WO2014024494A1 - エンジンおよびピストン - Google Patents

エンジンおよびピストン Download PDF

Info

Publication number
WO2014024494A1
WO2014024494A1 PCT/JP2013/004787 JP2013004787W WO2014024494A1 WO 2014024494 A1 WO2014024494 A1 WO 2014024494A1 JP 2013004787 W JP2013004787 W JP 2013004787W WO 2014024494 A1 WO2014024494 A1 WO 2014024494A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
hollow particles
layer
insulating layer
heat
Prior art date
Application number
PCT/JP2013/004787
Other languages
English (en)
French (fr)
Inventor
平塚 一郎
新美 拓哉
裕介 猪飼
一騎 佐合
Original Assignee
アイシン精機株式会社
アクロス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社, アクロス株式会社 filed Critical アイシン精機株式会社
Priority to US14/420,769 priority Critical patent/US9822728B2/en
Priority to JP2014529318A priority patent/JP6067712B2/ja
Priority to CN201390000661.3U priority patent/CN204572181U/zh
Publication of WO2014024494A1 publication Critical patent/WO2014024494A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Definitions

  • the present invention relates to an engine and a piston with improved heat insulation of a combustion chamber.
  • the engine includes a cylinder block having a bore, a piston fitted to the bore so as to reciprocate so as to form a combustion chamber, a cylinder head having a valve hole for closing the combustion chamber and communicating with the combustion chamber, and a valve hole And a valve for opening and closing.
  • a vehicle that improves fuel consumption such as a hybrid vehicle or a vehicle with an idling stop function
  • the driving of the engine may be temporarily stopped while the vehicle is running or temporarily stopped. In this case, since the temperature of the combustion chamber of the engine tends to decrease, there is a limit to improving the fuel consumption of the engine.
  • Patent Document 1 discloses a piston in which a top surface of a piston body is covered with a low heat conductive member.
  • the low thermal conductivity member is formed of a metal material (titanium or the like) having a lower thermal conductivity than the aluminum material forming the piston body, and an air film for heat insulation is formed between the top surface of the piston body.
  • Patent documents 2 and 3 disclose an engine in which a heat insulating material is formed on a top surface of a piston by ceramic spraying.
  • Patent Document 4 discloses a coated metal plate formed by forming a heat insulating coating layer having hollow particles having an average particle diameter of 5 to 27 ⁇ m on the surface of the metal plate.
  • Patent Document 5 discloses a technique for forming an anodized film having a porosity of 20% or more on the inner surface of an engine combustion chamber.
  • Patent Document 6 describes a heat insulating film in which hollow particles having an average particle diameter of 5 to 15 nanometers and a resin material are blended.
  • aluminum used for the piston has a specific gravity of 2.7, a thermal conductivity of 130 W / mK, and a thermal expansion coefficient of 23 ⁇ 10 ⁇ 6 / ° C.
  • titanium used for the heat insulating material is The specific gravity is 4.5, the thermal conductivity is 17 W / mK, and the thermal expansion coefficient is 8.4 ⁇ 10 ⁇ 6 / ° C.
  • the heat insulating material In order to exhibit sufficient heat insulation with a heat insulating material made of titanium, it is necessary to make the heat insulating material have a thickness on the order of millimeters.
  • titanium is heavier than aluminum.
  • the weight increases for a piston that reciprocates at high speed, which hinders improvement in fuel consumption.
  • the strength of the joint surface between the heat insulating material and the piston cannot be maintained due to the difference in the weight and thickness of the heat insulating material and the thermal expansion coefficient between the heat insulating material and the piston.
  • Patent Documents 2 and 3 a heat insulating material made of ceramic spray is used, but the surface becomes rougher after the thermal spraying process than before the thermal spraying process.
  • a heat insulating material made of ceramic spray is formed on the top surface of the piston, the convex portion having a fine surface roughness becomes a heat spot that becomes an ignition factor, and is likely to cause knocking in the engine.
  • the heat insulating material which consists of ceramic spraying is hard, post-processing is difficult.
  • Patent Document 5 there is a description of a heat insulating film by anodizing treatment, but the surface becomes rougher after the treatment than before the treatment, and when the top surface of the piston is subjected to the anodizing treatment, a convex portion having a fine surface roughness is present. It becomes a heat spot that becomes an ignition factor and is likely to cause knocking in the engine.
  • the heat insulating film composed of the hollow particles and the resin material disclosed in Patent Document 6 has a limit in heat insulating property and film strength in order to maintain film formability. The heat resistance of the heat insulating film is insufficient.
  • JP 2005-76471 A JP 2009-30458 A JP 2010-71134 A JP 2010-228223 A JP 2010-249008 A JP 2012-172619 A Japanese Patent Application No. 2011-036501
  • the present invention has been made in view of the above-described circumstances, and provides an engine and a piston that can contribute to improvement in fuel consumption by suppressing knocking and having a heat insulating coating film having high heat insulating properties and high surface smoothness. Let it be an issue.
  • An engine according to the present invention includes a cylinder block having a bore, a piston fitted to the bore so as to reciprocate so as to form a combustion chamber, and closing the combustion chamber and communicating with the combustion chamber.
  • An engine comprising a cylinder head having a valve hole and a valve for opening and closing the valve hole,
  • a wall surface facing the combustion chamber is covered with a heat insulating coating film
  • the heat insulating coating film has a heat insulating layer formed on the surface of the wall surface, and an inorganic coating layer formed on the surface of the heat insulating layer
  • the heat insulating layer includes a resin and first hollow particles embedded in the resin and having an average particle diameter smaller than the thickness of the heat insulating layer, and the inorganic coating layer includes an inorganic compound.
  • the heat insulating coating film is composed of a heat insulating layer formed on the surface of the wall surface and an inorganic coating layer formed on the surface of the heat insulating layer.
  • the heat insulating layer has a resin and first hollow particles.
  • the first hollow particles are embedded in the resin.
  • the average particle diameter of the first hollow particles is smaller than the thickness of the heat insulating coating film.
  • the heat insulating coating film has a high porosity and high heat insulating properties, so that the heat insulating properties of the combustion chamber can be improved and the fuel efficiency of the engine can be improved.
  • the average particle diameter of a 1st hollow particle be a simple average in electron microscope observation.
  • the inorganic coating layer has an inorganic compound, it has high heat resistance. By covering the surface of the heat insulating layer with the inorganic coating layer, heat transferred from the combustion chamber to the heat insulating layer can be reduced.
  • the heat insulating layer can be maintained by covering the surface of the heat insulating layer with an inorganic coating layer made of an inorganic compound. Therefore, the heat insulation property of a heat insulation layer and the fall of film strength can be prevented.
  • the ceramic sprayed coating when the ceramic sprayed coating is coated on the top surface corresponding to the wall facing the combustion chamber of the piston, there is a limit to the improvement of the surface roughness of the ceramic sprayed coating.
  • the ceramic sprayed film When the ceramic sprayed film is viewed microscopically, a large number of microscopic convex portions are formed on the surface of the sprayed film facing the combustion chamber. Such a convex portion becomes a heat spot and also causes a combustion process of the engine, which may increase the probability of knocking in the engine.
  • the heat insulating coating film has high surface smoothness.
  • the heat insulating property of the heat insulating coating film can be further improved, and the engine knock resistance is increased.
  • the heat insulating coating film has a heat insulating layer in which hollow particles are embedded in the resin, and an inorganic coating layer that covers the surface of the heat insulating layer. Since the heat insulation layer has a plurality of first hollow particles embedded in the resin and having an average particle diameter smaller than the thickness of the heat insulation layer, the composite action of the resin and the first hollow particles can be expected. That is, since the first hollow particles are nano-sized, they have a property that they are not easily destroyed. When the pressure of the combustion chamber in the explosion process is received by the surface of the heat insulating coating film, the combined action of the resin and the hollow particles can be expected.
  • the surface of the heat insulating layer is covered with the inorganic coating layer.
  • the coating with the inorganic coating layer further heat resistance is imparted to the heat insulating layer, and even if cracks are generated in the heat insulating layer, it is possible to prevent a decrease in heat insulating property and coating strength.
  • the average particle diameter of the first hollow particles is preferably 500 nm or less.
  • the surface of the heat insulation layer containing the first hollow particles can be smoothed.
  • the inorganic coating layer preferably has a thickness of 10 ⁇ m to 300 ⁇ m.
  • the thicker the inorganic coating layer the more difficult the high temperature in the combustion chamber is transmitted to the heat insulating layer through the inorganic coating layer. For this reason, the heat resistance of a heat insulation coating film improves, so that an inorganic type coating layer is thick.
  • the thickness of the inorganic coating layer is 10 ⁇ m to 300 ⁇ m, the film formability can be secured while maintaining the high heat resistance effect of the inorganic coating layer.
  • the inorganic compound constituting the inorganic coating layer is preferably composed of one or more selected from silica, zirconia, alumina, and ceria.
  • An inorganic coating layer composed of these materials is excellent in heat resistance.
  • the inorganic coating layer comprises an inorganic compound and second hollow particles embedded in the inorganic compound and having an average particle diameter smaller than the thickness of the inorganic coating layer.
  • the second hollow particles are preferably hollow particles having an average particle diameter of 100 ⁇ m or less.
  • the average particle diameter of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is included in the inner part in the thickness direction than the outermost layer portion of the inorganic coating layer.
  • the average particle diameter of the second hollow particles is preferably smaller.
  • the surface smoothness of the inorganic coating layer can be further improved.
  • the average particle size of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is preferably 500 nm or less.
  • the surface smoothness of the inorganic coating layer can be further improved.
  • the average particle diameter of the second hollow particles is a simple average in electron microscope observation.
  • the thickness of the heat insulating layer is preferably 10 ⁇ m to 2000 ⁇ m, and the average particle diameter of the first hollow particles is preferably 10 nm to 500 nm.
  • the dispersibility of dispersing the first hollow particles in the heat insulating coating film can be improved, and the first hollow particles can be efficiently embedded in the resin of the heat insulating coating film.
  • the porosity of the heat insulating layer is preferably 5% or more and 90% or less.
  • the heat insulating effect of the heat insulating layer is further improved.
  • the surface roughness of the wall surface after coating the heat insulating coating film is preferably smaller than the surface roughness of the wall surface before coating the heat insulating coating film.
  • the convex portion formed by the surface roughness of the wall surface becomes a heat spot and becomes a factor inducing the combustion process of the engine, which may cause a problem that the probability of occurrence of knocking in the engine increases. Therefore, since the surface roughness of the wall surface after coating with the heat insulating coating film is smaller than the surface roughness before coating, the heat insulating coating film can have high surface smoothness and the knocking resistance of the engine is increased.
  • a piston according to the present invention is a piston fitted to a bore so as to be reciprocally movable so as to form a combustion chamber, and a wall surface facing the combustion chamber of the piston is coated with a heat insulating coating film.
  • the heat insulating coating film has a heat insulating layer formed on the surface of the wall surface, and an inorganic coating layer formed on the surface of the heat insulating layer.
  • the heat insulating layer includes a resin and a resin.
  • the first hollow particles are embedded inside and have a first hollow particle having an average particle diameter smaller than the thickness of the heat insulating layer, and the inorganic coating layer has an inorganic compound.
  • the heat insulating coating film is composed of a heat insulating layer formed on the wall surface and an inorganic coating layer formed on the surface of the heat insulating layer.
  • the heat insulating layer has a resin and first hollow particles embedded in the resin and having an average particle diameter smaller than the thickness of the heat insulating coating film.
  • the heat insulating coating film has a high porosity and high heat insulating properties. For this reason, the heat insulation of a combustion chamber can be improved and it can contribute to the improvement of the fuel consumption of an engine.
  • the inorganic coating layer has an inorganic compound. For this reason, heat resistance is high. By covering the surface of the heat insulating layer with the inorganic coating layer, heat transferred from the combustion chamber to the heat insulating layer can be reduced.
  • the surface roughness of the wall surface after coating the heat insulating coating film is preferably smaller than the surface roughness of the wall surface before coating the heat insulating coating film.
  • the heat insulating coating film can have high surface smoothness, and the engine knock resistance is increased.
  • the heat insulation of the combustion chamber can be improved and the fuel efficiency of the engine is improved. Can contribute. Furthermore, since the surface smoothness on the top surface side of the piston can be improved, knocking of the engine can be suppressed.
  • the heat insulating coating film has a heat insulating layer and an inorganic coating layer that covers the surface of the heat insulating layer. For this reason, the heat transmitted from the combustion chamber to the heat insulating layer can be reduced. Moreover, even if a crack occurs in the heat insulating layer, the heat insulating layer can be maintained by covering the surface of the heat insulating layer with an inorganic coating layer made of a film-like inorganic compound. Therefore, the heat insulation property of a heat insulation layer and the fall of film strength can be prevented. Therefore, it can sufficiently cope with an engine having a high compression ratio.
  • the thermal efficiency at the cold start of the engine is improved, and the fuel consumption of the engine is improved.
  • fuel vaporization is poor, and therefore more fuel (gasoline or the like) than usual is sent into the combustion chamber.
  • the combustion chamber of the engine can be effectively insulated, fuel vaporization is improved, and fuel efficiency is improved.
  • the engine is often not sufficiently warm due to intermittent operation of the engine.
  • the heat insulating coating film according to the present invention is effective, and the engine combustion chamber is easily maintained at a high temperature. Further, since the combustion heat in the combustion chamber is difficult to escape to the piston, cylinder block, cylinder head, etc., the combustion temperature in the combustion chamber rises, and as a result, the effect of reducing HC (hydrocarbon) contained in the exhaust gas can be expected. .
  • FIG. 1 is a cross-sectional view schematically showing the vicinity of a combustion chamber of an engine according to Embodiment 1.
  • FIG. FIG. 4 is a cross-sectional view schematically showing the vicinity of a heat insulating coating film formed on the top surface of a piston according to the first embodiment. It is sectional drawing which concerns on Embodiment 1 and shows typically the inside of the heat insulation layer of the heat insulation coating film formed in the top surface of a piston.
  • FIG. 5 is a cross-sectional view schematically showing the vicinity of an engine combustion chamber according to a second embodiment.
  • FIG. 6 is a cross-sectional view schematically showing the vicinity of a heat insulating coating film covering a top surface facing an engine combustion chamber according to the second embodiment.
  • FIG. 6 is a cross-sectional view schematically showing the vicinity of a heat-insulating coating film covering a valve surface facing a combustion chamber of an engine in the valve according to the second embodiment. It is sectional drawing which concerns on Embodiment 6 and shows typically the heat insulation coating film vicinity formed in the top surface of a piston. It is a perspective explanatory view of the top surface side of the piston of Example 1. It is a graph which shows the result of the heat resistance test of the heat insulation coating film of Example 1 and Comparative Example 3. It is a diagram which shows the relationship between the engine torque and thermal efficiency of the engine of Example 2 and Comparative Example 1.
  • a wall surface facing the combustion chamber is covered with a heat insulating coating film in any one or more of a piston, a cylinder head, and a valve.
  • the heat insulation coating film is composed of a heat insulation layer covering the wall surface and an inorganic coating layer covering the surface of the heat insulation layer.
  • the heat insulating layer is made of a resin and first hollow particles.
  • the first hollow particles are embedded in the resin.
  • the heat insulating layer is covered with an inorganic coating layer having high heat resistance, and the influence of heat received from the combustion chamber is mitigated.
  • the surface of the heat insulating layer is covered with the inorganic coating layer, so that the heat insulating layer can be maintained and a decrease in heat insulating property and strength can be prevented. Thereby, the thermal efficiency of the engine is improved and the fuel efficiency of the vehicle is improved.
  • the heat insulating layer is composed of a resin and first hollow particles.
  • the material of the resin those having adhesiveness, heat resistance, chemical resistance and strength are preferable.
  • Resins are epoxy resin, amino resin, polyaminoamide resin, phenol resin, xylene resin, furan resin, silicone resin, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, polyamideimide, polybenzimidazole, It is at least one of thermoplastic polyimide and non-thermoplastic polyimide. If it is such resin, the effect
  • Resins with high heat resistance and high thermal decomposition temperature are preferred. Furthermore, in consideration of heat resistance and thermal decomposition temperature, epoxy resin, silicone resin, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide are preferable. Furthermore, when used in a high temperature environment, polybenzimidazole, thermoplastic polyimide, and non-thermoplastic polyimide are more preferable. Further, preferably, non-thermoplastic polyimide obtained from thermoplastic polyimide, pyromellitic dianhydride or biphenyltetracarboxylic dianhydride having excellent heat resistance is preferable. By blending the first hollow particles of nano size (less than 1 micrometer) with these resins as binders, the porosity in the heat insulating coating film can be increased, and the heat insulating property of the heat insulating coating film can be ensured.
  • Resin may be amino resin, polyaminoamide resin, phenol resin, xylene resin, furan resin, or the like. Furthermore, in consideration of heat resistance and thermal decomposition temperature, epoxy resin, silicone resin, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide are preferable. Furthermore, when used in a high temperature environment, polybenzimidazole, thermoplastic polyimide, and non-thermoplastic polyimide are more preferable. Further, preferably, non-thermoplastic polyimide obtained from thermoplastic polyimide, pyromellitic dianhydride or biphenyltetracarboxylic dianhydride having excellent heat resistance is preferable. By using these resins as a binder and blending the first hollow particles, the porosity in the heat insulating coating film can be increased, and the heat insulating property of the heat insulating coating film can be ensured.
  • the resin may contain an inorganic material (for example, alumina, titania, zirconia, etc.).
  • the inorganic material may be, for example, powder particles or fibers.
  • a particle size comparable to that of the first hollow particles and a particle size smaller than that of the first hollow particles are preferable.
  • the porosity in the heat insulating layer is preferably 5 to 90% by volume ratio. Particularly, 10 to 85% and 15 to 80% are exemplified.
  • the porosity corresponds to the blending amount of the first hollow particles and affects the heat insulating property of the heat insulating layer. If there are many compounding quantities of a 1st hollow particle, the porosity will become high and the heat insulation of a heat insulation layer will become high. Here, when the porosity is excessively low, the heat insulating property of the heat insulating layer is lowered. When the porosity is excessively high, the ratio of the first hollow particles to the resin becomes excessive, the binder for bonding the first hollow particles is insufficient, the film forming property of the heat insulating layer is impaired, Strength may be reduced.
  • the material of the first hollow particles is preferably a ceramic or organic material.
  • silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and titania (TiO 2 ) having excellent heat resistance are more preferable.
  • the material of the first hollow particles may be a resin or a metal.
  • the average particle diameter of the first hollow particles is smaller than the thickness of the heat insulating layer. For this reason, the surface of a heat insulation layer is smoothed, the recessed part which can become a heat spot decreases, and knocking can be reduced.
  • the particle diameter of many first hollow particles contained in the heat insulating layer is preferably smaller than the thickness of the heat insulating layer. When all the first hollow particles contained in the heat insulation layer are defined as 100%, the particle diameter is 50% or more, more preferably 70% or more, 90%, 95% or more of which is smaller than the thickness of the heat insulation layer. It is preferable to have The surface smoothness of the heat insulation layer is improved.
