WO2014030363A1 - 外力推定装置及び鉗子システム - Google Patents

外力推定装置及び鉗子システム Download PDF

Info

Publication number
WO2014030363A1
WO2014030363A1 PCT/JP2013/053771 JP2013053771W WO2014030363A1 WO 2014030363 A1 WO2014030363 A1 WO 2014030363A1 JP 2013053771 W JP2013053771 W JP 2013053771W WO 2014030363 A1 WO2014030363 A1 WO 2014030363A1
Authority
WO
WIPO (PCT)
Prior art keywords
external force
forceps
joint
force estimation
estimation device
Prior art date
Application number
PCT/JP2013/053771
Other languages
English (en)
French (fr)
Inventor
耕太郎 只野
健嗣 川嶋
大輔 原口
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2014030363A1 publication Critical patent/WO2014030363A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to a novel external force estimation device.
  • the present invention also relates to a novel forceps system having this external force estimation device.
  • a multi-degree-of-freedom forceps used in a conventional surgical robot system has a 2-degree-of-freedom arm inside the body (3 degrees-of-freedom when grasping is included) and a 4-degree-of-freedom arm outside the body. This is because it is difficult to realize multiple degrees of freedom at the tip of the small-diameter forceps.
  • Non-Patent Document 1 the arm outside the body moves up and down, left and right, etc. during work, which interferes with the assistant, and when using a plurality of forceps, the arms interfere with each other. There is a point.
  • Non-Patent Document 2 is an endoscope bending mechanism. Ring-shaped leaf springs are laminated together by welding to form a single spring structure. Bends close to 180 ° are possible.
  • Non-Patent Document 3 realizes bending in an arbitrary direction by connecting four leaf springs to a rigid rod.
  • the inventor has developed a laparoscopic forceps manipulator having a simple flexible bending mechanism suitable for miniaturization (see Non-Patent Document 4).
  • the joint structure consists only of a single-work cutting spring. By bending and pushing the superelastic alloy wire that passes through the pneumatic cylinder, a bending operation with higher rigidity than the conventional antagonistic drive using wire tension. Made possible.
  • the joint can bend in two degrees of freedom.
  • the present inventor performs external force estimation using a simple theoretical model that approximates a flexible joint to a rigid link mechanism with two degrees of freedom (see Non-Patent Document 5).
  • Non-Patent Document 2 cannot bend isotropically in all directions due to structural limitations.
  • Non-Patent Document 3 there is a concern that a small part such as a shaft is required for connection, and that it is weak against torsion.
  • Non-Patent Document 2 and Non-Patent Document 3 have problems such as a large number of parts and time-consuming assembly.
  • Non-Patent Document 4 In the joint structure of Non-Patent Document 4, the external force estimation method is not described.
  • the external force estimation based on the theoretical model of Non-Patent Document 5 is effective when the joint is in a straight posture, but the error increases as the bending angle increases. In addition, there is no description about force estimation with 3 degrees of freedom.
  • This invention is made
  • an object of this invention is to provide the novel forceps system which has this external force estimation apparatus.
  • an external force estimation device of the present invention includes a detection unit that detects a change amount of the length of the elastic member, and a change amount of the elastic member that is deformed by an external force. And a calculation unit for calculating external force.
  • the calculation unit calculates the three-axis component of the external force.
  • a wire for detecting the amount of change.
  • a detection part consists of a position sensor.
  • the forceps system of the present invention has the external force estimation device.
  • the present invention has the following effects.
  • the external force estimation device of the present invention has a detection unit that detects a change amount of the length of the elastic member and a calculation unit that calculates the external force using the change amount for the elastic member that is deformed by the external force.
  • An estimation device can be provided.
  • the forceps system of the present invention has the external force estimation device, a novel forceps system can be provided.
  • tip part of a forceps manipulator. It is a figure which shows the drive part of a forceps manipulator. It is a figure which shows the pipe internal structure of a forceps manipulator. It is a figure which shows the cross section of the pipe part of a forceps manipulator. It is a block diagram of external force estimation. It is a figure which shows the definition of a position coordinate. It is a figure which shows an experimental apparatus. It is the figure which compared the external force estimated value when it always calculated as l 0, and the measured value of a force sensor. It is the figure which compared the 3 DOF external force estimated value and the measured value of a force sensor.
  • the external force estimation apparatus of the present invention is an apparatus having a detection unit that detects a change amount of the length of the elastic member and a calculation unit that calculates an external force using the change amount for an elastic member that is deformed by an external force.
  • the forceps system of the present invention is a system having the external force estimation device.
  • (English character symbol) hat refers to an English character symbol with a hat symbol
