WO2014032544A1 - 一种物理下行共享信道的传输方法及*** - Google Patents

一种物理下行共享信道的传输方法及*** Download PDF

Info

Publication number
WO2014032544A1
WO2014032544A1 PCT/CN2013/082109 CN2013082109W WO2014032544A1 WO 2014032544 A1 WO2014032544 A1 WO 2014032544A1 CN 2013082109 W CN2013082109 W CN 2013082109W WO 2014032544 A1 WO2014032544 A1 WO 2014032544A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
antenna
dci format
subframe
parameters
Prior art date
Application number
PCT/CN2013/082109
Other languages
English (en)
French (fr)
Inventor
韩晓钢
戴博
苟伟
夏树强
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/424,271 priority Critical patent/US9538524B2/en
Priority to EP13834196.1A priority patent/EP2887750B1/en
Publication of WO2014032544A1 publication Critical patent/WO2014032544A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and system for transmitting a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • a base station side for example, an evolved Node B (eNB)
  • eNB evolved Node B
  • spatial multiplexing may be adopted to increase the data transmission rate, that is, the same time-frequency resource is used at the transmitting end.
  • Different antenna locations transmit different data
  • the receiving end eg, User Equipment (UE)
  • UE User Equipment
  • All the resources of all antennas are allocated to the same user in the case of a single user.
  • the user occupies the physical resources allocated to the base station side in a single transmission interval. This transmission method is called single user multiple input and multiple output (Single User).
  • the sharing mode may be a space division multiple access mode or a space division multiplexing mode.
  • the transmission mode is called Multiple User Multiple-Input Multiple-Out-put (MU-MIMO), where the base station side allocates The physical resource refers to the time-frequency resource.
  • the Long-Term Evolution (LTE) standard defines, for example, a Physical Downlink Control Channel (PDCCH), which is used for Downlink Control Information (DCI), and includes: uplink and downlink scheduling information. , and uplink power control information.
  • the DCI format (DCI format) in LTE Release 10 is divided into the following types: DCI format 0, DCI format 1, DCI format 1 A, DCI format IB, DCI format 1C, DCI format ID, DCI format 2.
  • the enhancement of the PDCCH is proposed in the LTE R11, that is, the ePDCCH, the time domain start position and the frequency domain position of the ePDCCH are greatly different from the PDCCH.
  • LTE also defines the transmission mode (TM) selected for each UE PDSCH transmission.
  • TM transmission mode
  • the transmission mode of the MIMO has determined a pilot for demodulation using a Demodulation Reference Signal (DM-RS), and the UE needs to acquire the position of the pilot.
  • DM-RS Demodulation Reference Signal
  • Channel and interference estimates can be made on the pilot.
  • SID scrambling identity
  • the eNB can assign the two scrambling code sequences to different users and multiplex multiple users in the same resource.
  • the ID is an integer ranging from 0 to 503.
  • the DM-RS enhancement is proposed in LTE R11. The initial value of the DM-RS sequence is changed to:
  • c imt (in s / 2) + l) - (2X + l) - 2 16 + n scm ,
  • the scrambling code initialization value ⁇ is DM — the scrambling code initialization value used when the RS sequence is initialized, and x (0) And x (l) two values, x (n) takes an integer from 0 to 503, the specific value is configured by the upper layer.
  • LTE-A carrier aggregation technology a new type of carrier is proposed in LTE R11.
  • the detailed characteristics of this carrier are still under discussion. It can be confirmed that the new carrier uses LTE R8/R9/R10 with 5ms period.
  • the single-port cell reference signal (CRS) is used for synchronization tracking.
  • the new carrier mid-downlink transmission mode is based on DM-RS for demodulation and CSI-RS based channel measurement. It is confirmed that DCI Format 1A and DCI format 2C can be used for PDSCH scheduling. It is also stipulated that the transmission mode and DCI format supported by Coordinated Multi-Point (COMP) must also be supported in the newly added carrier. Therefore, it is known that the enhanced carrier also needs to support the enhancement of DM-RS.
  • CMP Coordinated Multi-Point
  • DCI format 1A is scheduled to schedule the PDSCH of the UE.
  • a single DM-RS antenna port transmission mode is adopted, but a specific DM-RS antenna port is not specified.
  • multiple DM-RS antenna ports are required for PDSCH transmission diversity;
  • SCID and X required for the initialization of the DM-RS port sequence.
  • Use capacity increase frequency selection gain and other issues. Summary of the invention
  • the main purpose of the present invention is to provide a method and system for transmitting a physical downlink shared channel, which can implement DM-RS antenna port selection, utilize multiple DM-RS antenna ports to improve transmission reliability, eliminate interference, and increase MU-MIMO multiplexing capacity, increased frequency selection gain.
  • a method for transmitting a physical downlink shared channel includes:
  • the network side determines, according to the DM-RS related transmission mode, and/or the information about the scheduled UE, the transmission parameter of the physical downlink shared channel PDSCH, where the transmission parameter of the PDSCH includes one or more of the following parameters: resource mapping of the PDSCH The mode, the used downlink DM-RS antenna port, the scrambling code sequence identity SCID and the scrambling code initial value X required for initializing the downlink DM-RS port sequence;
  • the network side performs data transmission according to the determined transmission parameter of the PDSCH.
  • the method also includes:
  • the network side notifies the terminal of the transmission parameter of the PDSCH, and/or, the terminal determines the transmission parameter of the PDSCH according to the information related to the scheduled UE;
  • the terminal performs data reception according to the transmission parameter of the PDSCH notified by the network side and/or the transmission parameter of the PDSCH determined according to information related to the scheduled UE.
  • the network side notifies the terminal of the transmission parameter of the PDSCH to the terminal by using the physical layer downlink control signaling information and/or the high layer signaling information to notify the terminal of the transmission parameter of the PDSCH.
  • the DM-RS related transmission mode includes a transmission mode 9, and/or a transmission mode 10, and/or an advanced version of a transmission mode using the DM-RS as a basic demodulation reference signal.
  • the related information of the scheduled UE includes one or more of the following: a DM-RS antenna port used by the enhanced physical downlink control channel ePDCCH for scheduling the UE, a subframe type of the subframe occupied by the UE, and a subframe occupied by the UE.
  • the method for determining the resource mapping of the PDSCH is: determining a resource mapping manner of the PDSCH according to the channel state information CSI,
  • the resource mapping manner of the PDSCH includes:
  • the PDSCH is mapped on consecutive one or more PRBs of the same subframe;
  • the PDSCH is mapped to the plurality of non-contiguous PRBs, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the PDSCH is based on a single antenna port or a multi-antenna port transmission mode;
  • the PDSCH is mapped to the non-contiguous PRB resource, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the non-contiguous PRB resource allocation is limited to 2 clusters, that is, the 2 resource blocks RB.
  • Each cluster contains one or more consecutive resource block groups RBG.
  • the physical layer downlink control signaling includes DCI Format 1A, and a newly added DCI Format IE and/or DCI Format 1F.
  • the PDS transmission parameter is optimized by the MCS indicator bit in the DCI Format 1 A centralized/distributed coding scheme.
  • Passing the Localized/Distributed VRB indicator bit in DCI Format 1A, and / Or the available MCS indicator bits for optimizing the PDSCH transmission parameters include one or more of the following:
  • the DM-RS antenna port is dynamically indicated by the Localized/Distributed VRB indication bit in the DCI Format 1A;
  • the Localized/Distributed VRB indicator bit dynamically indicates the SCID value and/or X value when the antenna port is initialized
  • the transport block carried by the PDSCH is a retransmitted transport block
  • at least one of the DM-RS antenna port, the SCID, and the X is dynamically indicated by the Localized/Distributed VRB bit and/or the available MCS indicator bit in the DCI format 1A. , the remaining values are default values;
  • the two DM-RS antenna ports are indicated by the Localized/Distributed VRB bits in the DCI format 1A, and the two antenna port numbers indicated are all odd or all even, or a fixed sequence number port;
  • the resource mapping manner of the PDSCH is selected by the Localized/Distributed VRB indicator bit in the DCI Format 1A.
  • the corresponding antenna parameter selection in the allocated PRB includes at least one of the following methods:
  • the PRB uses the same antenna parameters in the allocated resources, and the antenna parameters are selected from the specified antenna parameters or determined in an implicit manner;
  • Different PRBs in the allocated resources independently configure corresponding antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner;
  • Different clusters in the allocated resources independently configure corresponding antenna parameters, and different PRBs in the cluster use the same antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner.
  • the antenna parameters include a DM-RS antenna port and a DM-RS port sequence required for initialization
  • the scrambling code sequence identity SCID and the scrambling code initialization value X are included in the antenna parameters.
  • the different subframe type is specifically one or more of the following subframe types: TDD special subframe new configuration adopts a normal cyclic prefix corresponding subframe; TDD special subframe new configuration adopts an extended loop The sub-frame corresponding to the prefix; the TDD special sub-frame is configured with a corresponding sub-frame, or an MBSFN sub-frame, or a general sub-frame, except for the newly added configuration.
  • the TDD special subframe is newly configured as:
  • the antenna parameters used by the PDSCH scheduled by the DCI Format 1A are implicitly determined by using antenna parameters corresponding to the ePDCCH when the UE is scheduled, and the antenna parameters include a DM-RS antenna port and a scrambling code required for initializing the DM-RS port sequence.
  • the sequence identity SCID and the scrambling code initialization value X are implicitly determined by using antenna parameters corresponding to the ePDCCH when the UE is scheduled, and the antenna parameters.
  • a transmission system of a physical downlink shared channel including a network device
  • the network device is configured to determine a transmission parameter of the physical downlink shared channel PDSCH according to the DM-RS related transmission mode, and/or information related to the scheduled UE, and perform data transmission according to the determined transmission parameter of the PDSCH.
  • the transmission parameters of the PDSCH include one or more of the following parameters: a resource mapping manner of the PDSCH, a downlink DM-RS antenna port used, a scrambling code sequence identity SCID required for initialization of the downlink DM-RS port sequence, and scrambling code initialization.
  • the value X is configured to determine a transmission parameter of the physical downlink shared channel PDSCH according to the DM-RS related transmission mode, and/or information related to the scheduled UE, and perform data transmission according to the determined transmission parameter of the PDSCH.
  • the transmission parameters of the PDSCH include one or more of the following parameters: a resource mapping manner of the PDSCH, a downlink DM-RS antenna port used, a scrambling code sequence identity SCID required for initialization of the
  • the transmission system of the physical downlink shared channel further includes a terminal,
  • the network device is further configured to notify the terminal of the transmission parameter of the PDSCH;
  • the terminal is configured to perform data reception according to a transmission parameter of the PDSCH notified by the network side and/or a transmission parameter of the PDSCH determined according to information related to the scheduled UE.
  • the network device notifies the terminal of the transmission parameter of the PDSCH to: notify the terminal of the transmission parameter of the PDSCH by using physical layer downlink control signaling information and/or high layer signaling information.
  • the DM-RS related transmission mode including transmission mode 9, and/or transmission mode 10, and/or an advanced version of a transmission mode using DM-RS as a basic demodulation reference signal,
  • the related information of the scheduled UE includes one or more of the following: a DM-RS antenna port used by the enhanced physical downlink control channel ePDCCH for scheduling the UE, a subframe type of the subframe occupied by the UE, and a subframe occupied by the UE.
  • the resource mapping manner of the PDSCH includes:
  • the PDSCH is mapped on consecutive one or more PRBs of the same subframe;
  • the PDSCH is mapped to the plurality of non-contiguous PRBs, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the PDSCH is based on a single antenna port or a multi-antenna port transmission mode;
  • the PDSCH is mapped to the non-contiguous PRB resource, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the non-contiguous PRB resource allocation is limited to 2 clusters, that is, the 2 resource blocks RB.
  • Each cluster contains one or more consecutive resource block groups RBG.
  • the physical layer downlink control signaling includes DCI Format 1A, and a newly added DCI Format IE and/or DCI Format 1F.
  • the PDS transmission parameter is optimized by the MCS indicator bit in the DCI Format 1 A centralized/distributed coding scheme.
  • Passing the Localized/Distributed VRB indicator bit in DCI Format 1A, and / Or the available MCS indicator bits for optimizing the PDSCH transmission parameters include one or more of the following:
