WO2014024310A1 - Semiconductor element, hemt element, and method for manufacturing semiconductor element - Google Patents

Semiconductor element, hemt element, and method for manufacturing semiconductor element Download PDF

Info

Publication number
WO2014024310A1
WO2014024310A1 PCT/JP2012/070521 JP2012070521W WO2014024310A1 WO 2014024310 A1 WO2014024310 A1 WO 2014024310A1 JP 2012070521 W JP2012070521 W JP 2012070521W WO 2014024310 A1 WO2014024310 A1 WO 2014024310A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
iii nitride
group iii
manufacturing
Prior art date
Application number
PCT/JP2012/070521
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 杉山
宗太 前原
角谷 茂明
田中 光浩
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12842688.9A priority Critical patent/EP2720257A4/en
Priority to PCT/JP2012/070521 priority patent/WO2014024310A1/en
Priority to KR1020137010864A priority patent/KR101933230B1/en
Priority to CN201280003274.5A priority patent/CN103828030B/en
Priority to US13/855,148 priority patent/US9478650B2/en
Publication of WO2014024310A1 publication Critical patent/WO2014024310A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present invention relates to a semiconductor element, and more particularly to a semiconductor element having a Schottky diode junction between a multilayer structure epitaxial substrate made of a group III nitride semiconductor and a metal electrode.
  • Nitride semiconductors are attracting attention as semiconductor materials for next-generation high-frequency / high-power devices because they have a high breakdown electric field and a high saturation electron velocity.
  • a HEMT (High Electron Mobility Transistor) element formed by laminating a barrier layer made of AlGaN and a channel layer made of GaN has a laminated interface due to a large polarization effect (spontaneous polarization effect and piezoelectric polarization effect) peculiar to nitride materials.
  • This utilizes the feature that a high-concentration two-dimensional electron gas (2DEG) is generated at the (heterointerface) (see, for example, Non-Patent Document 1).
  • 2DEG high-concentration two-dimensional electron gas
  • a single crystal (heterogeneous single crystal) having a composition different from that of a group III nitride such as silicon or SiC may be used.
  • a buffer layer such as a strained superlattice layer or a low temperature growth buffer layer is generally formed on the base substrate as an initial growth layer. Therefore, epitaxially forming the barrier layer, the channel layer, and the buffer layer on the base substrate is the most basic configuration of the HEMT element substrate using the base substrate made of different single crystals.
  • a spacer layer having a thickness of about 1 nm may be provided between the barrier layer and the channel layer for the purpose of promoting spatial confinement of the two-dimensional electron gas.
  • the spacer layer is made of, for example, AlN. Furthermore, a cap layer made of, for example, an n-type GaN layer or a superlattice layer is formed on the barrier layer for the purpose of controlling the energy level at the outermost surface of the substrate for HEMT elements and improving the contact characteristics with the electrode. Sometimes it is done.
  • the concentration of the two-dimensional electron gas existing in the substrate for the HEMT device is It is known that it increases with an increase in the AlN mole fraction of AlGaN to be formed (see, for example, Non-Patent Document 2). If the two-dimensional electron gas concentration can be significantly increased, it is considered that the controllable current density of the HEMT element, that is, the power density that can be handled, can be significantly improved.
  • the strain is less dependent on the piezoelectric polarization effect and can generate a two-dimensional electron gas at a high concentration only by spontaneous polarization.
  • a HEMT element having a small number of structures is also attracting attention (see, for example, Non-Patent Document 3).
  • the junction between the gate electrode and the barrier layer is generally a Schottky junction.
  • a large leakage current may be generated when a reverse voltage is applied to the Schottky junction.
  • This leakage current can be reduced by forming a contact layer made of AlN on the InAlN layer.
  • the HEMT element having such a configuration has a low mobility of the two-dimensional electron gas. Occurs. This is presumed to be caused by distortion in the InAlN layer because the lattice constant of the AlN layer is smaller than that of the InAlN layer.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor element in which reverse leakage current is suppressed and the mobility of a two-dimensional electron gas is high.
  • an epitaxial substrate in which a group (III) nitride layer group is formed on a base substrate so that the (0001) crystal plane is substantially parallel to the substrate surface;
  • the film thickness of the intermediate layer is 0.5 nm or more.
  • the film thickness of the intermediate layer is 6 nm or less.
  • the thickness of the cap layer is 0.5 nm or more and 6 nm or less.
  • the band gap of the second group III nitride is larger than the band gap of the first group III nitride. I made it bigger.
