WO2014027755A1 - Heat sink for lighting - Google Patents

Heat sink for lighting Download PDF

Info

Publication number
WO2014027755A1
WO2014027755A1 PCT/KR2013/006086 KR2013006086W WO2014027755A1 WO 2014027755 A1 WO2014027755 A1 WO 2014027755A1 KR 2013006086 W KR2013006086 W KR 2013006086W WO 2014027755 A1 WO2014027755 A1 WO 2014027755A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
base
heat
heat sink
dissipation fin
Prior art date
Application number
PCT/KR2013/006086
Other languages
French (fr)
Korean (ko)
Inventor
이관수
장대석
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2014027755A1 publication Critical patent/WO2014027755A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/80Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with pins or wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a heat sink for lighting, and more particularly, to increase the flow rate of a cooling fluid having a large influence on the heat dissipation performance, thereby increasing the area of the heat dissipation fin that is in contact with the cooling fluid for the first time, thereby improving heat dissipation performance compared to a conventional heat sink.
  • the present invention relates to a heat sink for lighting that can reduce the material cost and mass.
  • LED Light Emitting Diode
  • LED is a light emitting diode device that generates light of a specific wavelength by applying a forward voltage to a P-N junction structure of a semiconductor.
  • LED is an optoelectronic device that emits light of energy corresponding to the bandgap of a semiconductor by combining electrons and holes when power is applied.
  • the response time is faster than that of a general bulb, and power consumption is 20% higher than that of a general bulb.
  • the light emission of the LED is high energy efficiency because the energy of the electrons in the P-N junction is converted directly to light energy, and the lifetime is quite long.
  • the heat sink for dissipating heat of the LED light may be configured to include a heat dissipation fin attached to the LED module and dissipates the transferred heat.
  • the heat sink 1 shows a heat sink 1 for heat dissipation of an LED light according to the prior art.
  • the heat sink 1 includes a circular base 10 and radiating fins 20 and 30 formed radially on the radius of the base 10 on one surface of the base 10.
  • the through hole 40 may be formed at the center of the base 10.
  • the radial heat sink (radial heatsink) is a natural convection (natural convection), using a phenomenon that rises due to the low density when the air temperature rises.
  • the overall form of cooling air flow is the air inflow outside the heatsink and is heated by the heatsink. Since the heated air is less dense than the ambient air, it is lighter than the ambient air and rises from the inside of the heat sink to the center of the heat sink. This type of cooling air flow can be referred to as a typical chimney shape.
  • the heat transfer takes place outside the heat sink and less heat transfer to the center. Since the introduced cooling air rises along the chimney shape, most of the air flow rate does not come into contact with the heat radiating fin at the center of the heat sink. Therefore, at the center of the heat sink, the flow rate for cooling the radiating fins decreases, which causes such heat transfer unevenness.
  • the conventional circular heat sink 1 shown in FIG. 1 has a disadvantage in that it does not solve the heat transfer unevenness occurring toward the center of the heat sink 1.
  • the flow rate of the cooling air in contact with the heat radiating fins 20 and 30 is reduced, so that there are many overheating regions where the temperature is similar to that of the heat sink. Therefore, the heat dissipation fin at the center of the circular heat sink has a very low heat dissipation performance, and the heat transfer performance of the heat sink as a whole is uneven. That is, the heat dissipation performance is excellent in the outer side of the heat sink, but the heat dissipation performance decreases toward the center.
  • the temperature of the LED at the center side of the heat sink is relatively higher than that of the LED at the outer side of the heat sink, and thus it is necessary to supplement the LED.
  • a design for a heat dissipation fin that can increase the heat transfer area of a portion where heat transfer with the cooling fluid is actively generated is required.
  • the present invention provides a heat sink for illumination that can increase the heat transfer area of the heat sink and the cooling fluid.
  • the present invention provides a heat sink for illumination that can delay the growth of the thermal boundary layer and allow the thermal boundary layer to be formed discontinuously, thereby improving heat dissipation performance.
  • the present invention provides a heat sink for illumination that can prevent the overheated region from occurring in the central region to ensure uniform heat transfer performance.
  • the present invention provides a heat sink for lighting that can increase the flow rate of the cooling fluid.
  • the present invention provides a heat sink for illumination that can increase the heat transfer area generated initially when the cooling fluid flows into the heat sink.
  • the present invention provides an illumination heat sink that can have a repetitive tip effect.
  • the present invention provides a heat sink for lighting that can reduce the mass or material cost of the heat sink compared to the conventional.
  • Lighting heat sink for achieving the above object, the base on which a plurality of LED is disposed is installed on one surface; A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base, wherein each of the first heat dissipation fin arrays is arranged on the same line.
  • each of the second heat dissipation fin arrays being formed of a plurality of second heat dissipation fins arranged on the same line, and the first heat dissipation fins and the second heat dissipation fins toward the center of the base.
  • the heat transfer area of the cooling fluid flowing between the first heat dissipation fin array and the second heat dissipation fin array and the heat dissipation fin may be formed so that the edge of the base is larger than the center of the base.
  • the illumination heat sink according to an embodiment of the present invention, the base on which a substrate on which a plurality of LED is disposed is installed on one surface; A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base, wherein each of the first heat dissipation fin arrays is arranged on the same line.
  • each of the second heat dissipation fin arrays being formed of a plurality of second heat dissipation fins arranged on the same line, wherein the first heat dissipation fin array and the second heat dissipation fin array are formed of the first heat dissipation fin array.
  • the heat dissipation fins introduced between the second heat dissipation fin array and first contacting the cooling fluid toward the center of the base may be formed at the edge of the base.
  • the heat dissipation performance can be improved while maintaining the same mass as the existing heat sink.
  • the first heat dissipation fin array and the second heat dissipation fin array may be formed only at the edge of the base where the cooling fluid inflow portion into which the cooling fluid first flows.
  • the first heat dissipation fin array and the second heat dissipation fin array may be formed such that the height of the heat dissipation fin decreases from the edge of the base toward the center of the base.
  • the length of each of the first heat sink fin arrays may be shorter than the length of each of the second heat sink fin arrays.
  • One end of both ends of the second heat dissipation fin array near the center of the base may be formed closer to the center of the base than one end of the second heat dissipation fin array near the center of the base.
  • the first heat dissipation fin and the second heat dissipation fin may be formed to have the same length.
  • the angle between the first heat sink fin array may be formed to be the same as the angle between the second heat sink fin array.
  • One end of the first heat sink fin array or the second heat sink fin array may be formed to match an edge of the base.
  • the first heat dissipation fins or the second heat dissipation fins may be formed such that a ratio of the height of the heat dissipation fin at the center of the base to the height of the heat dissipation fin at the edge of the base is not less than 0.73 and does not exceed 1.
  • the number of the first heat sink fins may be formed differently from the number of the second heat sink fins.
  • the heat sink for lighting according to the present invention can reduce the mass or material cost of the heat sink while maintaining the heat dissipation performance of about the same as before.
  • the lighting heat sink according to the present invention can delay the growth of the thermal boundary layer and improve the heat dissipation performance by allowing the thermal boundary layer to be discontinuously formed.
  • the heat sink for lighting according to the present invention can increase the heat transfer area ratio per volume of the heat dissipation fin compared to the conventional heat sink, and can increase the area of the heat sink in contact with the air with a small mass.
  • the heat sink for lighting according to the present invention can increase the heat transfer performance because the tip effect is repeatedly generated.
  • the lighting heat sink according to the present invention can increase the flow rate of fresh cooling fluid that is not heated by heat transfer, and can improve heat dissipation performance because it increases the heat transfer area generated initially when the cooling fluid flows into the heat sink. .
  • the heat sink for lighting according to the present invention can increase the heat transfer area with the cooling fluid having a relatively low temperature according to the flow path of the cooling fluid, thereby improving heat dissipation performance and preventing the overheating area in the central region of the heat sink.
  • One heat transfer performance can be obtained.
  • FIG. 1 is a perspective view showing a heat sink according to the prior art.
  • Figure 2 is a perspective view showing a heat sink for illumination according to an embodiment of the present invention from the top.
  • FIG. 3 is a perspective view illustrating a heat sink for illumination according to FIG. 2, wherein the heat sink attached to the light is shown from below.
  • FIG. 4 is a plan view showing a part of an illuminating heat sink cut along the cutting line “IV-IV” of FIG. 2.
  • FIG. 5 is a partial perspective view illustrating a height profile of a heat dissipation fin of the heat sink for illumination according to FIG. 2.
  • FIG. 6 is a perspective view showing a modification of the heat sink for illumination according to FIG.
  • FIG. 7A to 7D illustrate numerical analysis data comparing heat dissipation performance of a lighting heat sink according to the related art and a lighting heat sink according to FIG. 2.
  • FIG. 8 is a diagram illustrating an experimental apparatus for verifying heat dissipation performance of the heat sink for illumination according to FIG. 2.
  • FIG. 9 is a graph comparing the results of the experiment by the experimental apparatus of FIG. 8 and the numerical results of the illumination heat sink of FIG. 2.
  • FIG. 2 is a perspective view showing an illumination heat sink according to an embodiment of the present invention from the top
  • Figure 3 is a perspective view showing a heat sink for illumination according to Figure 2
  • 4 is a plan view showing a part of the heat sink for illumination cut along the cutting line "IV-IV" of FIG. 2
  • FIG. 5 is a partial perspective view showing the height profile of the heat radiation fin of the heat sink for illumination according to FIG.
  • FIG. 7 is a perspective view showing a modification of the heat sink for illumination according to Figure 2
  • Figure 7a to 7d is a view showing the numerical analysis data comparing the heat dissipation performance of the lighting heat sink according to the prior art and the lighting heat sink according to Figure 2
  • 8 is a view showing an experimental device for verifying the heat dissipation performance of the heat sink for lighting according to FIG. 2
  • FIG. 9 is a numerical result of the experimental results and the heat sink for lighting according to FIG. A graph comparing the results.
  • the lighting heat sink 100 according to an embodiment of the present invention, the base 110, the base (110) is installed on one surface of the substrate 150 on which a plurality of LEDs 160 are disposed
  • the center of the base 110 is formed between the plurality of first heat dissipation fin array 120 and the first heat dissipation fin array 120 which are formed on the other surface of the 110 and disposed radially at an angle with respect to the center of the base 110. It may include a plurality of second heat radiation fin array 130 disposed radially at an angle with respect to.
  • Illumination heat sink 100 is mainly applied to the LED 160 downlight illumination, it is obvious that it is not necessarily applied only to LED, but may also be applied to other types of lighting.
  • the lighting heat sink 100 may be attached to one surface of the substrate 150 to which the plurality of LEDs 160 are attached.
  • the plurality of LEDs 160 may be disposed on one surface of the substrate 150 in a uniform or non-uniform pattern. In order to irradiate uniform illumination, the LED 160 may be disposed on one surface of the substrate 150 in a uniform pattern.
  • the base 110 of the heat sink 100 may be attached to the other surface of the substrate 150.
  • the substrate 150 and the base 110 are preferably formed in the same shape when considering the side of the heat transfer.
  • the through hole 140 may be formed in the center of the substrate 150 and the base 110.
  • the substrate 150 having the LEDs 160 and the base 110 of the heat sink 100 may be coupled to each other by a fastening member 170 such as a screw, and the surface to be bonded reduces contact thermal resistance. It is preferable to insert a thermal grease.
  • Illumination heat sink 100 may include a plurality of heat radiation fins formed in a predetermined pattern on the other surface of the base (110).
  • the plurality of heat radiation fins may be disposed on a radius passing through the center of the base 110.
  • the heat dissipation fins may form the first heat dissipation fin array 120 and the second heat dissipation fin array 130, respectively.
  • the first heat sink fin array 120 includes a plurality of first heat sink fins 121 and 122 disposed on the same line along the radius of the base 110, and the second heat sink fin array 130 is the same along the radius of the base 110. It may include a plurality of second heat radiation fins (131, 132, 133) disposed on the line.
  • first heat sink fin array 120 may be formed on the radius of the base 110, and may be formed at a radially constant angle with respect to the center of the base 110.
  • second heat dissipation fin array 130 may be positioned between the first heat dissipation fin array 120 and may be formed on a radius of the base 110 and may be formed at a radially constant angle with respect to the center of the base 110. have.
  • the first heat sink fin array 120 is formed in a radial or fan shape on the base 110 at the same angle, and the second heat sink fin array 130 is also formed in a radial or fan shape on the base 110 at the same angle. 1 may be disposed between the heat dissipation fin array 120.
  • angles between the first heat dissipation fin arrays 120 adjacent to each other are the same, and the angles between the second heat dissipation fin arrays 130 adjacent to each other are also the same. In addition, it is preferable that the angles between the first heat dissipation fin array 120 and the second heat dissipation fin array 130 adjacent to each other are also the same.
  • the first heat sink fin Since a flow of cooling fluid or cooling air is formed through a space between the first heat sink fin array 120 and the second heat sink fin array 130, the first heat sink fin to obtain even heat dissipation or heat transfer performance throughout the heat sink 100.
  • the angle between the array 120 and the second heat dissipation fin array 130 is the same or constant.
  • the angle between the first heat sink fin array 120 may be formed to be the same as the angle between the second heat sink fin array 130.
  • the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 are the center of the base 110 or the base, as shown in FIGS. 2 to 5.
  • the heat transfer area contacting the cooling fluid and the heat radiation fins introduced between the first heat sink fin array 120 and the second heat sink fin array 130 toward the through hole 140 of the base 110 is greater than that of the center of the base 110.
  • the edge side may be formed to be large.
  • the flow of the cooling fluid flows between the first heat sink fin array 120 and the second heat sink fin array 130, and the cooling fluid or cooling air flows from the edge of the base 110.
  • the introduced cooling fluid is heated while contacting the base 110 and the first and second heat dissipation fin arrays 120 and 130.
  • the heated cooling fluid is lighter than the ambient air because it is less dense than the unheated or relatively less heated ambient air (or cooling fluid) and rises toward the center of the heat sink 100.
  • the cooling fluid flows from the edge of the base 110 toward the through hole 140 of the base 110, and forms a rising channel near the through hole 140 of the base 110.
  • the flow form can be seen as a chimney shape.
  • the heat transfer takes place outside the heat sink 100 or base 110, that is, the edge side, the heat transfer occurs less toward the center and the incoming cooling air rises along the chimney shape. Therefore, most of the air flow rate does not come into contact with the heat radiating fin at the center of the base 110 of the heat sink 100.
  • the flow rate for cooling the radiating fins decreases, which causes non-uniformity of such heat transfer.
  • heat transfer is performed more than the central side of the heat sink 100 to the base 110 where heat transfer is not sufficient.
  • the heat dissipation performance may be improved by increasing the heat transfer area of the cooling fluid near the edge of the sufficient heat sink 100 or the base 110.
  • the cooling fluid introduced from the edge of the base 110 is heated while flowing toward the center of the base 110 to rise in the vicinity of the through-hole 140 of the base 110, the heating rising from the center of the base 110 Rather than increasing the contact area or the heat transfer area between the cooling fluid and the radiating fin, the heat dissipation performance can be improved by increasing the contact area between the radiating fin and the cooling fluid at the edge of the base 110 having a relatively low temperature of the cooling fluid.
  • first heat dissipation fin array 120 and the second heat dissipation fin so that the heights of the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 decrease from the edge of the base 110 toward the center of the base 110.
  • Array 130 may be formed.
  • the first heat sink fin array 120 and the second heat sink fin array 130 are directed from the edge of the base 110 toward the center of the base 110.
  • the heat radiation fins 121, 122, 131, 132, and 133 are formed to reduce the height, thereby reducing heat radiation fins at the center of the base 110 where heat transfer is less likely to occur, and increasing heat radiation fins at the outer or edge of the base 110 having a high heat transfer coefficient to directly contact the cooling fluid. You can increase the area. Therefore, the flow rate flowing into the heat sink 100 for lighting according to an embodiment of the present invention can be increased more than two times, and as a result, the heat dissipation performance can be improved.
  • first heat dissipation fin array 120 and the second heat dissipation fin array 160 of the heat sink 100 for illumination flows between the first heat dissipation fin array 120 and the second heat dissipation fin array 130.
  • the first heat dissipation fins 121 and 131 contacting the cooling fluid toward the center of the base 110 may be formed only at the edge of the base.
  • the heights of the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 decrease in steps toward the center of the base 110. That is, the height of the heat radiation fins 121 and 131 on the outer side or the edge of the base 110 is the largest.
  • the first / second heat dissipation fins 121 and 131 at the edge of the base 110 among the first and second heat dissipation fin arrays 120 and 130 are introduced into the cooling fluid flowing over the entire height L O.
  • the first contact with That is, the cooling fluid flowing in from the outside of the base 110 toward the base 110 (that is, the unheated cooling fluid) has an overall height of the first and second heat dissipation fins 121 and 131 positioned at the edge of the base 110.
  • the first contact is made over (L O ).
  • the cooling fluid that is in contact with the first and second heat dissipation fins 121 and 131 at the edge side flows toward the center of the base 110 in a state where the temperature is increased by heat transfer so as to contact the first and second heat dissipation fins 122 and 132 in the center. Further, if it proceeds further, it is in contact with the second heat radiation fin 133 at the center.
  • the cooling fluid for the first contact with the first and second heat dissipation fins 121 and 131 at the edge does not contact the first and second heat dissipation fins 122 and 132 in the center for the first time.
  • the first and second heat dissipation fins 122 and 132 in the center and the first and second heat dissipation fins 121 and 131 in the edge have a height difference L D. Since the first and second heat dissipation fins 122 and 132 in the center are lower than the first and second heat dissipation fins 121 and 131 at the edges by the height difference L D , the first and second heat dissipation fins 121 and 131 at the edges are first displayed.
  • the cooling fluid heated by heat transfer in contact with the air flows only through a portion corresponding to the height difference L D of the heat dissipation fins, and does not contact the first and second heat dissipation fins 122 and 132 in the center.
  • the cooling fluid in contact with the lower portions of the first and second heat dissipation fins 121 and 131 at the edges is heated by heat transfer, and then is in contact with the first and second heat dissipation fins 122 and 132 in the center to perform secondary heat transfer. .
  • the cooling fluid which is transferred from the upper end of the first and second heat dissipation fins 121 and 131 at the edge to the corresponding portion by the height difference L D , flows toward the center of the base 110, but the first fluid is in the center. It is not in contact with the second heat radiation fins 122 and 132.
  • each of the heat dissipation fins in the first heat dissipation fin array 120 and the second heat dissipation fin array 130 forms the highest heat dissipation fins 121 and 131 at the outermost sides of the heat dissipation fins formed along the radial direction of the base 110. It is possible to increase the area in contact with the fresh cooling fluid that is not, and to increase the flow rate of the unheated cooling fluid. That is, by increasing the height of the heat radiation fins 121 and 131 on the edge side, the flow rate of the cooling fluid introduced for the first time without heating can be increased.
  • the first heat dissipation fin array 120 and the second heat dissipation fin array 130 of the heat sink 100 for lighting according to an embodiment of the present invention are formed only at the edge of the base 110 at which the cooling fluid inlet to which the cooling fluid first flows. Can be. Referring to FIG. 5, the first and second heat dissipation fins 121 and 131 at the edge of the base 110 at which the cooling fluid first flows are formed in the cooling fluid inlet over the entire height L O. In the first / second heat dissipation fins 122, 132 and 133 at the center of the base 110 rather than the first / second heat dissipation fins 121 and 131 at the edge side, the cooling fluid inlet for the first unflowed fresh cooling fluid is not formed. .
  • first and second heat dissipation fins 122, 132 and 133 at the center of the base 110 than the first and second heat dissipation fins 121 and 131 at the edge side are in heat transfer in contact with the first and second heat dissipation fins 121 and 131 at the edge side. Only the heated cooling fluid is introduced from the beginning.
  • the cooling fluid inlet is formed only near the first / second heat dissipation fins 121 and 131 at the edge of the base 110, the contact area or contact time of the cooling fluid with the lowest temperature and the heat dissipation fins 121 and 131 is not heated.
  • the heat transfer performance can be increased and the flow rate of the cooling fluid flowing into the heat sink 100 can also be increased.
  • the number of first heat dissipation fins 121 and 122 may be different from the number of second heat dissipation fins 131, 132 and 133.
  • the number of first heat dissipation fins 121 and 122 forming one first heat dissipation fin array 120 and the number of second heat dissipation fins 131, 132 and 133 forming one second heat dissipation fin array 130 may be different from each other. have.
  • the number of first heat sink fins and the number of second heat sink fins are different, so that the heat sink 100 for lighting according to the embodiment of the present invention maintains the same or similar heat dissipation effect as the conventional heat sink for the heat sink. Material cost or mass can be greatly reduced.
  • the first heat dissipation fins 121 and 122 forming the first heat dissipation fin array 1220 are two, and the second heat dissipation fins 131, 132 and 133 forming the second heat dissipation fin array 130 are three.
  • the number of such heat radiation fins is merely an example.
  • the first heat sink fin array 120 ′ may have two heat sink fins, and the second heat sink fin array 130 ′ may be formed to have five heat sink fins.
  • the number of heat sink fins forming each heat sink fin array may be determined according to a desired heat radiation performance.
  • L L is the total length of each of the second heat sink fin arrays 130
  • L M is the total length of each of the first heat sink fin arrays 120
  • L f is the first heat sink fins 121, 122 or the second heat sink fins 131, 132, 133.
  • L s is the distance between the first heat radiation fin (121,122) or the second heat sink fin (131,132,133) in the radial direction of the base 110
  • t is the first heat sink fin (121,122) or the second heat sink fin (131,132,133)
  • R o is the radius of the base 110
  • r i is the radius of the through hole 140 formed in the center of the base (110).
  • the total length L L of each of the second heat sink fin arrays 130 may be longer than the total length L M of each of the first heat sink fin arrays 120.
  • the first heat dissipation fin array 120 is formed to be shorter than the second heat dissipation fin array 130, an overheated region may be prevented from occurring at the center of the base 110.
  • the position of is preferably formed to be biased to the outside of the base 110 than the position of one end of the second heat radiation fin array 130. That is, only one end of the second heat dissipation fin array 130 may be formed at the central side of the base 110. In other words, one end near the center of the base 110 of both ends of the second heat sink fin array 130 is closer to the center of the base 110 than one end near the center of the base 110 of both ends of the first heat sink fin array 120. It may be formed to be close to the center.
  • the second heat dissipation fin array 130 since only one end of the second heat dissipation fin array 130 is positioned at the central side of the base 110, sufficient space for cooling air to flow to the central side of the base 110 may be secured. The overheated region can be prevented from being formed at the central portion of the.
  • one end of the first heat sink fin array 120 and / or the second heat sink fin array 130 may be formed to match an edge of the base 110.
  • one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 is formed to match the edge of the base 110 and the first heat dissipation fin array 120 and the second heat dissipation fin array 130.
  • the cooling fluid flowing into the heat sink 100 that is, the unheated temperature is low.
  • the contact area between the cooling fluid and the heat radiating fin can be increased.
  • one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 is formed to exist on an arc of the same distance from the center of the base 110 without matching the edge of the base 110. You may. That is, one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 that is located at the outer side of the base 110 is formed on the same arc from the center of the base 110 at the same distance. Even if it is possible to prevent the overheated region to occur in the central portion of the base 110.
  • the length L f of each of the first heat dissipation fins 121 and 122 or the second heat dissipation fins 131, 132, and 133 forming the first heat dissipation fin array 120 or the second heat dissipation fin array 130 is equal to the distance L s between neighboring heat dissipation fins. It may be formed identically or differently.
  • first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed to have the same length L f .
  • first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 have a rectangular shape.
  • the lengths of the distances between the first and second heat sink fins 121 and 122 and the second heat sink fins 131, 132, and 133 forming the first heat sink fin array 120 and the second heat sink fin array 130 are equal to each other.
  • the repetitive tip effect can be obtained.
  • the tip the edge of the heat sink fins where the heat sink fins and the cooling fluid meet for the first time
  • the heat transfer performance is the highest as the thermal boundary layer develops.
  • the phenomenon that the heat transfer performance is relatively high at the tip of the heat sink fin is called the tip effect.
  • a thermal boundary layer appearing in the cooling fluid flowing between the first heat sink fin array 120 and the second heat sink fin array 130 may be discontinuously formed. That is, since the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 are spaced apart at intervals L s , the thermal boundary layer is discontinuously developed and the growth of the boundary layer is delayed, thereby causing the heat sink 100 to be separated. There is no overheating zone on the central side, and it can exhibit uniform heat transfer performance.
  • the thermal boundary layer tends to be inversely proportional to the heat dissipation performance, it is possible to improve the heat dissipation performance in inverse proportion if it is possible to delay the growth of the thermal boundary layer or reduce the area in which the thermal boundary layer grows.
  • Lighting heat sink 100 can increase the heat transfer area ratio per volume of the heat radiation fins compared to the conventional heat sink. Therefore, the area of the heat sink in contact with the air increases with a small mass, which means that the heat sink 100 for lighting according to the embodiment of the present invention may have the same heat dissipation performance as the mass is smaller than that of the existing heat sink. Show that there is.
  • first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed on the same arc or circumference. That is, a circle may be drawn when the adjacent first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 are connected to each other along the arc direction or the circumferential direction of the base 110. As such, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 are formed on the same arc or circumference, thereby effectively suppressing the growth of the thermal boundary layer and obtaining uniform heat transfer performance.
  • first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed on different arcs or cylinders. That is, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be alternately formed along the circumference or the arc direction of the base 110.
  • FIGS. 7A and 7B are numerical results of the conventional heat sink 1
  • FIGS. 7C and 7D are numerical results of the heat sink 100 for lighting according to an embodiment of the present invention.
  • the temperature distribution on one side is shown.
  • the left bar graph means a temperature according to a pattern. As shown in the left bar graphs of FIGS. 7A and 7C, the temperature increases from the bottom to the top.
  • N A is the number of heat sink fin array
  • L L is the length of the second heat sink fin array (or long heat sink fin array)
  • L M is the length of the first heat sink fin array (or short heat sink fin array)
  • L f is the heat sink fin
  • L s is the distance between the heat sink fins
  • L O is the height of the edge heat sink fins
  • L D is the height difference between the edge heat sink fins and the neighboring heat sink fins
  • r o is the radius of the base
  • r i is the radius of the hole formed in the center of the base
  • t is the thickness of the heat radiation fins.
  • 7A to 7D show temperature distributions of the plane perpendicular to the plane and the plane as a result of numerical analysis of the existing and improved models.
  • the temperature of the center of the base of the heat sink according to the present invention is significantly lower than that of the conventional heat sink.
  • the temperature of the center of the base is approximately 51 ° C. to 54 ° C.
  • the temperature of the center of the base is approximately 39 ° C. to 45 ° C. It can be seen that it is lower than the heat sink.
  • the average temperature of the heat sink was 8.3 ° C lower than that of the heat sink 1 according to the related art, and the mass was the same.
  • Heat sink 100 according to the present invention is to reduce the height of the heat radiation fin of the center side of the base 110 is not heat transfer well, the height of the heat radiation fin of the edge side of the base 110 has a high heat transfer coefficient to increase the cooling fluid or cooling air and Direct heat transfer area can be increased. Therefore, the heat sink 100 according to the present invention can increase the flow rate of the cooling fluid flowing into the heat sink more than two times, and can also improve the heat dissipation performance. As such, the present invention was confirmed to exhibit improved heat dissipation performance despite having the same mass as the conventional heat sink.
  • the lighting heat sink 100 according to an embodiment of the present invention, the first heat dissipation fins 121, 122 or the second heat dissipation fins 131, 132, 133, the height (L O ) of the heat dissipation fins on the edge side of the base 110
  • the ratio L I / L O of the height L I of the heat dissipation fin at the center side of the base 110 may be 0.73 or more and may not be greater than one. That is, the ratio L I / L O of the height L I of the shortest heat dissipation fin to the height L O of the longest heat dissipation fin may be 0.73 ⁇ (L I / L O ) ⁇ 1.
  • [Table 2] is a test result comparing the heat sink according to the present invention with the heat dissipation performance according to the height ratio (L O / L I ) of the heat sink.
  • the lighting heat sink 100 according to the present invention has the same mass as the conventional heat sink but the heat dissipation performance is improved by about 42 to 50%.
  • the ratio L I / L O of the height L I of the shortest heat dissipation fin to the height L O of the longest heat dissipation fin is preferably 0.73 or more, but not more than one.
  • FIG. 8 is a view showing an experimental apparatus for verifying the heat dissipation performance of the heat sink for lighting according to FIG. 2
  • Figure 9 is a numerical result of the experimental results by the experimental device according to Figure 8 and the heat sink for lighting according to FIG. This is a graph comparing.
  • the experimental apparatus 200 includes a film heater 210, a circular heat sink 100 for illumination, a heat insulator 220, a thermocouple 230, a data collection device 250, a computer 240, and a power source. And a supply 270 and a watt meter 260.
  • Experiment apparatus 200 may insert a thin aluminum plate (not shown) of about 1 mm on the top and bottom of the film heater 210 in order to deliver a uniform heat flux to the heat sink 100 for illumination.
  • thermal grease can be applied at each contact surface to minimize contact thermal resistance.
  • An acrylic plate (heat flux of 0.2 W / m ⁇ ° C.) having a thickness of about 5 mm may be installed under the film heater 201 in order to calculate the heat loss escaping downward of the film heater 210.
  • the base 110 of the heat sink 100 for lighting according to an embodiment of the present invention has been described as having a circular shape, but the shape of the base 110 is not necessarily limited to the circular shape.
  • the base 110 of the illumination heat sink 100 may have any shape as long as it is symmetrical with respect to the center thereof. That is, if the shape is symmetrical about a polygon or a center close to a circle such as a regular hexagon, a regular octagon, a regular pentagon, or the like, it may be applied.
  • the illumination heat sink 100 according to the embodiment of the present invention described above has the largest height of the heat dissipation fin at the edge of the base as compared with the conventional heat sink, so that the mass of the heat sink is kept the same. And heat dissipation performance can be improved by more than 40%.
  • the present invention can be used in all industrial fields requiring lighting, parts or devices requiring cooling, and the like.