  • the DM-RS antenna port is dynamically indicated by the Localized/Distributed VRB indication bit in the DCI Format 1A;
  • the Localized/Distributed VRB indicator bit dynamically indicates the SCID value and/or X value when the antenna port is initialized
  • the transport block carried by the PDSCH is a retransmitted transport block
  • at least one of the DM-RS antenna port, the SCID, and the X is dynamically indicated by the Localized/Distributed VRB bit and/or the available MCS indicator bit in the DCI format 1A. , the remaining values are default values;
  • the two DM-RS antenna ports are indicated by the Localized/Distributed VRB bits in the DCI format 1A, and the two antenna port numbers indicated are all odd or all even, or a fixed sequence number port;
  • the resource mapping manner of the PDSCH is selected by the Localized/Distributed VRB indicator bit in the DCI Format 1A.
  • the corresponding antenna parameter selection in the allocated PRB includes at least one of the following methods:
  • the PRB uses the same antenna parameters in the allocated resources, and the antenna parameters are selected from the specified antenna parameters or determined in an implicit manner;
  • Different PRBs in the allocated resources independently configure corresponding antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner;
  • Different clusters in the allocated resources independently configure corresponding antenna parameters, and different PRBs in the cluster use the same antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner.
  • the antenna parameters include a DM-RS antenna port and a DM-RS port sequence required for initialization
  • the scrambling code sequence identity SCID and the scrambling code initialization value X are included in the antenna parameters.
  • the different subframe type is specifically one or more of the following subframe types: TDD special subframe new configuration adopts a normal cyclic prefix corresponding subframe; TDD special subframe new configuration adopts an extended loop The sub-frame corresponding to the prefix; the TDD special sub-frame is configured with a corresponding sub-frame, or an MBSFN sub-frame, or a general sub-frame, except for the newly added configuration.
  • the TDD special subframe is newly configured as:
  • the antenna parameters used by the PDSCH scheduled by the DCI Format 1A are implicitly determined by using antenna parameters corresponding to the ePDCCH when the UE is scheduled, and the antenna parameters include a DM-RS antenna port and a scrambling code required for initializing the DM-RS port sequence.
  • the sequence identity SCID and the scrambling code initialization value X are implicitly determined by using antenna parameters corresponding to the ePDCCH when the UE is scheduled, and the antenna parameters.
  • the network side determines a transmission parameter of a physical downlink shared channel PDSCH according to a DM-RS related transmission mode, and/or information related to the scheduled UE, the PDSCH
  • the transmission parameters include one or more of the following parameters: resource mapping mode of PDSCH, downlink DM-RS antenna port used, scrambling code sequence identity SCID and scrambling code initialization value X required for initialization of downlink DM-RS port sequence
  • the network side performs data transmission according to the determined transmission parameter of the PDSCH.
  • DM-RS antenna port selection, multiple DM-RS antenna ports can be used to improve transmission reliability, interference is eliminated, MU-MIMO multiplexing capacity is increased, and frequency selection gain is improved.
  • FIG. 1 is a schematic flowchart of a method for transmitting a physical downlink shared channel according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a transmission system of a physical downlink shared channel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a physical downlink shared channel according to an embodiment of the present invention. Schematic diagram of mapping to multiple non-contiguous PRBs;
  • FIG. 4 is a schematic diagram of mapping a physical downlink shared channel to a continuous PRB according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of mapping a physical downlink shared channel to a non-contiguous PRB according to an embodiment of the present invention.
  • the data demodulation of the newly added carrier type is based on the DM-RS, and the measurement is based on the CSI-RS, and the DCI Format 1A and 2C are used to support the PDSCH in the newly added carrier. transmission.
  • the DCI FormatlA requires less bitload than the DCI Format 2C, and the transmission based on the DM-RS antenna port does not support the DVRB resource allocation mode. Therefore, the DCI of the new carrier type is added.
  • the bit field used to indicate the localized/distributed virtual resource block (Localized/Distributed VRB) in 1A can be optimized, and when the base station needs to retransmit the downlink data of the UE, the scheduling is heavy at this time.
  • the DCI FormatlA of the transmitted resource does not need to indicate the size of the transport block (TB: Transport Block) at the time of retransmission, so the 3 bits reserved in the MCS: Modulation and Coding Scheme indication field in the DCI Format lA can be used. Other uses.
  • the DCI format 1A is configured to use the single DM-RS antenna port to transmit the PDSCH of the UE, but the specific DM-RS antenna port is not specified.
  • Multiple DM-RS antenna ports do PDSCH transmission diversity; and from interference cancellation, increase MU-MIMO multiplexing capacity considerations, need to dynamically select the DM-RS antenna port and SCID required for DM-RS port sequence initialization , X Wait for PDSCH transmission parameters.
  • the new carrier is transmitted based on the DM-RS antenna port, so the resource allocation mode of the DVRB is not supported.
  • the discrete resource method can be considered to improve the frequency selection gain, so it is necessary to consider a new one.
  • PDSCH frequency domain resource mapping method considering the channel with relatively high frequency selectivity, the discrete resource method can be considered to improve the frequency selection gain, so it is necessary to consider a new one.
  • FIG. 1 is a schematic flowchart of a method for transmitting a physical downlink shared channel according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 The network side determines, according to the DM-RS related transmission mode, and/or the information about the scheduled UE, the transmission parameter of the physical downlink shared channel PDSCH.
  • the transmission parameter of the PDSCH includes one or more of the following parameters: a resource mapping manner of the PDSCH, a used downlink DM-RS antenna port, and a scrambling code sequence identity SCID required for initializing the downlink DM-RS port sequence.
  • the scrambling code initializes the value X.
  • Step 102 The network side performs data transmission according to the determined transmission parameter of the PDSCH.
  • the method further includes:
  • the network side notifies the terminal of the transmission parameter of the PDSCH, and/or, the terminal determines the transmission parameter of the PDSCH according to the information related to the scheduled UE;
  • the terminal performs data reception according to the transmission parameter of the PDSCH notified by the network side and/or the transmission parameter of the PDSCH determined according to information related to the scheduled UE.
  • the network side notifies the terminal of the transmission parameter of the PDSCH to: notify, by using physical layer downlink control signaling information and/or high layer signaling information, the transmission parameter of the PDSCH to the terminal.
  • the foregoing physical layer downlink control signaling may be a DCI Format 1A format, or may be a new downlink control information format DCI Format IE, or a DCI Format IF.
  • the DM-RS related transmission mode includes a transmission mode 9, and/or a transmission mode 10, and/or an advanced version of a transmission mode using the DM-RS as a basic demodulation reference signal.
  • the related information of the scheduled UE includes one or more of the following: a DM-RS antenna port used by the enhanced physical downlink control channel (ePDCCH) of the scheduling UE, a subframe type of the subframe occupied by the UE, and a UE.
  • ePDCCH enhanced physical downlink control channel
  • the UE-specific offset parameter may be one or more of the following parameters: a subframe offset parameter, an offset parameter of the scheduled PRB, and other parameters required by the UE.
  • the determining the resource mapping manner of the PDSCH is: determining a resource mapping manner of the PDSCH according to the channel state information CSI, where the resource mapping manner of the PDSCH includes:
  • the PDSCH is mapped on consecutive one or more PRBs of the same subframe;
  • the PDSCH is mapped to the plurality of non-contiguous PRBs, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the PDSCH is based on a single antenna port or a multi-antenna port transmission mode;
  • the PDSCH is mapped to the non-contiguous PRB resource, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the non-contiguous PRB resource allocation is limited to 2 clusters, that is, the 2 resource blocks RB.
  • Each cluster contains one or more consecutive resource block groups RBG; here, the assigned non-contiguous PRB resources may be indicated by indicating the first and last two RBGs of the allocated two clusters, respectively.
  • one RBG includes P RBs, where the value of P is a function of the downlink system bandwidth ⁇ :
  • the number of DM-RS antenna ports used by the PDSCH may be 1, or 2, or 4. It should be noted that the physical layer downlink control signaling includes DCI Format 1A, and a new DCI Format IE and/or DCI Format 1F.
  • the localized/distributed VRB indicator bit in the physical layer downlink control signaling DCI Format 1A is used, and/or the available modulation coding scheme (MCS) indicates the bit.
  • MCS modulation coding scheme
  • the DM-RS antenna port sequence mapping initialization SCID and X may take default values, and the DM-RS antenna port is dynamically indicated by the Localized/Distributed VRB bit field, for example, indicated as antenna port 7 or 8, which ensures that the UE is positive in resource mapping. Interacting, further reducing the relationship between each other;
  • the default DM-RS antenna port is used to dynamically indicate the value of the SCID and/or the X value when the antenna port is initialized by using the Localized/Distributed VRB indicator bit.
  • the value of the SCID can be bound to the value of X, or Independent
  • the transport block carried by the PDSCH is a retransmission transport block
  • at least one of the DM-RS antenna port, the SCID, and the X is dynamically indicated by the Localized/Distributed VRB bit and/or the available MCS indication bit in the DCI format 1 A Value, the remaining value is the default value; for example, where the downlink data needs to be retransmitted, the MCS indicator bit reserved in the DCI format 1A can be used to indicate the selection of the DM-RS antenna port 7 or 8;
  • the two antenna port numbers indicated are all odd, or all even, or a fixed serial port;
  • the resource mapping manner of the physical downlink shared channel is selected by the Localized/Distributed VRB bit in the DCI Format 1A.
  • the resource mapping manner of the physical downlink shared channel refers to the foregoing resource mapping manner of the PDSCH.
  • the SCID and X may be default values when the DM-RS antenna port sequence mapping is initialized, and the Localized/Distributed VRB indicator bit in the DCI format 1A and the MCS indicator bit reserved in the DCI format 1A are in multiple DM-RS antenna ports. Dynamically select one antenna port as the UE resource mapping, which can improve the system's MU-MIMO capability.
  • the VRB bit and the reserved MCS indicator bits in the DCI format 1A dynamically select transmission parameters when the UE resource is mapped.
  • the transmission parameters include one or more of the following: an antenna port, a SCID value, and an X value.
  • the UE adopts a diversity mode when transmitting the PDSCH, and needs to consider the case where the number of antenna ports is 2 or 4:
  • the default 2 DM-RS antenna ports may be used, or the 2nd DM-RS antenna ports whose antenna port numbers are odd or even may be indicated by the Localized/Distributed VRB bits in DCI format 1A. .
  • the default 4 DM-RS antenna ports can be used to dynamically indicate the SCID value or X value of the antenna port initialization through the Localized/Distributed VRB bits in DCI format 1A, where SCID The value can be bound to the value of X or independent of each other.
  • the SCID and X may be default values when the DM-RS antenna port sequence mapping is initialized, and the selected antenna may be indicated by the Localized/Distributed VRB bit and the newly added bit in the DCI format 1A.
  • the port, or when the downlink data needs to be retransmitted, the selected antenna port can be indicated by the Localized/Distributed VRB bit in DCI format 1A and the MCS indicator bit reserved in DCI format 1A.
  • the antenna parameters of the physical downlink shared channel may also be implicitly mapped by the scheduled UE related information. For example, use The antenna port corresponding to the ePDCCH implicitly determines the DM-RS antenna port scheduled by the DCI 1 A. If the UE detects the antenna port where the ePDCCH is located, the PDSCH that is scheduled by itself is located at the same antenna port as the ePDCCH, and is used herein.
  • the DM-RS antenna port range is 7 to 10.
  • the subframe index of the UE to be scheduled resources is R1;
  • the sequence number of the UE-specific offset parameter is UE ID, or C-RNTI, which is denoted as R2;
  • the indication signaling is R4;
  • Determining the DM-RS antenna port of the physical downlink shared channel scheduled by DCI Format 1A specifically includes:
  • the corresponding DM-RS antenna port selection in the allocated PRB includes at least one of the following methods:
  • the PRB uses the same antenna parameters in the allocated resources, and the antenna parameters are selected from the specified antenna parameters or determined in an implicit manner;
  • Different PRBs in the allocated resources use independently configured antenna parameters, the antenna parameters being selected from the specified antenna parameters or determined in an implicit manner;