  • the average particle diameter of the first hollow particles is preferably 500 nm or less, more preferably 10 nm to 500 nm, and preferably 20 nm to 300 nm, 30 nm to 150 nm. Since the surface of the heat insulating layer is covered with an inorganic coating, there is very little possibility that the first hollow particles constituting the heat insulating layer will drop off. Even if the first nanoparticles fall off from the heat insulating layer and the inorganic coating, the average particle diameter of the first hollow particles is set to the skirt portion in order to suppress the influence on the skirt portion of the piston and the cylinder bore wall surface as much as possible. Is preferably smaller than the thickness of the oil film formed between the cylinder bore wall surface and the cylinder bore wall surface.
  • Examples of the thickness of the shell of the first hollow particles include 0.5 nm to 50 nm, 1 nm to 30 nm, and preferably 5 nm to 15 nm, although depending on the average particle diameter of the first hollow particles.
  • the shape of the first hollow particles may be a true sphere, a pseudo true sphere, a pseudo oval sphere, a pseudo polygon (including a pseudo cube or pseudo cuboid), and the like.
  • the surface of the shell forming the first hollow particles may be smooth or may have minute irregularities.
  • the first hollow particles may be nano hollow particles having an average particle diameter of less than 1 ⁇ m.
  • the shell thickness can be made thinner and heat insulating properties can be ensured than when hollow particles having a large size of several to several hundred ⁇ m are used.
  • Nano hollow particles are difficult to be exposed near the surface of the heat insulating layer, and the surface of the inorganic coating covering the surface of the heat insulating layer, that is, the surface smoothness of the heat insulating coating film is increased.
  • the first hollow particles having an extremely small average particle diameter of 500 nm or less can increase the filling amount into the resin (binder). Micropores can be dispersed in the resin by the first hollow particles. Even if the heat insulating layer is thin, it is possible to ensure the heat insulating property of the heat insulating layer. Further, by setting the first hollow particles to a nano-level average particle diameter, the unevenness on the surface of the heat insulating coating film caused by the first hollow particles becomes extremely small, and the heat insulating coating film is obtained by the leveling action of the resin serving as the binder. The surface can be smoothed, and the engine knock limit can be increased.
  • the 1st hollow particle of the micrometer order with an average particle diameter of 1 micrometer or more can raise the porosity of a heat insulation layer.
  • the heat insulation performance of the heat insulation coating film can be further improved.
  • the first hollow particles need to be smaller than the thickness of the heat insulating layer.
  • the average particle diameter of the first hollow particles is preferably smaller than the thickness of the heat insulating layer.
  • the average particle diameter of the first hollow particles in the micrometer order is preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the heat insulating layer is preferably 10 ⁇ m to 2000 ⁇ m, 20 ⁇ m to 1000 ⁇ m in consideration of heat insulating properties, adhesion, ensuring porosity, and the like.
  • the thickness may be 50 ⁇ m to 700 ⁇ m, or 100 ⁇ m to 500 ⁇ m.
  • Examples of the upper limit of the thickness of the heat insulating layer include 2000 ⁇ m, 1000 ⁇ m, 800 ⁇ m, 500 ⁇ m, and 300 ⁇ m.
  • Examples of the lower limit of the thickness of the heat insulating layer include 20 ⁇ m, 30 ⁇ m, and 40 ⁇ m.
  • is in the range of 200,000 to 20, in the range of 50,000 to 20, and in the range of 30,000 to 100. it can.
  • the dispersibility of the 1st hollow particle in a heat insulation layer can be improved, and it is advantageous to improving the heat insulation of a heat insulation layer and reducing heat insulation nonuniformity.
  • the heat insulating layer of the heat insulating coating film may contain an additive as required in addition to the resin and the first hollow particles.
  • Additives include a dispersant that increases the dispersibility of the first hollow particles, a silane coupling agent that assists in improving the adhesiveness and newness to the blended powder, and improving the adhesiveness, and a leveling that adjusts the surface tension.
  • Agents, surfactants, thickeners that adjust thixotropic properties, and the like are included as necessary.
  • the inorganic coating layer covering the surface of the heat insulating layer is mainly made of an inorganic material and contains an inorganic compound.
  • the inorganic compound constituting the inorganic coating layer is preferably composed of one or more selected from silica, zirconia, alumina, and ceria. Of these, silica is preferred.
  • the thickness of the inorganic coating layer is preferably 10 to 300 ⁇ m, more preferably 30 to 200 ⁇ m, and preferably 50 to 150 ⁇ m.
  • the high temperature in the combustion chamber is not easily transmitted to the heat insulating layer through the thin inorganic coating layer, and the film formability is maintained.
  • the heat insulating layer is not exposed to high temperature, and the resin deterioration of the heat insulating layer can be prevented.
  • By covering the surface of the heat insulating layer with an inorganic coating layer it can withstand up to about 2000 ° C. or more.
  • the inorganic coating layer may contain second hollow particles in addition to the inorganic compound.
  • the second hollow particles are preferably hollow particles having an average particle diameter smaller than the thickness of the inorganic coating layer.
  • the material of the second hollow particles is preferably a ceramic or organic material, like the first hollow particles included in the heat insulating layer.
  • silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and titania (TiO 2 ) having excellent heat resistance are more preferable.
  • the material of the second hollow particles may be a resin or a metal.
  • the material of the second hollow particles is preferably a ceramic system from the viewpoint of heat resistance.
  • the second hollow particles that may be contained in the inorganic coating layer have an average particle size smaller than the thickness of the inorganic coating layer.
  • the average particle diameter of the second hollow particles is preferably 500 ⁇ m or less. Further, it is preferably 100 ⁇ m or less, preferably 10 nm to 50 ⁇ m, preferably 10 nm to 500 nm, 20 nm to 300 nm, 30 nm to 150 nm. In this case, the smoothness of the inorganic coating layer can be maintained, and the knocking resistance can be improved.
  • the average particle diameter of the second hollow particles may be the same as the average particle diameter of the first hollow particles included in the heat insulating layer, It may be smaller or larger than the first hollow particles. In any case, the average particle diameter of the second hollow particles only needs to be smaller than the thickness of the inorganic coating layer. Preferably, the average particle diameter of the second hollow particles is the same as or smaller than the average particle diameter of the first hollow particles.
  • the thickness of the inorganic coating layer is 50% or more, more preferably 70% or more, 90% or more, 95% or more. It is preferable to have a smaller particle size. The surface smoothness of the heat insulating coating film is improved.
  • the average particle size of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is the average particle size of the second hollow particles contained inside in the thickness direction of the outermost layer portion of the inorganic coating layer. Is preferably smaller.
  • the heat insulation effect can be enhanced while maintaining the smoothness of the inorganic coating.
  • the upper limit of the average particle diameter of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is preferably 100 ⁇ m, and more preferably 50 ⁇ m, 500 nm, 300 nm, and 150 nm.
  • the lower limit of the average particle diameter of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is preferably 10 nm, 20 nm, or 30 nm. The smoothness of the inorganic coating can be maintained.
  • the upper limit of the average particle diameter of the second hollow particles contained in the inorganic coating layer is preferably 500 ⁇ m, and more preferably 100 ⁇ m, 50 ⁇ m, 500 nm, 300 nm, and 150 nm.
  • the lower limit of the average particle diameter of the second hollow particles contained in the outermost layer portion of the inorganic coating layer is preferably 10 nm, 20 nm, or 30 nm. The smoothness of the inorganic coating can be maintained.
  • the heat insulating layer according to the present invention includes a resin, and an advantage that the specific gravity is lighter than that of the aluminum alloy can be obtained.
  • the heat insulating property obtained with titanium having a thickness of 7 mm corresponds to the heat insulating property of 1.65 mm in the thermal sprayed film of zirconia (Patent Documents 2 and 3).
  • the heat insulating coating film corresponds to a thickness of only 0.012 to 0.083 mm.
  • the heat insulating coating film according to the present invention can be thinned while ensuring heat insulating properties. Therefore, even when the heat insulating coating film is formed on the top surface of the piston, the heat insulating property on the top surface side of the piston is improved and the piston is improved. The increase in weight is negligible, and the advantage of not affecting the operation of the piston is obtained.
  • Patent Documents 2, 3, and 5 the surface becomes rougher after the film forming process than before the film forming process, and when applied to the top surface of the piston, the convex portion having a fine surface roughness becomes a heat spot, and knocking occurs. Cause.
  • the heat insulating coating film according to the present invention has a heat insulating layer in which a plurality of hollow particles are embedded, and an inorganic coating layer is formed on the surface. For this reason, it can have surface smoothness, ensuring a high porosity.
  • the surface of the heat insulating layer is covered with an inorganic coating layer. Since the inorganic coating layer has an inorganic compound, it has high heat resistance. By covering the surface of the heat insulating layer with the inorganic coating layer, heat transferred from the combustion chamber to the heat insulating layer can be reduced.
  • the thermal contraction of the heat insulating layer can be mitigated by the crack.
  • a minute gap may be formed between the heat insulating layer and the inorganic coating layer. It is also possible to improve the heat insulation by this gap.
  • the surface roughness of the heat insulation layer can be further smoothed. For this reason, the surface smoothing can be further realized by forming the inorganic coating layer on the surface of the heat insulating layer, compared with the case where only the heat insulating layer is formed on the wall surface. Therefore, it becomes difficult to form a heat spot on the wall surface of the combustion chamber, and knocking can be effectively suppressed.
  • the heat insulating effect of the heat insulating layer can be further increased, and the specific gravity of the heat insulating layer can be reduced. Therefore, the heat insulation of the combustion chamber can be enhanced. If the heat insulating coating film according to the present invention is formed on the wall surface (the wall surface facing the combustion chamber), the film formation on the wall surface can be simplified.
  • the first hollow particles are nano hollow particles having an average particle size of less than 1 ⁇ m
  • the leveling action of the paint is not impaired by mixing the nano hollow particles into the resin, and the piston before application
  • the specific surface area of the piston is reduced, heat transfer from the piston is suppressed, and the heat insulating performance of the piston is further improved. It becomes possible.
  • the surface roughness of the wall surface after coating with the heat insulating coating film is preferably smaller than the surface roughness before coating.
  • the surface roughness of the heat insulating coating film that is, the surface roughness of the inorganic coating layer is preferably 10.0 or less and 7.0 or less in terms of Ra. 5.0 or less and 3.0 or less are more preferable. Furthermore, 2.0 or less is more preferable.
  • the first hollow particles fall off from the resin, the first hollow particles are smaller in size than the oil film thickness described above, and therefore, the first hollow particles are covered with the oil film, and the risk of damaging the piston skirt and the cylinder block bore wall surface is suppressed. .
  • a heat insulating layer is formed on the wall surface.
  • the viscosity is lowered by dissolving the resin in a solvent, and the first hollow particles are mixed and dispersed therein to form a paint.
  • an ultrasonic disperser, a wet jet mill, a homogenizer, a three roll, a high-speed stirrer and the like can be mentioned.
  • the heat insulating coating film according to the present invention can be formed by applying a paint to the wall surface forming the combustion chamber to form a coating film and baking the coating film. Examples of the application form include known coating forms such as spray coating, brush coating, roller coating, roll coater, electrostatic coating, dip coating, screen printing, and pad printing.
  • the coating film After painting, the coating film can be heated and baked to form a heat insulating layer.
  • the baking temperature can be set according to the material of the resin, and examples thereof include 130 to 220 ° C, 150 to 200 ° C, and 170 to 190 ° C.
  • Examples of the image sticking time include 0.5 to 5 hours, 1 to 3 hours, and 1.5 to 2 hours.
  • Pretreatment such as shot blasting, etching, and chemical conversion treatment is preferably performed on the wall surface of the piston or the like before forming the heat insulating coating film.
  • an inorganic coating layer made of an inorganic compound is formed on the surface of the heat insulating layer.
  • a known technique can be employed.
  • the heat insulating coating film according to the present invention may be formed only on the top surface of the piston, or may be formed on the wall surface of the cylinder head facing the combustion chamber. Furthermore, the heat insulation coating film according to the present invention can be formed on the wall surface forming the combustion chamber among the valves for opening and closing the intake and exhaust valve holes. Also in this case, the heat insulation of the combustion chamber can be enhanced.
  • the engine include an internal combustion engine and a reciprocating engine.
  • the fuel used for the engine include gasoline, light oil, and LPG.
  • FIG. 1 schematically shows a cross section near the combustion chamber 10 of the engine 1.
  • the engine 1 is a piston type internal combustion engine. 1, 2A, and 2B are conceptual diagrams only and do not define details.
  • the engine 1 includes a cylinder block 2 having a bore 20, a piston 3 fitted to the bore 20 so as to reciprocate in the directions of arrows A1 and A2 so as to form a combustion chamber 10 on the top surface 30 side, and a combustion chamber 10
  • the cylinder head 4 has a valve hole 40 that is closed and communicates with the combustion chamber 10, and the valve 5 that opens and closes the valve hole 40.
  • the valve hole 40 includes an intake valve hole 40 i and an exhaust valve hole 40 e that can communicate with the combustion chamber 10.
  • the cylinder head 4 is attached to the cylinder block 2 via a gasket 47.
  • the cylinder block 2, the cylinder head 4, and the piston 3 are formed of a cast aluminum alloy.
  • the aluminum alloy is preferably an aluminum-silicon alloy, an aluminum-silicon-magnesium alloy, an aluminum-silicon-copper alloy, an aluminum-silicon-magnesium-copper alloy, or an aluminum-silicon-magnesium-copper-nickel alloy. .
  • a hypoeutectic composition, a eutectic composition, or a hypereutectic composition may be used.
  • at least one of the cylinder block 2, the cylinder head 4, and the piston 3 may be formed of a magnesium alloy system or a cast iron system (for example, including flake graphite cast iron or spheroidal graphite cast iron).
  • the first heat insulating coating film 7f (thickness: 20 to 1000 ⁇ m) is formed on the entire top surface 30 or almost the entire surface of the piston 3 that faces the combustion chamber 10. It is covered. In this case, it is preferable to form the first heat insulating coating film 7 f only on the top surface 30 of the piston 3. In consideration of wear and the like, it is preferable not to form the outer wall surface of the skirt portion of the piston 3.
  • the first heat insulating coating film 7 f includes a heat insulating layer 71 that covers the top surface 30 of the piston 3 and an inorganic coating layer 72 that covers the surface of the heat insulating layer 71.
  • the heat insulating layer 71 includes a resin and a plurality of nano hollow particles 70 (first nano hollow particles) embedded in the resin.
  • a ceramic balloon such as a silica balloon or an alumina balloon is used.
  • the average particle diameter of the nano hollow particles 70 can be 10 to 500 nm, particularly 30 to 150 nm. However, it is not limited to this.
  • the range of the particle diameter of the nano hollow particles can be less than 1 ⁇ m, preferably 1 to 500 nm, 5 to 300 nm, and more preferably 30 to 150 nm.
  • the nano hollow particle 70 can have a shell thickness of 1 to 50 nm and 5 to 15 nm.
  • the average particle diameter is a simple average in electron microscope observation.
  • the lower limit of the average particle diameter of the nano hollow particles 70 can be 8 nm or 9 nm by electron microscope observation, and the upper limit can be 600 nm or 800 nm.
  • the resin may be an amino resin, a polyaminoamide resin, a phenol resin, a xylene resin, a furan resin, or the like.
  • epoxy resin, silicone resin, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide are preferable.
  • polybenzimidazole, thermoplastic polyimide, and non-thermoplastic polyimide are more preferable.
  • non-thermoplastic polyimide obtained from thermoplastic polyimide, pyromellitic dianhydride or biphenyltetracarboxylic dianhydride having excellent heat resistance is preferable.
  • the inorganic coating layer 72 is made of an inorganic compound.
  • the inorganic coating layer 72 has a thickness of 10 to 300 ⁇ m.
  • the inorganic compound is composed of one or more selected from the group consisting of silica, alumina, zirconia, and titania. Of these, silica is preferred.
  • a first heat insulating coating film 7 f is formed on the top surface 30 of the piston 3 that faces the combustion chamber 10.
  • the heat insulating layer 71 constituting the lower layer of the first heat insulating coating film 7f includes nano hollow particles 70 having a very small size such as 500 nm or less.
  • the fine hollow nano particles 70 can increase the filling amount of the resin (binder) and can disperse the fine pores formed by the nano hollow particles 70. Therefore, even if the heat insulating layer 71 is a thin layer, the heat insulating property of the heat insulating layer 71, and hence the heat insulating property of the combustion chamber 10 can be ensured.
  • the thickness of the heat insulating layer 71 is preferably 10 to 2000 ⁇ m, more preferably 20 to 1000 ⁇ m, 50 to 700 ⁇ m, and further preferably 100 to 500 ⁇ m.
  • the thickness of the inorganic coating layer 72 is smaller than the thickness of the heat insulating layer 71, and is preferably 10 to 300 ⁇ m, and more preferably 50 to 150 ⁇ m. For this reason, further heat resistance is imparted to the heat insulating layer 71 by the coating with the inorganic coating layer 72, and even if a crack occurs, film formation can be maintained, and a decrease in heat insulating property and coating strength can be prevented. Moreover, the surface of the heat insulation layer 71 can be further smoothed, and knocking can be effectively suppressed.
  • a connecting rod 32 is connected to the piston 3 via a connecting pin 31.
  • a spark plug 43 having an ignition part 42 facing the combustion chamber 10 is provided in the cylinder head 4.
  • the valve 5 is made of heat-resistant steel, and has a rod-shaped valve stem portion 50 and an umbrella portion 51 that is expanded in the radial direction.
  • the umbrella portion 51 has a valve surface 53 that faces the combustion chamber 10.
  • a built-up film may be built up on the valve surface 53.
  • the overlaying film can be formed of a copper alloy or an iron alloy.
  • the heat insulating coating film having high heat insulating properties and high surface smoothness by having the heat insulating coating film having high heat insulating properties and high surface smoothness, the heat insulating properties of the combustion chamber can be improved, and the fuel efficiency of the engine can be improved. Furthermore, since the surface smoothness on the top surface side of the piston can be improved, knocking of the engine can be suppressed.
  • the pressure F in the combustion chamber 10 in the explosion process of the engine 1 acts on the heat insulating coating film 7f (see FIG. 2B). It is considered that the pressure F is received by the heat insulating coating film 7f in which a plurality of nano hollow particles are embedded in a dispersed state.
  • the thermal efficiency at the cold start of the engine 1 is improved, and the fuel consumption of the engine 1 is improved.
  • the thermal efficiency at the cold start of the engine 1 is improved, and the fuel consumption of the engine 1 is improved.
  • the heat-insulating coating film 7f according to the present embodiment is laminated on the top surface 30 of the piston 3, the combustion chamber 10 of the engine 1 can be effectively insulated, fuel vaporization is improved, and fuel consumption is improved.
  • the engine 1 may not be sufficiently warmed due to intermittent operation of the engine 1.
  • the heat-insulating coating film 7f according to this embodiment is effective, and the combustion chamber 10 of the engine 1 is easily maintained at a high temperature. Further, since the combustion heat in the combustion chamber 10 is difficult to escape to the piston 3, the cylinder block 2, the cylinder head 4, and the like, the combustion temperature in the combustion chamber 10 rises, and as a result, HC (hydrocarbon) contained in the exhaust gas is reduced. Expected effects. In addition, the surface roughness of the heat insulating coating film 7f after coating is smaller than the surface roughness of the top surface 30 before the heat insulating coating film 7f is coated.
  • a method for forming the heat insulating coating film 7f according to the present embodiment will be described.
  • a resin is dissolved in a solvent to lower the viscosity, and nano hollow particles are mixed therein and dispersed by a disperser to form a paint.
  • Such paint is applied to the top surface of the piston by spraying or the like to form a coating film.
  • the coating film is baked at a predetermined baking temperature (an arbitrary value within a range of 120 to 400 ° C.) for a predetermined time (an arbitrary value within a range of 0.5 to 10 hours) in an air atmosphere. Can be formed.
  • an inorganic coating layer 72 made of a metal compound is formed on the surface of the heat insulating layer 71.
  • an alcohol solution of a metal alkoxysilane is applied to the surface of the heat insulating layer 71 and then formed into a film by a dealcoholization reaction.
  • the reaction formula of the dealcoholization reaction is —Si—O—R + HO—Si— ⁇ —Si—O—Si— + ROH (1) (in the formula (1), R represents an organic group).
  • the inorganic coating layer 72 can also be formed by other reaction mechanisms. As a result, an inorganic coating layer 72 made of silica in a continuous film form is formed, and a heat insulating coating layer 7 f made of the heat insulating layer 71 and the inorganic coating layer 72 is formed.
  • FIG. 1 shows the second embodiment.
  • the present embodiment has basically the same configuration and operational effects as the first embodiment.
  • 3A, 3 ⁇ / b> B, and 3 ⁇ / b> C schematically show a cross section near the combustion chamber 10 of the engine 1.
