WO2014030866A1 - Single crystal growing device, and raw material supplying device and raw material supplying method applied to same - Google Patents

Single crystal growing device, and raw material supplying device and raw material supplying method applied to same Download PDF

Info

Publication number
WO2014030866A1
WO2014030866A1 PCT/KR2013/007221 KR2013007221W WO2014030866A1 WO 2014030866 A1 WO2014030866 A1 WO 2014030866A1 KR 2013007221 W KR2013007221 W KR 2013007221W WO 2014030866 A1 WO2014030866 A1 WO 2014030866A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
buffer
cover
crucible
material supply
Prior art date
Application number
PCT/KR2013/007221
Other languages
French (fr)
Korean (ko)
Inventor
손민수
박일준
안주현
강인구
Original Assignee
주식회사 엘지실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지실트론 filed Critical 주식회사 엘지실트론
Publication of WO2014030866A1 publication Critical patent/WO2014030866A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt

Definitions

  • the present invention relates to a single crystal growth apparatus capable of increasing the pulling speed as well as preventing damage to the crucible when recharging a solid fuel, and a raw material supply device and a raw material supply method.
  • a single crystal growth apparatus supplies solid polycrystalline silicon into a crucible, and then heats the crucible to form a liquid silicon melt, and a seed that agglomerates seed crystals into a silicon melt is rotated and simultaneously pulled up. , Grow a single crystal ingot having the desired diameter.
  • the raw material in the solid state is supplied.
  • the method of supplying the solid raw material according to the shape of the solid raw material an amorphous chip-shaped solid raw material is directly lowered from above the center of the crucible. It can be divided into the method of supplying, the method of supplying the solid raw material of a granular form directly or obliquely from the center or inclined upper direction of a crucible, and the method of melt
  • the raw material supply device having a different structure is used for each raw material type, and there are advantages and disadvantages according to each method, but the method of supplying an amorphous chip-shaped solid raw material is not only easy to obtain raw materials but also inexpensive. It is most widely used because renewable raw materials can be used.
  • Japanese Laid-Open Patent Publication No. 2000-169284 discloses a quartz crucible inner surface protector comprising a cylindrical portion having an outer diameter corresponding to the inner diameter of a quartz crucible, and a plurality of flap portions connected in a collapsible state below, and a method of putting polycrystalline silicon using the same. It is possible to prevent damage to the quartz crucible when supplying a solid raw material.
  • the prior art as described above can be applied when initially supplying a solid raw material into the crucible, but is not applicable when a solid raw material or a silicon melt remains in the crucible.
  • the quartz crucible inner surface protector is applied, it may be damaged by colliding with the remaining solid raw material inside the crucible, or melted by melting with the silicon melt remaining in the crucible, thereby degrading the quality of the single crystal ingot due to the inflow of impurities. have.
  • Japanese Laid-Open Patent Publication No. 2004-244236 discloses a solid raw material supply device, comprising: a cylindrical body on which solid raw materials in the form of chips to be supplied to a crucible are loaded, a lower cover blocking the lower opening of the main body, and a lower cover It consists of a support rod or support wire that opens and controls the fall amount and fall rate of the solid raw material.
  • the solid raw material loaded inside the main body is supplied while falling into the crucible as the lower lid is opened.
  • the silicon fuel remains in the crucible for the continuous ingot growth process
  • the crucible is damaged as the solid raw material falls because it is backed off by the heat of the crucible. There is a problem.
  • a predetermined guide may be provided on both sides of the lower cover, but the installation space of the equipment is narrow, which limits the increase in the size of the guide. There is a problem in that it is difficult to supply a smooth raw material due to solid fuel.
  • the present invention has been made to solve the above problems of the prior art, a single crystal that can not only damage the crucible, but also block the inflow of impurities, and further improve the growth rate of the single crystal ingot even if the raw material remains inside the crucible
  • the purpose of the present invention is to provide a growth device, a raw material supply device and a raw material supply method applied thereto.
  • the present invention is a chamber equipped with a mounting hole on the upper surface; A crucible installed inside the chamber and melting raw materials; A raw material supply device detachably installed at the mounting hole and supplying raw materials to the crucible; And a buffer member positioned inside the crucible and configured to buffer raw materials falling from the raw material supply device and to seat the crucible, wherein the buffer member has a ring-shaped flange portion and a diameter toward the lower portion from the flange portion.
  • a single crystal growth apparatus including a cylindrical main body portion that is narrowed and an uneven portion provided on an inner circumferential surface of the main body portion.
  • the present invention is a raw material supply device of the single crystal growth apparatus for supplying raw materials to the crucible provided in the chamber, the flange seated in the mounting hole of the chamber; A tube extending below the flange and filled with a raw material; A cover for opening and closing a lower portion of the tube; A plurality of buffer pins installed to be receivable from the cover and expanded to buffer the raw materials; A cylindrical storage portion for embedding the buffer pins in the folded state inside the cover; And an opening and closing member for sequentially operating the buffer pins and the cover, wherein the cover has a cone shape having a diameter wider toward the bottom thereof, and the buffer pins are larger than the maximum diameter of the cover at the outside of the cover. It provides a raw material supply device for a single crystal growth device that is greatly expanded.
  • the present invention provides a raw material supply method of a single crystal growth apparatus for supplying a raw material to the crucible provided in the chamber, the first step of mounting a raw material supply device containing the raw material in the chamber; A second step of unfolding buffer pins that may be hit before the raw material is dropped from the raw material supply device; And a third step of buffering the raw material falling from the raw material supply device and supplying the raw material to the crucible.
  • the raw material falling from the raw material supply device is sequentially buffered by the buffer pins unfolded from the raw material supply device and the buffer member located inside the crucible, and then guided to the crucible, so that additional raw material supply is maintained even if the raw material remains in the crucible. It is possible to improve the quality of the single crystal ingot by preventing damage to the crucible as well as blocking the inflow of impurities.
  • the present invention is mounted to the body chamber through the pull chamber of the single crystal growth apparatus with the buffer pin embedded in the raw material supply device, the buffer pin and the buffer pin from the raw material supply device in the body chamber; By opening the cover sequentially and supplying the raw materials, it is possible to overcome the constraints of the installation space and to increase the buffering effect at the time of supplying the raw materials.
  • the present invention by rotating at least one of the raw material supply device, the buffer member and the crucible at the time of raw material supply, to reduce the damage of the side portion of the crucible where the raw material hits first, and furthermore, while the raw material is affected by the centrifugal force to move in the circumferential direction
  • By supplying the raw material it is possible not only to prevent the raw material from hitting the bottom surface of the crucible during the vertical fall, but also to reduce the damage of the bottom portion of the crucible.
  • the present invention is installed not only to suspend the buffer member inside the chamber, but also installed to be able to move up and down, so that the buffer member acts as a buffer in the supply of raw materials, as well as the ingot because the position of the buffer member can be adjusted in the crucible. It can serve as cooling during growth.
  • the present invention is positioned so as to surround the lower portion of the raw material supply device at the same time elastically supported in the up and down direction within a set angle range, the crucible by the raw material supply device as a buffer against the buffer member even if the raw material supply device is moved. Can be damaged.
  • the present invention is provided with an uneven portion along the inner peripheral surface of the buffer member, it is possible to not only prevent the damage of the buffer member to hit the raw material at the time of raw material supply, but also to enhance the buffering effect.
  • the present invention has a spiral guide along the inner peripheral surface of the buffer member and at the same time having a blower that blows air along it, to prevent the raw material powder remaining on the inner peripheral surface of the buffer member at the time of raw material supply, the raw powder at the time of ingot growth As it enters the melt, it is possible to prevent deterioration of the ingot quality.
  • the present invention can not only withstand the buffer member at 1600 °C or more, but also composed of a low emissivity metal material, it is possible to rapidly cool the ingot during ingot growth can not only increase the cooling effect but also increase the ingot growth rate.
  • FIG. 1 is a view showing a first embodiment of a single crystal growth apparatus according to the present invention.
  • FIG. 2 is a view showing a raw material supply apparatus applied to the single crystal growth apparatus according to the present invention.
  • 3a to 3c is a view showing an operating state when supplying the raw material of the raw material supply device of FIG.
  • 4 to 6 is a view showing an example of various operations when supplying raw materials in the single crystal growth apparatus according to the present invention.
  • FIG. 7 shows a second embodiment of a single crystal growth apparatus according to the present invention.
  • FIG 8 shows a third embodiment of a single crystal growth apparatus according to the present invention.
  • FIG. 9 is a view showing a buffer member and a lifter applied in FIG.
  • FIG. 10 is a flow chart showing a raw material supply method of a single crystal growth apparatus according to the present invention.
  • FIG. 1 is a view showing a first embodiment of a single crystal growth apparatus according to the present invention.
  • the first embodiment of the single crystal growth apparatus according to the present invention is configured to include chambers 101 and 102, crucible 110, raw material supply device 120, and buffer member 130 as shown in FIG. .
  • the chambers 101 and 102 may include a full chamber 101 and a body chamber 102 provided below.
  • the full chamber 101 is a passage through which an ingot can pass, and is formed in a long cylindrical shape.
  • the body chamber 102 is a space in which a heater or the like is embedded, including a crucible 110 capable of growing an ingot, and is formed in a larger cylindrical shape than the full chamber 101.
  • the full chamber 101 and the body chamber 102 are provided with mounting holes 101h and 102h having a stepped shape in communication with each other, and the mounting holes 101h and 102h may be provided with a raw material supply device (described below).
  • the flange of 120 may be caught from the full chamber 101 toward the body chamber 102.
  • the full chamber 101 is provided with a seed chuck 103 that suspends a single crystal seed and soaks it in a melt, and gradually raises a single crystal ingot.
  • 103 is provided to be movable in the vertical direction. Therefore, the cable and the single crystal seed is connected to the seed chuck 103 when the ingot is grown, but the buffer pin rod of the raw material supply device 120 to be described below is connected to the seed chuck 103 when the raw material is supplied. do.
  • the seed chuck 103 By using the seed chuck 103 to mount the raw material supply device 120 to the single crystal growth device, it is easy to work without a separate connector, and the centering of the single crystal growth device and the raw material supply device 120 is easy. .
  • the crucible 110 is configured to include a quartz crucible 111 forming an inner circumferential surface, a graphite crucible 112 forming an outer circumferential surface, and a rotating shaft 113 extending below the graphite crucible 112 and being rotatable. Is installed. In addition, a heater (not shown) and a heat insulating material (not shown) are provided around the crucible 110.
  • the raw material in a solid state is supplied into the crucible 110, the raw material is changed into the melt state in the crucible 110 as the heater is operated, and the seed is contained in the melt, and then the ingot rises as it rises. Will grow.
  • a raw material supply device 120 to be described below is mounted to feed a solid material into the crucible 110. Inject to and repeat the process of growing the ingot again.
  • the raw material supply device 120 is also used to charge the crucible 110 for the first time in a solid state polycrystalline raw material, but is generally used for additional charging or recharging. Of course, even if the melt remains in the crucible 110 without cooling, by mounting the raw material supply device 120 to fill the raw material from the raw material supply device 120 into the crucible 110 by filling This allows multiple ingot growth processes in one single crystal growth apparatus.
  • the additional charging or recharging may be easily damaged when the crucible 110 is heated, unlike the initial charging, and the melt remaining in the crucible 110 may be splashed by the falling solid material. Attachment to the device, or scattering, may render ingot growth later. Therefore, it is necessary to control not only to reduce the falling rate of the solid raw material but also to supply the solid raw material to be evenly dispersed in the crucible 110.
  • the raw material supply device 120 is provided with a buffer pin, a detailed configuration will be described in detail below.
  • the buffer member 130 is formed in a cylindrical shape that becomes narrower from the top to the bottom, and is installed to be located inside the crucible 110 and at the bottom outside of the raw material supply device 120. Therefore, the solid fuel supplied from the raw material supply device 120 is buffered by the buffer member 130, and then guided to the bottom surface of the crucible 110 along the inner circumferential surface of the buffer member 130.
  • the buffer member 130 is not only movable in the vertical direction but also rotatably installed by the lifter (Lifter) to be described below in the chamber (101, 102), so as to be able to move within the set angle range in the vertical direction Buffer support. Accordingly, by varying the height of the buffer member 130 from the melt inside the crucible 110 or by adjusting the buffer member 130 to rotate, the buffering effect is increased at the time of raw material supply, and at the time of ingot growth. Cooling effect can be enhanced.
  • the buffer member 130 can withstand a high temperature environment, that is, 1600 °C or more capable of growing an ingot, and not only has a predetermined elasticity that does not break even when the raw material supply device 120 hits the ingot. It is preferable to be made of a metal material having a low emissivity to increase the cooling efficiency at the time of growth.
  • the buffer member 130 may be made of molybdenum.
  • FIG. 2 is a view showing a raw material supply apparatus applied to the single crystal growth apparatus according to the present invention.