  • the method determines that the antenna parameter includes a DM-RS antenna port, a scrambling code sequence identity SCID and a scrambling code initialization value X required for initialization of the DM-RS port sequence.
  • different antenna types are used to implicitly determine antenna parameters used by the PDSCH of the scheduled UE, where the antenna parameters include a DM-RS antenna port, and a scrambling code sequence required for initializing the DM-RS port sequence.
  • the identity SCID and the scrambling code initialization value X, the different subframe types are specifically one or more of the following subframe types: the TDD special subframe newly added configuration uses a normal cyclic prefix corresponding subframe; the TDD special subframe is newly added. Configure the corresponding subframe when the extended cyclic prefix is used.
  • the TDD special subframe is configured with the corresponding subframe, or the MBSFN subframe, or the general subframe, except for the newly added configuration.
  • the TDD special subframe is newly configured as:
  • the antenna parameter used by the PDSCH scheduled by the DCI Format 1A is implicitly determined by using an antenna parameter corresponding to the ePDCCH when the UE is scheduled, where the antenna parameter includes a DM-RS antenna port and a DM-RS port sequence initialization The required scrambling code sequence identity SCID and scrambling code initialization value X.
  • Different sub-frame types may also be used to determine the corresponding antenna port when the UE resource is mapped.
  • antenna port 5 is supported at this time; antenna port 7 is fixedly supported for MBSFN subframes; DM-RS single antenna port is fixedly used for general subframes .
  • the corresponding PDSCH transmission parameters of the UE may also be notified by higher layer UE-Specific signaling.
  • the resource mapping manner of the physical downlink shared channel mentioned above is mapped to one or more consecutive PRBs in the same subframe, and is recorded as method 1; or, the physical downlink shared channel is mapped to multiple On the non-contiguous PRB, in the two slots of the same subframe, the PRB corresponds to the same frequency domain location, and the physical downlink shared channel is based on a single antenna port or multi-antenna port transmission mode, which is recorded as method 2;
  • the physical downlink shared channel is mapped to the non-contiguous PRB resource, and the frequency domain corresponding to the PRB is the same in the two slots of the same subframe, and the non-contiguous PRB resource allocation is limited to 2 clusters, that is, 2 Segment RBs, each cluster includes one or more consecutive RBGs; indicating the allocated non-contiguous PRB resources by indicating the first and second RBGs (starting and ending RBGs) of the allocated two clusters, one RBG includes P RBs, The value of P is the downlink system bandwidth.
  • the resource mapping mode of the physical downlink shared channel may be selected from any combination of the method 1, method 2, and method 3 by using the Localized/Distributed VRB bit in the DCI Format 1A.
  • the selection of the DM-RS antenna port in the physical downlink shared channel in the method 2 and the method 3 includes at least one of the following methods:
  • the antenna port used by different PRBs or different clusters in the allocated resources is selected from the designated DM-RS antenna ports by a predetermined method, Ii. determining, by means of implicit mapping, that different PRBs or different DM-RS antenna ports used in the allocated resources pass the PRB minimum (maximum) index and indication signaling of the physical downlink shared channel scheduled by the UE. Implicitly determined.
  • the base station side determines that the transmission parameter of the physical downlink shared channel is applicable not only to the physical downlink shared channel of the new carrier but also to the physical downlink shared channel of the coordinated multipoint.
  • FIG. 2 is a schematic structural diagram of a transmission system of a physical downlink shared channel according to an embodiment of the present invention. As shown in FIG. 2, the system includes: ; among them,
  • the network device is configured to determine a transmission parameter of the physical downlink shared channel PDSCH according to the DM-RS related transmission mode, and/or information related to the scheduled UE, and perform data transmission according to the determined transmission parameter of the PDSCH.
  • the transmission parameters of the PDSCH include one or more of the following parameters: a resource mapping manner of the PDSCH, a downlink DM-RS antenna port used, a scrambling code sequence identity SCID required for initialization of the downlink DM-RS port sequence, and scrambling code initialization.
  • the value X is configured to determine a transmission parameter of the physical downlink shared channel PDSCH according to the DM-RS related transmission mode, and/or information related to the scheduled UE, and perform data transmission according to the determined transmission parameter of the PDSCH.
  • the transmission parameters of the PDSCH include one or more of the following parameters: a resource mapping manner of the PDSCH, a downlink DM-RS antenna port used, a scrambling code sequence identity SCID required for initialization of the
  • the transmission system of the physical downlink shared channel further includes a terminal
  • the network device is further configured to notify the terminal of the transmission parameter of the PDSCH, where the terminal is configured to transmit the PDSCH according to the transmission parameter of the PDSCH notified by the network side and/or according to the information related to the scheduled UE.
  • Parameters for data reception
  • the transmission parameter of the PDSCH includes one or more of the following parameters: a resource mapping manner of the PDSCH, a downlink DM-RS antenna port used, a scrambling code sequence identity SCID and a scrambling code required for initializing the downlink DM-RS port sequence. Initialize the value X.
  • the network device notifies the terminal of the transmission parameter of the PDSCH to: notify, by using physical layer downlink control signaling information and/or high layer signaling information, the transmission parameter of the PDSCH to the terminal.
  • the DM-RS related transmission mode includes a transmission mode 9, and/or a transmission mode 10, and/or an advanced version of a transmission mode using the DM-RS as a basic demodulation reference signal.
  • the related information of the scheduled UE includes one or more of the following: a DM-RS antenna port used by the enhanced physical downlink control channel ePDCCH, a subframe type of a subframe occupied by the UE, and a UE The subframe index of the occupied subframe, the cell ID of the cell where the UE is located, the PDSCH physical resource block PRB index of the UE scheduled, the cell radio network temporary identifier C-RNTI allocated by the UE, the UE identity identifier UE ID, and the UE-specific offset parameter.
  • the resource mapping manner of the PDSCH includes:
  • the PDSCH is mapped on consecutive one or more PRBs of the same subframe;
  • the PDSCH is mapped to the plurality of non-contiguous PRBs, and the frequency domain locations of the PRBs are the same in the two slots of the same subframe, and the PDSCH is based on a single antenna port or a multi-antenna port transmission mode;
  • the PDSCH is mapped to the non-contiguous PRB resources.
  • the PRB corresponds to the same frequency domain location, and the non-contiguous PRB resource allocation is limited to 2 clusters, that is, the 2 segment resource blocks RB.
  • Each cluster contains one or more consecutive resource block groups RBG.
  • the physical layer downlink control signaling includes a DCI Format 1A, and a newly added DCI Format IE and/or DCI Format 1F.
  • the localized/distributed VRB indicator bit is allocated through the centralized/distributed virtual resource block allocation mode in the DCI Format 1 A, and/or the available modulation coding scheme MCS indicates the bit is performed. Optimization of PDSCH transmission parameters.
  • the optimizing the PDSCH transmission parameter by using the Localized/Distributed VRB indicator bit in the DCI Format 1A, and/or the available MCS indicator bit includes one or more of the following methods:
  • the DM-RS antenna port is dynamically indicated by the Localized/Distributed VRB indication bit in the DCI Format 1A;
  • the SCID value and/or the X value when the antenna port is initialized is dynamically indicated by the Localized/Distributed VRB indication bit in the DCI Format 1A;
  • the transport block carried by the PDSCH is a retransmitted transport block
  • at least one of the DM-RS antenna port, the SCID, and the X is dynamically indicated by the Localized/Distributed VRB bit and/or the available MCS indicator bit in the DCI format 1A. , the remaining values are default values;
  • the two DM-RS antenna ports are indicated by the Localized/Distributed VRB bits in the DCI format 1A, and the two antenna port numbers indicated are all odd or all even, or a fixed sequence number port;
  • the resource mapping manner of the PDSCH is selected by the Localized/Distributed VRB indicator bit in the DCI Format 1A.
  • the corresponding antenna parameter selection in the allocated PRB includes at least one of the following methods:
  • the PRB uses the same antenna parameters in the allocated resources, and the antenna parameters are selected from the specified antenna parameters or determined in an implicit manner;
  • Different PRBs in the allocated resources independently configure corresponding antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner;
  • Different clusters in the allocated resources independently configure corresponding antenna parameters, and different PRBs in the cluster use the same antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner.
  • the antenna parameters include a DM-RS antenna port, a scrambling code sequence identity SCID and a scrambling code initialization value X required for initialization of the DM-RS port sequence.
  • different antenna types are used to implicitly determine antenna parameters used by the PDSCH of the scheduled UE, where the antenna parameters include a DM-RS antenna port, and a scrambling code sequence required for initializing the DM-RS port sequence.
  • Identity SCID and scrambling code initialization value X the different subframe types have The body is one or more of the following subframe types: the TDD special subframe is newly configured with the corresponding cyclic subframe when the normal cyclic prefix is used; the TDD special subframe is newly configured with the extended cyclic prefix corresponding subframe; the TDD special subframe is divided Add other configuration-related sub-frames, or MBSFN sub-frames, or general sub-frames.
  • the TDD special subframe is newly configured as:
  • the antenna parameter used by the PDSCH scheduled by the DCI Format 1A is implicitly determined by using an antenna parameter corresponding to the ePDCCH when the UE is scheduled, where the antenna parameter includes a DM-RS antenna port and a DM-RS port sequence initialization The required scrambling code sequence identity SCID and scrambling code initialization value X.
  • the embodiment of the present invention only lists the physical downlink shared channel of the new carrier, and the embodiment is also applicable to the coordinated multi-point physical downlink shared channel, and the coordinated multi-point physical downlink shared channel transmission is also included in the present embodiment. Within the scope of protection of the invention.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the antenna port of the PDSCH corresponding to the DCI Format 1A is implicitly determined by the antenna port of the ePDCCH, the ePDCCH and the corresponding PDSCH are scheduled. Use the same X value and SCID value. If the ePDCCH of the scheduling UE is transmitted on the antenna port 9, the data of the default UE is transmitted on the PDSCH of the antenna port 9.
  • the antenna port 9 is taken as an example, and the other antenna ports can be used.
  • the downlink control information format is DCI Format 1A as an example.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • Embodiment 2 is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the single DM-RS antenna port of the UE transmitting data is implicitly determined by the UE ID or the C-RNTI.
  • the DCI Format 1A is used as an example.
  • the DCI Format IE or DCI Format IF is also applicable to this embodiment. Embodiment 3
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the single DM-RS antenna port of the UE transmitting data is implicitly determined by the subframe type.
  • the downlink control information format is DCI Format 1 A as an example.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the single DM-RS antenna port of the UE transmitting data is implicit by the subframe index of the subframe occupied by the UE. It is determined that if the subframe index occupied by the UE is m, if there are two optional antenna ports, the antenna port used by the UE is determined according to (m) Mod2 is equal to 0 or equal to 1; if there are four optional antenna ports Then, according to (m) Mod4, the result is equal to 0, or equal to 1, or equal to 2, and the latter is equal to 3 to determine the antenna port used by the UE.
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the single DM-RS antenna port of the UE transmitting data passes the PRB minimum index of the physical downlink shared channel scheduled by the UE.
  • the antenna port used by the UE is determined according to (n) Mod2 is equal to 0 or equal to 1; There are four optional antenna ports, which are equal to 0, or equal to 1, or equal to 2 depending on the (n) Mod4 result, which is equal to 3 to determine the antenna port used by the UE.
  • the downlink control information format is DCI Format 1A.
  • the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the minimum or maximum index of the PRB of the scheduled physical downlink shared channel of the UE is n, and the subframe occupied by the UE.
  • the index is m, C-RNTI or UE ID
  • the scheduled PRB offset parameter of the UE is 1, and if there are two optional antenna ports, the DM-RS antenna port used by the UE is determined according to (m+n+k+l) Mod2 is equal to 0 or equal to 1.
