a three-dimensional MIMO precoding matrix index value, the communication device comprising: a channel estimation unit for estimating a MIMO channel; and a feedback unit, configured to: Selecting and feeding back the first index value, the second index value, and the third index value according to the channel estimation result, so that the communication device according to claim 9 can construct a precoding matrix in the three-dimensional MIMO precoding codebook, where The first index value indicates a first DFT vector in the first DFT vector set, the second index value indicates a second DFT vector in the second DFT vector set, and the third index value indicates the second component matrix set The second component matrix.
  • the communication device is a user equipment.
  • the technical solutions of the present invention are shown by way of example only, but the invention is not limited to the above steps and unit structures. Where possible, the steps and unit structure can be adjusted and traded as needed. Therefore, certain steps and units are not essential elements for carrying out the general inventive concept of the invention. Therefore, the technical features necessary for the present invention are limited only by the minimum requirements of the general inventive concept of the present invention, and are not limited by the above specific examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种用于构造三维多输入多输出(MIMO)预编码矩阵的方法、用于反馈三维MIMO预编码矩阵索引值的方法以及相关的通信设备。所述用于构造三维MIMO预编码矩阵的方法包括:构造具有块对角矩阵形式的第一成分矩阵,所述第一成分矩阵的对角子矩阵是二维天线阵列的三维波束成形子预编码器;构造第二成分矩阵,#f述第二成分矩阵包含相位加权因子作为矩阵元素,所述相位加权因子表征对来自二维天线阵列的信号的相干合并;以及根据所构造的第一成分矩阵和第二成分矩阵,构造预编码矩阵。所述用于反馈三维MIMO预编码矩阵索引值的方法,包括:对MIMO信道进行估计;以及根据信道估计结果,选择并反馈第一索引值、第二索引值和第三索引值。

Description

预编码矩阵构造和索引值反馈方法及相关通信设备 技术领域
本发明涉及无线通信技术领域, 更具体地, 涉及用于构造三维多输入 多输出 ( MO) 预编码矩阵的方法、 用于反馈三维 ΜΓΜΟ预编码矩阵索 引值的方法以及相关的通信设备。
背景技术
现代无线移动通信***呈现出两个显著特点, 一是宽带高速率, 比如 ***无线移动通信***的带宽可达 100MHz, 下行速率高达 lGbps; 二是 移动互联, 推动了移动上网、 手机视频点播、 在线导航等新兴业务。 这两 个特点对无线移动通信技术提出了较高要求, 主要有: 超高速率无线传输、 区域间干扰抑制、 移动中可靠传输信号、 分布式 /集中式信号处理等等。 在 未来的增强*** (4G)及第五代 (5G) 无线移动通信***中, 为了满足 上述发展需求, 各种相应的关键技术幵始被提出和论证, 值得本领域的研 究人员广泛关注。
