WO2014027618A1 - Thin film transistor - Google Patents

Thin film transistor Download PDF

Info

Publication number
WO2014027618A1
WO2014027618A1 PCT/JP2013/071630 JP2013071630W WO2014027618A1 WO 2014027618 A1 WO2014027618 A1 WO 2014027618A1 JP 2013071630 W JP2013071630 W JP 2013071630W WO 2014027618 A1 WO2014027618 A1 WO 2014027618A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ene
acid
hept
thin film
Prior art date
Application number
PCT/JP2013/071630
Other languages
French (fr)
Japanese (ja)
Inventor
彰洋 田邉
幸枝 伊東
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014530540A priority Critical patent/JP6164218B2/en
Publication of WO2014027618A1 publication Critical patent/WO2014027618A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a thin film transistor, and more particularly to a thin film transistor having high mobility, a large on / off ratio, and a small leakage current.
  • Such a thin film transistor is configured, for example, by forming a gate electrode, a gate insulating film, a semiconductor layer, a source electrode, and a drain electrode on the surface of a substrate.
  • the gate insulating film located under the semiconductor film is exposed to a high temperature condition or a plasma generation environment. Therefore, the gate insulating film deteriorates due to the influence of heat and plasma generated when forming the semiconductor film, and as a result, the on / off ratio decreases and the leakage current increases. There is.
  • An object of the present invention is to provide a thin film transistor having a high mobility, a large on / off ratio, and a small leakage current.
  • the present inventors have found that in a thin film transistor including a gate insulating film and a semiconductor layer formed on the gate insulating film, the semiconductor layer is made of a specific amorphous oxide semiconductor. And a gate insulating film comprising a cyclic olefin polymer having a protic polar group and an epoxy crosslinking agent having two or more epoxy groups in the molecule that react with the protic polar group It has been found that the above object can be achieved by constituting the composition, and the present invention has been completed.
  • a thin film transistor comprising a gate insulating film and a semiconductor layer formed on the gate insulating film, wherein the semiconductor layer is at least one element of In, Ga, and Zn.
  • the gate insulating film is composed of a cyclic olefin polymer (A) having a protic polar group and an epoxy group that reacts with the protic polar group in the molecule.
  • a thin film transistor comprising a resin composition containing the epoxy-based crosslinking agent (B) having the above is provided.
  • the content of the epoxy crosslinking agent (B) in the resin composition is 10 to 100 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
  • the resin composition contains two or more different compounds as the epoxy-based crosslinking agent (B).
  • the resin composition further contains a melamine-based crosslinking agent (C).
  • the content of the melamine crosslinking agent (C) in the resin composition is 10 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
  • the thin film transistor includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, a semiconductor layer provided on a surface of the gate insulating film, A source electrode and a drain electrode provided on a surface, wherein the semiconductor layer is formed of a sputtered film made of an amorphous oxide semiconductor containing at least one element of In, Ga, and Zn, and the gate insulating film And a resin composition containing a cyclic olefin polymer having a protic polar group (A) and an epoxy-based crosslinking agent (B) having two or more epoxy groups in the molecule that react with the protic polar group.
  • A protic polar group
  • B epoxy-based crosslinking agent
  • the thin film transistor includes a gate electrode provided on the substrate, a gate insulating film provided to cover the gate electrode, and a source provided to cover a part of the surface of the gate insulating film.
  • a thin film transistor includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, a semiconductor layer provided on a surface of the gate insulating film, An etch stopper provided on a part of the surface; and a source electrode and a drain electrode provided on a surface of the semiconductor layer and a part of the surface of the etch stopper, wherein the semiconductor layer is selected from In, Ga, and Zn It is composed of a sputtered film made of an amorphous oxide semiconductor containing at least one element, and the gate insulating film has a cyclic olefin polymer (A) having a protic polar group and an epoxy group that reacts with the protic polar group And a resin composition containing an epoxy-based crosslinking agent (B) having 2 or more in the molecule It is possible.
  • A cyclic olefin polymer
  • A having a protic polar group and an epoxy group that reacts with the protic polar group
  • the present invention it is possible to provide a thin film transistor having a high mobility, a large on / off ratio, and a small leakage current.
  • FIG. 1 is a cross-sectional view showing an example of a thin film transistor according to the present invention.
  • FIG. 2 is a cross-sectional view showing another example (second example) of the thin film transistor according to the present invention.
  • FIG. 3 is a diagram showing a method of manufacturing a thin film transistor according to the present invention.
  • FIG. 4 is a sectional view showing another example (third example) of the thin film transistor according to the present invention.
  • the thin film transistor of the present invention is a thin film transistor including a gate insulating film and a semiconductor layer formed on the gate insulating film, and the semiconductor layer contains at least one element of In, Ga, and Zn.
  • the gate insulating film comprises a cyclic olefin polymer (A) having a protic polar group and two or more epoxy groups that react with the protic polar group in the molecule. It is comprised from the resin composition containing an epoxy type crosslinking agent (B), It is characterized by the above-mentioned.
  • A cyclic olefin polymer having a protic polar group and two or more epoxy groups that react with the protic polar group in the molecule. It is comprised from the resin composition containing an epoxy type crosslinking agent (B), It is characterized by the above-mentioned.
  • B epoxy type crosslinking agent
  • the resin composition for forming the gate insulating film used in the present invention is composed of a cyclic olefin polymer (A) having a protic polar group and an epoxy system having two or more epoxy groups in the molecule that react with the protic polar group.
  • cyclic olefin polymer (A) having a protic polar group used in the present invention is a polymer of one or two or more cyclic olefin monomers, Alternatively, a copolymer of one or two or more cyclic olefin monomers and a monomer copolymerizable therewith can be mentioned, and in the present invention, for forming the cyclic olefin polymer (A).
  • the monomer it is preferable to use a cyclic olefin monomer (a) having at least a protic polar group.
  • the protic polar group means a group containing an atom in which a hydrogen atom is directly bonded to an atom belonging to Group 15 or Group 16 of the Periodic Table.
  • atoms belonging to Group 15 or Group 16 of the periodic table atoms belonging to Group 1 or 2 of Group 15 or Group 16 of the Periodic Table are preferable, and oxygen atoms, nitrogen atoms or sulfur are more preferable.
  • protic polar groups include polar groups having oxygen atoms such as hydroxyl groups, carboxy groups (hydroxycarbonyl groups), sulfonic acid groups, phosphoric acid groups; primary amino groups, secondary amino groups A polar group having a nitrogen atom such as a primary amide group or a secondary amide group (imide group); a polar group having a sulfur atom such as a thiol group; Among these, those having an oxygen atom are preferable, and a carboxy group is more preferable.
  • the number of protic polar groups bonded to the cyclic olefin resin having a protic polar group is not particularly limited, and different types of protic polar groups may be included.
  • cyclic olefin monomer (a) having a protic polar group examples include 2-hydroxycarbonylbicyclo [2.2.1] hept- 5-ene, 2-methyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2-carboxymethyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2 , 3-dihydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2-hydroxycarbonyl-3-hydroxycarbonylmethylbicyclo [2.2.1] hept-5-ene, 3-methyl-2-hydroxy Carbonylbicyclo [2.2.1] hept-5-ene, 3-hydroxymethyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2- Mud butoxycarbonyl tricyclo [5.2.1.0 2, 6] deca-3,8-diene, 4-hydroxy carbonyl tetracyclo [6.2.1.1
  • Carboxy groups such as hept-5-ene-2,3-dicarboximide and N- (hydroxycarbonylphenyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide Containing cyclic olefins; 2- (4-hydroxyphenyl) bicyclo [2.2.1] hept-5-ene, 2-methyl-2- (4-hydroxyphenyl) bicyclo [2.2.1] hept-5- Ene, 4- (4-hydroxyphenyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4- (4-hydroxyphenyl) tetracyclo [6.2.1.1 3,6 .
  • dodec-9-ene 4-hydroxymethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4,5-dihydroxymethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4- (hydroxyethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4- (hydroxyethoxycarbonyl) tetracyclo [6.2.1.1 3,6 .
  • the content ratio of the monomer (a) unit in the cyclic olefin polymer (A) is preferably 10 to 90 mol%, more preferably 20 to 80 mol%, based on all monomer units. More preferably, it is 30 to 70 mol%.
  • the cyclic olefin polymer (A) has sufficient solubility in a polar solvent, and strength and insulation in the case of a gate insulating film. The property can be improved.
  • the cyclic olefin polymer (A) used in the present invention is obtained by copolymerizing a cyclic olefin monomer (a) having a protic polar group and a monomer (b) copolymerizable therewith. It may be a copolymer.
  • copolymerizable monomers include cyclic olefin monomers (b1) having polar groups other than protic polar groups, cyclic olefin monomers having no polar groups (b2), and cyclic olefins.
  • Monomer (b3) hereinafter referred to as “monomer (b1)”, “monomer (b2)”, “monomer (b3)” as appropriate).
  • Examples of the cyclic olefin monomer (b1) having a polar group other than the protic polar group include N-substituted imide groups, ester groups, cyano groups, and cyclic olefins having a halogen atom.
  • Examples of the cyclic olefin having an N-substituted imide group include a monomer represented by the following formula (1) or a monomer represented by the following formula (2).
  • R 1 .n represents an alkyl group or an aryl group having 1 to 16 carbon hydrogen or carbon is 1 to 2 integer.
  • R 2 is a divalent alkylene group having 1 to 3 carbon atoms
  • R 3 is a monovalent alkyl group having 1 to 10 carbon atoms
  • R 1 is an alkyl group or aryl group having 1 to 16 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n group -Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n -Linear alkyl groups such as pentadecyl group and n-hexadecyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group,
  • Alkyl group 2-propyl group, 2-butyl group, 2-methyl-1-propyl group, 2-methyl-2-propyl group, 1-methylbutyl group, 2-methylbutyl group, 1-methylpentyl group, 1-ethylbutyl Groups, branched alkyl groups such as 2-methylhexyl group, 2-ethylhexyl group, 4-methylheptyl group, 1-methylnonyl group, 1-methyltridecyl group, 1-methyltetradecyl group, and the like.
  • Specific examples of the aryl group include a benzyl group.
  • an alkyl group and an aryl group having 6 to 14 carbon atoms are preferable, and an alkyl group and an aryl group having 6 to 10 carbon atoms are more preferable because of excellent heat resistance and solubility in a polar solvent.
  • the carbon number is 4 or less, the solubility in a polar solvent is poor, and when the carbon number is 17 or more, the heat resistance is poor.
  • the monomer represented by the above formula (1) include bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-phenyl-bicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N-methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-ethylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N-propylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-butylbicyclo [2.2.
  • dodec-9-ene-4,5-dicarboximide N- (2,4-dimethoxyphenyl) -tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboximide and the like. These may be used alone or in combination of two or more.
  • R 2 is a divalent alkylene group having 1 to 3 carbon atoms.
  • the divalent alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a propylene group, and an isovalent group.
  • a propylene group is mentioned.
  • a methylene group and an ethylene group are preferable because of good polymerization activity.
  • R 3 is a monovalent alkyl group having 1 to 10 carbon atoms or a monovalent halogenated alkyl group having 1 to 10 carbon atoms.
  • the monovalent alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, hexyl group and cyclohexyl group. .
  • Examples of the monovalent halogenated alkyl group having 1 to 10 carbon atoms include a fluoromethyl group, a chloromethyl group, a bromomethyl group, a difluoromethyl group, a dichloromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, Examples include 2,2,2-trifluoroethyl group, pentafluoroethyl group, heptafluoropropyl group, perfluorobutyl group, and perfluoropentyl group. Among these, because of excellent solubility in polar solvents, as R 3, methyl and ethyl are preferred.
  • the monomers represented by the above formulas (1) and (2) can be obtained, for example, by an amidation reaction between a corresponding amine and 5-norbornene-2,3-dicarboxylic acid anhydride.
  • the obtained monomer can be efficiently isolated by separating and purifying the reaction solution of the amidation reaction by a known method.
  • Examples of the cyclic olefin having an ester group include 2-acetoxybicyclo [2.2.1] hept-5-ene, 2-acetoxymethylbicyclo [2.2.1] hept-5-ene, and 2-methoxycarbonyl.
  • cyclic olefin having a cyano group for example, 4-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4,5-dicyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 2-cyanobicyclo [2.2.1] hept-5-ene, 2-methyl-2-cyanobicyclo [2.2.1] hept-5-ene, 2 , 3-dicyanobicyclo [2.2.1] hept-5-ene, and the like.
  • cyclic olefin having an acid anhydride group examples include, for example, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboxylic anhydride, bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, 2-carboxymethyl-2- Hydroxycarbonylbicyclo [2.2.1] hept-5-ene anhydride, and the like.
  • Examples of the cyclic olefin having a halogen atom include 2-chlorobicyclo [2.2.1] hept-5-ene, 2-chloromethylbicyclo [2.2.1] hept-5-ene, 2- (chlorophenyl). ) Bicyclo [2.2.1] hept-5-ene, 4-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene and the like.
  • These monomers (b1) may be used alone or in combination of two or more.
  • cyclic olefin monomer (b2) having no polar group examples include bicyclo [2.2.1] hept-2-ene (also referred to as “norbornene”), 5-ethyl-bicyclo [2.2.1]. Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [2.
  • hept-2-ene 5-vinyl-bicyclo [2.2.1] hept-2-ene, tricyclo [5.2.1.0 2,6 ] deca-3,8-diene (conventional name: dicyclopentadiene), tetracyclo [10.2.1.0 2,11. 0 4,9 ] pentadeca-4,6,8,13-tetraene, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene (also referred to as “tetracyclododecene”), 9-methyl-tetracyclo [6.2.1.1 3,6 .
  • dodec-4-ene pentacyclo [9.2.1.1 3,9 . 0 2,10 . 0 4,8 ] pentadeca-5,12-diene, cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, cycloheptene, cyclooctene, cyclooctadiene, indene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H -Indene, 9-phenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7] dodeca-4-ene, tetracyclo [9.2.1.0 2,10.
  • the monomer (b3) other than the cyclic olefin examples include ethylene; propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3- Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, ⁇ -olefins having 2 to 20 carbon atoms such as 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc .; 1,5 Non-conjugated dienes such as hexadiene, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1
  • the cyclic olefin monomer (b1) having a polar group other than the protic polar group is preferable from the viewpoint that the effect of the present invention becomes more remarkable.
  • a cyclic olefin having an N-substituted imide group is particularly preferred.
  • the content ratio of the copolymerizable monomer (b) unit in the cyclic olefin polymer (A) is preferably 10 to 90 mol%, more preferably 20 to 80%, based on all monomer units.
  • the mol% is more preferably 30 to 70 mol%.
  • the cyclic olefin polymer (A) has sufficient solubility in the polar solvent, and the gate insulating film is formed. The strength and insulation at can be improved.
  • a cyclic olefin polymer (A) by introduce
  • a polymer having no protic polar group is obtained by polymerizing at least one of the above-described monomers (b1) and (b2) and optionally combining the monomer (b3) as necessary. be able to.
  • a compound having a protic polar group and a reactive carbon-carbon unsaturated bond in one molecule is usually used.
  • Specific examples of such compounds include acrylic acid, methacrylic acid, angelic acid, tiglic acid, oleic acid, elaidic acid, erucic acid, brassic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, atropaic acid.
  • Unsaturated carboxylic acids such as acid and cinnamic acid; allyl alcohol, methyl vinyl methanol, crotyl alcohol, methallyl alcohol, 1-phenylethen-1-ol, 2-propen-1-ol, 3-butene-1- All, 3-buten-2-ol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-buten-2-ol, 2-methyl- Unsatisfactory such as 3-buten-1-ol, 4-penten-1-ol, 4-methyl-4-penten-1-ol, 2-hexen-1-ol Alcohol; and the like.
  • the modification reaction of the polymer using these modifiers may be performed according to a conventional method, and is usually performed in the presence of a radical generator.
  • the cyclic olefin polymer (A) used in the present invention may be a ring-opening polymer obtained by ring-opening polymerization of the above-mentioned monomer, or an addition polymer obtained by addition polymerization of the above-mentioned monomer. Although it may be a polymer, it is preferably a ring-opening polymer from the viewpoint that the effect of the present invention becomes more remarkable.
  • the ring-opening polymer comprises a ring-opening metathesis polymerization of a cyclic olefin monomer having a protic polar group (a) and a copolymerizable monomer (b) used as necessary in the presence of a metathesis reaction catalyst.
  • a cyclic olefin monomer having a protic polar group
  • b copolymerizable monomer used as necessary in the presence of a metathesis reaction catalyst.
  • As the production method for example, methods described in [0039] to [0079] of International Publication No. 2010/110323 can be used.
  • the weight average molecular weight (Mw) of the cyclic olefin polymer (A) used in the present invention is usually 1,000 to 1,000,000, preferably 1,500 to 100,000, more preferably 2,000 to 10 , 000.
  • the molecular weight distribution of the cyclic olefin polymer (A) is usually 4 or less, preferably 3 or less, more preferably 2.5 or less, as a weight average molecular weight / number average molecular weight (Mw / Mn) ratio.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the cyclic olefin polymer (A) are converted into polystyrene values by gel permeation chromatography (GPC) using a solvent such as tetrahydrofuran as an eluent. Is the value obtained as
  • Epoxy-based cross-linking agent (B) having two or more epoxy groups in the molecule contains an epoxy group that reacts with the protic polar group of the cyclic olefin polymer (A) in the molecule. 2 or more contains an epoxy-based crosslinking agent (B) (hereinafter simply referred to as “epoxy-based crosslinking agent (B)”).
  • the resin composition for forming the gate insulating film as the resin composition for forming the gate insulating film, the heat resistance of the gate insulating film obtained by using the resin composition containing the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B). And the plasma resistance can be improved, so that even when sputtering is performed to form a semiconductor film, deterioration of the gate insulating film due to heat and plasma generated when the sputtering is performed is reduced. It can be effectively prevented.
  • the obtained thin film transistor can have high mobility, a large on / off ratio, and a small leakage current.
  • the epoxy crosslinking agent (B) used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule that react with the protic polar group of the cyclic olefin polymer (A). Moreover, as an epoxy group, either a terminal epoxy group or an alicyclic epoxy group may be sufficient.
  • Examples of such an epoxy crosslinking agent (B) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyphenol type epoxy resin, cycloaliphatic epoxy resin, Examples thereof include glycidyl ether compounds and epoxy acrylate polymers.
  • epoxy-based crosslinking agent (B) examples include a trifunctional epoxy compound having a dicyclopentadiene skeleton (trade name “XD-1000”, manufactured by Nippon Kayaku Co., Ltd.), 2,2-bis (hydroxymethyl). ) 1,2-Epoxy-4- (2-oxiranyl) cyclohexane adduct of 1-butanol (15 functional alicyclic epoxy resin having cyclohexane skeleton and terminal epoxy group, trade name “EHPE3150”, Daicel Chemical Industries, Ltd.) ), Epoxidized 3-cyclohexene-1,2-dicarboxylate bis (3-cyclohexenylmethyl) modified ⁇ -caprolactone (aliphatic cyclic trifunctional epoxy resin, trade name “Epolide GT301”, manufactured by Daicel Chemical Industries, Ltd.) ), Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -capro An epoxy compound having an ali
  • Aromatic amine type polyfunctional epoxy compound (trade name “H-434”, manufactured by Tohto Kasei Kogyo Co., Ltd.), cresol novolac type polyfunctional epoxy compound (trade name “EOCN-1020”, manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type Polyfunctional epoxy compounds (Epicoat 152, 154, manufactured by Japan Epoxy Resin Co., Ltd.), polyfunctional epoxy compounds having a naphthalene skeleton (trade name EXA-4700, manufactured by Dainippon Ink & Chemicals, Inc.), chain alkyl polyfunctional epoxy compounds (products) Name “SR-TMP” (Sakamoto Yakuhin Kogyo Co., Ltd.), polyfunctional epoxy polybutadiene (trade name “Epolide PB3600”, Daicel Chemical Industries, Ltd.), glycerin glycidyl polyether compound (trade name “SR-GLG”, Sakamoto) Yakuhin Kogyo Co., Ltd.), diglycerin polygly
  • epoxy-based crosslinking agents (B) a compound having an alicyclic structure is preferable, and an epoxy group having an alicyclic structure is preferable because the effect of improving the heat resistance of the obtained gate insulating film is high.
  • a compound having 3 or more is more preferable.
  • the heat resistance and plasma resistance of the obtained gate insulating film can be further improved, whereby when sputtering is performed when sputtering is performed to form a semiconductor film.
  • a combination of two or more different compounds as the epoxy-based crosslinking agent (B) from the viewpoint that the effect of suppressing deterioration of the gate insulating film due to generated heat and plasma can be further enhanced.
  • the two or more different compounds may be used in combination of two or more compounds whose chemical structures can be determined to be substantially different.
  • the above-described compounds may be used in appropriate combination.
  • a compound having a molecular weight (Mw) of less than 1,000 (preferably 800 or less) and a molecular weight (Mw) of 1,000 or more preferably are preferably used in combination with 2,000 or more compounds.
  • Mw molecular weight
  • the content of the epoxy crosslinking agent (B) in the resin composition used in the present invention is preferably 10 to 100 parts by weight, more preferably 20 to 70 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Part, more preferably 40 to 60 parts by weight.
  • the resin composition for forming the gate insulating film used in the present invention further contains a melamine-based crosslinking agent (C) in addition to the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B) described above. Preferably it is.
  • a melamine-based crosslinking agent (C) in addition to the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B) described above.
  • it is.
  • the effect of suppressing deterioration of the gate insulating film due to heat and plasma generated when sputtering is performed can be further enhanced.
  • the melamine-based crosslinking agent (C) used in the present invention has a melamine skeleton and reacts with the cyclic olefin polymer (A) to form a crosslinked structure between the cyclic olefin polymers (A).
  • a compound represented by the following formula (3) can be preferably used.
  • R 4 to R 9 each independently represents a hydrogen atom or —CH 2 OR 10 group (where R 10 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and R 4 At least one of -R 9 is a -CH 2 OR 10 group.
  • R 4 to R 9 may be the same or different from each other.
  • an alkoxymethyl group in which R 10 has 1 to 4 carbon atoms is preferable.
  • a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group are preferable, and a methoxymethyl group is particularly preferable.
  • melamine-based crosslinking agent (C) examples include methylol groups such as N, N, N ′, N ′, N ′′, N ′′-(hexaalkoxyalkyl) melamine, imino groups, and the like.
  • Good melamines (trade names “Cymel 303, Cymel 325, Cymel 350, Cymel 370, Cymel 232, Cymel 235, Cymel 272, Cymel 212, My Coat 506” ⁇ and above, made by Cytec Industries, Inc. ⁇ My coat series).
  • the content of the melamine crosslinking agent (C) in the resin composition used in the present invention is preferably 10 to 100 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Parts, more preferably 20 to 50 parts by weight.