  • (English character symbol) over dot refers to an English character symbol with an over dot. It describes.
  • This is a system that takes the cylinder position signal from a position sensor (potentiometer, encoder, etc.) and the pressure signal at the output port of the servo valve into a control computer having a calculation unit, and calculates and outputs the input voltage to the servo valve. .
  • a position sensor potentiometer, encoder, etc.
  • the driving force can be estimated without mounting a force sensor on the manipulator side.
  • FIG. Bending in one direction is realized by two cylinders.
  • a schematic diagram of one-way bending is shown, but a total of four cylinders are used for bending in two directions.
  • Each cylinder is driven by one 5-port servo valve.
  • Symbol suffixes 1 and 3 of each drive channel correspond to the wire arrangement numbers in FIG.
  • a pressure sensor is attached to the output port of the servo valve, and the driving force of the cylinder can be estimated from the pressure measured here.
  • a potentiometer is attached to the cylinder rod as a position sensor.
  • FIG. 3 shows the appearance of the forceps manipulator.
  • FIG. 4 shows the tip of the forceps manipulator.
  • the distal end portion is composed of a bent portion (joint) and a grip portion.
  • the joint part employs a precision spring manufactured by cutting, and the attachment part with the gripping part and the guide hole of the drive wire can be integrally processed.
  • the gripping part is a mechanism that opens and closes by air pressure. For this reason, an air pipe is passed through the joint. Since the grip portion is not wire-driven, there is an advantage that the opening / closing operation does not interfere with the bending operation of the joint.
  • FIG. 5 shows the drive unit of the forceps manipulator.
  • Four superelastic alloy wires that drive the joint are connected in a straight line to the rod of the pneumatic cylinder through the connector. Since the wire is not bent during the connection process, that is, the wire is always in a straight line except for the bending joint, the sliding frictional force of the mechanism during driving can be minimized, contributing to improvements in controllability and external force estimation accuracy. To do.
  • the cylinder rod position is measured with a potentiometer. By controlling the rod position of the pneumatic cylinder, the superelastic alloy wire is pushed and pulled to cause the tip joint to perform a desired motion.
  • FIG. 6 shows the internal structure of the body pipe part of the forceps manipulator.
  • FIG. 7 shows a cross-sectional view of the pipe portion.
  • the superelastic alloy wire passes through the guide pipe and is connected to the bending joint to prevent buckling.
  • the guide pipe itself is also passed through the support member at regular intervals to prevent buckling.
  • FIG. 8 is a block diagram of external force estimation in the forceps system.
  • F Driving force vector of the pneumatic actuator, specifically, a force vector for pushing and pulling the cylinder rod.
  • X The displacement of the cylinder rod, calculated from the value of the potentiometer.
  • X overdot The speed of the cylinder rod.
  • s is a Laplace differential operator, it is actually obtained by computer numerical differentiation (pseudo-differentiation). Note that the above three variables relate to the pneumatic cylinder and are four-dimensional vectors.
  • q A position variable vector of the flexion joint, which is a three-dimensional vector represented by Expression (2). The specific meaning of each component of q is shown in FIG.
  • the change amount l of the joint length is the change amount of the length of the center line of the joint, that is, the portion indicated by the broken line in FIG.
  • ⁇ and ⁇ are expressed in the following ranges. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 0 P is the position coordinate of the forceps tip, Ls is the natural length of the flexion joint, Lg is the length of the gripping part, r is the arrangement radius of the drive wire, and numerals 1 to 4 are the drive wires. Number.
  • the position P of the forceps tip can be expressed as follows.
  • Z hat Inverse dynamic model of joints, which is a cylinder driving force vector for realizing a desired joint position and velocity, and is a four-dimensional vector.
  • the Z hat is calculated as follows.
  • the first term is the cylinder viscosity, and C is the viscosity matrix.
  • the second term is the Coulomb friction of the whole mechanism, and D is a matrix of Coulomb friction force.
  • is a dynamic friction coefficient. Since this frictional force increases when the joint is bent, it is a nonlinear function of the bending angle ⁇ .
  • the nonlinear part e 2 ⁇ in the second term is not limited to the above. An approximate polynomial of ⁇ identified experimentally can also be applied.
  • Non-Patent Document 5 there is no nonlinear part related to ⁇ , but the above two terms are a more accurate friction model according to the bending state of the joint. If the second term is used, the frictional force can be estimated more accurately than the equation described in Non-Patent Document 5. As a specific effect of this, accuracy in manipulator position control and external force estimation is improved.
  • the third term is the elastic force applied to the bending of the joint, and K b is its stiffness matrix.
  • the third term is a model that linearly approximates the elastic force for bending.