  • the Schottky electrode includes at least one of Ni, Pt, Pd, and Au.
  • the root mean square surface roughness of the cap layer is 0.5 nm or less.
  • the first group III nitride is GaN.
  • the third group III nitride is AlN.
  • an ohmic electrode is bonded to the same cap layer as the Schottky electrode.
  • the Schottky electrode is a gate electrode
  • the ohmic electrode is a source electrode and a drain electrode.
  • an epitaxial substrate obtained by stacking a group III nitride layer group on a base substrate so that a (0001) crystal plane is substantially parallel to the substrate surface, and a Schottky electrode
  • the intermediate layer is formed to a thickness of 0.5 nm or more.
  • the intermediate layer is formed to a thickness of 6 nm or less.
  • the cap layer is formed to a thickness of 0.5 nm or more and 6 nm or less.
  • the band gap of the second group III nitride is the band of the first group III nitride. It was made larger than the gap.
  • the Schottky electrode in the method for manufacturing a semiconductor device according to any one of the fifteenth to nineteenth aspects, is formed of Ni, Pt, Pd, It was formed so as to include at least one of Au.
  • the first group III nitride is GaN.
  • the third group III nitride is AlN.
  • the method for manufacturing a semiconductor device includes an ohmic property in which an ohmic electrode is bonded to the cap layer on which the Schottky electrode is formed.
  • An electrode forming step includes an ohmic property in which an ohmic electrode is bonded to the cap layer on which the Schottky electrode is formed.
  • the intermediate layer made of GaN and the cap layer made of AlN are provided in this order on the barrier layer, and electrodes are formed on the cap layer by Schottky junction,
  • the MIS junction By forming the MIS junction, the reverse leakage current is suppressed and the mobility of the two-dimensional electron gas is kept high as compared with the case where the electrode is formed directly on the barrier layer by the Schottky junction.
  • a semiconductor element is realized.
  • FIG. 1 It is a cross-sectional schematic diagram which shows roughly the structure of the HEMT element 20 which is one aspect
  • FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a HEMT element 20 which is an aspect of a semiconductor element according to an embodiment of the present invention.
  • the HEMT element 20 generally has a configuration in which a source electrode 7, a drain electrode 8, and a gate electrode 9 are provided on an epitaxial substrate 10.
  • the epitaxial substrate 10 has a configuration in which a base substrate 1, a buffer layer 2, a channel layer 3, a spacer layer 4, a barrier layer 5, an intermediate layer 6a, and a cap layer 6b are stacked.
  • Have A source electrode 7, a drain electrode 8, and a gate electrode 9 are formed on the cap layer 6b.
  • the buffer layer 2, the channel layer 3, the spacer layer 4, the barrier layer 5, the intermediate layer 6a, and the cap layer 6b are all formed epitaxially using MOCVD (metal organic chemical vapor deposition). (A detail will be described later) is a suitable example.
  • MOCVD metal organic chemical vapor deposition
  • each layer will be described.
  • other epitaxial growth methods such as MBE, HVPE, and LPE can be used as long as each layer can be formed so as to have good crystallinity.
  • a method appropriately selected from various vapor phase growth methods and liquid phase growth methods may be used, or a mode in which different growth methods are used in combination may be used.
  • the base substrate 1 can be used without any particular limitation as long as a nitride semiconductor layer with good crystallinity can be formed thereon.
  • a single crystal 6H—SiC substrate is preferably used, but an embodiment using a substrate made of sapphire, Si, GaAs, spinel, MgO, ZnO, ferrite, or the like may be used.
  • the buffer layer 2 is made of several hundreds of nanometers in AlN in order to improve the crystal quality of the channel layer 3, the spacer layer 4, the barrier layer 5, the intermediate layer 6a, and the cap layer 6b formed thereon. It is a layer formed to a certain thickness. For example, it is a preferable example that the thickness is 200 nm.
  • the channel layer 3 and the barrier layer 5 have a composition range in which the band gap of the second group III nitride constituting the latter is larger than the band gap of the first group III nitride constituting the former. It is formed.
  • the intermediate layer 6a is a layer formed of GaN.
  • the cap layer 6b is a layer formed of AlN. The effect of the HEMT element 20 having these intermediate layer 6a and cap layer 6b will be described later.
  • a two-dimensional electron gas is present at a high concentration at the interface between the channel layer 3 and the spacer layer 4 (more specifically, near the interface of the channel layer 3).
  • An electron gas region 3e is formed.