  • the content of the melamine crosslinking agent (C) is related to the content of the epoxy crosslinking agent (B) described above, and the weight of “epoxy crosslinking agent (B): melamine crosslinking agent (C)”.
  • the ratio is preferably in the range of 1: 3 to 3: 1 and more preferably in the range of 1: 2 to 2: 1.
  • the resin composition used in the present invention may further contain a solvent.
  • the solvent is not particularly limited, and is known as a resin composition solvent such as acetone, methyl ethyl ketone, cyclopentanone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2- Linear ketones such as octanone, 3-octanone and 4-octanone; alcohols such as n-propyl alcohol, isopropyl alcohol, n-butyl alcohol and cyclohexanol; ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether and dioxane Alcohol alcohols such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propyl formate, butyl formate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate Esters such as
  • solvents may be used alone or in combination of two or more.
  • the content of the solvent is preferably in the range of 10 to 10,000 parts by weight, more preferably 50 to 5000 parts by weight, and further preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
  • the solvent is usually removed after forming the gate insulating film.
  • the resin composition used in the present invention is an antioxidant, a surfactant, a compound having an acidic group or a heat-latent acidic group, a coupling agent, or the like, as long as the effect of the present invention is not inhibited. It may contain other compounding agents such as derivatives, sensitizers, light stabilizers, antifoaming agents, pigments, dyes and fillers. Among these, for example, those described in JP 2011-75609 A can be used as the coupling agent or derivative thereof, the sensitizer, and the light stabilizer.
  • antioxidant Although it does not specifically limit as antioxidant, for example, the phenolic antioxidant, phosphorus antioxidant, sulfur antioxidant, amine antioxidant, lactone type oxidation which are used for the usual polymer are used. An inhibitor or the like can be used. By containing an antioxidant, the light resistance and heat resistance of the obtained gate insulating film can be improved.
  • phenolic antioxidant conventionally known ones can be used, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate-based compounds described in the publication No.
  • 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3,5) -Dimethylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3-methyl-5-t-butylanilino) -2,4-bis-octylthio-1, Triazine group-containing phenolic compounds such as 3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine; Can be used.
  • the phosphorus antioxidant is not particularly limited as long as it is usually used in the general resin industry.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • sulfur-based antioxidant examples include dilauryl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, laurylstearyl 3,3 ′.
  • -Thiodipropionate pentaerythritol-tetrakis- ( ⁇ -lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] Undecane or the like can be used.
  • phenolic antioxidants are preferable, and pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] is more preferable. These antioxidants can be used alone or in combination of two or more.
  • the content of the antioxidant in the resin composition used in the present invention is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Part.
  • the content of the antioxidant is in the above range, the light resistance and heat resistance of the obtained gate insulating film can be improved.
  • Surfactant is used for the purpose of preventing striations (after coating).
  • the surfactant include silicone surfactants, fluorine surfactants, polyoxyalkylene surfactants, methacrylic acid copolymer surfactants, and acrylic acid copolymer surfactants. it can.
  • silicone surfactant examples include “SH28PA”, “SH29PA”, “SH30PA”, “ST80PA”, “ST83PA”, “ST86PA”, “SF8416”, “SH203”, “SH230”, “SF8419”, “SF8422”, “FS1265”, “SH510”, “SH550”, “SH710”, “SH8400”, “SF8410”, “SH8700”, “SF8427” (above, manufactured by Toray Dow Corning Co., Ltd.), product name “ “KP-321”, “KP-323”, “KP-324”, “KP-340”, “KP-341” (manufactured by Shin-Etsu Chemical Co., Ltd.), trade names “TSF400”, “TSF401”, “ “TSF410”, “TSF4440”, “TSF4445”, “TSF4450”, “T “F4446”, “TSF4452”, “TSF4460” (manufactured by Momentive Performance Materials Japan GK), product names “BYK300”, “BYK301”, “B
  • fluorosurfactant examples include Fluorinert “FC-430”, “FC-431” (manufactured by Sumitomo 3M Limited), Surflon “S-141”, “S-145”, “S-381”. , “S-393” (manufactured by Asahi Glass Co., Ltd.), EFtop (registered trademark) “EF301”, “EF303”, “EF351”, “EF352” (manufactured by Gemco Co., Ltd.), Megafuck (registered trademark) ) “F171”, “F172”, “F173”, “R-30” (above, manufactured by DIC Corporation).
  • polyoxyalkylene surfactant examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, and the like. And polyethylene glycol dilaurate, polyethylene glycol distearate polyoxyethylene dialkyl esters, and the like. These surfactants can be used alone or in combination of two or more.
  • the content of the surfactant in the resin composition used in the present invention is preferably 0.01 to 0.5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the cyclic olefin polymer (A). 02 to 0.2 parts by weight.
  • the content of the surfactant is in the above range, the effect of preventing striation (after the application stripe) can be further enhanced.
  • the compound having an acidic group or a thermal latent acidic group is not particularly limited as long as it has an acidic group or a thermal latent acidic group that generates an acidic group by heating, but is preferably an aliphatic compound, an aromatic compound, Heterocyclic compounds, more preferably aromatic compounds and heterocyclic compounds. These compounds having an acidic group or a heat-latent acidic group can be used alone or in combination of two or more.
  • the number of acidic groups and thermal latent acidic groups of the compound having an acidic group or thermal latent acidic group is not particularly limited, but those having a total of two or more acidic groups and / or thermal latent acidic groups are preferable. .
  • the acidic group or the heat latent acidic group may be the same as or different from each other.
  • the acidic group may be any acidic functional group, and specific examples thereof include strongly acidic groups such as sulfonic acid group and phosphoric acid group; weak acidic groups such as carboxy group, thiol group and carboxymethylenethio group; Can be mentioned. Among these, a carboxy group, a thiol group or a carboxymethylenethio group is preferable, and a carboxy group is particularly preferable.
  • the first dissociation constant pKa1 is an acid dissociation constant and the first dissociation constant pKa1 is in the above range.
  • BH represents an organic acid
  • B ⁇ represents a conjugate base of the organic acid.
  • the measuring method of pKa can calculate hydrogen ion concentration, for example using a pH meter, and can calculate from the density
  • the heat-latent acidic group may be any group that generates an acidic functional group upon heating. Specific examples thereof include a sulfonium base, a benzothiazolium base, an ammonium base, a phosphonium base, a block carboxylic acid group, and the like. Is mentioned. Among these, a block carboxylic acid group is preferable.
  • the carboxy group blocking agent used to obtain the blocked carboxylic acid group is not particularly limited, but is preferably a vinyl ether compound.
  • the compound having an acidic group or a thermal latent acidic group may have a substituent other than the acidic group and the thermal latent acidic group.
  • substituents in addition to hydrocarbon groups such as alkyl groups and aryl groups, halogen atoms; alkoxy groups, aryloxy groups, acyloxy groups, heterocyclic oxy groups; substituted with alkyl groups, aryl groups, or heterocyclic groups Polar groups having no proton such as amino group, acylamino group, ureido group, sulfamoylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group; alkylthio group, arylthio group, heterocyclic thio group; Examples thereof include a hydrocarbon group substituted with a polar group having no proton.
  • specific examples of the compound having an acidic group include methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, butanoic acid, pentanoic acid, hexanoic acid.
  • Heptanoic acid Heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, glycolic acid, glyceric acid, ethanedioic acid (also referred to as “oxalic acid”), propanedioic acid (also referred to as “malonic acid”), butanedioic acid (“ Succinic acid “), pentanedioic acid, hexanedioic acid (also called” adipic acid “), 1,2-cyclohexanedicarboxylic acid, 2-oxopropanoic acid, 2-hydroxybutanedioic acid, 2-hydroxypropane Tricarboxylic acid, mercapto succinic acid, dimercapto succinic acid, 2,3-dimercapto-1-propanol, 1,2,3-trimercaptopropane, 2,3,4-trimercapto-1-butanol, 2,4-dimercapto-1,3-butan
  • a compound obtained by converting the acidic group of the compound having an acidic group into a thermal latent acidic group is used.
  • 1,2,4-benzenetricarboxylic acid tris (1-propoxyethyl) obtained by converting a carboxy group of 1,2,4-benzenetricarboxylic acid into a block carboxylic acid group has a heat latent acidic group. It can be used as a compound.
  • the number of heat latent acidic groups in the compound having a heat latent acidic group is preferably two or more.
  • the content of the compound having an acidic group or a heat-latent acidic group in the resin composition used in the present invention is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
  • the range is preferably 1 to 45 parts by weight, more preferably 2 to 40 parts by weight, and still more preferably 3 to 30 parts by weight.
  • the preparation method of the resin composition used by this invention is not specifically limited, What is necessary is just to mix each component which comprises a resin composition by a well-known method.
  • the mixing method is not particularly limited, but it is preferable to mix a solution or dispersion obtained by dissolving or dispersing each component constituting the resin composition in a solvent. Thereby, a resin composition is obtained with the form of a solution or a dispersion liquid.
  • the method for dissolving or dispersing each component constituting the resin composition in a solvent may be in accordance with a conventional method. Specifically, stirring using a stirrer and a magnetic stirrer, a high-speed homogenizer, a disper, a planetary stirrer, a twin-screw stirrer, a ball mill, a three-roll, etc. can be used. Further, after each component is dissolved or dispersed in a solvent, it may be filtered using, for example, a filter having a pore size of about 0.5 ⁇ m.
  • the thin film transistor of the present invention includes a gate insulating film made of the resin composition described above and a semiconductor layer formed on the gate insulating film, and the semiconductor layer is at least one of In, Ga, and Zn. It is comprised from the sputtered film which consists of an amorphous oxide semiconductor containing these elements.
  • FIG. 1 shows a cross-sectional view of a thin film transistor 1 as an example of the thin film transistor of the present invention. As shown in FIG.
  • a thin film transistor 1 has a bottom gate top contact having a gate electrode 3, a gate insulating film 4 made of the above resin composition, a semiconductor layer 5, a source electrode 6 and a drain electrode 7 on a substrate 2.
  • Type thin film transistor FIG. 1 shows a single thin film transistor 1, a configuration in which a plurality of thin film transistors 1 are formed on a substrate 2 (for example, an active matrix substrate) may be used.
  • the thin film transistor 1 shown in FIG. 1 is an example of the thin film transistor of the present invention. In the following description, the thin film transistor 1 shown in FIG. 1 will be described as an example, but the thin film transistor of the present invention has the configuration shown in FIG. It is not limited at all.
  • the substrate 2 is not particularly limited, and is a flexible substrate made of a flexible plastic such as polycarbonate, polyimide, polyethylene terephthalate, alicyclic olefin polymer, glass substrate such as quartz, soda glass, inorganic alkali glass, silicon wafer, etc.
  • the silicon substrate can be mentioned.
  • the gate electrode 3 is made of a conductive material.
  • conductive materials include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, and oxide.
  • conductive polymers whose conductivity is improved by doping or the like, such as conductive polyaniline, conductive polypyrrole, and conductive polythiophene (polyethylenedioxythiophene and polystyrenesulfonic acid complex, etc.) can be mentioned.
  • chromium, molybdenum, aluminum / titanium mixtures, and molybdenum / titanium mixtures are preferred, chromium, aluminum / titanium mixtures, and molybdenum / titanium mixtures are more preferred, and aluminum / titanium mixtures and molybdenum / titanium mixtures are particularly preferred.
  • the gate electrode 3 is formed in a predetermined pattern on the substrate 2 by, for example, forming the above-described conductive material on the substrate 2 by sputtering or the like and then performing an etching process.
  • the gate insulating film 4 is composed of the above-described resin composition, and the above-described resin composition is applied onto the substrate 2 on which the gate electrode 3 is formed in a predetermined pattern, and the solvent is removed as necessary. Later, it is formed by curing.
  • a method for applying the resin composition for example, various methods such as a spray method, a spin coating method, a roll coating method, a die coating method, a doctor blade method, a spin coating method, a bar coating method, and a screen printing method may be adopted. Can do.
  • the curing temperature is usually 100 to 300 ° C., preferably 100 to 250 ° C., more preferably 100 to 150 ° C.
  • the curing time is usually 0.5 to 300 minutes, preferably 1 to 150 minutes, more preferably. Is 1 to 60 minutes.
  • the thickness of the gate insulating film 4 is not particularly limited, but is preferably 100 to 400 nm, more preferably 100 to 300 nm, and still more preferably 100 to 200 nm.
  • the semiconductor layer 5 is a sputtered film made of an amorphous oxide semiconductor containing at least one element of In, Ga, and Zn.
  • an amorphous oxide semiconductor any element containing at least one element of In, Ga, and Zn may be used.
  • the semiconductor layer 5 is usually formed by a sputtering method. Specifically, a target made of a metal oxide that will form the semiconductor layer 5 is sputtered to form a sputtered film made of a metal oxide (amorphous oxide semiconductor) on the surface of the gate insulating film 4.
  • the thickness of the semiconductor layer 5 is preferably 10 to 100 nm, more preferably 20 to 80 nm, and still more preferably 30 to 50 nm.
  • the source electrode 6 and the drain electrode 7 are made of a conductive material.
  • the conductive material the same material as the gate electrode 3 described above can be used.
  • the source electrode 6 and the drain electrode 7 are formed in a predetermined pattern on the semiconductor layer 5 by, for example, forming the above-described conductive material on the semiconductor layer 5 by sputtering or the like and then performing an etching process. .
  • the bottom gate top contact type thin film transistor 1 as shown in FIG. 1 is illustrated as an example of the thin film transistor.
  • the gate insulating film made of the resin composition according to the present invention is as shown in FIG.
  • the gate insulating film of the bottom gate bottom contact type thin film transistor 1a can be suitably used, and the thin film transistor 1a can also be obtained in the same manner as described above.
  • the thin film transistor 1a shown in FIG. 2 the same components as those of the thin film transistor 1 described above are denoted by the same reference numerals, and the description thereof is omitted. That is, the thin film transistor 1a shown in FIG.
  • the semiconductor layer 5 is formed on the drain electrode 7 across the drain electrode 7.
  • FIG. 4 is a cross-sectional view showing an etch stop layer type thin film transistor 1b provided with a gate insulating film made of the resin composition according to the present invention. The description is omitted.
  • an etch stopper 8 is formed so as to cover the channel portion 9. That is, as shown in FIG. 4, in this thin film transistor 1b, a gate electrode 3, a gate insulating film 4 made of the above-described resin composition, and a semiconductor layer 5 are formed on a substrate 2.
  • An etch stopper 8 is formed, and the source electrode 6 and the drain electrode 7 are respectively provided so as to cover the vicinity of the end of the semiconductor layer 5 and the vicinity of the end of the etch stopper 9.
  • the gate insulating film 4 is formed of the resin composition described above, and the resin composition contains the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B), and has heat resistance. And it has excellent plasma resistance. Therefore, when the semiconductor layer 5 is formed on the gate insulating film 4, even if the gate insulating film 4 is formed by a sputtering method in which the gate insulating film 4 is exposed to high temperature or plasma, thermal deterioration and plasma deterioration of the gate insulating film 4 are effective. Can be prevented.
  • the present invention it is possible to effectively prevent deterioration of the gate insulating film 4 during sputtering, whereby the obtained thin film transistor can be excellent in on / off ratio and leakage current characteristics.
  • the semiconductor layer 5 can be formed of an amorphous oxide semiconductor having excellent carrier mobility, it is possible to provide a thin film transistor with high mobility, high on / off ratio, and low leakage current. It can be done.
  • Id ⁇ CinW (Vg ⁇ Vth) 2 / 2L (Where Cin is the capacitance per unit area of the gate insulating film, W is the channel width, L is the channel length, Vg is the gate voltage, Id is the drain current, ⁇ is the mobility, and Vth is the gate where the channel begins to form. Threshold voltage.)
  • ⁇ Leakage current> With respect to the obtained thin film transistor, a voltage of 20 V is applied between the source electrode and the drain electrode in the atmosphere / dark room, and the voltage applied to the gate electrode is changed from +20 V to ⁇ 20 V, so that the source electrode and the drain electrode was measured using a manual prober and a semiconductor parameter analyzer (manufactured by Agilent, 4156C) to measure the leakage current. The lower the leak current, the better. In this example, 1 ⁇ 10 ⁇ 12 or less was considered good.
  • the obtained polymerization reaction liquid was put in an autoclave and stirred for 5 hours at 150 ° C. under a hydrogen pressure of 4 MPa to perform a hydrogenation reaction, thereby obtaining a polymer solution containing the cyclic olefin polymer (A-1). .
  • the resulting cyclic olefin polymer (A-1) had a polymerization conversion rate of 99.7%, a polystyrene-equivalent weight average molecular weight of 7,150, a number average molecular weight of 4,690, a molecular weight distribution of 1.52, and a hydrogenation rate. was 99.7%.
  • the solid content concentration of the obtained polymer solution of the cyclic olefin polymer (A-1) was 34.4% by weight.
  • Example 1 Preparation of resin composition>
  • FIG. 3 is a diagram illustrating a method for manufacturing the thin film transistor 1.
  • Pretreatment A glass substrate was prepared, and the prepared glass substrate was subjected to ultrasonic cleaning in pure water, dried by air blow, and baked at 100 ° C. for 1 hour.
  • (2) Formation of Gate Electrode Next, as shown in FIG. 3A, an aluminum layer is formed on the glass substrate (substrate 2) pretreated above by vacuum deposition, and this aluminum layer is patterned. Thereby, the gate electrode 3 was formed. The thickness of the gate electrode 3 was 50 nm.
  • the substrate 2 on which the gate electrode 3 is formed is placed on a spin coater, and a predetermined amount of the resin composition obtained above is dropped on the glass substrate 2, and the substrate 2 is placed at about 2000 rpm.
  • a coating film was formed by rotating at a rotational speed of about 60 seconds.
  • the substrate 2 on which the coating film was formed was baked on a hot plate at a temperature of 150 ° C. for about 60 minutes, thereby forming the gate insulating film 4 as shown in FIG.
  • the thickness of the gate insulating film 4 was 200 nm.
  • indium gallium zinc oxide is formed on the gate insulating film 4 of the substrate 2 on which the gate electrode 3 and the gate insulating film 4 are formed by sputtering.
  • a semiconductor layer 5 made of a sputtered film of (IGZO) was formed with a thickness of 40 nm.
  • a sputtered film of indium gallium zinc oxide (IGZO) was produced by using a sputtering apparatus (product name “CFS-4EP-LL”, manufactured by Shibaura Mechatronics Inc.) in the presence of argon gas, with an output of 300 W, an argon flow rate of 10 sccm, The film was formed under conditions of an oxygen flow rate of 10 sccm and a film forming pressure of 0.6 Pa. Note that indium gallium zinc oxide (IGZO) was used as a sputtering target.
  • Example 2 In preparing the resin composition for forming the gate insulating film 4, the blending amount of the epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -caprolactone as the epoxy crosslinking agent (B) is 30. A resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that the amount was changed from 50 parts to 50 parts. The results are shown in Table 1.
  • Example 3 In preparing a resin composition for forming the gate insulating film 4, as an epoxy-based crosslinking agent (B), instead of 30 parts of epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -caprolactone 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) 1-butanol (trade name “EHPE3150”, manufactured by Daicel Chemical Industries, Ltd., cyclohexane skeleton and terminal epoxy group)
  • EHPE3150 2,2-bis (hydroxymethyl) 1-butanol
  • Example 4 In preparing a resin composition for forming the gate insulating film 4, in addition to 30 parts of epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -caprolactone as an epoxy-based crosslinking agent (B) Resin composition in the same manner as in Example 1 except that 30 parts of 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) 1-butanol was further used. A thin film transistor was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 In preparing the resin composition for forming the gate insulating film 4, N, N, N ′, N ′, N ′′, N ′′-(hexaalkoxyalkyl) is used as the melamine-based crosslinking agent (C).
  • a resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that 30 parts of a partially methylol-substituted melamine (trade name “Cymel 350”, manufactured by Cytec Industries) were further used. It was. The results are shown in Table 1.
  • Example 6 In preparing the resin composition for forming the gate insulating film 4, N, N, N ′, N ′, N ′′, N ′′-(hexaalkoxyalkyl) is used as the melamine-based crosslinking agent (C).
  • a resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that 30 parts of a partially methylol-substituted melamine (trade name “Cymel 370”, manufactured by Cytec Industries, Inc.) was further used. It was. The results are shown in Table 1.
  • Comparative Example 1 When preparing the resin composition for forming the gate insulating film 4, epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ⁇ -caprolactone as an epoxy crosslinking agent (B) was not blended. Except for the above, a resin composition and a thin film transistor were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 4 A thin film transistor was obtained in the same manner as in Comparative Example 1 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed.
  • the a-Si layer (amorphous silicon layer) was formed with a thickness of 100 nm using a CVD apparatus (the same applies to Comparative Examples 5 and 6 described later). The results are shown in Table 1.
  • Comparative Example 5 A thin film transistor was obtained in the same manner as in Comparative Example 2 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed. The results are shown in Table 1.
  • Comparative Example 6 A thin film transistor was obtained in the same manner as in Comparative Example 3 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed. The results are shown in Table 1.
  • the gate insulating film 4 is formed using a resin composition containing a cyclic olefin polymer (A) and an epoxy-based crosslinking agent (B), and the semiconductor layer 5 is made of indium gallium zinc.
  • the obtained thin film transistor had high mobility, a large on / off ratio, and a small leakage current.
  • the semiconductor layer 5 was formed.
  • Example 4 using two kinds of compounds as an epoxy-based crosslinking agent (B), and a combination of an epoxy-based crosslinking agent (B) and a melamine-based crosslinking agent (C) In Examples 5 and 6, the mobility, on / off ratio, and leakage current characteristics were particularly excellent.
  • Comparative Examples 1 to 3 in which the gate insulating film 4 is formed using a resin composition that does not contain an epoxy-based crosslinking agent (B), the thin film transistors obtained are inferior in on / off ratio and leakage current. It was.
  • the reason why the on / off ratio and the leakage current are reduced is that the sputtering is performed when the semiconductor layer 5 is formed by the sputtering method after the gate insulating film 4 is formed. It is considered that the resin composition that constitutes the gate insulating film 4 is deteriorated due to the influence of heat and plasma generated on the substrate, and the insulating property of the gate insulating film 4 is thereby lowered.
  • the obtained thin film transistor had low mobility and inferior on / off ratio and leakage current.