  • a similar expression is described in Non-Patent Document 5, but there is a difference in the joint structure applied in this application and Non-Patent Document 5.
  • a superelastic alloy spine is provided at the center of a flexible joint, and a stainless steel wire having almost no elastic force is used as a drive wire.
  • there is no spine at the center of the joint and a superelastic alloy having elasticity is used for the drive wire.
  • K a is the stiffness matrix.
  • a variable l representing expansion and contraction is introduced as a variable of the third degree of freedom, so that three independent degrees of freedom (3 Axis) external force can be estimated. It should be noted that the influence of inertia including gravity is assumed to be sufficiently smaller than the above components and can be ignored.
  • F ext , F ext hat vectors of external force components of cylinder driving force, which are four-dimensional vectors. This occurs when the cylinder is back-driven by receiving external force at the tip of the forceps.
  • a symbol with a hat means an estimated value by calculation. The same applies to symbols to be described later.
  • ⁇ ext hat an external force component of torque and translational force with respect to joint position coordinates q ( ⁇ , ⁇ , l).
  • f ext hat An external force vector applied to the forceps tip, which is a three-dimensional vector in the x, y, and z directions.
  • J a T is a conversion matrix from F ext to ⁇ ext .
  • J a is a Jacobian from the joint speed q overdot to the cylinder speed X overdot, and can be calculated by differentiating the equation (1) with respect to time.
  • J T ) + A conversion matrix from ⁇ ext to f ext .
  • J is a Jacobian from the joint speed q overdot to the forceps tip speed p overdot, and can be calculated by differentiating the equation (3) with time.
  • Equation (6) there is a component related to the joint length variable l, so that independent three-axis translational forces can be estimated.
  • C, D, ⁇ , Kb, Ka were obtained experimentally. That is, automatic control was performed by giving an appropriate trajectory to the flexion joint, and the above parameters were adjusted by trial and error so that the target trajectory and the actual trajectory were in good agreement.
  • the following values were used for C, D, ⁇ , Kb, and Ka.
  • C 0.3 [N ⁇ s / mm]
  • D 0.6 [N]
  • 0.9
  • Kb 2.8 [N / mm]
  • Ka 2.0 [N / mm]
  • the tip of the forceps is bent about 30 degrees, and the gripping part and the force sensor are connected with a wire.
  • the wire was pulled by moving the entire forceps in the direction of the arrow in the figure.
  • the effectiveness of the external force estimation described above was verified by comparing the estimated value of the external force by the forceps manipulator and the measured value of the force sensor.
  • Equation (6) the external force was finally calculated using Equation (6).
  • the matrix and vector components in Equation (6) were calculated using the previous equations.
  • the external force was finally calculated using the equation (6).
  • the equations (1) to (4) in the calculation process were calculated by setting all l to 0.
  • the external force estimation device and forceps system of the present invention have the following effects.
  • manufacturing force can be reduced, and it becomes easy to manufacture a small forceps having an outer diameter of 5 mm or less.
  • the combination of cutting spring and superelastic alloy wire can increase the rigidity required for work while being a flexible body.
  • translational external force with 3 independent degrees of freedom (3 axes) can be estimated using only the joint at the tip.
  • the ability to estimate an independent triaxial translational force (xyz) means that the force can be felt in any translational direction.
  • An advantage of using the joint at the tip for estimating the external force is that it is not affected by the restraint of the movement from the trocar and the frictional force that pass when inserting into the abdominal cavity. That is, the external force estimation accuracy is unlikely to deteriorate due to factors such as differences in the forceps insertion state in each operation.
  • the elastic member is not limited to this.
  • the elastic member it is possible to employ a member that is formed by processing a slit in a hollow object so that it can be flexibly bent.
  • a superelastic alloy wire has been described as a member that transmits the change amount of the length of the elastic member, the member that transmits the change amount is not limited to this.
  • a flexible wire made of another material such as a stainless steel wire can be employed as a member for transmitting the amount of change.
  • the detection unit is not limited to this.
  • an encoder or the like can be employed as the detection unit.
  • the driving force generator is not limited to this.
  • an electric motor, a hydraulic cylinder, a hydraulic cylinder, or the like can be employed as the driving force generator.
  • a pressure sensor has been described as a driving force measuring device
  • the driving force measuring device is not limited to this.
  • a method of directly mounting a force sensor on a manipulator can be employed as a driving force measuring device.
  • the application of the external force estimation device is not limited to this.
  • Other applications of the external force estimation device include application to a manipulator that cannot be equipped with a force sensor because it is used in an electromagnetic environment.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Surgical Instruments (AREA)