  • the raw material supply device 120 is configured to include a flange 121b, a tube 122, a cover 123, a plurality of buffer pins 124, opening and closing members (121a, 125, 126).
  • the flange 121b is a portion that can be mounted on the mounting holes 101h and 102h of the chamber as shown in FIG. 1 as the diameter of the flange 121b is larger than that of the mounting holes 101h and 102h of the chamber.
  • the tube 122 may be installed to be opened and closed from an upper surface of the tube 122.
  • the flange 121b may be integrally formed with the cap 121a interlocking with the opening / closing members 121a, 125, and 126 to be described below.
  • the tube 122 is formed in a cylindrical shape extending long below the flange 121b so that the diameter of the tube 122 is smaller than that of the mounting holes 101h and 102h of FIG. 1, and a solid raw material may be loaded. .
  • the cover 123 may be installed to be opened and closed from the lower surface of the tube 122, and is formed in a cone shape in which the diameter becomes wider toward the lower portion so as to bear the weight of the solid raw material. At this time, the inside of the cover 123 is provided with a cylindrical storage portion 123a that can accommodate the buffer pins 124 in a folded state.
  • the buffer pins 124 have an upper end collected in the center of the cover 123 as a kind of umbrella, but the lower end thereof may be unfolded in a radial form.
  • the buffer pins 124 may be wider than the diameter of the tube 122 or the cover 123 so that the solid material is bumped and buffered in the unfolded state of the buffer pins 124.
  • the buffer pins 124 are moved upward and downward by the opening and closing members 121a, 125, and 126 to be described below, so that the buffer pins 124 are folded in the storage part 123a during upward movement.
  • the downward movement of the buffer pins 124 is maintained in the unfolded state outside the storage unit (123a).
  • the buffer pins 124 may be made of a metal material having a predetermined elasticity as well as enduring at a temperature of about 1600 ° C. or more like the above-mentioned buffer member 130 (shown in FIG. 1), for example, molybdenum It may be made of a material.
  • the opening and closing members 121a, 125, and 126 are configured to include a buffer pin rod 125, a cap 121a, and a cover support 126.
  • the buffer pin rod 125 is in the form of an axially long rod and is connected to the seed chuck 103 and to the buffer pins 124 at the same time. Therefore, when the seed chuck 103 moves the buffer pin rod 125 downward by a set distance, the buffer pins 124 are unfolded, and when the seed pin chuck 125 moves upward by a set distance, the buffer The pins 124 are operated to fold.
  • the cap 121a may be integrally provided at an upper portion of the flange 121b, and the female screw part 121h that may be engaged with the cover support 126 as well as the buffer pin rod 125 penetrates at the center thereof. ) Is provided.
  • the female screw portion 121h may be formed to extend to the center of the flange 121b.
  • the cover support 126 has a hollow shaft shape surrounding the buffer pin rod 125, and an external thread portion 126h engaged with the female thread portion 121h of the cap 121a is provided at an outer circumferential surface thereof.
  • the cover 123 is rotatably supported by a bearing portion 126b mounted on an inner circumferential surface of the cover 123. Therefore, as the cover support 126 is rotated with respect to the cap 121a can be moved in the vertical direction, the cover 123 can also be opened and closed from the tube 122.
  • the buffer pins 124 are preferably opened as the buffer pins 124 are moved downwardly from the tube 122 as the cover 123 in an unfolded state.
  • the buffer pin rod 125 is opened.
  • the buffer pin rod 125 and the support cover 126 is preferably configured to be rotated together.
  • a pair of upper coupling protrusions 125a are provided on the upper side of the buffer pin rod 125, and a pair of coupling grooves 126a are provided on the upper side of the cover support 126 so as to be engaged therewith.
  • a pair of lower coupling protrusions (125b) on the lower side of the buffer pin rod 125 is provided with a pair of coupling grooves on the lower side of the cover support (126) to engage with the same H) is provided.
  • the solid material loaded on the tube 122 may interfere with the movement of the buffer pin rod 125 or the cover support 126.
  • the cover support (below the flange 121b) Cylindrical guide portion 127 surrounding the 126 may be provided.
  • 3A to 3C are views illustrating an operating state when supplying raw materials of the raw material supply device of FIG. 2.
  • the seed chuck 103 is operated to move the buffer pin rod 125 downward, and a buffer pin 124 that is moved downward, such as the buffer pin rod 125, is stored. Out of the portion 123a and the cover 123 is spread out.
  • the buffer pin 124 is in an extended state while the cover 123 is in the tube 122. Open from the tube 122, the solid raw material loaded on the tube 122 hits the buffer pin 124, is buffered, and is dispersed in the radial direction and falls.
  • the process of blocking the supply of the solid raw material is performed while repeating the supply process in reverse.
  • the buffer pin rod 125 is moved upward by a predetermined distance, the buffer pins 124 are folded, and the lower coupling protrusions 125b are engaged with the lower coupling grooves (not shown) to cushion the buffer.
  • the cover 123 blocks the tube 122.
  • 4 to 6 is a view showing an example of various operations when supplying raw materials in the single crystal growth apparatus according to the present invention.
  • the single crystal growth apparatus of the present invention rotates the buffer member 130 at the time of raw material supply, thereby bumping and buffering the buffer member 130 rotating from the raw material supply apparatus 120 where the solid raw material is stopped. After enhancing the effect, it can be supplied into the stationary crucible 110.
  • the solid raw material since the solid raw material is supplied to the stopped crucible 110 by hitting the rotating buffer member 130, the solid raw material may spring up from the crucible 110 by centrifugal force to damage the raw material supply device 120. .
  • the crucible 110 may be supplied into the stationary crucible 110.
  • the raw material supply device 120 is mounted to the seed chuck 103 to be suspended by a connection part of a cable or rod form. Therefore, while the raw material supply device 120 is rotated at the time of raw material supply, but the raw material supply device 120 is stopped when the raw material supply is stopped, the raw material supply device 120 is moved from the seed chuck 103 by inertial force. Or may spring up, thereby damaging the raw material supply device 120 or the buffer member 130.
  • the solid crucible hit the buffer member 130 is stopped from the stopped raw material supply device 120, and then the crucible to rotate 110 may be supplied into the interior.
  • the crucible 110 may be rotated at 0.3 ⁇ 0.5rpm at the time of raw material supply.
  • due to the viscosity of the melt remaining in the crucible 110 and the flow rate of the rotation direction of the crucible 110 can increase the effect of buffering the impact that the solid raw material hits the bottom portion of the crucible 110. .
  • FIG. 7 is a view showing a second embodiment of the single crystal growth apparatus according to the present invention.
  • the second embodiment of the single crystal growth apparatus according to the present invention is configured in the same manner as the first embodiment, but the concave-convex portion 133 is provided on the inner circumferential surface of the buffer member 130 as shown in FIG.
  • the buffer member 130 is provided with a ring-shaped flange portion 131 extending in the horizontal direction, the body portion 132 of the cylindrical shape that is provided integrally below the flange portion 131 is narrower toward the bottom and
  • the main body 132 is configured to include an uneven portion 133 provided on the inner circumferential surface thereof.
  • the concave-convex portion 133 is formed in the form of the concave portion and the groove portion alternately, it may be configured in various forms that can cushion the solid raw material bumps, it is not limited.
  • the uneven portion 133 is too sharp or sharply formed, a solid fuel may strike the uneven portion 133 and remain in powder form.
  • a gas flow such as Ar
  • FIG. 8 is a view showing a third embodiment of a single crystal growth apparatus according to the present invention
  • Figure 9 is a view showing a buffer member and a lifter applied to FIG.
  • the third embodiment of the single crystal growth apparatus effectively supplies the raw material powder remaining on the inner circumferential surface of the buffer member 130 to the crucible 110 as shown in FIGS. It provides a structure for supplying the buffer member 130, and further provides a lifter 140 structure that can further enhance the buffering effect when the solid raw material is supplied.
  • the buffer member 130 is provided with a ring-shaped flange portion 131 extending in the horizontal direction, the body portion 132 of the cylindrical shape that is provided integrally below the flange portion 131 is narrower toward the bottom and
  • the main body 132 is configured to include a guide part 134 arranged in a spiral on the inner circumferential surface.
  • a hole 132h is provided at one side of the main body 132, and a blower (not shown) capable of blowing air along the guide part 134 through the hole 132h may be provided.
  • the blower may be omitted.
  • the lifter 140 is configured in the form of a cable or a rod connected vertically to the flange portion 131 of the buffer member 130, for example, may be located in three places at regular intervals in the circumferential direction.
  • the connection portion of the lifter 140 is provided with a predetermined buffer, preferably may be configured in various forms such as a spring, a hydraulic device, and the like.
  • the buffer connecting portion of the lifter 140 may be configured to elastically support the buffer member 130 in the up and down direction within the set angle ( ⁇ ) relative to the horizontal plane, and move within a range of approximately 10 ⁇ 5 ° It is configured to be.
  • the single crystal growth apparatus according to the prior art is applied to the buffer member of the graphite material, whereas the single crystal growth apparatus according to the present invention is applied to the buffer member of molybdenum material, looking at the G value and the heater power value during ingot growth, as follows: appear.
  • the G value of the present invention appears to be improved over the conventional G value regardless of the center or edge of the cushioning member, and the heater power value of the present invention is higher than the conventional heater power value.
  • the G value is a temperature gradient at which the ingot cools down
  • the heater power value is a power value supplied to the heater to maintain a proper temperature during ingot growth.
  • the high G value and the heater power value can be seen as an excellent cooling effect by the molybdenum buffer member, which is because the molybdenum buffer material has a lower emissivity than the graphite material, It can be seen that the cooling effect is increased during ingot growth than the buffer member of the graphite material.
  • FIG. 10 is a flow chart showing a raw material supply method of a single crystal growth apparatus according to the present invention.
  • the raw material supply device 120 containing the raw material is mounted in the single crystal growth device. (See S1)
  • the buffer pin rod 125 of the raw material supply device 120 is mounted to hang on the seed chuck 103, and the flange 121b of the raw material supply device 120 is mounted to the chamber 101, 102. And 102h).
  • the seed chuck 103 may rotate the buffer pin rod 125 in the vertical direction.
  • the buffer pin 124 is unfolded from the raw material supply device 120 (see S2).
  • the buffer pin rod 125 When the seed chuck 103 lowers the buffer pin rod 125, as the buffer pin rod 125 moves downward, the buffer pin 124 connected thereto is also removed from the storage part 123a and the cover 123. Come out and unfold. At this time, the cover 123 maintains a closed state on the tube 122.
  • the buffer member 130 may be rotated, at least one or more may be rotated in consideration of the rotational speed or the remaining amount of the melt, and the rotational speed may also be adjusted. .
  • the crucible 110 may be rotated at a speed of about 3 to 5 rpm.
  • the raw material supply device 120 is opened to drop the solid fuel (see S4).
  • the cover support 126 When the seed chuck 103 lowers the buffer pin rod 125 by a predetermined distance, the upper coupling protrusions 125a are engaged with the upper coupling grooves 126a, and the seed chuck 103 is When the buffer pin rod 125 rotates in one direction, the cover support 126 also rotates in one direction like the buffer pin rod 125. At this time, when the cover support 126 is rotated in one direction, by the screw coupling between the cover support 126 and the cap 121a, the cover support 126 moves downward like the buffer pin rod 125.
  • the cover support 126 is moved downward, the cover 123 connected thereto is also lowered, opened from the tube 122, and the solid material loaded on the tube 122 falls. At this time, the buffer pin 124 is located below the cover 123 to maintain an unfolded state.
  • the raw material is buffered while sequentially impacting the buffer pin 124 and the buffer member 130, and the raw material is seated in the crucible 110 (see S5, S6).
  • the solid raw material falls along the inclined surface of the cover 123, the solid material falls on the buffer pin 124 to be buffered and is dispersed in the radial direction.
  • the solid material impinges on the inner peripheral surface of the buffer member 130 to be buffered.
  • the solid raw material may be guided to the bottom surface of the crucible 110 according to the shape provided on the inner circumferential surface of the buffer member 130.
  • the crucible 110 is rotated, even if the solid raw material is hit by the centrifugal force can increase the buffering effect.
  • the solid material is buffered and then supplied to the bottom surface of the crucible 110 to prevent damage to the crucible 110. can do.
  • the supply of the solid raw material is stopped from the raw material supply device 120 while the above process is reversed, and the raw material supply device 120 is stopped. It is dismantled from the growth device.
  • the buffer pin rod 125 when the buffer pin rod 125 is moved upward by a predetermined distance, the lower coupling protrusions 125b are engaged with the lower coupling grooves (not shown), and the seed chuck 103 is the buffer pin.
  • the cover support 126 When the rod 125 is rotated in the opposite direction, like the buffer pin rod 125, the cover support 126 also rotates in the opposite direction. In this case, when the cover support 126 is rotated in the opposite direction, the cover support 126 is moved upwards like the buffer pin rod 125 by the screw coupling between the cover support 126 and the cap 121b. .
  • the buffer pin rod 125 of the raw material supply device 120 is separated from the seed chuck 103, and the flange 121b of the raw material supply device 120 is mounted to the chamber 101 and 102. , 102h).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to a single crystal growing device capable of not only preventing damage to a crucible during the recharging of a solid fuel but also increasing pulling speed, and to a raw material supplying device and a raw material supplying method applied to same. An embodiment of the present invention provides a single crystal growing device comprising: a chamber including a mounting hole provided at the top surface thereof; a crucible installed inside the chamber and having a raw material melted therein; a raw material supplying device detachably installed on the mounting hole and supplying raw material to the crucible; and a buffering member located in the crucible, for buffering raw material dropping from the raw material supplying device and seating the raw material in the crucible. The buffering member includes: a ring-shaped flange portion; a cylindrical main body portion having a diameter that progressively narrows downward from the flange portion, and a concavo-convex portion provided on the inner peripheral surface of the main body portion.