Abstract

Provided is a thin film transistor equipped with a gate insulating film (4) and a semiconductor layer (5) that is formed on the gate insulating film (4), characterized in that: the semiconductor layer (5) is formed of a sputter film that comprises an amorphous oxide semiconductor containing at least one element selected from among In, Ga and Zn; and the gate insulating film (4) is formed of a resin composition that comprises a cyclic olefin polymer (A) having a protonic polar group and an epoxy-type crosslinking agent (B) having at least two epoxy groups per molecule, said epoxy groups being capable of reacting with the protonic polar group.

Description

薄膜トランジスタThin film transistor
 本発明は、薄膜トランジスタに係り、さらに詳しくは、移動度が高く、オン/オフ比が大きく、リーク電流の小さい薄膜トランジスタに関する。 The present invention relates to a thin film transistor, and more particularly to a thin film transistor having high mobility, a large on / off ratio, and a small leakage current.
 近年、有機材料を用いた有機TFT(薄膜トランジスタ)に関する研究が盛んに行われている。このような薄膜トランジスタは、たとえば、基板の表面に、ゲート電極、ゲート絶縁膜、半導体層、ソース電極、およびドレイン電極を形成することで構成される。 In recent years, research on organic TFTs (thin film transistors) using organic materials has been actively conducted. Such a thin film transistor is configured, for example, by forming a gate electrode, a gate insulating film, a semiconductor layer, a source electrode, and a drain electrode on the surface of a substrate.
 このような薄膜トランジスタにおいて、半導体層として、有機半導体膜を用いる技術が知られている(特許文献1参照)。しかしながら、このような有機半導体膜を用いた薄膜トランジスタは、キャリア移動度が低く、応答性が低いため、このような有機半導体膜を用いた薄膜トランジスタを、ディスプレイ等に用いた場合に、画面にチラツキ等が発生してしまい、鮮明性が低下してしまうという課題がある。これに対して、半導体層として、スパッタリング法により形成されたインジウムガリウム亜鉛酸化物(IGZO)等のアモルファス酸化物半導体を用いる技術が検討されている。 In such a thin film transistor, a technique using an organic semiconductor film as a semiconductor layer is known (see Patent Document 1). However, since a thin film transistor using such an organic semiconductor film has low carrier mobility and low responsiveness, when the thin film transistor using such an organic semiconductor film is used for a display or the like, the screen flickers. Occurs, and there is a problem that the sharpness is lowered. On the other hand, a technique using an amorphous oxide semiconductor such as indium gallium zinc oxide (IGZO) formed by a sputtering method as a semiconductor layer has been studied.
特開2007-251093号公報JP 2007-251093 A
 しかしながら、IGZO等のアモルファス酸化物半導体からなる半導体膜を、スパッタリング法により形成する際には、半導体膜の下側に位置することとなるゲート絶縁膜が高温条件やプラズマ発生環境下に晒されることとなるため、半導体膜を形成する際に発生する熱やプラズマの影響により、ゲート絶縁膜が劣化してしまい、結果として、オン/オフ比が小さくなったり、リーク電流が増大してしまうという課題がある。 However, when a semiconductor film made of an amorphous oxide semiconductor such as IGZO is formed by a sputtering method, the gate insulating film located under the semiconductor film is exposed to a high temperature condition or a plasma generation environment. Therefore, the gate insulating film deteriorates due to the influence of heat and plasma generated when forming the semiconductor film, and as a result, the on / off ratio decreases and the leakage current increases. There is.
 本発明は、移動度が高く、オン/オフ比が大きく、リーク電流の小さい薄膜トランジスタを提供することを目的とする。 An object of the present invention is to provide a thin film transistor having a high mobility, a large on / off ratio, and a small leakage current.
 本発明者等は、上記目的を達成するために鋭意研究した結果、ゲート絶縁膜と、ゲート絶縁膜上に形成される半導体層とを備える薄膜トランジスタにおいて、半導体層を、特定のアモルファス酸化物半導体からなるスパッタ膜で構成するとともに、ゲート絶縁膜を、プロトン性極性基を有する環状オレフィン重合体と、プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤とを含有する樹脂組成物で構成することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that in a thin film transistor including a gate insulating film and a semiconductor layer formed on the gate insulating film, the semiconductor layer is made of a specific amorphous oxide semiconductor. And a gate insulating film comprising a cyclic olefin polymer having a protic polar group and an epoxy crosslinking agent having two or more epoxy groups in the molecule that react with the protic polar group It has been found that the above object can be achieved by constituting the composition, and the present invention has been completed.
 すなわち、本発明によれば、ゲート絶縁膜と、前記ゲート絶縁膜上に形成される半導体層とを備える薄膜トランジスタであって、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されることを特徴とする薄膜トランジスタが提供される。 That is, according to the present invention, a thin film transistor comprising a gate insulating film and a semiconductor layer formed on the gate insulating film, wherein the semiconductor layer is at least one element of In, Ga, and Zn. The gate insulating film is composed of a cyclic olefin polymer (A) having a protic polar group and an epoxy group that reacts with the protic polar group in the molecule. A thin film transistor comprising a resin composition containing the epoxy-based crosslinking agent (B) having the above is provided.
 好ましくは、前記樹脂組成物中における、前記エポキシ系架橋剤(B)の含有量が、前記環状オレフィン重合体(A)100重量部に対して、10~100重量部である。
 好ましくは、前記樹脂組成物が、前記エポキシ系架橋剤(B)として、異なる2種類以上の化合物を含有する。
 好ましくは、前記樹脂組成物が、メラミン系架橋剤(C)をさらに含有する。
 好ましくは、前記樹脂組成物中における、前記メラミン系架橋剤(C)の含有量が、前記環状オレフィン重合体(A)100重量部に対して、10~50重量部である。
Preferably, the content of the epoxy crosslinking agent (B) in the resin composition is 10 to 100 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
Preferably, the resin composition contains two or more different compounds as the epoxy-based crosslinking agent (B).
Preferably, the resin composition further contains a melamine-based crosslinking agent (C).
Preferably, the content of the melamine crosslinking agent (C) in the resin composition is 10 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A).
 また、本発明においては、薄膜トランジスタを、基板上に設けられるゲート電極と、前記ゲート電極を覆うように設けられるゲート絶縁膜と、前記ゲート絶縁膜の表面に設けられる半導体層と、前記半導体層の表面に設けられるソース電極およびドレイン電極とを備え、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されるものとすることができる。
 あるいは、本発明においては、薄膜トランジスタを、基板上に設けられるゲート電極と、前記ゲート電極を覆うように設けられるゲート絶縁膜と、前記ゲート絶縁膜の表面のうち一部を覆うように設けられるソース電極およびドレイン電極と、前記ゲート絶縁膜、ソース電極およびドレイン電極の表面に跨って設けられる半導体層とを備え、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されるものとすることができる。
 さらに、本発明においては、薄膜トランジスタを、基板上に設けられるゲート電極と、前記ゲート電極を覆うように設けられるゲート絶縁膜と、前記ゲート絶縁膜の表面に設けられる半導体層と、前記半導体層の表面の一部に設けられるエッチストッパーと、前記半導体層の表面および前記エッチストッパーの表面の一部に設けられるソース電極およびドレイン電極とを備え、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されるものとすることができる。
In the present invention, the thin film transistor includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, a semiconductor layer provided on a surface of the gate insulating film, A source electrode and a drain electrode provided on a surface, wherein the semiconductor layer is formed of a sputtered film made of an amorphous oxide semiconductor containing at least one element of In, Ga, and Zn, and the gate insulating film And a resin composition containing a cyclic olefin polymer having a protic polar group (A) and an epoxy-based crosslinking agent (B) having two or more epoxy groups in the molecule that react with the protic polar group. Can be.
Alternatively, in the present invention, the thin film transistor includes a gate electrode provided on the substrate, a gate insulating film provided to cover the gate electrode, and a source provided to cover a part of the surface of the gate insulating film. An electrode and a drain electrode; and a semiconductor layer provided across the surfaces of the gate insulating film, the source electrode and the drain electrode, wherein the semiconductor layer contains at least one element of In, Ga, and Zn An epoxy film composed of a sputtered film made of an oxide semiconductor, wherein the gate insulating film has a cyclic olefin polymer (A) having a protic polar group and two or more epoxy groups in the molecule that react with the protic polar group. It can be comprised from the resin composition containing a type | system | group crosslinking agent (B).
Furthermore, in the present invention, a thin film transistor includes a gate electrode provided on a substrate, a gate insulating film provided so as to cover the gate electrode, a semiconductor layer provided on a surface of the gate insulating film, An etch stopper provided on a part of the surface; and a source electrode and a drain electrode provided on a surface of the semiconductor layer and a part of the surface of the etch stopper, wherein the semiconductor layer is selected from In, Ga, and Zn It is composed of a sputtered film made of an amorphous oxide semiconductor containing at least one element, and the gate insulating film has a cyclic olefin polymer (A) having a protic polar group and an epoxy group that reacts with the protic polar group And a resin composition containing an epoxy-based crosslinking agent (B) having 2 or more in the molecule It is possible.
 本発明によれば、移動度が高く、オン/オフ比が大きく、リーク電流の小さい薄膜トランジスタを提供することができる。 According to the present invention, it is possible to provide a thin film transistor having a high mobility, a large on / off ratio, and a small leakage current.
図1は、本発明に係る薄膜トランジスタの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a thin film transistor according to the present invention. 図2は、本発明に係る薄膜トランジスタの他の例(第2の例)を示す断面図である。FIG. 2 is a cross-sectional view showing another example (second example) of the thin film transistor according to the present invention. 図3は、本発明に係る薄膜トランジスタの製造方法を示す図である。FIG. 3 is a diagram showing a method of manufacturing a thin film transistor according to the present invention. 図4は、本発明に係る薄膜トランジスタの他の例(第3の例)を示す断面図である。FIG. 4 is a sectional view showing another example (third example) of the thin film transistor according to the present invention.
 本発明の薄膜トランジスタは、ゲート絶縁膜と、前記ゲート絶縁膜上に形成される半導体層とを備える薄膜トランジスタであって、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されることを特徴とする。
 以下においては、まず、本発明で用いるゲート絶縁膜を形成するための樹脂組成物について説明する。
The thin film transistor of the present invention is a thin film transistor including a gate insulating film and a semiconductor layer formed on the gate insulating film, and the semiconductor layer contains at least one element of In, Ga, and Zn. The gate insulating film comprises a cyclic olefin polymer (A) having a protic polar group and two or more epoxy groups that react with the protic polar group in the molecule. It is comprised from the resin composition containing an epoxy type crosslinking agent (B), It is characterized by the above-mentioned.
In the following, first, a resin composition for forming a gate insulating film used in the present invention will be described.
(樹脂組成物)
 本発明で用いるゲート絶縁膜を形成するための樹脂組成物は、プロトン性極性基を有する環状オレフィン重合体(A)と、プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する。
(Resin composition)
The resin composition for forming the gate insulating film used in the present invention is composed of a cyclic olefin polymer (A) having a protic polar group and an epoxy system having two or more epoxy groups in the molecule that react with the protic polar group. A crosslinking agent (B).
(プロトン性極性基を有する環状オレフィン重合体(A))
 本発明で用いるプロトン性極性基を有する環状オレフィン重合体(A)(以下、単に「環状オレフィン重合体(A)」とする。)は、1または2以上の環状オレフィン単量体の重合体、または、1または2以上の環状オレフィン単量体と、これと共重合可能な単量体との共重合体が挙げられるが、本発明においては、環状オレフィン重合体(A)を形成するための単量体として、少なくともプロトン性極性基を有する環状オレフィン単量体(a)を用いることが好ましい。
(Cyclic olefin polymer having a protic polar group (A))
The cyclic olefin polymer (A) having a protic polar group used in the present invention (hereinafter simply referred to as “cyclic olefin polymer (A)”) is a polymer of one or two or more cyclic olefin monomers, Alternatively, a copolymer of one or two or more cyclic olefin monomers and a monomer copolymerizable therewith can be mentioned, and in the present invention, for forming the cyclic olefin polymer (A). As the monomer, it is preferable to use a cyclic olefin monomer (a) having at least a protic polar group.
 ここで、プロトン性極性基とは、周期律表第15族又は第16族に属する原子に水素原子が直接結合している原子を含む基をいう。周期律表第15族または第16族に属する原子のなかでも、周期律表第15族または第16族の第1または第2周期に属する原子が好ましく、より好ましくは酸素原子、窒素原子又は硫黄原子であり、特に好ましくは酸素原子である。 Here, the protic polar group means a group containing an atom in which a hydrogen atom is directly bonded to an atom belonging to Group 15 or Group 16 of the Periodic Table. Among atoms belonging to Group 15 or Group 16 of the periodic table, atoms belonging to Group 1 or 2 of Group 15 or Group 16 of the Periodic Table are preferable, and oxygen atoms, nitrogen atoms or sulfur are more preferable. An atom, particularly preferably an oxygen atom.
 このようなプロトン性極性基の具体例としては、水酸基、カルボキシ基(ヒドロキシカルボニル基)、スルホン酸基、リン酸基等の酸素原子を有する極性基;第一級アミノ基、第二級アミノ基、第一級アミド基、第二級アミド基(イミド基)等の窒素原子を有する極性基;チオール基等の硫黄原子を有する極性基;等が挙げられる。これらの中でも、酸素原子を有するものが好ましく、より好ましくはカルボキシ基である。
 本発明において、プロトン性極性基を有する環状オレフィン樹脂に結合しているプロトン性極性基の数に特に限定はなく、また、相異なる種類のプロトン性極性基が含まれていてもよい。
Specific examples of such protic polar groups include polar groups having oxygen atoms such as hydroxyl groups, carboxy groups (hydroxycarbonyl groups), sulfonic acid groups, phosphoric acid groups; primary amino groups, secondary amino groups A polar group having a nitrogen atom such as a primary amide group or a secondary amide group (imide group); a polar group having a sulfur atom such as a thiol group; Among these, those having an oxygen atom are preferable, and a carboxy group is more preferable.
In the present invention, the number of protic polar groups bonded to the cyclic olefin resin having a protic polar group is not particularly limited, and different types of protic polar groups may be included.
 プロトン性極性基を有する環状オレフィン単量体(a)(以下、適宜、「単量体(a)」という。)の具体例としては、2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-カルボキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ヒドロキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、3-メチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニルトリシクロ[5.2.1.02,6]デカ-3,8-ジエン、4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-カルボキシメチル-4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、N-(ヒドロキシカルボニルメチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルペンチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ジヒドロキシカルボニルエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ジヒドロキシカルボニルプロピル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルフェネチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルフェネチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(4-ヒドロキシフェニル)-1-(ヒドロキシカルボニル)エチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルフェニル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等のカルボキシ基含有環状オレフィン;2-(4-ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(4-ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン、4-(4-ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(4-ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、2-ヒドロキシビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシエチルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-(ヒドロキシエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(ヒドロキシエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-(1-ヒドロキシ-1-トリフルオロメチル-2,2,2-トリフルオロエチル)ビシクロ[2.2.1]ヘプト-5-エン、2-(2-ヒドロキシ-2-トリフルオロメチル-3,3,3-トリフルオロプロピル)ビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、3-ヒドロキシメチルトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、4-ヒドロキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-(ヒドロキシエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(ヒドロキシエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、N-(ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、等の水酸基含有環状オレフィン等が挙げられる。これらのなかでも、得られるゲート絶縁膜の密着性が高くなるという点より、カルボキシ基含有環状オレフィンが好ましく、4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンが特に好ましい。これら単量体(a)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the cyclic olefin monomer (a) having a protic polar group (hereinafter referred to as “monomer (a)” where appropriate) include 2-hydroxycarbonylbicyclo [2.2.1] hept- 5-ene, 2-methyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2-carboxymethyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2 , 3-dihydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2-hydroxycarbonyl-3-hydroxycarbonylmethylbicyclo [2.2.1] hept-5-ene, 3-methyl-2-hydroxy Carbonylbicyclo [2.2.1] hept-5-ene, 3-hydroxymethyl-2-hydroxycarbonylbicyclo [2.2.1] hept-5-ene, 2- Mud butoxycarbonyl tricyclo [5.2.1.0 2, 6] deca-3,8-diene, 4-hydroxy carbonyl tetracyclo [6.2.1.1 3, 6. 0 2,7 ] dodec-9-ene, 4-methyl-4-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4,5-dihydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-carboxymethyl-4-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, N- (hydroxycarbonylmethyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (hydroxycarbonylethyl) bicyclo [2 2.1] hept-5-ene-2,3-dicarboximide, N- (hydroxycarbonylpentyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (Dihydroxycarbonylethyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (dihydroxycarbonylpropyl) bicyclo [2.2.1] hept-5-ene-2, 3-dicarboximide, N- (hydroxycarbonylphenethyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (hydro Cicarbonylphenethyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2- (4-hydroxyphenyl) -1- (hydroxycarbonyl) ethyl) bicyclo [2. 2.1] Carboxy groups such as hept-5-ene-2,3-dicarboximide and N- (hydroxycarbonylphenyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide Containing cyclic olefins; 2- (4-hydroxyphenyl) bicyclo [2.2.1] hept-5-ene, 2-methyl-2- (4-hydroxyphenyl) bicyclo [2.2.1] hept-5- Ene, 4- (4-hydroxyphenyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4- (4-hydroxyphenyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 2-hydroxybicyclo [2.2.1] hept-5-ene, 2-hydroxymethylbicyclo [2.2.1] hept-5-ene, 2-hydroxyethyl Bicyclo [2.2.1] hept-5-ene, 2-methyl-2-hydroxymethylbicyclo [2.2.1] hept-5-ene, 2,3-dihydroxymethylbicyclo [2.2.1] Hept-5-ene, 2- (hydroxyethoxycarbonyl) bicyclo [2.2.1] hept-5-ene, 2-methyl-2- (hydroxyethoxycarbonyl) bicyclo [2.2.1] hept-5 Ene, 2- (1-hydroxy-1-trifluoromethyl-2,2,2-trifluoroethyl) bicyclo [2.2.1] hept-5-ene, 2- (2-hydroxy-2-trifluoro Mechi 3,3,3-trifluoropropyl) bicyclo [2.2.1] hept-5-ene, 3-hydroxy-tricyclo [5.2.1.0 2, 6] deca-4,8-diene, 3-hydroxymethyltricyclo [5.2.1.0 2,6 ] deca-4,8-diene, 4-hydroxytetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-hydroxymethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4,5-dihydroxymethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4- (hydroxyethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4- (hydroxyethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, N- (hydroxyethyl) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (hydroxyphenyl) bicyclo [2.2 .1] Hydroxyl-containing cyclic olefins such as hept-5-ene-2,3-dicarboximide and the like. Among these, a carboxy group-containing cyclic olefin is preferable from the viewpoint of improving the adhesion of the obtained gate insulating film, and 4-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene is particularly preferred. These monomers (a) may be used alone or in combination of two or more.
 環状オレフィン重合体(A)中における、単量体(a)の単位の含有割合は、全単量体単位に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%、さらに好ましくは30~70モル%である。単量体(a)の単位の含有割合を上記範囲とすることにより、環状オレフィン重合体(A)の極性溶剤への溶解性を十分なものとしながら、ゲート絶縁膜とした場合における強度および絶縁性を良好なものとすることができる。 The content ratio of the monomer (a) unit in the cyclic olefin polymer (A) is preferably 10 to 90 mol%, more preferably 20 to 80 mol%, based on all monomer units. More preferably, it is 30 to 70 mol%. By setting the content ratio of the monomer (a) unit within the above range, the cyclic olefin polymer (A) has sufficient solubility in a polar solvent, and strength and insulation in the case of a gate insulating film. The property can be improved.
 また、本発明で用いる環状オレフィン重合体(A)は、プロトン性極性基を有する環状オレフィン単量体(a)と、これと共重合可能な単量体(b)とを共重合して得られる共重合体であってもよい。このような共重合可能な単量体としては、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)、極性基を持たない環状オレフィン単量体(b2)、および環状オレフィン以外の単量体(b3)(以下、適宜、「単量体(b1)」、「単量体(b2)」、「単量体(b3)」という。)が挙げられる。 The cyclic olefin polymer (A) used in the present invention is obtained by copolymerizing a cyclic olefin monomer (a) having a protic polar group and a monomer (b) copolymerizable therewith. It may be a copolymer. Examples of such copolymerizable monomers include cyclic olefin monomers (b1) having polar groups other than protic polar groups, cyclic olefin monomers having no polar groups (b2), and cyclic olefins. Monomer (b3) (hereinafter referred to as “monomer (b1)”, “monomer (b2)”, “monomer (b3)” as appropriate).
 プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)としては、たとえば、N-置換イミド基、エステル基、シアノ基またはハロゲン原子を有する環状オレフィンが挙げられる。 Examples of the cyclic olefin monomer (b1) having a polar group other than the protic polar group include N-substituted imide groups, ester groups, cyano groups, and cyclic olefins having a halogen atom.
 N-置換イミド基を有する環状オレフィンとしては、たとえば、下記式(1)で表される単量体、または下記式(2)で表される単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(上記式(1)中、Rは水素原子もしくは炭素数1~16のアルキル基またはアリール基を表す。nは1ないし2の整数を表す。)
Figure JPOXMLDOC01-appb-C000002
(上記式(2)中、Rは炭素数1~3の2価のアルキレン基、Rは、炭素数1~10の1価のアルキル基、または、炭素数1~10の1価のハロゲン化アルキル基を表す。)
Examples of the cyclic olefin having an N-substituted imide group include a monomer represented by the following formula (1) or a monomer represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
(In the above formula (1), R 1 .n represents an alkyl group or an aryl group having 1 to 16 carbon hydrogen or carbon is 1 to 2 integer.)
Figure JPOXMLDOC01-appb-C000002
(In the above formula (2), R 2 is a divalent alkylene group having 1 to 3 carbon atoms, R 3 is a monovalent alkyl group having 1 to 10 carbon atoms, or a monovalent alkyl group having 1 to 10 carbon atoms. Represents a halogenated alkyl group.)
 上記式(1)中において、Rは炭素数1~16のアルキル基又はアリール基であり、アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基等の直鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、ノルボルニル基、ボルニル基、イソボルニル基、デカヒドロナフチル基、トリシクロデカニル基、アダマンチル基等の環状アルキル基;2-プロピル基、2-ブチル基、2-メチル-1-プロピル基、2-メチル-2-プロピル基、1-メチルブチル基、2-メチルブチル基、1-メチルペンチル基、1-エチルブチル基、2-メチルヘキシル基、2-エチルヘキシル基、4-メチルヘプチル基、1-メチルノニル基、1-メチルトリデシル基、1-メチルテトラデシル基などの分岐状アルキル基;などが挙げられる。また、アリール基の具体例としては、ベンジル基などが挙げられる。これらの中でも、耐熱性および極性溶剤への溶解性により優れることから、炭素数6~14のアルキル基およびアリール基が好ましく、炭素数6~10のアルキル基およびアリール基がより好ましい。炭素数が4以下であると極性溶剤への溶解性に劣り、炭素数が17以上であると耐熱性に劣るという問題がある。 In the above formula (1), R 1 is an alkyl group or aryl group having 1 to 16 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n group -Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n -Linear alkyl groups such as pentadecyl group and n-hexadecyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group , Norbornyl group, bornyl group, isobornyl group, decahydronaphthyl group, tricyclodecanyl group, adamantyl group, etc. Alkyl group; 2-propyl group, 2-butyl group, 2-methyl-1-propyl group, 2-methyl-2-propyl group, 1-methylbutyl group, 2-methylbutyl group, 1-methylpentyl group, 1-ethylbutyl Groups, branched alkyl groups such as 2-methylhexyl group, 2-ethylhexyl group, 4-methylheptyl group, 1-methylnonyl group, 1-methyltridecyl group, 1-methyltetradecyl group, and the like. Specific examples of the aryl group include a benzyl group. Among these, an alkyl group and an aryl group having 6 to 14 carbon atoms are preferable, and an alkyl group and an aryl group having 6 to 10 carbon atoms are more preferable because of excellent heat resistance and solubility in a polar solvent. When the carbon number is 4 or less, the solubility in a polar solvent is poor, and when the carbon number is 17 or more, the heat resistance is poor.