在 2007年 10月, 国际电信联盟 (ITU) 批准全球微波互联接入*** ( WiMax, Worldwide Interoperability for Microwave Access)成为第四个 3G ***标准。 这一发生在 3G时代末期的事件, 实际上是 4G标准争夺战的预 演。 事实上, 为了应对以无线局域网和 WiMax为代表的无线 IP技术流的 挑战, 从 2005年幵始, 第三代 3GPP组织就着手进行全新的***升级, 即 长期演进*** (LTE, Long Term Evolution) 的标准化工作。 这是一个基于 正交步员分复用技术 (OFDM, Orthogonal Frequency Division Multiplexing) 的准四代***, 已于 2009年初推出第一版, 并在 2010年陆续在全球开始 商用。与此同时, 3GPP组织关于***无线移动通信***(4G, the Fourth Generation) 的标准化制定工作也已经于 2008年上半年启动, 该***称为 先进的长期演进*** (LTE-A, Long Term Evolution Advanced 该***的 物理层过程的关键标准化文书已于 2011年初完成。 在 2011年 11月, ITU 组织在中国重庆正式宣布, LTE-A***和 WiMax***是 4G***的两个官 方标准。 目前, LTE-A***的商用过程正在全球范围逐步展开。 虽然以 LTE-A***和 WiMax***为代表的***无线移动通信*** 能够为用户提供较高速率和较好体验的通信服务, 但它们仍然不能充分满 足未来几年及十几年的用户需求。目前,移动通信***的用户数约为 55亿, 据估计, 到 2015年该数字将上升至 73亿。 其中, 智能手机用户数的增长 尤为显著。在 2011年, 世界上的智能手机终端约为 4.28亿部, 到 2015年, 该数字将成倍增长至 10亿。功能强大的智能手机的普及已经带动无线移动 通信速率的快速增长。 最近几年, 全球范围的无线通信速率以年均 2倍的 趋势稳步上升。 照此趋势, 10年之后, 无线移动通信***必须比目前的系 统有超过 1000倍的速率提升才能够满足未来用户在通信速率方面的基本需 求。 当然, 所述速率主要是指数据业务(目前占总业务量的九成左右), 如 智能手机软件的下载、 实时导航、 个人资料云端同步与共享等等。 而语音 业务受制于人口增长相对较慢的客观条件, 在未来 10年中不会出现大幅增 长。 '
除了 1000倍速率增长的挑战之外,另一个挑战来自于移动互联网的兴 起。 目前, 70%的互联网接入已经是由移动终端所发起的。 未来 10年将是 IT行业的崭新机遇期, 其主要机会在于, 传统的 PC互联网已经逐渐被移 动互联网所代替。 于是, 新的用户习惯催生出一系列业务新模式, 如面向 手持通信设备及触摸屏的软件开发、 基于个人定位的社交网络、 以个人为 中心的资料云管理等等。 而移动互联网对于无线移动通信***的影响主要 体现在两方面。 第一, 移动视频数据流量显著增长, 预计到 2016年, 其将 占到总数据流量的 66%左右。 这种实时性等级相对较高的业务, 对于无线 移动通信***的可靠性提出了较高要求。 第二, 在未来, 大多数移动数据 通信将发生在室内和小区热点区域, 这对于无线移动通信***的覆盖也提 出了挑战。
另外, 到 2020年, 全球将有 200亿的机器通信设备, 其数据流量比目 前将有 500%的增长。 如何设计***以支持数量庞大的机器通信设备, 也是 一项需要深入研究的课题。 ·
根据未来十年的挑战, 对于增强的***无线移动通信***, 大致有 以下几点发展需求: *更高的无线宽带速率, 且重点优化局部的小区热点区域;
*进一步提高用户体验, 特别需要优化小区边界区域的通信服务;
•考虑到可用频谱不可能有 1000倍的扩展, 故需要继续研究能够提高 频谱利用效率的新技术;
•高频段的频谱 (5GHz, 甚至更高) 必将投入使用, 以获得较大的通 信带宽 5
*现有网络 (2G/3G/4G, WLAN, WiMax等) 的协同工作, 以分担数 据流量;
•针对不同业务、 应用和服务特定优化;
•加强***支持大规模机器通信的能力;
*灵活、 智能且廉价的网络规划与布网;
*设计方案以节省网络的用电量和用户设备的电池消耗。
为了实现上述发展需求, 今年 6月份, 国际第三代伙伴计划 (3GPP ) 组织在斯洛文尼亚召幵了一次特别工作会议, 讨论增强的***无线移动 通信***的关键技术。 在该会议上, 共发表和讨论了 42份提案, 最终入围 的关键技术主要有 3项, 分别为: 增强型小小区技术、 三维 MIMO技术、 和增强的多点协作通信技术。
其中, 三维 MIMO技术是一项提高频谱利用效率的新方法。 传统的发 射天线和接收天线, 一般采用水平线性阵列的摆放方式, 故其只能分辨水 平角, 从而产生水平方向的波束, 进行多用户 MIMO的操作。 考虑到未来 的通信***在高楼林立的城市密集区域的广泛应用, 故可以采用网格面阵 列方式, 布置发射天线和接收天线, 从而同时产生水平与垂直方向的波束, 使楼宇里面位于不同楼层的用户能够同时与基站通信。 三维 MIMO技术主 要有两项研究课题。 一方面是三维信道的建模, 需要研究理论模型, 并与 实际测试的结果进行拟合, 这是研究三维 MIMO技术的关键预备步骤。 目 前己有的信道建模的相关研究, 主要针对二维信道, 即只有水平方向, 这 主要是出于简化理论与支持传 £二维 MIMO技术的考虑。.另一方面是三维 波束成形, 需要研究导频信号的设计、 三维预编码的码本、 低开销的信道 状态信息的反馈、 三维多用户 MIMO发射方案等等。 在前述的信道建模的 步骤中, 因为三维信道是客观存在的现实, 故不需要考虑网格面阵列天线。 然而, 在三维波束成形的研究中, 需要充分考察网格面阵列天线所生成的 信道矩阵的关键特征, 从而进行针对性的设计。
(现有技术文献)
非专禾 Ij文献 1: Vincent Lau, Youjian Liu, and Tai-Ann Chen, On the Design of MEMO Block-Fading Channels with Feedback-Link Capacity Constraint, IEEE Transactions on Communications, vol. 52, no. 1, pp. 62-70, Jan. 2004