Description

단결정 성장장치 및 이에 적용된 원료공급장치와 원료공급방법 Single Crystal Growth Device, Raw Material Supply Device and Raw Material Supply Method
본 발명은 고체 연료의 재충전 시에 도가니의 손상을 방지할 뿐 아니라 인상 속도를 높일 수 있는 단결정 성장장치 및 이에 적용된 원료공급장치와 원료공급방법에 관한 것이다.The present invention relates to a single crystal growth apparatus capable of increasing the pulling speed as well as preventing damage to the crucible when recharging a solid fuel, and a raw material supply device and a raw material supply method.
일반적으로 단결정 성장장치는 고체 상태의 다결정 실리콘을 도가니 내부로 공급한 다음, 도가니를 가열하여 액체 상태의 실리콘 융액을 만들고, 종자 결정을 응집시키는 시드(Seed)를 실리콘 융액에 넣어 회전시키는 동시에 인상시킴으로써, 원하는 직경을 가진 단결정 잉곳(Ingot)을 성장시킨다.In general, a single crystal growth apparatus supplies solid polycrystalline silicon into a crucible, and then heats the crucible to form a liquid silicon melt, and a seed that agglomerates seed crystals into a silicon melt is rotated and simultaneously pulled up. , Grow a single crystal ingot having the desired diameter.
이와 같이, 단결정 성장장치에 잉곳을 성장시키기 전에 고체 상태의 원료를 공급하게 되는데, 고체 원료의 형태에 따라 고체 원료를 공급하는 방법으로는, 부정형의 칩 형태 고체 원료를 도가니의 중앙 상방으로부터 직하시켜 공급하는 방법과, 입자 형태의 고체 원료를 도가니의 중앙 또는 경사 상방으로부터 직하 또는 비스듬하게 공급하는 방법과, 봉 형상의 고체 원료를 도가니의 중앙 상방으로부터 아래로 서서히 공급하면서 녹이는 방법으로 나눌 수 있다. In this way, before the ingot is grown in the single crystal growth apparatus, the raw material in the solid state is supplied. According to the method of supplying the solid raw material according to the shape of the solid raw material, an amorphous chip-shaped solid raw material is directly lowered from above the center of the crucible. It can be divided into the method of supplying, the method of supplying the solid raw material of a granular form directly or obliquely from the center or inclined upper direction of a crucible, and the method of melt | dissolving, supplying a rod-shaped solid raw material gradually from the upper upper part of a crucible down.
물론, 각각의 원료 형태에 따라 각각 다른 구조의 원료공급장치를 사용하게 되며, 각각의 방법에 따라 장단점이 있지만, 부정형의 칩 형태 고체 원료를 공급하는 방법이 원료의 입수가 가장 용이할 뿐 아니라 저렴하며 재생 원료를 사용할 수 있기 때문에 가장 널리 사용되고 있다.Of course, the raw material supply device having a different structure is used for each raw material type, and there are advantages and disadvantages according to each method, but the method of supplying an amorphous chip-shaped solid raw material is not only easy to obtain raw materials but also inexpensive. It is most widely used because renewable raw materials can be used.
일본공개특허 2000-169284호에는 석영 도가니의 내경에 상응하는 외경을 가진 원통부 및 그 밑에 접을 수 있는 상태로 연결된 복수의 플랩부로 이루어진 석영 도가니 내면 보호구 및 이것을 이용하여 다결정 실리콘을 넣는 방법에 대해 기재되어 있으며, 고체 원료 공급 시에 석영 도가니의 손상을 방지할 수 있다.Japanese Laid-Open Patent Publication No. 2000-169284 discloses a quartz crucible inner surface protector comprising a cylindrical portion having an outer diameter corresponding to the inner diameter of a quartz crucible, and a plurality of flap portions connected in a collapsible state below, and a method of putting polycrystalline silicon using the same. It is possible to prevent damage to the quartz crucible when supplying a solid raw material.
상기와 같은 종래 기술은 초기에 도가니 내부에 고체 원료를 공급하는 경우에는 적용이 가능하지만, 도가니 내부에 고체 원료 또는 실리콘 융액이 잔류하는 경우에 적용이 불가능하다. 물론, 상기와 같은 석영 도가니 내면 보호구를 적용하더라도 도가니 내부의 잔류하는 고체 원료와 부딪혀 손상되거나, 도가니 내부에 잔류하는 실리콘 융액과 맞닿아 녹을 수 있어 불순물 유입에 따른 단결정 잉곳의 품질을 저하시키는 문제점이 있다.The prior art as described above can be applied when initially supplying a solid raw material into the crucible, but is not applicable when a solid raw material or a silicon melt remains in the crucible. Of course, even if the quartz crucible inner surface protector is applied, it may be damaged by colliding with the remaining solid raw material inside the crucible, or melted by melting with the silicon melt remaining in the crucible, thereby degrading the quality of the single crystal ingot due to the inflow of impurities. have.
일본공개특허 제2004-244236호에는 고체 원료공급장치가 개시되어 있는데, 도가니에 공급할 칩 형태의 고체 원료가 적재되는 원통형 본체와, 이 본체의 하단 개구부를 막는 하부 덮개와, 이 하부 덮개를 절절하게 열어 고체 원료의 낙하량 및 낙하 속도를 제어하는 지지봉 또는 지지 와이어로 이루어진다.Japanese Laid-Open Patent Publication No. 2004-244236 discloses a solid raw material supply device, comprising: a cylindrical body on which solid raw materials in the form of chips to be supplied to a crucible are loaded, a lower cover blocking the lower opening of the main body, and a lower cover It consists of a support rod or support wire that opens and controls the fall amount and fall rate of the solid raw material.
따라서, 본체 내부에 적재된 고체 원료가 하부 덮개가 개방됨에 따라 도가니로 낙하하면서 공급된다. 그런데, 잉곳 연속 성장 공정을 위하여 도가니 내부에 실리콘 융액이 잔류하는 경우에 고체 연료를 상기 원료공급장치에 의해 도가니로 공급하면, 도가니의 열에 의해 물러진 상태이기 때문에 고체 원료가 낙하됨에 따라 도가니가 손상되는 문제점이 있다.Therefore, the solid raw material loaded inside the main body is supplied while falling into the crucible as the lower lid is opened. However, when the silicon fuel remains in the crucible for the continuous ingot growth process, when the solid fuel is supplied to the crucible by the raw material supply device, the crucible is damaged as the solid raw material falls because it is backed off by the heat of the crucible. There is a problem.
이와 같은 문제점을 해결하기 위하여 하부 덮개 양측에 소정의 가이드를 구비할 수도 있지만, 장비의 설치 공간이 협소하여 가이드의 사이즈를 증가시키는데 한계가 있으며, 하부 덮개와 가이드 사이의 공간 역시 협소하여 칩 형태의 고체 연료가 걸려 원활한 원료 공급이 어려운 문제점이 있다.In order to solve such a problem, a predetermined guide may be provided on both sides of the lower cover, but the installation space of the equipment is narrow, which limits the increase in the size of the guide. There is a problem in that it is difficult to supply a smooth raw material due to solid fuel.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 도가니 내부에 원료가 잔류하더라도 도가니를 손상시키지 않을 뿐 아니라 불순물의 유입을 차단하고, 나아가 단결정 잉곳의 성장속도를 향상시킬 수 있는 단결정 성장장치 및 이에 적용된 원료공급장치와 원료공급방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the prior art, a single crystal that can not only damage the crucible, but also block the inflow of impurities, and further improve the growth rate of the single crystal ingot even if the raw material remains inside the crucible The purpose of the present invention is to provide a growth device, a raw material supply device and a raw material supply method applied thereto.
본 발명은 장착구가 상면에 구비된 챔버; 상기 챔버 내부에 설치되고, 원료가 용융되는 도가니; 상기 장착구에 탈착 가능하게 설치되고, 원료를 상기 도가니로 공급하는 원료공급장치; 및 상기 도가니 내부에 위치하고, 상기 원료공급장치로부터 떨어지는 원료를 완충시켜 상기 도가니로 안착시키는 완충부재;를 포함하고, 상기 완충부재는, 링 형상의 플랜지부와, 상기 플랜지부로부터 하부로 갈수록 직경이 좁아지는 원통 형상의 본체부와, 상기 본체부의 내주면에 구비된 요철부를 포함하는 단결정 성장장치를 제공한다.The present invention is a chamber equipped with a mounting hole on the upper surface; A crucible installed inside the chamber and melting raw materials; A raw material supply device detachably installed at the mounting hole and supplying raw materials to the crucible; And a buffer member positioned inside the crucible and configured to buffer raw materials falling from the raw material supply device and to seat the crucible, wherein the buffer member has a ring-shaped flange portion and a diameter toward the lower portion from the flange portion. Provided is a single crystal growth apparatus including a cylindrical main body portion that is narrowed and an uneven portion provided on an inner circumferential surface of the main body portion.
또한, 본 발명은 챔버 내부에 구비된 도가니에 원료를 공급하는 단결정 성장장치의 원료공급장치에 있어서, 상기 챔버의 장착구에 안착되는 플랜지; 상기 플랜지의 하부에 연장되고, 원료가 채워지는 튜브; 상기 튜브의 하부를 개폐시키는 커버; 상기 커버로부터 수납 가능하게 설치되고, 원료 공급 시에 완충시키도록 펼쳐지는 복수개의 완충핀; 상기 커버 내부에 상기 완충핀들을 접은 상태로 내장시키는 원통 형상의 보관부; 및 상기 완충핀들과 커버를 순차적으로 작동시키는 개폐부재;를 포함하도록 구성되며, 상기 커버는 하부로 갈수록 직경이 넓어지는 콘 형상이고, 상기 완충핀들은 상기 커버의 외부에서 상기 커버의 최대 직경보다 더 크게 펼쳐지는 단결정 성장장치의 원료공급장치를 제공한다.In addition, the present invention is a raw material supply device of the single crystal growth apparatus for supplying raw materials to the crucible provided in the chamber, the flange seated in the mounting hole of the chamber; A tube extending below the flange and filled with a raw material; A cover for opening and closing a lower portion of the tube; A plurality of buffer pins installed to be receivable from the cover and expanded to buffer the raw materials; A cylindrical storage portion for embedding the buffer pins in the folded state inside the cover; And an opening and closing member for sequentially operating the buffer pins and the cover, wherein the cover has a cone shape having a diameter wider toward the bottom thereof, and the buffer pins are larger than the maximum diameter of the cover at the outside of the cover. It provides a raw material supply device for a single crystal growth device that is greatly expanded.
또한, 본 발명은 챔버 내부에 구비된 도가니에 원료를 공급하는 단결정 성장장치의 원료공급방법에 있어서, 상기 챔버에 원료가 담긴 원료공급장치를 장착하는 제1단계; 상기 원료공급장치로부터 원료를 낙하시키기 전에 부딪힐 수 있는 완충핀들을 펼치는 제2단계; 및 상기 원료공급장치로부터 낙하하는 원료를 완충시켜 상기 도가니로 공급하는 제3단계;를 포함하는 단결정 성장장치의 원료공급방법을 제공한다.In addition, the present invention provides a raw material supply method of a single crystal growth apparatus for supplying a raw material to the crucible provided in the chamber, the first step of mounting a raw material supply device containing the raw material in the chamber; A second step of unfolding buffer pins that may be hit before the raw material is dropped from the raw material supply device; And a third step of buffering the raw material falling from the raw material supply device and supplying the raw material to the crucible.
본 발명은 원료공급장치로부터 낙하하는 원료를 원료공급장치로부터 펼쳐지는 완충핀 및 도가니 내부에 위치한 완충부재에 의해 순차적으로 완충시킨 다음, 도가니로 안내함으로써, 도가니 내부에 원료가 잔류하더라도 추가 원료 공급이 가능하고, 도가니의 손상을 방지할 뿐 아니라 불순물의 유입을 차단하여 단결정 잉곳의 품질을 향상시킬 수 있다.According to the present invention, the raw material falling from the raw material supply device is sequentially buffered by the buffer pins unfolded from the raw material supply device and the buffer member located inside the crucible, and then guided to the crucible, so that additional raw material supply is maintained even if the raw material remains in the crucible. It is possible to improve the quality of the single crystal ingot by preventing damage to the crucible as well as blocking the inflow of impurities.
또한, 본 발명은 원료공급장치에 완충핀이 내장된 상태로 단결정 성장장치의 풀 챔버(Pull chamber)를 관통하여 바디 챔버(Body chamber)에 장착되고, 바디 챔버 내에서 원료공급장치로부터 완충핀과 커버가 순차적으로 열리면서 원료가 공급됨으로써, 설치 공간의 제약을 극복하는 동시에 원료 공급 시에 완충 효과를 높일 수 있다. In addition, the present invention is mounted to the body chamber through the pull chamber of the single crystal growth apparatus with the buffer pin embedded in the raw material supply device, the buffer pin and the buffer pin from the raw material supply device in the body chamber; By opening the cover sequentially and supplying the raw materials, it is possible to overcome the constraints of the installation space and to increase the buffering effect at the time of supplying the raw materials.
또한, 본 발명은 원료 공급 시에 원료공급장치와 완충부재와 도가니 중 적어도 하나가 회전됨으로써, 원료가 먼저 부딪히는 도가니의 측면 부분의 손상을 저감시키고, 나아가 원료가 원심력에 영향을 받아 원주 방향으로 움직이면서 공급됨에 따라 수직 낙하 시에 원료가 도가니의 바닥면에 부딪혀 튀어 오르는 것을 방지할 뿐 아니라 도가니의 바닥면 부분의 손상을 저감시킬 수 있다.In addition, the present invention by rotating at least one of the raw material supply device, the buffer member and the crucible at the time of raw material supply, to reduce the damage of the side portion of the crucible where the raw material hits first, and furthermore, while the raw material is affected by the centrifugal force to move in the circumferential direction By supplying the raw material, it is possible not only to prevent the raw material from hitting the bottom surface of the crucible during the vertical fall, but also to reduce the damage of the bottom portion of the crucible.
또한, 본 발명은 챔버 내측에 완충부재가 매달리도록 설치될 뿐 아니라 상하 이동 가능하게 설치됨으로써, 도가니 내부에서 완충부재의 위치를 조절할 수 있기 때문에 완충부재가 원료 공급 시에 완충 역할을 할 뿐 아니라 잉곳 성장 시에 냉각 역할을 할 수 있다.In addition, the present invention is installed not only to suspend the buffer member inside the chamber, but also installed to be able to move up and down, so that the buffer member acts as a buffer in the supply of raw materials, as well as the ingot because the position of the buffer member can be adjusted in the crucible. It can serve as cooling during growth.
또한, 본 발명은 완충부재가 원료공급장치의 하부를 감싸도록 위치하는 동시에 상하 방향으로 설정 각도 범위 내에서 탄성 지지됨으로써, 원료공급장치가 움직이더라도 완충부재에 부딪혀 완충됨에 따라 원료공급장치에 의한 도가니의 파손을 방지할 수 있다.In addition, the present invention is positioned so as to surround the lower portion of the raw material supply device at the same time elastically supported in the up and down direction within a set angle range, the crucible by the raw material supply device as a buffer against the buffer member even if the raw material supply device is moved. Can be damaged.
또한, 본 발명은 완충부재 내주면을 따라 요철부를 구비함으로써, 원료 공급 시에 원료와 부딪히는 완충부재의 손상을 방지할 뿐 아니라 완충 효과를 높일 수 있다.In addition, the present invention is provided with an uneven portion along the inner peripheral surface of the buffer member, it is possible to not only prevent the damage of the buffer member to hit the raw material at the time of raw material supply, but also to enhance the buffering effect.