Abstract

 新規な外力推定装置及び鉗子システムを提供することを目的とする。 本発明の外力推定装置は、外力により変形する弾性部材について前記弾性部材の長さの変化量を検出する検出部と、前記変化量を使い外力を算出する算出部を有する。ここで、算出部は外力の3軸成分を算出することが好ましい。また、変化量の検出はワイヤを用いることが好ましい。また、検出部は位置センサからなることが好ましい。また、弾性を有する関節の変化量を検出することが好ましい。また、本発明の鉗子システムは、前記の外力推定装置を有する。

Description

外力推定装置及び鉗子システム
 本発明は、新規な外力推定装置に関する。また、本発明は、この外力推定装置を有する新規な鉗子システムに関する。
 従来の手術ロボットシステム(例えば、非特許文献1参照)で用いられている多自由度鉗子は体内に2自由度(把持を含めると3自由度)体外に4自由度アームを有している。これは細径の鉗子の先端部分で多自由度を実現することが困難であることに起因する。
 しかしながら、非特許文献1の鉗子システムでは体外のアームが作業中に、上下、左右等に動くことから、補助者の邪魔になる、また複数の鉗子を用いる場合にアーム同士が干渉するなどの問題点がある。
 また、弾性体を用いて多自由度化を目指した研究が実施されている(非特許文献2,3参照)。
 非特許文献2は内視鏡の屈曲機構である。リング状の板ばねを溶接により幾重にも張り合わせて1つのばね構造としている。180°近い屈曲が可能である。
 非特許文献3は、4枚の板ばねを剛体ロッドに連結することにより任意方向の屈曲を実現している。
 本発明者は、小型化に適した簡易な柔軟屈曲機構を有する腹腔鏡手術用鉗子マニピュレータを開発した(非特許文献4参照)。関節構造は一体加工型の切削スプリングのみから成り、この内部に通した超弾性合金ワイヤを空気圧シリンダでプッシュ・プル作動させることにより、従来のワイヤ張力を利用した拮抗駆動に比べ剛性の高い屈曲動作を可能にした。関節は2自由度方向への屈曲が可能である。
 本発明者は、柔軟関節を2自由度の剛体リンク機構に近似した簡易な理論モデルによって外力推定を行っている(非特許文献5参照)。
Hagn, U., et al.: DLR MiroSurge:a versatile system for research in endoscopic telesurgery, InternationalJournal of Computer Assisted Radiology and Surgery, Vol. 5, p.183-193(2010), 10.1007/s11548-009-0372-4 Breedveld, P., Hirose, S.:Development of the Endo-Periscope for improvement ofdepth perception in laparoscopic surgery, ASME Design Engineering Technical ConferencesComputers and Information in Engineering Conference (2001) Arata, J., Saito, Y., Fujimoto,H.: Outer shell type 2 DOF bending manipulator using spring-link mechanism formedical applications, Robotics and Automation (ICRA), 2010 IEEE InternationalConference on, p. 1041-1046 (2010) 原口大輔、只野耕太郎、川嶋健嗣:超弾性合金ワイヤのプッシュ・プル機構を用いた空気圧駆動鉗子マニピュレータの開発、第12回流体計測制御シンポジウム、計測自動制御学会産業応用部門大会講演論文集、pp.22-25 Daisuke Haraguchi, Kotaro Tadano,Kenji Kawashima: A Prototype of Pneumatically-Driven Forceps Manipulator withForce Sensing Capability Using a Simple Flexible Joint, 2011 IEEE/RSJInternational Conference on Intelligent Robots and Systems, pp.931-936
 また、非特許文献2の屈曲機構は、構造的な制約から全方向に等方的に屈曲することができない。非特許文献3では、連結のためシャフトなどの小部品が必要となる、また、ねじりに対して弱いことが懸念される。また、非特許文献2と非特許文献3は、部品点数が多いこと、組立に手間がかかるなどの課題がある。
 また、非特許文献4の関節構造においては、外力推定方法については述べられていない。
 また、非特許文献5の理論モデルによる外力推定は、関節が直線姿勢に近い状態の時は有効であるが、屈曲角が大きくなると誤差が大きくなる。また、3自由度力推定については記載されていない。