Abstract

A heat sink for lighting, according to the present invention, comprises: a base on one surface of which a substrate is installed, wherein on the substrate a plurality of LEDs are arranged; a plurality of first heat dissipation fin arrays, which are formed on the other surface of the base and are radially arranged at a specific angle with respect to the center of the base; a plurality of second heat dissipation fin arrays, which are formed in between the first heat dissipation fin arrays and are radially arranged at a specific angle with respect to the center of the base, wherein each of the first heat dissipation fin arrays comprises a plurality of first heat dissipation fins that are arranged in a single line, each of the second heat dissipation fin arrays comprises a plurality of second heat dissipation fins that are arranged in a single line, wherein the first heat dissipation fins and the second heat dissipation fins are formed toward the center of the base and so that heat transfer areas, where a cooling fluid that is introduced through the first heat dissipation fin arrays and the second heat dissipation fin arrays, are larger toward the edge of the base than at the center of the base. As a result, the heat sink for lighting according to one embodiment of the present invention can maintain a heat dissipation mass that is equal or similar to that of existing heat sinks for lighting while improving heat dissipation capacity.

Description

조명용 히트싱크Lighting Heatsink
본 발명은 조명용 히트싱크에 관한 것으로, 보다 상세하게는 방열성능에 영향이 큰 냉각유체의 유량을 증대시키기 위해 냉각유체와 처음으로 접촉하는 방열핀의 면적을 증가시켜서 기존의 히트싱크 대비 방열 성능을 향상시키고 재료비 내지 질량을 줄일 수 있는 조명용 히트싱크에 관한 것이다.The present invention relates to a heat sink for lighting, and more particularly, to increase the flow rate of a cooling fluid having a large influence on the heat dissipation performance, thereby increasing the area of the heat dissipation fin that is in contact with the cooling fluid for the first time, thereby improving heat dissipation performance compared to a conventional heat sink. The present invention relates to a heat sink for lighting that can reduce the material cost and mass.
LED(Light Emitting Diode)는 반도체의 P-N 접합구조에 순방향 전압을 인가하여 특정한 파장의 빛을 만들어 내는 발광 다이오드 소자이다. Light Emitting Diode (LED) is a light emitting diode device that generates light of a specific wavelength by applying a forward voltage to a P-N junction structure of a semiconductor.
LED는 전력을 인가하면 전자와 정공의 결합으로 반도체의 밴드갭(bandgap)에 해당하는 에너지의 빛을 방출하는 광전자 소자이며, 반응 시간이 일반 전구에 비하여 빠르고 소비전력이 일반 전구에 비해서 20% 수준으로 낮아 고효율의 조명 수단으로 널리 사용되고 있다. 또한, LED의 발광은 P-N 접합에서 전자가 가지는 에너지가 직접 빛 에너지로 변환되기 때문에 에너지 효율이 높으며, 수명도 상당히 길다. LED is an optoelectronic device that emits light of energy corresponding to the bandgap of a semiconductor by combining electrons and holes when power is applied.The response time is faster than that of a general bulb, and power consumption is 20% higher than that of a general bulb. As a result, it is widely used as a high efficiency lighting means. In addition, the light emission of the LED is high energy efficiency because the energy of the electrons in the P-N junction is converted directly to light energy, and the lifetime is quite long.
그러나, LED는 작동하는 과정에서 소비전력의 70% 정도가 열로 발산이 되는데, 이 열을 방열시키는 것이 LED 설계에서 중요한 문제가 된다. 그 이유는 발열이 클수록 P-N 접합부의 온도가 높아지게 되고, 이로 인하여 허용전류가 감소하여 광 출력이 감소하기 때문이다. 또한 고온에 장시간 노출 시 LED의 수명도 줄어든다. However, about 70% of the power consumption of the LED is emitted during operation, and heat dissipation is an important problem in the LED design. The reason for this is that the higher the heat generation, the higher the temperature of the P-N junction, and thus, the allowable current decreases and the light output decreases. In addition, long-term exposure to high temperatures reduces the lifetime of the LED.
따라서, LED 조명의 신뢰성을 확보하기 위해서는 LED 조명용 방열기구인 히트싱크(heatsink)의 개발 또는 적용이 필요하다. LED 조명의 열을 방출하기 위한 히트싱크는 LED 모듈에 부착되며 전달된 열을 방출하는 방열핀을 포함하여 구성될 수 있다.Therefore, in order to secure the reliability of the LED lighting it is necessary to develop or apply a heat sink (heatsink) that is a heat radiating mechanism for LED lighting. The heat sink for dissipating heat of the LED light may be configured to include a heat dissipation fin attached to the LED module and dissipates the transferred heat.
도 1에는 종래기술에 따른 LED 조명의 방열을 위한 히트싱크(1)가 도시되어 있다. 히트싱크(1)는 원형의 베이스(10), 베이스(10)의 일면에 베이스(10)의 반경 상에 방사상으로 다수개 형성된 방열핀(20,30)을 포함한다. 베이스(10)의 중심에는 통공(40)이 형성될 수 있다. 1 shows a heat sink 1 for heat dissipation of an LED light according to the prior art. The heat sink 1 includes a circular base 10 and radiating fins 20 and 30 formed radially on the radius of the base 10 on one surface of the base 10. The through hole 40 may be formed at the center of the base 10.
특히, 도 1에 도시된 바와 같은, 원형 히트싱크(radial heatsink)는 자연대류(natural convection)를 이용한 것으로, 공기의 온도가 상승하면 밀도가 낮아서 상승하는 현상을 이용한 것이다. 전체적인 냉각 공기의 유동 형태는 히트싱크의 외곽에서 공기가 유입되어, 히트싱크에 의해 가열된다. 가열된 공기는 주위 공기보다 밀도가 작기 때문에 주위 공기보다 가벼워져 히트싱크 안쪽 내지 히트싱크의 중심부 쪽에서 상승하게 된다. 이러한 냉각 공기의 유동 형태는 전형적인 굴뚝 형상이라고 할 수 있다. In particular, as shown in Figure 1, the radial heat sink (radial heatsink) is a natural convection (natural convection), using a phenomenon that rises due to the low density when the air temperature rises. The overall form of cooling air flow is the air inflow outside the heatsink and is heated by the heatsink. Since the heated air is less dense than the ambient air, it is lighter than the ambient air and rises from the inside of the heat sink to the center of the heat sink. This type of cooling air flow can be referred to as a typical chimney shape.
이러한 냉각 공기의 유동을 열전달 측면에서 살펴보면, 히트싱크 외곽에서는 열전달이 많이 일어나고 중심부로 갈수록 열전달이 덜 일어나게 된다. 유입된 냉각 공기가 굴뚝 형상을 따라 상승하기 때문에, 히트싱크 중심부에서는 대부분의 공기유량이 방열핀과 접하지 않게 된다. 따라서 히트싱크 중심부에서는 방열핀 냉각을 위한 유량이 감소하여 이러한 열전달의 불균일이 발생한다. Looking at the flow of the cooling air in terms of heat transfer, the heat transfer takes place outside the heat sink and less heat transfer to the center. Since the introduced cooling air rises along the chimney shape, most of the air flow rate does not come into contact with the heat radiating fin at the center of the heat sink. Therefore, at the center of the heat sink, the flow rate for cooling the radiating fins decreases, which causes such heat transfer unevenness.
도 1에 도시된 기존 원형 히트싱크(1)는 방열핀(20,30)의 높이가 동일하기 때문에, 히트싱크(1)의 중심부로 갈수록 발생하는 열전달의 불균일을 해결하지 못하는 단점이 있다. 히트싱크(1)의 중심부 쪽에서는 방열핀(20,30)과 접하는 냉각 공기의 유량이 줄어들어 온도가 히트싱크의 온도와 비슷한 과열영역이 많이 존재하게 된다. 따라서, 원형 히트싱크에서 중심부에 있는 방열핀은 방열 성능이 매우 낮아지고, 히트싱크 전체적으로 보면 열전달 성능은 불균일한 문제가 있다. 즉, 히트싱크의 외곽 쪽에선 방열 성능이 우수하지만, 중심부로 갈수록 방열성능이 감소하게 된다. Since the height of the heat dissipation fins 20 and 30 is the same, the conventional circular heat sink 1 shown in FIG. 1 has a disadvantage in that it does not solve the heat transfer unevenness occurring toward the center of the heat sink 1. In the central side of the heat sink 1, the flow rate of the cooling air in contact with the heat radiating fins 20 and 30 is reduced, so that there are many overheating regions where the temperature is similar to that of the heat sink. Therefore, the heat dissipation fin at the center of the circular heat sink has a very low heat dissipation performance, and the heat transfer performance of the heat sink as a whole is uneven. That is, the heat dissipation performance is excellent in the outer side of the heat sink, but the heat dissipation performance decreases toward the center.
이와 같은 히트싱크를 LED조명에 적용한다면, 히트싱크의 중심부 쪽에 있는 LED의 온도가 히트싱크의 외곽 쪽에 있는 LED 보다 상대적으로 높아, LED 조명의 신뢰성을 떨어뜨리기 때문에 보완이 필요하다.If such a heat sink is applied to the LED lighting, the temperature of the LED at the center side of the heat sink is relatively higher than that of the LED at the outer side of the heat sink, and thus it is necessary to supplement the LED.
또한, 방열 성능을 높이기 위해서는 냉각유체와의 열전달이 활발히 발생하는 부분의 전열 면적을 증대시킬 수 있는 방열핀에 대한 설계가 요구된다.In addition, in order to increase the heat dissipation performance, a design for a heat dissipation fin that can increase the heat transfer area of a portion where heat transfer with the cooling fluid is actively generated is required.
본 발명은 히트싱크와 냉각유체의 열전달 면적을 증대시킬 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for illumination that can increase the heat transfer area of the heat sink and the cooling fluid.
본 발명은 열적 경계층의 성장을 지연시킬 수 있고 열적 경계층이 불연속적으로 형성되게 하여 방열 성능을 개선할 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for illumination that can delay the growth of the thermal boundary layer and allow the thermal boundary layer to be formed discontinuously, thereby improving heat dissipation performance.
본 발명은 중심부 영역에 과열 영역이 발생하는 것을 방지하여 균일한 열전달 성능을 확보할 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for illumination that can prevent the overheated region from occurring in the central region to ensure uniform heat transfer performance.
본 발명은 냉각유체의 유량을 늘일 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for lighting that can increase the flow rate of the cooling fluid.
본 발명은 냉각유체가 히트싱크에 유입되는 초기에 발생하는 전열면적을 증대시킬 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for illumination that can increase the heat transfer area generated initially when the cooling fluid flows into the heat sink.
본 발명은 반복적인 선단 효과를 가질 수 있는 조명용 히트싱크를 제공한다.The present invention provides an illumination heat sink that can have a repetitive tip effect.
본 발명은 기존 대비 히트 싱크의 질량 또는 재료비를 절감할 수 있는 조명용 히트싱크를 제공한다.The present invention provides a heat sink for lighting that can reduce the mass or material cost of the heat sink compared to the conventional.
상기한 과제를 달성하기 위한 본 발명의 일 실시예에 따른 조명용 히트싱크는, 다수개의 LED가 배치되는 기판이 일면에 설치되는 베이스; 상기 베이스의 타면에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제1 방열핀 어레이; 및 상기 제1 방열핀 어레이의 사이에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제2 방열핀 어레이;를 포함하며, 상기 제1 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제1 방열핀들로 형성되고, 상기 제2 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제2 방열핀들로 형성되며, 상기 제1 방열핀들 및 상기 제2 방열핀들은 상기 베이스의 중심을 향하여 상기 제1 방열핀 어레이와 상기 제2 방열핀 어레이 사이로 유입되는 냉각유체와 방열핀이 접촉하는 전열면적이 상기 베이스의 중심 보다 상기 베이스의 가장자리 쪽이 크도록 형성될 수 있다.Lighting heat sink according to an embodiment of the present invention for achieving the above object, the base on which a plurality of LED is disposed is installed on one surface; A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base, wherein each of the first heat dissipation fin arrays is arranged on the same line. And a plurality of first heat dissipation fins, each of the second heat dissipation fin arrays being formed of a plurality of second heat dissipation fins arranged on the same line, and the first heat dissipation fins and the second heat dissipation fins toward the center of the base. The heat transfer area of the cooling fluid flowing between the first heat dissipation fin array and the second heat dissipation fin array and the heat dissipation fin may be formed so that the edge of the base is larger than the center of the base.
또한, 본 발명의 일 실시예에 따른 조명용 히트싱크는, 다수개의 LED가 배치되는 기판이 일면에 설치되는 베이스; 상기 베이스의 타면에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제1 방열핀 어레이; 및 상기 제1 방열핀 어레이의 사이에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제2 방열핀 어레이;를 포함하며, 상기 제1 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제1 방열핀들로 형성되고, 상기 제2 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제2 방열핀들로 형성되며, 상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 상기 제1 방열핀 어레이와 상기 제2 방열핀 어레이 사이로 유입되어 상기 베이스의 중심을 향하는 냉각유체와 처음 접촉하는 방열핀은 상기 베이스의 가장자리 쪽에 존재하도록 형성될 수 있다.In addition, the illumination heat sink according to an embodiment of the present invention, the base on which a substrate on which a plurality of LED is disposed is installed on one surface; A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base, wherein each of the first heat dissipation fin arrays is arranged on the same line. And a plurality of first heat dissipation fins, each of the second heat dissipation fin arrays being formed of a plurality of second heat dissipation fins arranged on the same line, wherein the first heat dissipation fin array and the second heat dissipation fin array are formed of the first heat dissipation fin array. The heat dissipation fins introduced between the second heat dissipation fin array and first contacting the cooling fluid toward the center of the base may be formed at the edge of the base.
상기와 같이 형성함으로써, 기존 히트싱크와 질량을 동일하게 유지하면서도 방열 성능을 향상시킬 수 있다.By forming as described above, the heat dissipation performance can be improved while maintaining the same mass as the existing heat sink.
상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 냉각유체가 최초로 유입되는 냉각유체 유입부는 상기 베이스의 가장자리 쪽에만 형성될 수 있다.The first heat dissipation fin array and the second heat dissipation fin array may be formed only at the edge of the base where the cooling fluid inflow portion into which the cooling fluid first flows.
상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 상기 베이스의 가장자리에서부터 상기 베이스의 중심을 향할수록 방열핀의 높이가 감소하도록 형성될 수 있다.The first heat dissipation fin array and the second heat dissipation fin array may be formed such that the height of the heat dissipation fin decreases from the edge of the base toward the center of the base.
상기 제1 방열핀 어레이 각각의 길이는 상기 제2 방열핀 어레이 각각의 길이보다 짧게 형성될 수 있다.The length of each of the first heat sink fin arrays may be shorter than the length of each of the second heat sink fin arrays.