  • the result of Mod4 is equal to 0, or equal to 1, or equal to 2 according to (m+n+k+l), which is equal to 3 to determine the DM-RS antenna port used by the UE.
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the minimum or maximum index of the PRB of the scheduled physical downlink shared channel of the UE is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the subframe offset parameter of the UE is 1, and if there are two optional antenna ports, the (m+n+k+l)Mod2 is equal to 0 or Equal to 1 to determine the DM-RS antenna port used by the UE; if there are four optional antenna ports, the result of Mod4 is equal to 0, or equal to 1, or equal to 2, which is equal to 3, according to (m+n+k+l) Determine the DM-RS antenna port used by the UE.
  • the DCI Format 1A is used as an example.
  • the DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the scheduled PRB offset parameter of the UE is 1, and if two optional antenna ports exist, it is determined according to (n+k+l) Mod2 is equal to 0 or equal to 1.
  • the DCI Format 1A is used as an example, and the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the minimum or maximum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the subframe offset parameter of the UE is 1, and if there are two optional antenna ports, the (n+k+l) Mod2 is equal to 0 or equal to 1.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the scheduled PRB offset parameter of the UE is 1, and if two optional antenna ports exist, it is determined according to (n+m+l) Mod2 is equal to 0 or equal to 1.
  • the DM-RS antenna port used by the UE if there are four optional antenna ports, the result of Mod4 is equal to 0, or equal to 1, or equal to 2 according to (m+n+l), the latter equals 3 to determine the DM used by the UE.
  • -RS antenna port the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • Embodiment 11 The UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block, which is used by the UE.
  • the PDSCH resource is scheduled by the DCI Format 1A.
  • the minimum or maximum index of the PRB of the physical downlink shared channel that the UE is scheduled is n
  • the subframe index occupied by the UE is m
  • the C-RNTI or the UE ID is k
  • the UE is scheduled.
  • the offset parameter is 1, assuming that there are two optional antenna ports, the DM-RS antenna port used by the UE is determined according to (n+m+l) Mod2 is equal to 0 or equal to 1; if there are four optional antenna ports
  • the result is equal to 0, or equal to 1, or equal to 2, and the latter is equal to 3 to determine the DM-RS antenna port used by the UE.
  • the downlink control information format is exemplified by DCI Format 1A
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the scheduled PRB offset parameter of the UE is 1, and if there are two optional antenna ports, the UE is determined according to (n+l)Mod2 equal to 0 or equal to 1.
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the subframe offset parameter of the UE is 1, and if there are two optional antenna ports,
  • (n + l) Mod2 is equal to 0 or equal to 1 to determine the DM-RS antenna port used by the UE; if there are four optional antenna ports, the result is equal to 0, or equal to 1, or equal to 2 according to (n + l) Mod4 result.
  • the latter equals 3 to determine the DM-RS antenna port used by the UE.
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the scheduled PRB offset parameter of the UE is 1, and if there are two optional antenna ports, the UE is determined according to (n+m)Mod2 equal to 0 or equal to 1.
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the maximum or minimum index of the PRB of the physical downlink shared channel that the UE is scheduled is n, and the subframe occupied by the UE.
  • the index is m
  • the C-RNTI or the UE ID is k
  • the subframe offset parameter of the UE is 1, and if there are two optional antenna ports, the UE is determined according to (n+l) Mod2 is equal to 0 or equal to 1.
  • the downlink control information format is DCI Format 1A, and the new DCI Format IE or DCI Format IF is also suitable. Used in this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1 A, the UE transmits data using a single DM-RS antenna port, and the UE is scheduled to use the physical downlink shared channel in the frequency domain.
  • the upper part is composed of a discrete PRB. Different from the existing DVRB resource allocation mode, when composed of discrete PRBs, the PRB corresponds to the same frequency domain position in the two slots of the same subframe, as shown in FIG. .
  • the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • Example 17 Example 17:
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block, and uses a fixed single antenna port to transmit data. If the data of the UE is transmitted on the PDSCH of the antenna port 7, the PDSCH resource used by the UE is scheduled by the DCI Format 1 A. X defaults to x(0), through DCI Format
  • the L/DVRB bit field dynamically selects the SCID
  • antenna port 7 is taken as an example. If other antenna ports are used, X can also be taken as x(l) by default. It can also associate X value with SCID value:
  • the optional two antenna port combinations are ⁇ 7, 8 ⁇ , or ⁇ 7, 9 ⁇ or ⁇ 7, 10 ⁇ or ⁇ 8, 9 ⁇ or ⁇ 8, 10 ⁇ or ⁇ 9 , 10 ⁇ , through LCI Format 1A L/DVRB
  • the bit field dynamically selects the SCID, and the relationship between the X value and the SCID value can be referred to the case where the single port is fixedly used in this embodiment.
  • the downlink control information format is DCI Format 1A as an example.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • Example 18 Example 18:
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block, and uses a fixed single antenna port to transmit data. If the UE data is transmitted on the PDSCH of the antenna port 7, the PDSCH resource used by the UE is scheduled by the DCI Format 1A, SCID. By default, 0 is selected, and X is dynamically selected by the L/DVRB bit field in DCI Format 1A.
  • antenna port 7 is taken as an example. If other antenna ports are used, the SCID can also be set to 1 by default. It can also associate X value with SCID value:
  • the optional two antenna port combinations are ⁇ 7, 8 ⁇ , or ⁇ 7, 9 ⁇ or ⁇ 7, 10 ⁇ or ⁇ 8, 9 ⁇ or ⁇ 8, 10 ⁇ or ⁇ 9
  • the SCID is dynamically selected by the L/DVRB bit field in the DCI Format 1A, and the relationship between the value of the X value and the value of the SCID can be referred to the case where the single port is fixed in this embodiment.
  • the downlink control information format is DCI.
  • Format 1A, the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resource used by the UE is scheduled by DCI Format 1 A. If the SCID defaults to 0, X defaults to x(0), so that Transmission with a single antenna port, the antenna port passes the L/DVRB bit in DCI 1A at ⁇ TP7,
  • the L/DVRB bit field indication in DCI 1A can also be used at the antenna port ⁇ 7, 9 ⁇ or ⁇ 7, 10 ⁇ or ⁇ 8, 9 ⁇ or ⁇ 8, 10 ⁇ .
  • the SCID can also take 1 by default.
  • X can also take x(l) by default.
  • the downlink control information format is DCI Format 1A.
  • the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and are transmitted by using a single antenna port. If the SCID is 0 by default, X defaults to x(0),
  • the antenna port is dynamically selected in the antenna port ⁇ 7, 8, 9, 10 ⁇ through the L/DVRB bit field in DCI Format 1A and a new bit added.
  • the SCID can also take 1 by default, and X can also take x(l) by default.
  • the downlink control information format is DCI Format 1A as an example.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • Embodiment 21 The UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the downlink data of the UE needs to be retransmitted.
  • the PDSCH resource used for retransmission is scheduled by the DCI Format lA, and is transmitted by using a single antenna port.
  • the SCID is 0 by default, X defaults to x(0), and the single antenna port is dynamically selected in the antenna port ⁇ 7, 8, 9, 10 ⁇ through the L/DVRB bit field in the DCI Format 1A and the bits reserved in the MCS indication field.
  • the SCID can also take 1 by default, and X can also take x(l) by default.
  • the DCI Format 1A is used as an example.
  • the DCI Format IE or DCI Format IF is also applicable to this embodiment. Example twenty two
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and are transmitted by using a single antenna port, and the L/DVRB bit field in the DCI Format 1A and the newly added three are added. Bit, a total of 4 bits to dynamically indicate the antenna port, SCID value, X value,
  • the downlink control information format is DCI Format 1 A, and the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the downlink data of the UE needs to be retransmitted.
  • the PDSCH resources used for retransmission are scheduled by DCI Format lA, and transmitted by using a single antenna port, and passed through DCI Format 1A.
  • the DVRB bit field and the MCS indicate the bits reserved in the field, a total of 4 bits to dynamically indicate the antenna port, the SCID value, and the X value.
  • the downlink control information format is DCI Format 1 A, and the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by DCI Format 1A.
  • X defaults to x(0), and the SCID defaults to 0.
  • the data is transmitted through the two antenna ports through the DCI Format.
  • the L/DVRB bit dynamics in 1A is from ⁇ TP7, TP8, TP9, TP10 ⁇ select all antenna ports with odd serial numbers or all even serial number antenna ports
  • SCID can also take 1 by default
  • X can also take x(l) by default.
  • the DCI Format 1A is used as an example.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the data is transmitted by using a fixed four-antenna port.
  • the four antenna ports used are ⁇ 7, 8, 9, 10 ⁇ , dynamically indicating the values of SCID and X through the L/DVRB bit and the newly added bits in DCI Format 1A,
  • DCI Format 1A the downlink control information format is exemplified by DCI Format 1A, and the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by DCI Format 1A, and the data is transmitted by using a fixed four-antenna port.
  • the four antenna ports used are ⁇ 7, 8, 9, 10 ⁇ , through the L/DVRB bit and in DCI Format 1A
  • the MCS reserved bit dynamically indicates the values of SCID and X,
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resources used by the UE are scheduled by the DCI Format 1A, and the base station configures the DM-RS antenna port and the SCID value used by the UE for downlink PDSCH transmission through high-layer RRC signaling.
  • the high-level configuration UE uses the DM-RS antenna port 7 for PDSCH transmission, the SCID value is 1, and the value of X is associated with the SCID.
  • the UE performs PDSCH according to the antenna port and SCID and X value notified by the base station. demodulation.
  • the DM-RS antenna port 7 is taken as an example here, and other DM-RS antenna ports are also included in this embodiment, and the base station can also configure multiple DM-RS antenna ports to perform PDSCH transmission through RRC signaling.
  • the downlink control information format is DCI Format 1A, and the new DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resource used by the UE is scheduled by the DCI Format 1A, and the PDSCH resource allocation mode is selected by the L/DVRB bit in the DCI Format 1A, where the PDSCH resource may be allocated.
  • the frequency domain locations corresponding to PRBs in two slots of the same subframe is based on a single antenna port or multiple antenna port transmission mode, as shown in Figure 3. Show.
  • the selection scheme of the antenna parameters in the corresponding PRB is: the PRB uses the same antenna parameter in the allocated resource, and the antenna parameter is selected from the specified antenna parameters or determined by an implicit manner. ;
  • Different PRBs in the allocated resources independently configure corresponding antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner;
  • the PRB uses the same antenna parameters, which are selected from the specified antenna parameters or determined in an implicit manner.
  • the above antenna parameters include a DM-RS antenna port, a scrambling code sequence identity SCID and a scrambling code initialization value X required for initialization of the DM-RS port sequence.
  • the downlink control information format is exemplified by DCI Format 1A.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.
  • the UE uses the newly added carrier to transmit data, and the transmitted data corresponds to a single transport block.
  • the PDSCH resource used by the UE is scheduled by the DCI Format 1A, and the PDSCH resource allocation mode is selected by the L/DVRB bit in the DCI Format 1A, where the PDSCH resource may be allocated.
  • the non-contiguous PRB resource allocation is limited to 2 clusters, that is, 2 segments of RBs, each The cluster includes one or more consecutive RBGs. As shown in FIG.
  • the allocated non-contiguous PRB resources are indicated by indicating the first RBG (starting and ending RBG) of the allocated two clusters, and one RBG includes P RBs.
  • P is a function of the downlink system bandwidth ⁇ ⁇ :
  • the selection scheme of the antenna parameters in the corresponding PRB is: the PRB uses the same antenna parameter in the allocated resource, and the antenna parameter is selected from the specified antenna parameters or determined by an implicit manner. ;
  • Different PRBs in the allocated resources independently configure corresponding antenna parameters, and the antenna parameters are selected from specified antenna parameters or determined by an implicit manner;
  • Different clusters in the allocated resources use independent configuration of corresponding antenna parameters, and different PRBs in the cluster use the same antenna parameters, which are selected from the specified antenna parameters or determined in an implicit manner.
  • the above antenna parameters include a DM-RS antenna port, a scrambling code sequence identity SCID and a scrambling code initialization value X required for initialization of the DM-RS port sequence.
  • the downlink control information format is exemplified by DCI Format 1A.
  • the newly added DCI Format IE or DCI Format IF is also applicable to this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种物理下行共享信道的传输方法,包括:网络侧依据DM-RS相关的传输模式,和/或被调度UE相关的信息确定物理下行共享信道PDSCH的传输参数,所述PDSCH的传输参数包括以下参数中的一个或者多个:PDSCH的资源映射方式、使用的下行DM-RS天线端口、下行DM-RS端口序列初始化时所需的扰码序列身份SCID和扰码初始化值X;网络侧根据所述确定的PDSCH的传输参数进行数据发送。本发明还相应地公开了一种物理下行共享信道的传输***。通过本发明,能够实现DM-RS天线端口选择、利用多个DM-RS天线端口提高传输的可靠性、消除干扰、增加MU-MIMO复用容量、提高频选增益。