 そのため、このような課題を解決する、新規な外力推定装置及び鉗子システムの開発が望まれている。
 本発明は、このような課題に鑑みてなされたものであり、新規な外力推定装置を提供することを目的とする。
 また、本発明は、この外力推定装置を有する新規な鉗子システムを提供することを目的とする。
 上記課題を解決し、本発明の目的を達成するため、本発明の外力推定装置は、外力により変形する弾性部材について、前記弾性部材の長さの変化量を検出する検出部と、前記変化量を使い外力を算出する算出部を有する。
 ここで、限定されるわけではないが、算出部は、外力の3軸成分を算出することが好ましい。また、限定されるわけではないが、変化量の検出は、ワイヤを用いることが好ましい。また、限定されるわけではないが、検出部は、位置センサからなることが好ましい。また、限定されるわけではないが、弾性を有する関節の変化量を検出することが好ましい。
 本発明の鉗子システムは、前記の外力推定装置を有する。
 本発明は、以下に記載されるような効果を奏する。
 本発明の外力推定装置は、外力により変形する弾性部材について、前記弾性部材の長さの変化量を検出する検出部と、前記変化量を使い外力を算出する算出部を有するので、新規な外力推定装置を提供することができる。
 本発明の鉗子システムは、前記の外力推定装置を有するので、新規な鉗子システムを提供することができる。
システム全体の構成を示す図である。 1自由度屈曲についての駆動系の模式図である。 鉗子マニピュレータの外観を示す図である。 鉗子マニピュレータの先端部を示す図である。 鉗子マニピュレータの駆動部を示す図である。 鉗子マニピュレータのパイプ内部構造を示す図である。 鉗子マニピュレータのパイプ部の断面を示す図である。 外力推定のブロック線図である。 位置座標の定義を示す図である。 実験装置を示す図である。 常にl=0として計算したときの外力推定値と力センサの計測値を比較した図である。 3自由度外力推定値と力センサの計測値を比較した図である。
 以下、外力推定装置及び鉗子システムにかかる発明を実施するための形態について説明する。
 本発明の外力推定装置は、外力により変形する弾性部材について、前記弾性部材の長さの変化量を検出する検出部と、前記変化量を使い外力を算出する算出部を有する装置である。
 また、本発明の鉗子システムは、前記外力推定装置を有するシステムである。
 なお、本明細書の文章において、英文字記号にハット記号を付すものを「(英文字記号)ハット」と記載し、英文字記号にオーバードットを付すものを「(英文字記号)オーバードット」と記載する。
 システム全体の構成について、図1を参照しながら説明する。位置センサ(ポテンショメータ・エンコーダなど)からのシリンダ位置信号と、サーボ弁の出力ポートにおける圧力信号を、算出部を有する制御用コンピュータに取り込み、サーボ弁への入力電圧を計算して出力するシステムである。シリンダの駆動力を計測するための圧力センサを制御システム側に配置することで、マニピュレータ側に力センサを搭載することなく駆動力を推定できる。
 次に、1自由度屈曲の駆動系について、図2を参照しながら説明する。1方向の屈曲は2つのシリンダによって実現する。ここでは説明の簡単のため1方向屈曲の模式図を載せたが、2方向の屈曲であれば合計4本のシリンダを用いる。各シリンダはそれぞれ1つの5ポート型サーボ弁によって駆動される。各駆動チャンネルの記号添え字1および3は、図9のワイヤ配置番号に対応している。サーボ弁の出力ポートには圧力センサを取り付けており、ここで計測した圧力から、シリンダの駆動力を推定できる。またシリンダロッドには位置センサとしてポテンショメータを取り付けている。
 次に、鉗子システムを構成する鉗子マニピュレータについて説明する。
 図3は、鉗子マニピュレータの外観を示すものである。
 次に、鉗子マニピュレータを構成する各部について説明する。
 図4は、鉗子マニピュレータの先端部を示すものである。先端部は、屈曲部(関節)と把持部から構成される。関節の部品は切削加工で製造される精密スプリングを採用しており、把持部との取り付け部や駆動ワイヤのガイド穴などを一体で加工することができるため、部品点数はこれ一つでよい。スプリングの壁面には4つの駆動ワイヤの通し穴を開けており、ここに超弾性合金ワイヤを通し、スプリングの末端で固定している。4つの超弾性合金ワイヤの押し引きを組み合わせることにより、任意方向への屈曲動作および長手方向への伸縮動作が可能である。把持部は空気圧で開閉する仕組みであり、このため関節内部に空気配管を通している。把持部はワイヤ駆動ではないため、開閉動作が関節の屈曲動作に干渉しないという利点がある。