 上記式(1)で表される単量体の具体例としては、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-フェニル-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-メチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-エチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-プロピルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-ブチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-シクロヘキシルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-シクロヘキシルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-アダマンチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ブチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ブチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-プロピルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-プロピルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(5-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルドデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルウンデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルドデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルトリデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルテトラデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルペンタデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボキシイミド、N-(2,4-ジメトキシフェニル)-テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボキシイミド等が挙げられる。なお、これらはそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the monomer represented by the above formula (1) include bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-phenyl-bicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N-methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-ethylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N-propylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-butylbicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N-cyclohexylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-cyclohexylbicyclo [2.2. 1] Hept-5-ene-2,3-dica Boxyimide, N-adamantylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methylbutyl) -bicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide, N- (2-methylbutyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methylpentyl) -bicyclo [2. 2.1] hept-5-ene-2,3-dicarboximide, N- (2-methylpentyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N -(1-Ethylbutyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-ethylbutyl) -bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide N- (1-methylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-methylhexyl) -bicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide, N- (3-methylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-butylpentyl) ) -Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-butylpentyl) -bicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N- (1-methylheptyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-methylheptyl) -bicyclo [2.2 .1] Hept-5-ene-2,3-dicarboxyl N- (3-methylheptyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-methylheptyl) -bicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- (1-ethylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-ethylhexyl) ) -Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-ethylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3- Dicarboximide, N- (1-propylpentyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-propylpentyl) -bicyclo [2.2. 1] Hept-5-ene-2,3-dicar Boxyimide, N- (1-methyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-methyloctyl) -bicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- (3-methyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4- Methyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-ethylheptyl) -bicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide, N- (2-ethylheptyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-ethylheptyl) -bicyclo [2 2.1] Hept-5-ene-2,3- Carboximide, N- (4-ethylheptyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-propylhexyl) -bicyclo [2.2.1 ] Hept-5-ene-2,3-dicarboximide, N- (2-propylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3 -Propylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methylnonyl) -bicyclo [2.2.1] hept-5-ene-2 , 3-dicarboximide, N- (2-methylnonyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-methylnonyl) -bicyclo [2.2 .1] Hept-5-ene-2 3-dicarboximide, N- (4-methylnonyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (5-methylnonyl) -bicyclo [2.2. 1] Hept-5-ene-2,3-dicarboximide, N- (1-ethyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- ( 2-ethyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (3-ethyloctyl) -bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide, N- (4-ethyloctyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methyldecyl) -bicyclo [ 2.2.1] Hept-5-ene-2, 3-dicarboximide, N- (1-methyldodecyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methylundecyl) -bicyclo [2 2.1] hept-5-ene-2,3-dicarboximide, N- (1-methyldodecyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methyltridecyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-methyltetradecyl) -bicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- (1-methylpentadecyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N-phenyl- Tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboximide, N- (2,4-dimethoxyphenyl) -tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboximide and the like. These may be used alone or in combination of two or more.
 一方、上記式(2)において、Rは炭素数1~3の2価のアルキレン基であり、炭素数1~3の2価のアルキレン基としては、メチレン基、エチレン基、プロピレン基およびイソプロピレン基が挙げられる。これらの中でも、重合活性が良好であるため、メチレン基およびエチレン基が好ましい。 On the other hand, in the above formula (2), R 2 is a divalent alkylene group having 1 to 3 carbon atoms. Examples of the divalent alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a propylene group, and an isovalent group. A propylene group is mentioned. Among these, a methylene group and an ethylene group are preferable because of good polymerization activity.
 また、上記式(2)において、Rは、炭素数1~10の1価のアルキル基、または、炭素数1~10の1価のハロゲン化アルキル基である。炭素数1~10の1価のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基およびシクロヘキシル基などが挙げられる。炭素数1~10の1価のハロゲン化アルキル基としては、例えば、フルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、ジクロロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、パーフルオロブチル基およびパーフルオロペンチル基などが挙げられる。これら中でも、極性溶剤への溶解性に優れるため、Rとしては、メチル基およびエチル基が好ましい。 In the above formula (2), R 3 is a monovalent alkyl group having 1 to 10 carbon atoms or a monovalent halogenated alkyl group having 1 to 10 carbon atoms. Examples of the monovalent alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, hexyl group and cyclohexyl group. . Examples of the monovalent halogenated alkyl group having 1 to 10 carbon atoms include a fluoromethyl group, a chloromethyl group, a bromomethyl group, a difluoromethyl group, a dichloromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, Examples include 2,2,2-trifluoroethyl group, pentafluoroethyl group, heptafluoropropyl group, perfluorobutyl group, and perfluoropentyl group. Among these, because of excellent solubility in polar solvents, as R 3, methyl and ethyl are preferred.
 なお、上記式(1)、(2)で表される単量体は、たとえば、対応するアミンと、5-ノルボルネン-2,3-ジカルボン酸無水物とのアミド化反応により得ることができる。また、得られた単量体は、アミド化反応の反応液を公知の方法で分離・精製することにより効率よく単離できる。 The monomers represented by the above formulas (1) and (2) can be obtained, for example, by an amidation reaction between a corresponding amine and 5-norbornene-2,3-dicarboxylic acid anhydride. The obtained monomer can be efficiently isolated by separating and purifying the reaction solution of the amidation reaction by a known method.
 エステル基を有する環状オレフィンとしては、例えば、2-アセトキシビシクロ[2.2.1]ヘプト-5-エン、2-アセトキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-メトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-エトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-プロポキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ブトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-メトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-エトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-プロポキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ブトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-(2,2,2-トリフルオロエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(2,2,2-トリフルオロエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、4-アセトキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン等が挙げられる。 Examples of the cyclic olefin having an ester group include 2-acetoxybicyclo [2.2.1] hept-5-ene, 2-acetoxymethylbicyclo [2.2.1] hept-5-ene, and 2-methoxycarbonyl. Bicyclo [2.2.1] hept-5-ene, 2-ethoxycarbonylbicyclo [2.2.1] hept-5-ene, 2-propoxycarbonylbicyclo [2.2.1] hept-5-ene, 2-butoxycarbonylbicyclo [2.2.1] hept-5-ene, 2-cyclohexyloxycarbonylbicyclo [2.2.1] hept-5-ene, 2-methyl-2-methoxycarbonylbicyclo [2.2 .1] Hept-5-ene, 2-methyl-2-ethoxycarbonylbicyclo [2.2.1] hept-5-ene, 2-methyl-2-propoxyl Nilbicyclo [2.2.1] hept-5-ene, 2-methyl-2-butoxycarbonylbicyclo [2.2.1] hept-5-ene, 2-methyl-2-cyclohexyloxycarbonylbicyclo [2.2 .1] Hept-5-ene, 2- (2,2,2-trifluoroethoxycarbonyl) bicyclo [2.2.1] hept-5-ene, 2-methyl-2- (2,2,2- Trifluoroethoxycarbonyl) bicyclo [2.2.1] hept-5-ene, 4-acetoxytetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-ethoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-propoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-butoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-methoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-ethoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-propoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-butoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4- (2,2,2-trifluoroethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4- (2,2,2-trifluoroethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene and the like.
 シアノ基を有する環状オレフィンとしては、例えば、4-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジシアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、2-シアノビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-シアノビシクロ[2.2.1]ヘプト-5-エン、2,3-ジシアノビシクロ[2.2.1]ヘプト-5-エン、等が挙げられる。 As the cyclic olefin having a cyano group, for example, 4-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4,5-dicyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 2-cyanobicyclo [2.2.1] hept-5-ene, 2-methyl-2-cyanobicyclo [2.2.1] hept-5-ene, 2 , 3-dicyanobicyclo [2.2.1] hept-5-ene, and the like.
 酸無水物基を有する環状オレフィンとしては、例えば、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸無水物、2-カルボキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン無水物、等が挙げられる。 Examples of the cyclic olefin having an acid anhydride group include, for example, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboxylic anhydride, bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, 2-carboxymethyl-2- Hydroxycarbonylbicyclo [2.2.1] hept-5-ene anhydride, and the like.
 ハロゲン原子を有する環状オレフィンとしては、例えば、2-クロロビシクロ[2.2.1]ヘプト-5-エン、2-クロロメチルビシクロ[2.2.1]ヘプト-5-エン、2-(クロロフェニル)ビシクロ[2.2.1]ヘプト-5-エン、4-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン等が挙げられる。 Examples of the cyclic olefin having a halogen atom include 2-chlorobicyclo [2.2.1] hept-5-ene, 2-chloromethylbicyclo [2.2.1] hept-5-ene, 2- (chlorophenyl). ) Bicyclo [2.2.1] hept-5-ene, 4-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene, 4-methyl-4-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene and the like.
 これら単量体(b1)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。 These monomers (b1) may be used alone or in combination of two or more.
 極性基を持たない環状オレフィン単量体(b2)としては、ビシクロ[2.2.1]ヘプト-2-エン(「ノルボルネン」ともいう。)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(「テトラシクロドデセン」ともいう。)、9-メチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-5,12-ジエン、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロオクタジエン、インデン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、9-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-12-エン等が挙げられる。
 これら単量体(b2)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the cyclic olefin monomer (b2) having no polar group include bicyclo [2.2.1] hept-2-ene (also referred to as “norbornene”), 5-ethyl-bicyclo [2.2.1]. Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [2. 2.1] hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, tricyclo [5.2.1.0 2,6 ] deca-3,8-diene (conventional name: dicyclopentadiene), tetracyclo [10.2.1.0 2,11. 0 4,9 ] pentadeca-4,6,8,13-tetraene, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene (also referred to as “tetracyclododecene”), 9-methyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-vinyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-propenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, pentacyclo [9.2.1.1 3,9 . 0 2,10 . 0 4,8 ] pentadeca-5,12-diene, cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, cycloheptene, cyclooctene, cyclooctadiene, indene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H -Indene, 9-phenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7] dodeca-4-ene, tetracyclo [9.2.1.0 2,10. 0 3,8 ] tetradeca-3,5,7,12-tetraene, pentacyclo [9.2.1.1 3,9 . 0 2,10 . 0 4,8 ] pentadeca-12-ene and the like.
These monomers (b2) may be used alone or in combination of two or more.
 環状オレフィン以外の単量体(b3)の具体例としては、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のα-オレフィン;1,5-ヘキサジエン、1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン、およびこれらの誘導体;等が挙げられる。これらの中でも、α-オレフィン、特にエチレンが好ましい。
 これら単量体(b3)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer (b3) other than the cyclic olefin include ethylene; propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3- Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, Α-olefins having 2 to 20 carbon atoms such as 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc .; 1,5 Non-conjugated dienes such as hexadiene, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, and the like Conductor; and the like. Of these, α-olefins, particularly ethylene, are preferred.
These monomers (b3) may be used alone or in combination of two or more.
 これら単量体(b1)~(b3)のなかでも、本発明の効果がより一層顕著となるという観点より、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)が好ましく、N-置換イミド基を有する環状オレフィンが特に好ましい。 Among these monomers (b1) to (b3), the cyclic olefin monomer (b1) having a polar group other than the protic polar group is preferable from the viewpoint that the effect of the present invention becomes more remarkable. A cyclic olefin having an N-substituted imide group is particularly preferred.
 環状オレフィン重合体(A)中における、共重合可能な単量体(b)の単位の含有割合は、全単量体単位に対して、好ましくは10~90モル%、より好ましくは20~80モル%、さらに好ましくは30~70モル%である。共重合可能な単量体(b)の単位の含有割合を上記範囲とすることで、環状オレフィン重合体(A)の極性溶剤への溶解性を十分なものとしながら、ゲート絶縁膜とした場合における強度および絶縁性を良好なものとすることができる。 The content ratio of the copolymerizable monomer (b) unit in the cyclic olefin polymer (A) is preferably 10 to 90 mol%, more preferably 20 to 80%, based on all monomer units. The mol% is more preferably 30 to 70 mol%. When the content ratio of the copolymerizable monomer (b) unit is within the above range, the cyclic olefin polymer (A) has sufficient solubility in the polar solvent, and the gate insulating film is formed. The strength and insulation at can be improved.
 なお、本発明においては、プロトン性極性基を有しない環状オレフィン系重合体に、公知の変性剤を利用してプロトン性極性基を導入することで、環状オレフィン重合体(A)としてもよい。
 プロトン性極性基を有しない重合体は、上述した単量体(b1)および(b2)のうち少なくとも一種と、必要に応じて単量体(b3)とを任意に組み合わせて重合することによって得ることができる。
In addition, in this invention, it is good also as a cyclic olefin polymer (A) by introduce | transducing a protic polar group into a cyclic olefin polymer which does not have a protic polar group using a well-known modifier.
A polymer having no protic polar group is obtained by polymerizing at least one of the above-described monomers (b1) and (b2) and optionally combining the monomer (b3) as necessary. be able to.
 プロトン性極性基を導入するための変性剤としては、通常、一分子内にプロトン性極性基と反応性の炭素-炭素不飽和結合とを有する化合物が用いられる。
 このような化合物の具体例としては、アクリル酸、メタクリル酸、アンゲリカ酸、チグリン酸、オレイン酸、エライジン酸、エルカ酸、ブラシジン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、アトロパ酸、ケイ皮酸等の不飽和カルボン酸;アリルアルコール、メチルビニルメタノール、クロチルアルコール、メタリルアルコール、1-フェニルエテン-1-オール、2-プロペン-1-オール、3-ブテン-1-オール、3-ブテン-2-オール、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-2-オール、2-メチル-3-ブテン-1-オール、4-ペンテン-1-オール、4-メチル-4-ぺンテン-1-オール、2-ヘキセン-1-オール等の不飽和アルコール;等が挙げられる。
 これら変性剤を用いた重合体の変性反応は、常法に従えばよく、通常、ラジカル発生剤の存在下で行われる。
As the modifier for introducing a protic polar group, a compound having a protic polar group and a reactive carbon-carbon unsaturated bond in one molecule is usually used.
Specific examples of such compounds include acrylic acid, methacrylic acid, angelic acid, tiglic acid, oleic acid, elaidic acid, erucic acid, brassic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, atropaic acid. Unsaturated carboxylic acids such as acid and cinnamic acid; allyl alcohol, methyl vinyl methanol, crotyl alcohol, methallyl alcohol, 1-phenylethen-1-ol, 2-propen-1-ol, 3-butene-1- All, 3-buten-2-ol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-buten-2-ol, 2-methyl- Unsatisfactory such as 3-buten-1-ol, 4-penten-1-ol, 4-methyl-4-penten-1-ol, 2-hexen-1-ol Alcohol; and the like.
The modification reaction of the polymer using these modifiers may be performed according to a conventional method, and is usually performed in the presence of a radical generator.
 なお、本発明で用いる環状オレフィン重合体(A)は、上述した単量体を開環重合させた開環重合体であってもよいし、あるいは、上述した単量体を付加重合させた付加重合体であってもよいが、本発明の効果がより一層顕著になるという点より、開環重合体であることが好ましい。 The cyclic olefin polymer (A) used in the present invention may be a ring-opening polymer obtained by ring-opening polymerization of the above-mentioned monomer, or an addition polymer obtained by addition polymerization of the above-mentioned monomer. Although it may be a polymer, it is preferably a ring-opening polymer from the viewpoint that the effect of the present invention becomes more remarkable.
 開環重合体は、プロトン性極性基を有する環状オレフィン単量体(a)および必要に応じて用いられる共重合可能な単量体(b)を、メタセシス反応触媒の存在下に開環メタセシス重合することにより製造することができる。製造方法としては、たとえば、国際公開第2010/110323号の[0039]~[0079]に記載されている方法等を用いることができる。 The ring-opening polymer comprises a ring-opening metathesis polymerization of a cyclic olefin monomer having a protic polar group (a) and a copolymerizable monomer (b) used as necessary in the presence of a metathesis reaction catalyst. Can be manufactured. As the production method, for example, methods described in [0039] to [0079] of International Publication No. 2010/110323 can be used.
 本発明で用いる環状オレフィン重合体(A)の重量平均分子量(Mw)は、通常、1,000~1,000,000、好ましくは1,500~100,000、より好ましくは2,000~10,000の範囲である。
 また、環状オレフィン重合体(A)の分子量分布は、重量平均分子量/数平均分子量(Mw/Mn)比で、通常、4以下、好ましくは3以下、より好ましくは2.5以下である。なお、環状オレフィン重合体(A)の重量平均分子量(Mw)や分子量分布(Mw/Mn)は、テトラヒドロフラン等の溶媒を溶離液としたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として求められる値である。
The weight average molecular weight (Mw) of the cyclic olefin polymer (A) used in the present invention is usually 1,000 to 1,000,000, preferably 1,500 to 100,000, more preferably 2,000 to 10 , 000.
In addition, the molecular weight distribution of the cyclic olefin polymer (A) is usually 4 or less, preferably 3 or less, more preferably 2.5 or less, as a weight average molecular weight / number average molecular weight (Mw / Mn) ratio. In addition, the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the cyclic olefin polymer (A) are converted into polystyrene values by gel permeation chromatography (GPC) using a solvent such as tetrahydrofuran as an eluent. Is the value obtained as
(エポキシ基を分子内に2以上有するエポキシ系架橋剤(B))
 本発明で用いるゲート絶縁膜を形成するための樹脂組成物は、上述した環状オレフィン重合体(A)に加えて、環状オレフィン重合体(A)のプロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)(以下、単に「エポキシ系架橋剤(B)」とする。)を含有する。
(Epoxy-based cross-linking agent (B) having two or more epoxy groups in the molecule)
In addition to the above-mentioned cyclic olefin polymer (A), the resin composition for forming the gate insulating film used in the present invention contains an epoxy group that reacts with the protic polar group of the cyclic olefin polymer (A) in the molecule. 2 or more contains an epoxy-based crosslinking agent (B) (hereinafter simply referred to as “epoxy-based crosslinking agent (B)”).
 本発明においては、ゲート絶縁膜を形成するための樹脂組成物として、環状オレフィン重合体(A)およびエポキシ系架橋剤(B)を含有するものを用いることにより、得られるゲート絶縁膜の耐熱性および耐プラズマ性を向上させることができ、これにより、半導体膜を形成するためにスパッタリングを行った際においても、スパッタリングを行った際に発生する熱やプラズマに起因する、ゲート絶縁膜の劣化を有効に防止することができる。そして、これにより、得られる薄膜トランジスタを、移動度が高く、オン/オフ比が大きく、リーク電流の小さいものとすることができる。 In the present invention, as the resin composition for forming the gate insulating film, the heat resistance of the gate insulating film obtained by using the resin composition containing the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B). And the plasma resistance can be improved, so that even when sputtering is performed to form a semiconductor film, deterioration of the gate insulating film due to heat and plasma generated when the sputtering is performed is reduced. It can be effectively prevented. Thus, the obtained thin film transistor can have high mobility, a large on / off ratio, and a small leakage current.
 本発明で用いるエポキシ系架橋剤(B)としては、環状オレフィン重合体(A)のプロトン性極性基と反応するエポキシ基を分子内に2以上有する化合物であればよく、特に限定されない。また、エポキシ基としては、末端エポキシ基、脂環式エポキシ基のいずれでもよい。 The epoxy crosslinking agent (B) used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule that react with the protic polar group of the cyclic olefin polymer (A). Moreover, as an epoxy group, either a terminal epoxy group or an alicyclic epoxy group may be sufficient.
 このようなエポキシ系架橋剤(B)としては、たとえば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエーテル化合物、エポキシアクリレート重合体等が挙げられる。 Examples of such an epoxy crosslinking agent (B) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyphenol type epoxy resin, cycloaliphatic epoxy resin, Examples thereof include glycidyl ether compounds and epoxy acrylate polymers.
 エポキシ系架橋剤(B)の具体例としては、ジシクロペンタジエンを骨格とする3官能性のエポキシ化合物(商品名「XD-1000」、日本化薬社製)、2,2-ビス(ヒドロキシメチル)1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(シクロヘキサン骨格および末端エポキシ基を有する15官能性の脂環式エポキシ樹脂、商品名「EHPE3150」、ダイセル化学工業社製)、エポキシ化3-シクロヘキセン-1,2-ジカルボン酸ビス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(脂肪族環状3官能性のエポキシ樹脂、商品名「エポリードGT301」、ダイセル化学工業社製)、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(脂環式エポキシ基を有する脂肪族環状4官能性のエポキシ樹脂、商品名「エポリードGT401」、ダイセル化学工業社製)等の脂環構造を有するエポキシ化合物; Specific examples of the epoxy-based crosslinking agent (B) include a trifunctional epoxy compound having a dicyclopentadiene skeleton (trade name “XD-1000”, manufactured by Nippon Kayaku Co., Ltd.), 2,2-bis (hydroxymethyl). ) 1,2-Epoxy-4- (2-oxiranyl) cyclohexane adduct of 1-butanol (15 functional alicyclic epoxy resin having cyclohexane skeleton and terminal epoxy group, trade name “EHPE3150”, Daicel Chemical Industries, Ltd.) ), Epoxidized 3-cyclohexene-1,2-dicarboxylate bis (3-cyclohexenylmethyl) modified ε-caprolactone (aliphatic cyclic trifunctional epoxy resin, trade name “Epolide GT301”, manufactured by Daicel Chemical Industries, Ltd.) ), Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-capro An epoxy compound having an alicyclic structure such as a lactone (alicyclic cyclic tetrafunctional epoxy resin having an alicyclic epoxy group, trade name “Epolide GT401”, manufactured by Daicel Chemical Industries, Ltd.);