  • a first heat insulating coating film 7 f is coated on the top surface 30 which is the wall surface facing the combustion chamber 10 of the piston 3.
  • a wall surface 45 of the cylinder head 4 facing the combustion chamber 10 is covered with a second heat insulating coating film 7s.
  • the heat insulating property of the combustion chamber 10 is enhanced.
  • the first heat insulating coating film 7f may be eliminated.
  • the surface roughness of the wall surface after coating of the heat insulating coating films 7f and 7s is smaller than the surface roughness before coating.
  • FIGS. 1 to 3C can be applied mutatis mutandis.
  • a first heat insulating coating film 7 f is coated on the top surface 30 which is the wall surface facing the combustion chamber 10 of the piston 3.
  • a wall surface 45 of the cylinder head 4 facing the combustion chamber 10 is covered with a second heat insulating coating film 7s.
  • a third heat-insulating coating film 7t is also formed on the valve surface 53 of the valve 5 that faces the combustion chamber 10.
  • the first heat insulating coating film 7 f is formed on the top surface 30 of the piston 3
  • the second heat insulating coating film 7 s is formed on the wall surface 45 of the cylinder head 4 facing the combustion chamber 10
  • the combustion chamber of the valve 5 is formed.
  • a third heat-insulating coating film 7 t is formed on the valve surface 53 that faces 10. For this reason, the heat insulation of the combustion chamber 10 further increases.
  • the surface roughness of the coated heat insulating coating films 7f, 7s, and 7t is smaller than the surface roughness of the top surface 30, the wall surface 45, the valve surface 53, and the like before the coating of the heat insulating coating films 7f, 7s, and 7t. .
  • the thickness of the first heat insulating coating film 7f is t1
  • the second heat insulating coating film 7s is t2
  • t1> t2> t3 or t1> t2 ⁇ t3 may be set.
  • t2> t1> t3 or t2> t1 ⁇ t3 may be set.
  • the third heat insulating coating film 7t is formed. It can also be abolished.
  • FIGS. 1 to 3C can be applied mutatis mutandis.
  • the first heat insulating coating film 7 f is coated on the top surface 30 which is the wall surface of the piston 3 facing the combustion chamber 10. Further, a wall surface 45 of the cylinder head 4 facing the combustion chamber 10 is covered with a second heat insulating coating film 7s. For this reason, the heat insulation of the combustion chamber 10 increases.
  • the inorganic coating layer 72 includes hollow particles as the second nano hollow particles.
  • the inorganic coating layer 72 is composed of the hollow particles and silica (binder) as a metal compound. When the entire inorganic coating layer 72 is 100% by volume, the content of hollow particles is 35% by volume and the content of silica is 65% by volume.
  • the thickness of the inorganic coating layer 72 is 40 ⁇ m.
  • the hollow particles included in the inorganic coating layer 72 are the same as the nano hollow particles 70 included in the heat insulating layer 71. That is, the hollow particles included in the inorganic coating layer 72 are ceramic balloons such as silica balloons and alumina balloons.
  • the average particle size of the hollow particles can be 10 to 500 nm, in particular 30 to 150 nm. However, it is not limited to this.
  • the thickness of the hollow particle shell can be 1 to 50 nm and 5 to 15 nm.
  • the average particle diameter is a simple average in electron microscope observation.
  • the lower limit of the average particle diameter of the hollow particles can be 8 nm or 9 nm by electron microscope observation, and the upper limit can be 600 nm or 800 nm.
  • not only the heat insulating layer 71 but also the inorganic coating layer 72 contains hollow particles. For this reason, not only the heat insulating layer 71 but also the heat insulating property of the inorganic coating layer 72 is improved, and the heat insulating effect of the entire heat insulating coating film is improved.
  • FIG. 6 This embodiment has basically the same configuration as that of the first embodiment, and FIG. 1 can be applied mutatis mutandis.
  • the first heat insulating coating film 7 f is coated on almost the entire area of the top surface 30 that is the wall surface facing the combustion chamber 10 of the piston 3.
  • the first heat insulating coating film 7 f includes a heat insulating layer 71 that covers the top surface 30 and an inorganic coating layer 72 that covers the heat insulating layer 71.
  • the heat insulating layer 71 includes a resin and first hollow particles 80 in the micrometer order embedded in the resin.
  • the resin may be an amino resin, a polyaminoamide resin, a phenol resin, a xylene resin, a furan resin, or the like. Furthermore, in consideration of heat resistance and thermal decomposition temperature, epoxy resin, silicone resin, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide are preferable. Furthermore, when used in a high temperature environment, polybenzimidazole, thermoplastic polyimide, and non-thermoplastic polyimide are more preferable. Further, preferably, non-thermoplastic polyimide obtained from thermoplastic polyimide, pyromellitic dianhydride or biphenyltetracarboxylic dianhydride having excellent heat resistance is preferable.
  • the first hollow particles 80 a ceramic balloon such as a silica balloon or an alumina balloon is used.
  • the first hollow particles 80 are micro hollow particles in the micrometer order having an average particle diameter of 1 ⁇ m or more.
  • the first hollow particles 80 are smaller than the thickness of the heat insulating layer 71.
  • the average particle diameter of the first hollow particles 80 is smaller than the thickness of the heat insulating layer 71.
  • the average particle diameter of the first hollow particles 80 is preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the particle diameter range of the first hollow particles 80 can be 1 ⁇ m or more, and preferably 1 to 300 ⁇ m and 1 to 150 ⁇ m.
  • the inorganic coating layer 72 includes an inorganic compound and second hollow particles 80a and 80b embedded in the inorganic compound.
  • the inorganic coating layer 72 has a thickness of 10 to 300 ⁇ m.
  • the inorganic compound is composed of one or more selected from the group consisting of silica, alumina, zirconia, and titania.
  • the second hollow particles 80a and 80b are inorganic particles and are ceramic balloons such as silica balloons and alumina balloons. Of the second hollow particles 80a and 80b included in the inorganic coating layer 72, the average particle diameter of one second hollow particle 80a is smaller than the average particle diameter of the other second hollow particle 80b.
  • the inorganic coating layer 72 includes an outermost layer portion 72 a of the inorganic coating layer 72 and an inner portion 72 b on the inner side in the thickness direction than the outermost layer portion 72 a and facing the heat insulating layer 71.
  • the outermost layer 72a has a thickness of 1 to 100 ⁇ m
  • the inner 72b has a thickness of 9 to 290 ⁇ m.
  • one second hollow particle 80a is included in the outermost layer portion 72a, and the other second hollow particle 80b is included in the interior 72b.
  • the second hollow particles 80a included in the outermost layer portion 72a of the inorganic coating layer 72 are nano hollow particles having an average particle diameter of less than 1 ⁇ m.
  • the average particle diameter of the second hollow particles 80a can be 10 to 500 nm, especially 30 to 150 nm. However, it is not limited to this.
  • the range of the particle diameter of the nano hollow particles can be less than 1 ⁇ m, more preferably 1 to 500 nm, 5 to 300 nm, and further preferably 30 to 150 nm.
  • the thickness of the shell of the hollow particles 80a can be 1 to 50 nm and 5 to 15 nm.
  • the average particle diameter is a simple average in electron microscope observation.
  • the lower limit of the average particle diameter of the hollow particles 80a can be 8 nm or 9 nm, and the upper limit can be 600 nm or 800 nm.
  • the second hollow particles 80b included in the interior 72b of the inorganic coating layer 72 are micro hollow particles having an average particle diameter of 1 ⁇ m or more.
  • the average particle diameter of the hollow particles 80b can be set to 1 ⁇ m to 500 ⁇ m, particularly 1 ⁇ m to 100 ⁇ m. However, it is not limited to this.
  • the average particle diameter is a simple average in electron microscope observation.
  • the particle diameter range of the second hollow particles 80b can be 1 ⁇ m or more, preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 150 ⁇ m.
  • the thickness of the shell of the hollow particles 80b can be 10 nm to 30000 nm, and 100 nm to 15000 nm.
  • the lower limit of the average particle diameter of the hollow particles 80b can be 1 ⁇ m, and the upper limit can be 100 ⁇ m or 50 ⁇ m.
  • the heat insulating layer 71 of the present embodiment includes micron order first hollow particles 80 instead of the first nano hollow particles 70 of the first embodiment.
  • the first hollow particles 80 included in the heat insulating layer 71 are ceramic balloons such as silica balloons and alumina balloons.
  • the average particle diameter of the first hollow particles 80 can be 1 ⁇ m to 500 ⁇ m, in particular 1 ⁇ m to 100 ⁇ m. However, it is not limited to this.
  • the first hollow particles 80 may be the same as the second hollow particles 80b included in the interior 72b of the inorganic coating layer 72, or may be different.
  • the rest of the configuration is basically the same as that of the first embodiment.
  • Hollow particles are contained not only in the heat insulation layer 71 but also in the inorganic coating layer 72. For this reason, not only the heat insulating layer 71 but also the heat insulating property of the inorganic coating layer 72 is improved, and the heat insulating effect of the entire heat insulating coating film is improved.
  • the second hollow particles 80 a included in the outermost layer portion 72 a of the inorganic coating layer 72 are smaller than the average particle diameter of the second hollow particles 80 b included in the interior 80 b of the inorganic coating layer 72. For this reason, the surface smoothness of the inorganic coating layer can be further improved.
  • Example 1 As Example 1, as shown in FIG. 5, the heat insulating coating film 7f according to the present invention was applied to the top surface 30 of the piston 3 facing the combustion chamber, and the evaluation was performed.
  • the material of the piston 3 was an aluminum-silicon-magnesium-copper-nickel alloy (silicon: 11-13 mass%, JIS AC-8A).
  • the heat insulating coating film 7f was formed on the entire top surface 30 of the piston 3 as shown in the mesh portion of FIG.
  • the heat insulating coating film 7 f includes a heat insulating layer 71 that covers the top surface 30 of the piston 3 and an inorganic coating layer 72 that covers the surface of the heat insulating layer 71.
  • the thickness of the heat insulation layer 71 was 200 ⁇ m.
  • Non-thermoplastic polyimide was used as the resin functioning as the binder.
  • 25 parts by mass of nano hollow particles were blended with 100 parts by mass of the resin.
  • Silica balloons were used as the nano hollow particles.
  • the nano hollow particles had a particle diameter in the range of 30 to 150 nm, an average particle diameter of 108 nm, and a shell thickness of 5 to 15 nm.
  • the inorganic coating layer 72 is a 20 ⁇ m thick coating made of silica.
  • the resin is dissolved in a solvent (N-methyl-2-pyrrolidone) to reduce the viscosity, and nano hollow particles are mixed with the resin to disperse (ultrasonic disperser).
  • a solvent N-methyl-2-pyrrolidone
  • nano hollow particles are mixed with the resin to disperse (ultrasonic disperser).
  • a paint was applied to the top surface of the piston by spraying or the like to form a coating film.
  • the coating film was baked in an electric furnace at a predetermined baking temperature (170 to 190 ° C.) for a predetermined time (0.5 to 2 hours) to form a heat insulating layer 71.
  • an inorganic coating layer 72 made of silica was formed on the surface of the heat insulating layer 71.
  • the average particle size of the nano hollow particles contained in the heat insulating layer 71 was observed with an electron microscope (FE-SEM) after polishing the heat insulating coating film with a cross section polisher, and the average particle size of the nano hollow particles was measured. .
  • the number of measurements n was 20, and a simple average was taken.
  • the apparent volume of the heat insulating layer in the heat insulating coating film was 100%, the nano hollow particles were blended so that the porosity in the heat insulating layer was 60% by volume. In this case, the void defined by the shell of the nano hollow particles is calculated as the porosity.
  • Example 2 As Example 2, as in Example 1, the heat insulating coating film 7f according to the present invention was applied to the top surface 30 of the piston 3 facing the combustion chamber, and evaluation was performed.
  • the material of the piston 3 was an aluminum-silicon-magnesium-copper-nickel alloy (silicon: 11-13 mass%, JIS AC-8A).
  • the heat insulating coating film 7f was formed on the entire top surface 30 of the piston 3 as shown in the mesh portion of FIG.
  • the heat insulating coating film 7 f includes a heat insulating layer 71 that covers the top surface 30 of the piston 3 and an inorganic coating layer 72 that covers the surface of the heat insulating layer 71.
  • the thickness of the heat insulation layer 71 was 100 ⁇ m.
  • Non-thermoplastic polyimide was used as the resin functioning as the binder.
  • 130 parts by mass of the first hollow particles 80 were blended with respect to 100 parts by mass of the resin.
  • silica balloons were employed as the first hollow particles 80.
  • the first hollow particles 80 had a particle diameter range of 1 ⁇ m to 100 ⁇ m, an average particle diameter of 19760 nm, and a shell thickness of 100 nm to 5000 nm.
  • the inorganic coating layer 72 is made of silica and second hollow particles 80a and 80b.
  • the inorganic coating layer 72 includes an outermost layer portion 72a and an inner portion 72b located on the inner side in the thickness direction than the outermost layer portion 72a.
  • the outermost layer portion 72a is composed of silica and second hollow particles 80a dispersed in the silica.
  • the interior 72b is composed of silica and second hollow particles 80b dispersed in the silica.
  • the first and second micro hollow particles 80a and 80b are both made of silica balloons.
  • the second hollow particles 80a included in the outermost layer 72a are nano hollow particles having a nano-order size of less than 1 ⁇ m.
  • the second hollow particles 80a had a particle size range of 30 to 150 nm, an average particle size of 108 nm, and a shell thickness of 5 to 15 nm.
  • the second hollow particles 80b included in the interior 72b are micro hollow particles having a micrometer size of 1 ⁇ m or more.
  • the second hollow particles 80b have an average particle size of 19760 nm, a particle size range of 1 ⁇ m to 100 ⁇ m, and a shell thickness of 100 nm to 5000 nm.
  • the thickness of the outermost layer portion 72a is 20 ⁇ m, and the thickness of the inside 72b is 100 ⁇ m.
  • the silica in the outermost layer part 72a is 100 parts by mass
  • the content of the second hollow particles 80a in the outermost layer part 72a is 7 parts by mass.
  • the silica in the interior 72b is 100 parts by mass
  • the content of the second hollow particles 80b in the interior 72b is 95 parts by mass.
  • the resin is dissolved in a solvent (N-methyl-2-pyrrolidone) to reduce the viscosity, and nano hollow particles are mixed with the resin to disperse (ultrasonic disperser).
  • a solvent N-methyl-2-pyrrolidone
  • nano hollow particles are mixed with the resin to disperse (ultrasonic disperser).
  • a paint was applied to the top surface of the piston by spraying or the like to form a coating film.
  • the coating film was baked in an electric furnace at a predetermined baking temperature (170 to 190 ° C.) for a predetermined time (0.5 to 2 hours) to form a heat insulating layer 71.
  • an inner portion 72b made of silica and second hollow particles 80b was formed on the surface of the heat insulating layer 71.
  • the outermost layer portion 72a made of silica and the second hollow particles 80a was formed on the surface of the interior 72b.
  • the average particle diameter of the hollow particles contained in the heat insulating layer 71 was measured.
  • the thermal insulation coating film was polished with a cross section polisher and then observed with an electron microscope (FE-SEM) to measure the average particle diameter of the hollow particles.
  • the number of measurements n was 20, and a simple average was taken.
  • FE-SEM electron microscope
  • the porosity of the outermost layer portion 72a and the inner portion 72b of the inorganic coating layer 72 was measured in the same manner, the porosity of the outermost layer portion 72a was 12%, and the porosity of the inner portion 72b was 80%.
  • the thermal conductivity, surface roughness (Ra), knocking property, and fuel consumption of the heat insulating coating film were evaluated and are shown in Table 2.
  • the fuel consumption the fuel consumption when the relative fuel consumption of the conventional engine was displayed as 100 was used.
  • the fuel consumption measurement conditions were as follows.
  • Comparative Examples 1, 2, and 3 were also evaluated, and the results are shown in Table 2.
  • Comparative Example 1 the top surface of the piston is not treated, and no heat insulating coating film is formed.
  • Comparative Example 2 zirconia was sprayed on the top surface of the piston to form a sprayed film.
  • the heat insulating layer 71 is formed on the top surface 30 of the piston 3, but the inorganic coating layer is not formed.
  • the average particle diameter of the nano hollow particles contained in the heat insulating layer 71 was 108 nm, and the content of the nano hollow particles was 14 parts by mass when the binder was 100 parts by mass.
  • the porosity of the heat insulating layer 71 was 15%.
  • the thickness of the heat insulation layer 71 was 125 ⁇ m.
  • the thermal conductivity of the zirconia sprayed film was 4.0 (W / mk), which was about 25 times (4.0 W / mk / 0.16 W / mk) larger than that of this example.
  • the surface roughness of the sprayed film was 38 in Ra, which was considerably rougher than that of Example 1.
  • Comparative Example 3 the thermal conductivity was much lower than Comparative Examples 1 and 2, but was slightly higher than Example 1.
  • the surface roughness of the heat insulating coating film was small compared to Comparative Examples 1 and 2, but slightly larger than Example 1. This is because the unevenness on the surface of the heat insulating layer is flattened by the inorganic coating.
  • Comparative Example 3 there was no knocking and the fuel consumption was better than Comparative Example 1. However, the fuel consumption was slightly inferior to that of Example 1.
  • Example 1 the thermal conductivity of the heat insulation coating film is as small as 0.14 (W / mk), which is about 1.1 ⁇ 10 ⁇ 3 times (0.14 W / mk /) compared with Comparative Example 1. 130 W / mk), which was about 0.035 times (0.14 W / mk / 4.0 W / mk) compared to Comparative Example 2.
  • the surface roughness of the heat insulating coating film of Example 1 was 1.70 in Ra, which was smaller than Comparative Examples 1 and 2. In Example 1, knocking did not occur and the fuel consumption was 102.8.
  • Example 2 the thermal conductivity was lower than that in Example 1, and the fuel consumption was also improved. This is considered to be because the blending ratio of the hollow particles contained in the heat insulating layer and the inorganic coating layer was higher than that in Example 1 and exhibited higher heat insulating performance than that in Example 1. The surface roughness of Example 2 was slightly higher than that of Example 1. This is presumably because hollow particles were also added to the inorganic coating layer.
  • thermogravimetric measuring device was used to examine the temperature at which the heat insulating coating film started thermal decomposition.
  • the heat insulating coating film composed of the heat insulating layer and the inorganic coating layer in Example 1 was not thermally decomposed up to about 800 ° C.
  • the thermal insulation coating film consisting only of the thermal insulation layer of Comparative Example 3 started thermal decomposition at about 550 ° C.
  • the thermal decomposition temperature of Comparative Example 3 consisting only of the heat insulating layer was 100%
  • the thermal decomposition temperature of the heat insulating coating film of Example 1 in which the heat insulating layer was coated with an inorganic coating layer was as high as 45%. .
  • the reason is considered as follows.
  • the inorganic coating is composed of an inorganic compound and does not contain an organic component. For this reason, it is difficult to decompose even at high temperatures.
  • the non-thermoplastic polyimide contained in the heat insulation layer is a resin having high heat resistance among the resins. Since the heat insulation layer was covered with the inorganic coating layer, the thermal decomposition of the resin component in the heat insulation layer was further suppressed, and the heat resistance of the heat insulation layer was improved.
  • Example 1 As described above, the heat resistance of the heat insulating layer was increased by covering the heat insulating layer with the inorganic coating layer. For this reason, like Example 1 shown in Table 2, a heat insulation layer can be thickened and the heat insulation effect can be heightened. Moreover, if the amount of hollow particles is increased, cracks are likely to occur in the heat insulating layer. However, in Example 1, since even if a crack arises in a heat insulation layer, since it is coat
  • Example 1 The relationship between the torque and thermal efficiency of the engine of Example 2 and Comparative Example 1 was measured. As described above, in Example 1, the heat insulating coating film composed of the heat insulating layer and the inorganic coating layer is formed on the top surface of the piston, and in Comparative Example 1, the top surface of the piston is not treated.
  • Thermal efficiency refers to the ratio of energy output by the engine, where 100 is the total energy held by the fuel.
  • FIG. 7 shows the relationship between engine torque and thermal efficiency.
  • Example 2 was higher in thermal efficiency with respect to engine torque than Comparative Example 1.
  • the combustion speed in the combustion chamber becomes slow. In this case, the influence of heat radiation is great.
  • the thermal efficiency of Example 2 is significantly higher than that of Comparative Example 1. From this, it was found that heat dissipation can be suppressed when the engine torque is small.
  • the first heat-insulating coating film 7 f is formed on the entire top surface 30 of the piston 3, but may be formed on a part of the top surface 30.
  • the present invention is not limited to the embodiments and examples described above and shown in the drawings, and can be implemented with appropriate modifications within the scope not departing from the gist.
  • 1 is an engine, 10 is a combustion chamber, 2 is a cylinder block, 20 is a bore, 3 is a piston, 30 is a top surface, 4 is a cylinder head, 40 is a valve hole, 5 is a valve, and 7f is a heat insulating coating film, 70 Is a nano hollow particle (first hollow particle), 71 is a heat insulating layer, 72 is an inorganic coating layer, 72a: outermost layer part, 72b: inside, 80 is the first hollow particle, 80a, 80b: second hollow particle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 エンジンは、ボアを有するシリンダブロックと、燃焼室を形成するようにボアに往復移動可能に嵌合されたピストンと、燃焼室を閉じ且つ燃焼室に連通するバルブ孔をもつシリンダヘッドと、バルブ孔を開閉させるバルブとを備える。ピストン、シリンダヘッド、バルブのうちいずれか一つ以上において、燃焼室に対面する壁面に断熱コーティング膜が被覆されている。断熱コーティング膜は、断熱層と、断熱層表面を被覆する無機系被膜層とからなる。断熱層は、樹脂と、樹脂の内部に埋設され且つ断熱層の厚みよりも小さい平均粒子径をもつ第1の中空粒子とを有する。無機系被膜層は、無機化合物を有する。