非专利文献 2: 3GPP TS 36.211 V10.1.0 (2011-03) ' 发明内容
(本发明要解决的问题)
本申请重点关注于上述三维 MIMO技术,特别关注于以下两方面问题: ( 1 ) 如何针对预编码矩阵 W设计有效的三维预编码码本; 以及 (2) 如何 实现低开销的信道状态信息的反馈。
针对问题 (1 ), 非专利文献 1提出了基于 Lloyd算法(又称 Voronoi 迭代或松弛) 来找出最优码本的理论方案。 虽然非专利文献 1 所提出的方 法能够在数学上给出最优的码本设计, 但以下原因导致该方法在实际*** 中并未得到采用:
•Lloyd算法给出的码本不具有期望的属性 (如, 嵌套结构、 单位规范 权重等), 实际***实现复杂度高;
*对 Lloyd算法的设计细节难以达成一致意见;
•通过 Lloyd算法找出的最优码本所需的反馈开销可能较大。
考虑到以上因素, 非专利文献 2在第 6.3.4.23节中规定: 针对如图 1 所示的一维交叉极化线性天线阵列, 采用次优的码本设计。 作为示例, 以 下表 1和表 2分别列出了 MIMO信道秩为 1和秩为 2时使用的预编码码本。 其中, ^和^分别是双码字 W1和 W2的索引号。
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
其中, 以单^ "离散傅里叶变换(DFT)矢量来表征极化分量方向相同的 每组天线的波束成形方向, 并且使用相位加权因子矢量来表征如何对来自 极化分量方向不同的两组天线的信号进行相干合并。 所述相位加权因子和 DFT矢量的具体公式如下:
Ψη =eiml2 (相位加权因子) vm=[l eJ2m"/32 4 32 eJ6m'/32 (DFT矢量)
由上可见, 非专利文献 2实际上针对一维天线阵列的情形, 提出了采 用与双码字 W1和 W2相对应的双预编码器 (gp, DFT矢量表示的预编码 器和相位加权因子矢量表示的预编码器) 来构造预编码矩阵的方法。 由于 一维天线阵列仅能分辨方向角而不能分辨仰角, 少考虑了一个空间维度, 非专利文献 2 中的方案仅适用于可以被建模为二维信道模型的特定传播环 境,而不适用于标准地被建模为三维信道模型的一般传播环境。对于如图 2 所示的既利用方向角又利用仰角的二维天线阵列, 这意味着: 非专利文献 2 中的方案仅适用于小区半径极大以致于大部分用户具有极小的可以近似忽 略的仰角这一特殊情形。
本发明的目的在于: 提供一种针对二维天线阵列的、 对三维传播环境 普遍适用的构造 MIMO预编码矩阵的方法。
(解决问题的方案)
根据本发明的第一方面, 提供了一种用于构造三维 MIMO预编码矩阵 的方法, 包括: 构造具有块对角矩阵形式的第一成分矩阵, 所述第一成分 矩阵的对角子矩阵表征对二维天线阵列的三维波束成形; 构造第二成分矩 阵, 所述第二成分矩阵包含相位加权因子作为矩阵元素, 所述相位加权因 子表征对来自二维天线阵列的信号的相千合并; 以及根据所构造的第一成 分矩阵和第二成分矩阵, 构造三维 MIMO预编码矩阵。
相应地, 根据本发明的第二方面, 提供了一种用于反馈三维 MIMO预 编码矩阵索引值的方法, 包括: 对 MIMO信道进行估计; 以及根据信道估 计结果, 选择并反馈第一索引值、 第二索引值和第三索引值, 使得能够根 据上述方法构造三维 MIMO预编码码本中的预编码矩阵, 其中, 所述第一 索引值指示第一 DFT矢量集合中的第一 DFT矢量,所述第二索引值指示第 二 DFT矢量集合中的第二 DFT矢量,所述第三索引值指示第二成分矩阵集 合中的第二成分矩阵。
根据本发明的第三方面, 提供了一种通信设备, 适于构造三维 MIMO 预编码矩阵, 所述通信设备包括: 第一成分矩阵构造单元, 用于构造具有 块对角矩阵形式的第一成分矩阵, 所述第一成分矩阵的对角子矩阵表征对 二维天线阵列的三维波枣成形;,第二成分矩阵构造单元, _用于抅造第二成 分矩阵, 所述第二成分矩阵包含相位加权因子作为矩阵元素, 所述相位加 权因子表征对来自二维天线阵列的信号的相干合并; 以及预编码矩阵构造 单元, 用于根据所构造的第一成分矩阵和第二成分矩阵, 构造三维 MIMO 预编码矩阵。 根据本发明的第四方面, 提供了一种通信设备, 适于反馈三维 MIMO 预编码矩阵索引值, 所述通信设备包括: 信道估计单元, 用于对 MIMO信 道进行估计; 以及反馈单元, 用于根据信道估计结果, 选择并反馈第一索 引值、 第二索引值和第三索引值, 使得根据权利要求 9所述的通信设备能 够构造三维 MIMO预编码码本中的预编码矩阵, 其中, 所述第一索引值指 示第一 DFT矢量集合中的第一 DFT矢量, 所述第二索引值指示第二 DFT 矢量集合中的第二 DFT矢量, 所述第三索弓 I值指示第二成分矩阵集合中的 第二成分矩阵。
(发明效果)
利用本发明的技术方案, 还可以获得至少以下有益效果:
•预编码矩阵由两个成分矩阵构造而成, 实现复杂度低;
•成分矩阵易于构造;
•信令开销小, 仅需反馈 3个索引值即可构造预编码矩阵。
附图说明
通过下面结合附图说明本发明的优选实施例, 将使本发明的上述及其 它目的、 特征和优点更加清楚, 其中:
图 1是仅能分辨方向角而不能分辨仰角的一维交叉极化线性天线阵列 的示意图; . 图 2是既能分辨方向角又能分辨仰角的二维交叉极化线性天线阵列的 示意图;
. 图 3是示出了根据本发明的用于构造三维 MIMO预编码矩阵的方法; 图 4是示出了根据图 3所示的方法构造的第一成分矩阵的示例矩阵的 示意图;