 芳香族アミン型多官能エポキシ化合物(商品名「H-434」、東都化成工業社製)、クレゾールノボラック型多官能エポキシ化合物(商品名「EOCN-1020」、日本化薬社製)、フェノールノボラック型多官能エポキシ化合物(エピコート152、154、ジャパンエポキシレジン社製)、ナフタレン骨格を有する多官能エポキシ化合物(商品名EXA-4700、大日本インキ化学株式会社製)、鎖状アルキル多官能エポキシ化合物(商品名「SR-TMP」、阪本薬品工業株式会社製)、多官能エポキシポリブタジエン(商品名「エポリードPB3600」、ダイセル化学工業社製)、グリセリンのグリシジルポリエーテル化合物(商品名「SR-GLG」、阪本薬品工業株式会社製)、ジグリセリンポリグリシジルエーテル化合物(商品名「SR-DGE」、阪本薬品工業株式会社製、ポリグリセリンポリグリシジルエーテル化合物(商品名「SR-4GL」、阪本薬品工業株式会社製)等の脂環構造を有さないエポキシ化合物;を挙げることができる。 Aromatic amine type polyfunctional epoxy compound (trade name “H-434”, manufactured by Tohto Kasei Kogyo Co., Ltd.), cresol novolac type polyfunctional epoxy compound (trade name “EOCN-1020”, manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type Polyfunctional epoxy compounds (Epicoat 152, 154, manufactured by Japan Epoxy Resin Co., Ltd.), polyfunctional epoxy compounds having a naphthalene skeleton (trade name EXA-4700, manufactured by Dainippon Ink & Chemicals, Inc.), chain alkyl polyfunctional epoxy compounds (products) Name “SR-TMP” (Sakamoto Yakuhin Kogyo Co., Ltd.), polyfunctional epoxy polybutadiene (trade name “Epolide PB3600”, Daicel Chemical Industries, Ltd.), glycerin glycidyl polyether compound (trade name “SR-GLG”, Sakamoto) Yakuhin Kogyo Co., Ltd.), diglycerin polyglycidyl ether Epoxy having no alicyclic structure such as compound (trade name “SR-DGE”, Sakamoto Pharmaceutical Co., Ltd., polyglycerin polyglycidyl ether compound (trade name “SR-4GL”, Sakamoto Pharmaceutical Co., Ltd.) A compound;
 エポキシ系架橋剤(B)の中でも、得られるゲート絶縁膜の耐熱性の向上効果が高いという点より、脂環構造を有する化合物が好ましく、かつ、脂環構造を有し、かつ、エポキシ基が3個以上である化合物がより好ましい。 Among the epoxy-based crosslinking agents (B), a compound having an alicyclic structure is preferable, and an epoxy group having an alicyclic structure is preferable because the effect of improving the heat resistance of the obtained gate insulating film is high. A compound having 3 or more is more preferable.
 また、本発明においては、得られるゲート絶縁膜の耐熱性および耐プラズマ性をより向上させることができ、これにより、半導体膜を形成するためにスパッタリングを行った際における、スパッタリングを行った際に発生する熱やプラズマに起因する、ゲート絶縁膜の劣化の抑制効果をより高めることができるという点より、エポキシ系架橋剤(B)として、異なる2種以上の化合物を組み合わせて用いることが好ましい。なお、この場合における、異なる2種以上の化合物としては、その化学構造が実質的に異なると判断できるような2種以上の化合物を組み合わせて用いればよく、たとえば、上述した化合物を適宜組み合わせて用いることができるが、耐熱性の向上効果をより高めることができるという点より、分子量(Mw)が1,000未満(好ましくは800以下)の化合物と、分子量(Mw)が1,000以上(好ましくは2000以上)の化合物とを組み合わせて用いることが好ましい。あるいは、同様に、耐熱性および耐プラズマ性の向上効果をより高めることができるという点より、末端エポキシ基を有する化合物と、脂環式エポキシ基を有する化合物とを組み合わせて用いることも好ましい。 Further, in the present invention, the heat resistance and plasma resistance of the obtained gate insulating film can be further improved, whereby when sputtering is performed when sputtering is performed to form a semiconductor film. It is preferable to use a combination of two or more different compounds as the epoxy-based crosslinking agent (B) from the viewpoint that the effect of suppressing deterioration of the gate insulating film due to generated heat and plasma can be further enhanced. In this case, the two or more different compounds may be used in combination of two or more compounds whose chemical structures can be determined to be substantially different. For example, the above-described compounds may be used in appropriate combination. However, from the viewpoint that the effect of improving heat resistance can be further enhanced, a compound having a molecular weight (Mw) of less than 1,000 (preferably 800 or less) and a molecular weight (Mw) of 1,000 or more (preferably Are preferably used in combination with 2,000 or more compounds. Or similarly, it is also preferable to use combining the compound which has a terminal epoxy group, and the compound which has an alicyclic epoxy group from the point that the improvement effect of heat resistance and plasma resistance can be heightened more.
 本発明で用いる樹脂組成物中におけるエポキシ系架橋剤(B)の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは10~100重量部、より好ましくは20~70重量部であり、より好ましくは40~60重量部である。エポキシ系架橋剤(B)の含有量を上記範囲とすることにより、得られるゲート絶縁膜の耐熱性および耐プラズマ性を適切に高めることができる。 The content of the epoxy crosslinking agent (B) in the resin composition used in the present invention is preferably 10 to 100 parts by weight, more preferably 20 to 70 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Part, more preferably 40 to 60 parts by weight. By making content of an epoxy type crosslinking agent (B) into the said range, the heat resistance and plasma resistance of the gate insulating film obtained can be improved appropriately.
(メラミン系架橋剤(C))
 本発明で用いるゲート絶縁膜を形成するための樹脂組成物は、上述した環状オレフィン重合体(A)およびエポキシ系架橋剤(B)に加えて、メラミン系架橋剤(C)をさらに含有していることが好ましい。メラミン系架橋剤(C)をさらに含有させることにより、得られるゲート絶縁膜の耐熱性および耐プラズマ性をより向上させることができ、これにより、半導体膜を形成するためにスパッタリングを行った際における、スパッタリングを行った際に発生する熱やプラズマに起因する、ゲート絶縁膜の劣化の抑制効果をより高めることができる。
(Melamine cross-linking agent (C))
The resin composition for forming the gate insulating film used in the present invention further contains a melamine-based crosslinking agent (C) in addition to the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B) described above. Preferably it is. By further containing the melamine-based crosslinking agent (C), it is possible to further improve the heat resistance and plasma resistance of the obtained gate insulating film, and thus when sputtering is performed to form a semiconductor film. The effect of suppressing deterioration of the gate insulating film due to heat and plasma generated when sputtering is performed can be further enhanced.
 本発明で用いるメラミン系架橋剤(C)としては、メラミン骨格を有し、かつ、環状オレフィン重合体(A)と反応して環状オレフィン重合体(A)間に架橋構造を形成するものであればよいが、本発明においては、下記式(3)で表される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(3)中、R~Rは、それぞれ独立に、水素原子または-CH2OR10基(ただし、R10は水素原子または炭素数1~6のアルキル基)を示し、R~Rのうち、少なくとも1つは-CH2OR10基である。R~Rは、同一であってもよく、互いに異なっていてもよい。また、上記式(3)において、-CH2OR10で表される炭素数1~6のアルコキシメチル基のなかでも、R10の炭素数が炭素数1~4であるアルコキシメチル基が好ましく、具体的にはメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基が好ましく、特にメトキシメチル基が好ましい。
The melamine-based crosslinking agent (C) used in the present invention has a melamine skeleton and reacts with the cyclic olefin polymer (A) to form a crosslinked structure between the cyclic olefin polymers (A). However, in the present invention, a compound represented by the following formula (3) can be preferably used.
Figure JPOXMLDOC01-appb-C000003
In the above formula (3), R 4 to R 9 each independently represents a hydrogen atom or —CH 2 OR 10 group (where R 10 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and R 4 At least one of -R 9 is a -CH 2 OR 10 group. R 4 to R 9 may be the same or different from each other. In the above formula (3), among the alkoxymethyl groups having 1 to 6 carbon atoms represented by —CH 2 OR 10 , an alkoxymethyl group in which R 10 has 1 to 4 carbon atoms is preferable. Specifically, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group are preferable, and a methoxymethyl group is particularly preferable.
 メラミン系架橋剤(C)の具体例としては、N,N,N’,N’,N’’,N’’-(ヘキサアルコキシアルキル)メラミン等のメチロール基やイミノ基等を有していてもよいメラミン類(商品名「サイメル303、サイメル325、サイメル350、サイメル370、サイメル232、サイメル235、サイメル272、サイメル212、マイコート506」{以上、サイテックインダストリーズ社製}等のサイメルシリーズ、マイコートシリーズ)などが挙げられる。 Specific examples of the melamine-based crosslinking agent (C) include methylol groups such as N, N, N ′, N ′, N ″, N ″-(hexaalkoxyalkyl) melamine, imino groups, and the like. Good melamines (trade names “Cymel 303, Cymel 325, Cymel 350, Cymel 370, Cymel 232, Cymel 235, Cymel 272, Cymel 212, My Coat 506” {and above, made by Cytec Industries, Inc.} My coat series).
 本発明で用いる樹脂組成物中におけるメラミン系架橋剤(C)の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは10~100重量部、より好ましくは10~50重量部、さらに好ましくは20~50重量部である。また、メラミン系架橋剤(C)の含有量は、上述したエポキシ系架橋剤(B)の含有量との関係で、「エポキシ系架橋剤(B):メラミン系架橋剤(C)」の重量比で、1:3~3:1の範囲であることが好ましく、1:2~2:1の範囲であることがより好ましい。メラミン系架橋剤(C)の含有量を上記範囲とすることにより、得られるゲート絶縁膜の耐熱性および耐プラズマ性を適切に高めることができる。 The content of the melamine crosslinking agent (C) in the resin composition used in the present invention is preferably 10 to 100 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Parts, more preferably 20 to 50 parts by weight. The content of the melamine crosslinking agent (C) is related to the content of the epoxy crosslinking agent (B) described above, and the weight of “epoxy crosslinking agent (B): melamine crosslinking agent (C)”. The ratio is preferably in the range of 1: 3 to 3: 1 and more preferably in the range of 1: 2 to 2: 1. By making content of a melamine type crosslinking agent (C) into the said range, the heat resistance and plasma resistance of the gate insulating film obtained can be improved appropriately.
(その他の配合剤)
  本発明で用いる樹脂組成物には、さらに、溶剤が含有されていてもよい。溶剤としては、特に限定されず、樹脂組成物の溶剤として公知のもの、例えばアセトン、メチルエチルケトン、シクロペンタノン、2-ヘキサノン、3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-オクタノン、3-オクタノン、4-オクタノンなどの直鎖のケトン類;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、シクロヘキサノールなどのアルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジオキサンなどのエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルコールエーテル類;ギ酸プロピル、ギ酸ブチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチルなどのエステル類;セロソルブアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテートなどのセロソルブエステル類;プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルなどのプロピレングリコール類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルなどのジエチレングリコール類;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-カプリロラクトンなどの飽和γ-ラクトン類;トリクロロエチレンなどのハロゲン化炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルアセトアミド、ジメチルホルムアミド、N-メチルアセトアミドなどの極性溶媒などが挙げられる。これらの溶剤は、単独でも2種以上を組み合わせて用いてもよい。溶剤の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは10~10000重量部、より好ましくは50~5000重量部、さらに好ましくは100~1000重量部の範囲である。なお、樹脂組成物に溶剤を含有させる場合には、溶剤は、通常、ゲート絶縁膜形成後に除去されることとなる。
(Other ingredients)
The resin composition used in the present invention may further contain a solvent. The solvent is not particularly limited, and is known as a resin composition solvent such as acetone, methyl ethyl ketone, cyclopentanone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2- Linear ketones such as octanone, 3-octanone and 4-octanone; alcohols such as n-propyl alcohol, isopropyl alcohol, n-butyl alcohol and cyclohexanol; ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether and dioxane Alcohol alcohols such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propyl formate, butyl formate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate Esters such as methyl butyrate, ethyl butyrate, methyl lactate and ethyl lactate; cellosolve esters such as cellosolve acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propyl cellosolve acetate, butyl cellosolve acetate; propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl Propylene glycols such as ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether; diety such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether Glycols; saturated γ-lactones such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, and γ-caprolactone; halogenated hydrocarbons such as trichloroethylene; aromatic hydrocarbons such as toluene and xylene; Examples include polar solvents such as dimethylacetamide, dimethylformamide, and N-methylacetamide. These solvents may be used alone or in combination of two or more. The content of the solvent is preferably in the range of 10 to 10,000 parts by weight, more preferably 50 to 5000 parts by weight, and further preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). In addition, when a solvent is contained in the resin composition, the solvent is usually removed after forming the gate insulating film.
  また、本発明で用いる樹脂組成物は、本発明の効果が阻害されない範囲であれば、所望により、酸化防止剤、界面活性剤、酸性基又は熱潜在性酸性基を有する化合物、カップリング剤又はその誘導体、増感剤、光安定剤、消泡剤、顔料、染料、フィラー等のその他の配合剤;等を含有していてもよい。これらのうち、たとえばカップリング剤又はその誘導体、増感剤、光安定剤は、特開2011-75609号公報に記載されたものなどを用いることができる。 Further, the resin composition used in the present invention is an antioxidant, a surfactant, a compound having an acidic group or a heat-latent acidic group, a coupling agent, or the like, as long as the effect of the present invention is not inhibited. It may contain other compounding agents such as derivatives, sensitizers, light stabilizers, antifoaming agents, pigments, dyes and fillers. Among these, for example, those described in JP 2011-75609 A can be used as the coupling agent or derivative thereof, the sensitizer, and the light stabilizer.
 酸化防止剤としては、特に限定されないが、例えば、通常の重合体に使用されている、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤、ラクトン系酸化防止剤等が使用できる。酸化防止剤を含有させることにより、得られるゲート絶縁膜の耐光性、耐熱性を向上させることができる。 Although it does not specifically limit as antioxidant, For example, the phenolic antioxidant, phosphorus antioxidant, sulfur antioxidant, amine antioxidant, lactone type oxidation which are used for the usual polymer are used. An inhibitor or the like can be used. By containing an antioxidant, the light resistance and heat resistance of the obtained gate insulating film can be improved.
 フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-[1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル]フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されているアクリレート系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン- ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t -ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3-シクロヘキシル-2-ヒドロキシ-5-メチルフェニル)メタン、3,9-ビス〔2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ペンタエリズリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、トリエチレングリコール  ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、トコフェロールなどのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3,5-ジメチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などを用いることができる。 As the phenolic antioxidant, conventionally known ones can be used, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate-based compounds described in the publication No. 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, octadecyl-3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidene-bis (6 t -butyl-m-cresol), 4,4′-thiobis (3-methyl-6-t-butylphenol), bis (3-cyclohexyl-2-hydroxy-5-methylphenyl) methane, 3,9-bis [ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], triethyleneglycol bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate], tocopherol, etc. 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3,5) -Dimethylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3-methyl-5-t-butylanilino) -2,4-bis-octylthio-1, Triazine group-containing phenolic compounds such as 3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine; Can be used.
 リン系酸化防止剤としては、一般の樹脂工業で通常使用されているものであれば格別な制限はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリス(2-t-ブチル-4-メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10 -(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレンなどのモノホスファイト系化合物;4,4’-ブチリデン- ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’-イソプロピリデン-ビス[フェニル-ジ-アルキル(C12 ~C15)ホスファイト]、4,4’-イソプロピリデン-ビス[ジフェニルモノアルキル(C12 ~C15)ホスファイト]、1,1,3-トリス(2-メチル-4-ジ-トリデシルホスファイト-5-t-ブチルフェニル)ブタン、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、サイクリックネオペンタンテトライルビス(イソデシルホスファイト)、サイクリックネオペンタンテトライルビス(ノニルフェニルホスファイト)、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニルホスファイト)、サイクリックネオペンタンテトライルビス(2,4-ジメチルフェニルホスファイト)、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチルフェニルホスファイト)などのジホスファイト系化合物などを用いることができる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 The phosphorus antioxidant is not particularly limited as long as it is usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) ) Phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2-tert-butyl-4-methylphenyl) phosphite, tris (cyclohexylphenyl) Phosphite, 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(3 5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro Monophosphite compounds such as 9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene; 4,4′-butylidene-bis ( 3-methyl-6-t-butylphenyl-di-tridecyl phosphite), 4,4′-isopropylidene-bis [phenyl-di-alkyl (C12 -C15) phosphite], 4,4′-isopropylidene -Bis [diphenylmonoalkyl (C12 -C15) phosphite], 1,1,3-tris (2-methyl-4-di-tridecylphosphite-5-tert-butylphenyl) butane, tetrakis (2,4 -Di-t-butylphenyl) -4,4'-biphenylene diphosphite, cyclic neopentanetetraylbis (Octadecyl phosphite), cyclic neopentanetetrayl bis (isodecyl phosphite), cyclic neopentane tetrayl bis (nonylphenyl phosphite), cyclic neopentane tetrayl bis (2,4-di-t- Diphosphite compounds such as butylphenyl phosphite), cyclic neopentanetetrayl bis (2,4-dimethylphenyl phosphite), cyclic neopentanetetrayl bis (2,6-di-t-butylphenyl phosphite) Etc. can be used. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 イオウ系酸化防止剤としては、例えば、ジラウリル  3,3’-チオジプロピオネート、ジミリスチル  3,3’-チオジプロピオネート、ジステアリル  3,3’-チオジプロピオネート、ラウリルステアリル  3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ-プロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどを用いることができる。 Examples of the sulfur-based antioxidant include dilauryl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, laurylstearyl 3,3 ′. -Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] Undecane or the like can be used.
 これらの中でもフェノール系酸化防止剤が好ましく、なかでも、ペンタエリズリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]がより好ましい。
 これらの酸化防止剤は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。
Among these, phenolic antioxidants are preferable, and pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] is more preferable.
These antioxidants can be used alone or in combination of two or more.
 本発明で用いる樹脂組成物中における酸化防止剤の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは1~5重量部である。酸化防止剤の含有量が上記範囲にあると、得られるゲート絶縁膜の耐光性および耐熱性を良好なものとすることができる。 The content of the antioxidant in the resin composition used in the present invention is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). Part. When the content of the antioxidant is in the above range, the light resistance and heat resistance of the obtained gate insulating film can be improved.
 界面活性剤は、ストリエーション(塗布筋あと)の防止等の目的で使用される。界面活性剤としては、例えば、シリコーン系界面活性剤、フッ素系界面活性剤、ポリオキシアルキレン系界面活性剤、メタクリル酸共重合体系界面活性剤、アクリル酸共重合体系界面活性剤などを挙げることができる。 界面 Surfactant is used for the purpose of preventing striations (after coating). Examples of the surfactant include silicone surfactants, fluorine surfactants, polyoxyalkylene surfactants, methacrylic acid copolymer surfactants, and acrylic acid copolymer surfactants. it can.
 シリコーン系界面活性剤としては、例えば、「SH28PA」、「SH29PA」、「SH30PA」、「ST80PA」、「ST83PA」、「ST86PA」、「SF8416」、「SH203」、「SH230」、「SF8419」、「SF8422」、「FS1265」、「SH510」、「SH550」、「SH710」、「SH8400」、「SF8410」、「SH8700」、「SF8427」(以上、東レ・ダウコーニング株式会社製)、商品名「KP-321」、「KP-323」、「KP-324」、「KP-340」、「KP-341」(以上、信越化学工業株式会社製)、商品名「TSF400」、「TSF401」、「TSF410」、「TSF4440」、「TSF4445」、「TSF4450」、「TSF4446」、「TSF4452」、「TSF4460」(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、商品名「BYK300」、「BYK301」、「BYK302」、「BYK306」、「BYK307」、「BYK310」、「BYK315」、「BYK320」、「BYK322」、「BYK323」、「BYK331」、「BYK333」、「BYK370」「BYK375」、「BYK377」、「BYK378」(以上、ビックケミー・ジャパン社製)などを挙げることができる。 Examples of the silicone surfactant include “SH28PA”, “SH29PA”, “SH30PA”, “ST80PA”, “ST83PA”, “ST86PA”, “SF8416”, “SH203”, “SH230”, “SF8419”, “SF8422”, “FS1265”, “SH510”, “SH550”, “SH710”, “SH8400”, “SF8410”, “SH8700”, “SF8427” (above, manufactured by Toray Dow Corning Co., Ltd.), product name “ “KP-321”, “KP-323”, “KP-324”, “KP-340”, “KP-341” (manufactured by Shin-Etsu Chemical Co., Ltd.), trade names “TSF400”, “TSF401”, “ "TSF410", "TSF4440", "TSF4445", "TSF4450", "T “F4446”, “TSF4452”, “TSF4460” (manufactured by Momentive Performance Materials Japan GK), product names “BYK300”, “BYK301”, “BYK302”, “BYK306”, “BYK307”, “BYK310” ”,“ BYK315 ”,“ BYK320 ”,“ BYK322 ”,“ BYK323 ”,“ BYK331 ”,“ BYK333 ”,“ BYK370 ”“ BYK375 ”,“ BYK377 ”,“ BYK378 ”(above, manufactured by BYK Japan) Can be mentioned.
 フッ素系界面活性剤としては、例えば、フロリナート「FC-430」、「FC-431」(以上、住友スリーエム株式会社製)、サーフロン「S-141」、「S-145」、「S-381」、「S-393」(以上、旭硝子株式会社製)、エフトップ(登録商標)「EF301」、「EF303」、「EF351」、「EF352」(以上、株式会社ジェムコ製)、メガファック(登録商標)「F171」、「F172」、「F173」、「R-30」(以上、DIC株式会社製)などを挙げることができる。
 ポリオキシアルキレン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルエーテル類、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレートポリオキシエチレンジアルキルエステル類などを挙げることができる。
 これらの界面活性剤は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。
Examples of the fluorosurfactant include Fluorinert “FC-430”, “FC-431” (manufactured by Sumitomo 3M Limited), Surflon “S-141”, “S-145”, “S-381”. , “S-393” (manufactured by Asahi Glass Co., Ltd.), EFtop (registered trademark) “EF301”, “EF303”, “EF351”, “EF352” (manufactured by Gemco Co., Ltd.), Megafuck (registered trademark) ) “F171”, “F172”, “F173”, “R-30” (above, manufactured by DIC Corporation).
Examples of the polyoxyalkylene surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, and the like. And polyethylene glycol dilaurate, polyethylene glycol distearate polyoxyethylene dialkyl esters, and the like.
These surfactants can be used alone or in combination of two or more.
 本発明で用いる樹脂組成物中における界面活性剤の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは0.01~0.5重量部であり、より好ましくは0.02~0.2重量部である。界面活性剤の含有量が上記範囲にあると、ストリエーション(塗布筋あと)の防止効果をより高めることができる。 The content of the surfactant in the resin composition used in the present invention is preferably 0.01 to 0.5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the cyclic olefin polymer (A). 02 to 0.2 parts by weight. When the content of the surfactant is in the above range, the effect of preventing striation (after the application stripe) can be further enhanced.
  酸性基又は熱潜在性酸性基を有する化合物は、酸性基または加熱により酸性基を生じる熱潜在性酸性基を有するものであればよく、特に限定されないが、好ましくは脂肪族化合物、芳香族化合物、複素環化合物であり、さらに好ましくは芳香族化合物、複素環化合物である。
  これらの酸性基又は熱潜在性酸性基を有する化合物は、それぞれ単独で又は2種以上を組み合わせて用いることができる。
The compound having an acidic group or a thermal latent acidic group is not particularly limited as long as it has an acidic group or a thermal latent acidic group that generates an acidic group by heating, but is preferably an aliphatic compound, an aromatic compound, Heterocyclic compounds, more preferably aromatic compounds and heterocyclic compounds.
These compounds having an acidic group or a heat-latent acidic group can be used alone or in combination of two or more.
  酸性基又は熱潜在性酸性基を有する化合物の酸性基および熱潜在性酸性基の数は、特に限定されないが、合計で2つ以上の酸性基および/又は熱潜在性酸性基を有するものが好ましい。酸性基又は熱潜在性酸性基は、互いに同一であっても異なっていてもよい。
  酸性基としては、酸性の官能基であればよく、その具体例としては、スルホン酸基、リン酸基等の強酸性基;カルボキシ基、チオール基およびカルボキシメチレンチオ基等の弱酸性基;が挙げられる。これらの中でも、カルボキシ基、チオール基又はカルボキシメチレンチオ基が好ましく、カルボキシ基が特に好ましい。また、これらの酸性基の中でも、酸解離定数pKaが3.5以上5.0以下の範囲にあるものが好ましい。なお、酸性基が2つ以上ある場合は第一解離定数pKa1を酸解離定数とし、第一解離定数pKa1が上記範囲にあるものが好ましい。また、pKaは、希薄水溶液条件下で、酸解離定数Ka=[H][B]/[BH]を測定し、pKa=-logKaにしたがって、求められる。ここでBHは、有機酸を表し、Bは有機酸の共役塩基を表す。
  なお、pKaの測定方法は、例えばpHメータを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。
The number of acidic groups and thermal latent acidic groups of the compound having an acidic group or thermal latent acidic group is not particularly limited, but those having a total of two or more acidic groups and / or thermal latent acidic groups are preferable. . The acidic group or the heat latent acidic group may be the same as or different from each other.
The acidic group may be any acidic functional group, and specific examples thereof include strongly acidic groups such as sulfonic acid group and phosphoric acid group; weak acidic groups such as carboxy group, thiol group and carboxymethylenethio group; Can be mentioned. Among these, a carboxy group, a thiol group or a carboxymethylenethio group is preferable, and a carboxy group is particularly preferable. Among these acidic groups, those having an acid dissociation constant pKa in the range of 3.5 to 5.0 are preferred. When there are two or more acidic groups, it is preferable that the first dissociation constant pKa1 is an acid dissociation constant and the first dissociation constant pKa1 is in the above range. The pKa is obtained according to pKa = −logKa by measuring the acid dissociation constant Ka = [H 3 O + ] [B ] / [BH] under dilute aqueous solution conditions. Here, BH represents an organic acid, and B represents a conjugate base of the organic acid.