Description

エンジンおよびピストン
 本発明は、燃焼室の断熱性を高めたエンジンおよびピストンに関する。
 エンジンは、ボアを有するシリンダブロックと、燃焼室を形成するようにボアに往復移動可能に嵌合されたピストンと、燃焼室を閉じ且つ燃焼室に連通するバルブ孔をもつシリンダヘッドと、バルブ孔を開閉させるバルブとを有する。燃費を向上させるためには、燃焼室の断熱性を高めることが好ましい。特に、ハイブリッド車両、または、アイドリングストップ機能付きの車両等のように、燃費向上を図る車両では、車両の走行中または一時停車中においてエンジンの駆動を一時的に停止させることがある。この場合、エンジンの燃焼室の温度が低下する傾向があるため、エンジンの燃費の向上には限界がある。
 特許文献1は、ピストン本体の頂面に低熱伝導部材を被覆させたピストンを開示する。このものでは、低熱伝導部材は、ピストン本体を形成するアルミニウム材料よりも熱伝導率が低い金属材料(チタン等)で形成されており、ピストン本体の頂面との間に断熱用の空気膜を形成している。特許文献2、3は、ピストンの頂面にセラミックス溶射によって断熱材を形成したエンジンを開示する。特許文献4は、平均粒子径5~27μmの中空粒子を有する断熱塗装層を金属板表面に形成してなる塗装金属板を開示する。特許文献5は、エンジン燃焼室の内面に、空孔率が20%以上である陽極酸化被膜を形成する技術を開示する。特許文献6は、平均粒子径5~15ナノメートルの中空粒子と樹脂材料を配合する断熱膜の記載がある。
 しかし、特許文献1では、ピストンに用いられるアルミニウムは、比重が2.7、熱伝導率が130W/mK、熱膨張率が23×10-6/℃であり、断熱材に用いられるチタンは、比重が4.5、熱伝導率が17W/mK、熱膨張率が8.4×10-6/℃である。チタンからなる断熱材で十分な断熱を発揮させるには、断熱材をミリオーダーの厚みとする必要がある。その反面、チタンは、アルミニウムに対して重い。チタンを断熱材に用いると、高速で往復運動するピストンにとっては重量増となり、燃費向上を妨げる。また、断熱材の重量と厚み、断熱材とピストンとの熱膨張率の違いにより、断熱材とピストンとの間の接合面の強度を維持することができない。
 特許文献2,3では、セラミックス溶射からなる断熱材が用いられているが、溶射処理前よりも溶射処理後に面が荒れてしまう。セラミックス溶射からなる断熱材をピストンの頂面に形成した場合、表面粗さの微細な凸部が点火要因となるヒートスポットになり、エンジンにノッキングの原因となり易い。また、セラミックス溶射からなる断熱材は硬質であるため、後加工が困難である。
 特許文献4で開示する塗装金属板を内燃機関に用いた場合、金属板表面に形成された塗装膜中の中空粒子の配合量に限界がある。
 特許文献5は、陽極酸化処理による断熱膜の記載があるが、処理前よりも処理後に面が荒れてしまい、ピストン頂面に陽極酸化処理を施した場合、表面粗さの微細な凸部が、点火要因となるヒートスポットになり、エンジンにノッキングが生じる原因となり易い。特許文献6に開示された中空粒子と樹脂材料とからなる断熱膜は、成膜性を維持するために断熱性や被膜強度に限界がある。断熱膜の耐熱性が不十分である。
 そこで、発明者は、高い断熱性および高い表面平滑性を備える断熱コーティング膜を形成するべく、鋭意探求した。近年、圧縮比の高いエンジンに対応することが求められている。かかる状況の中、断熱膜の表面平滑性及び断熱性を高めることが益々必要とされている。
特開2005-76471号公報 特開2009-30458号公報 特開2010-71134号公報 特開2010-228223号公報 特開2010-249008号公報 特開2012-172619号公報(特願2011-036501)
 本発明は上記した実情に鑑みてなされたものであり、ノッキングを抑え、高い断熱性および高い表面平滑性を備える断熱コーティング膜を有することにより燃費の向上に貢献できるエンジンおよびピストンを提供することを課題とする。
 (1)本発明に係るエンジンは、ボアを有するシリンダブロックと、燃焼室を形成するように前記ボアに往復移動可能に嵌合されたピストンと、前記燃焼室を閉じ且つ前記燃焼室に連通するバルブ孔をもつシリンダヘッドと、前記バルブ孔を開閉させるバルブとを具備するエンジンであって、
 前記ピストン、前記シリンダヘッド、前記バルブのうちいずれか一つ以上において、前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、
 前記断熱コーティング膜は、前記壁面の表面に形成された断熱層と、前記断熱層の表面に形成された無機系被膜層とを有し、
 前記断熱層は、樹脂と、前記樹脂の内部に埋設され前記断熱層の厚みよりも小さい平均粒子径をもつ第1の中空粒子とを有し、前記無機系被膜層は、無機化合物を有する。
 断熱コーティング膜は、壁面の表面に形成された断熱層と、断熱層の表面に形成された無機系被膜層とからなる。断熱層は、樹脂と第1の中空粒子とを有する。第1の中空粒子は、樹脂の内部に埋設されている。第1の中空粒子の平均粒子径は、断熱コーティング膜の厚みよりも小さい。断熱コーティング膜は高い空隙率を備えており、高い断熱性を有するため、燃焼室の断熱性を高めることができ、エンジンの燃費向上に貢献できる。ここで、第1の中空粒子の平均粒子径は、電子顕微鏡観察における単純平均とする。
 無機系被膜層は、無機化合物を有するため、耐熱性が高い。無機系被膜層により断熱層の表面を被覆することで、燃焼室から断熱層に伝達する熱を緩和することができる。
 また、断熱層に含まれる中空粒子の配合量を増やしたときに、断熱層にクラックが発生するおそれがある。しかし、断熱層にクラックが発生したとしても、断熱層表面を無機化合物からなる無機系被膜層により被覆することで、断熱層を維持することができる。そのため、断熱層の断熱性や被膜強度の低下を防止することができる。
 エンジンにおいて、ピストンのうち燃焼室に対面する壁面に相当する頂面にセラミックス溶射膜が被覆されている場合には、セラミックス溶射膜の表面粗さの改善には限界がある。セラミックス溶射膜を微視的にみれば、溶射膜のうち燃焼室に対面する表面には微視的な凸部が多数形成されている。このような凸部は、ヒートスポットになり、エンジンの燃焼工程を誘発させる要因ともなり、エンジンにノッキングが発生する確率が増加するおそれがある。この点について本願発明によれば、断熱コーティング膜は、高い表面平滑性を備えている。しかも、断熱層を無機系被膜により被覆することで、断熱コーティング膜の断熱性を更に向上させることができ、エンジンの耐ノッキング性が高まる。
 本発明に係るエンジンによれば、断熱コーティング膜は、樹脂の内部に中空粒子を埋設させた断熱層と、断熱層の表面を被覆する無機系被膜層とを有する。断熱層は、樹脂と共に、樹脂の内部に埋設され断熱層の厚みよりも平均粒子径が小さな複数の第1の中空粒子を有するため、樹脂と第1の中空粒子との複合作用を期待できる。即ち、第1の中空粒子はナノサイズであるため破壊されにくい性質をもつ。爆発工程における燃焼室の圧力を断熱コーティング膜の表面が受圧するとき、樹脂と中空粒子との総合作用を期待できる。断熱コーティング膜の強度を保ちながら樹脂が受圧した圧力を第1の中空粒子の僅かな弾性変形で緩和することを期待できる。このため断熱層の樹脂に亀裂が発生しにくくなる。なお本発明者が実施した試験例によれば、断熱層が樹脂のみで形成されており、第1の中空粒子を含有していないときには、断熱層に亀裂が発生し易かった。
 更に、本発明によれば、断熱層の表面が無機系被膜層により被覆されている。無機系被膜層による被覆により、断熱層に更なる耐熱性が付与され、且つ断熱層にクラックが発生していても、断熱性及び被膜強度の低下を防止できる。
 (2)本発明に係るエンジンにおいて、第1の中空粒子の平均粒子径は、500nm以下であることが好ましい。第1の中空粒子を含む断熱層の表面を平滑にすることができる。
 (3)本発明に係るエンジンにおいて、無機系被膜層の厚みは、10μm~300μmであることが好ましい。無機系被膜層が厚いほど、燃焼室内の高温が無機系被膜層を通じて断熱層に伝達しにくくなる。このため、無機系被膜層が厚いほど、断熱コーティング膜の耐熱性が向上する。無機系被膜層の厚みが10μm~300μmである場合には、無機系被膜層による耐熱性の効果を高く維持しつつ、成膜性を確保できる。
 (4)本発明に係るエンジンにおいて、無機系被膜層を構成する無機化合物は、シリカ、ジルコニア、アルミナ、及びセリアの中から選ばれる1種以上からなることが好ましい。これらの材料から構成された無機系被膜層は、耐熱性に優れる。
 (5)本発明に係るエンジンにおいて、無機系被膜層は、無機化合物と、無機化合物の内部に埋設され無機系被膜層の厚みよりも小さい平均粒子径をもつ第2の中空粒子とからなることが好ましい。この場合には、断熱層だけでなく無機系被膜層の断熱性も高くなり、断熱コーティング膜全体の断熱効果が向上する。第2の中空粒子は、平均粒子径が100μm以下の中空粒子であることが好ましい。
(6)本発明に係るエンジンにおいて、無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径は、無機系被膜層の最表層部よりも厚み方向で内側の内部に含まれる第2の中空粒子の平均粒子径よりも小さいことが好ましい。無機系被膜層の表面平滑性を更に向上させることができる。
(7)本発明に係るエンジンにおいて、無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径は、500nm以下であることが好ましい。無機系被膜層の表面平滑性を更に向上させることができる。ここで、第2の中空粒子の平均粒子径は、平均粒子径は電子顕微鏡観察における単純平均とする。
 (8)本発明に係るエンジンにおいて、断熱層の厚みは10μm~2000μmであり、第1の中空粒子の平均粒子径は10nm~500nmであることが好ましい。第1の中空粒子を断熱コーティング膜の内部に分散させる分散性を高めることができ、第1の中空粒子を断熱コーティング膜の樹脂の内部に効率よく埋設させることができる。
 (9)本発明に係るエンジンにおいて、断熱層の見掛け体積を100%とするとき、断熱層における空隙率は、5%以上90%以下であることが好ましい。断熱層の断熱効果が更に向上する。
 (10)本発明に係るエンジンにおいて、断熱コーティング膜を被覆した後の壁面の表面粗さは、断熱コーティング膜を被覆する前の壁面の表面粗さよりも小さいことが好ましい。壁面の表面粗さにより形成された凸部は、ヒートスポットになり、エンジンの燃焼工程を誘発させる要因ともなり、エンジンにノッキングが発生する確率が増加する不具合が発生するおそれがある。そこで、断熱コーティング膜の被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さいことにより、断熱コーティング膜は、高い表面平滑性を備えることができ、エンジンの耐ノッキング性が高まる。
 (11)本発明に係るピストンは、燃焼室を形成するようにボアに往復移動可能に嵌合されるピストンであって、前記ピストンのうち前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、前記断熱コーティング膜は、前記壁面の表面に形成された断熱層と、前記断熱層の表面に形成された無機系被膜層とを有し、前記断熱層は、樹脂と、前記樹脂の内部に埋設され前記断熱層の厚みよりも小さい平均粒子径をもつ第1の中空粒子とを有し、前記無機系被膜層は、無機化合物を有する。
 断熱コーティング膜は、壁面表面に形成された断熱層と、断熱層の表面に形成された無機系被膜層とからなる。断熱層は、樹脂と、樹脂の内部に埋設され断熱コーティング膜の厚みよりも小さな平均粒子径をもつ第1の中空粒子を有する。断熱コーティング膜は高い空隙率を備えており、高い断熱性を有する。このため、燃焼室の断熱性を高めることができ、エンジンの燃費向上に貢献できる。
 無機系被膜層は、無機化合物を有する。このため、耐熱性が高い。無機系被膜層により断熱層の表面を被覆することで、燃焼室から断熱層に伝達する熱を緩和することができる。
 また、断熱層に含まれる第1の中空粒子の配合量を増やしたときにクラックが発生するおそれがある。しかし、断熱層表面を無機化合物を有する無機系被膜層により被覆することで、断熱層にクラックが発生したとしても、断熱層を維持することができる。そのため、断熱層の断熱性や被膜強度の低下を防止することができる。
 (12)本発明に係るピストンにおいて、断熱コーティング膜を被覆した後の壁面の表面粗さは、断熱コーティング膜を被覆する前の壁面の表面粗さよりも小さいことが好ましい。断熱コーティング膜は、高い表面平滑性を備えることができ、エンジンの耐ノッキング性が高まる。
 本発明によれば、燃焼室に対面する壁面が、高い断熱性および高い表面平滑性を備える断熱コーティング膜で被覆されているため、燃焼室の断熱性を高めことができ、エンジンの燃費の向上に貢献できる。更に、ピストンの頂面側の表面平滑性を高めることができるため、エンジンのノッキングを抑制させることができる。
 本発明によれば、断熱コーティング膜が、断熱層と、断熱層の表面を被覆する無機系被膜層とを有する。このため、燃焼室から断熱層に伝達する熱を緩和することができる。また、断熱層にクラックが発生したとしても、断熱層表面を被膜状の無機化合物からなる無機系被膜層により被覆することで、断熱層を維持することができる。そのため、断熱層の断熱性や被膜強度の低下を防止することができる。ゆえに、高圧縮比のエンジンにも十分に対応することができる。
 本発明によれば、前述したようにエンジンの燃焼室の断熱性を高めることができるため、エンジンの冷間始動時における熱効率が向上し、エンジンの燃費が向上する。一般的には、エンジンの冷間始動時には燃料の気化が悪いため、通常よりも多くの燃料(ガソリン等)を燃焼室に送り込んでいる。しかし本発明のように燃焼室に対面する壁面を断熱コーティング膜により被覆することで、エンジンの燃焼室を効果的に断熱することでき、燃料の気化が改善され、燃費が向上する。特に、近年増えているハイブリッド車両、または、アイドリングストップ付きの車両においては、エンジンの断続運転によりエンジンが充分に暖まらないことが多い。このようなとき、本発明に係る断熱コーティング膜が効果を発揮し、エンジンの燃焼室を高温に維持させ易い。また、燃焼室における燃焼熱がピストン、シリンダブロック、シリンダヘッド等に逃げにくくなるため、燃焼室における燃焼温度が上昇し、ひいては排気ガス中に含まれるHC(ハイドロカーボン)を低減する効果も期待できる。
実施形態1に係り、エンジンの燃焼室付近を模式的に示す断面図である。 実施形態1に係り、ピストンの頂面に形成されている断熱コーティング膜付近を模式的に示す断面図である。 実施形態1に係り、ピストンの頂面に形成されている断熱コーティング膜の断熱層の内部を模式的に示す断面図である。 実施形態2に係り、エンジンの燃焼室付近を模式的に示す断面図である。 実施形態2に係り、エンジンの燃焼室に対面する頂面を被覆する断熱コーティング膜付近を模式的に示す断面図である。 実施形態2に係り、バルブのうちエンジンの燃焼室に対面するバルブ面を被覆する断熱コーティング膜付近を模式的に示す断面図である。 実施形態6に係り、ピストンの頂面に形成されている断熱コーティング膜付近を模式的に示す断面図である。 実施例1のピストンの頂面側の斜視説明図である。 実施例1と比較例3の断熱コーティング膜の耐熱性試験の結果を示すグラフである。 実施例2及び比較例1のエンジンのエンジントルクと熱効率との関係を示す線図である。
 本発明のエンジンは、ピストン、シリンダヘッド、及びバルブのうちいずれか1つ以上において、燃焼室に対面する壁面に,断熱コーティング膜が被覆されている。断熱コーティング膜は、壁面表面を被覆する断熱層と、断熱層の表面を被覆する無機系被膜層とからなる。