图 5是示出了根据本发明的用于反馈三维 MIMO预编码矩阵索引值的 方法;
图 6是示出了根据本发明的适于构造三维 MIMO预编码矩阵的通信设 备的示意结构框图; 以及- 图 7是示出了根据本发明的适于反馈三维 MIMO预编码矩阵索引值的 通信设备的示意结构框图。
具体实施方式 下面参照附图对本发明的优选实施例进行详细说明, 在描述过程中省 略了对于本发明来说是不必要的细节和功能, 以防止对本发明的理解造成 混淆。
为了清楚详细地阐述本发明的实现步骤, 下面给出一些本发明的具体 实施例, 适用于 LTE-Release 12的蜂窝通信***。 需要说明的是, 本发明 不限于实施例中所描述的应用, 而是可适用于其他通信***, 比如 LTE-Release 12之后的 LTE***。 相应地, 本文提到的技术术语名称也可 能随版本的变更而发生改变。 此外, 在以下描述中, 基于图 2所示的二维 交叉极化线性天线阵列的配置, 对本发明的原理及其具体示例进行了详细 描述。 然而, 所属领域技术人员将理解, 下述示例中给出的依赖于天线阵 列具体配置 (如, 天线数目、 阵列形状、 极化方式, 等) 的示例仅仅是说 明性而非限制性的。 例如, 所属领域技术人员易于想到以下所列公式的多 种等效变型, 并易于根据本发明的教导想到如何将本发明应用于由更多天 线构成的天线阵列, 采用主极化方 5t的天线阵列, 或圆形天线阵列。
首先, 参照图 3描述根据本发明的用于构造三维 MO预编码矩阵的 方法。 如图所示, 方法起始于步骤 S310。 在该步骤中, 构造具有块对角矩 阵形式的第一成分矩阵 WUD, 所述第一成分矩阵的对角子矩阵用以表征对 二维天线阵列的三维波束成形。
以秩为 1的情况为例, 第一成分矩阵 WUD可以具有图 4所示的形式, 其中, 对角子矩阵 f3D,re(^n f3D,blue分别对应于天线阵列的不同的极化分量方 向。为了表征三维波束成形, 可以将 f3D表示为两个离散傅里叶变换(DFT) 矢量的克罗内克积 。 根据克罗内克积的数学定义, 假设 A是大小为 m*n 的矩阵, B是大小为 p*q的矩阵, 两者的克罗内克积是大小为 mp*nq的块 矩阵, 计算公式为
ηΒ , - , α
史具体地
Figure imgf000011_0001
对于图 2所示的线性天线阵列, 第一 DFT矢量和第二 DFT矢量特别 适于分别应用于二维天线阵列的水平和垂直天线阵列, 并且相应地记为 f .H 和 ^。 在该情况下, f3D具有以下数学形式
3D " fl,H ® fl,V 。
以上示例易于推广 1的情形。 以秩为 2的情况为例, 第一成
Figure imgf000011_0002
分矩阵 wUD可表示为 其中, f3D,(i) = fH,(i) <8> fv,(i) , i表示 MIMO信号传输的流数, 即秩。
接着, 方法前进至步骤 S320。 在该步骤中, 构造第二成分矩阵 W2, 所述第二成分矩阵包含相位加权因子作为矩阵元素。 与非专利文献 2 中的 方案一致, 所述相位加权因子表征对来自二维天线阵列的信号的相干合并。
最后, 方法前进至步骤 S330。 在该步骤中, 利用在步骤 S310中构造 的第一成分矩阵和在步骤 S320 中构造的第二成分矩阵, 构造三维 MO 预编码矩阵。
根据上述方法, 给定第一 DFT矢量的集合、第二 DFT矢量的集合以及 第二成分矩阵的集合, 可以得到完整的三维 MIMO预编码码本。 对于图 2 所示的线性天线阵列, 在信道秩为 1 的情况下, 可以得到以下表 3所示的 码本:
表 3
Figure imgf000012_0002
其中,
φη = ejnnl2
Figure imgf000012_0001
在信道秩为 2的情况下, 可以得到以下表 4所示的码本:
表 4
Figure imgf000012_0003
φη = e
1 e j)lnnrnmjl5ll βπτ ml ΐ ι'6πηι/32 }βπψ2
Figure imgf000013_0001
由以上码本示例可见, 根据本发明的用于构造三维 ΜΙΜΟ预编码矩阵 的方法仅需 3个索引值 、 '和 12即可构造预编码矩阵。反馈索引值所需的 信令开销较小。
相应地, 图 5示出了根据本发明的用于反馈三维 MIMO预编码矩阵索 引值的方法。 如图所示, 该方法起始于步骤 S510。 在该步骤中, 对 MIMO 信道进行估计。 接着, 执行步骤 S520, 根据步骤 S510中的信道估计结果, 选择并反馈第一索引值、 第二索引值和第三索引值, 使得能够根据本发明 提出的方法构造三维 MIMO预编码矩阵, 其中, 所述第一索引值指示第一 DFT矢量集合中的第一 DFT矢量, 所述第二索引值指示第二 DFT矢量集 合中的第二 DFT矢量, 所述第三索引值指示第二成分矩阵集合中的第二成 分矩阵。
(本发明的硬件实现)
为了以硬件方式实现上述方法, 本发明提供了一种通信设备 600, 适 于构造三维 MIMO预编码矩阵。 图 6示出了该通信设备 600的示意结构框 图.。 如图所示, 通信设备 600包括: 第一成分矩阵构造单元 610, 用于构造 具有块对角矩阵形式的第一成分矩阵, 所述第一成分矩阵的对角子矩阵表 征对二维天线阵列的三维波束成形; 第二成分矩阵构造单元 620, 用于构造 第二成分矩阵, 所述第二成分矩阵包含相位加权因子作为矩阵元素, 所述 相位加权因子表征对来自二维天线阵列的信号的枏干合并; 以及预编码矩 阵构造单元 630,用于根据所构造的第一成分矩阵和第二成分矩阵, 构造三 维 MIMO预编码矩阵。所述通信设备可以是发射点和 /或用户设备。 每个发 射点由一个或多个基站的全部或部分发射端口构成。 在特定情况下, 一个 发射点对应于一个基站。