In addition, the measuring method of pKa can calculate hydrogen ion concentration, for example using a pH meter, and can calculate from the density | concentration of a relevant substance, and hydrogen ion concentration.
 また、熱潜在性酸性基としては、加熱により酸性の官能基を生じる基であればよく、その具体例としては、スルホニウム塩基、ベンゾチアゾリウム塩基、アンモニウム塩基、ホスホニウム塩基、ブロックカルボン酸基等が挙げられる。これらの中でも、ブロックカルボン酸基が好ましい。なお、ブロックカルボン酸基を得るために用いられるカルボキシ基のブロック化剤は特に限定されないが、ビニルエーテル化合物であることが好ましい。 The heat-latent acidic group may be any group that generates an acidic functional group upon heating. Specific examples thereof include a sulfonium base, a benzothiazolium base, an ammonium base, a phosphonium base, a block carboxylic acid group, and the like. Is mentioned. Among these, a block carboxylic acid group is preferable. The carboxy group blocking agent used to obtain the blocked carboxylic acid group is not particularly limited, but is preferably a vinyl ether compound.
  さらに、酸性基又は熱潜在性酸性基を有する化合物は、酸性基および熱潜在性酸性基以外の置換基を有していてもよい。
  このような置換基としては、アルキル基、アリール基等の炭化水素基のほか、ハロゲン原子;アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロ環オキシ基;アルキル基又はアリール基又は複素環基で置換されたアミノ基、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基;アルキルチオ基、アリールチオ基、ヘテロ環チオ基;等のプロトンを有しない極性基、これらのプロトンを有しない極性基で置換された炭化水素基、等を挙げることができる。
Furthermore, the compound having an acidic group or a thermal latent acidic group may have a substituent other than the acidic group and the thermal latent acidic group.
As such substituents, in addition to hydrocarbon groups such as alkyl groups and aryl groups, halogen atoms; alkoxy groups, aryloxy groups, acyloxy groups, heterocyclic oxy groups; substituted with alkyl groups, aryl groups, or heterocyclic groups Polar groups having no proton such as amino group, acylamino group, ureido group, sulfamoylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group; alkylthio group, arylthio group, heterocyclic thio group; Examples thereof include a hydrocarbon group substituted with a polar group having no proton.
  このような酸性基又は熱潜在性酸性基を有する化合物のうち、酸性基有する化合物の具体例としては、メタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、グリコール酸、グリセリン酸、エタン二酸(「シュウ酸」ともいう。)、プロパン二酸(「マロン酸」ともいう。)、ブタン二酸(「コハク酸」ともいう。)、ペンタン二酸、ヘキサン二酸(「アジピン酸」ともいう。)、1、2―シクロヘキサンジカルボン酸、2-オキソプロパン酸、2-ヒドロキシブタン二酸、2-ヒドロキシプロパントリカルボン酸、メルカプトこはく酸、ジメルカプトこはく酸、2,3-ジメルカプト-1-プロパノール、1,2,3-トリメルカプトプロパン、2,3,4-トリメルカプト-1-ブタノール、2,4-ジメルカプト-1,3-ブタンジオール、1,3,4-トリメルカプト-2-ブタノール、3,4-ジメルカプト-1,2-ブタンジオール、1,5-ジメルカプト-3-チアペンタン等の脂肪族化合物; Among the compounds having such an acidic group or thermal latent acidic group, specific examples of the compound having an acidic group include methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, butanoic acid, pentanoic acid, hexanoic acid. , Heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, glycolic acid, glyceric acid, ethanedioic acid (also referred to as “oxalic acid”), propanedioic acid (also referred to as “malonic acid”), butanedioic acid (“ Succinic acid "), pentanedioic acid, hexanedioic acid (also called" adipic acid "), 1,2-cyclohexanedicarboxylic acid, 2-oxopropanoic acid, 2-hydroxybutanedioic acid, 2-hydroxypropane Tricarboxylic acid, mercapto succinic acid, dimercapto succinic acid, 2,3-dimercapto-1-propanol, 1,2,3-trimercaptopropane, 2,3,4-trimercapto-1-butanol, 2,4-dimercapto-1,3-butanediol, 1,3,4-trimercapto-2-butanol, 3,4-dimercapto-1,2-butane Aliphatic compounds such as diol and 1,5-dimercapto-3-thiapentane;
  安息香酸、p-ヒドロキシベンゼンカルボン酸、o-ヒドロキシベンゼンカルボン酸、2-ナフタレンカルボン酸、メチル安息香酸、ジメチル安息香酸、トリメチル安息香酸、3-フェニルプロパン酸、ジヒドロキシ安息香酸、ジメトキシ安息香酸、ベンゼン-1,2-ジカルボン酸(「フタル酸」ともいう。)、ベンゼン-1,3-ジカルボン酸(「イソフタル酸」ともいう。)、ベンゼン-1,4-ジカルボン酸(「テレフタル酸」ともいう。)、ベンゼン-1,2,3-トリカルボン酸、ベンゼン-1,2,4-トリカルボン酸、ベンゼン-1,3,5-トリカルボン酸、ベンゼンヘキサカルボン酸、ビフェニル-2,2’-ジカルボン酸、2-(カルボキシメチル)安息香酸、3-(カルボキシメチル)安息香酸、4-(カルボキシメチル)安息香酸、2-(カルボキシカルボニル)安息香酸、3-(カルボキシカルボニル)安息香酸、4-(カルボキシカルボニル)安息香酸、2-メルカプト安息香酸、4-メルカプト安息香酸、ジフェノール酸、2-メルカプト-6-ナフタレンカルボン酸、2-メルカプト-7-ナフタレンカルボン酸、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(メルカプトエチル)ベンゼン、1,2,4-トリス(メルカプトエチル)ベンゼン、1,3,5-トリス(メルカプトエチル)ベンゼン等の芳香族化合物; Benzoic acid, p-hydroxybenzenecarboxylic acid, o-hydroxybenzenecarboxylic acid, 2-naphthalenecarboxylic acid, methylbenzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, 3-phenylpropanoic acid, dihydroxybenzoic acid, dimethoxybenzoic acid, benzene -1,2-dicarboxylic acid (also referred to as “phthalic acid”), benzene-1,3-dicarboxylic acid (also referred to as “isophthalic acid”), benzene-1,4-dicarboxylic acid (also referred to as “terephthalic acid”) ), Benzene-1,2,3-tricarboxylic acid, benzene-1,2,4-tricarboxylic acid, benzene-1,3,5-tricarboxylic acid, benzenehexacarboxylic acid, biphenyl-2,2′-dicarboxylic acid 2- (carboxymethyl) benzoic acid, 3- (carboxymethyl) benzoic acid, 4- (carboxymethyl) ) Benzoic acid, 2- (carboxycarbonyl) benzoic acid, 3- (carboxycarbonyl) benzoic acid, 4- (carboxycarbonyl) benzoic acid, 2-mercaptobenzoic acid, 4-mercaptobenzoic acid, diphenolic acid, 2-mercapto -6-naphthalenecarboxylic acid, 2-mercapto-7-naphthalenecarboxylic acid, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,4-naphthalenedithiol, 1, 5-naphthalenedithiol, 2,6-naphthalenedithiol, 2,7-naphthalenedithiol, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5-trimercaptobenzene, 1 , 2,3-Tris (mercaptomethyl) benzene, 1,2,4-tris (mercaptomethyl) ) Benzene, 1,3,5-tris (mercaptomethyl) benzene, 1,2,3-tris (mercaptoethyl) benzene, 1,2,4-tris (mercaptoethyl) benzene, 1,3,5-tris ( Aromatic compounds such as mercaptoethyl) benzene;
  ニコチン酸、イソニコチン酸、2-フロ酸、ピロール-2,3-ジカルボン酸、ピロール-2,4-ジカルボン酸、ピロール-2,5-ジカルボン酸、ピロール-3,4-ジカルボン酸、イミダゾール-2,4-ジカルボン酸、イミダゾール-2,5-ジカルボン酸、イミダゾール-4,5-ジカルボン酸、ピラゾール-3,4-ジカルボン酸、ピラゾール-3,5-ジカルボン酸等の窒素原子を含む五員複素環化合物;チオフェン-2,3-ジカルボン酸、チオフェン-2,4-ジカルボン酸、チオフェン-2,5-ジカルボン酸、チオフェン-3,4-ジカルボン酸、チアゾール-2,4-ジカルボン酸、チアゾール-2,5-ジカルボン酸、チアゾール-4,5-ジカルボン酸、イソチアゾール-3,4-ジカルボン酸、イソチアゾール-3,5-ジカルボン酸、1,2,4-チアジアゾール-2,5-ジカルボン酸、1,3,4-チアジアゾール-2,5-ジカルボン酸、3-アミノ-5-メルカプト-1,2,4-チアジアゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、3,5-ジメルカプト-1,2,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、3-(5-メルカプト-1,2,4-チアジアゾール-3-イルスルファニル)こはく酸、2-(5-メルカプト-1,3,4-チアジアゾール-2-イルスルファニル)こはく酸、(5-メルカプト-1,2,4-チアジアゾール-3-イルチオ)酢酸、(5-メルカプト-1,3,4-チアジアゾール-2-イルチオ)酢酸、3-(5-メルカプト-1,2,4-チアジアゾール-3-イルチオ)プロピオン酸、2-(5-メルカプト-1,3,4-チアジアゾール-2-イルチオ)プロピオン酸、3-(5-メルカプト-1,2,4-チアジアゾール-3-イルチオ)コハク酸、2-(5-メルカプト-1,3,4-チアジアゾール-2-イルチオ)コハク酸、4-(3-メルカプト-1,2,4-チアジアゾール-5-イル)チオブタンスルホン酸、4-(2-メルカプト-1,3,4-チアジアゾール-5-イル)チオブタンスルホン酸等の窒素原子と硫黄原子を含む五員複素環化合物; Nicotinic acid, isonicotinic acid, 2-furoic acid, pyrrole-2,3-dicarboxylic acid, pyrrole-2,4-dicarboxylic acid, pyrrole-2,5-dicarboxylic acid, pyrrole-3,4-dicarboxylic acid, imidazole 5-membered containing nitrogen atoms such as 2,4-dicarboxylic acid, imidazole-2,5-dicarboxylic acid, imidazole-4,5-dicarboxylic acid, pyrazole-3,4-dicarboxylic acid, pyrazole-3,5-dicarboxylic acid Heterocyclic compounds: thiophene-2,3-dicarboxylic acid, thiophene-2,4-dicarboxylic acid, thiophene-2,5-dicarboxylic acid, thiophene-3,4-dicarboxylic acid, thiazole-2,4-dicarboxylic acid, thiazole -2,5-dicarboxylic acid, thiazole-4,5-dicarboxylic acid, isothiazole-3,4-dicarboxylic acid, isothiazo -3,5-dicarboxylic acid, 1,2,4-thiadiazole-2,5-dicarboxylic acid, 1,3,4-thiadiazole-2,5-dicarboxylic acid, 3-amino-5-mercapto-1, 2,4-thiadiazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 3,5-dimercapto-1,2,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, 3- (5-mercapto-1,2,4-thiadiazol-3-ylsulfanyl) succinic acid, 2- (5-mercapto-1,3,4-thiadiazol-2-ylsulfanyl) succinic acid, (5-mercapto -1,2,4-thiadiazol-3-ylthio) acetic acid, (5-mercapto-1,3,4-thiadiazol-2-ylthio) acetic acid, 3- (5-mercapto-1,2, -Thiadiazol-3-ylthio) propionic acid, 2- (5-mercapto-1,3,4-thiadiazol-2-ylthio) propionic acid, 3- (5-mercapto-1,2,4-thiadiazol-3-ylthio) ) Succinic acid, 2- (5-mercapto-1,3,4-thiadiazol-2-ylthio) succinic acid, 4- (3-mercapto-1,2,4-thiadiazol-5-yl) thiobutanesulfonic acid, 5-membered heterocyclic compounds containing nitrogen and sulfur atoms such as 4- (2-mercapto-1,3,4-thiadiazol-5-yl) thiobutanesulfonic acid;
  ピリジン-2,3-ジカルボン酸、ピリジン-2,4-ジカルボン酸、ピリジン-2,5-ジカルボン酸、ピリジン-2,6-ジカルボン酸、ピリジン-3,4-ジカルボン酸、ピリジン-3,5-ジカルボン酸、ピリダジン-3,4-ジカルボン酸、ピリダジン-3,5-ジカルボン酸、ピリダジン-3,6-ジカルボン酸、ピリダジン-4,5-ジカルボン酸、ピリミジン-2,4-ジカルボン酸、ピリミジン-2,5-ジカルボン酸、ピリミジン-4,5-ジカルボン酸、ピリミジン-4,6-ジカルボン酸、ピラジン-2,3-ジカルボン酸、ピラジン-2,5-ジカルボン酸、ピリジン-2,6-ジカルボン酸、トリアジン-2,4-ジカルボン酸、2-ジエチルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジプロピルアミノ-4,6-ジメルカプト-s-トリアジン、2-ジブチルアミノ-4,6-ジメルカプト-s-トリアジン、2-アニリノ-4,6-ジメルカプト-s-トリアジン、2,4,6-トリメルカプト-s-トリアジン等の窒素原子を含む六員複素環化合物;が挙げられる。
  これらの中でも、得られるゲート絶縁膜の密着性をより高めることができるという観点から、酸性基を有する化合物における酸性基の数は、2つ以上であることが好ましい。
Pyridine-2,3-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-3,4-dicarboxylic acid, pyridine-3,5 -Dicarboxylic acid, pyridazine-3,4-dicarboxylic acid, pyridazine-3,5-dicarboxylic acid, pyridazine-3,6-dicarboxylic acid, pyridazine-4,5-dicarboxylic acid, pyrimidine-2,4-dicarboxylic acid, pyrimidine -2,5-dicarboxylic acid, pyrimidine-4,5-dicarboxylic acid, pyrimidine-4,6-dicarboxylic acid, pyrazine-2,3-dicarboxylic acid, pyrazine-2,5-dicarboxylic acid, pyridine-2,6- Dicarboxylic acid, triazine-2,4-dicarboxylic acid, 2-diethylamino-4,6-dimercapto-s-triazine, 2-dipropyl Mino-4,6-dimercapto-s-triazine, 2-dibutylamino-4,6-dimercapto-s-triazine, 2-anilino-4,6-dimercapto-s-triazine, 2,4,6-trimercapto- 6-membered heterocyclic compounds containing a nitrogen atom such as s-triazine.
Among these, it is preferable that the number of acidic groups in the compound having an acidic group is two or more from the viewpoint that the adhesion of the obtained gate insulating film can be further improved.
  また、酸性基又は熱潜在性酸性基を有する化合物のうち、熱潜在性酸性基を有する化合物の具体例としては、前述の酸性基有する化合物の酸性基を熱潜在性酸性基に変換した化合物を挙げられる。例えば、1,2,4-ベンゼントリカルボン酸のカルボキシ基をブロックカルボン酸基に変換して得られる1,2,4-ベンゼントリカルボン酸トリス(1-プロポキシエチル)などを熱潜在性酸性基を有する化合物として用いることができる。得られるゲート絶縁膜の密着性をより高めることができるという観点から、熱潜在性酸性基を有する化合物における熱潜在性酸性基の数は、2つ以上であることが好ましい。 In addition, among the compounds having an acidic group or a thermal latent acidic group, as a specific example of a compound having a thermal latent acidic group, a compound obtained by converting the acidic group of the compound having an acidic group into a thermal latent acidic group is used. Can be mentioned. For example, 1,2,4-benzenetricarboxylic acid tris (1-propoxyethyl) obtained by converting a carboxy group of 1,2,4-benzenetricarboxylic acid into a block carboxylic acid group has a heat latent acidic group. It can be used as a compound. From the viewpoint that the adhesiveness of the obtained gate insulating film can be further improved, the number of heat latent acidic groups in the compound having a heat latent acidic group is preferably two or more.
  本発明で用いる樹脂組成物中における酸性基又は熱潜在性酸性基を有する化合物の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは0.1~50重量部、より好ましくは1~45重量部、さらに好ましくは2~40重量部、さらに好ましくは3~30重量部の範囲である。酸性基又は熱潜在性酸性基を有する化合物の使用量を上記範囲とすることで、樹脂組成物を液状安定性に優れたものとすることができる。 The content of the compound having an acidic group or a heat-latent acidic group in the resin composition used in the present invention is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). The range is preferably 1 to 45 parts by weight, more preferably 2 to 40 parts by weight, and still more preferably 3 to 30 parts by weight. By making the usage-amount of the compound which has an acidic group or a thermal latent acidic group into the said range, the resin composition can be made excellent in liquid stability.
  本発明で用いる樹脂組成物の調製方法は、特に限定されず、樹脂組成物を構成する各成分を公知の方法により混合すればよい。
  混合の方法は特に限定されないが、樹脂組成物を構成する各成分を溶剤に溶解又は分散して得られる溶液又は分散液を混合するのが好ましい。これにより、樹脂組成物は、溶液又は分散液の形態で得られる。
The preparation method of the resin composition used by this invention is not specifically limited, What is necessary is just to mix each component which comprises a resin composition by a well-known method.
The mixing method is not particularly limited, but it is preferable to mix a solution or dispersion obtained by dissolving or dispersing each component constituting the resin composition in a solvent. Thereby, a resin composition is obtained with the form of a solution or a dispersion liquid.
  樹脂組成物を構成する各成分を溶剤に溶解又は分散する方法は、常法に従えばよい。具体的には、攪拌子とマグネティックスターラーを使用した攪拌、高速ホモジナイザー、ディスパー、遊星攪拌機、二軸攪拌機、ボールミル、三本ロール等を使用して行なうことができる。また、各成分を溶剤に溶解又は分散した後に、例えば、孔径が0.5μm程度のフィルター等を用いて濾過してもよい。 The method for dissolving or dispersing each component constituting the resin composition in a solvent may be in accordance with a conventional method. Specifically, stirring using a stirrer and a magnetic stirrer, a high-speed homogenizer, a disper, a planetary stirrer, a twin-screw stirrer, a ball mill, a three-roll, etc. can be used. Further, after each component is dissolved or dispersed in a solvent, it may be filtered using, for example, a filter having a pore size of about 0.5 μm.
(薄膜トランジスタ)
 次いで、本発明の薄膜トランジスタについて、説明する。本発明の薄膜トランジスタは、上述した樹脂組成物からなるゲート絶縁膜と、該ゲート絶縁膜上に形成される半導体層とを有し、前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成されるものである。図1に、本発明の薄膜トランジスタの一例としての薄膜トランジスタ1の断面図を示す。図1に示すように、薄膜トランジスタ1は、基板2上に、ゲート電極3、上述した樹脂組成物からなるゲート絶縁膜4、半導体層5、ソース電極6およびドレイン電極7を有する、ボトムゲートトップコンタクト型の薄膜トランジスタである。なお、図1においては、単一の薄膜トランジスタ1を示したが、基板2上に複数の薄膜トランジスタ1が形成されているような構成(たとえば、アクティブマトリックス基板など)であってもよい。また、図1に示す薄膜トランジスタ1は、本発明の薄膜トランジスタの一例であり、以下においては、図1に示す薄膜トランジスタ1を例示して説明を行なうが、本発明の薄膜トランジスタは、図1に示す構成に何ら限定されるものではない。
(Thin film transistor)
Next, the thin film transistor of the present invention will be described. The thin film transistor of the present invention includes a gate insulating film made of the resin composition described above and a semiconductor layer formed on the gate insulating film, and the semiconductor layer is at least one of In, Ga, and Zn. It is comprised from the sputtered film which consists of an amorphous oxide semiconductor containing these elements. FIG. 1 shows a cross-sectional view of a thin film transistor 1 as an example of the thin film transistor of the present invention. As shown in FIG. 1, a thin film transistor 1 has a bottom gate top contact having a gate electrode 3, a gate insulating film 4 made of the above resin composition, a semiconductor layer 5, a source electrode 6 and a drain electrode 7 on a substrate 2. Type thin film transistor. Although FIG. 1 shows a single thin film transistor 1, a configuration in which a plurality of thin film transistors 1 are formed on a substrate 2 (for example, an active matrix substrate) may be used. The thin film transistor 1 shown in FIG. 1 is an example of the thin film transistor of the present invention. In the following description, the thin film transistor 1 shown in FIG. 1 will be described as an example, but the thin film transistor of the present invention has the configuration shown in FIG. It is not limited at all.
 基板2としては、特に限定されず、ポリカーボネート、ポリイミド、ポリエチレンテレフタレート、脂環式オレフィンポリマーなどの柔軟性のあるプラスチックからなるフレキシブル基板、石英、ソーダガラス、無機アルカリガラスなどのガラス基板、シリコンウェハなどのシリコン基板などを挙げることができる。 The substrate 2 is not particularly limited, and is a flexible substrate made of a flexible plastic such as polycarbonate, polyimide, polyethylene terephthalate, alicyclic olefin polymer, glass substrate such as quartz, soda glass, inorganic alkali glass, silicon wafer, etc. The silicon substrate can be mentioned.
 ゲート電極3は、導電性材料で形成されている。導電性材料としては、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペーストおよびカーボンペースト、リチウム、ベリリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム-カリウム合金、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物、アルミニウム/チタン混合物、モリブデン/チタン混合物等が挙げられる。またドーピング等で導電率を向上させた公知の導電性ポリマー、例えば導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン(ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体など)が挙げられる。これらのなかでも、クロム、モリブデン、アルミニウム/チタン混合物、およびモリブデン/チタン混合物が好ましく、クロム、アルミニウム/チタン混合物、およびモリブデン/チタン混合物がより好ましく、アルミニウム/チタン混合物、およびモリブデン/チタン混合物が特に好ましい。ゲート電極3は、たとえば、上述した導電性材料を、スパッタリング法などにより基板2上に形成し、次いで、エッチング処理を行なうことにより、基板2上に所定パターンで形成される。 The gate electrode 3 is made of a conductive material. Examples of conductive materials include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, and oxide. Tin antimony, indium tin oxide (ITO), fluorine-doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, Gallium, niobium, sodium, sodium-potassium alloy, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / oxide Miniumu mixture of lithium / aluminum mixture, aluminum / titanium mixture include molybdenum / titanium mixture like. In addition, known conductive polymers whose conductivity is improved by doping or the like, such as conductive polyaniline, conductive polypyrrole, and conductive polythiophene (polyethylenedioxythiophene and polystyrenesulfonic acid complex, etc.) can be mentioned. Of these, chromium, molybdenum, aluminum / titanium mixtures, and molybdenum / titanium mixtures are preferred, chromium, aluminum / titanium mixtures, and molybdenum / titanium mixtures are more preferred, and aluminum / titanium mixtures and molybdenum / titanium mixtures are particularly preferred. preferable. The gate electrode 3 is formed in a predetermined pattern on the substrate 2 by, for example, forming the above-described conductive material on the substrate 2 by sputtering or the like and then performing an etching process.
 ゲート絶縁膜4は、上述した樹脂組成物から構成されるものであり、所定パターンでゲート電極3を形成した基板2上に、上述した樹脂組成物を塗布し、必要に応じて溶剤を除去した後に、硬化することにより形成される。樹脂組成物を塗布する方法としては、例えば、スプレー法、スピンコート法、ロールコート法、ダイコート法、ドクターブレード法、回転塗布法、バー塗布法、スクリーン印刷法等の各種の方法を採用することができる。また、硬化温度は、通常、100~300℃、好ましくは100~250℃、より好ましくは100~150℃、硬化時間は、通常、0.5~300分間、好ましくは1~150分間、より好ましくは1~60分間である。ゲート絶縁膜4の厚さは、特に限定されないが、好ましくは100~400nm、より好ましくは100~300nm、さらに好ましくは100~200nmである。 The gate insulating film 4 is composed of the above-described resin composition, and the above-described resin composition is applied onto the substrate 2 on which the gate electrode 3 is formed in a predetermined pattern, and the solvent is removed as necessary. Later, it is formed by curing. As a method for applying the resin composition, for example, various methods such as a spray method, a spin coating method, a roll coating method, a die coating method, a doctor blade method, a spin coating method, a bar coating method, and a screen printing method may be adopted. Can do. The curing temperature is usually 100 to 300 ° C., preferably 100 to 250 ° C., more preferably 100 to 150 ° C., and the curing time is usually 0.5 to 300 minutes, preferably 1 to 150 minutes, more preferably. Is 1 to 60 minutes. The thickness of the gate insulating film 4 is not particularly limited, but is preferably 100 to 400 nm, more preferably 100 to 300 nm, and still more preferably 100 to 200 nm.
 半導体層5は、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜である。アモルファス酸化物半導体としては、In、Ga、およびZnのうち少なくとも1種の元素を含むものであればよいが、たとえば、酸化亜鉛(ZnO)、インジウム亜鉛酸化物(IZO)、亜鉛スズ酸化物(ZTO)、アルミニウム亜鉛酸化物(AZO)、ガリウム亜鉛酸化物(GZO)、インジウムガリウム亜鉛酸化物(IGZO)などが挙げられる。 The semiconductor layer 5 is a sputtered film made of an amorphous oxide semiconductor containing at least one element of In, Ga, and Zn. As the amorphous oxide semiconductor, any element containing at least one element of In, Ga, and Zn may be used. For example, zinc oxide (ZnO), indium zinc oxide (IZO), zinc tin oxide ( ZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), indium gallium zinc oxide (IGZO), and the like.
 半導体層5は、通常、スパッタリング法により形成される。具体的には、半導体層5を形成することとなる金属酸化物からなるターゲットをスパッタリングすることにより、ゲート絶縁膜4の表面に、金属酸化物(アモルファス酸化物半導体)からなるスパッタ膜として形成される。半導体層5の厚みは、好ましくは10~100nm、より好ましくは20~80nm、さらに好ましくは30~50nmである。 The semiconductor layer 5 is usually formed by a sputtering method. Specifically, a target made of a metal oxide that will form the semiconductor layer 5 is sputtered to form a sputtered film made of a metal oxide (amorphous oxide semiconductor) on the surface of the gate insulating film 4. The The thickness of the semiconductor layer 5 is preferably 10 to 100 nm, more preferably 20 to 80 nm, and still more preferably 30 to 50 nm.
 ソース電極6およびドレイン電極7は、導電性材料で形成されている。導電性材料としては、上述のゲート電極3と同様のものを用いることができる。ソース電極6およびドレイン電極7は、たとえば、上述した導電性材料を、スパッタリング法などにより半導体層5上に形成し、次いで、エッチング処理を行なうことにより、半導体層5上に所定パターンで形成される。 The source electrode 6 and the drain electrode 7 are made of a conductive material. As the conductive material, the same material as the gate electrode 3 described above can be used. The source electrode 6 and the drain electrode 7 are formed in a predetermined pattern on the semiconductor layer 5 by, for example, forming the above-described conductive material on the semiconductor layer 5 by sputtering or the like and then performing an etching process. .
 なお、上記においては、薄膜トランジスタの一例として、図1に示すようなボトムゲートトップコンタクト型の薄膜トランジスタ1を例示したが、本発明に係る樹脂組成物からなるゲート絶縁膜は、図2に示すようなボトムゲートボトムコンタクト型の薄膜トランジスタ1aのゲート絶縁膜としても好適に用いることができ、薄膜トランジスタ1aにおいても、上記と同様にして得ることができる。なお、図2に示す薄膜トランジスタ1aにおいては、上述した薄膜トランジスタ1と同じ構成部材には同じ番号を付し、その説明を省略する。すなわち、図2に示す薄膜トランジスタ1aは、基板2上に、ゲート電極3、上述した樹脂組成物からなるゲート絶縁膜4、ソース電極6およびドレイン電極7を有し、ゲート絶縁膜4、ソース電極6およびドレイン電極7の上に、これらに跨って半導体層5が形成されてなる。 In the above, the bottom gate top contact type thin film transistor 1 as shown in FIG. 1 is illustrated as an example of the thin film transistor. However, the gate insulating film made of the resin composition according to the present invention is as shown in FIG. The gate insulating film of the bottom gate bottom contact type thin film transistor 1a can be suitably used, and the thin film transistor 1a can also be obtained in the same manner as described above. In the thin film transistor 1a shown in FIG. 2, the same components as those of the thin film transistor 1 described above are denoted by the same reference numerals, and the description thereof is omitted. That is, the thin film transistor 1a shown in FIG. 2 includes the gate electrode 3, the gate insulating film 4, the source electrode 6 and the drain electrode 7 made of the above-described resin composition on the substrate 2, and the gate insulating film 4 and the source electrode 6 The semiconductor layer 5 is formed on the drain electrode 7 across the drain electrode 7.
 あるいは、本発明に係る樹脂組成物からなるゲート絶縁膜は、図4に示すようなエッチストップレイヤー型の薄膜トランジスタ1bのゲート絶縁膜としても好適に用いることができる。ここで、図4は、本発明に係る樹脂組成物からなるゲート絶縁膜を備えるエッチストップレイヤー型の薄膜トランジスタ1bを示す断面図であり、上述した薄膜トランジスタ1と同じ構成部材には同じ番号を付し、その説明を省略する。図4に示す薄膜トランジスタ1bは、チャンネル部9を覆うようにエッチストッパー8が形成されている。すなわち、図4に示すように、この薄膜トランジスタ1bにおいては、基板2上に、ゲート電極3、上述した樹脂組成物からなるゲート絶縁膜4、半導体層5が形成されており、半導体層5の上にエッチストッパー8が形成されており、半導体層5の端部付近及びエッチストッパー9の端部付近を覆うようにしてソース電極6及びドレイン電極7がそれぞれ設けられた構成となっている。 Alternatively, the gate insulating film made of the resin composition according to the present invention can also be suitably used as a gate insulating film of an etch stop layer type thin film transistor 1b as shown in FIG. Here, FIG. 4 is a cross-sectional view showing an etch stop layer type thin film transistor 1b provided with a gate insulating film made of the resin composition according to the present invention. The description is omitted. In the thin film transistor 1 b shown in FIG. 4, an etch stopper 8 is formed so as to cover the channel portion 9. That is, as shown in FIG. 4, in this thin film transistor 1b, a gate electrode 3, a gate insulating film 4 made of the above-described resin composition, and a semiconductor layer 5 are formed on a substrate 2. An etch stopper 8 is formed, and the source electrode 6 and the drain electrode 7 are respectively provided so as to cover the vicinity of the end of the semiconductor layer 5 and the vicinity of the end of the etch stopper 9.