Description

一种物理下行共享信道的传输方法及*** 技术领域
本发明涉及无线通信领域, 尤其涉及一种物理下行共享信道(Physical Downlink Shared Channel , PDSCH ) 的传输方法及***。 背景技术
在无线通信技术中, 基站侧 (例如演进的节点 B ( eNB ) )使用多根天 线发送数据时, 可以采取空间复用的方式来提高数据传输速率, 即在发送 端使用相同的时频资源在不同的天线位置发射不同的数据, 接收端 (例如 用户设备( UE ) )也使用多根天线接收数据。 在单用户的情况下将所有天线 的资源都分配给同一用户, 此用户在一个传输间隔内独自占有分配给基站 侧分配的物理资源, 这种传输方式称为单用户多入多出(Single User Multiple-Input Multiple-Out-put, SU-MIMO); 在多用户的情况下将不同天线 的空间资源分配给不同用户, 一个用户和至少一个其它用户在一个传输间 隔内共享基站侧分配的物理资源, 共享方式可以是空分多址方式或者空分 复用方式, 这种传输方式称为多用户多入多出(Multiple User Multiple-Input Multiple-Out-put, MU-MIMO), 其中基站侧分配的物理资源是指时频资源。
长期演进( Long-Term Evolution, LTE )的标准中定义了如物理下行控 制信道(Physical Downlink Control Channel, PDCCH ), 用于 载下行控制 信息(Downlink Control Information, DCI ), 包括: 上、 下行调度信息, 以 及上行功率控制信息。 LTE版本 10( Release 10 )中 DCI的格式( DCI format ) 分为以下几种: DCI format 0、 DCI format 1、 DCI format 1 A、 DCI format IB、 DCI format 1C、 DCI format ID、 DCI format 2、 DCI format 2A、 DCI format 2B、 DCI format 2C、 DCI format 3、 DCI format 3 A和 DCI format 4等。随着 Comp 技术的发展, LTE R11中提出了 PDCCH的增强, 即 ePDCCH, ePDCCH的 时域起始位置和频域位置与 PDCCH都有很大差别。
LTE也定义了每个 UE PDSCH传输所选择的传输模式(Transmission Mode,TM ), 目前 Release 10定了以 TM1-TM9的 9个传输模式, 其中, DCI Format 1A作为每种传输模式的 fallback, 主要用在信道测量不可靠的时候。
另夕卜,在 LTE的版本 10中, MIMO的传输模式已经确定了用解调导频 ( Demodulation Reference Signal, DM-RS )来作解调用的导频, UE需获取 导频的位置, 才可以在导频上做信道和干扰的估计, 在子帧的起始处, DM-RS序列产生时的初始化值为: ^ =(L"s / 2+ 1).(2A + l).216 + "scm ,其中,
" 表示扰码序列身份(scrambling identity , SCID ), 用来支持两个不同的 扰码序列, eNB可以将这两个扰码序列分配给不同用户,在同一资源复用多 个用户; ^表示小区 ID标识, 取值为 0至 503的整数; 随着 Comp技术 的发展, LTE R11中提出了 DM-RS的增强, 体现在 DM-RS序列产生时的 初始^值改变为:
cimt = (ins / 2] + l) - (2X + l) - 216 + nscm , 其中, 扰码初始化值 χDMRS序 列初始化时使用的扰码初始化值, 可取 x(0)和 x(l)两个值, x(n)取 0-503的 整数, 具体值由高层配置。
随着 LTE-A载波聚合技术的发展, LTE R11中提出了一种新型的载波, 这种载波的详细特性还在讨论中, 目前可以确认, 新载波中利用 5ms周期 的 LTE R8/R9/R10单端口小区参考信号 ( CRS ) 用来做同步跟踪, 新载波 中下行传输模式基于 DM-RS进行解调和基于 CSI-RS进行信道测量, 确认 DCI Format 1A和 DCI format 2C可以用在 PDSCH的调度,且规定了协作多 点( Coordinated Multi-Point , COMP)中支持的传输模式及 DCI格式在新增 载波中也必须支持, 故可知新增载波中也需支持 DM-RS的增强。
目前关于新载波的传输中, 规定了 DCI format 1A调度 UE的 PDSCH 时采用单个 DM-RS天线端口传输的方式, 但并没有指定具体的 DM-RS天 线端口,未来为了考虑到传输可靠性,需要多个 DM-RS天线端口做 PDSCH 传输分集; 且从干扰消除、 增加 MU-MIMO时复用容量考虑, 需要能动态 选择采用的 DM-RS天线端口及 DM-RS端口序列初始化时所需的 SCID、 X 等 PDSCH传输参数。 但是, 目前尚没有相关技术提出一种新的 PDSCH传 输方法, 用于解决 DM-RS天线端口选择、 利用多个 DM-RS天线端口来提 高传输的可靠性、 及消除干扰、 增加 MU-MIMO复用容量、 提高频选增益 等问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种物理下行共享信道的传输 方法及***, 能够实现 DM-RS天线端口选择、 利用多个 DM-RS天线端口 提高传输的可靠性、 消除干扰、 增加 MU-MIMO复用容量、 提高频选增益。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种物理下行共享信道的传输方法, 包括:
网络侧依据 DM-RS相关的传输模式,和 /或被调度 UE相关的信息确定 物理下行共享信道 PDSCH的传输参数, 所述 PDSCH的传输参数包括以下 参数中的一个或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天 线端口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码 初始^值 X;
网络侧根据所述确定的 PDSCH的传输参数进行数据发送。
该方法还包括:
网络侧将所述 PDSCH 的传输参数通知给终端, 和 /或, 终端根据与被 调度 UE相关的信息确定 PDSCH的传输参数;
终端根据所述网络侧通知的 PDSCH的传输参数和 /或根据与被调度 UE 相关的信息确定的 PDSCH的传输参数进行数据接收。 所述网络侧将所述 PDSCH的传输参数通知给终端为:通过物理层下行 控制信令信息和 /或高层信令信息将所述 PDSCH的传输参数通知给终端。
所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模式 10, 和 /或更先进版本的利用 DM-RS作为基本解调参考信号的传输模式。
所述被调度 UE的相关信息包括以下一项或多项:调度 UE的增强的物 理下行控制信道 ePDCCH使用的 DM-RS天线端口、 UE所占用子帧的子帧 类型、 UE所占用子帧的子帧索引、 UE所在小区的小区 ID、 UE被调度的 PDSCH 物理资源块 PRB 索引、 UE 被分配的小区无线网络临时标识 C-RNTL UE身份标识 UE ID、 UE特定的偏移参数。
所述确定 PDSCH 的资源映射方式为: 根据信道状态信息 CSI 确定 PDSCH的资源映射方式,
所述 PDSCH的资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内, PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB, 每一簇包含一个或多个连续的资源块组 RBG。
所述物理层下行控制信令包含 DCI Format 1A,及新增的 DCI Format IE 和 /或 DCI Format 1F。
当采用所述的 DCI Format 1 A时, 通过 DCI Format 1 A中集中式 /分布 制编码方案 MCS指示比特进行 PDSCH传输参数的优化。
所述通过 DCI Format 1A中 Localized/Distributed VRB指示比特, 和 / 或可用的 MCS指示比特进行 PDSCH传输参数的优化包括以下一种或多种 方式:
SCID 值和 X 值为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示 DM-RS天线端口;
DM-RS 天线端口为默认值时, 通过所述 DCI Format 1A 中
Localized/Distributed VRB指示比特动态指示天线端口初始化时的 SCID值 和 /或 X值;
所述 PDSCH ^载的传输块为重传传输块时, 通过所述 DCI format 1A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2个 DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB指示比特选择 PDSCH的资源映射方式。
所述 PDSCH进行物理资源映射后, 所分配的 PRB中对应的天线参数 选择包含以下方式至少之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇独立配置相应的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定,
所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
利用不同的子帧类型来隐含确定所述被调度 UE的 PDSCH使用的天线 参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所 需的扰码序列身份 SCID和扰码初始化值 X,所述不同子帧类型具体为以下 子帧类型中的一个或者多个: TDD特殊子帧新增配置采用正常循环前缀时 对应子帧; TDD特殊子帧新增配置采用扩展循环前缀时对应子帧; TDD特 殊子帧除新增配置外其他配置对应子帧 、 或 MBSFN子帧、 或一般子帧。
所述 TDD特殊子帧新增配置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
利用调度 UE 时 ePDCCH 对应的天线参数来隐含确定所述被 DCI Format 1A调度的 PDSCH使用的天线参数, 所述天线参数包含 DM-RS天 线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始 化值 X。
一种物理下行共享信道的传输***, 包括网络设备; 其中,
所述网络设备, 配置为依据 DM-RS相关的传输模式, 和 /或被调度 UE 相关的信息确定物理下行共享信道 PDSCH的传输参数,并根据所述确定的 PDSCH的传输参数进行数据发送, 所述 PDSCH的传输参数包括以下参数 中的一个或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天线端 口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始 化值 X。
该物理下行共享信道的传输***还包括终端,
所述网络设备, 还配置为将所述 PDSCH的传输参数通知给终端; 所述终端, 配置为根据网络侧通知的 PDSCH的传输参数和 /或根据与 被调度 UE相关的信息确定的 PDSCH的传输参数进行数据接收。
所述网络设备将所述 PDSCH的传输参数通知给终端为:通过物理层下 行控制信令信息和 /或高层信令信息将所述 PDSCH的传输参数通知给终端。
所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模式 10, 和 /或更先进版本的利用 DM-RS作为基本解调参考信号的传输模式,
所述被调度 UE的相关信息包括以下一项或多项:调度 UE的增强的物 理下行控制信道 ePDCCH使用的 DM-RS天线端口、 UE所占用子帧的子帧 类型、 UE所占用子帧的子帧索引、 UE所在小区的小区 ID、 UE被调度的 PDSCH 物理资源块 PRB 索引、 UE 被分配的小区无线网络临时标识 C-RNTL UE身份标识 UE ID、 UE特定的偏移参数。
所述 PDSCH的资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内, PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB, 每一簇包含一个或多个连续的资源块组 RBG。
所述物理层下行控制信令包含 DCI Format 1A,及新增的 DCI Format IE 和 /或 DCI Format 1F。
当采用所述的 DCI Format 1 A时, 通过 DCI Format 1 A中集中式 /分布 制编码方案 MCS指示比特进行 PDSCH传输参数的优化。
所述通过 DCI Format 1A中 Localized/Distributed VRB指示比特, 和 / 或可用的 MCS指示比特进行 PDSCH传输参数的优化包括以下一种或多种 方式:
SCID 值和 X 值为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示 DM-RS天线端口;
DM-RS 天线端口为默认值时, 通过所述 DCI Format 1A 中
Localized/Distributed VRB指示比特动态指示天线端口初始化时的 SCID值 和 /或 X值;
所述 PDSCH ^载的传输块为重传传输块时, 通过所述 DCI format 1A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2个 DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB指示比特选择 PDSCH的资源映射方式。
所述 PDSCH进行物理资源映射后, 所分配的 PRB中对应的天线参数 选择包含以下方式至少之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇独立配置相应的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定,
所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
利用不同的子帧类型来隐含确定所述被调度 UE的 PDSCH使用的天线 参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所 需的扰码序列身份 SCID和扰码初始化值 X,所述不同子帧类型具体为以下 子帧类型中的一个或者多个: TDD特殊子帧新增配置采用正常循环前缀时 对应子帧; TDD特殊子帧新增配置采用扩展循环前缀时对应子帧; TDD特 殊子帧除新增配置外其他配置对应子帧 、 或 MBSFN子帧、 或一般子帧。
所述 TDD特殊子帧新增配置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
利用调度 UE 时 ePDCCH 对应的天线参数来隐含确定所述被 DCI Format 1A调度的 PDSCH使用的天线参数, 所述天线参数包含 DM-RS天 线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始 化值 X。
本发明实施例所述的物理下行共享信道的传输方法及***, 网络侧依 据 DM-RS相关的传输模式,和 /或被调度 UE相关的信息确定物理下行共享 信道 PDSCH的传输参数, 所述 PDSCH的传输参数包括以下参数中的一个 或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天线端口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始化值 X; 网络侧根据所述确定的 PDSCH的传输参数进行数据发送。通过本发明实施 例, 能够实现 DM-RS天线端口选择、 利用多个 DM-RS天线端口提高传输 的可靠性、 消除干扰、 增加 MU-MIMO复用容量、 提高频选增益。 附图说明
图 1为本发明实施例一种物理下行共享信道的传输方法流程示意图; 图 2为本发明实施例一种物理下行共享信道的传输***结构示意图; 图 3为本发明实施例中物理下行共享信道映射到多个非连续的 PRB的 示意图;
图 4为本发明实施例中物理下行共享信道映射到连续的 PRB的示意图; 图 5为本发明实施例中物理下行共享信道映射到非连续的 PRB的示意 图。 具体实施方式
引入新增载波类型后, 和兼容载波相比, 因新增载波类型的数据解调 基于 DM-RS, 测量基于 CSI-RS, 且规定了新增载波中利用 DCI Format 1A 和 2C来支持 PDSCH的传输。在下行带宽相同的前提下,与 DCI Format 2C 相比, DCI FormatlA所需的比特载荷少了很多, 且基于 DM-RS天线端口 的传输不支持 DVRB的资源分配方式, 故新增载波类型中 DCI 1A中用来 指示集中式 /分布式虚拟资源块分配 ( Localized/Distributed VRB: Localized/Distributed Virtual Resource Block ) 的比特域可以进行优化, 且当 需要基站重传 UE的下行数据时, 此时调度重传资源的 DCI FormatlA因不 需要指示重传时的传输块(TB: Transport Block ) 大小, 故 DCI Format lA 中调制编码等级( MCS: Modulation and Coding Scheme )指示域中保留的 3 个比特可用作其他用途。
目前关于新载波的传输中, 规定了 DCI format 1A调度 UE的 PDSCH 时采用单个 DM-RS天线端口传输的方式, 但并没有指定具体的 DM-RS天 线端口,未来为了考虑到传输可靠性,需要多个 DM-RS天线端口做 PDSCH 传输分集; 且从干扰消除, 增加 MU-MIMO时复用容量考虑, 需要能动态 选择采用的 DM-RS天线端口及 DM-RS端口序列初始化时所需的 SCID、 X 等 PDSCH传输参数。
新载波因基于 DM-RS天线端口进行传输, 故不支持 DVRB的资源分 配方式, 但考虑到频率选择性比较大的信道中, 可以考虑离散的资源方式 来提高频选增益, 因此需要考虑新的 PDSCH频域资源映射方法。
图 1 为本发明实施例一种物理下行共享信道的传输方法流程示意图, 如图 1所示, 该方法包括:
步驟 101: 网络侧依据 DM-RS相关的传输模式, 和 /或被调度 UE相关 的信息确定物理下行共享信道 PDSCH的传输参数;
这里, 所述 PDSCH 的传输参数包括以下参数中的一个或者多个: PDSCH的资源映射方式、使用的下行 DM-RS天线端口、下行 DM-RS端口 序列初始化时所需的扰码序列身份 SCID和扰码初始化值 X。
步驟 102: 网络侧根据所述确定的 PDSCH的传输参数进行数据发送。 可选的, 该方法还包括:
网络侧将所述 PDSCH的传输参数通知给终端, 和 /或, 终端根据与被 调度 UE相关的信息确定 PDSCH的传输参数;
终端根据所述网络侧通知的 PDSCH的传输参数和 /或根据与被调度 UE 相关的信息确定的 PDSCH的传输参数进行数据接收。
可选的, 所述网络侧将所述 PDSCH的传输参数通知给终端为: 通过物 理层下行控制信令信息和 /或高层信令信息将所述 PDSCH的传输参数通知 给终端。
需要说明的是, 本发明实施例适用于新载波的 PDSCH, 也适用于协作 多点的 PDSCH。 上述的物理层下行控制信令可以为 DCI Format 1A格式, 也可以为新增的下行控制信息格式 DCI Format IE, 或 DCI Format IF等。
可选的, 所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模 式 10,和 /或更先进版本的利用 DM-RS作为基本解调参考信号的传输模式。 可选的, 上述被调度 UE的相关信息包括以下一项或多项: 调度 UE的 增强的物理下行控制信道(ePDCCH )使用的 DM-RS天线端口、 UE所占 用子帧的子帧类型、 UE所占用子帧的子帧索引、 UE所在小区的小区 ID, UE 被调度的 PDSCH物理资源块(PRB )索引、 UE被分配的 小区无线网络临 时标识( CdlRadioNetworkTemporaryldentifier, C-RNTI ), UE身份标识( UE ID )、 UE特定的 (UE-Specific )偏移参数等。 这里, 所述 UE特定的偏移 参数可以为以下参数中的一个或者多个: 子帧偏移参数、 被调度的 PRB的 偏移参数、 UE所需的其他参数。