相应地, 本发明还提供了一种通信设备 700, 适于反馈三维 MIMO预 编码矩阵索引值。 图 7示出了该通信设各 700的示意结构框图 Γ如图所 通信设备 700包括: 信道估计单元 710, 用于对 MIMO信道进行估计; 以 及反馈单元 720, 用于根据信道估计结果, 选择并反馈第一索引值、第二索 引值和第三索引值, 使得根据权利要求 9 所述的通信设备能够构造三维 MO预编码码本中的预编码矩阵, 其中, 所述第一索引值指示第一 DFT 矢量集合中的第一 DFT矢量,所述第二索引值指示第二 DFT矢量集合中的 第二 DFT矢量,所述第三索引值指示第二成分矩阵集合中的第二成分矩阵。 所述通信设备可以是用户设备。
根据本发明的第一方面, 提供了一种用于构造三维 MIMO预编码矩阵 的方法, 包括: 构造具有块对角矩阵形式的第一成分矩阵, 所述第一成分 矩阵的对角子矩阵表征对二维天线阵列的三维波束成形; 构造第二成分矩 阵, 所述第二成分矩阵包含相位加权因子作为矩阵元素, 所述相位加权因 子表征对来自二维天线阵列的信号的相干合并; 以及根据所构造的第一成 分矩阵和第二成分矩阵, 构造三维 MIMO预编码矩阵。
优选地,所述第一成分矩阵的对角子矩阵是第一 DFT矢量和第二 DFT 矢量的克罗内克积。
优选地, 所述第一 DFT矢量和所述第二 DFT矢量分别应用于所述二 维天线阵列的水平和垂直天线阵列。
优选地, 所述第一 DFT矢量的集合、 所述第二 DFT矢量的集合以及 所述第二成分矩阵的集合限定了三维 MIMO预编码码本。
相应地, 根据本发明的第二方面, 提供了一种用于反馈三维 MIMO预 编码矩阵索引值的方法, 包括: 对 MIMO信道进行估计; 以及根据信道估 计结果, 选择并反馈第一索引值、 第二索引值和第三索引值, 使得能够根 据上述方法构造三维 MIMO预编码码本中的预编码矩阵, 其中, 所述第一 索引值指示第一 DFT矢量集合中的第一 DFT矢量,所述第二索引值指示第 二 DFT矢量集合中的第二 DFT矢量,所述第三索引值指示第二成分矩阵集 合中的第二成分矩阵。
根据本发明的第三方面, 提供了一种通信设备, 适于构造三维 MIMO 预编码矩阵, 所述通信设备包括: 第一成分矩阵构造单元, 用于构造具有 块对角矩阵形式的第一成分矩阵, 所述第一成分矩阵的对角子矩阵表征对 二维天线阵列的三维波束成形; 第二成分矩阵构造单元 Γ用于构造第二成 分矩阵, 所述第二成分矩阵包含相位加权因子作为矩阵元素, 所述相位加 权因子表征对来自二维天线阵列的信号的相干合并; 以及预编码矩阵构造 单元, 用于根据所构造的第一成分矩阵和第二成分矩阵, 构造三维 MIMO 预编码矩阵。
优选地, 所述通信设备是发射点和 /或用户设备, 所述发射点可以是基 站。
根据本发明的第四方面, 提供了一种通信设备, 适于反馈三维 MIMO 预编码矩阵索引值, 所述通信设备包括: 信道估计单元, 用于对 MIMO信 道进行估计; 以及反馈单元, 用于根据信道估计结果, 选择并反馈第一索 引值、 第二索引值和第三索引值, 使得根据权利要求 9所述的通信设备能 够构造三维 MIMO预编码码本中的预编码矩阵, 其中, 所述第一索引值指 示第一 DFT矢量集合中的第一 DFT矢量, 所述第二索引值指示第二 DFT 矢量集合中的第二 DFT矢量, 所述第三索引值指示第二成分矩阵集合中的 第二成分矩阵。
优选地, 所述通信设备是用户设备。 , 应当注意的是, 在以上的描述中, 仅以示例的方式, 示出了本发明的 技术方案, 但并不意味着本发明局限于上述步骤和单元结构。 在可能的情 形下, 可以根据需要对步骤和单元结构进行调整和取舍。 因此, 某些步骤 和单元并非实施本发明的总体发明思想所必需的元素。 因此, 本发明所必 需的技术特征仅受限于能够实现本发明的总体发明思想的最低要求, 而不 受以上具体实例的限制。
至此已经结合优选实施例对本发明进行了描述。 应该理解., 本领域技 术人员在不脱离本发明的精神和范围的情况下, 可以进行各种其它的改变、 替换和添加。 因此, 本发明的范围不局限于上述特定实施例, 而应由所附 权利要求所限定。
Λ 3

Claims

权利 要 求 书
1.一种用于构造三维多输入多输出 MMO预编码矩阵的方法, 包括: 构造具有块对角矩阵形式的第一成分矩阵, 所述第一成分矩阵的对角 子矩阵表征对二维天线阵列的三维波束成形;
构造第二成分矩阵, 所述第二成分矩阵包含相位加权因子作为矩阵元 素, 所述相位加权因子表征对来自二维天线阵列的信号的相干合并; 以及 根据所构造的第一成分矩阵和第二成分矩阵, 构造三维 MIMO预编码 矩阵。
2.根据权利要求 1所述的方法, 其中, 所述第一成分矩阵的对角子矩 阵是第一离散傅里叶变换 DFT矢量和第二 DFT矢量的克罗内克积。
3.根据权利要求 2所述的方法,其中,所述第一 DFT矢量和所述第二 DFT矢量分别应用于所述二维天线阵列的水平和垂直天线阵列。
4. 根据权利要求 2或 3所述的方法,其中,所述第一 DFT矢量的集合、 所述第二 DFT矢量的集合以及所述第二成分矩阵的集合限定了三维 MIMO 预编码码本。
5. 一种用于反馈三维 MIMO预编码矩阵索引值的方法, 包括: 对 MIMO信道进行估计; 以及
根据信道估计结果, 选择并反馈第一索引值、 第二索引值和第三索引 值, 使得能够根据权利要求 4所述的方法构造三维 MMO预编码码本中的 预编码矩阵, 其中, 所述第一索引值指示第一 DFT矢量集合中的第一 DFT 矢量,所述第二索引值指示第二 DFT矢量集合中的第二 DFT矢量, 所述第 三索引值指示第二成分矩阵集合中的第二成分矩阵。 .