또한, 본 발명은 완충부재 내주면을 따라 나선형 가이드를 구비하는 동시에 이를 따라 공기를 불어주는 송풍기를 구비함으로써, 원료 공급 시에 완충부재 내주면에 원료 가루가 잔류하는 것을 방지하고, 잉곳 성장 시에 원료 가루가 융액에 유입됨에 됨에 따라 잉곳 품질을 저하시키는 것을 방지할 수 있다.In addition, the present invention has a spiral guide along the inner peripheral surface of the buffer member and at the same time having a blower that blows air along it, to prevent the raw material powder remaining on the inner peripheral surface of the buffer member at the time of raw material supply, the raw powder at the time of ingot growth As it enters the melt, it is possible to prevent deterioration of the ingot quality.
또한, 본 발명은 완충부재를 1600℃ 이상에서 견딜 뿐 아니라 방사율이 낮은 금속재질로 구성함으로써, 잉곳 성장 시에 잉곳을 급속하게 냉각시킬 수 있어 냉각 효과를 높일 뿐 아니라 잉곳 성장 속도를 높일 수 있다.In addition, the present invention can not only withstand the buffer member at 1600 ℃ or more, but also composed of a low emissivity metal material, it is possible to rapidly cool the ingot during ingot growth can not only increase the cooling effect but also increase the ingot growth rate.
도 1은 본 발명에 따른 단결정 성장장치의 제1실시예가 도시된 도면.1 is a view showing a first embodiment of a single crystal growth apparatus according to the present invention.
도 2는 본 발명에 따른 단결정 성장장치에 적용되는 원료공급장치가 도시된 도면.2 is a view showing a raw material supply apparatus applied to the single crystal growth apparatus according to the present invention.
도 3a 내지 도 3c는 도 2의 원료공급장치의 원료 공급시 작동 상태가 도시된 도면.3a to 3c is a view showing an operating state when supplying the raw material of the raw material supply device of FIG.
도 4 내지 도 6은 본 발명에 따른 단결정 성장장치에서 원료 공급시 다양한 작동 일예가 도시된 도면.4 to 6 is a view showing an example of various operations when supplying raw materials in the single crystal growth apparatus according to the present invention.
도 7은 본 발명에 따른 단결정 성장장치의 제2실시예가 도시된 도면.7 shows a second embodiment of a single crystal growth apparatus according to the present invention.
도 8은 본 발명에 따른 단결정 성장장치의 제3실시예가 도시된 도면.8 shows a third embodiment of a single crystal growth apparatus according to the present invention.
도 9는 도 8에 적용된 완충부재 및 리프터가 도시된 도면.9 is a view showing a buffer member and a lifter applied in FIG.
도 10은 본 발명에 따른 단결정 성장장치의 원료공급방법이 도시된 순서도.10 is a flow chart showing a raw material supply method of a single crystal growth apparatus according to the present invention.
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다. Hereinafter, with reference to the accompanying drawings for the present embodiment will be described in detail. However, the scope of the inventive idea of the present embodiment may be determined from the matters disclosed by the present embodiment, and the inventive idea of the present embodiment may be implemented by adding, deleting, or modifying components to the proposed embodiment. It will be said to include variations.
도 1은 본 발명에 따른 단결정 성장장치의 제1실시예가 도시된 도면이다.1 is a view showing a first embodiment of a single crystal growth apparatus according to the present invention.
본 발명에 따른 단결정 성장장치의 제1실시예는 도 1에 도시된 바와 같이 챔버(101,102)와, 도가니(110)와, 원료공급장치(120)와, 완충부재(130)를 포함하도록 구성된다.The first embodiment of the single crystal growth apparatus according to the present invention is configured to include chambers 101 and 102, crucible 110, raw material supply device 120, and buffer member 130 as shown in FIG. .
상기 챔버(101,102)는 풀 챔버(Pull chamber : 101) 및 그 하부에 구비된 바디 챔버(Body chamber : 102)로 이루어질 수 있다. 상기 풀 챔버(101)는 잉곳이 통과할 수 통로로써, 긴 원통 형상으로 형성된다. 상기 바디 챔버(102)는 잉곳을 성장시킬 수 있는 도가니(110)를 비롯하여 히터 등이 내장되는 공간으로써, 상기 풀 챔버(101)보다 더 큰 원통 형상으로 형성된다. The chambers 101 and 102 may include a full chamber 101 and a body chamber 102 provided below. The full chamber 101 is a passage through which an ingot can pass, and is formed in a long cylindrical shape. The body chamber 102 is a space in which a heater or the like is embedded, including a crucible 110 capable of growing an ingot, and is formed in a larger cylindrical shape than the full chamber 101.
이때, 상기 풀 챔버(101)와 바디 챔버(102)는 서로 연통되는 단차진 형태의 장착구(101h,102h)가 구비되는데, 상기 장착구(101h,102h)는 하기에서 설명될 원료공급장치(120)의 플랜지가 상기 풀 챔버(101)로부터 상기 바디 챔버(102)를 향하여 걸림될 수 있도록 한다.In this case, the full chamber 101 and the body chamber 102 are provided with mounting holes 101h and 102h having a stepped shape in communication with each other, and the mounting holes 101h and 102h may be provided with a raw material supply device (described below). The flange of 120 may be caught from the full chamber 101 toward the body chamber 102.
또한, 상기 풀 챔버(101) 내부에는 단결정 시드(Seed)를 매달아 융액(Melt)에 담가 단결정 잉곳(Ingot)을 서서히 인상시킬 수 있는 시드 척(Seed chuck : 103)이 구비되는데, 상기 시드 척(103)을 상하 방향으로 이동 가능하게 설치된다. 따라서, 잉곳 성장 시 상기 시드 척(103)에 케이블 및 단결정 시드가 연결되어 작동되지만, 원료 공급 시 상기 시드 척(103)에 하기에서 설명될 원료공급장치(120)의 완충핀 로드가 연결되어 작동된다. In addition, the full chamber 101 is provided with a seed chuck 103 that suspends a single crystal seed and soaks it in a melt, and gradually raises a single crystal ingot. 103 is provided to be movable in the vertical direction. Therefore, the cable and the single crystal seed is connected to the seed chuck 103 when the ingot is grown, but the buffer pin rod of the raw material supply device 120 to be described below is connected to the seed chuck 103 when the raw material is supplied. do.
이러한 시드 척(103)을 이용하여 원료공급장치(120)를 단결정 성장장치에 장착함으로써, 별도의 커넥터 없이 작업이 용이하고, 단결정 성장장치와 원료공급장치(120)의 센터링(Centering)이 용이하다.By using the seed chuck 103 to mount the raw material supply device 120 to the single crystal growth device, it is easy to work without a separate connector, and the centering of the single crystal growth device and the raw material supply device 120 is easy. .
상기 도가니(110)는 내주면을 형성하는 석영 도가니(111)와, 외주면을 형성하는 흑연 도가니(112)와, 상기 흑연 도가니(112) 하부에 연장된 회전축(113)을 포함하도록 구성되며, 회전 가능하게 설치된다. 또한, 상기 도가니(110) 주변에 히터(미도시)를 비롯하여 단열재(미도시) 등이 구비된다. The crucible 110 is configured to include a quartz crucible 111 forming an inner circumferential surface, a graphite crucible 112 forming an outer circumferential surface, and a rotating shaft 113 extending below the graphite crucible 112 and being rotatable. Is installed. In addition, a heater (not shown) and a heat insulating material (not shown) are provided around the crucible 110.
따라서, 상기 도가니(110) 내부에 고체 상태의 원료가 공급되면, 상기 히터가 작동됨에 따라 상기 도가니(110) 내부에서 원료가 융액 상태로 변하고, 상기 시드가 융액에 담겨진 다음, 상승함에 따라 잉곳이 성장하게 된다. 이와 같이, 잉곳 성장 공정이 완료되면, 상기 도가니(110) 내부에 소정량의 융액이 잔류하게 되며, 하기에서 설명될 원료공급장치(120)를 장착하여 고체 상태의 원료를 상기 도가니(110) 내부로 주입하고, 다시 잉곳을 성장시키는 과정을 반복하게 된다.Therefore, when the raw material in a solid state is supplied into the crucible 110, the raw material is changed into the melt state in the crucible 110 as the heater is operated, and the seed is contained in the melt, and then the ingot rises as it rises. Will grow. As such, when the ingot growth process is completed, a predetermined amount of melt remains in the crucible 110, and a raw material supply device 120 to be described below is mounted to feed a solid material into the crucible 110. Inject to and repeat the process of growing the ingot again.
상기 원료공급장치(120)는 상기 도가니(110)에 처음으로 고체 상태의 다결정 원료를 충전할 때에도 사용되지만, 추가 충전 또는 재충전시에 사용되는 것이 일반적이다. 물론, 상기 도가니(110)에 융액이 잔류하더라도 냉각시키지 않고, 상기 원료공급장치(120)를 장착하여 상기 원료공급장치(120)로부터 상기 도가니(110) 내부로 고체 원료를 보충하는 충전을 행함으로써, 하나의 단결정 성장장치에서 여러 번의 잉곳 성장 공정을 가능하게 한다. The raw material supply device 120 is also used to charge the crucible 110 for the first time in a solid state polycrystalline raw material, but is generally used for additional charging or recharging. Of course, even if the melt remains in the crucible 110 without cooling, by mounting the raw material supply device 120 to fill the raw material from the raw material supply device 120 into the crucible 110 by filling This allows multiple ingot growth processes in one single crystal growth apparatus.
이와 같이, 추가 충전 또는 재충전은 최초의 충전과 달리 상기 도가니(110)가 가열된 상태에서 손쉽게 손상될 수 있으며, 낙하하는 고체 상태의 원료에 의해 상기 도가니(110) 내부에 잔류하는 융액이 튀어 다른 장치에 부착하거나, 비산됨에 따라 추후에 잉곳 성장을 불가능하게 할 수 있다. 따라서, 고체 원료의 낙하 속도를 감소시키도록 조절할 뿐 아니라 고체 원료를 상기 도가니(110) 내부에 고르게 분산시키도록 공급하는 것이 필요하다. 이러한 점을 고려하여, 상기 원료공급장치(120)는 완충핀들이 구비되며, 자세한 구성은 하기에서 자세히 설명하기로 한다.As such, the additional charging or recharging may be easily damaged when the crucible 110 is heated, unlike the initial charging, and the melt remaining in the crucible 110 may be splashed by the falling solid material. Attachment to the device, or scattering, may render ingot growth later. Therefore, it is necessary to control not only to reduce the falling rate of the solid raw material but also to supply the solid raw material to be evenly dispersed in the crucible 110. In consideration of this point, the raw material supply device 120 is provided with a buffer pin, a detailed configuration will be described in detail below.
상기 완충부재(130)는 상부로부터 하부로 갈수록 직경이 좁아지는 원통 형상으로 형성되며, 상기 도가니(110) 내측에 위치하는 동시에 상기 원료공급장치(120)의 하부 외측에 위치하도록 설치된다. 따라서, 상기 원료공급장치(120)로부터 공급되는 고체 연료가 상기 완충부재(130)에 의해 완충된 다음, 상기 완충부재(130)의 내주면을 따라 상기 도가니(110)의 바닥면으로 안내된다. The buffer member 130 is formed in a cylindrical shape that becomes narrower from the top to the bottom, and is installed to be located inside the crucible 110 and at the bottom outside of the raw material supply device 120. Therefore, the solid fuel supplied from the raw material supply device 120 is buffered by the buffer member 130, and then guided to the bottom surface of the crucible 110 along the inner circumferential surface of the buffer member 130.
또한, 상기 완충부재(130)는 상기 챔버(101,102) 내부에 하기에서 설명될 리프터(Lifter)에 의해 상하 방향으로 이동 가능할 뿐 아니라 회전 가능하게 설치되고, 상하 방향으로 설정각도 범위 내에서 움직일 수 있도록 완충 지지될 수 있다. 따라서, 상기 도가니(110) 내부의 융액으로부터 상기 완충부재(130)의 높이를 가변시키거나, 상기 완충부재(130)를 회전시키도록 조절함으로써, 원료 공급 시에 완충 효과를 높이고, 잉곳 성장 시에 냉각 효과를 높일 수 있다. In addition, the buffer member 130 is not only movable in the vertical direction but also rotatably installed by the lifter (Lifter) to be described below in the chamber (101, 102), so as to be able to move within the set angle range in the vertical direction Buffer support. Accordingly, by varying the height of the buffer member 130 from the melt inside the crucible 110 or by adjusting the buffer member 130 to rotate, the buffering effect is increased at the time of raw material supply, and at the time of ingot growth. Cooling effect can be enhanced.
또한, 상기 완충부재(130)는 고온의 온도 환경 즉, 잉곳을 성장시킬 수 있는 1600℃ 이상에서 견딜 수 있고, 상기 원료공급장치(120)가 부딪히더라도 깨지지 않는 소정의 탄성을 가질 뿐 아니라 잉곳 성장 시에 냉각 효율을 높일 수 있도록 방사율을 낮은 금속 재질로 만들어지는 바람직하다. 일예로, 상기 완충부재(130)는 몰리브덴으로 만들어질 수 있다. In addition, the buffer member 130 can withstand a high temperature environment, that is, 1600 ℃ or more capable of growing an ingot, and not only has a predetermined elasticity that does not break even when the raw material supply device 120 hits the ingot. It is preferable to be made of a metal material having a low emissivity to increase the cooling efficiency at the time of growth. For example, the buffer member 130 may be made of molybdenum.
도 2는 본 발명에 따른 단결정 성장장치에 적용되는 원료공급장치가 도시된 도면이다.2 is a view showing a raw material supply apparatus applied to the single crystal growth apparatus according to the present invention.
상기 원료공급장치(120)는 플랜지(121b)와, 튜브(122)와, 커버(123)와, 복수개의 완충핀(124)과, 개폐부재(121a,125,126)를 포함하도록 구성된다.The raw material supply device 120 is configured to include a flange 121b, a tube 122, a cover 123, a plurality of buffer pins 124, opening and closing members (121a, 125, 126).
상기 플랜지(121b)는 상기 챔버의 장착구(101h,102h : 도 1에 도시)보다 직경이 크게 형성됨에 따라 상기 챔버의 장착구(101h,102h : 도 1에 도시) 위에 거치될 수 있는 부분으로써, 일종의 상부 커버로 상기 튜브(122)의 상면으로부터 개폐 가능하게 설치될 수 있다. 이때, 상기 플랜지(121b)는 하기에서 설명될 개폐부재(121a,125,126)와 연동하는 캡(121a)과 일체로 구성될 수도 있다.The flange 121b is a portion that can be mounted on the mounting holes 101h and 102h of the chamber as shown in FIG. 1 as the diameter of the flange 121b is larger than that of the mounting holes 101h and 102h of the chamber. As a kind of upper cover, the tube 122 may be installed to be opened and closed from an upper surface of the tube 122. In this case, the flange 121b may be integrally formed with the cap 121a interlocking with the opening / closing members 121a, 125, and 126 to be described below.
상기 튜브(122)는 상기 챔버의 장착구(101h,102h : 도 1에 도시)보다 직경이 작게 형성되도록 상기 플랜지(121b) 하측에 길게 연장된 원통 형상으로 형성되며, 고체 원료가 적재될 수 있다. The tube 122 is formed in a cylindrical shape extending long below the flange 121b so that the diameter of the tube 122 is smaller than that of the mounting holes 101h and 102h of FIG. 1, and a solid raw material may be loaded. .
상기 커버(123)는 상기 튜브(122)의 하면으로부터 개폐 가능하게 설치될 수 있으며, 고체 원료의 무게를 감당할 수 있도록 하부로 갈수록 직경이 넓어지는 콘 형상으로 형성된다. 이때, 상기 커버(123) 내부에는 상기 완충핀들(124)을 접은 상태로 수납할 수 있는 원통 형상의 보관부(123a)가 구비된다.The cover 123 may be installed to be opened and closed from the lower surface of the tube 122, and is formed in a cone shape in which the diameter becomes wider toward the lower portion so as to bear the weight of the solid raw material. At this time, the inside of the cover 123 is provided with a cylindrical storage portion 123a that can accommodate the buffer pins 124 in a folded state.