상기 제2 방열핀 어레이의 양단 중 상기 베이스의 중심 가까이에 있는 일단은 상기 제1 방열핀 어레이의 양단 중 상기 베이스의 중심 가까이에 있는 일단 보다 상기 베이스의 중심에 근접하도록 형성될 수 있다.One end of both ends of the second heat dissipation fin array near the center of the base may be formed closer to the center of the base than one end of the second heat dissipation fin array near the center of the base.
상기 제1 방열핀과 상기 제2 방열핀은 길이가 동일하도록 형성될 수 있다.The first heat dissipation fin and the second heat dissipation fin may be formed to have the same length.
상기 제1 방열핀 어레이 사이의 각도는 상기 제2 방열핀 어레이 사이의 각도와 동일하도록 형성될 수 있다.The angle between the first heat sink fin array may be formed to be the same as the angle between the second heat sink fin array.
상기 제1 방열핀 어레이 또는 상기 제2 방열핀 어레이의 일단은 상기 베이스의 가장자리와 일치하도록 형성될 수 있다.One end of the first heat sink fin array or the second heat sink fin array may be formed to match an edge of the base.
상기 제1 방열핀들 또는 상기 제2 방열핀들은, 상기 베이스의 가장자리 쪽에 있는 방열핀의 높이에 대한 상기 베이스의 중심 쪽에 있는 방열핀의 높이의 비가 0.73 이상이 되고 1을 초과하지 않도록 형성될 수 있다.The first heat dissipation fins or the second heat dissipation fins may be formed such that a ratio of the height of the heat dissipation fin at the center of the base to the height of the heat dissipation fin at the edge of the base is not less than 0.73 and does not exceed 1.
상기 제1 방열핀의 개수는 상기 제2 방열핀의 개수와 다르게 형성될 수 있다.The number of the first heat sink fins may be formed differently from the number of the second heat sink fins.
이상 설명한 바와 같이, 본 발명에 따른 조명용 히트싱크는 방열 성능은 기존과 거의 동일하게 유지하면서도 히트싱크의 질량 또는 재료비를 절감할 수 있다.As described above, the heat sink for lighting according to the present invention can reduce the mass or material cost of the heat sink while maintaining the heat dissipation performance of about the same as before.
본 발명에 따른 조명용 히트싱크는 열적 경계층의 성장을 지연시킬 수 있고 열적 경계층이 불연속적으로 형성되게 하여 방열 성능을 개선할 수 있다.The lighting heat sink according to the present invention can delay the growth of the thermal boundary layer and improve the heat dissipation performance by allowing the thermal boundary layer to be discontinuously formed.
본 발명에 따른 조명용 히트싱크는 기존의 히트싱크에 비하여 방열핀의 체적당 전열 면적비를 증가시킬 수 있고, 작은 질량으로 공기와 접촉하는 히트싱크의 면적을 증가시킬 수 있다.The heat sink for lighting according to the present invention can increase the heat transfer area ratio per volume of the heat dissipation fin compared to the conventional heat sink, and can increase the area of the heat sink in contact with the air with a small mass.
본 발명에 따른 조명용 히트싱크는 선단 효과가 반복적으로 발생하기 때문에 열전달 성능을 높일 수 있다.The heat sink for lighting according to the present invention can increase the heat transfer performance because the tip effect is repeatedly generated.
본 발명에 따른 조명용 히트싱크는 열전달에 의해서 가열되지 않은 신선한 냉각 유체의 유입 유량을 늘일 수 있고, 냉각유체가 히트싱크에 유입되는 초기에 발생하는 전열면적을 증대시키기 때문에 방열 성능을 개선할 수 있다.The lighting heat sink according to the present invention can increase the flow rate of fresh cooling fluid that is not heated by heat transfer, and can improve heat dissipation performance because it increases the heat transfer area generated initially when the cooling fluid flows into the heat sink. .
본 발명에 따른 조명용 히트싱크는 냉각 유체의 유로에 따라 온도가 상대적으로 낮은 냉각 유체와의 전열면적을 증가시키기 때문에 방열 성능을 높일 수 있고 히트싱크의 중심부 영역에 과열 영역이 발생하는 것을 방지하여 균일한 열전달 성능을 확보할 수 있다.The heat sink for lighting according to the present invention can increase the heat transfer area with the cooling fluid having a relatively low temperature according to the flow path of the cooling fluid, thereby improving heat dissipation performance and preventing the overheating area in the central region of the heat sink. One heat transfer performance can be obtained.
도 1은 종래기술에 따른 히트싱크를 도시한 사시도이다.1 is a perspective view showing a heat sink according to the prior art.
도 2는 본 발명의 일 실시예에 따른 조명용 히트싱크를 상부에서 도시한 사시도이다.Figure 2 is a perspective view showing a heat sink for illumination according to an embodiment of the present invention from the top.
도 3은 도 2에 따른 조명용 히트싱크를 도시한 사시도로서, 조명에 부착된 히트싱크를 하부에서 도시한 사시도이다.3 is a perspective view illustrating a heat sink for illumination according to FIG. 2, wherein the heat sink attached to the light is shown from below.
도 4는 도 2의 절단선 "IV-IV"에 따라 절단된 조명용 히트싱크의 일부를 도시한 평면도이다.FIG. 4 is a plan view showing a part of an illuminating heat sink cut along the cutting line “IV-IV” of FIG. 2.
도 5는 도 2에 따른 조명용 히트싱크의 방열핀의 높이 프로파일을 보여주는 부분 사시도이다.FIG. 5 is a partial perspective view illustrating a height profile of a heat dissipation fin of the heat sink for illumination according to FIG. 2.
도 6의 도 2에 따른 조명용 히트싱크의 변형예를 도시한 사시도이다.6 is a perspective view showing a modification of the heat sink for illumination according to FIG.
도 7a 내지 도 7d는 종래기술에 따른 조명용 히트싱크와 도 2에 따른 조명용 히트싱크의 방열성능을 비교한 수치해석 데이터를 도시한 도면이다.7A to 7D illustrate numerical analysis data comparing heat dissipation performance of a lighting heat sink according to the related art and a lighting heat sink according to FIG. 2.
도 8은 도 2에 따른 조명용 히트싱크의 방열 성능을 검증하기 위한 실험 장치를 도시한 도면이다.FIG. 8 is a diagram illustrating an experimental apparatus for verifying heat dissipation performance of the heat sink for illumination according to FIG. 2.
도 9는 도 8에 따른 실험 장치에 의한 실험 결과와 도 2에 따른 조명용 히트싱크의 수치해석 결과를 비교한 그래프이다.FIG. 9 is a graph comparing the results of the experiment by the experimental apparatus of FIG. 8 and the numerical results of the illumination heat sink of FIG. 2.
이하에서, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다. Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; However, the present invention is not limited or limited by the embodiments. Like reference numerals in the drawings denote like elements.
도 2는 본 발명의 일 실시예에 따른 조명용 히트싱크를 상부에서 도시한 사시도, 도 3은 도 2에 따른 조명용 히트싱크를 도시한 사시도로서, 조명에 부착된 히트싱크를 하부에서 도시한 사시도, 도 4는 도 2의 절단선 "IV-IV"에 따라 절단된 조명용 히트싱크의 일부를 도시한 평면도, 도 5는 도 2에 따른 조명용 히트싱크의 방열핀의 높이 프로파일을 보여주는 부분 사시도, 도 6의 도 2에 따른 조명용 히트싱크의 변형예를 도시한 사시도, 도 7a 내지 도 7d는 종래기술에 따른 조명용 히트싱크와 도 2에 따른 조명용 히트싱크의 방열성능을 비교한 수치해석 데이터를 도시한 도면, 도 8은 도 2에 따른 조명용 히트싱크의 방열 성능을 검증하기 위한 실험 장치를 도시한 도면, 도 9는 도 8에 따른 실험 장치에 의한 실험 결과와 도 2에 따른 조명용 히트싱크의 수치해석 결과를 비교한 그래프이다.2 is a perspective view showing an illumination heat sink according to an embodiment of the present invention from the top, Figure 3 is a perspective view showing a heat sink for illumination according to Figure 2, a perspective view showing a heat sink attached to the illumination from below, 4 is a plan view showing a part of the heat sink for illumination cut along the cutting line "IV-IV" of FIG. 2, FIG. 5 is a partial perspective view showing the height profile of the heat radiation fin of the heat sink for illumination according to FIG. 7 is a perspective view showing a modification of the heat sink for illumination according to Figure 2, Figure 7a to 7d is a view showing the numerical analysis data comparing the heat dissipation performance of the lighting heat sink according to the prior art and the lighting heat sink according to Figure 2, 8 is a view showing an experimental device for verifying the heat dissipation performance of the heat sink for lighting according to FIG. 2, FIG. 9 is a numerical result of the experimental results and the heat sink for lighting according to FIG. A graph comparing the results.
도 2 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)는, 다수개의 LED(160)가 배치되는 기판(150)이 일면에 설치되는 베이스(110), 베이스(110)의 타면에 형성되고 베이스(110)의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제1 방열핀 어레이(120) 및 제1 방열핀 어레이(120)의 사이에 형성되고 베이스(110)의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제2 방열핀 어레이(130)를 포함할 수 있다.2 to 5, the lighting heat sink 100 according to an embodiment of the present invention, the base 110, the base (110) is installed on one surface of the substrate 150 on which a plurality of LEDs 160 are disposed The center of the base 110 is formed between the plurality of first heat dissipation fin array 120 and the first heat dissipation fin array 120 which are formed on the other surface of the 110 and disposed radially at an angle with respect to the center of the base 110. It may include a plurality of second heat radiation fin array 130 disposed radially at an angle with respect to.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 주로 LED(160) 다운라이트용 조명에 적용되지만, 반드시 LED에만 적용되는 것은 아니고 다른 형태의 조명에도 적용될 수 있음은 당연하다. Illumination heat sink 100 according to an embodiment of the present invention is mainly applied to the LED 160 downlight illumination, it is obvious that it is not necessarily applied only to LED, but may also be applied to other types of lighting.
이하에서는 본 발명의 일 실시예에 따른 조명용 히트싱크(100)가 LED에 사용되는 경우에 대해서 예시적으로 설명한다.Hereinafter, a case in which an illumination heat sink 100 according to an embodiment of the present invention is used for an LED will be described.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 다수개의 LED(160)가 부착된 기판(150)의 일면에 부착될 수 있다. 다수개의 LED(160)는 균일 또는 불균일한 패턴으로 기판(150)의 일면에 배치될 수 있다. 균일한 조명을 조사하기 위해서 LED(160)는 균일한 패턴으로 기판(150)의 일면에 배치되는 것이 바람직하다.The lighting heat sink 100 according to an embodiment of the present invention may be attached to one surface of the substrate 150 to which the plurality of LEDs 160 are attached. The plurality of LEDs 160 may be disposed on one surface of the substrate 150 in a uniform or non-uniform pattern. In order to irradiate uniform illumination, the LED 160 may be disposed on one surface of the substrate 150 in a uniform pattern.
기판(150)의 타면에는 히트싱크(100)의 베이스(110)가 부착될 수 있다. 여기서, 기판(150) 및 베이스(110)는 동일한 모양으로 형성되는 것이 열전달의 측면을 고려할 때 바람직하다. 기판(150)과 베이스(110)의 중심부에는 통공(140)이 형성될 수 있다. The base 110 of the heat sink 100 may be attached to the other surface of the substrate 150. Here, the substrate 150 and the base 110 are preferably formed in the same shape when considering the side of the heat transfer. The through hole 140 may be formed in the center of the substrate 150 and the base 110.
LED(160)가 있는 기판(150)과 히트싱크(100)의 베이스(110)는 나사 등의 체결부재(170)로 서로 결합될 수 있으며, 결합시키는 면은 접촉 열저항(thermal resistance)을 줄이기 위해 열전도 그리스(thermal grease)를 삽입하는 것이 바람직하다.The substrate 150 having the LEDs 160 and the base 110 of the heat sink 100 may be coupled to each other by a fastening member 170 such as a screw, and the surface to be bonded reduces contact thermal resistance. It is preferable to insert a thermal grease.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 베이스(110)의 타면에 일정한 패턴으로 형성된 다수개의 방열핀들을 포함할 수 있다. 여기서, 다수개의 방열핀들은 베이스(110)의 중심을 지나는 반지름 상에 배치될 수 있다. Illumination heat sink 100 according to an embodiment of the present invention may include a plurality of heat radiation fins formed in a predetermined pattern on the other surface of the base (110). Here, the plurality of heat radiation fins may be disposed on a radius passing through the center of the base 110.
도 2 및 도 4에 도시된 바와 같이, 방열핀들은 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130)를 각각 형성할 수 있다. 제1 방열핀 어레이(120)는 베이스(110)의 반지름을 따라 동일한 선상에 배치된 다수개의 제1 방열핀(121,122)들을 포함하고, 제2 방열핀 어레이(130)는 베이스(110)의 반지름을 따라 동일한 선상에 배치된 다수개의 제2 방열핀(131,132,133)들을 포함할 수 있다. As illustrated in FIGS. 2 and 4, the heat dissipation fins may form the first heat dissipation fin array 120 and the second heat dissipation fin array 130, respectively. The first heat sink fin array 120 includes a plurality of first heat sink fins 121 and 122 disposed on the same line along the radius of the base 110, and the second heat sink fin array 130 is the same along the radius of the base 110. It may include a plurality of second heat radiation fins (131, 132, 133) disposed on the line.
여기서, 제1 방열핀 어레이(120)는 베이스(110)의 반지름 상에 형성되되, 베이스(110)의 중심을 기준으로 방사상으로 일정한 각도로 형성될 수 있다. 또한, 제2 방열핀 어레이(130)는 제1 방열핀 어레이(120)의 사이에 위치하되, 베이스(110)의 반지름 상에 형성되며 베이스(110)의 중심을 기준으로 방사상으로 일정한 각도로 형성될 수 있다.Here, the first heat sink fin array 120 may be formed on the radius of the base 110, and may be formed at a radially constant angle with respect to the center of the base 110. In addition, the second heat dissipation fin array 130 may be positioned between the first heat dissipation fin array 120 and may be formed on a radius of the base 110 and may be formed at a radially constant angle with respect to the center of the base 110. have.
제1 방열핀 어레이(120)는 동일한 각도로 베이스(110) 상에 방사상 또는 부채 모양으로 형성되며, 제2 방열핀 어레이(130)도 동일한 각도로 베이스(110) 상에 방사상 또는 부채 모양으로 형성되되 제1 방열핀 어레이(120) 사이에 배치될 수 있다. The first heat sink fin array 120 is formed in a radial or fan shape on the base 110 at the same angle, and the second heat sink fin array 130 is also formed in a radial or fan shape on the base 110 at the same angle. 1 may be disposed between the heat dissipation fin array 120.
서로 이웃하는 제1 방열핀 어레이(120) 사이의 각도는 동일하고, 서로 이웃하는 제2 방열핀 어레이(130) 사이의 각도도 동일한 것이 바람직하다. 또한, 서로 이웃하는 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이의 각도도 동일하도록 형성되는 것이 바람직하다. The angles between the first heat dissipation fin arrays 120 adjacent to each other are the same, and the angles between the second heat dissipation fin arrays 130 adjacent to each other are also the same. In addition, it is preferable that the angles between the first heat dissipation fin array 120 and the second heat dissipation fin array 130 adjacent to each other are also the same.