6.一种通信设备, 适于构造三维 MIMO预编码矩阵,所述通信设备包 括:
第一成分矩阵构造单元, 用于构造具有块对角矩阵形式的第一成分矩 阵, 所述第一成分矩阵的寸角子矩阵表征对二维天线阵列 三维波束成形; 第二成分矩阵构造单元, 用于构造第二成分矩阵, 所述第二成分矩阵 包含相位加权因子作为矩阵元素, 所述相位加权因子表征对来自二维天线 阵列的信号的相干合并; 以及 预编码矩阵构造单元, 用于根据所构造的第一成分矩阵和第二成分矩 阵, 构造三维 MIMO预编码矩阵。
7.根据权利要求 6所述的通信设备, 其中, 所述第一成分矩阵的对角 子矩阵是第一 DFT矢量和第二 DFT矢量的克罗内克积。
8.根据权利要求 7所述的通信设备,其中,所述第一 DFT矢量和所述 第二 DFT矢量分别应用于所述二维天线阵列的水平和垂直天线阵列。
9.根据权利要求 7或 8所述的通信设备,其中,所述第一 DFT矢量的 集合、 所述第二 DFT矢量的集合以及所述第二成分矩阵的集合限定了三维 MIMO预编码码本。
10. 根据权利要求 6所述的通信设备, 其中, 所述通信设备是发射点 和 /或用户设备。
11.根据权利要求 10所述的通信设备, 其中, 所述发射点是基站。
12.一种通信设备, 适于反馈三维 MIMO预编码矩阵索引值, 所述通 信设备包括:
信道估计单元, 用于对 MIMO信道进行估计; 以及
反馈单元, 用于根据信道估计结果, 选择并反馈第一索引值、 第二索 引值和第三索引值, 使得根据权利要求 9 所述的通信设备能够构造三维 MIMO预编码码本中的预编码矩阵, 其中, 所述第一索引值指示第一 DFT 矢量集合中的第一 DFT矢量,所述第二索弓 I值指示第二 DFT矢量集合中的 第二 DFT矢量,所述第三索引值指示第二成分矩阵集合中的第二成分矩阵。
13. 根据权利要求 12所述的通信设备, 其中, 所述通信设备是用户设 备。
PCT/IB2013/001744 2012-09-03 2013-08-07 预编码矩阵构造和索引值反馈方法及相关通信设备 WO2014033515A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015529135A JP2015528669A (ja) 2012-09-03 2013-08-07 プレコーディングマトリクス構成方法、インデックス値フィードバック方法、および、それに関する通信装置
US14/425,238 US20150244438A1 (en) 2012-09-03 2013-08-07 Methods for constructing pre-coding matrix and feeding back index value and related communication devices
EP13833257.2A EP2894802A4 (en) 2012-09-03 2013-08-07 METHODS OF CONSTRUCTING PRECODING AND INDEX VALUE DERIVING MATRIX AND ASSOCIATED COMMUNICATION DEVICES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210320967.9A CN103684657A (zh) 2012-09-03 2012-09-03 预编码矩阵构造和索引值反馈方法及相关通信设备
CN201210320967.9 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014033515A1 true WO2014033515A1 (zh) 2014-03-06

Family

ID=50182594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/001744 WO2014033515A1 (zh) 2012-09-03 2013-08-07 预编码矩阵构造和索引值反馈方法及相关通信设备

Country Status (5)

Country Link
US (1) US20150244438A1 (zh)
EP (1) EP2894802A4 (zh)
JP (1) JP2015528669A (zh)
CN (1) CN103684657A (zh)
WO (1) WO2014033515A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048440A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Codebook for full-dimension multiple input multiple output communications
WO2016183737A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
US11616541B1 (en) 2021-11-29 2023-03-28 Qualcomm Incorporated Non-linear precoding for multi-user multiple-input multiple-output
US20230170949A1 (en) * 2021-11-29 2023-06-01 Qualcomm Incorporated Channel estimation and demodulation procedure for non-linear multi-user multiple-input multiple-output precoding

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651375A1 (en) 2012-06-14 2020-05-13 Huawei Technologies Co., Ltd. Method for determining precoding matrix indicator, user equipment, and base station evolved node b
WO2014117352A1 (en) * 2013-01-31 2014-08-07 Qualcomm Incorporated 3d mimo csi feedback based on virtual elevation ports
CN108809388B (zh) 2013-04-03 2022-03-08 华为技术有限公司 信道状态信息上报方法、接收方法及设备
EP2985923B1 (en) * 2013-05-10 2019-04-03 Huawei Technologies Co., Ltd. Method for determining precoding matrix indicator, user equipment, and base station
CN112039566B (zh) 2013-05-10 2022-07-29 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站
CN108494450B (zh) 2013-08-08 2020-06-16 华为技术有限公司 确定预编码矩阵指示的方法、接收设备和发送设备
WO2015149250A1 (zh) * 2014-03-31 2015-10-08 富士通株式会社 码书确定装置、信息反馈装置和通信***
CN105322988B (zh) * 2014-08-01 2018-09-07 电信科学技术研究院 一种三维波束预编码信息确定方法及装置
CN112448747A (zh) 2014-09-12 2021-03-05 索尼公司 无线通信设备和无线通信方法
CN105991178A (zh) * 2015-02-12 2016-10-05 北京信威通信技术股份有限公司 二维天线阵列的sfbc发送分集方法
CN106160928A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 生成预编码矩阵的方法、无线基站和装置以及移动台
KR102202038B1 (ko) * 2015-07-23 2021-01-12 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
EP3327944A4 (en) 2015-07-23 2019-03-20 LG Electronics Inc. CODE BOOK BASED SIGNAL TRANSMISSION AND RECEIVING METHOD IN A MULTI-ADVANCED WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
WO2017014611A1 (ko) 2015-07-23 2017-01-26 엘지전자(주) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