可选的, 所述确定 PDSCH的资源映射方式为: 根据信道状态信息 CSI 确定 PDSCH的资源映射方式, 所述 PDSCH的资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内, PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB,每一簇包含一个或多个连续的资源块组 RBG; 这里, 可以通过 分别指示所分配两簇的首尾两个 RBG来指示分配到的非连续 PRB资源。
本发明实施例中, 一个 RBG包含 P个 RB , 其中 P的取值是下行*** 带宽^ 的函数:
Figure imgf000014_0001
需要说明的是, 所述 PDSCH使用的 DM-RS天线端口数可以为 1 , 或 者为 2, 或者为 4。 需要说明的是, 所述物理层下行控制信令包含 DCI Format 1A, 及新增 的 DCI Format IE和 /或 DCI Format 1F。
可选的,所述物理层下行控制信令采用 DCI Format 1A时, 利用物理层 下行控制信令 DCI Format 1A中 Localized/Distributed VRB指示比特, 和 / 或利用可用的调制编码方案 (MCS )指示比特(如下行数据需要重传的场 合中 DCI format 1A保留的 MCS指示比特)做 PDSCH传输参数的优化, 具体的优化方法包括以下一种或多种方式:
DM-RS 天线端口序列映射初始化时 SCID 和 X 可取默认值, 通过 Localized/Distributed VRB比特域动态指示 DM-RS天线端口, 例如指示为 天线端口 7或者 8, 这样可以保证 UE在资源映射时的正交性, 进一步降低 相互之间的干 4尤;
采用默认的 DM-RS天线端口, 通过 Localized/Distributed VRB指示比 特动态指示天线端口初始化时的 SCID取值和 /或 X取值, 其中 SCID的取 值可以和 X的取值绑定, 也可相互独立;
所述 PDSCH ^载的传输块为重传传输块时, 通过所述 DCI format 1 A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值; 例如, 在下 行数据需要重传的场合, 可利用 DCI format 1A中保留的 MCS指示比特来 指示选择 DM-RS天线端口 7或者 8;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2 个
DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB比特选择物理下 行共享信道的资源映射方式。 其中, 物理下行共享信道的资源映射方式参 考上述的 PDSCH的资源映射方式。 可选的, DM-RS天线端口序列映射初始化时 SCID和 X可取默认值, 通过 DCI format 1A中 Localized/Distributed VRB指示比特和 DCI format 1A 中保留的 MCS指示比特在多个 DM-RS天线端口中动态选择一个作为 UE 资源映射时的天线端口, 这样可提高***的 MU-MIMO能力。
为了进一步降低干扰, 也可通过 DCI format 1A中 Localized/Distributed
VRB比特和 DCI format 1A中保留的 MCS指示比特动态选择 UE资源映射 时的传输参数, 这些传输参数包括以下一项或多项: 天线端口、 SCID值、 X值。
或者, 为了保证 UE传输时的可靠性, UE在 PDSCH传输时采用分集 的方式, 需要考虑天线端口数为 2或者 4的情形:
对于天线端口数为 2的情形, 可以采用默认的 2个 DM-RS天线端口, 也可通过 DCI format 1A中 Localized/Distributed VRB比特来指示天线端口 序号为奇数或者偶数的 2个 DM-RS天线端口。
对于天线端口数为 4的情形, 可以采用默认的 4个 DM-RS天线端口, 通过 DCI format 1A中 Localized/Distributed VRB比特来动态指示天线端口 初始化时的 SCID取值或 X取值, 其中 SCID的取值可以和 X的取值绑定, 也可相互独立。
进一步, 对于天线端口数为 2或者为 4的情形, DM-RS天线端口序列 映射初始化时 SCID 和 X 可取默认值, 可通过 DCI format 1A 中 Localized/Distributed VRB比特和新增比特来指示选择的天线端口, 或者在 下行数据需要重传时, 可通过 DCI format 1A中 Localized/Distributed VRB 比特和 DCI format 1A中保留的 MCS指示比特来指示选择的天线端口。
除了利用 DCI 1A中 Localized/Distributed VRB指示比特和 DCI format 1A中保留的 MCS指示比特做 PDSCH传输参数的优化, 也可通过被调度 UE 相关信息来隐含映射物理下行共享信道的天线参数。 例如, 利用 ePDCCH对应的天线端口隐含确定 DCI 1 A调度的 DM-RS天线端口,若 UE 检测到 ePDCCH 所在的天线端口, 则默认自己被调度的 PDSCH位于和 ePDCCH相同的天线端口, 此处所述使用的 DM-RS天线端口范围为 7至 10。
假设, UE被调度资源所在的子帧索引为 R1;
UE特定的偏移参数的序号为 UE ID, 或者 C-RNTI, 记为 R2;
UE被调度的物理下行共享信道的 PRB索引为 R3;
指示信令为 R4;
最大支持 W个端口选择,
确定利用 DCI Format 1A调度的物理下行共享信道的 DM-RS天线端口 具体包括:
根据 R3 mod W的余数确定相应的端口,或者,根据 (R3+R1) mod W的 余数确定相应的端口, 或者, 根据 (R3+R2+R1 +R4) mod W的余数确定相应 的端口, 或者, 根据 (R3+R2 +R4) mod W的余数确定相应的端口, 或者, 根据 (R3+ Rl+R4) mod W的余数确定相应的端口, 或者, 根据 (R3+R2) mod W的余数确定相应的端口, 或者, 根据 (R3+R4) mod W的余数确定相应的 端口。
可选的 , PDSCH进行物理资源映射后 ,所分配的 PRB中对应的 DM-RS 天线端口选择包含以下方式至少之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定天线参 数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB使用独立配置的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇使用独立配置的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始 化时所需的扰码序列身份 SCID和扰码初始化值 X。
可选的, 利用不同的子帧类型来隐含确定所述被调度 UE的 PDSCH使 用的天线参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初 始化时所需的扰码序列身份 SCID和扰码初始化值 X,所述不同子帧类型具 体为以下子帧类型中的一个或者多个: TDD特殊子帧新增配置采用正常循 环前缀时对应子帧; TDD特殊子帧新增配置采用扩展循环前缀时对应子帧; TDD特殊子帧除新增配置外其他配置对应子帧 、 或 MBSFN子帧、 或一般 子帧。
可选的, 所述 TDD特殊子帧新增配置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
可选的, 利用调度 UE时 ePDCCH对应的天线参数来隐含确定所述被 DCI Format 1A调度的 PDSCH使用的天线参数,所述天线参数包含 DM-RS 天线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初 始化值 X。
也可利用不同的子帧类型来确定 UE资源映射时对应的天线端口,随着 TDD特殊子帧新增配置的引入,当 TDD特殊子帧 DwPTS取 Normal CP时 , 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2), 此时支持 DM-RS 天线端口 7-10, 或者, 当 TDD特殊子帧 DwPTS采用 Extended CP时, 新 增特殊子帧配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2), 此时支持天线端口 5; 对于 MBSFN 子帧, 固定地支持天线端口 7; 对于一般子帧, 固定地使用 DM-RS单天线端口。 除了上述介绍的利用下行控制信息 DCI Format 1A中的相关比特来指 示 PDSCH传输的参数, 也可以通过高层 UE-Specific信令来通知 UE对应 的 PDSCH传输参数。
需要说明的是, 上述提到的物理下行共享信道的资源映射方式包括映 射在同一子帧的连续的一个或者多个 PRB上, 记为方法 1; 或者, 所述物 理下行共享信道映射到多个非连续的 PRB上, 在同一子帧的两个时隙内, PRB 对应的频域位置相同, 且所述物理下行共享信道为基于单天线端口或 多天线端口传输模式, 记为方法 2;
或者, 所述物理下行共享信道映射到非连续的 PRB资源上, 在同一子 帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限 制为 2簇, 即 2段 RBs, 每一簇包含一个或多个连续的 RBG; 通过分别指 示所分配两簇的首尾两个 RBG ( starting and ending RBG )来指示分配到的 非连续 PRB资源, 一个 RBG包含 P个 RB, 其中 P的取值是下行***带宽
^^的函数:
Figure imgf000019_0001
此处, 记为方法 3。
物理下行共享信道的资源映射方式可以通过所述 DCI Format 1A 中 Localized/Distributed VRB比特从方法 1、 方法 2、 方法 3的任意两种组合中 选择。
其中方法 2和方法 3中所述物理下行共享信道中 DM-RS天线端口的选 择包含以下方式至少之一:
i. 通过预定的方式, 所分配资源中不同的 PRB或者不同的簇使用的天 线端口从指定的 DM-RS天线端口中选择, ii.通过隐含映射的方式来确定, 所分配资源中不同的 PRB或者不同的 簇使用的 DM-RS天线端口通过 UE被调度的物理下行共享信道的 PRB最小 (最大) 索引和指示信令来隐含确定。
需要说明的是, 上述基站侧通过预定义信息确定物理下行共享信道的 传输参数不仅适用于新载波的物理下行共享信道, 也适用于协作多点的物 理下行共享信道。
本发明实施例还相应地公开了一种物理下行共享信道的传输***,图 2 为本发明实施例一种物理下行共享信道的传输***结构示意图, 如图 2所 示, 该***包括: 网络设备; 其中,
所述网络设备, 配置为依据 DM-RS相关的传输模式, 和 /或被调度 UE 相关的信息确定物理下行共享信道 PDSCH的传输参数,并根据所述确定的 PDSCH的传输参数进行数据发送, 所述 PDSCH的传输参数包括以下参数 中的一个或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天线端 口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始 化值 X。
可选的, 该物理下行共享信道的传输***还包括终端,
所述网络设备, 还配置为将所述 PDSCH的传输参数通知给终端; 所述终端, 配置为根据网络侧通知的 PDSCH的传输参数和 /或根据与 被调度 UE相关的信息确定的 PDSCH的传输参数进行数据接收,
所述 PDSCH的传输参数包括以下参数中的一个或者多个: PDSCH的 资源映射方式、 使用的下行 DM-RS天线端口、 下行 DM-RS端口序列初始 化时所需的扰码序列身份 SCID和扰码初始化值 X。
可选的, 所述网络设备将所述 PDSCH的传输参数通知给终端为: 通过 物理层下行控制信令信息和 /或高层信令信息将所述 PDSCH的传输参数通 知给终端。 可选的, 所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模 式 10,和 /或更先进版本的利用 DM-RS作为基本解调参考信号的传输模式。
可选的, 所述被调度 UE的相关信息包括以下一项或多项: 调度 UE的 增强的物理下行控制信道 ePDCCH使用的 DM-RS天线端口、 UE所占用子 帧的子帧类型、 UE所占用子帧的子帧索引、 UE所在小区的小区 ID、 UE 被调度的 PDSCH物理资源块 PRB索引、 UE被分配的小区无线网络临时标 识 C-RNTI、 UE身份标识 UE ID、 UE特定的偏移参数。
可选的, 所述 PDSCH的资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内, PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB , 每一簇包含一个或多个连续的资源块组 RBG。
可选的, 所述物理层下行控制信令包含 DCI Format 1A, 及新增的 DCI Format IE和 /或 DCI Format 1F。
可选的, 当采用所述的 DCI Format 1 A时, 通过 DCI Format 1 A中集中 式 /分布式虚拟资源块分配方式 Localized/Distributed VRB指示比特, 和 /或 可用的调制编码方案 MCS指示比特进行 PDSCH传输参数的优化。
可选的, 所述通过 DCI Format 1A中 Localized/Distributed VRB指示比 特,和 /或可用的 MCS指示比特进行 PDSCH传输参数的优化包括以下一种 或多种方式:
SCID 值和 X 值为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示 DM-RS天线端口; DM-RS 天线端口为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示天线端口初始化时的 SCID值 和 /或 X值;
所述 PDSCH ^载的传输块为重传传输块时, 通过所述 DCI format 1A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2个 DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB指示比特选择 PDSCH的资源映射方式。
可选的, 所述 PDSCH进行物理资源映射后, 所分配的 PRB中对应的 天线参数选择包含以下方式至少之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇独立配置相应的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定,
所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
可选的, 利用不同的子帧类型来隐含确定所述被调度 UE的 PDSCH使 用的天线参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初 始化时所需的扰码序列身份 SCID和扰码初始化值 X,所述不同子帧类型具 体为以下子帧类型中的一个或者多个: TDD特殊子帧新增配置采用正常循 环前缀时对应子帧; TDD特殊子帧新增配置采用扩展循环前缀时对应子帧; TDD特殊子帧除新增配置外其他配置对应子帧 、 或 MBSFN子帧、 或一般 子帧。
可选的, 所述 TDD特殊子帧新增配置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
可选的, 利用调度 UE时 ePDCCH对应的天线参数来隐含确定所述被 DCI Format 1A调度的 PDSCH使用的天线参数,所述天线参数包含 DM-RS 天线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初 始化值 X。 需要说明的是, 本发明实施例仅列出了新载波的物理下行共享信道, 所述实施例也适用于协作多点的物理下行共享信道, 协作多点的物理下行 共享信道传输也包含在本发明的保护范围之内。 实施例中的各种对应关系 (例如表格中联合编码后索引与具体天线端口、或者 SCID、或者 X的对应 关系)并不限定于该唯一的对应关系, 即它们的顺序可以任意互换组合, 只要——对应即可, 本发明实施例中只是列举其对应的一种可能, 只要具 体属性的状态一致, 即包含在本发明的保护范围内。 实施例一
UE 利用新增载波传输数据, 传输的数据对应单个传输块, 对于单 DM-RS天线端口传输, 通过 ePDCCH的天线端口隐含确定 DCI Format 1A 对应的 PDSCH的天线端口, ePDCCH和对应被调度的 PDSCH使用相同的 X值和 SCID值。 若调度 UE的 ePDCCH在天线端口 9传输, 则默认 UE的 数据在天线端口 9上的 PDSCH传输, 此处以天线端口 9为例, 若使用其他 天线端口可以此类推。且此处下行控制信息格式以 DCI Format 1A为例,新 增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE传输数据的单个 DM-RS天线端 口通过 UE ID或者 C-RNTI来隐含确定, 若存在两个可选的天线端口, 则 依据 (UE ID/C-RNTI)Mod2等于 0或者等于 1确定 UE使用的天线端口; 若 存在四个可选的天线端口, 则依据 (UE ID/C-RNTI)Mod4结果等于 0, 或者 等于 1 , 或者等于 2, 后者等于 3确定 UE使用的天线端口。 此处下行控制 信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF 也适用于本实施例。 实施例三
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE传输数据的单个 DM-RS天线端 口通过子帧类型来隐含确定。 假设 TDD特殊子帧 DwPTS采用 Normal CP 时, 新增特殊子帧配置为 (DwPTS:GP:UpPTS) = (6:6:2), 此时支持 DM-RS 天线端口 7-10; 假设 TDD特殊子帧 DwPTS采用 Extended CP, 新增特殊 子帧配置为 (DwPTS:GP:UpPTS) =(5:5:2), 此时支持天线端口 5; 假设此时 子帧类型为 MBSFN子帧, 则支持 DM-RS天线端口 7; 假设此时子帧类型 为一般子帧, 固定使用单天线端口, 例如 7, 此处默认 SCID取 0, 默认 X 取 x(0)。此处下行控制信息格式以 DCI Format 1 A为例 ,新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例四
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE传输数据的单个 DM-RS天线端 口通过 UE所占子帧的子帧索引来隐含确定, 如果 UE所占的子帧索引为 m,假设存在两个可选的天线端口,则依据 (m)Mod2等于 0或者等于 1确定 UE使用的天线端口; 若存在四个可选的天线端口, 则依据 (m)Mod4结果等 于 0, 或者等于 1 , 或者等于 2, 后者等于 3确定 UE使用的天线端口。 此 处下行控制信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例五
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE传输数据的单个 DM-RS天线端 口通过 UE被调度的物理下行共享信道的 PRB最小索引来隐含确定, 如果 UE被调度的物理下行共享信道的 PRB最小索引为 n,假设存在两个可选的 天线端口, 则依据 (n)Mod2等于 0或者等于 1确定 UE使用的天线端口; 若 存在四个可选的天线端口, 则依据 (n)Mod4结果等于 0, 或者等于 1 , 或者 等于 2, 后者等于 3确定 UE使用的天线端口。 此处下行控制信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用于本 实施例。 实施例六