제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이의 공간을 통해서 냉각 유체 또는 냉각 공기의 유동이 형성되기 때문에 히트싱크(100) 전체에 걸쳐서 고른 방열 내지 열전달 성능을 얻기 위해서는 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이의 각도가 동일하거나 일정한 것이 바람직하다. 여기서, 제1 방열핀 어레이(120) 사이의 각도는 상기 제2 방열핀 어레이(130) 사이의 각도와 동일하도록 형성될 수 있다.Since a flow of cooling fluid or cooling air is formed through a space between the first heat sink fin array 120 and the second heat sink fin array 130, the first heat sink fin to obtain even heat dissipation or heat transfer performance throughout the heat sink 100. Preferably, the angle between the array 120 and the second heat dissipation fin array 130 is the same or constant. Here, the angle between the first heat sink fin array 120 may be formed to be the same as the angle between the second heat sink fin array 130.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 도 2 내지 도 5에 도시된 바와 같이, 제1 방열핀들(121,122) 및 제2 방열핀들(131,132,133)은 베이스(110)의 중심 또는 베이스(110)의 통공(140)을 향하여 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이로 유입되는 냉각유체와 방열핀이 접촉하는 전열면적이 베이스(110)의 중심 보다 베이스(110)의 가장자리 쪽이 크도록 형성될 수 있다.As shown in FIGS. 2 to 5, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 are the center of the base 110 or the base, as shown in FIGS. 2 to 5. The heat transfer area contacting the cooling fluid and the heat radiation fins introduced between the first heat sink fin array 120 and the second heat sink fin array 130 toward the through hole 140 of the base 110 is greater than that of the center of the base 110. The edge side may be formed to be large.
냉각유체의 유동형태는 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이로 유입되는데, 베이스(110)의 가장자리 쪽에서부터 냉각유체 또는 냉각공기가 유입된다. 유입된 냉각유체는 베이스(110) 및 제1/제2 방열핀 어레이(120,130)와 접촉하면서 가열된다. 가열된 냉각유체는 가열되지 않았거나 상대적으로 덜 가열된 주변 공기(또는 냉각유체) 보다 밀도가 작기 때문에 주변 공기보다 가벼워져 히트 싱크(100)의 중심부 쪽에서 상승하게 된다. 이와 같이 냉각유체는 베이스(110)의 가장자리 쪽에서부터 베이스(110)의 통공(140)을 향해 유입되되, 베이스(110)의 통공(140) 부근에서는 상승하는 유로를 형성하게 되고, 이러한 냉각유체의 유동 형태는 굴뚝 형상으로 볼 수 있다.The flow of the cooling fluid flows between the first heat sink fin array 120 and the second heat sink fin array 130, and the cooling fluid or cooling air flows from the edge of the base 110. The introduced cooling fluid is heated while contacting the base 110 and the first and second heat dissipation fin arrays 120 and 130. The heated cooling fluid is lighter than the ambient air because it is less dense than the unheated or relatively less heated ambient air (or cooling fluid) and rises toward the center of the heat sink 100. As such, the cooling fluid flows from the edge of the base 110 toward the through hole 140 of the base 110, and forms a rising channel near the through hole 140 of the base 110. The flow form can be seen as a chimney shape.
이러한 냉각유체의 유동을 열전달 측면에서 살펴보면, 히트싱크(100) 또는 베이스(110) 외곽 즉, 가장자리 쪽에서는 열전달이 많이 일어나고 중심부로 갈수록 열전달이 덜 일어나게 된고 유입된 냉각공기가 굴뚝 형상을 따라 상승하기 때문에, 히트싱크(100)의 베이스(110) 중심부에서는 대부분의 공기유량이 방열핀과 접하지 않게 된다. Looking at the flow of the cooling fluid in terms of heat transfer, the heat transfer takes place outside the heat sink 100 or base 110, that is, the edge side, the heat transfer occurs less toward the center and the incoming cooling air rises along the chimney shape. Therefore, most of the air flow rate does not come into contact with the heat radiating fin at the center of the base 110 of the heat sink 100.
따라서, 히트싱크(100) 내부에서는 방열핀 냉각을 위한 유량이 감소하여 이러한 열전달의 불균일이 발생하게 되는데, 본 발명에서는 열전달이 충분하지 않은 히트싱크(100) 내지 베이스(110)의 중심부 쪽 보다 열전달이 충분한 히트싱크(100) 또는 베이스(110)의 가장자리 부근에서 냉각유체의 전열면적을 증가시켜서 방열 성능을 높일 수 있다.Therefore, in the heat sink 100, the flow rate for cooling the radiating fins decreases, which causes non-uniformity of such heat transfer. In the present invention, heat transfer is performed more than the central side of the heat sink 100 to the base 110 where heat transfer is not sufficient. The heat dissipation performance may be improved by increasing the heat transfer area of the cooling fluid near the edge of the sufficient heat sink 100 or the base 110.
즉, 베이스(110)의 가장자리 쪽에서 유입된 냉각유체는 베이스(110)의 중심부를 향해 흐르면서 가열되어 베이스(110)의 통공(140) 부근에서는 상승하게 되는데, 베이스(110)의 중심부에서 상승하는 가열된 냉각유체와 방열핀의 접촉면적 또는 전열면적을 증가시키기 보다는, 상대적으로 냉각유체의 온도가 낮은 베이스(110)의 가장자리 쪽에 있는 방열핀과 냉각유체와의 접촉 면적을 키워서 방열 성능을 높일 수 있다.That is, the cooling fluid introduced from the edge of the base 110 is heated while flowing toward the center of the base 110 to rise in the vicinity of the through-hole 140 of the base 110, the heating rising from the center of the base 110 Rather than increasing the contact area or the heat transfer area between the cooling fluid and the radiating fin, the heat dissipation performance can be improved by increasing the contact area between the radiating fin and the cooling fluid at the edge of the base 110 having a relatively low temperature of the cooling fluid.
이를 위해, 베이스(110)의 가장자리에서부터 베이스(110)의 중심을 향할수록 제1 방열핀들(121,122) 및 제2 방열핀들(131,132,133)의 높이가 감소하도록 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130)를 형성할 수 있다. To this end, the first heat dissipation fin array 120 and the second heat dissipation fin so that the heights of the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 decrease from the edge of the base 110 toward the center of the base 110. Array 130 may be formed.
이와 같이, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130)가 베이스(110)의 가장자리에서부터 베이스(110)의 중심을 향할수록 방열핀(121,122,131,132,133)의 높이가 감소하도록 형성함으로써, 열전달이 잘 일어나지 않는 베이스(110) 중심부 쪽의 방열핀은 줄이고 열전달 계수가 높은 베이스(110)의 외곽 또는 가장자리 쪽의 방열핀을 높여 냉각유체와 직접 접하는 전열 면적을 증가시킬 수 있다. 따라서, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)로 유입되는 유량을 2배 이상 증가시킬 수 있고, 그 결과 방열성능을 향상시킬 수 있다.As such, in the heat sink 100 for lighting according to the embodiment of the present invention, the first heat sink fin array 120 and the second heat sink fin array 130 are directed from the edge of the base 110 toward the center of the base 110. The heat radiation fins 121, 122, 131, 132, and 133 are formed to reduce the height, thereby reducing heat radiation fins at the center of the base 110 where heat transfer is less likely to occur, and increasing heat radiation fins at the outer or edge of the base 110 having a high heat transfer coefficient to directly contact the cooling fluid. You can increase the area. Therefore, the flow rate flowing into the heat sink 100 for lighting according to an embodiment of the present invention can be increased more than two times, and as a result, the heat dissipation performance can be improved.
또한, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(160)는 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130) 사이로 유입되어 베이스(110)의 중심을 향하는 냉각유체와 처음 접촉하는 방열핀(121,131)은 베이스의 가장자리 쪽에만 존재하도록 형성될 수 있다. In addition, the first heat dissipation fin array 120 and the second heat dissipation fin array 160 of the heat sink 100 for illumination according to the embodiment of the present invention flows between the first heat dissipation fin array 120 and the second heat dissipation fin array 130. The first heat dissipation fins 121 and 131 contacting the cooling fluid toward the center of the base 110 may be formed only at the edge of the base.
도 2 및 도 5를 참조하면, 제1 방열핀들(121,122)과 제2 방열핀들(131,132,133)은 베이스(110)의 중심을 향할수록 단계적으로 높이가 작아짐을 알 수 있다. 즉, 베이스(110)의 외곽 또는 가장자리 쪽에 있는 방열핀(121,131)의 높이가 가장 크다. 2 and 5, it can be seen that the heights of the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 decrease in steps toward the center of the base 110. That is, the height of the heat radiation fins 121 and 131 on the outer side or the edge of the base 110 is the largest.
도 5에 도시된 바와 같이, 제1/제2방열핀 어레이(120,130) 중에서 베이스(110)의 가장자리 쪽에 있는 제1/제2 방열핀(121,131)은 그 높이(LO) 전체에 걸쳐서 유입되는 냉각유체와 처음으로 접촉하게 된다. 즉, 베이스(110)의 외부에서 베이스(110)을 향해서 유입되는 냉각유체(즉, 가열되지 않은 냉각유체)는 베이스(110)의 가장자리 쪽에 위치하는 제1/제2 방열핀(121,131)의 전체 높이(LO)에 걸쳐서 처음으로 접촉하게 된다.As shown in FIG. 5, the first / second heat dissipation fins 121 and 131 at the edge of the base 110 among the first and second heat dissipation fin arrays 120 and 130 are introduced into the cooling fluid flowing over the entire height L O. The first contact with. That is, the cooling fluid flowing in from the outside of the base 110 toward the base 110 (that is, the unheated cooling fluid) has an overall height of the first and second heat dissipation fins 121 and 131 positioned at the edge of the base 110. The first contact is made over (L O ).
가장자리 쪽에 있는 제1/제2 방열핀(121,131)과 접촉한 냉각유체는 열전달에 의해 온도가 높아진 상태로 베이스(110)의 중심을 향해 유동하면서 가운데 있는 제1/제2 방열핀(122,132)과 접촉하게 되고, 더 진행하게 되면 가장 중심에 있는 제2 방열핀(133)과 접촉하게 된다. The cooling fluid that is in contact with the first and second heat dissipation fins 121 and 131 at the edge side flows toward the center of the base 110 in a state where the temperature is increased by heat transfer so as to contact the first and second heat dissipation fins 122 and 132 in the center. Further, if it proceeds further, it is in contact with the second heat radiation fin 133 at the center.
이 때, 가장자리에 있는 제1/제2 방열핀(121,131)과 처음으로 접촉하는 냉각유체는 가운데 있는 제1/제2 방열핀(122,132)과는 처음으로 접촉하지 않는다. 왜냐하면, 가운데 있는 제1/제2 방열핀(122,132)과 가장자리에 있는 제1/제2 방열핀(121,131)은 높이차(LD)가 있기 때문이다. 가운데 있는 제1/제2 방열핀(122,132)이 높이차(LD) 만큼 가장자리에 있는 제1/제2 방열핀(121,131) 보다 높이가 낮기 때문에 가장자리에 있는 제1/제2 방열핀(121,131)과 처음으로 접촉하여 열전달에 의해 가열된 냉각유체는 방열핀의 높이차(LD)에 해당하는 부분을 통해 유동할 뿐이며 가운데 있는 제1/제2 방열핀(122,132)과는 접촉하지 않는다.At this time, the cooling fluid for the first contact with the first and second heat dissipation fins 121 and 131 at the edge does not contact the first and second heat dissipation fins 122 and 132 in the center for the first time. This is because the first and second heat dissipation fins 122 and 132 in the center and the first and second heat dissipation fins 121 and 131 in the edge have a height difference L D. Since the first and second heat dissipation fins 122 and 132 in the center are lower than the first and second heat dissipation fins 121 and 131 at the edges by the height difference L D , the first and second heat dissipation fins 121 and 131 at the edges are first displayed. The cooling fluid heated by heat transfer in contact with the air flows only through a portion corresponding to the height difference L D of the heat dissipation fins, and does not contact the first and second heat dissipation fins 122 and 132 in the center.
다만, 가장자리에 있는 제1/제2 방열핀(121,131)의 아래 부분과 접촉한 냉각유체는 열전달에 의해 가열된 후 가운데 있는 제1/제2 방열핀(122,132)과 접촉하여 2차적인 열전달을 하게 된다.However, the cooling fluid in contact with the lower portions of the first and second heat dissipation fins 121 and 131 at the edges is heated by heat transfer, and then is in contact with the first and second heat dissipation fins 122 and 132 in the center to perform secondary heat transfer. .
이와 같이, 가장자리에 있는 제1/제2 방열핀(121,131)의 상단에서부터 높이차(LD) 만큼 해당하는 부분과 접촉하여 열전달한 냉각유체는 베이스(110)의 중심부를 향해 유동하더라도 가운데 있는 제1/제2 방열핀(122,132)과 접촉하지 않게 된다.As such, the cooling fluid, which is transferred from the upper end of the first and second heat dissipation fins 121 and 131 at the edge to the corresponding portion by the height difference L D , flows toward the center of the base 110, but the first fluid is in the center. It is not in contact with the second heat radiation fins 122 and 132.
이처럼 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130)에 있어서 각각의 방열핀은, 베이스(110)의 반경방향을 따라 형성된 방열핀 중 가장 외곽에 있는 방열핀(121,131)을 가장 높게 형성함으로써 열전달이 되지 않는 신선한 냉각유체와 접촉되는 면적을 증가시킬 수 있게 되고, 가열되지 않은 냉각유체의 유입 유량을 늘일 수 있다. 즉, 가장자리 쪽에 있는 방열핀(121,131)의 높이를 가장 크게 함으로써 가열되지 않고 처음으로 유입되는 냉각유체의 유량을 증대시킬 수 있다.As described above, each of the heat dissipation fins in the first heat dissipation fin array 120 and the second heat dissipation fin array 130 forms the highest heat dissipation fins 121 and 131 at the outermost sides of the heat dissipation fins formed along the radial direction of the base 110. It is possible to increase the area in contact with the fresh cooling fluid that is not, and to increase the flow rate of the unheated cooling fluid. That is, by increasing the height of the heat radiation fins 121 and 131 on the edge side, the flow rate of the cooling fluid introduced for the first time without heating can be increased.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130)는 냉각유체가 최초로 유입되는 냉각유체 유입부는 베이스(110)의 가장자리 쪽에만 형성될 수 있다. 도 5를 참조하면, 냉각유체가 최초로 유입되는 냉각유체 유입부는 베이스(110)의 가장자리 쪽에 있는 제1/제2 방열핀(121,131)은 그 전체 높이(LO)에 걸쳐 냉각유체 유입부가 형성되는 반면, 가장자리 쪽에 있는 제1/제2 방열핀(121,131) 보다 베이스(110)의 중심 쪽에 있는 제1/제2 방열핀(122,132,133)에는 가열되지 않는 신선한 냉각유체가 처음으로 유입되는 냉각유체 유입부가 형성되지 않는다. 즉, 가장자리 쪽에 있는 제1/제2 방열핀(121,131) 보다 베이스(110)의 중심 쪽에 있는 제1/제2 방열핀(122,132,133)은 가장자리 쪽에 있는 제1/제2 방열핀(121,131)과 접촉하여 열전달되어 처음보다 가열된 냉각유체가 유입될 뿐이다.The first heat dissipation fin array 120 and the second heat dissipation fin array 130 of the heat sink 100 for lighting according to an embodiment of the present invention are formed only at the edge of the base 110 at which the cooling fluid inlet to which the cooling fluid first flows. Can be. Referring to FIG. 5, the first and second heat dissipation fins 121 and 131 at the edge of the base 110 at which the cooling fluid first flows are formed in the cooling fluid inlet over the entire height L O. In the first / second heat dissipation fins 122, 132 and 133 at the center of the base 110 rather than the first / second heat dissipation fins 121 and 131 at the edge side, the cooling fluid inlet for the first unflowed fresh cooling fluid is not formed. . That is, the first and second heat dissipation fins 122, 132 and 133 at the center of the base 110 than the first and second heat dissipation fins 121 and 131 at the edge side are in heat transfer in contact with the first and second heat dissipation fins 121 and 131 at the edge side. Only the heated cooling fluid is introduced from the beginning.