 断熱層は、樹脂と第1の中空粒子とからなる。第1の中空粒子は樹脂に埋設されている。断熱層は、耐熱性の高い無機系被膜層により被覆されていて、燃焼室から受ける熱の影響が緩和されている。しかも、断熱層にクラックが生じたとしても,無機系被膜層により断熱層表面が被覆されているため、断熱層を維持でき、断熱性及び強度の低下を防止できる。これによりエンジンの熱効率が向上し、車両の燃費が向上する。
 断熱層は、樹脂と第1の中空粒子とから構成されている。樹脂の材質としては、接着性、耐熱性、耐薬品性、強度のあるものが好ましい。
 樹脂は、エポキシ樹脂、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドのうちの少なくとも1種である。このような樹脂であれば、本発明に係る作用を効果的に期待できる。
 耐熱温度および熱分解温度が高い樹脂が好ましい。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ピロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。これらの樹脂をバインダとして、ナノサイズ(1マイクロメール未満)の第1の中空粒子を配合することにより、断熱コーティング膜における空隙率を高め、断熱コーティング膜の断熱性を確保することができる。
 樹脂としては、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂等としても良い。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ピロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。これらの樹脂をバインダとして用いて、第1の中空粒子を配合することにより、断熱コーティング膜における空隙率を高め、断熱コーティング膜の断熱性を確保することができる。
樹脂は無機材料(例えばアルミナ、チタニア、ジルコニアなど)を含んでいても良い。無機材料は例えば粉末粒子状または繊維状でも良い。無機材料のサイズとしては、第1の中空粒子と同程度の粒径、第1の中空粒子よりも小さな粒径が好ましい。
 断熱層の見掛け体積を100%とするとき、断熱層における空隙率は体積比で5~90%が好ましい。特に10~85%、15~80%が例示される。空隙率は第1の中空粒子の配合量に対応し、断熱層の断熱性に影響を与える。第1の中空粒子の配合量が多ければ、空隙率は高くなり、断熱層の断熱性が高くなる。ここで、空隙率が過剰に低いと、断熱層の断熱性が低下する。空隙率が過剰に高いと、樹脂に対して第1の中空粒子の割合が過多となり、第1の中空粒子を結合させるバインダが不足し、断熱層の成膜性が損われたり、断熱層の強度が低下するおそれがある。
 第1の中空粒子の材質としては、セラミック系や有機系材料が好ましい。特に、耐熱性に優れるシリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)がより好ましい。場合によっては、第1の中空粒子の材質は樹脂でも良いし、金属でも良い。
 第1の中空粒子の平均粒子径は、断熱層の厚みよりも小さい。このため、断熱層の表面が平滑化され、ヒートスポットとなり得る凹部が少なくなり、ノッキングを低減できる。断熱層に含まれる多くの第1の中空粒子の粒子径は、断熱層の厚みよりも小さいことがよい。断熱層に含まれるすべての第1の中空粒子を100%としたときに、その中の50%以上、更には70%以上、90%、95%以上が、断熱層の厚みよりも小さい粒子径をもつことが好ましい。断熱層の表面平滑性が向上する。
 第1の中空粒子の平均粒子径は、500nm以下がよく、さらに10nm~500nmがよく、好ましくは20nm~300nm、30nm~150nmとするとよい。断熱層表面は無機系被膜により被覆されているため、断熱層を構成する第1の中空粒子が脱落するおそれは極めて少ない。万が一、第1のナノ粒子が断熱層及び無機系被膜から脱落したとしても、ピストンのスカート部とシリンダボア壁面などへの影響を極力抑えるために、第1の中空粒子の平均粒子径は、スカート部とシリンダボア壁面との間に形成される油膜の厚みよりも小さい方が好ましい。
 第1の中空粒子の殻の厚みとしては、第1の中空粒子の平均粒子径にもよるが、0.5nm~50nm、1nm~30nm、好ましくは、5nm~15nmが例示できる。第1の中空粒子の形状としては真球状、疑似真球状、疑似楕円球状、疑似多角形状(疑似立方体形状、疑似直方体形状を含む)等にできる。第1の中空粒子を形成する殻の表面は平滑でもよく、微小凹凸があっても良い。
 第1の中空粒子は、平均粒子径が1μm未満のナノ中空粒子であるとよい。ナノ中空粒子を断熱層に用いた場合は、数~数百μmといった大きなサイズの中空粒子を用いた場合よりも、殻厚を薄くでき断熱性を確保できる。ナノ中空粒子は断熱層の表面近傍に表出しにくく、断熱層表面を被覆する無機系被膜の表面、即ち断熱コーティング膜の表面平滑性が高くなる。
 500nm以下(例えば10~500nm程度)といった極微小の平均粒子径の第1の中空粒子は、樹脂(バインダ)への充填量を多くできる。第1の中空粒子により樹脂の中に微小空孔を分散できる。断熱層が薄くても、断熱層の断熱性を確保することが可能である。また、第1の中空粒子をナノレベルの平均粒子径にすることによって、第1の中空粒子に起因する断熱コーティング膜の表面における凹凸が極めて小さくなり、バインダとなる樹脂のレベリング作用で断熱コーティング膜の表面平滑化が可能となり、エンジンのノッキング限界を高めることができる。
これに対して、平均粒子径1μm以上のマイクロメーターオーダーの第1の中空粒子は、断熱層の空隙率を高めることができる。断熱コーティング膜の断熱性能を更に向上させることができる。この場合にも、第1の中空粒子は、断熱層の厚みよりも小さいことが必要である。第1の中空粒子の平均粒子径は、断熱層の厚みよりも小さいことがよい。マイクロメーターオーダーの第1の中空粒子の平均粒子径は、1μm以上100μm以下であることがよく、更には、1μm以上50μm以下であることが好ましい。
 断熱層の厚さは、断熱性、密着性、空隙率の確保等を考慮すると、10μm~2000μm、20μm~1000μmが好ましい。50μm~700μm、もしくは、100μm~500μmとすることもできる。断熱層の厚みの上限値としては2000μm、1000μm、800μm、500μm、300μmが例示される。断熱層の厚みの下限値としては20μm、30μm、40μmが例示される。同一単位で、断熱層の厚み/第1の中空粒子の平均粒子径の比率をαとすると、αは20万~20の範囲内、50000~20の範囲内、30000~100の範囲内が例示できる。この場合、断熱層における第1の中空粒子の分散性を高めることができ、断熱層の断熱性を高めると共に断熱ムラを低減させるのに有利である。
 断熱コーティング膜の断熱層は、樹脂及び第1の中空粒子の他に、必要に応じて添加剤を含んでいても良い。添加剤としては、第1の中空粒子の分散性を高める分散剤、接着性や配合粉体への新和性の向上や接着性の向上を補助するシランカップリング剤、表面張力を調整するレベリング剤、界面活性剤、チクソトロピック特性を調整させる増粘剤等が必要に応じて挙げられる。
 断熱層表面を被覆する無機系被膜層は、主として無機系材料からなり、無機化合物を有する。無機系被膜層を構成する無機化合物は、シリカ、ジルコニア、アルミナ、及びセリアの中から選ばれる1種以上からなることがよい。この中、シリカがよい。
 無機系被膜層の厚みは、10~300μmであることがよく、更には、30~200μmであることが好ましく、50~150μmであることが望ましい。燃焼室での高温が薄い無機系被膜層を通じて断熱層に伝わりにくく、成膜性が維持される。断熱層が高温に晒されず、断熱層の樹脂劣化を防止できる。断熱層表面を無機系被膜層で被覆することにより、2000℃程度以上まで耐えることができる。
 無機系被膜層は、無機化合物のほかに、第2の中空粒子を含んでいてもよい。第2の中空粒子は、無機系被膜層の厚さよりも小さい平均粒子径の中空粒子であることがよい。無機系被膜層に第2の中空粒子を含める場合、第2の中空粒子の材質としては、断熱層に含まれる第1の中空粒子と同様に、セラミック系や有機系材料が好ましい。特に、耐熱性に優れるシリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)がより好ましい。場合によっては、第2の中空粒子の材質は樹脂でも良いし、金属でも良い。好ましくは、第2の中空粒子の材質は、耐熱性の観点から、セラミック系が好ましい。
 無機系被膜層に含まれることがある第2の中空粒子は、無機系被膜層の厚みよりも平均粒子径が小さい。第2の中空粒子の平均粒子径は500μm以下であることがよい。更には、100μm以下であるとよく、10nm~50μmがよく、10nm~500nm、20nm~300nm、30nm~150nmが好ましい。この場合には、無機系被膜層の平滑性を保持することができ、耐ノッキング性を高めることができる。
 無機系被膜層に第2の中空粒子を含める場合には、第2の中空粒子の平均粒子径は、断熱層に含まれる第1の中空粒子の平均粒子径と同じであってもよいし、第1の中空粒子よりも小さくても良く、大きくてもよい。いずれの場合にも、第2の中空粒子の平均粒子径は、無機系被膜層の厚みよりも小さければよい。好ましくは、第2の中空粒子の平均粒子径は、第1の中空粒子の平均粒子径と同じかそれよりも小さいことがよい。
無機系被膜層に含まれるすべての第2の中空粒子を100%としたときに、その中の50%以上、更には70%以上、90%以上、95%以上が、無機系被膜層の厚みよりも小さい粒子径をもつことが好ましい。断熱コーティング膜の表面平滑性が向上する。
無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径は、無機系被膜層の最表層部よりも厚み方向で内側の内部に含まれる第2の中空粒子の平均粒子径よりも小さいことが好ましい。無機系被膜の平滑性を保持しつつ、断熱効果を高めることができる。
 無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径の上限は、100μmであるとよく、更に、50μm、500nm、300nm、150nmがよい。無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径の下限は、10nm、20nm、30nmがよい。無機系被膜の平滑性を保持できる。
 無機系被膜層の内部に含まれる第2の中空粒子の平均粒子径の上限は、500μmであることがよく、更に、100μm、50μm、500nm、300nm、150nmがよい。無機系被膜層の最表層部に含まれる第2の中空粒子の平均粒子径の下限は、10nm、20nm、30nmがよい。無機系被膜の平滑性を保持できる。
 上記した特許文献1に示されるような、チタン等の低熱伝導部材を使用する場合は、構造上、ミリ単位の厚みが必要である。この場合、ピストンの重量増は避けられず、高速で動くピストンの動きを阻害し、燃費向上の妨げになり、好ましくない。これに対して、表1に示されるように、本発明に係る断熱層は樹脂を含み、アルミニウム合金よりも比重が軽い利点が得られる。ここで、仮に7ミリメートルの厚みを有するチタンで得られる断熱性は、ジルコニアの溶射膜(特許文献2,3)での1.65ミリメートルの厚みの断熱性に相当し、また、本発明に係る断熱コーティング膜では僅か0.012~0.083mmの厚みに相当する。このように本発明に係る断熱コーティング膜では、断熱性を確保しつつ薄膜化できるため、断熱コーティング膜をピストンの頂面に形成したとしても、ピストンの頂面側の断熱性を高めつつ、ピストンの重量増はごく僅かであり、ピストンの動作には影響を与えない利点が得られる。
Figure JPOXMLDOC01-appb-T000001
 また、特許文献4のように、通常の断熱系塗料では、数μm~数百μmの中空粒子を配合しているが、このサイズの中空粒子が表面近傍に表出すると、表面の凹凸差が大きくなる。通常の断熱系塗料をエンジンに用いた際に、凸部がヒートスポットになり、ノッキングが生じるおそれがある。また、何らかの要因でバインダから中空粒子が脱落した場合、数μm~数百μmの粒子は、エンジンの摺動部の油膜厚さ(およそ0.5~1μm)より大きく、ピストンやシリンダ材よりも硬質である。このため、ピストンやシリンダを摩耗させてしまう。
 特許文献2,3,5においては、成膜処理前よりも成膜処理後に面が荒れてしまい、ピストン頂面に適用した場合、表面粗さの微細な凸部がヒートスポットになり、ノッキングが生じる原因となる。
 これに対して、本発明に係る断熱コーティング膜は、複数の中空粒子を埋設した断熱層を有し、表面は無機系被膜層が形成されている。このため、高い空隙率を確保しつつ、表面平滑性を有することができる。
 更に、断熱層表面は無機系被膜層により被覆されている。無機系被膜層は、無機化合物を有するため、耐熱性が高い。無機系被膜層により断熱層の表面を被覆することで、燃焼室から断熱層に伝達する熱を緩和することができる。
 また、断熱層に含まれる第1の中空粒子の配合量を増やしたときにクラックが発生するおそれがある。しかし、断熱層にクラックが発生したとしても、断熱層表面を無機系被膜層により被覆することで、断熱層を維持することができる。そのため、断熱層の断熱性や被膜強度の低下を防止することができる。
 たとえクラックが発生したとしても、クラックにより断熱層の熱収縮を緩和することができる。更に、断熱層と無機系被膜層との間に微小な隙間が形成されることがある。この隙間により断熱性を高めることも可能である。また、断熱層の表面粗さを更に平滑化することができる。このため、断熱層だけを壁面に形成した場合よりも、断熱層の表面に無機系被膜層を形成することで更に表面平滑化を実現できる。ゆえに、燃焼室の壁面にヒートスポットが形成されにくくなり、ノッキングを効果的に抑制できる。
 また、断熱層に多量の第1の中空粒子を配合することができるため、断熱層の断熱効果が更に高まり、かつ断熱層の比重も小さくすることができる。従って、燃焼室の断熱性を高めることができる。本発明に係る断熱コーティング膜を壁面(燃焼室に対面する壁面)に形成すれば、壁面における成膜が簡単で済む。更に、第1の中空粒子が平均粒子径1μm未満のナノサイズであるナノ中空粒子である場合には、ナノ中空粒子を樹脂に混ぜ込むことによって、塗料のレベリング作用を損なわず、塗布前のピストンの表面粗さに対し、塗布後の断熱コーティング膜の表面粗さが小さくなることで、ピストンの比表面積が小さくなり、ピストンからの伝熱が抑制され、ピストンの断熱性能をより向上させることが可能となる。
 断熱コーティング膜の被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さいことが好ましい。ノッキング限界を考慮すると、断熱コーティング膜の表面粗さ、即ち無機系被膜層の表面粗さはRaで10.0以下、7.0以下が好ましい。5.0以下、3.0以下がより好ましい。更に、2.0以下が更に好ましい。更に、第1の中空粒子は、仮に樹脂から脱落したとしても、前述の油膜厚さより小さいサイズであるため、油膜に覆われ、ピストンのスカート部、シリンダブロックのボア壁面を損傷させるおそれが抑えられる。
 本発明に係る断熱コーティング膜を形成する場合は、まず、断熱層を壁面表面に形成する。断熱層を形成するために、樹脂を溶剤に溶解させる等して低粘度化し、これに第1の中空粒子を混合させて分散させることにより塗料を形成する。分散にあたり、超音波分散機、湿式ジェットミル、ホモジナイザー、3本ロール、高速攪拌機等が挙げられる。燃焼室を形成する壁面に塗料を塗布して塗膜を形成し、塗膜を焼き付けて本発明に係る断熱コーティング膜を形成できる。塗布形態としては、スプレー塗り、刷毛塗り、ローラ塗り、ロールコータ、静電塗装、浸漬塗装、スクリーン印刷、パット印刷等の公知の塗装形態が挙げられる。