 図5は、鉗子マニピュレータの駆動部を示すものである。関節を駆動する4本の超弾性合金ワイヤを、コネクタを介して空気圧シリンダのロッドに一直線に連結している。連結過程でワイヤを湾曲しないため、すなわち屈曲関節以外の部分ではワイヤは常に一直線であるため駆動時の機構の摺動摩擦力を最小限に抑えることができ、制御性や外力推定精度の向上に寄与する。シリンダロッドの位置はポテンショメータで計測する。空気圧シリンダのロッド位置を制御することにより、超弾性合金ワイヤの押し引きを行い、先端の関節に所望の動作をさせる。
 図6は、鉗子マニピュレータの胴体パイプ部の内部構造を示すものである。図7は、パイプ部の断面図を示すものである。図7に示すように、超弾性合金ワイヤは、座屈防止のためガイドパイプ内を通って屈曲関節につながる。図6に示すように、さらにガイドパイプ自体も、座屈防止のため一定間隔で支持部材に通している。
 次に、鉗子システムにおける外力推定について説明する。
 図8は、鉗子システムにおける、外力推定のブロック線図である。
 図8のブロック線図について、各記号の説明をしながら外力推定の方法を述べる。
 F:空気圧アクチュエータの駆動力ベクトルであり、具体的にはシリンダロッドを押し引きする力のベクトルである。
 X:シリンダロッドの変位量であり、ポテンショメータの値から算出する。
 Xオーバードット:シリンダロッドの速度である。sはラプラス微分演算子であるが、実際はコンピュータの数値微分(擬似微分)により求める。
 なお、上記3変数は、空気圧シリンダに関するもので4次元のベクトルである。
 q:屈曲関節の位置変数ベクトルであり、式(2)により表わされる3次元ベクトルである。qの各成分の具体的な意味については図9に示す。
 すなわち関節の屈曲する方向δ、その方向へ屈曲した角度θ、および関節長さの変化量lである。関節長さの変化量lは、関節の中心線つまり図9で破線になっている部分の長さの変化量である。ただしδおよびθは次の範囲で表わすこととする。
  -π≦δ≦π  θ≧0
 また、pは鉗子先端の位置座標であり、Lsは屈曲関節の自然長であり、Lgは把持部の長さであり、rは駆動ワイヤの配置円半径であり、数字1~4は駆動ワイヤ番号である。
 関節が理想的な円弧に屈曲するものと仮定し、前述したシリンダロッド変位Xとの関係を求めると次のようになる。
Figure JPOXMLDOC01-appb-M000001
 また、鉗子先端の位置Pは次のように表わせる。
Figure JPOXMLDOC01-appb-M000002
 Zハット:関節の逆動力学モデルで、所望の関節位置および速度を実現するためのシリンダの駆動力ベクトルであり、4次元ベクトルである。Zハットは次のように計算する。
Figure JPOXMLDOC01-appb-M000003
 第1項はシリンダの粘性で、Cは粘性行列である。
 第2項は機構全体のクーロン摩擦で、Dはクーロン摩擦力の行列である。μは動摩擦係数である。関節が屈曲するとこの摩擦力が増大することから、屈曲角度θの非線形関数としている。第2項における非線形部分e2μθは、上記に限定されない。実験的に同定したθの近似多項式なども適用できる。
 非特許文献5においてはθに関する非線形部分がないが、上式2項は関節の屈曲状態に応じたより正確な摩擦モデルである。第2項を用いれば非特許文献5に記載された式よりも正確に摩擦力を見積もることができる。これによる具体的な効果として、マニピュレータの位置制御および外力推定における正確性が向上する。
 第3項は関節の屈曲にかかる弾性力で、Kbはその剛性行列である。第3項は屈曲についての弾性力を線形近似するモデルである。非特許文献5に同様な式が記載されているが、本願明と非特許文献5では適用している関節の構造に違いがある。非特許文献5においては柔軟関節の中心に超弾性合金の背骨を設け、駆動ワイヤには弾性力のほとんど無いステンレスワイヤを用いている。本発明においては関節の中心に背骨は無く、駆動ワイヤに弾性力のある超弾性合金を用いている。
 第4項は関節の伸縮にかかる弾性力で、Kaはその剛性行列である。
 本発明においては、式(1)~(4)において、関節の屈曲を表わす変数δ,θに加え、伸縮を表わす変数lを3自由度目の変数として導入したことにより、独立3自由度(3軸)の外力推定が可能となる。
 なお、重力を含む慣性の影響については上記成分に比べて十分小さいと仮定し、無視できるものとする。
 Fext,Fextハット:シリンダ駆動力の外力成分のベクトルであり、4次元ベクトルである。鉗子先端に外力を受けて、シリンダがバックドライブされることで生じる。なお、ハット付きの記号は計算による推定値を意味する。後述する記号についても同様である。
 τextハット:関節位置座標q(δ,θ,l)に対するトルクおよび並進力の外力成分である。
 fextハット:鉗子先端にかかる外力ベクトルであり、x,y,z方向の3次元ベクトルである。
 Ja T:Fextからτextへの変換行列である。Jaは関節速度qオーバードットからシリンダ速度Xオーバードットへのヤコビアンであり、式(1)を時間微分することで計算できる。
 (JT)+:τextからfextへの変換行列である。Jは関節速度qオーバードットから鉗子先端の速度pオーバードットへのヤコビアンであり、式(3)を時間微分することで計算できる。