이 때, 냉각유체 유입부가 베이스(110)의 가장자리 쪽에 있는 제1/제2 방열핀(121,131) 부근에만 형성되기 때문에, 가열되지 않고 가장 온도가 낮은 냉각유체와 방열핀(121,131)의 접촉 면적 또는 접촉 시간을 증가시켜서 열전달 성능을 높일 수 있고 히트싱크(100)로 유입되는 냉각유체의 유량도 증가시킬 수 있다.At this time, since the cooling fluid inlet is formed only near the first / second heat dissipation fins 121 and 131 at the edge of the base 110, the contact area or contact time of the cooling fluid with the lowest temperature and the heat dissipation fins 121 and 131 is not heated. By increasing the heat transfer performance can be increased and the flow rate of the cooling fluid flowing into the heat sink 100 can also be increased.
한편, 제1 방열핀(121,122)의 개수는 제2 방열핀(131,132,133)의 개수와 상이하게 형성될 수 있다. 다시 말하면, 하나의 제1 방열핀 어레이(120)를 형성하는 제1 방열핀(121,122)의 개수와 하나의 제2 방열핀 어레이(130)를 형성하는 제2 방열핀(131,132,133)의 개수가 서로 다르게 형성될 수 있다. 이와 같이 제1 방열핀의 개수와 제2 방열핀의 개수를 다르게 형성함으로써, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 기존의 조명용 히트싱크 대비 동일하거나 유사한 방열효과를 유지하면서도 히트싱크의 재료비 또는 질량을 대폭 절감할 수 있다.Meanwhile, the number of first heat dissipation fins 121 and 122 may be different from the number of second heat dissipation fins 131, 132 and 133. In other words, the number of first heat dissipation fins 121 and 122 forming one first heat dissipation fin array 120 and the number of second heat dissipation fins 131, 132 and 133 forming one second heat dissipation fin array 130 may be different from each other. have. As such, the number of first heat sink fins and the number of second heat sink fins are different, so that the heat sink 100 for lighting according to the embodiment of the present invention maintains the same or similar heat dissipation effect as the conventional heat sink for the heat sink. Material cost or mass can be greatly reduced.
도 2 및 도 4를 참조하면, 제1 방열핀 어레이(1220)를 형성하는 제1 방열핀(121,122)은 2개이고, 제2 방열핀 어레이(130)를 형성하는 제2 방열핀(131,132,133)은 3개임을 알 수 있다. 다만, 이러한 방열핀의 개수는 예시에 불과함을 밝혀둔다. 예를 들면, 도 6에 도시된 바와 같이, 제1 방열핀 어레이(120')가 2개의 방열핀을 가지고, 제2 방열핀 어레이(130')는 5개의 방열핀을 가지도록 형성될 수도 있다. 각 방열핀 어레이를 형성하는 방열핀의 개수는 원하는 방열성능에 따라 결정될 수 있다.Referring to FIGS. 2 and 4, the first heat dissipation fins 121 and 122 forming the first heat dissipation fin array 1220 are two, and the second heat dissipation fins 131, 132 and 133 forming the second heat dissipation fin array 130 are three. Can be. However, it should be noted that the number of such heat radiation fins is merely an example. For example, as illustrated in FIG. 6, the first heat sink fin array 120 ′ may have two heat sink fins, and the second heat sink fin array 130 ′ may be formed to have five heat sink fins. The number of heat sink fins forming each heat sink fin array may be determined according to a desired heat radiation performance.
도 4에서 LL은 제2 방열핀 어레이(130) 각각의 전체길이이고, LM은 제1 방열핀 어레이(120) 각각의 전체길이이며, Lf는 제1 방열핀(121,122) 또는 제2 방열핀(131,132,133) 낱개의 길이이고, Ls는 베이스(110)의 반지름 방향에서의 제1 방열핀(121,122) 또는 제2 방열핀(131,132,133) 사이의 거리이며, t는 제1 방열핀(121,122) 또는 제2 방열핀(131,132,133)의 두께이고, ro는 베이스(110)의 반지름이며 ri는 베이스(110)의 중심부에 형성된 통공(140)의 반지름이다.In FIG. 4, L L is the total length of each of the second heat sink fin arrays 130, L M is the total length of each of the first heat sink fin arrays 120, and L f is the first heat sink fins 121, 122 or the second heat sink fins 131, 132, 133. ) Is the length, L s is the distance between the first heat radiation fin (121,122) or the second heat sink fin (131,132,133) in the radial direction of the base 110, t is the first heat sink fin (121,122) or the second heat sink fin (131,132,133) ), R o is the radius of the base 110 and r i is the radius of the through hole 140 formed in the center of the base (110).
도 4에 도시된 바와 같이, 제2 방열핀 어레이(130) 각각의 전체길이(LL)는 제1 방열핀 어레이(120) 각각의 전체길이(LM)보다 길게 형성될 수 있다. 이와 같이, 제1 방열핀 어레이(120)가 제2 방열핀 어레이(130) 보다 짧게 형성됨으로써 베이스(110)의 중심부 쪽에 과열 영역이 생기는 것을 방지할 수 있다. As shown in FIG. 4, the total length L L of each of the second heat sink fin arrays 130 may be longer than the total length L M of each of the first heat sink fin arrays 120. As described above, since the first heat dissipation fin array 120 is formed to be shorter than the second heat dissipation fin array 130, an overheated region may be prevented from occurring at the center of the base 110.
베이스(110)의 중심부 쪽 즉, 베이스(110)의 통공(140)과 가까운 부분에 과열 영역이 발생하는 것을 방지하기 위해, 베이스(110)의 중심부 쪽을 향하는 제1 방열핀 어레이(120)의 일단의 위치가 제2 방열핀 어레이(130)의 일단의 위치 보다 베이스(110)의 외곽에 치우치도록 형성되는 것이 바람직하다. 즉, 베이스(110)의 중심부 쪽에는 제2 방열핀 어레이(130)의 일단만 위치하도록 형성될 수 있다. 다시 말하면, 제2 방열핀 어레이(130)의 양단 중 베이스(110)의 중심 가까이에 있는 일단은 제1 방열핀 어레이(120)의 양단 중 베이스(110)의 중심 가까이에 있는 일단 보다 베이스(110)의 중심에 근접하도록 형성될 수 있다. 이와 같이, 베이스(110)의 중심부 쪽에 제2 방열핀 어레이(130)의 일단만이 위치하게 함으로써 베이스(110)의 중심부 쪽에 냉각 공기가 유동할 수 있는 충분한 공간을 확보할 수 있기 때문에 베이스(110)의 중심부 쪽에 과열 영역이 형성되는 것을 방지할 수 있다.One end of the first heat dissipation fin array 120 facing the center side of the base 110 in order to prevent the overheating region from occurring in the center side of the base 110, that is, the portion close to the through hole 140 of the base 110. The position of is preferably formed to be biased to the outside of the base 110 than the position of one end of the second heat radiation fin array 130. That is, only one end of the second heat dissipation fin array 130 may be formed at the central side of the base 110. In other words, one end near the center of the base 110 of both ends of the second heat sink fin array 130 is closer to the center of the base 110 than one end near the center of the base 110 of both ends of the first heat sink fin array 120. It may be formed to be close to the center. As described above, since only one end of the second heat dissipation fin array 130 is positioned at the central side of the base 110, sufficient space for cooling air to flow to the central side of the base 110 may be secured. The overheated region can be prevented from being formed at the central portion of the.
한편, 제1 방열핀 어레이(120) 및/또는 제2 방열핀 어레이(130)의 일단은 베이스(110)의 가장자리와 일치하도록 형성될 수 있다. 이와 같이, 제1 방열핀 어레이(120) 및/또는 제2 방열핀 어레이(130)의 일단이 베이스(110)의 가장자리와 일치하도록 형성한 상태에서 제1 방열핀 어레이(120)와 제2 방열핀 어레이(130)의 각각의 길이를 다르게 함으로써 베이스(110)의 중심부 쪽에 과열 영역이 발생하는 것을 방지할 수 있다. Meanwhile, one end of the first heat sink fin array 120 and / or the second heat sink fin array 130 may be formed to match an edge of the base 110. As described above, one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 is formed to match the edge of the base 110 and the first heat dissipation fin array 120 and the second heat dissipation fin array 130. By varying the length of each), it is possible to prevent the overheating region from occurring in the central portion of the base 110.
또한, 제1 방열핀 어레이(120) 및/또는 제2 방열핀 어레이(130)의 일단을 베이스(110)의 가장자리와 일치시킴으로써, 히트싱크(100)로 유입되는 냉각유체 즉, 가열되지 않은 온도가 낮은 냉각유체와 방열핀의 접촉 면적을 크게 할 수 있다.In addition, by matching one end of the first heat sink fin array 120 and / or the second heat sink fin array 130 with the edges of the base 110, the cooling fluid flowing into the heat sink 100, that is, the unheated temperature is low. The contact area between the cooling fluid and the heat radiating fin can be increased.
뿐만 아니라, 제1 방열핀 어레이(120) 및/또는 제2 방열핀 어레이(130)의 일단을 베이스(110)의 가장자리에 일치시키지 않고, 베이스(110)의 중심에서 동일한 거리의 원호 상에 존재하도록 형성할 수도 있다. 즉, 제1 방열핀 어레이(120) 및/또는 제2 방열핀 어레이(130)의 양단 중 베이스(110)의 외곽 쪽에 위치하는 일단이 베이스(110)의 중심에서부터 동일한 거리의 동일한 원호 상에 존재하도록 형성하여도 베이스(110)의 중심부 쪽에 과열 영역이 생기는 것을 방지할 수 있다.In addition, one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 is formed to exist on an arc of the same distance from the center of the base 110 without matching the edge of the base 110. You may. That is, one end of the first heat dissipation fin array 120 and / or the second heat dissipation fin array 130 that is located at the outer side of the base 110 is formed on the same arc from the center of the base 110 at the same distance. Even if it is possible to prevent the overheated region to occur in the central portion of the base 110.
제1 방열핀 어레이(120) 또는 제2 방열핀 어레이(130)를 형성하는 제1 방열핀(121,122) 또는 제2 방열핀(131,132,133) 각각의 길이(Lf)는 이웃하는 방열핀 사이의 거리(Ls)와 동일하게 형성되거나 다르게 형성될 수 있다. The length L f of each of the first heat dissipation fins 121 and 122 or the second heat dissipation fins 131, 132, and 133 forming the first heat dissipation fin array 120 or the second heat dissipation fin array 130 is equal to the distance L s between neighboring heat dissipation fins. It may be formed identically or differently.
여기서, 제1 방열핀(121,122)과 제2 방열핀(131,132,133)은 길이(Lf)가 동일하도록 형성될 수 있다. 또한, 제1 방열핀(121,122) 및 제2 방열핀(131,132,133)은 그 평면 모양이 직사각형을 이루는 것이 바람직하다. Here, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed to have the same length L f . In addition, it is preferable that the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 have a rectangular shape.
이와 같이, 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130) 각각을 형성하는 제1 방열핀(121,122) 및 제2 방열핀(131,132,133) 각각의 길이와 방열핀 사이의 거리의 길이가 동일하게 형성함으로써, 반복적인 선단 효과를 얻을 수 있다. 일반적으로 방열핀 방향을 따라 냉각유체가 흐를 때에는 방열핀과 냉각유체가 처음으로 만나는 방열핀의 모서리를 선단이라고 부르며, 열적 경계층이 발달하는 영역으로 열전달 성능이 가장 높다. 이와 같이 방열핀의 선단에서 열전달 성능이 상대적으로 높은 현상을 선단 효과라 한다.As such, the lengths of the distances between the first and second heat sink fins 121 and 122 and the second heat sink fins 131, 132, and 133 forming the first heat sink fin array 120 and the second heat sink fin array 130 are equal to each other. The repetitive tip effect can be obtained. In general, when the cooling fluid flows along the direction of the heat sink fins, the edge of the heat sink fins where the heat sink fins and the cooling fluid meet for the first time is called the tip, and the heat transfer performance is the highest as the thermal boundary layer develops. Thus, the phenomenon that the heat transfer performance is relatively high at the tip of the heat sink fin is called the tip effect.
또한, 제1 방열핀 어레이(120) 및 제2 방열핀 어레이(130) 사이를 유동하는 냉각유체에 나타나는 열적 경계층이 불연속적으로 형성될 수 있다. 즉, 제1 방열핀(121,122) 및 제2 방열핀(131,132,133)이 간격(Ls)을 두고 띄엄띄엄 배치되어 있기 때문에, 열적 경계층이 불연속적으로 발달하면서 경계층의 성장이 지연되어 히트싱크(100)의 중심부 쪽에서 과열 영역이 존재하지 않게 되고, 균일한 열전달 성능을 나타낼 수 있다. 열적 경계층은 방열 성능에 반비례하는 경향을 가지므로 열적 경계층의 성장을 지연시키거나 열적 경계층이 성장하는 영역을 줄일 수 있으면, 그에 반비례하여 방열 성능을 개선시킬 수 있다.In addition, a thermal boundary layer appearing in the cooling fluid flowing between the first heat sink fin array 120 and the second heat sink fin array 130 may be discontinuously formed. That is, since the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 are spaced apart at intervals L s , the thermal boundary layer is discontinuously developed and the growth of the boundary layer is delayed, thereby causing the heat sink 100 to be separated. There is no overheating zone on the central side, and it can exhibit uniform heat transfer performance. Since the thermal boundary layer tends to be inversely proportional to the heat dissipation performance, it is possible to improve the heat dissipation performance in inverse proportion if it is possible to delay the growth of the thermal boundary layer or reduce the area in which the thermal boundary layer grows.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 기존의 히트싱크에 비해 방열핀의 체적당 전열 면적비를 증가시킬 수 있다. 따라서, 작은 질량으로 공기와 닿는 히트 싱크의 면적이 증가한다는 것을 의미하고, 이는 결국 본 발명의 일 실시예에 따른 조명용 히트싱크(100)가 기존 히트싱크 보다 질량은 더 작지만 동일한 방열성능을 가질 수 있음을 보여 준다. Lighting heat sink 100 according to an embodiment of the present invention can increase the heat transfer area ratio per volume of the heat radiation fins compared to the conventional heat sink. Therefore, the area of the heat sink in contact with the air increases with a small mass, which means that the heat sink 100 for lighting according to the embodiment of the present invention may have the same heat dissipation performance as the mass is smaller than that of the existing heat sink. Show that there is.
한편, 제1 방열핀(121,122)과 제2 방열핀(131,132,133)은 동일한 원호 또는 원주 상에 형성될 수 있다. 즉, 베이스(110)의 원호 방향 또는 원주 방향을 따라 이웃하는 제1 방열핀(121,122)과 제2 방열핀(131,132,133)을 서로 연결하면 원이 그려질 수 있다. 이와 같이, 제1 방열핀(121,122)과 제2 방열핀(131,132,133)이 동일한 원호 또는 원주 상에 형성됨으로써, 열적 경계층의 성장을 효과적으로 억제하고 균일한 열전달 성능을 얻을 수 있다.Meanwhile, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed on the same arc or circumference. That is, a circle may be drawn when the adjacent first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 are connected to each other along the arc direction or the circumferential direction of the base 110. As such, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132, and 133 are formed on the same arc or circumference, thereby effectively suppressing the growth of the thermal boundary layer and obtaining uniform heat transfer performance.
다만, 경우에 따라서는 제1 방열핀(121,122)과 제2 방열핀(131,132,133)은 서로 다른 원호 또는 원주 상에 형성될 수 있다. 즉, 베이스(110)의 원주 또는 원호 방향을 따라 제1 방열핀(121,122)과 제2 방열핀(131,132,133)이 서로 엇갈리게 형성될 수도 있다.However, in some cases, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be formed on different arcs or cylinders. That is, the first heat dissipation fins 121 and 122 and the second heat dissipation fins 131, 132 and 133 may be alternately formed along the circumference or the arc direction of the base 110.