상기 완충핀들(124)은 일종의 우산살이 동작하는 것과 같이 그 상단이 상기 커버(123)의 중심에 모아져 있지만, 그 하단이 방사 형태로 펼쳐질 수 있다. 물론, 상기 완충핀들(124)의 펼친 상태에서 고체 원료가 부딪혀 완충될 수 있도록 상기 완충핀들(124)은 상기 튜브(122) 또는 커버(123)의 직경보다 더 넓게 펼쳐질 수 있다.The buffer pins 124 have an upper end collected in the center of the cover 123 as a kind of umbrella, but the lower end thereof may be unfolded in a radial form. Of course, the buffer pins 124 may be wider than the diameter of the tube 122 or the cover 123 so that the solid material is bumped and buffered in the unfolded state of the buffer pins 124.
이때, 상기 완충핀들(124)이 하기에서 설명될 개폐부재(121a,125,126)에 의해 상하 방향으로 움직임으로써, 상향 이동 시 상기 완충핀들(124)이 상기 보관부(123a) 내부에서 접은 상태를 유지하지만, 하향 이동 시 상기 완충핀들(124)이 상기 보관부(123a) 외부에서 펼친 상태를 유지하게 된다. In this case, the buffer pins 124 are moved upward and downward by the opening and closing members 121a, 125, and 126 to be described below, so that the buffer pins 124 are folded in the storage part 123a during upward movement. However, when the downward movement of the buffer pins 124 is maintained in the unfolded state outside the storage unit (123a).
또한, 상기 완충핀들(124)은 상기에서 언급한 완충부재(130 : 도 1에 도시)와 마찬가지로 약 1600℃ 이상의 온도에서 견딜 뿐 아니라 소정의 탄성을 갖는 금속 재질로 구성될 수 있으며, 일예로 몰리브덴 재질로 구성될 수 있다.In addition, the buffer pins 124 may be made of a metal material having a predetermined elasticity as well as enduring at a temperature of about 1600 ° C. or more like the above-mentioned buffer member 130 (shown in FIG. 1), for example, molybdenum It may be made of a material.
상기 개폐부재(121a,125,126)는 완충핀 로드(125)와, 캡(121a)과, 커버 지지대(126)를 포함하도록 구성된다. The opening and closing members 121a, 125, and 126 are configured to include a buffer pin rod 125, a cap 121a, and a cover support 126.
상기 완충핀 로드(125)는 축방향으로 긴 막대 형태로써, 상기 시드 척(103)에 연결되는 동시에 상기 완충핀들(124)과 연결된다. 따라서, 상기 시드 척(103)이 상기 완충핀 로드(125)를 설정 거리만큼 하향 이동하면, 상기 완충핀들(124)이 펼쳐지고, 상기 완충핀 로드(125)를 설정 거리만큼 상향 이동하면, 상기 완충핀들(124)이 접히도록 동작된다.The buffer pin rod 125 is in the form of an axially long rod and is connected to the seed chuck 103 and to the buffer pins 124 at the same time. Therefore, when the seed chuck 103 moves the buffer pin rod 125 downward by a set distance, the buffer pins 124 are unfolded, and when the seed pin chuck 125 moves upward by a set distance, the buffer The pins 124 are operated to fold.
상기 캡(121a)은 상기 플랜지(121b) 상부에 일체로 구비될 수 있으며, 그 중심에 상기 완충핀 로드(125)가 관통될 뿐 아니라 상기 커버 지지대(126)와 맞물릴 수 있는 암나사부(121h)가 구비된다. 물론, 상기 암나사부(121h)는 상기 플랜지(121b) 중심에도 연장되도록 형성될 수 있다. The cap 121a may be integrally provided at an upper portion of the flange 121b, and the female screw part 121h that may be engaged with the cover support 126 as well as the buffer pin rod 125 penetrates at the center thereof. ) Is provided. Of course, the female screw portion 121h may be formed to extend to the center of the flange 121b.
상기 커버 지지대(126)는 상기 완충핀 로드(125)를 감싸는 중공축 형태로써, 그 상단 외주면에 상기 캡(121a)의 암나사부(121h)와 맞물리는 수나사부(126h)가 구비되고, 그 하단이 상기 커버(123) 내주면에 장착된 베어링부(126b)에 의해 회전 가능하게 지지된다. 따라서, 상기 커버 지지대(126)가 상기 캡(121a)에 대해 회전됨에 따라 상하 방향으로 이동될 수 있고, 상기 커버(123) 역시 상기 튜브(122)로부터 개폐될 수 있다. The cover support 126 has a hollow shaft shape surrounding the buffer pin rod 125, and an external thread portion 126h engaged with the female thread portion 121h of the cap 121a is provided at an outer circumferential surface thereof. The cover 123 is rotatably supported by a bearing portion 126b mounted on an inner circumferential surface of the cover 123. Therefore, as the cover support 126 is rotated with respect to the cap 121a can be moved in the vertical direction, the cover 123 can also be opened and closed from the tube 122.
그런데, 고체 원료 공급 시 상기 완충핀들(124)은 펼친 상태에서 상기 커버(123)와 같이 상기 튜브(122)로부터 하향 이동됨에 따라 개방되는 것이 바람직하며, 이를 위하여 상기 완충핀 로드(125)가 상기 지지대 커버(126)에 대해 일정 거리만큼 상하 이동되면, 상기 완충핀 로드(125)와 지지대 커버(126)가 같이 회전될 수 있도록 구성되는 것이 바람직하다. 구체적으로, 상기 완충핀 로드(125)의 상부 측면에 한 쌍의 상부 결합용 돌기(125a)가 구비되는 동시에 이와 맞물리도록 상기 커버 지지대(126)의 상부 측면에 한 쌍의 결합용 홈(126a)이 구비되고, 상기 완충핀 로드(125)의 하부 측면에 한 쌍의 하부 결합용 돌기(125b)가 구비되는 동시에 이와 맞물리도록 상기 커버 지지대(126)의 하부 측면에 한 쌍의 결합용 홈(미도시)이 구비된다. However, when supplying a solid raw material, the buffer pins 124 are preferably opened as the buffer pins 124 are moved downwardly from the tube 122 as the cover 123 in an unfolded state. For this purpose, the buffer pin rod 125 is opened. When moved up and down by a predetermined distance with respect to the support cover 126, the buffer pin rod 125 and the support cover 126 is preferably configured to be rotated together. Specifically, a pair of upper coupling protrusions 125a are provided on the upper side of the buffer pin rod 125, and a pair of coupling grooves 126a are provided on the upper side of the cover support 126 so as to be engaged therewith. Is provided, a pair of lower coupling protrusions (125b) on the lower side of the buffer pin rod 125 is provided with a pair of coupling grooves on the lower side of the cover support (126) to engage with the same H) is provided.
그 외에도, 상기 튜브(122)에 적재된 고체 원료가 상기 완충핀 로드(125) 또는 커버 지지대(126)의 움직임을 방해할 수 있는데, 이를 방지하기 위하여 상기 플랜지(121b) 하부에는 상기 커버 지지대(126)를 감싸는 원통 형상의 가이드부(127)가 구비될 수 있다.In addition, the solid material loaded on the tube 122 may interfere with the movement of the buffer pin rod 125 or the cover support 126. To prevent this, the cover support (below the flange 121b) Cylindrical guide portion 127 surrounding the 126 may be provided.
도 3a 내지 도 3c는 도 2의 원료공급장치의 원료 공급시 작동 상태가 도시된 도면이다.3A to 3C are views illustrating an operating state when supplying raw materials of the raw material supply device of FIG. 2.
도 3a에 도시된 바와 같이, 상기 시드 척(103)이 상기 완충핀 로드(125)를 하향 이동시키도록 작동되고, 상기 완충핀 로드(125)와 같이 하향 이동되는 완충핀(124)이 상기 보관부(123a) 및 커버(123)로부터 빠져나와 펼쳐지게 된다.As shown in FIG. 3A, the seed chuck 103 is operated to move the buffer pin rod 125 downward, and a buffer pin 124 that is moved downward, such as the buffer pin rod 125, is stored. Out of the portion 123a and the cover 123 is spread out.
도 3b에 도시된 바와 같이, 상기 완충핀 로드(125)가 일정 거리 이상 하향 이동되면, 상기 상부 결합용 돌기들(125a)이 상기 상부 결합용 홈들(126a)에 맞물리고, 상기 시드 척(103)이 상기 완충핀 로드(125)를 일방향으로 회전시킴으로써, 상기 커버 지지대(126)도 같이 일방향으로 회전하게 된다.As shown in FIG. 3B, when the buffer pin rod 125 is moved downward by a predetermined distance, the upper coupling protrusions 125a are engaged with the upper coupling grooves 126a and the seed chuck 103 ) Rotates the buffer pin rod 125 in one direction, so that the cover support 126 also rotates in one direction.
따라서, 상기 완충핀 로드(125)와 커버 지지대(126)가 동시에 회전하게 되면, 상기 커버 지지대(126)의 수나사부(126h)가 상기 캡(121a)의 암나사부(121h)를 따라 회전됨에 따라 상기 완충핀 로드(125)와 커버 지지대(126)는 회전하는 동시에 하향 이동하게 된다.  Accordingly, when the buffer pin rod 125 and the cover support 126 rotate at the same time, as the male screw portion 126h of the cover support 126 is rotated along the female screw portion 121h of the cap 121a. The buffer pin rod 125 and the cover support 126 are rotated and moved downward.
도 3c에 도시된 바와 같이, 상기 완충핀 로드(125)와 커버 지지대(126)가 하향 이동되면, 상기 완충핀(124)이 펼친 상태를 유지하는 동시에 상기 커버(123)가 상기 튜브(122)로부터 개방되고, 상기 튜브(122)에 적재된 고체 원료가 상기 완충핀(124)에 부딪혀 완충된 다음, 반경 방향으로 분산되어 낙하한다.As shown in FIG. 3C, when the buffer pin rod 125 and the cover support 126 are moved downward, the buffer pin 124 is in an extended state while the cover 123 is in the tube 122. Open from the tube 122, the solid raw material loaded on the tube 122 hits the buffer pin 124, is buffered, and is dispersed in the radial direction and falls.
상기와 같은 과정을 통하여 고체 원료를 공급한 후, 고체 원료의 공급을 차단하는 과정은 상기 공급 과정을 반대로 반복하면서 이루어진다. 이때, 상기 완충핀 로드(125)가 일정 거리만큼 상향 이동되면, 상기 완충핀들(124)이 접히고, 상기 하부 결합용 돌기들(125b)이 상기 하부 결합용 홈들(미도시)에 맞물려 상기 완충핀 로드(125)와 커버 지지대(126)가 같이 반대 방향으로 회전하면, 상기 커버(123)가 상기 튜브(122)를 막아준다.After supplying the solid raw material through the above process, the process of blocking the supply of the solid raw material is performed while repeating the supply process in reverse. In this case, when the buffer pin rod 125 is moved upward by a predetermined distance, the buffer pins 124 are folded, and the lower coupling protrusions 125b are engaged with the lower coupling grooves (not shown) to cushion the buffer. When the pin rod 125 and the cover support 126 rotate together in the opposite direction, the cover 123 blocks the tube 122.
도 4 내지 도 6은 본 발명에 따른 단결정 성장장치에서 원료 공급시 다양한 작동 일예가 도시된 도면이다.4 to 6 is a view showing an example of various operations when supplying raw materials in the single crystal growth apparatus according to the present invention.
본 발명의 단결정 성장장치는 도 4에 도시된 바와 같이 원료 공급 시에 상기 완충부재(130)를 회전시킴으로써, 고체 원료가 정지된 원료공급장치(120)로부터 회전하는 완충부재(130)에 부딪혀 완충 효과를 높인 다음, 정지된 도가니(110) 내부로 공급될 수 있다.As shown in FIG. 4, the single crystal growth apparatus of the present invention rotates the buffer member 130 at the time of raw material supply, thereby bumping and buffering the buffer member 130 rotating from the raw material supply apparatus 120 where the solid raw material is stopped. After enhancing the effect, it can be supplied into the stationary crucible 110.
그런데, 고체 원료가 회전하는 완충부재(130)에 부딪혀 정지된 도가니(110)로 공급되기 때문에 고체 원료가 원심력에 의해 상기 도가니(110)로부터 튀어 올라 상기 원료공급장치(120)를 손상시킬 수 있다.However, since the solid raw material is supplied to the stopped crucible 110 by hitting the rotating buffer member 130, the solid raw material may spring up from the crucible 110 by centrifugal force to damage the raw material supply device 120. .
따라서, 도 5에 도시된 바와 같이 원료 공급 시에 상기 원료공급장치(120)를 회전시킴으로써, 고체 원료가 회전하는 원료공급장치(120)로부터 정지된 완충부재(130)에 부딪혀 완충 효과를 높인 다음, 정지된 도가니(110) 내부로 공급될 수 있다.Therefore, by rotating the raw material supply device 120 at the time of raw material supply, as shown in Figure 5, the solid material is hit by the buffer member 130 stopped from the rotating raw material supply device 120 to increase the buffering effect The crucible 110 may be supplied into the stationary crucible 110.
그런데, 상기 원료공급장치(120)가 상기 시드 척(103)에 일종의 케이블 또는 로드 형태의 연결 부분에 의해 매달리도록 장착된다. 따라서, 원료 공급 시 상기 원료공급장치(120)가 회전되지만, 원료 공급 중단 시 상기 원료공급장치(120)가 정지되면, 관성력에 의해 상기 시드 척(103)으로부터 상기 원료공급장치(120)가 움직이거나, 튀어 오르기 때문에 상기 원료공급장치(120) 또는 완충부재(130)를 손상시킬 수 있다.By the way, the raw material supply device 120 is mounted to the seed chuck 103 to be suspended by a connection part of a cable or rod form. Therefore, while the raw material supply device 120 is rotated at the time of raw material supply, but the raw material supply device 120 is stopped when the raw material supply is stopped, the raw material supply device 120 is moved from the seed chuck 103 by inertial force. Or may spring up, thereby damaging the raw material supply device 120 or the buffer member 130.
따라서, 도 6에 도시된 바와 같이 원료 공급 시에 상기 도가니(110)를 회전시킴으로써, 고체 원료가 정지된 원료공급장치(120)로부터 정지된 완충부재(130)에 부딪혀 완충시킨 다음, 회전하는 도가니(110) 내부로 공급될 수 있다. 바람직하게는, 원료 공급 시에 상기 도가니(110)는 0.3 ~ 0.5rpm 으로 회전시킬 수 있다. 이때, 상기 도가니(110) 내부에 잔류하는 융액의 점성과 상기 도가니(110)의 회전 방향의 유속에 의해 고체 원료가 상기 도가니(110)의 바닥면 부분에 부딪히는 충격을 완충시키는 효과를 높일 수 있다. Therefore, as shown in Figure 6 by rotating the crucible 110 at the time of raw material supply, the solid crucible hit the buffer member 130 is stopped from the stopped raw material supply device 120, and then the crucible to rotate 110 may be supplied into the interior. Preferably, the crucible 110 may be rotated at 0.3 ~ 0.5rpm at the time of raw material supply. At this time, due to the viscosity of the melt remaining in the crucible 110 and the flow rate of the rotation direction of the crucible 110 can increase the effect of buffering the impact that the solid raw material hits the bottom portion of the crucible 110. .
도 7은 본 발명에 따른 단결정 성장장치의 제2실시예가 도시된 도면이다.7 is a view showing a second embodiment of the single crystal growth apparatus according to the present invention.
본 발명에 따른 단결정 성장장치의 제2실시예는 상기 제1실시예와 동일하게 구성되지만, 도 7에 도시된 바와 같이 완충부재(130)의 내주면에 요철부(133)가 구비된다.The second embodiment of the single crystal growth apparatus according to the present invention is configured in the same manner as the first embodiment, but the concave-convex portion 133 is provided on the inner circumferential surface of the buffer member 130 as shown in FIG.
상기 완충부재(130)는 수평 방향으로 확장된 링 형상의 플랜지부(131)와, 상기 플랜지부(131) 하측에 일체로 구비되어 하부로 갈수록 직경이 좁아지는 원통 형상의 본체부(132)와, 상기 본체부(132) 내주면에 구비된 요철부(133)를 포함하도록 구성된다. The buffer member 130 is provided with a ring-shaped flange portion 131 extending in the horizontal direction, the body portion 132 of the cylindrical shape that is provided integrally below the flange portion 131 is narrower toward the bottom and The main body 132 is configured to include an uneven portion 133 provided on the inner circumferential surface thereof.
상기 요철부(133)는 요부와 홈부가 번갈아 형성된 형태로써, 고체 원료가 부딪혀 충격을 완충시킬 수 있는 다양한 형태로 구성될 수 있으며, 한정하지 아니한다. The concave-convex portion 133 is formed in the form of the concave portion and the groove portion alternately, it may be configured in various forms that can cushion the solid raw material bumps, it is not limited.