 塗装後に、塗装膜を加熱保持して焼き付け、断熱層とすることができる。焼き付け温度としては、樹脂の材質に等に応じて設定でき、130~220℃、150~200℃、170~190℃が挙げられる。焼き付き時間としては、0.5~5時間、1~3時間、1.5~2時間が例示される。断熱コーティング膜を形成する前のピストン等の壁面に、ショットブラスト、エッチング、化成処理等の予備処理を行うことが好ましい。
 次に、断熱層の表面に、無機化合物からなる無機系被膜層を形成する。無機系被膜層を形成するために、例えば、公知の技術を採用することができる。
 更に、本発明に係る断熱コーティング膜は、ピストンの頂面のみに形成しても良いし、あるいは、シリンダーヘッドのうち燃焼室に対面する壁面に形成することもできる。更に、吸気用または排気用のバルブ孔を開閉させるバルブのうち燃焼室を形成する壁面にも、本発明に係る断熱コーティング膜を形成することができる。この場合にも、燃焼室の断熱性を高めることができる。なお、エンジンとしては内燃機関、レシプロエンジン等が挙げられる。エンジンの使用される燃料としては、ガソリン、軽油、LPG等が挙げられる。
 [実施形態1]
 図1および図2A及び図2Bは実施形態1の概念を模式的に示す。図1はエンジン1の燃焼室10付近の断面を模式的に示す。エンジン1はピストン式内燃機関である。図1および図2A及び図2Bはあくまでも概念図であり、細部まで規定するものではない。エンジン1は、ボア20を有するシリンダブロック2と、頂面30側に燃焼室10を形成するようにボア20に矢印A1,A2方向に往復移動可能に嵌合されたピストン3と、燃焼室10を閉じ且つ燃焼室10に連通するバルブ孔40をもつシリンダヘッド4と、バルブ孔40を開閉させるバルブ5とを備えている。バルブ孔40は、燃焼室10に連通可能な吸気用バルブ孔40iと排気用バルブ孔40eとを備えている。シリンダヘッド4はガスケット47を介してシリンダブロック2に被着されている。シリンダブロック2、シリンダヘッド4、ピストン3は、鋳造系のアルミニウム合金で形成されている。アルミニウム合金としては、アルミニウム-シリコン系合金、アルミニウム-シリコン-マグネシウム系合金、アルミニウム-シリコン-銅系合金、アルミニウム-シリコン-マグネシウム-銅系合金、アルミニウム-シリコン-マグネシウム-銅-ニッケル系合金が好ましい。亜共晶組成、共晶組成、過共晶組成でも良い。場合によっては、シリンダブロック2、シリンダヘッド4、ピストン3のうちの少なくとも一つは、マグネシウム合金系、鋳鉄系(例えば片状黒鉛鋳鉄、球状黒鉛鋳鉄を含む)で形成しても良い。
 図1および図2A及び図2Bに示すように、ピストン3のうち燃焼室10に対面する壁面である頂面30の全域またはほぼ全域に、第1断熱コーティング膜7f(厚み:20~1000μm)が被覆されている。この場合、ピストン3の頂面30のみに第1断熱コーティング膜7fを形成することが好ましい。なお、摩滅等を考慮すると、ピストン3のスカート部の外壁面には形成しないことが好ましい。
 第1断熱コーティング膜7fは、ピストン3の頂面30を被覆する断熱層71と、断熱層71の表面を被覆する無機系被膜層72とからなる。断熱層71は、樹脂と、樹脂に埋設された複数のナノ中空粒子70(第1のナノ中空粒子)とを有する。ナノ中空粒子70は、シリカバルーンやアルミナバルーン等のセラミックスバルーンを用いる。ナノ中空粒子70の平均粒子径は10~500nm、殊に30~150nmにできる。但しこれに限定されるものではない。ナノ中空粒子の粒子径の範囲は1μm未満とすることができ、好ましくは1~500nm、5~300nm、更に30~150nmが好ましい。ナノ中空粒子70の殻の厚みは1~50nm、5~15nmにできる。平均粒子径は電子顕微鏡観察における単純平均とする。ナノ中空粒子70の平均粒子径の下限については、電子顕微鏡観察により、8nmまたは9nmにでき、上限については600nmまたは800nmにできる。
 樹脂としては、場合によっては、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂等としても良い。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ピロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。
 無機系被膜層72は、無機化合物からなる。無機系被膜層72の厚みは、10~300μmである。無機化合物は、シリカ、アルミナ、ジルコニア、及びチタニアの群から選ばれる1種以上からなる。この中、シリカがよい。
 ピストン3のうち燃焼室10に対面する頂面30に第1断熱コーティング膜7fが形成されている。第1断熱コーティング膜7fの下層を構成する断熱層71は、500nm以下といった極微小サイズのナノ中空粒子70を含む。微小サイズのナノ中空粒子70は、樹脂(バインダ)への充填量を多くでき、ナノ中空粒子70による微小空孔を分散できる。よって、断熱層71が薄い層であっても、断熱層71の断熱性、ひいては燃焼室10の断熱性を確保することができる。断熱層71の厚みは10~2000μmであるとよく、更には、20~1000μm、50~700μm、更には100~500μmであることが好ましい。
 無機系被膜層72の厚みは、断熱層71の厚みよりも薄く、10~300μm、更には、50~150μmであることが好ましい。このため、無機系被膜層72による被覆により、断熱層71に更なる耐熱性が付与され、且つ万が一クラックが発生しても成膜を維持でき、断熱性及び被膜強度の低下を防止できる。また、断熱層71の表面を更に平滑化することができ、ノッキングを効果的に抑制できる。
 このため、燃焼室10の熱がピストン3を介してシリンダブロック2側に逃げることが抑制され、燃焼室10の断熱性が高まる。なお、ピストン3には連結ピン31を介してコネクティングロッド32が連結されている。燃焼室10に対面する点火部42をもつ点火プラグ43がシリンダヘッド4に設けられている。バルブ5は耐熱鋼で形成されており、棒状のバルブステム部50と、径方向に拡径した傘部51とを有する。傘部51は燃焼室10に対面するバルブ面53を有する。バルブ面53には肉盛膜が肉盛りされていても良い。肉盛膜は銅合金または鉄合金で形成できる。
 本実施形態によれば、高い断熱性および高い表面平滑性を備える断熱コーティング膜を有することにより、燃焼室の断熱性を高めことができ、エンジンの燃費の向上に貢献できる。更に、ピストンの頂面側の表面平滑性を高めることができるため、エンジンのノッキングを抑制させることができる。エンジン1の爆発工程における燃焼室10の圧力Fは、断熱コーティング膜7fに作用する(図2B参照)。圧力Fは、複数のナノ中空粒子を分散状態に埋設させている断熱コーティング膜7fにより受圧されると考えられる。
 本実施形態によれば、前述したようにエンジン1の燃焼室10の断熱性を高めることができるため、エンジン1の冷間始動時における熱効率が向上し、エンジン1の燃費が向上する。一般的には、エンジン1の冷間始動時には燃料の気化が悪いため、通常よりも多くの燃料(ガソリン等)を燃焼室に送り込んでいる。しかし本実施形態に係る断熱コーティング膜7fをピストン3の頂面30に積層させれば、エンジン1の燃焼室10を効果的に断熱することでき、燃料の気化が改善され、燃費が向上する。特に、近年増えているハイブリッド車両、または、アイドリングストップ付きの車両においては、エンジン1の断続運転によりエンジン1が充分に暖まらないことがある。このようなとき、本実施形態に係る断熱コーティング膜7fが効果を発揮し、エンジン1の燃焼室10を高温に維持させ易い。また、燃焼室10における燃焼熱がピストン3、シリンダブロック2、シリンダヘッド4等に逃げにくくなるため、燃焼室10における燃焼温度が上昇し、ひいては排気ガス中に含まれるHC(ハイドロカーボン)を低減できる効果も期待できる。なお、被覆後の断熱コーティング膜7fの表面粗さは、断熱コーティング膜7f被覆前の頂面30の表面粗さよりも小さい。
 本実施形態に係る断熱コーティング膜7fを形成する一方法について説明する。まず、樹脂を溶剤に溶解させて低粘度化させ、これにナノ中空粒子を混合させて分散器により分散させることにより塗料を形成する。このような塗料をピストンの頂面にスプレー等で塗布して塗膜を形成する。その後、大気中雰囲気において、塗膜を所定の焼付温度(120~400℃の範囲内の任意値)で所定の時間(0.5~10時間の範囲内の任意値)焼き付け、断熱層71を形成することができる。
 次に、断熱層71の表面に、金属化合物からなる無機系被膜層72を形成する。金属化合物がシリカである場合に無機系被膜層72を形成するにあたっては、例えば、金属アルコキシシランのアルコール溶液を断熱層71の表面に塗布し、その後脱アルコール反応で被膜化させる。脱アルコール反応の反応式は、
 -Si-O-R + HO-Si- → -Si-O-Si- + ROH・・・(1)で表される(式(1)中、Rは、有機基を示す。)。
無機系被膜層72は、その他の反応機構により形成することもできる。これにより、網目状に連続して連なる被膜状のシリカからなる無機系被膜層72が形成されて、断熱層71と無機系被膜層72とからなる断熱コーティング層7fが形成される。
 [実施形態2]
 図3A、図3B、及び図3Cは実施形態2を示す。本実施形態は実施形態1と基本的には同様の構成及び作用効果を有する。図3A、図3B、及び図3Cはエンジン1の燃焼室10付近の断面を模式的に示す。ピストン3のうち燃焼室10に対面する壁面である頂面30に、第1断熱コーティング膜7fが被覆されている。更に、シリンダヘッド4のうち燃焼室10に対面する壁面45に、第2断熱コーティング膜7sが被覆されている。燃焼室10に対面する頂面30及び壁面45は第1断熱コーティング膜7fおよび第2断熱コーティング膜7sにより被覆されているため、燃焼室10の断熱性が高まる。場合によっては、シリンダヘッド4の壁面45に第2断熱コーティング膜7sが形成されている限り、第1断熱コーティング膜7fを廃止しても良い。なお、断熱コーティング膜7f,7sの被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さい。
 [実施形態3]
 本実施形態は実施形態1,2と基本的には同様の構成及び作用効果を有するため、図1~図3Cを準用できる。ピストン3のうち燃焼室10に対面する壁面である頂面30に、第1断熱コーティング膜7fが被覆されている。更に、シリンダヘッド4のうち燃焼室10に対面する壁面45に、第2断熱コーティング膜7sが被覆されている。加えて、バルブ5のうち燃焼室10に対面するバルブ面53にも第3断熱コーティング膜7tが形成されている。このようにピストン3の頂面30に第1断熱コーティング膜7fが形成され、シリンダヘッド4のうち燃焼室10に対面する壁面45に第2断熱コーティング膜7sが形成され、バルブ5のうち燃焼室10に対面するバルブ面53に第3断熱コーティング膜7tが形成されている。このため、燃焼室10の断熱性が更に高まる。なお、被覆された断熱コーティング膜7f,7s,7tの表面粗さは、断熱コーティング膜7f,7s,7tの被覆前の頂面30、壁面45、バルブ面53等の壁面の表面粗さよりも小さい。
 第1断熱コーティング膜7fの厚みをt1とし、第2断熱コーティング膜7sをt2と、第3断熱コーティング膜7tの厚みをt3とするとき、t1=t2=t3、t1≒t2≒t3にできる(t1,t2,t3は図3において図示せず)。ピストン3からの逃熱抑制を考慮すると、t1>t2>t3、または、t1>t2≒t3としても良い。シリンダヘッド4からの逃熱抑制を考慮すると、t2>t1>t3、または、t2>t1≒t3としても良い。バルブ5の傘部51のバルブ面53をこれの垂直方向に投影した投影面積は、ピストン3の頂面30をこれの垂直方向から投影した投影面積よりも小さいため、第3断熱コーティング膜7tを廃止することもできる。
 [実施形態4]
 本実施形態は実施形態1~3と基本的には同様の構成及び作用効果を有するため、図1~図3Cを準用できる。特に図示はしないものの、ピストン3のうち燃焼室10に対面する壁面である頂面30に第1断熱コーティング膜7fが被覆されている。更に、シリンダヘッド4のうち燃焼室10に対面する壁面45に第2断熱コーティング膜7sが被覆されている。このため燃焼室10の断熱性が高まる。
 [実施形態5]
 本実施形態は、実施形態1~4と基本的には同様の構成を有しており、図1~図3Cを準用できる。特に図示はしないが、無機系被膜層72に、第2のナノ中空粒子としての中空粒子が含まれている。無機系被膜層72は、この中空粒子と、金属化合物としてのシリカ(バインダー)とからなる。無機系被膜層72の全体を100体積%としたときに、中空粒子の含有量は35体積%であり、シリカの含有量は65体積%である。無機系被膜層72の厚みは40μmである。
 無機系被膜層72に含める中空粒子は、断熱層71に含めるナノ中空粒子70と同様である。即ち、無機系被膜層72に含める中空粒子は、シリカバルーンやアルミナバルーン等のセラミックスバルーンである。中空粒子の平均粒子径は10~500nm、殊に30~150nmにできる。但しこれに限定されるものではない。中空粒子の殻の厚みは1~50nm、5~15nmにできる。平均粒子径は電子顕微鏡観察における単純平均とする。中空粒子の平均粒子径の下限については、電子顕微鏡観察により、8nmまたは9nmにでき、上限については600nmまたは800nmにできる。
 本実施形態では、断熱層71だけでなく無機系被膜層72にも中空粒子が含まれている。このため、断熱層71だけでなく無機系被膜層72の断熱性も高くなり、断熱コーティング膜全体の断熱効果が向上する。
[実施形態6]
 本実施形態は、実施形態1と基本的には同様の構成を有しており、図1を準用できる。本実施形態のエンジンは、図4に示すように、ピストン3のうち燃焼室10に対面する壁面である頂面30のほぼ全域に、第1断熱コーティング膜7fが被覆されている。第1断熱コーティング膜7fは、頂面30を被覆する断熱層71と、断熱層71を被覆する無機系被膜層72とからなる。断熱層71は、樹脂と、樹脂に埋設されたマイクロメータオーダーの第1の中空粒子80とを有する。
樹脂としては、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂等としても良い。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ピロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。
第1の中空粒子80は、シリカバルーンやアルミナバルーン等のセラミックスバルーンを用いる。第1の中空粒子80は、平均粒子径1μm以上のマイクロメーターオーダーのマイクロ中空粒子である。第1の中空粒子80は、断熱層71の厚みよりも小さい。第1の中空粒子80の平均粒子径は、断熱層71の厚みよりも小さい。第1の中空粒子80の平均粒子径は、1μm以上100μm以下であることがよく、更には、1μm以上50μm以下であることが好ましい。第1の中空粒子80の粒子径の範囲は1μm以上とすることができ、好ましくは1~300μm、1~150μmが好ましい。
無機系被膜層72は、無機化合物と、無機化合物に埋設された第2の中空粒子80a、80bとを有する。無機系被膜層72の厚みは、10~300μmである。無機化合物は、シリカ、アルミナ、ジルコニア、及びチタニアの群から選ばれる1種以上からなる。第2の中空粒子80a、80bは、無機系粒子であり、シリカバルーンやアルミナバルーン等のセラミックスバルーンである。無機系被膜層72に含まれる第2の中空粒子80a、80bのうち一方の第2の中空粒子80aの平均粒子径は、他方の第2の中空粒子80bの平均粒子径よりも小さい。