 外力推定の原理について説明する。シリンダの駆動力Fから、マニピュレータの内部逆動力学Zハットを差し引くと、外力にかかる成分を求めることができる。すなわち
Figure JPOXMLDOC01-appb-M000004
 これを上記で説明した各レベルの変換行列によって変換し、先端に作用する外力を得ることができる。すなわち
Figure JPOXMLDOC01-appb-M000005
 式(6)の各行列中に、関節長さの変数lにかかる成分が存在するため、独立した3軸の並進力を推定することができる。
 次に、屈曲の鉗子システムの実施例について説明する。実施例について、実験条件を説明する。
 Lg及び関節のLs,rは、以下の値を用いた。
   Lg=30mm
   Ls=20mm
   r=3.6mm
 C,D,μ,Kb,Kaの値を実験的に求めた。すなわち、屈曲関節に適当な軌道を与えて自動制御を行い、目標軌道と実際の軌道がよく一致するように上記パラメータを試行錯誤的に調整し求めた。
 C,D,μ,Kb,Kaの値は、以下の値を用いた。
   C=0.3[N・s/mm]
   D=0.6[N]
   μ=0.9
   Kb=2.8[N/mm]
   Ka=2.0[N/mm]
 実施例について、実験方法を説明する。図10のように鉗子先端を30度程度屈曲させ、把持部と力センサをワイヤで連結する。この状態で、図中矢印の方向に鉗子全体を動かすことで、ワイヤを引っ張る動作を行った。このとき、鉗子マニピュレータによる外力の推定値と、力センサの計測値を比較することで、前述した外力推定の有効性を検証した。
 本実施例では、最終的には式(6)を用いて外力を算出した。式(6)中の行列やベクトルの成分についてはそれ以前の式を用いて算出した。実施例に対しての比較例でも、最終的には式(6)を用いて外力を算出した。ただし、計算過程における式(1)~(4)は全てのlを0にして算出した。
 実験結果を説明する。今回の実験で鉗子先端に作用した外力については、関節の伸縮方向の力の成分が大きな割合を占める。
 比較例では、屈曲方向に垂直な2軸方向の力の成分しか検出できないため、つまり関節の伸縮方向に作用する力については検知できないため、今回のような力の作用状態の場合、図11に示すように、外力推定の感度が著しく低下する。
 一方、本発明の手法においては、図12に示すように、先端の屈曲関節のみを用いて3軸成分の力を良好に推定できることが確認できる。
 以上のことから、本発明の外力推定装置及び鉗子システムは、以下のような効果を有する。
 先端の屈曲関節の構成部品が大幅に減ることにより、製作コストが減る、外径5ミリ以下の細径鉗子の製作も容易となる。
 また、切削スプリングと超弾性合金ワイヤの組み合わせにより、柔軟体でありながら作業に必要な剛性を高めることができる。
 また、先端の関節のみで独立3自由度(3軸)の並進外力を推定できる。独立した3軸並進力(xyz)を推定できるということは、あらゆる並進方向において力を感じることができるということである。なお外力推定に先端の関節を使う利点は、腹腔内に挿入するときに通過するトロッカーからの運動の拘束および摩擦力の影響を受けずにすむことである。つまり毎回の手術における鉗子挿入状態の違いなどの要因で外力推定精度が悪化しにくいということである。
 弾性部材としてスプリングの例を説明したが、弾性部材はこれに限定されるものではない。このほか弾性部材としては、中空の物体にスリットを加工して柔軟に屈曲できるようにしたものなどを採用することができる。
 駆動するワイヤの本数が1本の時は1自由度の外力推定、2本の時は2自由度の外力推定ができる。本発明における3自由度の外力推定のためには、最低3本の駆動ワイヤが必要となる。駆動ワイヤを4本にする利点は、構造的な対称性により屈曲自由度の独立性が高まると同時に、計算式が簡略化できる。
 弾性部材の長さの変化量を伝達する部材として超弾性合金ワイヤの例を説明したが、変化量を伝達する部材はこれに限定されるものではない。このほか変化量を伝達する部材としては、ステンレスワイヤなど他の材質で柔軟性のあるワイヤなどを採用することができる。
 シリンダ位置の検出部としてのポテンショメータの例を説明したが、検出部はこれに限定されるものではない。このほか検出部としては、エンコーダなどを採用することができる。
 駆動力の発生装置として空気シリンダの例を説明したが、駆動力の発生装置はこれに限定されるものではない。このほか駆動力の発生装置としては、電気モーター、水圧シリンダ、油圧シリンダなどを採用することができる。
 駆動力の計測装置として圧力センサの例を説明したが、駆動力の計測装置はこれに限定されるものではない。このほか駆動力の計測装置としては、力センサをマニピュレータに直接搭載する方法などを採用することができる。
 外力推定装置の用途として鉗子システムの例を説明したが、外力推定装置の用途はこれに限定されるものではない。このほか外力推定装置の用途としては、電磁環境下で使用するため力センサを搭載できないマニピュレータへの適用などがある。