다만, 상기 요철부(133)가 너무 뾰족하거나, 날카롭게 형성되면, 고체 연료가 상기 요철부(133)에 부딪혀 가루 형태로 잔류할 수 있고, 이러한 가루 형태의 원료가 추후에 잉곳 성장 공정 중에 아르곤(Ar) 등과 같은 가스 유동에 의해 융액으로 공급됨으로써, 잉곳의 품질을 저하시킬 뿐 아니라 제어하기 힘들 수 있다. 따라서, 상기 요철부(133)는 고체 원료가 부딪히더라도 가루 형태로 잔류하지 않도록 그 형상이 설계되는 것이 바람직하다.However, if the uneven portion 133 is too sharp or sharply formed, a solid fuel may strike the uneven portion 133 and remain in powder form. By supplying to the melt by a gas flow such as Ar), it may be difficult to control as well as reduce the quality of the ingot. Therefore, it is preferable that the uneven portion 133 is designed so that its shape does not remain in the form of a powder even when a solid raw material strikes.
도 8은 본 발명에 따른 단결정 성장장치의 제3실시예가 도시된 도면이고, 도 9는 도 8에 적용된 완충부재 및 리프터가 도시된 도면이다.8 is a view showing a third embodiment of a single crystal growth apparatus according to the present invention, Figure 9 is a view showing a buffer member and a lifter applied to FIG.
본 발명에 따른 단결정 성장장치의 제3실시예는 도 8 내지 도 9에 도시된 바와 같이 상기 제2실시예에서 완충부재(130)의 내주면에 잔류할 수 있는 원료 가루를 효과적으로 도가니(110)까지 공급하는 완충부재(130) 구조를 제공하며, 나아가 고체 원료의 공급 시 완충 효과를 보다 높일 수 있는 리프터(140) 구조를 제공한다.As shown in FIGS. 8 to 9, the third embodiment of the single crystal growth apparatus according to the present invention effectively supplies the raw material powder remaining on the inner circumferential surface of the buffer member 130 to the crucible 110 as shown in FIGS. It provides a structure for supplying the buffer member 130, and further provides a lifter 140 structure that can further enhance the buffering effect when the solid raw material is supplied.
상기 완충부재(130)는 수평 방향으로 확장된 링 형상의 플랜지부(131)와, 상기 플랜지부(131) 하측에 일체로 구비되어 하부로 갈수록 직경이 좁아지는 원통 형상의 본체부(132)와, 상기 본체부(132) 내주면에 나선형으로 배열된 가이드부(134)를 포함하도록 구성된다. The buffer member 130 is provided with a ring-shaped flange portion 131 extending in the horizontal direction, the body portion 132 of the cylindrical shape that is provided integrally below the flange portion 131 is narrower toward the bottom and The main body 132 is configured to include a guide part 134 arranged in a spiral on the inner circumferential surface.
또한, 상기 가이드부(134)의 상측으로부터 하측을 따라 공기를 불어주면, 고체 원료가 상기 본체부(132)의 내주면에 부딪혀 가루 형태로 잔류하더라도 상기 가이드부(134)를 따라 하부로 안내될 수 있다. 이를 위하여, 상기 본체부(132)의 일측에 홀(132h)이 구비되고, 상기 홀(132h)을 통하여 상기 가이드부(134)를 따라 공기를 불어줄 수 있는 송풍기(미도시)가 구비될 수 있으며, 상기 송풍기는 생략될 수도 있다.In addition, when the air is blown from the upper side of the guide portion 134 from the lower side, even if the solid raw material hits the inner peripheral surface of the main body portion 132 may remain in the form of powder can be guided downward along the guide portion 134 have. To this end, a hole 132h is provided at one side of the main body 132, and a blower (not shown) capable of blowing air along the guide part 134 through the hole 132h may be provided. The blower may be omitted.
상기 리프터(140)는 상기 완충부재(130)의 플랜지부(131)에 수직하게 연결된 케이블 또는 로드 형태로 구성되며, 일예로 원주 방향으로 일정 간격을 두고 세 군 데에 위치될 수 있다. 이때, 상기 리프터(140)의 연결 부분은 소정의 완충부가 구비되는데, 바람직하게는 스프링, 유압장치 등의 다양한 형태로 구성될 수 있으며, 한정되지 아니한다. 다만, 상기 리프터(140)의 완충 연결부는 수평면을 기준으로 상기 완충부재(130)를 설정각도(α) 범위 내에서 상하 방향으로 탄성 지지하도록 구성될 수 있으며, 대략 10±5°범위 내에서 움직일 수 있도록 구성된다. The lifter 140 is configured in the form of a cable or a rod connected vertically to the flange portion 131 of the buffer member 130, for example, may be located in three places at regular intervals in the circumferential direction. At this time, the connection portion of the lifter 140 is provided with a predetermined buffer, preferably may be configured in various forms such as a spring, a hydraulic device, and the like. However, the buffer connecting portion of the lifter 140 may be configured to elastically support the buffer member 130 in the up and down direction within the set angle (α) relative to the horizontal plane, and move within a range of approximately 10 ± 5 ° It is configured to be.
종래 기술에 따른 단결정 성장장치는 흑연 재질의 완충부재가 적용된 반면, 본 발명에 따른 단결정 성장장치는 몰리브덴 재질의 완충부재가 적용되며, 잉곳 성장 시에 G값과 히터 파워값을 살펴보면, 다음과 같이 나타난다.The single crystal growth apparatus according to the prior art is applied to the buffer member of the graphite material, whereas the single crystal growth apparatus according to the present invention is applied to the buffer member of molybdenum material, looking at the G value and the heater power value during ingot growth, as follows: appear.
본 발명의 G값이 완충부재의 중심 또는 가장자리에 상관없이 종래의 G값 보다 향상된 것으로 나타나며, 본 발명의 히터 파워값이 종래의 히터 파워값보다 높게 나타난다. 이때, G값은 잉곳이 식어가는 온도 기울기이고, 히터 파워값은 잉곳 성장 시에 적정 온도를 유지하기 위하여 히터로 공급되는 파워값이다.The G value of the present invention appears to be improved over the conventional G value regardless of the center or edge of the cushioning member, and the heater power value of the present invention is higher than the conventional heater power value. In this case, the G value is a temperature gradient at which the ingot cools down, and the heater power value is a power value supplied to the heater to maintain a proper temperature during ingot growth.
따라서, 본 발명에서 G값과 히터 파워값이 높은 것은 몰리브덴 재질의 완충부재에 의한 냉각효과가 뛰어난 것으로 볼 수 있으며, 이는 몰리브덴 재질이 흑연 재질보다 방사율(Emissivity)이 낮기 때문에 몰리브덴 재질의 완충부재가 흑연 재질의 완충부재보다 잉곳 성장 시에 냉각 효과를 높이는 것으로 볼 수 있다.Therefore, in the present invention, the high G value and the heater power value can be seen as an excellent cooling effect by the molybdenum buffer member, which is because the molybdenum buffer material has a lower emissivity than the graphite material, It can be seen that the cooling effect is increased during ingot growth than the buffer member of the graphite material.
도 10은 본 발명에 따른 단결정 성장장치의 원료공급방법이 도시된 순서도이다.10 is a flow chart showing a raw material supply method of a single crystal growth apparatus according to the present invention.
본 발명에 따른 단결정 성장장치의 원료공급방법을 도 1, 도 2, 도 10을 참조하여 살펴보면, 다음과 같다. Looking at the raw material supply method of the single crystal growth apparatus according to the present invention with reference to Figures 1, 2, 10 as follows.
먼저, 원료가 담긴 원료공급장치(120)를 단결정 성장장치에 장착한다.(S1 참조)First, the raw material supply device 120 containing the raw material is mounted in the single crystal growth device. (See S1)
상기 원료공급장치(120)의 완충핀 로드(125)는 상기 시드 척(103)에 매달리도록 장착되고, 상기 원료공급장치(120)의 플랜지(121b)는 상기 챔버(101,102)의 장착구(101h,102h)에 걸림되도록 장착된다. 물론, 상기 시드 척(103)은 상기 완충핀 로드(125)를 상하 방향 또는 회전시킬 수 있다.The buffer pin rod 125 of the raw material supply device 120 is mounted to hang on the seed chuck 103, and the flange 121b of the raw material supply device 120 is mounted to the chamber 101, 102. And 102h). Of course, the seed chuck 103 may rotate the buffer pin rod 125 in the vertical direction.
다음, 상기 원료공급장치(120)로부터 완충핀(124)이 펼쳐진다.(S2 참조)Next, the buffer pin 124 is unfolded from the raw material supply device 120 (see S2).
상기 시드 척(103)이 상기 완충핀 로드(125)를 하강시키면, 상기 완충핀 로드(125)가 하향 이동됨에 따라 이와 연결된 완충핀(124)도 상기 보관부(123a) 및 커버(123)로부터 나와서 펼쳐지게 된다. 이때, 상기 커버(123)는 상기 튜브(122)에 닫힌 상태를 유지한다.When the seed chuck 103 lowers the buffer pin rod 125, as the buffer pin rod 125 moves downward, the buffer pin 124 connected thereto is also removed from the storage part 123a and the cover 123. Come out and unfold. At this time, the cover 123 maintains a closed state on the tube 122.
다음, 상기 완충부재(130)와 원료공급장치(120)와 도가니(110) 중 하나만 회전한다.(S3 참조)Next, only one of the buffer member 130, the raw material supply device 120, and the crucible 110 rotates (see S3).
상기 완충부재(130)와 원료공급장치(120)와 도가니(110) 중 하나만 회전될 수도 있지만, 회전 속도 또는 융액의 잔류량을 고려하여 적어도 하나 이상이 회전될 수도 있으며, 회전 속도 역시 조절될 수 있다. 바람직하게는, 상기 도가니(110)만 약 3 ~ 5 rpm 속도로 회전될 수 있다.Although only one of the buffer member 130, the raw material supply device 120, and the crucible 110 may be rotated, at least one or more may be rotated in consideration of the rotational speed or the remaining amount of the melt, and the rotational speed may also be adjusted. . Preferably, only the crucible 110 may be rotated at a speed of about 3 to 5 rpm.
다음, 상기 원료공급장치(120)가 열리고, 고체 연료를 낙하시킨다.(S4 참조)Next, the raw material supply device 120 is opened to drop the solid fuel (see S4).
상기 시드 척(103)이 상기 완충핀 로드(125)를 일정 거리만큼 하강시키면, 상기 상부 결합용 돌기들(125a)이 상기 상부 결합용 홈들(126a)과 맞물리게 되고, 상기 시드 척(103)이 상기 완충핀 로드(125)를 일방향으로 회전시키면, 상기 완충핀 로드(125)와 같이 상기 커버 지지대(126)도 일방향으로 회전한다. 이때, 상기 커버 지지대(126)가 일방향으로 회전되면, 상기 커버 지지대(126)와 캡(121a) 사이의 나사 결합에 의해 상기 완충핀 로드(125)와 같이 커버 지지대(126)가 하향 이동된다. When the seed chuck 103 lowers the buffer pin rod 125 by a predetermined distance, the upper coupling protrusions 125a are engaged with the upper coupling grooves 126a, and the seed chuck 103 is When the buffer pin rod 125 rotates in one direction, the cover support 126 also rotates in one direction like the buffer pin rod 125. At this time, when the cover support 126 is rotated in one direction, by the screw coupling between the cover support 126 and the cap 121a, the cover support 126 moves downward like the buffer pin rod 125.
따라서, 상기 커버 지지대(126)가 하향 이동됨에 따라 이와 연결된 커버(123)도 하강하여 상기 튜브(122)로부터 개방되고, 상기 튜브(122)에 적재된 고체 원료가 낙하된다. 이때, 상기 완충핀(124)은 상기 커버(123) 하측에 위치하여 펼친 상태를 유지한다.Therefore, as the cover support 126 is moved downward, the cover 123 connected thereto is also lowered, opened from the tube 122, and the solid material loaded on the tube 122 falls. At this time, the buffer pin 124 is located below the cover 123 to maintain an unfolded state.
다음, 원료가 상기 완충핀(124)과 완충부재(130)에 순차적으로 충돌하면서 완충되고, 원료가 도가니(110)에 안착된다.(S5,S6 참조)Next, the raw material is buffered while sequentially impacting the buffer pin 124 and the buffer member 130, and the raw material is seated in the crucible 110 (see S5, S6).
고체 원료가 상기 커버(123)의 경사면을 따라 낙하하면, 상기 완충핀(124)에 부딪혀 완충되는 동시에 반경 방향으로 분산되고, 상기 완충부재(130)의 내주면에 부딪혀 완충된다. 이때, 상기 완충부재(130)의 내주면에 구비된 형상에 따라 고체 원료를 상기 도가니(110)의 바닥면으로 안내할 수 있다. 물론, 상기에서 언급한 바와 같이 도가니(110)가 회전됨에 따라 원심력에 의해 고체 원료가 부딪히더라도 완충 효과를 높일 수 있다.When a solid raw material falls along the inclined surface of the cover 123, the solid material falls on the buffer pin 124 to be buffered and is dispersed in the radial direction. The solid material impinges on the inner peripheral surface of the buffer member 130 to be buffered. At this time, the solid raw material may be guided to the bottom surface of the crucible 110 according to the shape provided on the inner circumferential surface of the buffer member 130. Of course, as mentioned above as the crucible 110 is rotated, even if the solid raw material is hit by the centrifugal force can increase the buffering effect.
따라서, 잉곳 성장 공정 후에 상기 도가니(110) 내부에 융액이 잔류함에 따라 고온 상태이지만, 고체 원료가 완충된 다음, 상기 도가니(110)의 바닥면으로 공급됨에 따라 상기 도가니(110)의 손상을 방지할 수 있다. Therefore, although the melt state remains inside the crucible 110 after the ingot growth process, the solid material is buffered and then supplied to the bottom surface of the crucible 110 to prevent damage to the crucible 110. can do.
이와 같이, 적정량의 고체 원료가 상기 도가니(110)로 공급한 후, 상기의 과정을 반대로 진행하면서 상기 원료공급장치(120)로부터 고체 원료의 공급을 중단하고, 상기 원료공급장치(120)를 상기 성장장치로부터 해체하게 된다.As such, after the appropriate amount of the solid raw material is supplied to the crucible 110, the supply of the solid raw material is stopped from the raw material supply device 120 while the above process is reversed, and the raw material supply device 120 is stopped. It is dismantled from the growth device.
상기 시드 척(103)이 상기 완충핀 로드(125)를 상향 이동시키면, 상기 완충핀 로드(125)가 상승함에 따라 상기 완충핀(124)이 상기 보관부(123a) 및 커버(123) 내부로 접히게 된다. When the seed chuck 103 moves the buffer pin rod 125 upward, as the buffer pin rod 125 rises, the buffer pin 124 moves into the storage part 123a and the cover 123. Folded.
그런데, 상기 완충핀 로드(125)가 일정 거리 이상 상향 이동되면, 상기 하부 결합용 돌기들(125b)이 상기 하부 결합용 홈들(미도시)과 맞물리게 되고, 상기 시드 척(103)이 상기 완충핀 로드(125)를 반대 방향으로 회전시키면, 상기 완충핀 로드(125)와 같이 상기 커버 지지대(126)도 반대 방향으로 회전한다. 이때, 상기 커버 지지대(126)가 반대 방향으로 회전되면, 상기 커버 지지대(126)와 캡(121b) 사이의 나사 결합에 의해 상기 완충핀 로드(125)와 같이 커버 지지대(126)가 상향 이동된다. However, when the buffer pin rod 125 is moved upward by a predetermined distance, the lower coupling protrusions 125b are engaged with the lower coupling grooves (not shown), and the seed chuck 103 is the buffer pin. When the rod 125 is rotated in the opposite direction, like the buffer pin rod 125, the cover support 126 also rotates in the opposite direction. In this case, when the cover support 126 is rotated in the opposite direction, the cover support 126 is moved upwards like the buffer pin rod 125 by the screw coupling between the cover support 126 and the cap 121b. .
따라서, 상기 커버 지지대(126)가 상향 이동됨에 따라 이와 연결된 커버(123)도 상승하여 상기 튜브(122)를 막아주게 되고, 상기 튜브(122)에 잔류하는 고체 원료가 낙하를 중단하게 된다. Therefore, as the cover support 126 is moved upward, the cover 123 connected thereto is also raised to block the tube 122, and the solid raw material remaining in the tube 122 stops falling.
이후, 상기 원료공급장치(120)의 완충핀 로드(125)를 상기 시드 척(103)으로부터 분리하고, 상기 원료공급장치(120)의 플랜지(121b)를 상기 챔버(101,102)의 장착구(101h,102h)로부터 분리하게 된다.Thereafter, the buffer pin rod 125 of the raw material supply device 120 is separated from the seed chuck 103, and the flange 121b of the raw material supply device 120 is mounted to the chamber 101 and 102. , 102h).
본 실시예는 잉곳 성장 장치에 적용가능하므로, 그 산업상 이용가능성이 있다.Since this embodiment is applicable to an ingot growth apparatus, there is industrial applicability thereof.