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最小或者最大索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的 PRB偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (m+n+k+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若 存在四个可选的天线端口,则依据 (m+n+k+l)Mod4结果等于 0,或者等于 1 , 或者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制 信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF 也适用于本实施例。 实施例七
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最小或者最大索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的子帧偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (m+n+k+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若 存在四个可选的天线端口,则依据 (m+n+k+l)Mod4结果等于 0,或者等于 1 , 或者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制 信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF 也适用于本实施例。 实施例八
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的 PRB偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+k+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存 在四个可选的天线端口, 则依据 (n+k+l)Mod4结果等于 0, 或者等于 1 , 或 者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信 息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也 适用于本实施例。 实施例九
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最小或者最大索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的子帧偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+k+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存 在四个可选的天线端口, 则依据 (n+k+l)Mod4结果等于 0, 或者等于 1 , 或 者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信 息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也 适用于本实施例。 实施例十
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的 PRB偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+m+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存 在四个可选的天线端口, 则依据 (m+n+l)Mod4结果等于 0, 或者等于 1 , 或 者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信 息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也 适用于本实施例。 实施例十一 UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的
PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最小或者最大索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的子帧偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+m+l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存 在四个可选的天线端口, 则依据 (m+n+l)Mod4结果等于 0, 或者等于 1 , 或 者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信 息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也 适用于本实施例。 实施例十二
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的 PRB偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+ l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存在 四个可选的天线端口, 则依据 (n + l)Mod4结果等于 0, 或者等于 1 , 或者等 于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信息格 式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用 于本实施例。 实施例十三
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的子帧偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+ l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存在 四个可选的天线端口, 则依据 (n + l)Mod4结果等于 0, 或者等于 1 , 或者等 于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信息格 式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用 于本实施例。 实施例十四
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的 PRB偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+ m)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存 在四个可选的天线端口, 则依据 (n + m)Mod4结果等于 0, 或者等于 1 , 或 者等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信 息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也 适用于本实施例。 实施例十五
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, UE被调度的物理下行共享信道的 PRB最大或者最小索引为 n, UE所占的子帧索引为 m, C-RNTI或者 UE ID 为 k, UE被调度的子帧偏移参数为 1,假设存在两个可选的天线端口, 则依 据 (n+ l)Mod2等于 0或者等于 1确定 UE使用的 DM-RS天线端口; 若存在 四个可选的天线端口, 则依据 (m + l)Mod4结果等于 0, 或者等于 1 , 或者 等于 2, 后者等于 3确定 UE使用的 DM-RS天线端口。 此处下行控制信息 格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适 用于本实施例。 实施例十六
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1 A调度, UE传输数据使用单 DM-RS天线端 口, UE被调度的物理下行共享信道在频域上由离散的 PRB组成, 与现有 的 DVRB的资源分配方式不同, 当由离散的 PRB组成时, 在同一子帧的两 个时隙内, PRB对应的频域位置相同, 如图 3所示。 此处下行控制信息格 式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用 于本实施例。 实施例十七:
UE利用新增载波传输数据, 传输的数据对应单个传输块,使用固定的 单天线端口传输数据,若 UE的数据在天线端口 7上的 PDSCH传输 , UE使 用的 PDSCH资源通过 DCI Format 1 A调度, X默认取 x(0),通过 DCI Format
1A中 L/DVRB比特域动态选择 SCID,
Figure imgf000030_0001
此处以天线端口 7为例, 若使用其他天线端口可以此类推, 同时 X也 可默认取 x(l), 也可令 X取值和 SCID取值关联:
Figure imgf000030_0002
若使用固定的两天线端口传输数据, 可选两天线端口组合为 {7, 8} , 或 {7,9}或 {7,10}或 {8,9}或 {8,10}或 {9,10} ,通过 DCI Format 1A中 L/DVRB 比特域动态选择 SCID,及 X取值和 SCID取值的关系可参考本实施例中固 定使用单端口的情形。且此处下行控制信息格式以 DCI Format 1A为例,新 增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例十八:
UE利用新增载波传输数据, 传输的数据对应单个传输块,使用固定的 单天线端口传输数据,若 UE的数据在天线端口 7上的 PDSCH传输 , UE使 用的 PDSCH资源通过 DCI Format 1A调度, SCID默认取 0, 通过 DCI Format 1A中 L/DVRB比特域动态选择 X,
Figure imgf000031_0001
此处以天线端口 7为例, 若使用其他天线端口可以此类推, 同时 SCID 也可默认取 1 , 也可令 X取值和 SCID取值关联:
Figure imgf000031_0002
若使用固定的两天线端口传输数据, 可选两天线端口组合为 {7, 8} , 或 {7,9}或 {7,10}或 {8,9}或 {8,10}或 {9,10} ,通过 DCI Format 1A中 L/DVRB 比特域动态选择 SCID,及 X取值和 SCID取值的关系可参考本实施例中固 定使用单端口的情形.且此处下行控制信息格式以 DCI Format 1A为例, 新 增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例十九
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1 A调度,若 SCID默认取 0, X默认取 x(0),使 用单天线端口进行传输, 天线端口通过 DCI 1A中 L/DVRB比特在 {TP7,
TP8}中动态选择。
Figure imgf000032_0001
此处以天线端口 {7,8}为例, 通过 DCI 1A中 L/DVRB比特域指示也可 在天线端口 {7, 9}或 {7,10}或 {8,9}或 {8,10}或 {9,10}中动态选择一个天线端 口用作 UE的 PDSCH传输,同时 SCID也可默认取 1 , X也可默认取 x(l).且 此处下行控制信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度,利用单天线端口进行传输,若 SCID 为默认取 0, X默认取 x(0), 单天线端口通过 DCI Format 1A中 L/DVRB比 特域和新增一个比特位在天线端口 {7,8,9,10}中动态选择,
Figure imgf000032_0002
以上仅列出了一种比特域和天线端口的对应形式, 其他对应形式也应 包含在本实施例中, 同时 SCID也可默认取 1 , X也可默认取 x(l)。 且此处 下行控制信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十一 UE利用新增载波传输数据,传输的数据对应单个传输块, UE的下行数 据需要重传, 重传使用的 PDSCH资源通过 DCI Format lA调度, 利用单天 线端口进行传输, 若 SCID为默认取 0, X默认取 x(0), 单天线端口通过 DCI Format 1A中 L/DVRB比特域和 MCS指示域中保留的比特在天线端口 {7,8,9,10}中动态选择,
Figure imgf000033_0002
以上仅列出了一种比特域和天线端口的对应形式, 其他对应形式也应 包含在本实施例中, 同时 SCID也可默认取 1 , X也可默认取 x(l)。 且此处 下行控制信息格式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十二
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度,利用单天线端口进行传输,通过 DCI Format 1A中 L/DVRB比特域和新增的三个比特,共 4比特来动态指示天线 端口, SCID取值, X取值,
Figure imgf000033_0001
1111 10 x(l)
以上仅列出了一种比特域和天线端口及 SCID, X的对应形式, 其他对 应关系也应包含在本实施例中。且此处下行控制信息格式以 DCI Format 1 A 为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十三
UE利用新增载波传输数据,传输的数据对应单个传输块, UE的下行数 据需要重传, 重传使用的 PDSCH资源通过 DCI Format lA调度, 利用单天 线端口进行传输,通过 DCI Format 1A中 L/DVRB比特域和 MCS指示域中 保留的比特, 共 4比特来动态指示天线端口, SCID取值, X取值,
Figure imgf000034_0001
以上仅列出了一种比特域和天线端口及 SCID, X的对应形式, 其他对 应关系也应包含在本实施例中。且此处下行控制信息格式以 DCI Format 1 A 为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十四
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, X默认取 x(0), SCID默认取 0, 使 用两天线端口传输数据,通过 DCI Format 1A中 L/DVRB比特动态从 {TP7 , TP8, TP9, TP10}选择所有奇数序号的天线端口或所有偶数序号的天线端 口
Figure imgf000035_0001
此处 SCID也可默认取 1 , X也可默认取 x(l)。 且此处下行控制信息格 式以 DCI Format 1A为例, 新增的 DCI Format IE或 DCI Format IF也适用 于本实施例。 实施例二十五
UE利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, 使用固定的四天线端口传输数据, 使用的四天线端口为 {7,8,9,10}, 通过 DCI Format 1A中 L/DVRB比特和新 增的比特动态指示 SCID和 X的取值,
Figure imgf000035_0002
以上仅列出了一种比特域和 SCID及 X的对应形式, 其他对应形式也 应包含在本实施例中。且此处下行控制信息格式以 DCI Format 1A为例,新 增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十六
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, 使用固定的四天线端口传输数据, 使用的四天线端口为 {7,8,9,10}, 通过 DCI Format 1A中 L/DVRB比特和 MCS保留比特动态指示 SCID和 X的取值,
Figure imgf000036_0001
以上仅列出了一种比特域和 SCID及 X的对应形式, 其他对应形式也 应包含在本实施例中。且此处下行控制信息格式以 DCI Format 1A为例,新 增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十七
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度,基站通过高层 RRC信令配置 UE下 行 PDSCH传输时使用的 DM-RS天线端口及 SCID值, 例如, 高层配置 UE 使用 DM-RS天线端口 7进行 PDSCH传输, SCID取值为 1 , X的取值和 SCID关联, 在接收端, UE按照基站通知的天线端口和 SCID及 X值, 进 行 PDSCH的解调。 此处以 DM-RS天线端口 7为例, 其他 DM-RS天线端 口也包含在本实施例中, 且此处基站也可通过 RRC信令配置多个 DM-RS 天线端口来进行 PDSCH的传输。 此处下行控制信息格式以 DCI Format 1A 为例, 新增的 DCI Format IE或 DCI Format IF也适用于本实施例。 实施例二十八
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, 通过 DCI Format 1A中 L/DVRB比 特选择 PDSCH的资源分配方式, 其中 PDSCH的资源可能分配方式为映射 在同一子帧的连续的一个或者多个 PRB上, 如图 4所示; 或者映射到多个 非连续的 PRB上, 在同一子帧的两个时隙内, PRB对应的频域位置相同, 且物理下行共享信道为基于单天线端口或多天线端口传输模式, 如图 3 所 示。
基于图 3和图 4的资源分配方式,对应 PRB中天线参数的选择方案为: 所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;。
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇使用独立配置相应的天线参数, 簇内不同的
PRB 使用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通 过隐含的方式确定。
上述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
此处下行控制信息格式以 DCI Format 1A为例 , 新增的 DCI Format IE 或 DCI Format IF也适用于本实施例。 实施例二十九
UE 利用新增载波传输数据, 传输的数据对应单个传输块, UE使用的 PDSCH资源通过 DCI Format 1A调度, 通过 DCI Format 1A中 L/DVRB比 特选择 PDSCH的资源分配方式, 其中 PDSCH的资源可能分配方式为映射 在同一子帧的连续的一个或者多个 PRB上, 如图 4所示; 或者映射在非连 续的 PRB资源上, 非连续的 PRB资源分配限制为 2簇, 即 2段 RBs, 每一 簇包含一个或多个连续的 RBG, 如图 5所示, 通过分别指示所分配两簇的 首尾两个 RBG( starting and ending RBG )来指示分配到的非连续 PRB资源, 一个 RBG包含 P个 RB, 其中 P的取值是下行***带宽Λ ^的函数:
下行***带宽 N^ RBG S ize (P)
< 10 1
11 - 26 2
27 - 63 3 64 - 110 I 4
基于图 3和图 4的资源分配方式,对应 PRB中天线参数的选择方案为: 所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;。
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇使用独立配置相应的天线参数, 簇内不同的 PRB 使用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通 过隐含的方式确定。
上述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
此处下行控制信息格式以 DCI Format 1A为例 , 新增的 DCI Format IE 或 DCI Format IF也适用于本实施例。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 以上各实施例中所述状态与信令比特值之间关系可以任意置换, 只要所述状态相同的描述都包括在发明范围内。