본 출원인은 수치해석을 통하여 도 1에 도시된 종래의 히트싱크(1)와 본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 평균 온도와 질량을 비교하였다. 도 7a와 도 7b는 종래의 히트싱크(1)에 대한 수치해석 결과이고, 도 7c와 도 7d는 본 발명의 일 실시예에 따른 조명용 히트싱크(100)에 대한 수치해석 결과로서, 지면과 수평한 면의 온도분포를 도시한 것이다. 도 7a 및 도 7c의 좌측 바그래프는 무늬에 따른 온도를 의미한다. 도 7a 및 도 7c의 좌측 바그래프에 표시된 바와 같이 아래쪽에서 위쪽으로 갈수록 온도가 높아짐을 의미한다.Applicant compared the average temperature and mass of the conventional heat sink (1) shown in Figure 1 and the illumination heat sink (100) according to an embodiment of the present invention through numerical analysis. 7A and 7B are numerical results of the conventional heat sink 1, and FIGS. 7C and 7D are numerical results of the heat sink 100 for lighting according to an embodiment of the present invention. The temperature distribution on one side is shown. 7A and 7C, the left bar graph means a temperature according to a pattern. As shown in the left bar graphs of FIGS. 7A and 7C, the temperature increases from the bottom to the top.
본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 형상 및 운전조건은 NA=20, LL=50 mm, LM=30 mm, Lf=10 mm, LS=10 mm, LO=46 mm, LD=15 mm, ro=75 mm, ri=10 mm, t=2 mm, 외기온도=30°C, 열유속=700 W/m2, 방사율=0.7 이고, 종래의 히트싱크(1)의 형상은 NA=20, LL=50 mm, LM=30 mm이다. 여기서, NA는 방열핀 어레이의 개수, LL은 제2 방열핀 어레이(또는 길이가 긴 방열핀 어레이)의 길이, LM은 제1 방열핀 어레이(또는 길이가 짧은 방열핀 어레이)의 길이, Lf는 방열핀의 길이, Ls는 방열핀 사이의 거리, LO는 가장자리 방열핀의 높이, LD는 가장자리 방열핀과 이웃하는 방열핀의 높이차, ro는 베이스의 반지름, ri는 베이스의 중심에 형성된 통공의 반지름, t는 방열핀의 두께이다.The shape and operating conditions of the lighting heat sink 100 according to an embodiment of the present invention is N A = 20, L L = 50 mm, L M = 30 mm, L f = 10 mm, L S = 10 mm, L O = 46 mm, L D = 15 mm, r o = 75 mm, r i = 10 mm, t = 2 mm, outside temperature = 30 ° C, heat flux = 700 W / m 2 , emissivity = 0.7, The shape of the heat sink 1 is N A = 20, L L = 50 mm, and L M = 30 mm. Here, N A is the number of heat sink fin array, L L is the length of the second heat sink fin array (or long heat sink fin array), L M is the length of the first heat sink fin array (or short heat sink fin array), L f is the heat sink fin , L s is the distance between the heat sink fins, L O is the height of the edge heat sink fins, L D is the height difference between the edge heat sink fins and the neighboring heat sink fins, r o is the radius of the base, r i is the radius of the hole formed in the center of the base , t is the thickness of the heat radiation fins.
도 7a 내지 도 7d는 기존 모델과 개선된 모델에 대한 수치해석 결과로서 지면과 수직한 면과 수평한 면의 온도분포를 도시한 것이다. 7A to 7D show temperature distributions of the plane perpendicular to the plane and the plane as a result of numerical analysis of the existing and improved models.
도 7a 및 도 7b와 도 7c 및 도 7d를 비교해 보면, 본 발명에 따른 히트싱크의 경우가 베이스의 중심부의 온도가 종래 히트싱크 보다 현저히 낮음을 알 수 있다. 종래의 히트싱크(1)의 경우는 베이스 중심부의 온도가 대략 51℃~54℃인 반면에, 본 발명에 따른 히트싱크(100)의 경우는 베이스 중심부의 온도가 대략 39℃~45℃로 종래 히트싱크 보다 낮음을 알 수 있다. 7A and 7B and 7C and 7D, it can be seen that the temperature of the center of the base of the heat sink according to the present invention is significantly lower than that of the conventional heat sink. In the case of the conventional heat sink 1, the temperature of the center of the base is approximately 51 ° C. to 54 ° C., whereas in the case of the heat sink 100 according to the present invention, the temperature of the center of the base is approximately 39 ° C. to 45 ° C. It can be seen that it is lower than the heat sink.
정확한 수치 결과 데이터는 [표 1]과 같다. Exact numerical result data is shown in [Table 1].
표 1
구분 전열면적(mm2) LO(mm) LD(mm) 유량(10-5 kg/g) 평균온도(℃)
종래기술 4499 21.3 0 3.04 53.12
본 발명 3477 46 15 6.4 44.80
Table 1
division Heat transfer area (mm 2 ) L O (mm) L D (mm) Flow rate (10 -5 kg / g) Average temperature (℃)
Prior art 4499 21.3 0 3.04 53.12
The present invention 3477 46 15 6.4 44.80
본 발명에 따른 히트싱크(100)는 종래기술에 따른 히트싱크(1) 보다 히트싱크의 평균온도가 8.3°C 낮아지고 질량은 동일하였다. 본 발명에 따른 히트싱크(100)는 열전달이 잘 일어나지 않는 베이스(110)의 중심부 쪽의 방열핀의 높이는 줄이고, 열전달 계수가 높은 베이스(110)의 가장자리 쪽의 방열핀의 높이는 높여 냉각유체 또는 냉각공기와 직접 접하는 전열 면적을 증가시킬 수 있다. 따라서, 본 발명에 따른 히트싱크(100)는 히트싱크로 유입되는 냉각유체의 유량을 2배 이상 증가시킬 수 있고, 방열성능도 향상시킬 수 있다. 이와 같이, 본 발명은 종래 히트싱크와 같은 질량을 가짐에도 불구하고 개선된 방열성능을 나타냄을 확인하였다.In the heat sink 100 according to the present invention, the average temperature of the heat sink was 8.3 ° C lower than that of the heat sink 1 according to the related art, and the mass was the same. Heat sink 100 according to the present invention is to reduce the height of the heat radiation fin of the center side of the base 110 is not heat transfer well, the height of the heat radiation fin of the edge side of the base 110 has a high heat transfer coefficient to increase the cooling fluid or cooling air and Direct heat transfer area can be increased. Therefore, the heat sink 100 according to the present invention can increase the flow rate of the cooling fluid flowing into the heat sink more than two times, and can also improve the heat dissipation performance. As such, the present invention was confirmed to exhibit improved heat dissipation performance despite having the same mass as the conventional heat sink.
또한, 본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 제1 방열핀들(121,122) 또는 제2 방열핀들(131,132,133)이, 베이스(110)의 가장자리 쪽에 있는 방열핀의 높이(LO)에 대한 베이스(110)의 중심 쪽에 있는 방열핀의 높이(LI)의 비(LI/LO)가 0.73 이상이 되고 1을 초과하지 않도록 형성될 수 있다. 즉, 가장 긴 방열핀의 높이(LO)에 대한 가장 짧은 방열핀의 높이(LI)의 비(LI/LO)가 0.73≤(LI/LO)<1이 되도록 형성될 수 있다. [표 2]는 방열핀의 높이 비(LO/LI)에 따른 방열성능을 종래 히트싱크와 본 발명에 따른 히트싱크를 비교한 실험결과이다.In addition, the lighting heat sink 100 according to an embodiment of the present invention, the first heat dissipation fins 121, 122 or the second heat dissipation fins 131, 132, 133, the height (L O ) of the heat dissipation fins on the edge side of the base 110 The ratio L I / L O of the height L I of the heat dissipation fin at the center side of the base 110 may be 0.73 or more and may not be greater than one. That is, the ratio L I / L O of the height L I of the shortest heat dissipation fin to the height L O of the longest heat dissipation fin may be 0.73 ≦ (L I / L O ) <1. [Table 2] is a test result comparing the heat sink according to the present invention with the heat dissipation performance according to the height ratio (L O / L I ) of the heat sink.
표 2
구분 소비전력(W/m2) 방열핀어레이개수 LO(mm) LI(mm) LI/LO 질량(kg) 온도(℃) 열저항(℃/W) 열저항개선정도(%)
종래1 700 0.308 57.6 2.268
본발명1 700 27 52.495 38.7 0.74 0.308 44 1.153 49.2
종래2 700 0.269 50.6 1.695
본발명2 700 22 55.072 40.1 0.73 0.269 41.9 0.977 42.4
종래3 1500 0.308 78.4 1.858
본발명3 1500 27 52.668 38.8 0.74 0.308 55.0 0.959 48.4
종래4 1500 0.269 67.3 1.434
본발명4 1500 21 55.072 40.1 0.72 0.269 51.6 0.828 42.3
TABLE 2
division Power Consumption (W / m 2 ) Heat dissipation fin array L O (mm) L I (mm) L I / L O Mass (kg) Temperature (℃) Heat resistance (℃ / W) Thermal resistance improvement (%)
Conventional 1 700 0.308 57.6 2.268
Invention 1 700 27 52.495 38.7 0.74 0.308 44 1.153 49.2
2 700 0.269 50.6 1.695
Invention 2 700 22 55.072 40.1 0.73 0.269 41.9 0.977 42.4
Conventional 3 1500 0.308 78.4 1.858
Invention 3 1500 27 52.668 38.8 0.74 0.308 55.0 0.959 48.4
4 1500 0.269 67.3 1.434
Inventive 4 1500 21 55.072 40.1 0.72 0.269 51.6 0.828 42.3
상기 [표 2]를 참조하면, 본 발명에 따른 조명용 히트싱크(100)는 종래 히트싱크와 질량을 동일하면서도 방열성능은 대략 42~50% 정도 개선됨을 알 수 있다. 이러한 방열성능 개선을 위해서 가장 긴 방열핀의 높이(LO)에 대한 가장 짧은 방열핀의 높이(LI)의 비(LI/LO)가 0.73 이상이되, 1을 초과하지 형성되는 것이 바람직하다.Referring to [Table 2], it can be seen that the lighting heat sink 100 according to the present invention has the same mass as the conventional heat sink but the heat dissipation performance is improved by about 42 to 50%. In order to improve the heat dissipation performance, the ratio L I / L O of the height L I of the shortest heat dissipation fin to the height L O of the longest heat dissipation fin is preferably 0.73 or more, but not more than one.
한편, 본 출원인은 도 7a 내지 도 7d의 수치 해석결과의 타당성을 검증하기 위해서 본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 성능을 실험하기 위한 장치를 만들어 실험을 하였으며, 그 실험결과와 수치해석 결과를 비교하였다.On the other hand, the applicant made an experiment to test the performance of the heat sink 100 for illumination according to an embodiment of the present invention in order to verify the validity of the numerical analysis results of Figure 7a to 7d, the experimental results And numerical results were compared.
도 8은 도 2에 따른 조명용 히트싱크의 방열 성능을 검증하기 위한 실험 장치를 도시한 도면이고, 도 9는 도 8에 따른 실험 장치에 의한 실험 결과와 도 2에 따른 조명용 히트싱크의 수치해석 결과를 비교한 그래프이다.8 is a view showing an experimental apparatus for verifying the heat dissipation performance of the heat sink for lighting according to FIG. 2, Figure 9 is a numerical result of the experimental results by the experimental device according to Figure 8 and the heat sink for lighting according to FIG. This is a graph comparing.
도 8에 도시된 바와 같은 실험 장치(200)를 사용하여 테스트한 조명용 원형 히트싱크(100)의 재질은 알루미늄 6061이며, 세부적인 치수는 방열핀 어레이(120,130)의 개수(NA)=20, 제2 방열핀 어레이(130)의 길이(LL)=45 mm, 제1 방열핀 어레이(120)의 길이(LM)=25 mm, 방열핀(121,122,131~133)의 길이(Lf)=5 mm, 방열핀 사이의 거리(Ls)=5 mm, 베이스(110)의 가장자리 쪽에 있는 방열핀의 높이(LO)=50.3mm, 가장자리 방열핀과 이웃하는 방열핀의 높이차(LD)=8mm, 베이스(110)의 반지름(ro)=75 mm, 베이스(110)의 중심에 형성된 통공(140)의 반지름(ri)=10 mm, 방열핀의 두께(t)=2 mm이다. The material of the circular heat sink 100 for illumination tested using the experimental apparatus 200 as shown in FIG. 8 is aluminum 6061, and the detailed dimension is the number (N A ) = 20 of the heat sink fin arrays 120 and 130. 2 Length L L = 45 mm of the heat dissipation fin array 130, length L M of the first heat dissipation fin array 120 = 25 mm, length L f of the heat dissipation fins 121, 122, 131-133 = 5 mm, heat dissipation fins Distance (L s ) = 5 mm, the height (L O ) of the heat radiation fin on the edge side of the base 110 = 50.3mm, the height difference (L D ) = 8mm of the edge heat radiation fin and the neighboring heat radiation fin, base 110 Radius r o = 75 mm, radius r i of the through hole 140 formed in the center of the base 110 = 10 mm, the thickness of the heat radiation fin (t) = 2 mm.
도 8에 도시된 바와 같이 실험 장치(200)는 필름 히터(210), 조명용 원형 히트싱크(100), 단열재(220), 열전대(230), 데이터 수집 장치(250), 컴퓨터(240), 전원 공급기(270) 및 와트 미터(260)를 포함하여 구성될 수 있다.As shown in FIG. 8, the experimental apparatus 200 includes a film heater 210, a circular heat sink 100 for illumination, a heat insulator 220, a thermocouple 230, a data collection device 250, a computer 240, and a power source. And a supply 270 and a watt meter 260.
실험장치(200)는 조명용 히트싱크(100)에 균일한 열 유속을 전달하기 위해서 필름히터(210)의 윗면 및 아랫면에 1 mm 정도의 얇은 알루미늄 판(미도시)을 삽입할 수 있다. 또한, 접촉 열저항을 최소화하기 위해 각각의 접촉면에서는 써멀 그리스(thermal grease)를 도포할 수 있다. 필름히터(210)의 아래 방향으로 빠져나가는 열 손실을 계산하기 위해 필름히터(201)의 밑에는 두께 5 mm 정도의 아크릴 판(열유속 0.2 W/m·℃)을 설치할 수 있다. Experiment apparatus 200 may insert a thin aluminum plate (not shown) of about 1 mm on the top and bottom of the film heater 210 in order to deliver a uniform heat flux to the heat sink 100 for illumination. In addition, thermal grease can be applied at each contact surface to minimize contact thermal resistance. An acrylic plate (heat flux of 0.2 W / m · ° C.) having a thickness of about 5 mm may be installed under the film heater 201 in order to calculate the heat loss escaping downward of the film heater 210.
도 9를 참조하면, 수치해석의 결과(실선 그래프)와 실험 결과(동그라미 표시)가 상당히 잘 일치함을 볼 수 있는데, 이는 수치 해석 모델이 자연대류를 이용한 본 발명의 일 실시예에 따른 조명용 히트싱크(100)를 정확히 모사하기 때문이다. Referring to Figure 9, it can be seen that the results of the numerical analysis (solid line graph) and the experimental results (circle display) fairly well, which means that the numerical analysis model according to an embodiment of the present invention using natural convection This is because it accurately simulates the sink 100.
상기에서는 본 발명의 일 실시예에 따른 조명용 히트싱크(100)의 베이스(110)는 원형인 경우에 대해서 설명하였으나, 베이스(110)의 모양이 반드시 원형 모양에 한정되는 것은 아니다. 조명용 히트싱크(100)의 베이스(110)는 그 중심에 대해서 대칭적인 모양이라면 어떠한 형상이라도 무방하다. 즉, 정육각형, 정팔각형, 정십각형 등 원형에 가까운 다각형 또는 중심에 대해서 대칭적인 모양이라면 적용될 수 있다.In the above, the base 110 of the heat sink 100 for lighting according to an embodiment of the present invention has been described as having a circular shape, but the shape of the base 110 is not necessarily limited to the circular shape. The base 110 of the illumination heat sink 100 may have any shape as long as it is symmetrical with respect to the center thereof. That is, if the shape is symmetrical about a polygon or a center close to a circle such as a regular hexagon, a regular octagon, a regular pentagon, or the like, it may be applied.
지금까지 설명한 본 발명의 일 실시예에 따른 조명용 히트싱크(100)는 기존의 히트싱크와 비교할 때, 베이스의 가장자리 쪽에 있는 방열핀의 높이를 가장 크게 형성함으로써, 히트싱크의 질량은 기존과 동일하게 유지하고 방열성능을 40% 이상 개선시킬 수 있다.The illumination heat sink 100 according to the embodiment of the present invention described above has the largest height of the heat dissipation fin at the edge of the base as compared with the conventional heat sink, so that the mass of the heat sink is kept the same. And heat dissipation performance can be improved by more than 40%.
이상과 같이 본 발명의 일 실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. As described above, in one embodiment of the present invention has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention in the above embodiment The present invention is not limited thereto, and various modifications and variations can be made by those skilled in the art to which the present invention pertains. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all of the equivalents and equivalents of the claims, as well as the following claims, will fall within the scope of the present invention. .
본 발명은 조명이 필요한 모든 산업분야, 냉각이 필요한 부품이나 장치 등에 이용될 수 있다.The present invention can be used in all industrial fields requiring lighting, parts or devices requiring cooling, and the like.