US10171154B2 (en) 2015-09-11 2019-01-01 Lg Electronics Inc. Method for reporting beam index for 3D MIMO transmission in wireless communication system, and device therefor
CN107181513B (zh) 2016-03-11 2021-01-22 电信科学技术研究院 一种信道状态信息的反馈方法及装置
CN107370523A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 码本配置的选择方法及执行该方法的电子设备
CN109302222B (zh) 2016-05-13 2019-11-19 华为技术有限公司 一种信道信息发送方法、数据发送方法和设备
US11496198B2 (en) 2017-12-09 2022-11-08 Huawei Technologies Co., Ltd. Channel measurement method and user equipment
CN109167621B (zh) * 2017-12-09 2019-11-19 华为技术有限公司 信道测量方法和用户设备
CN109905154A (zh) 2017-12-09 2019-06-18 华为技术有限公司 信道测量方法和用户设备
JP6629823B2 (ja) * 2017-12-20 2020-01-15 華為技術有限公司Huawei Technologies Co.,Ltd. プリコーディングマトリクス指標を決定する方法、受信装置、および送信装置
CN109802737A (zh) * 2019-01-23 2019-05-24 电子科技大学 一种3d mimo信道建模的均方根角度扩展获取方法
CN111865440B (zh) * 2019-04-30 2022-03-25 大唐移动通信设备有限公司 一种测试方法、装置及计算机可读存储介质
CN110392356B (zh) * 2019-06-03 2020-09-04 西京学院 一种基于波束匹配的室内定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873931A2 (en) * 2006-05-04 2008-01-02 Broadcom Corporation Method and system for reordered QRV-LST (layered space time) detection for efficient processing for multiple input multiple output (MIMO) communication systems
US20110085610A1 (en) * 2009-10-12 2011-04-14 Motorola, Inc. Configurable Spatial Channel Information Feedback in Wireless Communication System
CN102130752A (zh) * 2010-01-16 2011-07-20 华为技术有限公司 获取预编码矩阵指示以及预编码矩阵的方法和装置
WO2011140062A1 (en) * 2010-05-05 2011-11-10 Motorola Mobility, Inc. Method and precoder information feedback in multi-antenna wireless communication systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060038812A (ko) * 2004-11-01 2006-05-04 엘지전자 주식회사 다중입출력 시스템의 선행 코딩 행렬 정보 전송 방법 및이를 이용한 신호 전송 방법
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
EP3651375A1 (en) * 2012-06-14 2020-05-13 Huawei Technologies Co., Ltd. Method for determining precoding matrix indicator, user equipment, and base station evolved node b
US8885752B2 (en) * 2012-07-27 2014-11-11 Intel Corporation Method and apparatus for feedback in 3D MIMO wireless systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873931A2 (en) * 2006-05-04 2008-01-02 Broadcom Corporation Method and system for reordered QRV-LST (layered space time) detection for efficient processing for multiple input multiple output (MIMO) communication systems
US20110085610A1 (en) * 2009-10-12 2011-04-14 Motorola, Inc. Configurable Spatial Channel Information Feedback in Wireless Communication System
CN102130752A (zh) * 2010-01-16 2011-07-20 华为技术有限公司 获取预编码矩阵指示以及预编码矩阵的方法和装置
WO2011140062A1 (en) * 2010-05-05 2011-11-10 Motorola Mobility, Inc. Method and precoder information feedback in multi-antenna wireless communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.211 V10.1.0, March 2011 (2011-03-01)
See also references of EP2894802A4
VINCENT LAU; YOUJIAN LIU; TAI-ANN CHEN: "On the Design of MIMO Block-Fading Channels with Feedback-Link Capacity Constraint", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 52, no. 1, January 2004 (2004-01-01), pages 62 - 70

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727914B2 (en) 2014-09-25 2020-07-28 Apple Inc. Codebook for full-dimension multiple input multiple output communications
JP2017532882A (ja) * 2014-09-25 2017-11-02 インテル アイピー コーポレイション 大規模miom通信用コードブック
WO2016048440A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Codebook for full-dimension multiple input multiple output communications
KR102325349B1 (ko) * 2014-09-25 2021-11-11 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
KR20210043699A (ko) * 2014-09-25 2021-04-21 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
RU2658341C1 (ru) * 2014-09-25 2018-06-20 ИНТЕЛ АйПи КОРПОРЕЙШН Кодовая книга для полноразмерной связи с множеством входов и множеством выходов
JP2018160924A (ja) * 2014-09-25 2018-10-11 インテル アイピー コーポレイション Mimo通信に利用されるコンピュータ・プログラム、記憶媒体、ユーザー装置及び基地局