Claims

权利要求书
1、 一种物理下行共享信道的传输方法, 其中, 该方法包括:
网络侧依据 DM-RS相关的传输模式,和 /或被调度 UE相关的信息确定 物理下行共享信道 PDSCH的传输参数, 所述 PDSCH的传输参数包括以下 参数中的一个或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天 线端口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码 初始^值 X;
网络侧根据所述确定的 PDSCH的传输参数进行数据发送。
2、 根据权利要求 1所述的方法, 其中, 该方法还包括:
网络侧将所述 PDSCH的传输参数通知给终端, 和 /或, 终端根据与被 调度 UE相关的信息确定 PDSCH的传输参数;
终端根据所述网络侧通知的 PDSCH的传输参数和 /或根据与被调度 UE 相关的信息确定的 PDSCH的传输参数进行数据接收。
3、 根据权利要求 2所述的方法, 其中, 所述网络侧将所述 PDSCH的 传输参数通知给终端为: 通过物理层下行控制信令信息和 /或高层信令信息 将所述 PDSCH的传输参数通知给终端。
4、 根据权利要求 1所述的方法,其中,所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模式 10, 和 /或更先进版本的利用 DM-RS作为 基本解调参考信号的传输模式。
5、 根据权利要求 1至 4任一项所述的方法, 其中, 所述被调度 UE的 相关信息包括以下一项或多项: 调度 UE 的增强的物理下行控制信道 ePDCCH使用的 DM-RS天线端口、 UE所占用子帧的子帧类型、 UE所占用 子帧的子帧索引、 UE所在小区的小区 ID、 UE被调度的 PDSCH物理资源 块 PRB索引、 UE被分配的小区无线网络临时标识 C-RNTI、 UE身份标识 UE ID、 UE特定的偏移参数。
6、 根据权利要求 1至 4任一项所述的方法, 其中, 所述确定 PDSCH 的资源映射方式为: 根据信道状态信息 CSI确定 PDSCH的资源映射方式, 所述 PDSCH的资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内,
PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB, 每一簇包含一个或多个连续的资源块组 RBG。
7、 根据权利要求 3 所述的方法, 其中, 所述物理层下行控制信令包 含 DCI Format 1A, 及新增的 DCI Format IE和 /或 DCI Format 1F。
8、 根据权利要求 7所述的方法, 其中, 当采用所述的 DCI Format 1 A 时, 通过 DCI Format 1A 中集中式 /分布式虚拟资源块分配方式 Localized/Distributed VRB指示比特, 和 /或可用的调制编码方案 MCS指示 比特进行 PDSCH传输参数的优化。
9、 根据权利要求 8所述的方法, 其中, 所述通过 DCI Format 1A中 Localized/Distributed VRB 指示比特, 和 /或可用的 MCS 指示比特进行 PDSCH传输参数的优化包括以下一种或多种方式:
SCID 值和 X 值为默认值时, 通过所述 DCI Format 1A 中
Localized/Distributed VRB指示比特动态指示 DM-RS天线端口;
DM-RS 天线端口为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示天线端口初始化时的 SCID值 和 /或 X值;
所述 PDSCH承载的传输块为重传传输块时, 通过所述 DCI format 1 A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2个 DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB指示比特选择 PDSCH的资源映射方式。
10、 根据权利要求 1至 4任一项所述的方法, 其中, 所述 PDSCH进行 物理资源映射后, 所分配的 PRB中对应的天线参数选择包含以下方式至少 之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇独立配置相应的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定,
所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
11、 根据权利要求 5 所述的方法, 其中, 利用不同的子帧类型来隐含 确定所述被调度 UE的 PDSCH使用的天线参数,所述天线参数包含 DM-RS 天线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初 始化值 X,所述不同子帧类型具体为以下子帧类型中的一个或者多个: TDD 特殊子帧新增配置采用正常循环前缀时对应子帧; TDD特殊子帧新增配置 采用扩展循环前缀时对应子帧; TDD特殊子帧除新增配置外其他配置对应 子帧 、 或 MBSFN子帧、 或一般子帧。
12、 根据权利要求 11所述的方法, 其中, 所述 TDD特殊子帧新增配 置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
13、 根据权利要求 5所述的方法, 其中, 利用调度 UE时 ePDCCH对 应的天线参数来隐含确定所述被 DCI Format 1 A调度的 PDSCH使用的天线 参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所 需的扰码序列身份 SCID和扰码初始化值 X。
14、 一种物理下行共享信道的传输***, 其中, 该物理下行共享信道 的传输***包括网络设备; 其中,
所述网络设备, 配置为依据 DM-RS相关的传输模式, 和 /或被调度 UE 相关的信息确定物理下行共享信道 PDSCH的传输参数,并根据所述确定的 PDSCH的传输参数进行数据发送, 所述 PDSCH的传输参数包括以下参数 中的一个或者多个: PDSCH的资源映射方式、 使用的下行 DM-RS天线端 口、 下行 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初始 化值 X。
15、 根据权利要求 14所述的***, 其中, 该物理下行共享信道的传输 ***还包括终端,
所述网络设备, 还配置为将所述 PDSCH的传输参数通知给终端; 所述终端, 配置为根据网络侧通知的 PDSCH的传输参数和 /或根据与 被调度 UE相关的信息确定的 PDSCH的传输参数进行数据接收。
16、根据权利要求 15所述的***, 其中, 所述网络设备将所述 PDSCH 的传输参数通知给终端为: 通过物理层下行控制信令信息和 /或高层信令信 息将所述 PDSCH的传输参数通知给终端。
17、 根据权利要求 14至 16任一项所述的***, 其中,
所述 DM-RS相关的传输模式, 包括传输模式 9, 和 /或传输模式 10, 和 /或更先进版本的利用 DM-RS作为基本解调参考信号的传输模式,
所述被调度 UE的相关信息包括以下一项或多项:调度 UE的增强的物 理下行控制信道 ePDCCH使用的 DM-RS天线端口、 UE所占用子帧的子帧 类型、 UE所占用子帧的子帧索引、 UE所在小区的小区 ID、 UE被调度的 PDSCH 物理资源块 PRB 索引、 UE 被分配的小区无线网络临时标识 C-RNTL UE身份标识 UE ID、 UE特定的偏移参数。
18、 根据权利要求 14至 16任一项所述的***, 其中, 所述 PDSCH的 资源映射方式包括:
PDSCH映射在同一子帧的连续的一个或者多个 PRB上;
或者, PDSCH映射到多个非连续的 PRB上,在同一子帧的两个时隙内, PRB对应的频域位置相同,且所述 PDSCH为基于单天线端口或多天线端口 传输模式;
或者, PDSCH映射到非连续的 PRB资源上,在同一子帧的两个时隙内, PRB对应的频域位置相同, 且非连续的 PRB资源分配限制为 2簇, 即 2段 资源块 RB, 每一簇包含一个或多个连续的资源块组 RBG。
19、 根据权利要求 16所述的***, 其中, 所述物理层下行控制信令包 含 DCI Format 1A, 及新增的 DCI Format IE和 /或 DCI Format 1F。
20、根据权利要求 19所述的方法,其中, 当采用所述的 DCI Format 1A 时, 通过 DCI Format 1A 中集中式 /分布式虚拟资源块分配方式 Localized/Distributed VRB指示比特, 和 /或可用的调制编码方案 MCS指示 比特进行 PDSCH传输参数的优化。
21、 根据权利要求 20所述的***, 其中, 所述通过 DCI Format 1 A中 Localized/Distributed VRB 指示比特, 和 /或可用的 MCS 指示比特进行 PDSCH传输参数的优化包括以下一种或多种方式:
SCID 值和 X 值为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示 DM-RS天线端口;
DM-RS 天线端口为默认值时, 通过所述 DCI Format 1A 中 Localized/Distributed VRB指示比特动态指示天线端口初始化时的 SCID值 和 /或 X值;
所述 PDSCH ^载的传输块为重传传输块时, 通过所述 DCI format 1A 中 Localized/Distributed VRB 比特和 /或可用的 MCS 指示比特动态指示 DM-RS天线端口、 SCID、 X中至少一个值, 剩余值为默认值;
通过 DCI format 1A 中 Localized/Distributed VRB 比特来指示 2个 DM-RS天线端口, 所指示的两个天线端口序号全部为奇数, 或者全部为偶 数, 或者采用固定序号的端口;
通过所述 DCI Format 1A中 Localized/Distributed VRB指示比特选择
PDSCH的资源映射方式。
22、 根据权利要求 14至 16任一项所述的***, 其中, 所述 PDSCH进 行物理资源映射后, 所分配的 PRB中对应的天线参数选择包含以下方式至 少之一:
所分配资源中 PRB使用相同的天线参数, 所述天线参数从指定的天线 参数中选择或者通过隐含的方式确定;
所分配资源中不同的 PRB独立配置相应的天线参数, 所述天线参数从 指定的天线参数中选择或者通过隐含的方式确定;
所分配资源中不同的簇独立配置相应的天线参数, 簇内不同的 PRB使 用相同的天线参数, 所述天线参数从指定的天线参数中选择或者通过隐含 的方式确定,
所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所需 的扰码序列身份 SCID和扰码初始化值 X。
23、 根据权利要求 17所述的***, 其中, 利用不同的子帧类型来隐含 确定所述被调度 UE的 PDSCH使用的天线参数,所述天线参数包含 DM-RS 天线端口、 DM-RS端口序列初始化时所需的扰码序列身份 SCID和扰码初 始化值 X,所述不同子帧类型具体为以下子帧类型中的一个或者多个: TDD 特殊子帧新增配置采用正常循环前缀时对应子帧; TDD特殊子帧新增配置 采用扩展循环前缀时对应子帧; TDD特殊子帧除新增配置外其他配置对应 子帧 、 或 MBSFN子帧、 或一般子帧。
24、 根据权利要求 23所述的***, 其中, 所述 TDD特殊子帧新增配 置为:
当 TDD特殊子帧 DwPTS采用正常循环前缀时, 新增特殊子帧配置 9, 即 (DwPTS:GP:UpPTS) = (6:6:2);
或者, 当 TDD特殊子帧 DwPTS采用扩展循环前缀时, 新增特殊子帧 配置 7, 即 (DwPTS:GP:UpPTS) =(5:5:2)。
25、根据权利要求 17所述的***, 其中, 利用调度 UE时 ePDCCH对 应的天线参数来隐含确定所述被 DCI Format 1 A调度的 PDSCH使用的天线 参数, 所述天线参数包含 DM-RS天线端口、 DM-RS端口序列初始化时所 需的扰码序列身份 SCID和扰码初始化值 X。
PCT/CN2013/082109 2012-09-03 2013-08-22 一种物理下行共享信道的传输方法及*** WO2014032544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/424,271 US9538524B2 (en) 2012-09-03 2013-08-22 Physical downlink shared channel transmission method and system
EP13834196.1A EP2887750B1 (en) 2012-09-03 2013-08-22 Physical downlink shared channel transmission method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210321711.X 2012-09-03
CN201210321711.XA CN103687042B (zh) 2012-09-03 2012-09-03 一种物理下行共享信道的传输方法及***

Publications (1)

Publication Number Publication Date
WO2014032544A1 true WO2014032544A1 (zh) 2014-03-06

Family

ID=50182491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082109 WO2014032544A1 (zh) 2012-09-03 2013-08-22 一种物理下行共享信道的传输方法及***

Country Status (4)

Country Link
US (1) US9538524B2 (zh)
EP (1) EP2887750B1 (zh)
CN (1) CN103687042B (zh)
WO (1) WO2014032544A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961318A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种确定编码调制参数的方法、装置和***

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3001743B1 (en) * 2013-06-18 2022-08-03 Huawei Technologies Co., Ltd. Method and device for detecting and sending downlink control information
CN105007600A (zh) * 2014-04-15 2015-10-28 中兴通讯股份有限公司 一种下行数据速率匹配的方法和装置
CN106664189B (zh) * 2014-08-20 2020-06-16 Lg 电子株式会社 在无线通信***中用于信号传输的方法和设备
CN105577337A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 一种下行信号的发送、接收方法及装置
US10396956B2 (en) * 2015-02-11 2019-08-27 Commscope Technologies Llc Channel identification in a MIMO telecommunications system
US20160309542A1 (en) * 2015-04-16 2016-10-20 Sharp Laboratories Of America, Inc. Systems and methods for constellation superposition
DE102015110338B4 (de) * 2015-06-26 2023-05-04 Apple Inc. Verfahren und vorrichtung zum erfassen einer übertragung von einer störenden funkzelle
WO2017026089A1 (ja) * 2015-08-07 2017-02-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末、送信方法及び受信方法
CN107041002B (zh) * 2016-02-04 2023-11-17 中兴通讯股份有限公司 数据信道子帧的指示方法及装置
CN107046453B (zh) 2016-02-05 2021-02-12 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及***
CN112615658B (zh) 2016-07-25 2022-06-21 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107733622B (zh) 2016-08-12 2022-01-11 中兴通讯股份有限公司 资源分配和确定的方法及装置
WO2018028696A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 资源分配和确定的方法及装置
US10425961B2 (en) * 2016-11-24 2019-09-24 Electronics And Telecommunications Research Institute Non-orthogonal transmission method and apparatus in communication system
KR102442041B1 (ko) * 2016-11-24 2022-09-08 한국전자통신연구원 통신 시스템에서 비직교 전송을 위한 방법 및 장치
CN108462552B (zh) * 2017-02-17 2022-04-12 华为技术有限公司 一种多码字传输方法及装置
CN108631815B (zh) * 2017-03-24 2021-05-04 华为技术有限公司 数据传输方法、网络设备及终端设备
US10404432B2 (en) * 2017-05-04 2019-09-03 Nokia Technologies Oy Methods and apparatuses for physical resource block bundling size configuration
MX2019014881A (es) * 2017-06-15 2020-02-13 Sharp Kk Metodo y aparato para generar y usar una se?al de referencia para canal de difusion para un sistema de radio.
CN108989010B (zh) * 2017-06-16 2019-10-22 华为技术有限公司 参考信号的传输方法和传输装置
WO2019028796A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 一种资源指示方法及设备
CN109495224B (zh) * 2017-09-11 2021-04-27 电信科学技术研究院 一种信息处理方法、装置、设备及计算机可读存储介质
US11271633B2 (en) * 2017-10-12 2022-03-08 Electronics And Telecommunications Research Institute Communication method and device for ultra-high-speed vehicle
JP2019115004A (ja) * 2017-12-26 2019-07-11 シャープ株式会社 基地局装置、端末装置および通信方法
CN110138525B (zh) * 2018-02-09 2022-07-08 维沃移动通信有限公司 解调参考信号的配置方法、传输方法、终端及网络侧设备
US10736132B2 (en) * 2018-04-06 2020-08-04 Apple Inc. Transport block size (TBS) determination in full-dimension multiple-input multiple-output (FD MIMO) networks
CN111757483B (zh) 2019-03-29 2023-03-31 ***通信有限公司研究院 一种加扰信息处理方法和终端、网络设备
CN111836378B (zh) * 2019-08-15 2023-07-25 维沃移动通信有限公司 一种频域资源分配方法、网络侧设备及终端
EP4021128A4 (en) * 2019-09-26 2022-11-09 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR INTER-SLOT PLANNING IN A WIRELESS COMMUNICATION SYSTEM
CN114143889A (zh) * 2021-12-31 2022-03-04 赛特斯信息科技股份有限公司 一种下行rank自适应方法
WO2023131908A1 (en) * 2022-01-06 2023-07-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatus of demodulation reference signal (dmrs) transmission
KR20240110247A (ko) * 2023-01-06 2024-07-15 삼성전자주식회사 무선 통신 시스템에서 sbfd 기반의 통신을 수행하기 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222250A (zh) * 2007-01-08 2008-07-16 中兴通讯股份有限公司 公共状态下共享信道的功率参数传递方法及装置
CN101827444A (zh) * 2010-03-31 2010-09-08 中兴通讯股份有限公司 一种测量参考信号的信令配置***及方法
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、***及装置
US20120147773A1 (en) * 2009-07-30 2012-06-14 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437300B2 (en) * 2009-10-12 2013-05-07 Samsung Electronics Co., Ltd Method and system of multi-layer beamforming
CN101801097B (zh) * 2010-01-08 2015-05-20 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
EP3113567B1 (en) * 2011-02-11 2018-04-11 Interdigital Patent Holdings, Inc. Systems and methods for an enhanced control channel
US9001756B2 (en) * 2011-04-27 2015-04-07 Texas Instruments Incorporated Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
US8855000B2 (en) * 2011-04-28 2014-10-07 Qualcomm Incorporated Interference estimation using data traffic power and reference signal power
US8995385B2 (en) * 2011-08-05 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for UE-specific demodulation reference signal scrambling
EP2562954A1 (en) * 2011-08-26 2013-02-27 Panasonic Corporation Search space reconfiguration for enhanced-PDCCH
WO2013055010A1 (en) * 2011-10-10 2013-04-18 Lg Electronics Inc. Method for multiplexing control information at base station in wireless communication system and apparatus for the same
US8761109B2 (en) * 2012-08-03 2014-06-24 Motorola Mobility Llc Method and apparatus for receiving a control channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222250A (zh) * 2007-01-08 2008-07-16 中兴通讯股份有限公司 公共状态下共享信道的功率参数传递方法及装置
US20120147773A1 (en) * 2009-07-30 2012-06-14 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、***及装置
CN101827444A (zh) * 2010-03-31 2010-09-08 中兴通讯股份有限公司 一种测量参考信号的信令配置***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2887750A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961318A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种确定编码调制参数的方法、装置和***
US11652600B2 (en) 2016-01-11 2023-05-16 Zte Corporation Method, device and system for determining coding modulation parameter

Also Published As

Publication number Publication date
EP2887750A4 (en) 2015-08-12
CN103687042B (zh) 2018-05-15
US20150223216A1 (en) 2015-08-06
EP2887750A1 (en) 2015-06-24
CN103687042A (zh) 2014-03-26
EP2887750B1 (en) 2017-05-17
US9538524B2 (en) 2017-01-03

Similar Documents

Publication Publication Date Title
CN103687042B (zh) 一种物理下行共享信道的传输方法及***
US10863367B2 (en) Reference signal sequence configuration method and network device
US9077569B2 (en) Reference signal for a control channel in wireless communication network
EP2599356B1 (en) Signaling methods for ue-specific dynamic downlink scheduler in ofdma systems
KR101770174B1 (ko) 다중 계층 빔포밍을 위한 방법 및 시스템
US9591621B2 (en) Method and apparatus for transmitting and receiving control channel information on an enhanced physical downlink control channel (ePDCCH) using an enhanced control channel element (eCCE)
US20200367242A1 (en) Method for transmitting and receiving downlink channel and reference signal in communication system
US9930666B2 (en) Method and base station for MU-MIMO transmission in wireless communication system
WO2013055143A2 (ko) 서브프레임에서 제어 채널의 탐색 영역을 할당하는 방법 및 장치
JP5670516B2 (ja) 無線通信システムでの制御情報送信方法および受信方法
Ye et al. Enhanced physical downlink control channel in LTE advanced release 11
WO2014048076A1 (zh) 控制信息发送方法、接收方法和设备
WO2013157772A1 (ko) 상향링크 자원 결정 방법 및 이를 이용한 상향링크 제어 신호 전송 방법, 그리고 이들을 위한 장치
KR20130058565A (ko) 송수신 포인트, 송수신 포인트의 제어 정보 전송 방법, 단말, 및 단말의 제어 정보 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14424271

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013834196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013834196

Country of ref document: EP