無機系被膜層72は、無機系被膜層72の最表層部72aと、最表層部72aよりも厚み方向で内側であって且つ断熱層71と対面している内側の内部72bとからなる。最表層部72aの厚みは1~100μmであり、内部72bの厚みは9~290μmである。
第2の中空粒子80a、80bのうち、一方の第2の中空粒子80aは、最表層部72aに含まれ、他方の第2の中空粒子80bは、内部72bに含まれている。
無機系被膜層72の最表層部72aに含まれる第2の中空粒子80aは、平均粒子径1μm未満のナノ中空粒子である。第2の中空粒子80aの平均粒子径は、10~500nm、殊に30~150nmにできる。但しこれに限定されるものではない。ナノ中空粒子の粒子径の範囲は1μm未満とすることができ、更には1~500nm、5~300nm、更に30~150nmが好ましい。中空粒子80aの殻の厚みは1~50nm、5~15nmにできる。平均粒子径は電子顕微鏡観察における単純平均とする。中空粒子80aの平均粒子径の下限については、8nmまたは9nmにでき、上限については600nmまたは800nmにできる。
 無機系被膜層72の内部72bに含まれる第2の中空粒子80bは、平均粒子径1μm以上のマイクロ中空粒子である。中空粒子80bの平均粒子径は1μm~500μm、殊に1μm~100μmにできる。但し、これに限定されるものではない。平均粒子径は電子顕微鏡観察における単純平均とする。第2の中空粒子80bの粒子径の範囲は1μm以上とすることができ、好ましくは1μm~300μm、更に1μm~150μmが好ましい。中空粒子80bの殻の厚みは10nm~30000nm、100nm~15000nmにできる。中空粒子80bの平均粒子径の下限については1μm、上限については100μmまたは50μmにできる。
 本実施形態の断熱層71には、実施形態1の第1のナノ中空粒子70に代えて、ミクロンオ-ダーの第1の中空粒子80が含まれている。断熱層71に含まれる第1の中空粒子80は、シリカバルーンやアルミナバルーン等のセラミックスバルーンである。第1の中空粒子80の平均粒子径は1μm~500μm、殊に1μm~100μmにできる。但し、これに限定されるものではない。第1の中空粒子80は、無機系被膜層72の内部72bに含まれる第2の中空粒子80bと同様のものを用いてもよく、または、異なるものを用いてもよい。その他は、実施形態1と基本的には同様の構成を有している。
断熱層71だけでなく無機系被膜層72にも中空粒子が含まれている。このため、断熱層71だけでなく無機系被膜層72の断熱性も高くなり、断熱コーティング膜全体の断熱効果が向上する。無機系被膜層72の最表層部72aに含まれる第2の中空粒子80aは、無機系被膜層72の内部80bに含まれる第2の中空粒子80bの平均粒子径よりも小さい。このため、無機系被膜層の表面平滑性を更に向上させることができる。
 以下、本発明をより具体化した実施例について説明する。
 (実施例1)
実施例1として、図5に示すように、ピストン3のうち燃焼室に対面する頂面30に、本発明に係る断熱コーティング膜7fを塗布して評価を実施した。ピストン3の材質はアルミニウム-シリコン-マグネシウム-銅-ニッケル系合金(シリコン:11~13質量%,JIS AC-8A)とした。断熱コーティング膜7fは、図5のメッシュ部分に示すように、ピストン3の頂面30の全体に形成した。
 図2Aに示すように、断熱コーティング膜7fは、ピストン3の頂面30を被覆する断熱層71と、断熱層71表面を被覆する無機系被膜層72とからなる。断熱層71の厚みは200μmとした。バインダとして機能する樹脂としては、非熱可塑性ポリイミドを採用した。表2に示すように、樹脂100質量部に対してナノ中空粒子は25質量部配合させた。ナノ中空粒子としてはシリカバルーンを採用した。ナノ中空粒子としては、粒子径の範囲30~150nmとし、平均粒子径を108nmとし、殻の厚み5~15nmとした。
 無機系被膜層72は、シリカからなる厚み20μmの被膜である。
 実施例1に係る断熱コーティング膜を形成するにあたり、樹脂を溶剤(N-メチル-2-ピロリドン)に溶解させて低粘度化させ、これにナノ中空粒子を混合させて分散機(超音波分散機)により分散させることにより塗料を形成した。このような塗料をピストンの頂面にスプレー等で塗布して塗膜を形成した。その後、塗膜を電気炉により所定の焼付温度(170~190℃)で所定の時間(0.5~2時間)焼き付け、断熱層71を形成した。次に、断熱層71の表面に、シリカからなる無機系被膜層72を形成した。
 断熱層71に含まれるナノ中空粒子の平均粒子径については、断熱コーティング膜をクロスセクションポリッシャーで研磨させた後に、電子顕微鏡(FE-SEM)で観察し、ナノ中空粒子の平均粒子径を測定した。測定数nを20とし、単純平均とした。断熱コーティング膜の中の断熱層の見掛け体積を100%とするとき、断熱層における空隙率が体積比で60%となるようにナノ中空粒子を配合させた。この場合、ナノ中空粒子の殻で区画された空隙が空隙率として演算される。
 (実施例2)
実施例2として、実施例1と同様に、ピストン3のうち燃焼室に対面する頂面30に、本発明に係る断熱コーティング膜7fを塗布して評価を実施した。ピストン3の材質はアルミニウム-シリコン-マグネシウム-銅-ニッケル系合金(シリコン:11~13質量%,JIS AC-8A)とした。断熱コーティング膜7fは、図5のメッシュ部分に示すように、ピストン3の頂面30の全体に形成した。
 図4に示すように、断熱コーティング膜7fは、ピストン3の頂面30を被覆する断熱層71と、断熱層71表面を被覆する無機系被膜層72とからなる。断熱層71の厚みは100μmとした。バインダとして機能する樹脂としては、非熱可塑性ポリイミドを採用した。表2に示すように、樹脂100質量部に対して第1の中空粒子80は130質量部配合させた。第1の中空粒子80としては、シリカバルーンを採用した。第1の中空粒子80としては、粒子径の範囲を1μm~100μmとし、平均粒子径を19760nmとし、殻の厚みを100nm~5000nmとした。
 無機系被膜層72は、シリカと第2の中空粒子80a、80bとからなる。無機系被膜層72は、最表層部72aと、最表層部72aよりも厚み方向で内側に位置する内部72bとからなる。最表層部72aは、シリカと、シリカに分散された第2の中空粒子80aとからなる。内部72bは、シリカと、シリカに分散された第2の中空粒子80bとからなる。第1、第2のマイクロ中空粒子80a、80bは、いずれもシリカバルーンからなる。最表層部72aに含まれる第2の中空粒子80aは、1μm未満のナノオーダーサイズのナノ中空粒子である。第2の中空粒子80aは、粒子径の範囲30~150nmとし、平均粒子径を108nmとし、殻の厚み5~15nmとした。内部72bに含まれる第2の中空粒子80bは、1μm以上のマイクロメーターサイズのマイクロ中空粒子である。第2の中空粒子80bの平均粒子径は、19760nmであり、粒子径の範囲は1μm~100μmであり、殻の厚みは100nm~5000nmである。
 最表層部72aの厚みは20μmであり、内部72bの厚みは100μmである。最表層部72aの中のシリカを100質量部としたときに、最表層部72aの中の第2の中空粒子80aの含有量は7質量部である。内部72bの中のシリカを100質量部としたときに、内部72bの中の第2の中空粒子80bの含有量は95質量部である。
 実施例2に係る断熱コーティング膜を形成するにあたり、樹脂を溶剤(N-メチル-2-ピロリドン)に溶解させて低粘度化させ、これにナノ中空粒子を混合させて分散機(超音波分散機)により分散させることにより塗料を形成した。このような塗料をピストンの頂面にスプレー等で塗布して塗膜を形成した。その後、塗膜を電気炉により所定の焼付温度(170~190℃)で所定の時間(0.5~2時間)焼き付け、断熱層71を形成した。次に、断熱層71の表面に、シリカ及び第2の中空粒子80bからなる内部72bを形成した。次に、内部72bの表面に、シリカ及び第2の中空粒子80aからなる最表層部72aを形成した。
 断熱層71に含まれる中空粒子の平均粒子径を測定した。断熱コーティング膜をクロスセクションポリッシャーで研磨させた後に、電子顕微鏡(FE-SEM)で観察し、中空粒子の平均粒子径を測定した。測定数nを20とし、単純平均とした。断熱コーティング膜の中の断熱層の見掛け体積を100%とするとき、断熱層における空隙率が体積比で78%となるように中空粒子を配合させた。この場合、中空粒子の殻で区画された空隙が空隙率として演算される。
 無機系被膜層72の最表層部72a及び内部72bの空隙率についても同様に測定したところ、最表層部72aの空隙率は、12%であり、内部72bの空隙率は80%であった。
 実施例1、2について、断熱コーティング膜の熱伝導率、表面粗さ(Ra)、ノッキング性、燃費について評価し、表2に示した。燃費については、従来のエンジンの燃費を100と相対表示したときにおける燃費とした。燃費測定条件は次のようにした。
〔使用エンジン〕(i)エンジン諸元:直列4気筒,水冷式,DOHC,16バルブ,4サイクルエンジン排気量:1300cc(ii)ピストン:4個とも頂面(ピストンのうち燃焼室に面した壁面)に本発明に係る断熱コーティング膜(125μm)を塗布により形成した。〔燃費評価条件〕 エンジンが冷間状態において、エンジン水温が室温から88℃まで上昇する間の燃費を平均して測定した。この場合、回転数2500rpmの一定回転で、一定負荷を加えた。
 同様に、比較例1,2、3についても評価し、結果を表2に示す。比較例1については、ピストンの頂面は無処理とし、断熱コーティング膜は形成されていない。比較例2については、ピストンの頂面にジルコニアを溶射し、溶射膜を形成した。
 比較例3については、ピストン3の頂面30に断熱層71は形成するが、無機系被膜層を形成していない。断熱層71に含まれるナノ中空粒子の平均粒子径は108nmとし、ナノ中空粒子の含有量は、バインダーを100質量部としたときに、14質量部とした。断熱層71の空隙率は15%とした。断熱層71の厚みは125μmとした。
 表2に示すように、比較例1では、熱伝導率は130(W/mk)であり、大きく、表面粗さはRaで4.82であった。ノッキングは発生しなかった。燃費は100として相対表示した。
 比較例2では、ジルコニア溶射膜の熱伝導率は4.0(W/mk)であり、本実施例に比較すると約25倍(4.0W/mk/0.16W/mk)大きかった。溶射膜の表面粗さはRaで38であり、実施例1よりもかなり粗かった。比較例2では、エンジンにノッキングが発生し、燃費測定は測定不可に至った。
 比較例3では、熱伝導率が比較例1,2よりも格段に小さかったが、実施例1に比べると若干高かった。断熱コーティング膜の表面粗さは、比較例1,2に比べると小さかったが、実施例1に比べると若干大きかった。これは、断熱層の表面の凹凸が、無機系被膜により平坦化されたためである。
 比較例3では、ノッキングはなく、燃費も比較例1よりもよかった。しかし、実施例1よりも燃費は若干劣っていた。
 これに対して実施例1では、断熱コーティング膜の熱伝導率は0.14(W/mk)と小さく、比較例1に比較すると約1.1×10-3倍(0.14W/mk/130W/mk)であり、比較例2に比較すると約0.035倍(0.14W/mk/4.0W/mk)であった。実施例1の断熱コーティング膜の表面粗さはRaで1.70であり、比較例1,2よりも小さかった。実施例1では、ノッキングは発生せず、燃費は102.8であった。
実施例2では、実施例1よりも熱伝導率が低く、燃費も向上した。これは、断熱層及び無機系被膜層に含まれる中空粒子の配合比が、実施例1よりも多く、実施例1よりも高い断熱性能を発揮したためであると考えられる。実施例2は、実施例1よりも、表面粗さが若干高くなった。これは、無機系被膜層にも中空粒子を添加したためであると考えられる。
Figure JPOXMLDOC01-appb-T000002
 上記測定結果から、実施例1、2に係る断熱コーティング膜によりピストンの頂面側の熱伝導率が大幅に下がるだけでなく、表面粗さを低減させて、ノッキングを低減させる効果が確認できた。
 次に、実施例1と比較例3の断熱コーティング膜の耐熱性試験を行った。耐熱性試験は、熱重量測定装置を用い、断熱コーティング膜が熱分解を開始する温度を調べた。
 実施例1の断熱層と無機系被膜層とからなる断熱コーティング膜は、約800℃まで熱分解しなかった。一方、比較例3の断熱層のみからなる断熱コーティング膜は、約550℃で熱分解を開始した。断熱層のみからなる比較例3の熱分解温度を100%としたときに、無機系被膜層で断熱層を被覆してなる実施例1の断熱コーティング膜の熱分解温度は45%も高くなった。
 このことから、無機系被膜で断熱層を被覆することで、断熱層の耐熱性を高めることができることがわかった。その理由は、以下のように考えられる。無機系被膜は、無機化合物から構成されていて有機成分を含まない。このため、高温下でも分解しにくい。無機系被膜層で断熱層が被覆されることにより、断熱層に加わる熱の影響が緩和され、断熱層の熱分解が抑えられた。断熱層に含まれる非熱可塑性ポリイミドは、樹脂の中でも耐熱性が高い樹脂である。断熱層は、無機系被膜層により被覆されているため、断熱層の中の樹脂成分の熱分解が更に抑制され、断熱層の耐熱性が上がった。
 以上のように、無機系被膜層による断熱層の被覆により、断熱層の耐熱性が高まった。このため、表2に示す実施例1のように、断熱層を厚くすることができ、断熱効果を高めることができる。また、中空粒子の配合を多くすると、断熱層にクラックが生じやすくなる。しかし、実施例1では、断熱層にクラックが生じても無機系被膜で被覆されているため、中空粒子の脱落を抑制できる。ゆえに、断熱層内の中空粒子の配合を高めることができ、更に断熱性能を高めることができる。
(エンジントルクと熱効率)
 実施例2と比較例1のエンジンのトルクと熱効率との関係を測定した。上記のように、実施例1は、ピストンの頂面に、断熱層と無機系被膜層とからなる断熱コーティング膜を形成しており、比較例1はピストンの頂面は無処理としている。
エンジンのトルクは、ピストンが燃焼室の圧力を受けてクランクシャフトを回転させる力で、クランクシャフトにプロペラシャフトを介し締結されたトルク計によって計測した。熱効率は、燃料が保有するエネルギー全体を100としたときの、エンジンが出力するエネルギーの比率をいう。図7は、エンジンのトルクと熱効率との関係を示している。
図7に示すように、実施例2は、比較例1に比べて、エンジントルクに対する熱効率が高かった。エンジントルクが小さい場合、燃焼室内の燃焼速度が遅くなる。この場合には、放熱の影響が大きい。このようなエンジントルクが小さい場合には、実施例2は比較例1に比べて、熱効率が格段に高くなった。このことから、エンジントルクが小さいときに、放熱を抑えられることがわかった。
 [その他]実施形態1によれば、第1断熱コーティング膜7fはピストン3の頂面30の全域に形成するものの、頂面30のうちの一部に形成しても良い。本発明は上記し且つ図面に示した実施形態および実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。
 1はエンジン、10は燃焼室、2はシリンダブロック、20はボア、3はピストン、30は頂面、4はシリンダヘッド、40はバルブ孔、5はバルブ、7fは断熱コーティング膜を示す、70はナノ中空粒子(第1の中空粒子)、71は断熱層、72は無機系被膜層、72a:最表層部、72b:内部、80は第1の中空粒子、80a、80b:第2の中空粒子。