US10158406B2 (en) 2014-09-25 2018-12-18 Intel IP Corporation Codebook for full-dimension multiple input multiple output communications
RU2689312C2 (ru) * 2014-09-25 2019-05-27 ИНТЕЛ АйПи КОРПОРЕЙШН Кодовая книга для полноразмерной связи с множеством входов и множеством выходов
KR102583210B1 (ko) 2014-09-25 2023-09-26 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
US11546028B2 (en) 2014-09-25 2023-01-03 Apple Inc. Codebook for full-dimension multiple input multiple output communications
US9425875B2 (en) 2014-09-25 2016-08-23 Intel IP Corporation Codebook for full-dimension multiple input multiple output communications
KR20220166287A (ko) * 2014-09-25 2022-12-16 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
KR20210135369A (ko) * 2014-09-25 2021-11-12 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
KR102458258B1 (ko) * 2014-09-25 2022-10-24 애플 인크. 전 차원의 다중 입력 다중 출력 통신용 코드북
WO2016183880A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
WO2016183737A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
US10404338B2 (en) 2015-05-15 2019-09-03 Qualcomm Incorporated Enhanced CSI procedures for FD-MIMO
US11616541B1 (en) 2021-11-29 2023-03-28 Qualcomm Incorporated Non-linear precoding for multi-user multiple-input multiple-output
US20230170949A1 (en) * 2021-11-29 2023-06-01 Qualcomm Incorporated Channel estimation and demodulation procedure for non-linear multi-user multiple-input multiple-output precoding
US11689258B2 (en) * 2021-11-29 2023-06-27 Qualcomm Incorporated Channel estimation and demodulation procedure for non-linear multi-user multiple-input multiple-output precoding

Also Published As

Publication number Publication date
CN103684657A (zh) 2014-03-26
EP2894802A1 (en) 2015-07-15
EP2894802A4 (en) 2016-05-11
JP2015528669A (ja) 2015-09-28
US20150244438A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
WO2014033515A1 (zh) 预编码矩阵构造和索引值反馈方法及相关通信设备
CN104348592B (zh) 配置csi过程的方法和基站以及csi反馈方法和用户设备
Björnson et al. Making cell-free massive MIMO competitive with MMSE processing and centralized implementation
JP6388710B2 (ja) 空間干渉アライメントを用いたマルチセルネットワークでの無線全2重スケーリング
Xiong et al. Optimal cooperative beamforming design for MIMO decode-and-forward relay channels
Lyu et al. IRS-assisted downlink and uplink NOMA in wireless powered communication networks
KR20150097774A (ko) 안테나 어레이 채널 피드백을 위한 방법 및 장치
US11025314B2 (en) 3D MIMO based radio transmission method and device
WO2012159343A1 (zh) 一种发送分集方法、相关设备及***
CN103825678A (zh) 一种基于Khatri-Rao积3D MU-MIMO的预编码方法
Demir et al. Is channel estimation necessary to select phase-shifts for RIS-assisted massive MIMO?
US8599960B2 (en) Method and apparatus for multiple input multiple output distributed antenna arrays
Jiang et al. Bivariate pilot optimization for compressed channel estimation in RIS-assisted multiuser MISO-OFDM systems
WO2013078743A1 (zh) 协作多点多用户mimo***的预编码方法及矩阵生成装置
US20230239028A1 (en) Channel measurement method and communication apparatus
Zhang et al. On capacity of two-way massive MIMO full-duplex relay systems
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
Crâşmariu et al. Block-diagonalization applied in multi-user massive MIMO
Xu et al. Antenna selection for IRS-aided MU-MIMO
Iqbal et al. Is cell-free massive MIMO (CF-MMIMO) equivalent to the already existing and commercialized pCell technology?
GB2491423A (en) Rank considerations when determining a joint precoding matrix for use in a distributed antenna MIMO system
Peters et al. Orthogonalization to reduce overhead in MIMO interference channels
CN102316069B (zh) 一种实现信道信息反馈的方法和装置
WO2023020034A1 (zh) 一种权值确定方法及装置
Kim et al. Joint centralized and distributed precoding in scalable cell-free massive MIMO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529135

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013833257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013833257

Country of ref document: EP