 本発明においては、ゲート絶縁膜4を、上述した樹脂組成物で形成するものであり、該樹脂組成物は、環状オレフィン重合体(A)およびエポキシ系架橋剤(B)を含有し、耐熱性および耐プラズマ性に優れるものである。そのため、ゲート絶縁膜4上に半導体層5を形成する場合に、ゲート絶縁膜4が高温やプラズマに晒されるスパッタリング法により成膜しても、ゲート絶縁膜4の熱劣化やプラズマ劣化が有効に防止できる。それゆえ、有機半導体よりもキャリア移動度の高い材料であり、スパッタリング法による成膜が必要な、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体膜を半導体層5として用いることができる。 In the present invention, the gate insulating film 4 is formed of the resin composition described above, and the resin composition contains the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B), and has heat resistance. And it has excellent plasma resistance. Therefore, when the semiconductor layer 5 is formed on the gate insulating film 4, even if the gate insulating film 4 is formed by a sputtering method in which the gate insulating film 4 is exposed to high temperature or plasma, thermal deterioration and plasma deterioration of the gate insulating film 4 are effective. Can be prevented. Therefore, an amorphous oxide semiconductor film containing at least one element of In, Ga, and Zn, which is a material having higher carrier mobility than an organic semiconductor and needs to be formed by a sputtering method, is used as the semiconductor layer 5. Can be used.
 そのため、本発明によれば、スパッタリング時におけるゲート絶縁膜4の劣化を有効に防止することができることにより、得られる薄膜トランジスタを、オン/オフ比およびリーク電流特性に優れたものとすることができ、しかも、半導体層5を、キャリア移動度に優れたアモルファス酸化物半導体で形成することができるため、これにより、移動度が高く、オン/オフ比が大きく、リーク電流の小さい薄膜トランジスタを提供することができるものである。 Therefore, according to the present invention, it is possible to effectively prevent deterioration of the gate insulating film 4 during sputtering, whereby the obtained thin film transistor can be excellent in on / off ratio and leakage current characteristics. In addition, since the semiconductor layer 5 can be formed of an amorphous oxide semiconductor having excellent carrier mobility, it is possible to provide a thin film transistor with high mobility, high on / off ratio, and low leakage current. It can be done.
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。各例中の部および%は、特に断りのない限り、重量基準である。
 なお、各特性の定義および評価方法は、以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Parts and% in each example are based on weight unless otherwise specified.
In addition, the definition and evaluation method of each characteristic are as follows.
<移動度>
 得られた薄膜トランジスタの電気特性を大気下・暗室中にて、半導体パラメーターアナライザー(Agilent社製、4156C)を用いて評価した。その結果、得られた薄膜トランジスタは、p型のトランジスタ素子としての特性を示した。そして、ドレイン電圧Vdを、Vd=10Vに固定し、ゲート電圧(Vg)をVg=+20V~-20Vまで変化させることによって、半導体パラメーターアナライザーを用いて、伝達特性の評価を行った。なお、得られた薄膜トランジスタは飽和領域を有するものであり、本実施例においては、この飽和領域から電界効果移動度を求めた。
 また、薄膜トランジスタの電界効果移動度の算出には、以下の式を用いた。なお、移動度は高いほど好ましい。
      Id=μCinW(Vg-Vth)/2L
 (ただし、Cinはゲート絶縁膜の単位面積あたりの静電容量、Wはチャネル幅、Lはチャネル長、Vgはゲート電圧、Idはドレイン電流、μは移動度、Vthはチャネルが形成し始めるゲートの閾値電圧である。)
<Mobility>
The electrical characteristics of the obtained thin film transistor were evaluated using a semiconductor parameter analyzer (manufactured by Agilent, 4156C) in the air and in a dark room. As a result, the obtained thin film transistor exhibited characteristics as a p-type transistor element. Then, the drain voltage Vd was fixed at Vd = 10 V, and the gate voltage (Vg) was changed from Vg = + 20 V to −20 V, thereby evaluating the transfer characteristics using a semiconductor parameter analyzer. Note that the obtained thin film transistor has a saturated region, and in this example, field effect mobility was obtained from this saturated region.
In addition, the following formula was used to calculate the field effect mobility of the thin film transistor. The higher the mobility, the better.
Id = μCinW (Vg−Vth) 2 / 2L
(Where Cin is the capacitance per unit area of the gate insulating film, W is the channel width, L is the channel length, Vg is the gate voltage, Id is the drain current, μ is the mobility, and Vth is the gate where the channel begins to form. Threshold voltage.)
<オン/オフ比>
 得られた薄膜トランジスタについて、半導体テスター(アドバンテスト社製、R6425)を用いて、オン時の電流と、オフ時の電流とを測定し、これらの比率を算出することにより、オン/オフ比(オン/オフ電流比率)の測定を行なった。オン/オフ比は高いほど好ましく、本実施例では、1×10以上を良好とした。
<On / off ratio>
About the obtained thin-film transistor, the current at the time of on and the current at the time of off are measured using a semiconductor tester (manufactured by Advantest Co., Ltd., R6425), and an on / off ratio (on / off) is calculated by calculating these ratios. (Off current ratio) was measured. The higher the on / off ratio, the better. In this example, 1 × 10 5 or more was considered good.
<リーク電流>
 得られた薄膜トランジスタについて、大気下・暗室中にて、ソース電極とドレイン電極の間に20Vの電圧を印加し、ゲート電極に印加する電圧を+20V~-20Vに変化させて、ソース電極とドレイン電極との間に流れる電流を、マニュアルプローバーおよび半導体パラメータアナライザー(Agilent社製、4156C)を用いて測定することで、リーク電流の測定を行なった。リーク電流は低いほど好ましく、本実施例では、1×10-12以下を良好とした。
<Leakage current>
With respect to the obtained thin film transistor, a voltage of 20 V is applied between the source electrode and the drain electrode in the atmosphere / dark room, and the voltage applied to the gate electrode is changed from +20 V to −20 V, so that the source electrode and the drain electrode Was measured using a manual prober and a semiconductor parameter analyzer (manufactured by Agilent, 4156C) to measure the leakage current. The lower the leak current, the better. In this example, 1 × 10 −12 or less was considered good.
《合成例1》
<環状オレフィン重合体(A-1)の調製>
 N-(2-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド40モル%、および4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン60モル%からなる単量体混合物100部、1,5-ヘキサジエン2部、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド(Org.Lett.,第1巻,953頁,1999年  に記載された方法で合成した)0.02部、およびジエチレングリコールエチルメチルエーテル200部を、窒素置換したガラス製耐圧反応器に仕込み、攪拌しつつ80℃にて4時間反応させて重合反応液を得た。
<< Synthesis Example 1 >>
<Preparation of Cyclic Olefin Polymer (A-1)>
N- (2-ethylhexyl) -bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide 40 mol%, and 4-hydroxycarbonyltetracyclo [6.2.1.1 3, 6 . 0 2,7 ] Dodeca-9-ene 60 parts by mole monomer mixture 100 parts, 1,5-hexadiene 2 parts, (1,3-dimesityrylimidazoline-2-ylidene) (tricyclohexylphosphine) benzylidene 0.02 part of ruthenium dichloride (synthesized by the method described in Org. Lett., Vol. 1, page 953, 1999) and 200 parts of diethylene glycol ethyl methyl ether were charged into a nitrogen pressure-resistant glass pressure-resistant reactor. The mixture was reacted for 4 hours at 80 ° C. with stirring to obtain a polymerization reaction solution.
 そして、得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間攪拌して水素化反応を行い、環状オレフィン重合体(A-1)を含む重合体溶液を得た。得られた環状オレフィン重合体(A-1)の重合転化率は99.7%、ポリスチレン換算重量平均分子量は7,150、数平均分子量は4,690、分子量分布は1.52、水素添加率は、99.7%であった。また、得られた環状オレフィン重合体(A-1)の重合体溶液の固形分濃度は34.4重量%であった。 Then, the obtained polymerization reaction liquid was put in an autoclave and stirred for 5 hours at 150 ° C. under a hydrogen pressure of 4 MPa to perform a hydrogenation reaction, thereby obtaining a polymer solution containing the cyclic olefin polymer (A-1). . The resulting cyclic olefin polymer (A-1) had a polymerization conversion rate of 99.7%, a polystyrene-equivalent weight average molecular weight of 7,150, a number average molecular weight of 4,690, a molecular weight distribution of 1.52, and a hydrogenation rate. Was 99.7%. The solid content concentration of the obtained polymer solution of the cyclic olefin polymer (A-1) was 34.4% by weight.
《実施例1》
<樹脂組成物の調製>
 環状オレフィン重合体(A)として、合成例1で得られた環状オレフィン重合体(A-1)の重合体溶液291部(環状オレフィン重合体(A-1)として100部)、エポキシ系架橋剤(B)として、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(商品名「エポリードGT401」、ダイセル化学工業社製、環式エポキシ基を有する脂肪族環状4官能性のエポキシ樹脂、分子量(Mw)=730)30部、酸化剤として、ペンタエリズリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名「Irganox1010」、BASF社製)1.5部、界面活性剤として、シリコーン系界面活性剤(商品名「KP341」、信越化学工業社製)0.03部、および溶剤として、エチレングリコールジメチルエーテル100部を混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して樹脂組成物を調製した。
Example 1
<Preparation of resin composition>
As the cyclic olefin polymer (A), 291 parts of a polymer solution of the cyclic olefin polymer (A-1) obtained in Synthesis Example 1 (100 parts as the cyclic olefin polymer (A-1)), an epoxy crosslinking agent (B), epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone (trade name “Epolide GT401”, manufactured by Daicel Chemical Industries, Ltd., an aliphatic cyclic tetrafunctional group having a cyclic epoxy group Epoxy resin, molecular weight (Mw) = 730) 30 parts, pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (trade name “Irganox 1010”) as oxidant , BASF) 1.5 parts, as surfactant, silicone surfactant (trade name "KP341") 0.03 part (manufactured by Shin-Etsu Chemical Co., Ltd.) and 100 parts of ethylene glycol dimethyl ether as a solvent were mixed and dissolved, and then filtered through a polytetrafluoroethylene filter having a pore diameter of 0.45 μm to prepare a resin composition. .
<薄膜トランジスタの作製>
 次いで、上記にて得られた樹脂組成物を用いて図1に示す薄膜トランジスタ1を得た。なお、図3は、薄膜トランジスタ1の製造方法を示す図である。
(1)前処理
 ガラス基板を準備し、準備したガラス基板を純水中で超音波洗浄し、エアーブロー乾燥後、100℃で1時間ベーキングした。
(2)ゲート電極の形成
 次いで、図3(A)に示すように、上記にて前処理したガラス基板(基板2)上に、真空蒸着法によりアルミニウム層を形成し、このアルミニウム層をパターニングすることにより、ゲート電極3を形成した。なお、ゲート電極3の厚みは50nmとした。
(3)ゲート絶縁膜の形成
 次いで、ゲート電極3を形成した基板2をスピンコータに設置し、ガラス基板2上に、上記にて得られた樹脂組成物を所定量滴下し、基板2を約2000rpmの回転速度で約60秒間回転させることにより、塗膜を形成した。その後、塗膜が形成された基板2をホットプレートで150℃の温度で約60分間ベーキングすることにより、図3(B)に示すように、ゲート絶縁膜4を形成した。なお、ゲート絶縁膜4の厚みは200nmとした。
(4)半導体活性層の形成
 次いで、図3(C)に示すように、ゲート電極3およびゲート絶縁膜4を形成した基板2のゲート絶縁膜4上に、スパッタリング法により、インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜からなる半導体層5を40nmの厚みで形成した。インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜は、スパッタリング装置(製品名「CFS-4EP-LL」、芝浦メカトロニクス社製」)を用いて、アルゴンガス存在下にて、出力300W、アルゴン流量10sccm、酸素流量10sccm、製膜圧0.6Paの条件にて形成した。なお、スパッタリングのターゲットとしては、インジウムガリウム亜鉛酸化物(IGZO)を用いた。
(5) ソース電極およびドレイン電極の形成        
 次いで、ゲート電極3、ゲート絶縁膜4および半導体層5を形成した基板2の半導体層5上に、真空蒸着法によって金を堆積し、この金層をパターニングすることにより、ソース電極6およびドレイン電極7を形成することで、図3(D)に示す薄膜トランジスタ1を得た。なお、ソース電極6およびドレイン電極7の厚みは50nmとした。
<Production of Thin Film Transistor>
Next, the thin film transistor 1 shown in FIG. 1 was obtained using the resin composition obtained above. FIG. 3 is a diagram illustrating a method for manufacturing the thin film transistor 1.
(1) Pretreatment A glass substrate was prepared, and the prepared glass substrate was subjected to ultrasonic cleaning in pure water, dried by air blow, and baked at 100 ° C. for 1 hour.
(2) Formation of Gate Electrode Next, as shown in FIG. 3A, an aluminum layer is formed on the glass substrate (substrate 2) pretreated above by vacuum deposition, and this aluminum layer is patterned. Thereby, the gate electrode 3 was formed. The thickness of the gate electrode 3 was 50 nm.
(3) Formation of Gate Insulating Film Next, the substrate 2 on which the gate electrode 3 is formed is placed on a spin coater, and a predetermined amount of the resin composition obtained above is dropped on the glass substrate 2, and the substrate 2 is placed at about 2000 rpm. A coating film was formed by rotating at a rotational speed of about 60 seconds. Thereafter, the substrate 2 on which the coating film was formed was baked on a hot plate at a temperature of 150 ° C. for about 60 minutes, thereby forming the gate insulating film 4 as shown in FIG. The thickness of the gate insulating film 4 was 200 nm.
(4) Formation of Semiconductor Active Layer Next, as shown in FIG. 3C, indium gallium zinc oxide is formed on the gate insulating film 4 of the substrate 2 on which the gate electrode 3 and the gate insulating film 4 are formed by sputtering. A semiconductor layer 5 made of a sputtered film of (IGZO) was formed with a thickness of 40 nm. A sputtered film of indium gallium zinc oxide (IGZO) was produced by using a sputtering apparatus (product name “CFS-4EP-LL”, manufactured by Shibaura Mechatronics Inc.) in the presence of argon gas, with an output of 300 W, an argon flow rate of 10 sccm, The film was formed under conditions of an oxygen flow rate of 10 sccm and a film forming pressure of 0.6 Pa. Note that indium gallium zinc oxide (IGZO) was used as a sputtering target.
(5) Formation of source and drain electrodes
Next, gold is deposited on the semiconductor layer 5 of the substrate 2 on which the gate electrode 3, the gate insulating film 4 and the semiconductor layer 5 are formed by vacuum vapor deposition, and the gold layer is patterned to thereby form the source electrode 6 and the drain electrode. 7 was obtained, so that the thin film transistor 1 shown in FIG. The thickness of the source electrode 6 and the drain electrode 7 was 50 nm.
 そして、上記にて得られた薄膜トランジスタを用いて、移動度、ON/OFF比およびリーク電流の各評価を行った。結果を表1に示す。 And each evaluation of mobility, ON / OFF ratio, and leakage current was performed using the thin film transistor obtained above. The results are shown in Table 1.
《実施例2》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)としてのエポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトンの配合量を30部から50部に変更した以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
Example 2
In preparing the resin composition for forming the gate insulating film 4, the blending amount of the epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone as the epoxy crosslinking agent (B) is 30. A resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that the amount was changed from 50 parts to 50 parts. The results are shown in Table 1.
《実施例3》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)として、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン30部の代わりに、2,2-ビス(ヒドロキシメチル)1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(商品名「EHPE3150」、ダイセル化学工業社製、シクロヘキサン骨格および末端エポキシ基を有する15官能性の脂環式エポキシ樹脂、分子量(Mw)=2234)30部を使用した以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
Example 3
In preparing a resin composition for forming the gate insulating film 4, as an epoxy-based crosslinking agent (B), instead of 30 parts of epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) 1-butanol (trade name “EHPE3150”, manufactured by Daicel Chemical Industries, Ltd., cyclohexane skeleton and terminal epoxy group) The resin composition and the thin film transistor were obtained and evaluated in the same manner as in Example 1 except that 30 parts of a 15-functional alicyclic epoxy resin having a molecular weight (Mw) = 2234) was used. The results are shown in Table 1.
《実施例4》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)として、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン30部に加えて、2,2-ビス(ヒドロキシメチル)1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物30部をさらに使用した以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
Example 4
In preparing a resin composition for forming the gate insulating film 4, in addition to 30 parts of epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone as an epoxy-based crosslinking agent (B) Resin composition in the same manner as in Example 1 except that 30 parts of 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) 1-butanol was further used. A thin film transistor was obtained and evaluated in the same manner. The results are shown in Table 1.
《実施例5》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、メラミン系架橋剤(C)として、N,N,N’,N’,N’’,N’’-(ヘキサアルコキシアルキル)メラミンの部分メチロール置換体(商品名「サイメル350」、サイテックインダストリーズ社製)30部をさらに使用した以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
Example 5
In preparing the resin composition for forming the gate insulating film 4, N, N, N ′, N ′, N ″, N ″-(hexaalkoxyalkyl) is used as the melamine-based crosslinking agent (C). A resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that 30 parts of a partially methylol-substituted melamine (trade name “Cymel 350”, manufactured by Cytec Industries) were further used. It was. The results are shown in Table 1.
《実施例6》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、メラミン系架橋剤(C)として、N,N,N’,N’,N’’,N’’-(ヘキサアルコキシアルキル)メラミンの部分メチロール置換体(商品名「サイメル370」、サイテックインダストリーズ社製)30部をさらに使用した以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
Example 6
In preparing the resin composition for forming the gate insulating film 4, N, N, N ′, N ′, N ″, N ″-(hexaalkoxyalkyl) is used as the melamine-based crosslinking agent (C). A resin composition and a thin film transistor were obtained and evaluated in the same manner as in Example 1 except that 30 parts of a partially methylol-substituted melamine (trade name “Cymel 370”, manufactured by Cytec Industries, Inc.) was further used. It was. The results are shown in Table 1.
《比較例1》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)としてのエポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトンを配合しなかった以外は、実施例1と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
<< Comparative Example 1 >>
When preparing the resin composition for forming the gate insulating film 4, epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone as an epoxy crosslinking agent (B) was not blended. Except for the above, a resin composition and a thin film transistor were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
《比較例2》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)としてのエポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトンを配合しなかった以外は、実施例5と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
<< Comparative Example 2 >>
When preparing the resin composition for forming the gate insulating film 4, epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone as an epoxy crosslinking agent (B) was not blended. Except for the above, a resin composition and a thin film transistor were obtained in the same manner as in Example 5 and evaluated in the same manner. The results are shown in Table 1.
《比較例3》
 ゲート絶縁膜4を形成するための樹脂組成物を調製する際に、エポキシ系架橋剤(B)としてのエポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトンを配合しなかった以外は、実施例6と同様にして、樹脂組成物および薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
<< Comparative Example 3 >>
When preparing the resin composition for forming the gate insulating film 4, epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-caprolactone as an epoxy crosslinking agent (B) was not blended. Except for the above, a resin composition and a thin film transistor were obtained in the same manner as in Example 6 and evaluated in the same manner. The results are shown in Table 1.
《比較例4》
 半導体層5を、インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜に代えて、a-Si層(アモルファスシリコン層)で形成した以外は、比較例1と同様にして、薄膜トランジスタを得て、同様に評価を行った。なお、a-Si層(アモルファスシリコン層)は、CVD装置を用いて、100nmの厚みで形成した(後述する比較例5,6も同様。)。結果を表1に示す。
<< Comparative Example 4 >>
A thin film transistor was obtained in the same manner as in Comparative Example 1 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed. The a-Si layer (amorphous silicon layer) was formed with a thickness of 100 nm using a CVD apparatus (the same applies to Comparative Examples 5 and 6 described later). The results are shown in Table 1.
《比較例5》
 半導体層5を、インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜に代えて、a-Si層(アモルファスシリコン層)で形成した以外は、比較例2と同様にして、薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
<< Comparative Example 5 >>
A thin film transistor was obtained in the same manner as in Comparative Example 2 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed. The results are shown in Table 1.
《比較例6》
 半導体層5を、インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜に代えて、a-Si層(アモルファスシリコン層)で形成した以外は、比較例3と同様にして、薄膜トランジスタを得て、同様に評価を行った。結果を表1に示す。
<< Comparative Example 6 >>
A thin film transistor was obtained in the same manner as in Comparative Example 3 except that the semiconductor layer 5 was formed of an a-Si layer (amorphous silicon layer) instead of the sputtered film of indium gallium zinc oxide (IGZO). Evaluation was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、ゲート絶縁膜4を、環状オレフィン重合体(A)と、エポキシ系架橋剤(B)を含有する樹脂組成物を用いて形成するとともに、半導体層5を、インジウムガリウム亜鉛酸化物(IGZO)のスパッタ膜で用いて形成した実施例1~6では、得られる薄膜トランジスタは、移動度が高く、オン/オフ比が大きく、リーク電流の小さいものであった。特に、実施例1~6においては、ゲート絶縁膜4を、環状オレフィン重合体(A)と、エポキシ系架橋剤(B)を含有する樹脂組成物で形成したため、半導体層5を形成した際に、スパッタリングを行った際に発生する熱やプラズマの影響による、ゲート絶縁膜4の劣化を有効に抑制することができ、これにより、得られる薄膜トランジスタを、移動度が高く、オン/オフ比が大きく、リーク電流の小さいものとすることが可能であった。また、実施例1~6のなかでも、エポキシ系架橋剤(B)として、2種類の化合物を用いた実施例4、およびエポキシ系架橋剤(B)とメラミン系架橋剤(C)とを併用した実施例5,6は、移動度、オン/オフ比、リーク電流の各特性に特に優れる結果となった。 As shown in Table 1, the gate insulating film 4 is formed using a resin composition containing a cyclic olefin polymer (A) and an epoxy-based crosslinking agent (B), and the semiconductor layer 5 is made of indium gallium zinc. In Examples 1 to 6 formed using an oxide (IGZO) sputtered film, the obtained thin film transistor had high mobility, a large on / off ratio, and a small leakage current. In particular, in Examples 1 to 6, since the gate insulating film 4 was formed of a resin composition containing the cyclic olefin polymer (A) and the epoxy-based crosslinking agent (B), the semiconductor layer 5 was formed. Degradation of the gate insulating film 4 due to the effects of heat and plasma generated during sputtering can be effectively suppressed, and the resulting thin film transistor has high mobility and a high on / off ratio. It was possible to make the leakage current small. In addition, among Examples 1 to 6, Example 4 using two kinds of compounds as an epoxy-based crosslinking agent (B), and a combination of an epoxy-based crosslinking agent (B) and a melamine-based crosslinking agent (C) In Examples 5 and 6, the mobility, on / off ratio, and leakage current characteristics were particularly excellent.
 一方、ゲート絶縁膜4を、エポキシ系架橋剤(B)を含有しない樹脂組成物を用いて形成した比較例1~3では、得られる薄膜トランジスタは、オン/オフ比およびリーク電流に劣るものであった。なお、比較例1~3において、オン/オフ比およびリーク電流が低下した理由としては、ゲート絶縁膜4を形成した後、スパッタリング法により、半導体層5を形成した際に、スパッタリングを行った際に発生する熱やプラズマの影響により、ゲート絶縁膜4を構成する樹脂組成物が劣化してしまい、これにより、ゲート絶縁膜4の絶縁性が低下したことによると考えられる。
 さらに、ゲート絶縁膜4を、エポキシ系架橋剤(B)を含有しない樹脂組成物を用いて形成し、かつ、半導体層5を、a-Si層(アモルファスシリコン層)で形成した比較例4~6では、得られる薄膜トランジスタは、移動度が低く、オン/オフ比およびリーク電流に劣るものであった。
On the other hand, in Comparative Examples 1 to 3 in which the gate insulating film 4 is formed using a resin composition that does not contain an epoxy-based crosslinking agent (B), the thin film transistors obtained are inferior in on / off ratio and leakage current. It was. In Comparative Examples 1 to 3, the reason why the on / off ratio and the leakage current are reduced is that the sputtering is performed when the semiconductor layer 5 is formed by the sputtering method after the gate insulating film 4 is formed. It is considered that the resin composition that constitutes the gate insulating film 4 is deteriorated due to the influence of heat and plasma generated on the substrate, and the insulating property of the gate insulating film 4 is thereby lowered.
Further, Comparative Examples 4 to 4 in which the gate insulating film 4 is formed using a resin composition not containing the epoxy-based crosslinking agent (B) and the semiconductor layer 5 is formed of an a-Si layer (amorphous silicon layer). In No. 6, the obtained thin film transistor had low mobility and inferior on / off ratio and leakage current.
1,1a…薄膜トランジスタ
 2…基板
 3…ゲート電極
 4…ゲート絶縁膜
 5…半導体層
 6…ソース電極
 7…ドレイン電極
 