Claims (20)

  1. 장착구가 상면에 구비된 챔버;A chamber having a mounting hole on an upper surface thereof;
    상기 챔버 내부에 설치되고, 원료가 용융되는 도가니;A crucible installed inside the chamber and melting raw materials;
    상기 장착구에 탈착 가능하게 설치되고, 원료를 상기 도가니로 공급하는 원료공급장치; 및A raw material supply device detachably installed at the mounting hole and supplying raw materials to the crucible; And
    상기 도가니 내부에 위치하고, 상기 원료공급장치로부터 떨어지는 원료를 완충시켜 상기 도가니로 안착시키는 완충부재;를 포함하고,A buffer member positioned inside the crucible and configured to buffer raw materials falling from the raw material supply device and to be seated in the crucible;
    상기 완충부재는,The buffer member,
    링 형상의 플랜지부와, 상기 플랜지부로부터 하부로 갈수록 직경이 좁아지는 원통 형상의 본체부와, 상기 본체부의 내주면에 구비된 요철부를 포함하는 단결정 성장장치.A single crystal growth apparatus comprising a ring-shaped flange portion, a cylindrical body portion whose diameter decreases downward from the flange portion, and an uneven portion provided on an inner circumferential surface of the body portion.
  2. 제1항에 있어서,The method of claim 1,
    상기 완충부재는,The buffer member,
    상기 본체부의 내주면에 나선형으로 배열된 가이드부를 더 포함하는 단결정 성장장치.Single crystal growth apparatus further comprises a guide portion helically arranged on the inner peripheral surface of the main body portion.
  3. 제2항에 있어서,The method of claim 2,
    상기 완충부재는,The buffer member,
    상기 가이드부를 따라 원료가 안내되도록 상기 본체부 내주면을 따라 공기를 불어주는 송풍기를 더 포함하는 단결정 성장장치.And a blower for blowing air along the inner circumferential surface of the main body to guide the raw material along the guide.
  4. 제1항에 있어서,The method of claim 1,
    상기 완충부재는 1600℃ 이상 온도에서 견디는 금속재질인 단결정 성장장치.The buffer member is a single crystal growth apparatus of a metal material that withstands a temperature of 1600 ℃ or more.
  5. 제1항에 있어서,The method of claim 1,
    상기 완충부재를 수직 방향으로 이동 가능하게 상기 완충부재를 상기 챔버에 매달리도록 설치하는 리프터(lifter);를 더 포함하는 단결정 성장장치.And a lifter configured to suspend the buffer member in the chamber to move the buffer member in a vertical direction.
  6. 제5항에 있어서,The method of claim 5,
    상기 리프터는,The lifter,
    상기 챔버의 원주 방향으로 일정 간격을 두고 적어도 세 지점 이상에서 연결된 복수 개의 케이블과,A plurality of cables connected at least three points at regular intervals in the circumferential direction of the chamber,
    상기 케이블들과 완충부재 사이에 구비되고, 상기 완충부재를 수평 방향에 대해 설정 각도 범위 내에서 움직일 수 있도록 완충 지지하는 완충 연결부를 포함하는 단결정 성장장치.And a buffer connecting portion provided between the cables and the buffer member and configured to buffer and support the buffer member to move within the set angle range with respect to the horizontal direction.
  7. 제1항에 있어서,The method of claim 1,
    상기 도가니는 원료 공급 시에 회전 구동되는 단결정 성장장치.The crucible is a single crystal growth apparatus that is rotationally driven at the time of raw material supply.
  8. 제1항에 있어서,The method of claim 1,
    상기 원료공급장치는 원료 공급 시에 회전 구동되는 단결정 성장장치.The raw material supply device is a single crystal growth device that is rotationally driven at the time of raw material supply.
  9. 제1항에 있어서,The method of claim 1,
    상기 완충부재는 원료 공급 시에 회전 구동되는 단결정 성장장치.The buffer member is a single crystal growth apparatus that is rotationally driven at the time of raw material supply.
  10. 제1항에 있어서,The method of claim 1,
    상기 원료공급장치는,The raw material supply device,
    상기 챔버의 장착구에 안착되는 플랜지와,A flange seated in a mounting hole of the chamber,
    상기 플랜지의 하부에 연장되고, 원료가 채워지는 튜브와,A tube extending in the lower part of the flange and filled with a raw material,
    상기 튜브의 하부를 개폐시키는 커버와,A cover for opening and closing a lower portion of the tube;
    상기 커버로부터 수납 가능하게 설치되고, 원료 공급 시에 완충시키도록 펼쳐지는 복수개의 완충핀과,A plurality of buffer pins provided receivable from the cover and expanded to buffer the raw materials;
    상기 커버 내부에 상기 완충핀들을 접은 상태로 내장시키는 원통 형상의 보관부와,A cylindrical storage part for embedding the buffer pins in the folded state in the cover;
    상기 완충핀들과 커버를 순차적으로 작동시키는 개폐부재를 포함하도록 구성되며,It is configured to include an opening and closing member for sequentially operating the buffer pins and the cover,
    상기 커버는 하부로 갈수록 직경이 넓어지는 콘 형상이고,The cover has a cone shape in which the diameter becomes wider toward the bottom,
    상기 완충핀들은 상기 커버의 외부에서 상기 커버의 최대 직경보다 더 크게 펼쳐지는 단결정 성장장치.The buffer pins are grown outside the cover of the single crystal growth apparatus larger than the maximum diameter of the cover.
  11. 제10항에 있어서,The method of claim 10,
    상기 완충핀들은 1600℃ 이상에서 견디는 금속 재질인 단결정 성장장치.The buffer pins are a single crystal growth apparatus that is a metal material that withstands more than 1600 ℃.
  12. 제10항에 있어서,The method of claim 10,
    상기 개폐부재는,The opening and closing member,
    상기 플랜지 상단에 구비된 캡과,A cap provided at the top of the flange,
    상기 캡과 맞물리는 동시에 상기 커버의 상단과 연결되고, 회전됨에 따라 하향 이동되는 커버 지지대와,A cover support which is engaged with the cap and connected to the top of the cover and moved downward as it is rotated,
    상기 커버 지지대를 관통하여 상기 완충핀들의 상단과 연결되고, 상하 이동 가능하게 설치된 완충핀 로드를 포함하는 단결정 성장장치.Single crystal growth apparatus penetrating through the cover support and connected to the upper end of the buffer pin, the buffer pin rod is installed to be movable up and down.
  13. 제12항에 있어서,The method of claim 12,
    상기 완충핀 로드가 상기 지지대 커버에 대해 일정 거리만큼 상하 이동되면, When the buffer pin rod is moved up and down a predetermined distance with respect to the support cover,
    상기 완충핀 로드와 지지대 커버가 같이 회전될 수 있도록 서로 맞물리게 하는 복수개의 결합용 돌기 및 결합용 돌기가 구비된 단결정 성장장치.Single crystal growth apparatus provided with a plurality of coupling protrusions and coupling protrusions to be engaged with each other so that the buffer pin rod and the support cover can be rotated together.
  14. 챔버 내부에 구비된 도가니에 원료를 공급하는 단결정 성장장치의 원료공급장치에 있어서,In the raw material supply device of the single crystal growth device for supplying the raw material to the crucible provided in the chamber,
    상기 챔버의 장착구에 안착되는 플랜지;A flange seated in a mounting hole of the chamber;
    상기 플랜지의 하부에 연장되고, 원료가 채워지는 튜브;A tube extending below the flange and filled with a raw material;
    상기 튜브의 하부를 개폐시키는 커버;A cover for opening and closing a lower portion of the tube;
    상기 커버로부터 수납 가능하게 설치되고, 원료 공급 시에 완충시키도록 펼쳐지는 복수개의 완충핀;A plurality of buffer pins installed to be receivable from the cover and expanded to buffer the raw materials;
    상기 커버 내부에 상기 완충핀들을 접은 상태로 내장시키는 원통 형상의 보관부; 및A cylindrical storage portion for embedding the buffer pins in the folded state inside the cover; And
    상기 완충핀들과 커버를 순차적으로 작동시키는 개폐부재;를 포함하도록 구성되며, It is configured to include; opening and closing member for sequentially operating the buffer pins and the cover,
    상기 커버는 하부로 갈수록 직경이 넓어지는 콘 형상이고,The cover has a cone shape in which the diameter becomes wider toward the bottom,
    상기 완충핀들은 상기 커버의 외부에서 상기 커버의 최대 직경보다 더 크게 펼쳐지는 단결정 성장장치의 원료공급장치.The buffer pins are supplied to the raw material supply device of the single crystal growth apparatus is spread out of the cover larger than the maximum diameter of the cover.
  15. 제14항에 있어서,The method of claim 14,
    상기 완충핀들은 1600℃ 이상에서 견디는 금속 재질인 단결정 성장장치의 원료공급장치.The buffer pin is a raw material supply device of a single crystal growth apparatus of a metal material to withstand at 1600 ℃ or more.
  16. 제14항에 있어서,The method of claim 14,
    상기 개폐부재는,The opening and closing member,
    상기 플랜지 상단에 구비된 캡과,A cap provided at the top of the flange,
    상기 캡과 맞물리는 동시에 상기 커버의 상단과 연결되고, 회전됨에 따라 하향 이동되는 커버 지지대와,A cover support which is engaged with the cap and connected to the top of the cover and moved downward as it is rotated,
    상기 커버 지지대를 관통하여 상기 완충핀들의 상단과 연결되고, 상하 이동 가능하게 설치된 완충핀 로드를 포함하는 단결정 성장장치의 원료공급장치.A raw material supply device of a single crystal growth apparatus comprising a buffer pin rod connected to an upper end of the buffer pins through the cover support and installed to be movable up and down.
  17. 제16항에 있어서,The method of claim 16,
    상기 완충핀 로드가 상기 지지대 커버에 대해 일정 거리만큼 상하 이동되면, When the buffer pin rod is moved up and down a predetermined distance with respect to the support cover,
    상기 완충핀 로드와 지지대 커버가 같이 회전될 수 있도록 서로 맞물리게 하는 복수개의 결합용 돌기 및 결합용 돌기가 구비된 단결정 성장장치의 원료공급장치.Raw material supply device of a single crystal growth apparatus having a plurality of coupling projections and coupling projections to engage with each other so that the buffer pin rod and the support cover can be rotated together.
  18. 챔버 내부에 구비된 도가니에 원료를 공급하는 단결정 성장장치의 원료공급방법에 있어서,In the raw material supply method of the single crystal growth apparatus for supplying the raw material to the crucible provided in the chamber,
    상기 챔버에 원료가 담긴 원료공급장치를 장착하는 제1단계;A first step of mounting a raw material supply device containing raw materials in the chamber;
    상기 원료공급장치로부터 원료를 낙하시키기 전에 부딪힐 수 있는 완충핀들을 펼치는 제2단계; 및A second step of unfolding buffer pins that may be hit before the raw material is dropped from the raw material supply device; And
    상기 원료공급장치로부터 낙하하는 원료를 완충시켜 상기 도가니로 공급하는 제3단계;를 포함하는 단결정 성장장치의 원료공급방법.And a third step of buffering the raw material falling from the raw material supply device and supplying the raw material to the crucible.
  19. 제18항에 있어서,The method of claim 18,
    상기 제3단계는,The third step,
    상기 원료공급장치로부터 낙하하는 원료를 상기 도가니 내측에 위치한 완충부재에 부딪혀 완충시키는 과정과,Buffering the raw material falling from the raw material supply device against the buffer member located inside the crucible;
    상기 완충부재를 따라 원료가 상기 도가니로 공급되는 과정을 포함하는 단결정 성장장치의 원료공급방법.Raw material supply method of the single crystal growth apparatus comprising the step of supplying the raw material to the crucible along the buffer member.
  20. 제19항에 있어서,The method of claim 19,
    상기 제3단계에서 상기 원료공급장치의 중심축을 기준으로 상기 완충부재와 원료공급장치와 도가니 중 적어도 하나를 회전시키는 단결정 성장장치의 원료공급방법.Raw material supply method of a single crystal growth apparatus for rotating at least one of the buffer member, the raw material supply device and the crucible with respect to the central axis of the raw material supply device in the third step.
PCT/KR2013/007221 2012-08-20 2013-08-09 Single crystal growing device, and raw material supplying device and raw material supplying method applied to same WO2014030866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120090742A KR101389162B1 (en) 2012-08-20 2012-08-20 Single crystal grower and apparatus and method for supplying raw material to it
KR10-2012-0090742 2012-08-20