Claims (6)

  1.  外力により変形する弾性部材について、前記弾性部材の長さの変化量を検出する検出部と、
     前記変化量を使い外力を算出する算出部を有する
     外力推定装置。
  2.  算出部は、外力の3軸成分を算出する
     請求項1記載の外力推定装置。
  3.  変化量の検出は、ワイヤを用いる
     請求項2記載の外力推定装置。
  4.  検出部は、位置センサからなる
     請求項3記載の外力推定装置。
  5.  弾性を有する関節の変化量を検出する
     請求項4記載の外力推定装置。
  6.  請求項1~5のいずれかに記載の外力推定装置を有する
     鉗子システム。
PCT/JP2013/053771 2012-08-20 2013-02-16 外力推定装置及び鉗子システム WO2014030363A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012181863A JP2014038075A (ja) 2012-08-20 2012-08-20 外力推定装置及び鉗子システム
JP2012-181863 2012-08-20

Publications (1)

Publication Number Publication Date
WO2014030363A1 true WO2014030363A1 (ja) 2014-02-27

Family

ID=50149687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053771 WO2014030363A1 (ja) 2012-08-20 2013-02-16 外力推定装置及び鉗子システム

Country Status (2)

Country Link
JP (1) JP2014038075A (ja)
WO (1) WO2014030363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115844544A (zh) * 2023-02-16 2023-03-28 极限人工智能有限公司 介入机器人导管弯曲控制方法、***、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736201B2 (ja) * 2015-02-04 2020-08-05 株式会社不二越 配管割断治具および配管割断装置
GB2540930B (en) * 2015-07-13 2020-10-28 Cmr Surgical Ltd Flexible robotic surgical instrument
CN106493710B (zh) * 2015-09-06 2020-08-18 杭州华臻环保科技有限公司 多骨骼联动***
US11576740B2 (en) 2017-10-12 2023-02-14 Nhk Spring Co., Ltd. Bending structure and flexible tube for medical manipulator
JP7055767B2 (ja) 2019-04-11 2022-04-18 日本発條株式会社 可撓部材
JP7055766B2 (ja) 2019-04-11 2022-04-18 日本発條株式会社 可撓部材
JP7217825B2 (ja) * 2019-04-11 2023-02-03 日本発條株式会社 可撓部材
JP7116004B2 (ja) 2019-04-11 2022-08-09 日本発條株式会社 可撓部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267429A (ja) * 1988-04-19 1989-10-25 Chinkou Higashijima 多分力の計測方法
JP2002264048A (ja) * 2001-03-08 2002-09-18 Hitachi Ltd 被牽引機構の位置決め制御装置
JP2004205432A (ja) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd コード状感圧センサ入力装置
WO2011036750A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 ロボット制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267429A (ja) * 1988-04-19 1989-10-25 Chinkou Higashijima 多分力の計測方法
JP2002264048A (ja) * 2001-03-08 2002-09-18 Hitachi Ltd 被牽引機構の位置決め制御装置
JP2004205432A (ja) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd コード状感圧センサ入力装置
WO2011036750A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 ロボット制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAISUKE HARAGUCHI: "A Prototype of Pneumatically-Driven Forceps Manipulator with Force Sensing Capability Using a Simple Flexible Joint", IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, September 2011 (2011-09-01), pages 931 - 936 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115844544A (zh) * 2023-02-16 2023-03-28 极限人工智能有限公司 介入机器人导管弯曲控制方法、***、设备及存储介质
CN115844544B (zh) * 2023-02-16 2023-08-04 极限人工智能有限公司 介入机器人导管弯曲控制方法、***、设备及存储介质

Also Published As

Publication number Publication date
JP2014038075A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
WO2014030363A1 (ja) 外力推定装置及び鉗子システム
JP6159075B2 (ja) 鉗子マニピュレータ、および鉗子マニピュレータを備える鉗子システム
Haraguchi et al. A pneumatically driven surgical manipulator with a flexible distal joint capable of force sensing
Tadano et al. Development of a pneumatic surgical manipulator IBIS IV
US20230072380A1 (en) Tension control in actuation of jointed instruments
Orekhov et al. Analysis and validation of a teleoperated surgical parallel continuum manipulator
Xu et al. An investigation of the intrinsic force sensing capabilities of continuum robots
JP5175691B2 (ja) ロボットアームの教示システム及び方法
Phee et al. Tendon sheath analysis for estimation of distal end force and elongation for sensorless distal end
JP6831530B2 (ja) 外乱オブザーバ及びロボット制御装置
US20200206961A1 (en) Backdrivable and haptic feedback capable robotic forceps, control system and method
JPWO2018163680A1 (ja) 手術用システム、外科手術システム、制御装置、起歪体、外科手術用器具、並びに外力検知システム
Akagi et al. Development of a rodless type flexible pneumatic cylinder and its application
Kanno et al. A forceps manipulator with flexible 4-DOF mechanism for laparoscopic surgery
Tadano et al. Development of a master slave system with force sensing using pneumatic servo system for laparoscopic surgery
Haraguchi et al. A prototype of pneumatically-driven forceps manipulator with force sensing capability using a simple flexible joint
Zhao et al. Continuum manipulator with redundant backbones and constrained bending curvature for continuously variable stiffness
Yilmaz et al. 6-axis hybrid sensing and estimation of tip forces/torques on a hyper-redundant robotic surgical instrument
Haraguchi et al. Development of a pneumatically-driven robotic forceps with a flexible wrist joint
Takeishi et al. A force sensing-based pneumatics for robotic surgery using neural network
Zhou et al. Design and evaluation of a robotic forceps with flexible wrist joint made of PEEK plastic
Chattaraj et al. Development of two jaw compliant gripper based on hyper-redundant approximation of IPMC actuators
Smoljkic et al. Compliance computation for continuum types of robots
JP2015180238A (ja) 医療用ロボット
Wang et al. Design, Modeling and Analysis of a Novel Backdrivable Cable-driven Series Elastic Actuator

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831180

Country of ref document: EP

Kind code of ref document: A1