DESCRIPTION OF SYMBOLS 1, 1a ... Thin-film transistor 2 ... Substrate 3 ... Gate electrode 4 ... Gate insulating film 5 ... Semiconductor layer 6 ... Source electrode 7 ... Drain electrode

Claims (7)

  1.  ゲート絶縁膜と、前記ゲート絶縁膜上に形成される半導体層とを備える薄膜トランジスタであって、
     前記半導体層が、In、Ga、およびZnのうち少なくとも1種の元素を含むアモルファス酸化物半導体からなるスパッタ膜から構成され、
     前記ゲート絶縁膜が、プロトン性極性基を有する環状オレフィン重合体(A)と、前記プロトン性極性基と反応するエポキシ基を分子内に2以上有するエポキシ系架橋剤(B)とを含有する樹脂組成物から構成されることを特徴とする薄膜トランジスタ。
    A thin film transistor comprising a gate insulating film and a semiconductor layer formed on the gate insulating film,
    The semiconductor layer is composed of a sputtered film made of an amorphous oxide semiconductor containing at least one element of In, Ga, and Zn;
    A resin in which the gate insulating film contains a cyclic olefin polymer (A) having a protic polar group and an epoxy-based crosslinking agent (B) having two or more epoxy groups in the molecule that react with the protic polar group. A thin film transistor comprising a composition.
  2.  前記樹脂組成物中における、前記エポキシ系架橋剤(B)の含有量が、前記環状オレフィン重合体(A)100重量部に対して、10~100重量部であることを特徴とする請求項1に記載の薄膜トランジスタ。 The content of the epoxy crosslinking agent (B) in the resin composition is 10 to 100 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). A thin film transistor according to 1.
  3.  前記樹脂組成物が、前記エポキシ系架橋剤(B)として、異なる2種類以上の化合物を含有することを特徴とする請求項1または2に記載の薄膜トランジスタ。 The thin film transistor according to claim 1 or 2, wherein the resin composition contains two or more different compounds as the epoxy-based crosslinking agent (B).
  4.  前記樹脂組成物が、前記エポキシ系架橋剤(B)として、分子量(Mw)が1,000未満の化合物と、分子量(Mw)が1,000以上の化合物とを含有することを特徴とする請求項3に記載の薄膜トランジスタ。 The resin composition contains, as the epoxy crosslinking agent (B), a compound having a molecular weight (Mw) of less than 1,000 and a compound having a molecular weight (Mw) of 1,000 or more. Item 4. The thin film transistor according to Item 3.
  5.  前記樹脂組成物が、前記エポキシ系架橋剤(B)として、末端エポキシ基を有する化合物と、脂環式エポキシ基を有する化合物とを含有することを特徴とする請求項3または4に記載の薄膜トランジスタ。 The thin film transistor according to claim 3 or 4, wherein the resin composition contains, as the epoxy-based crosslinking agent (B), a compound having a terminal epoxy group and a compound having an alicyclic epoxy group. .
  6.  前記樹脂組成物が、メラミン系架橋剤(C)をさらに含有することを特徴とする請求項1~5のいずれかに記載の薄膜トランジスタ。 6. The thin film transistor according to claim 1, wherein the resin composition further contains a melamine-based crosslinking agent (C).
  7.  前記樹脂組成物中における、前記メラミン系架橋剤(C)の含有量が、前記環状オレフィン重合体(A)100重量部に対して、10~50重量部であることを特徴とする請求項6に記載の薄膜トランジスタ。 The content of the melamine crosslinking agent (C) in the resin composition is 10 to 50 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A). A thin film transistor according to 1.
PCT/JP2013/071630 2012-08-13 2013-08-09 Thin film transistor WO2014027618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014530540A JP6164218B2 (en) 2012-08-13 2013-08-09 Thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012179205 2012-08-13
JP2012-179205 2012-08-13

Publications (1)

Publication Number Publication Date
WO2014027618A1 true WO2014027618A1 (en) 2014-02-20

Family

ID=50685580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071630 WO2014027618A1 (en) 2012-08-13 2013-08-09 Thin film transistor

Country Status (3)

Country Link
JP (1) JP6164218B2 (en)
TW (1) TWI506833B (en)
WO (1) WO2014027618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127340A (en) * 2016-03-23 2018-11-28 니폰 제온 가부시키가이샤 Resin composition, resin film, and electronic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251093A (en) * 2006-03-20 2007-09-27 Nippon Zeon Co Ltd Gate insulating film, organic thin film transistor and manufacturing method of transistor, and display device
JP2010248547A (en) * 2009-04-13 2010-11-04 Hitachi Metals Ltd Oxide-semiconductor target, and method for manufacturing oxide-semiconductor device using the same
JP2012049300A (en) * 2010-08-26 2012-03-08 Nippon Zeon Co Ltd Semiconductor element substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034090A (en) * 2006-11-27 2010-02-12 Iwate Univ Organic thin-film transistor, gate insulation film, method of manufacturing organic thin-film transistor, and display
TWI711182B (en) * 2008-07-31 2020-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device
CN102668046B (en) * 2009-09-29 2014-12-10 日本瑞翁株式会社 Semiconductor element substrate
CN102640268B (en) * 2010-03-04 2016-03-23 日本瑞翁株式会社 The manufacture method of semiconductor element substrate
JP2012174801A (en) * 2011-02-18 2012-09-10 Nippon Hoso Kyokai <Nhk> Semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251093A (en) * 2006-03-20 2007-09-27 Nippon Zeon Co Ltd Gate insulating film, organic thin film transistor and manufacturing method of transistor, and display device
JP2010248547A (en) * 2009-04-13 2010-11-04 Hitachi Metals Ltd Oxide-semiconductor target, and method for manufacturing oxide-semiconductor device using the same
JP2012049300A (en) * 2010-08-26 2012-03-08 Nippon Zeon Co Ltd Semiconductor element substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y NAKAJIMA ET AL: "LOW-TEMPERATURE FABRICATION OF 5-IN. QVGA FLEXIBLE AMOLED DISPLAY DRIVEN BY OTFTS USING OLEFIN POLYMER AS THE GATE INSULATOR", JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, vol. 19, 2011, pages 861 - 866 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127340A (en) * 2016-03-23 2018-11-28 니폰 제온 가부시키가이샤 Resin composition, resin film, and electronic parts
EP3434731A4 (en) * 2016-03-23 2019-09-11 Zeon Corporation Resin composition, resin film, and electronic component
KR102269563B1 (en) 2016-03-23 2021-06-24 니폰 제온 가부시키가이샤 Resin composition, resin film, and electronic component

Also Published As

Publication number Publication date
TWI506833B (en) 2015-11-01
JP6164218B2 (en) 2017-07-19
TW201409790A (en) 2014-03-01
JPWO2014027618A1 (en) 2016-07-25

Similar Documents

Publication Publication Date Title
CN107207868B (en) Resin composition, resin film, and electronic component
JP5747908B2 (en) Manufacturing method of semiconductor element substrate
US9798233B2 (en) Radiation-sensitive resin composition and electronic device
JP5640864B2 (en) Negative photosensitive resin composition and electronic component
JP5522176B2 (en) Semiconductor device substrate
US20160297181A1 (en) Laminate
JP6304044B2 (en) Radiation sensitive resin composition and electronic component
EP3434731B1 (en) Resin composition, resin film, and electronic device
JP6183029B2 (en) Negative photosensitive resin composition and electronic component
JP6164218B2 (en) Thin film transistor
JP2012049300A (en) Semiconductor element substrate
JP6079277B2 (en) Radiation sensitive resin composition and electronic component
JP6354762B2 (en) Resin composition and gate insulating film
JP2012171993A (en) Resin composition and semiconductor device substrate
JP2012171994A (en) Resin composition and semiconductor device substrate
JP2014165415A (en) Resin composition and gate insulation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014530540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879573

Country of ref document: EP

Kind code of ref document: A1