Publications (1)

Publication Number Publication Date
WO2014030866A1 true WO2014030866A1 (en) 2014-02-27

Family

ID=50150131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007221 WO2014030866A1 (en) 2012-08-20 2013-08-09 Single crystal growing device, and raw material supplying device and raw material supplying method applied to same

Country Status (2)

Country Link
KR (1) KR101389162B1 (en)
WO (1) WO2014030866A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699286A (en) * 2018-02-07 2020-09-22 爱思开矽得荣株式会社 Silicon supply part, and apparatus and method for growing silicon single crystal ingot including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598708B1 (en) * 2014-08-27 2016-02-29 (주)에프아이에스 Apparatus for Growing Silicon Ingot
KR101942192B1 (en) * 2017-08-18 2019-01-24 에스케이실트론 주식회사 Raw material filling equipment for ingot growth
KR20200063672A (en) * 2018-11-28 2020-06-05 웅진에너지 주식회사 Ingot grower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633057B2 (en) * 1990-04-27 1997-07-23 東芝セラミックス株式会社 Silicon single crystal manufacturing equipment
KR100490569B1 (en) * 1995-12-28 2005-09-16 미쓰비시 마테리알 가부시키가이샤 Single crystal pulling appratus
KR20070029047A (en) * 2006-08-02 2007-03-13 주식회사 실트론 Apparatus and method for supplying solid raw material to single crystal grower
JP2012006775A (en) * 2010-06-23 2012-01-12 Nippon Steel Materials Co Ltd Apparatus and method for supplying raw material to melting furnace
KR20120028558A (en) * 2010-09-15 2012-03-23 주식회사 넥솔론 Solid raw material supplying apparatus and single crystal growing device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0128132Y1 (en) * 1992-12-29 1998-11-16 황선두 Device for supplying raw material of mn-zn ferrite single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633057B2 (en) * 1990-04-27 1997-07-23 東芝セラミックス株式会社 Silicon single crystal manufacturing equipment
KR100490569B1 (en) * 1995-12-28 2005-09-16 미쓰비시 마테리알 가부시키가이샤 Single crystal pulling appratus
KR20070029047A (en) * 2006-08-02 2007-03-13 주식회사 실트론 Apparatus and method for supplying solid raw material to single crystal grower
JP2012006775A (en) * 2010-06-23 2012-01-12 Nippon Steel Materials Co Ltd Apparatus and method for supplying raw material to melting furnace
KR20120028558A (en) * 2010-09-15 2012-03-23 주식회사 넥솔론 Solid raw material supplying apparatus and single crystal growing device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699286A (en) * 2018-02-07 2020-09-22 爱思开矽得荣株式会社 Silicon supply part, and apparatus and method for growing silicon single crystal ingot including the same

Also Published As

Publication number Publication date
KR101389162B1 (en) 2014-04-25
KR20140024601A (en) 2014-03-03

Similar Documents

Publication Publication Date Title
WO2014030866A1 (en) Single crystal growing device, and raw material supplying device and raw material supplying method applied to same
WO2015030408A1 (en) Device for shielding heat, device for growing ingot comprising same, and method for growing ingot using same
WO2015037831A1 (en) Cooling rate control apparatus and ingot growing apparatus including same
JPS63252991A (en) Cz single crystal having holding part for preventing falling down
WO2014115935A1 (en) Single-crystal ingot, apparatus and method for manufacturing the same
WO2014204119A1 (en) Silicon single crystal growing device and method of growing same
WO2014126273A1 (en) Device for manufacturing high-purity mox nanostructure and manufacturing method therefor
WO2017111227A1 (en) Growth device and growth method of silicon monocrystalline ingot
WO2012108563A1 (en) Apparatus for introducing silicon raw material into a silicon melting crucible
WO2021080094A1 (en) Raw material supply unit, single crystal silicon ingot growing apparatus comprising same and raw material supply method
WO2022065737A1 (en) Apparatus for continuously growing ingot
WO2011108830A2 (en) Single crystal cooling apparatus and single crystal grower including the same
WO2015083955A1 (en) Single crystal growing apparatus
WO2019156323A1 (en) Silicon supply part, and device and method for growing silicon monocrystalline ingot comprising same
WO2016021860A1 (en) Seed chuck and ingot growing apparatus including same
KR101159270B1 (en) Ingot grower
JPH08295591A (en) Doping device
WO2019143175A1 (en) Silicon single crystal growth method and apparatus
WO2017082533A1 (en) Crucible coating apparatus
WO2011099680A9 (en) Single crystal cooler and single crystal grower including the same
KR101598708B1 (en) Apparatus for Growing Silicon Ingot
KR20110024866A (en) Single crystal grower having structure for reducing quartz degradation and seed chuck structure thereof
JP2009292673A (en) Apparatus for growing silicon single crystal and method for melting silicon raw material
KR101134499B1 (en) Silicon single crystal ingot forming apparatus with double guider
WO2022114367A1 (en) Method and apparatus for growing silicon single crystal ingots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831249

Country of ref document: EP

Kind code of ref document: A1