Claims (11)

  1. 다수개의 LED가 배치되는 기판이 일면에 설치되는 베이스;A base on which a substrate on which a plurality of LEDs are disposed is installed;
    상기 베이스의 타면에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제1 방열핀 어레이; 및A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And
    상기 제1 방열핀 어레이의 사이에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제2 방열핀 어레이;를 포함하며,And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base.
    상기 제1 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제1 방열핀들로 형성되고,Each of the first heat sink fin arrays is formed of a plurality of first heat sink fins arranged on the same line,
    상기 제2 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제2 방열핀들로 형성되며,Each of the second heat sink fin arrays is formed of a plurality of second heat sink fins arranged on the same line.
    상기 제1 방열핀들 및 상기 제2 방열핀들은 상기 베이스의 중심을 향하여 상기 제1 방열핀 어레이와 상기 제2 방열핀 어레이 사이로 유입되는 냉각유체와 방열핀이 접촉하는 전열면적이 상기 베이스의 중심 보다 상기 베이스의 가장자리 쪽이 크도록 형성되는, 조명용 히트싱크.The first heat dissipation fins and the second heat dissipation fins face the center of the base and the heat transfer area between the heat dissipation fin and the cooling fluid introduced between the first heat dissipation fin array and the second heat dissipation fin array is closer to the edge of the base than the center of the base. A heat sink for illumination, which is formed to have a larger side.
  2. 다수개의 LED가 배치되는 기판이 일면에 설치되는 베이스;A base on which a substrate on which a plurality of LEDs are disposed is installed;
    상기 베이스의 타면에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제1 방열핀 어레이; 및A plurality of first heat dissipation fin arrays formed on the other surface of the base and disposed radially at an angle with respect to the center of the base; And
    상기 제1 방열핀 어레이의 사이에 형성되고, 상기 베이스의 중심에 대해서 일정한 각도로 방사상으로 배치된 다수의 제2 방열핀 어레이;를 포함하며,And a plurality of second heat dissipation fin arrays formed between the first heat dissipation fin arrays and disposed radially at an angle with respect to the center of the base.
    상기 제1 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제1 방열핀들로 형성되고, Each of the first heat sink fin arrays is formed of a plurality of first heat sink fins arranged on the same line,
    상기 제2 방열핀 어레이의 각각은 동일 선상에 배치된 다수개의 제2 방열핀들로 형성되며,Each of the second heat sink fin arrays is formed of a plurality of second heat sink fins arranged on the same line.
    상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 상기 제1 방열핀 어레이와 상기 제2 방열핀 어레이 사이로 유입되어 상기 베이스의 중심을 향하는 냉각유체와 처음 접촉하는 방열핀은 상기 베이스의 가장자리 쪽에 존재하도록 형성되는, 조명용 히트싱크.The first heat dissipation fin array and the second heat dissipation fin array are introduced between the first heat dissipation fin array and the second heat dissipation fin array, and the heat dissipation fins for first contact with the cooling fluid toward the center of the base are formed to exist at the edge of the base. Lighting heatsink.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 냉각유체가 최초로 유입되는 냉각유체 유입부는 상기 베이스의 가장자리 쪽에만 형성되는, 조명용 히트싱크.The first heat dissipation fin array and the second heat dissipation fin array are cooling heat inflow portions into which the cooling fluid is first introduced, the heat sink for illumination being formed only at the edge of the base.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1 방열핀 어레이 및 상기 제2 방열핀 어레이는 상기 베이스의 가장자리에서부터 상기 베이스의 중심을 향할수록 방열핀의 높이가 감소하도록 형성되는, 조명용 히트싱크.The first heat dissipation fin array and the second heat dissipation fin array are formed so that the height of the heat dissipation fin decreases from the edge of the base toward the center of the base.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀 어레이 각각의 길이는 상기 제2 방열핀 어레이 각각의 길이보다 짧게 형성되는, 조명용 히트싱크.The length of each of the first heat sink fin array is shorter than the length of each of the second heat sink fin array, heat sink for illumination.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제2 방열핀 어레이의 양단 중 상기 베이스의 중심 가까이에 있는 일단은 상기 제1 방열핀 어레이의 양단 중 상기 베이스의 중심 가까이에 있는 일단 보다 상기 베이스의 중심에 근접하도록 형성되는, 조명용 히트싱크.One end of both ends of the second heat sink fin array near the center of the base is formed to be closer to the center of the base than one of the ends of the first heat sink fin array near the center of the base.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀과 상기 제2 방열핀은 길이가 동일하도록 형성되는, 조명용 히트싱크.The first heat dissipation fin and the second heat dissipation fin are formed to have the same length, the heat sink for illumination.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀 어레이 사이의 각도는 상기 제2 방열핀 어레이 사이의 각도와 동일하도록 형성되는, 조명용 히트싱크.And an angle between the first heat dissipation fin array is equal to an angle between the second heat dissipation fin array.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀 어레이 또는 상기 제2 방열핀 어레이의 일단은 상기 베이스의 가장자리와 일치하도록 형성되는, 조명용 히트싱크.One end of the first heat dissipation fin array or the second heat dissipation fin array is formed to coincide with the edge of the base.
  10. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀들 또는 상기 제2 방열핀들은, 상기 베이스의 가장자리 쪽에 있는 방열핀의 높이에 대한 상기 베이스의 중심 쪽에 있는 방열핀의 높이의 비가 0.73 이상이 되고 1을 초과하지 않도록 형성되는, 조명용 히트싱크.And the first heat dissipation fins or the second heat dissipation fins are formed such that a ratio of the height of the heat dissipation fin at the center side of the base to the height of the heat dissipation fin at the edge side of the base is not less than 0.73 and does not exceed one.
  11. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 방열핀의 개수는 상기 제2 방열핀의 개수와 다르게 형성되는, 조명용 히트싱크.The number of the first heat dissipation fins is formed differently from the number of the second heat dissipation fins, lighting heat sink.
PCT/KR2013/006086 2012-08-14 2013-07-09 Heat sink for lighting WO2014027755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120088732A KR101466734B1 (en) 2012-08-14 2012-08-14 Heatsink used in lighting device
KR10-2012-0088732 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014027755A1 true WO2014027755A1 (en) 2014-02-20