Claims (12)

  1.  ボアを有するシリンダブロックと、燃焼室を形成するように前記ボアに往復移動可能に嵌合されたピストンと、前記燃焼室を閉じ且つ前記燃焼室に連通するバルブ孔をもつシリンダヘッドと、前記バルブ孔を開閉させるバルブとを具備するエンジンであって、
     前記ピストン、前記シリンダヘッド、前記バルブのうちいずれか一つ以上において、前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、
     前記断熱コーティング膜は、前記壁面の表面に形成された断熱層と、前記断熱層の表面に形成された無機系被膜層とを有し、
     前記断熱層は、樹脂と、前記樹脂の内部に埋設され前記断熱層の厚みよりも小さい平均粒子径をもつ第1の中空粒子とを有し、
     前記無機系被膜層は、無機化合物を有するエンジン。
  2.  前記第1の中空粒子の平均粒子径は、500nm以下である請求項1記載のエンジン。
  3.  前記無機系被膜層の厚みは、10μm~300μmである請求項1記載のエンジン。
  4.  前記無機系被膜層を構成する前記無機化合物は、シリカ、ジルコニア、アルミナ、及びセリアの中から選ばれる1種以上からなる請求項1記載のエンジン。
  5.  前記無機系被膜層は、前記無機化合物と、前記無機系被膜層の内部に埋設され前記無機系被膜層の厚みよりも小さい平均粒子径をもつ第2の中空粒子とからなる請求項1、3、及び4のいずれか1項に記載のエンジン。
  6.  前記無機系被膜層の最表層部に含まれる前記第2の中空粒子の平均粒子径は、前記無機系被膜層の前記最表層部よりも厚み方向で内側の内部に含まれる前記第2の中空粒子の平均粒子径よりも小さい請求項5記載のエンジン。
  7.  前記無機系被膜層の最表層部に含まれる前記第2の中空粒子の平均粒子径は、500nm以下である請求項6に記載のエンジン。
  8.  前記断熱層の厚みは10μm~2000μmであり、前記第1の中空粒子の平均粒子径は10nm~500nmである請求項1に記載のエンジン。
  9.  前記断熱層の見掛け体積を100%とするとき、前記断熱層における空隙率は、5%以上90%以下である請求項1又は8に記載のエンジン。
  10.  前記断熱コーティング膜を被覆した後の壁面の表面粗さは、前記断熱コーティング膜を被覆する前の表面粗さよりも小さい請求項1に記載のエンジン。
  11.  燃焼室を形成するようにボアに往復移動可能に嵌合されるピストンであって、
     前記ピストンのうち前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、
     前記断熱コーティング膜は、前記壁面の表面に形成された断熱層と、前記断熱層の表面に形成された無機系被膜層とを有し、
     前記断熱層は、樹脂と、前記樹脂の内部に埋設され前記断熱層の厚みよりも小さい平均粒子径をもつ第1の中空粒子とを有し、
     前記無機系被膜層は、無機化合物を有するピストン。
  12.  前記断熱コーティング膜を被覆した後の壁面の表面粗さは、前記断熱コーティング膜を被覆する前の壁面の表面粗さよりも小さい請求項11記載のピストン。
PCT/JP2013/004787 2012-08-10 2013-08-08 エンジンおよびピストン WO2014024494A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/420,769 US9822728B2 (en) 2012-08-10 2013-08-08 Engine and piston
JP2014529318A JP6067712B2 (ja) 2012-08-10 2013-08-08 エンジンおよびピストン
CN201390000661.3U CN204572181U (zh) 2012-08-10 2013-08-08 发动机和活塞

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177894 2012-08-10
JP2012-177894 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014024494A1 true WO2014024494A1 (ja) 2014-02-13

Family

ID=50067745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004787 WO2014024494A1 (ja) 2012-08-10 2013-08-08 エンジンおよびピストン

Country Status (4)

Country Link
US (1) US9822728B2 (ja)
JP (1) JP6067712B2 (ja)
CN (1) CN204572181U (ja)
WO (1) WO2014024494A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040817A (ja) * 2012-08-23 2014-03-06 Mazda Motor Corp エンジン燃焼室部材の断熱構造体及びその製造方法
JP2014152735A (ja) * 2013-02-12 2014-08-25 Mazda Motor Corp エンジン燃焼室の断熱構造体及びその製造方法
JP2015175285A (ja) * 2014-03-14 2015-10-05 マツダ株式会社 断熱層の形成方法
EP2955251A1 (en) * 2014-06-10 2015-12-16 Toyota Jidosha Kabushiki Kaisha Method for forming heat insulating film, and structure of heat insulating film
JP2016029292A (ja) * 2014-07-25 2016-03-03 マツダ株式会社 断熱層の形成方法及びその装置
DE102014224830A1 (de) * 2014-12-04 2016-06-09 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
WO2016163244A1 (ja) * 2015-04-08 2016-10-13 アイシン精機株式会社 車両用機械部品およびピストン
JP2016199030A (ja) * 2015-04-08 2016-12-01 アイシン精機株式会社 車両用機械部品およびピストン
JPWO2016103856A1 (ja) * 2014-12-25 2017-06-08 日立オートモティブシステムズ株式会社 内燃機関用ピストンと、このピストンの製造方法及び製造装置
WO2017122451A1 (ja) * 2016-01-13 2017-07-20 日立オートモティブシステムズ株式会社 ピストンおよびピストンの製造方法
JP2019505729A (ja) * 2016-02-22 2019-02-28 テネコ・インコーポレイテッドTenneco Inc. 空洞を有しない鋼鉄ピストン上の断熱層
JP2019507287A (ja) * 2015-12-28 2019-03-14 テネコ・インコーポレイテッドTenneco Inc. 金属基板に塗布された複合層を含むピストン
WO2019239178A1 (ja) * 2018-06-13 2019-12-19 日産自動車株式会社 遮熱部材
JP2020076321A (ja) * 2018-11-05 2020-05-21 トヨタ自動車株式会社 内燃機関の遮熱コーティングおよび遮熱コーティングの形成方法
WO2022124349A1 (ja) * 2020-12-11 2022-06-16 アート金属工業株式会社 車両用遮熱部品及び遮熱膜,並びに車両用遮熱部品の製造方法
US11492995B2 (en) * 2019-12-17 2022-11-08 Mazda Motor Corporation Internal combustion engine and method of manufacturing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217569B2 (ja) * 2014-09-11 2017-10-25 マツダ株式会社 断熱層
JP6366817B2 (ja) * 2015-03-14 2018-08-01 神戸セラミックス株式会社 内燃機関構成部品及びその製造方法
JP6278020B2 (ja) * 2015-09-30 2018-02-14 マツダ株式会社 エンジン用ピストンの製造方法
CN108137840B (zh) * 2015-10-21 2021-05-11 Ks科尔本施密特有限公司 用于活塞的复合材料
US10876475B2 (en) * 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10859033B2 (en) * 2016-05-19 2020-12-08 Tenneco Inc. Piston having an undercrown surface with insulating coating and method of manufacture thereof
CN106194483A (zh) * 2016-07-11 2016-12-07 潍柴动力股份有限公司 一种隔热活塞
CN106150748A (zh) * 2016-08-29 2016-11-23 潍柴动力股份有限公司 一种隔热涂层
JP6638618B2 (ja) * 2016-10-19 2020-01-29 トヨタ自動車株式会社 エンジンの製造方法
US11022027B2 (en) * 2016-11-18 2021-06-01 Honda Motor Co., Ltd. Internal combustion engine with reduced engine knocking
US10690247B2 (en) 2017-01-10 2020-06-23 Tenneco Inc. Galleryless short compression insulated steel piston
JP6597663B2 (ja) * 2017-02-08 2019-10-30 トヨタ自動車株式会社 エンジンバルブ
DE102017207236A1 (de) * 2017-04-28 2018-10-31 Mahle International Gmbh Kolben für eine Brennkraftmaschine
US10578049B2 (en) * 2017-04-28 2020-03-03 Mahle International Gmbh Thermal barrier coating for engine combustion component
JP7084234B2 (ja) * 2018-07-04 2022-06-14 トヨタ自動車株式会社 内燃機関
RU2694104C1 (ru) * 2018-09-07 2019-07-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Поршневой компрессор
SI3873691T1 (sl) 2018-10-29 2023-09-29 Cartridge Limited Termično izboljšana obloga izpušne odprtine
JP2021080838A (ja) * 2019-11-15 2021-05-27 マツダ株式会社 遮熱膜の形成方法
JP2021173213A (ja) * 2020-04-24 2021-11-01 マツダ株式会社 エンジンの燃焼室構造
JP2021179175A (ja) * 2020-05-11 2021-11-18 トヨタ自動車株式会社 火花点火式内燃機関
WO2022133467A1 (en) * 2020-12-17 2022-06-23 Cummins Inc. Combustion cylinder end face components including thermal barrier coatings

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773843A (en) * 1980-08-22 1982-05-08 Chevron Res Internal combustion engine having manifold surface and combustion surface covered with foam
JPS60184950A (ja) * 1984-03-02 1985-09-20 Isuzu Motors Ltd 燃焼室壁面を断熱材で被覆した内燃機関
JP2008175163A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 内燃機関用のピストンおよびその製造方法
JP2008200922A (ja) * 2007-02-19 2008-09-04 Grandex Co Ltd コーティング膜及びコーティング塗料
JP2009298127A (ja) * 2008-06-17 2009-12-24 Achilles Corp 高耐熱及び高耐火性能を有する耐熱シート
JP2012072746A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp 断熱構造体
JP2012072749A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp リーンバーンエンジン
JP2012172619A (ja) * 2011-02-23 2012-09-10 Aisin Seiki Co Ltd エンジンおよびピストン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398527A (en) 1980-08-22 1983-08-16 Chevron Research Company Internal combustion engine having manifold and combustion surfaces coated with a foam
JP2005076471A (ja) 2003-08-28 2005-03-24 Toyota Motor Corp ピストン及び内燃機関
EP1911952B1 (en) 2006-10-11 2017-11-22 Nissan Motor Co., Ltd. Internal combustion engine
JP2009030458A (ja) 2007-07-25 2009-02-12 Nissan Motor Co Ltd 火花点火式内燃機関
JP5457640B2 (ja) * 2008-03-31 2014-04-02 株式会社豊田中央研究所 内燃機関
JP2010071134A (ja) 2008-09-17 2010-04-02 Nissan Motor Co Ltd エンジンの燃料噴射時期制御装置
JP2010185290A (ja) 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc 遮熱膜及びその形成方法
JP5394788B2 (ja) 2009-03-26 2014-01-22 株式会社神戸製鋼所 樹脂塗装金属板
JP5696351B2 (ja) 2009-04-15 2015-04-08 トヨタ自動車株式会社 エンジン燃焼室構造
WO2013125704A1 (ja) * 2012-02-22 2013-08-29 日本碍子株式会社 エンジン燃焼室構造、および流路の内壁構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773843A (en) * 1980-08-22 1982-05-08 Chevron Res Internal combustion engine having manifold surface and combustion surface covered with foam
JPS60184950A (ja) * 1984-03-02 1985-09-20 Isuzu Motors Ltd 燃焼室壁面を断熱材で被覆した内燃機関
JP2008175163A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 内燃機関用のピストンおよびその製造方法
JP2008200922A (ja) * 2007-02-19 2008-09-04 Grandex Co Ltd コーティング膜及びコーティング塗料
JP2009298127A (ja) * 2008-06-17 2009-12-24 Achilles Corp 高耐熱及び高耐火性能を有する耐熱シート
JP2012072746A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp 断熱構造体
JP2012072749A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp リーンバーンエンジン
JP2012172619A (ja) * 2011-02-23 2012-09-10 Aisin Seiki Co Ltd エンジンおよびピストン

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040817A (ja) * 2012-08-23 2014-03-06 Mazda Motor Corp エンジン燃焼室部材の断熱構造体及びその製造方法
JP2014152735A (ja) * 2013-02-12 2014-08-25 Mazda Motor Corp エンジン燃焼室の断熱構造体及びその製造方法
JP2015175285A (ja) * 2014-03-14 2015-10-05 マツダ株式会社 断熱層の形成方法
EP2955251A1 (en) * 2014-06-10 2015-12-16 Toyota Jidosha Kabushiki Kaisha Method for forming heat insulating film, and structure of heat insulating film
JP2016029292A (ja) * 2014-07-25 2016-03-03 マツダ株式会社 断熱層の形成方法及びその装置
DE102014224830A1 (de) * 2014-12-04 2016-06-09 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
DE102014224830B4 (de) 2014-12-04 2022-10-20 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
JPWO2016103856A1 (ja) * 2014-12-25 2017-06-08 日立オートモティブシステムズ株式会社 内燃機関用ピストンと、このピストンの製造方法及び製造装置
US10487773B2 (en) 2015-04-08 2019-11-26 Aisin Seiki Kabushiki Kaisha Vehicle mechanical component and piston
WO2016163244A1 (ja) * 2015-04-08 2016-10-13 アイシン精機株式会社 車両用機械部品およびピストン
JP2016199030A (ja) * 2015-04-08 2016-12-01 アイシン精機株式会社 車両用機械部品およびピストン
JP2019507287A (ja) * 2015-12-28 2019-03-14 テネコ・インコーポレイテッドTenneco Inc. 金属基板に塗布された複合層を含むピストン
US11850773B2 (en) 2015-12-28 2023-12-26 Tenneco Inc. Piston including a composite layer applied to metal substrate
US11511515B2 (en) 2015-12-28 2022-11-29 Tenneco Inc. Piston including a composite layer applied to a metal substrate
WO2017122451A1 (ja) * 2016-01-13 2017-07-20 日立オートモティブシステムズ株式会社 ピストンおよびピストンの製造方法
JP2019505729A (ja) * 2016-02-22 2019-02-28 テネコ・インコーポレイテッドTenneco Inc. 空洞を有しない鋼鉄ピストン上の断熱層
JPWO2019239178A1 (ja) * 2018-06-13 2021-07-08 日産自動車株式会社 遮熱部材
JP7068635B2 (ja) 2018-06-13 2022-05-17 日産自動車株式会社 遮熱部材
WO2019239178A1 (ja) * 2018-06-13 2019-12-19 日産自動車株式会社 遮熱部材
US11987721B2 (en) 2018-06-13 2024-05-21 Nissan Motor Co., Ltd. Heat-shielding member
JP7119916B2 (ja) 2018-11-05 2022-08-17 トヨタ自動車株式会社 内燃機関の遮熱コーティングおよび遮熱コーティングの形成方法
JP2020076321A (ja) * 2018-11-05 2020-05-21 トヨタ自動車株式会社 内燃機関の遮熱コーティングおよび遮熱コーティングの形成方法
US11492995B2 (en) * 2019-12-17 2022-11-08 Mazda Motor Corporation Internal combustion engine and method of manufacturing the same
WO2022124349A1 (ja) * 2020-12-11 2022-06-16 アート金属工業株式会社 車両用遮熱部品及び遮熱膜,並びに車両用遮熱部品の製造方法

Also Published As

Publication number Publication date
CN204572181U (zh) 2015-08-19
US9822728B2 (en) 2017-11-21
US20150204269A1 (en) 2015-07-23
JPWO2014024494A1 (ja) 2016-07-25
JP6067712B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6067712B2 (ja) エンジンおよびピストン
WO2012114676A1 (ja) エンジンおよびピストン
JP6321934B2 (ja) エンジン燃焼室に臨む部材表面の断熱層の製造方法
CN105736141B (zh) 隔热膜的形成方法和内燃机
WO2013125704A1 (ja) エンジン燃焼室構造、および流路の内壁構造
JP5910343B2 (ja) エンジン燃焼室部材の断熱構造体及びその製造方法
CN102787933A (zh) 具有纳米合金涂层的气缸
JP5430777B2 (ja) ピストンリング
WO2015076098A1 (ja) 断熱膜、および断熱膜構造
Yao et al. Thermal analysis of nano ceramic coated piston used in natural gas engine
JP6065388B2 (ja) 断熱皮膜構造及びその製造方法
WO2016163244A1 (ja) 車両用機械部品およびピストン
JP6065389B2 (ja) 断熱構造体及びその製造方法
JP2015081527A (ja) エンジン燃焼室に臨む部材表面に設けられた断熱層
JP6287726B2 (ja) 断熱層
JP7129759B2 (ja) 遮熱被膜層形成方法、および、遮熱被膜層を備えるエンジン部品
US20220003186A1 (en) Piston for an internal combustion engine and internal combustion engine
WO2015076176A1 (ja) 断熱膜、および断熱膜構造
CN110643918A (zh) 用于内燃机气缸的涂层材料及其制备方法和内燃机气缸
WO2023002834A1 (ja) 遮熱膜及び遮熱部品
JP2020056347A (ja) 内燃機関
JP2018021225A (ja) 遮熱膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000661.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14420769

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13827145

Country of ref document: EP

Kind code of ref document: A1