Family

ID=50268443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006086 WO2014027755A1 (en) 2012-08-14 2013-07-09 Heat sink for lighting

Country Status (2)

Country Link
KR (1) KR101466734B1 (en)
WO (1) WO2014027755A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581324B2 (en) * 2015-01-22 2017-02-28 Champ Tech Optical (Foshan) Corporation LED illumination device having a heat sink with a plurality of sets of fins defining air tunnels of different sizes
US20170241721A1 (en) * 2016-02-19 2017-08-24 Enzotechnology Corp. Heat sink with designed thermal conudctor arrangement
EP3336423A1 (en) 2016-12-14 2018-06-20 Gifas Beteiligungen GmbH Lighting device, a method for producing a base body and/or cooling element of the illumination device and their use
US11879629B2 (en) 2022-03-31 2024-01-23 RAB Lighting Inc. LED light fixture with a heat sink having concentrically segmented fins
USD1025431S1 (en) 2021-04-28 2024-04-30 RAB Lighting Inc. LED light fixture with concentric heatsinks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030245A1 (en) * 2015-08-18 2017-02-23 주식회사 레딕스 Led heat-radiating structure and led lighting lamp using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110101936A (en) * 2010-03-10 2011-09-16 삼성엘이디 주식회사 Heat sink and illuminating device having the same
KR20110124957A (en) * 2010-05-12 2011-11-18 주식회사 옵토레딕스 Heat sink for led lighting apparatus
KR20120032115A (en) * 2010-09-28 2012-04-05 우리조명 주식회사 Light emitting device
KR101137888B1 (en) * 2011-09-28 2012-04-24 한양대학교 산학협력단 Heatsink used in lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110101936A (en) * 2010-03-10 2011-09-16 삼성엘이디 주식회사 Heat sink and illuminating device having the same
KR20110124957A (en) * 2010-05-12 2011-11-18 주식회사 옵토레딕스 Heat sink for led lighting apparatus
KR20120032115A (en) * 2010-09-28 2012-04-05 우리조명 주식회사 Light emitting device
KR101137888B1 (en) * 2011-09-28 2012-04-24 한양대학교 산학협력단 Heatsink used in lighting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581324B2 (en) * 2015-01-22 2017-02-28 Champ Tech Optical (Foshan) Corporation LED illumination device having a heat sink with a plurality of sets of fins defining air tunnels of different sizes
US20170241721A1 (en) * 2016-02-19 2017-08-24 Enzotechnology Corp. Heat sink with designed thermal conudctor arrangement
EP3336423A1 (en) 2016-12-14 2018-06-20 Gifas Beteiligungen GmbH Lighting device, a method for producing a base body and/or cooling element of the illumination device and their use
USD1025431S1 (en) 2021-04-28 2024-04-30 RAB Lighting Inc. LED light fixture with concentric heatsinks
US11879629B2 (en) 2022-03-31 2024-01-23 RAB Lighting Inc. LED light fixture with a heat sink having concentrically segmented fins

Also Published As

Publication number Publication date
KR101466734B1 (en) 2014-12-01
KR20140022555A (en) 2014-02-25

Similar Documents

Publication Publication Date Title
WO2014027755A1 (en) Heat sink for lighting
WO2011025238A2 (en) Led lightbulb
WO2013151219A1 (en) Bulb-type led lighting apparatus
US20100142199A1 (en) Led illuminating device
US20130056767A1 (en) Led unit
WO2011118992A2 (en) Led lighting module and lighting lamp using same
WO2013176355A1 (en) Optical semiconductor illumination device
WO2013027872A1 (en) Heat sink and lighting apparatus having same
US11131505B2 (en) Finned heat-exchange system
WO2011078505A2 (en) Led module with cooling passage
JP6006379B2 (en) Light irradiation device
WO2017023015A1 (en) Flood light
KR100947170B1 (en) Projection led cooling device using thermoelectric module
KR101137888B1 (en) Heatsink used in lighting device
WO2011030949A1 (en) Light-emitting diode lamp
WO2014027754A1 (en) Heat sink for lighting
KR20100118401A (en) Lighting apparatus using led
CN217181387U (en) Radiator and photographic lamp
KR20160095408A (en) Heat sink
KR102377673B1 (en) The Radiant Heat Structure For A LED Lamp
TW201708771A (en) Light emitting device
CN111140799A (en) Lamp set
TW201346178A (en) LED lighting device
KR102040415B1 (en) High heat dissipation structure of led module and led lighting apparatus
WO2016208824A1 (en) Cob lighting device having improved light-distribution, illuminance, and heat -dissipation efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879490

Country of ref document: EP

Kind code of ref document: A1