  • the spacer layer 4 is a binary compound of Al and N, the alloy scattering effect is further suppressed as compared with the case of a ternary compound containing Ga, and the concentration and mobility of the two-dimensional electron gas are improved. It will be. Note that the discussion on the composition range does not exclude that the spacer layer 4 contains impurities.
  • spacer layer 4 in the epitaxial substrate 10 is not an essential aspect, and may be an aspect in which the barrier layer 5 is formed directly on the channel layer 3. In such a case, a two-dimensional electron gas region 3 e is formed at the interface between the channel layer 3 and the barrier layer 5.
  • the source electrode 7 and the drain electrode 8 are multi-layer metal electrodes in which each metal layer has a thickness of about 10 to 100 nm, and has an ohmic contact with the cap layer 6b.
  • the metal used for the source electrode 7 and the drain electrode 8 should just be formed with the metal material with which favorable ohmic contact is obtained with respect to the epitaxial substrate 10 (with respect to the cap layer 6b).
  • An embodiment in which a multilayer metal electrode made of Al or the like may be formed.
  • the source electrode 7 and the drain electrode 8 can be formed by a photolithography process and a vacuum deposition method.
  • the gate electrode 9 is a single-layer or multi-layer metal electrode in which one or a plurality of metal layers are formed so as to have a thickness of about ten to several hundreds of nanometers. It has a Schottky contact.
  • the gate electrode 9 is preferably formed using a metal having a high work function such as Pd, Pt, Ni, or Au as a forming material. Or the aspect formed as a multilayer metal film of the above-mentioned each metal or each metal, Al, etc. may be sufficient.
  • the cap layer 6b made of AlN is provided, in addition to the above, a metal material used for forming an ohmic junction with a group III nitride semiconductor such as a multilayer metal film containing Ti / Al is also used for the gate. It can be used as a material for forming the electrode 9. This is because, in this case, AlN having a large band gap and a metal material having a relatively small work function are joined, so that a Schottky contact can be obtained relatively easily.
  • the gate electrode 9 can be formed by a photolithography process and a vacuum deposition method.
  • a so-called MIS (metal-insulator-semiconductor) junction is formed by the gate electrode 9, the cap layer 6b, and the barrier layer 5 (strictly, through the intermediate layer 6a). Is formed.
  • the HEMT element 20 has, in principle, a reverse leakage current suppressed more than a conventional HEMT element in which the gate electrode 9 is directly Schottky-bonded to the barrier layer 5. Become.
  • a leakage current when -100 V is applied is directly applied to the barrier electrode in the barrier layer. Is suppressed from about 1/100 to about 1/1000 when formed.
  • FIG. 2 to 4 are diagrams for explaining the effect of providing the cap layer 6b immediately below the gate electrode 9 in the HEMT element, that is, the effect of the HEMT element having the MIS junction described above.
  • FIG. 2 shows that the composition of the barrier layer 5 is changed to three levels of In 0.14 Al 0.86 N, In 0.18 Al 0.82 N, and In 0.24 Al 0.76 N.
  • the relationship between the surface roughness of the cap layer 6b and its thickness is illustrated.
  • the intermediate layer 6a is not provided for the HEMT element for the sake of easy discussion.
  • FIG. 3 illustrates the relationship between the reverse leakage current and the thickness of the cap layer 6b for the same HEMT element.
  • FIG. 4 illustrates the relationship between the contact resistance and the thickness of the cap layer 6b for the same HEMT element.
  • the value is maximum when the thickness of the cap layer 6b is 0 nm (that is, when the cap layer 6b is not provided), and the value is between the thickness of the cap layer 6b up to 0.5 nm. Drops sharply, and at 0.5 nm or more, it is almost flat at a smaller value (0.5 nm or less) than at 0 nm. This is because the surface flatness is improved by forming the cap layer 6b to a thickness of 0.5 nm or more, and the gate electrode 9 is provided on the cap layer 6b having excellent surface flatness. This means that the reverse leakage current is reduced. Further, the surface of the cap layer 6 b is flattened more than the surface of the barrier layer 5.
  • the contact resistance is substantially constant at 1.0 ⁇ 10 ⁇ 5 / ⁇ cm 2 or less, whereas the thickness of the cap layer 6b is 6 nm. It can be seen that the contact resistance increases abruptly when the value is exceeded. This result indicates that the thickness of the cap layer 6b should be 6 nm or less from the viewpoint of keeping the contact resistance of the ohmic electrode at a sufficiently low value.
  • the cap layer 6b is preferably formed to a thickness of 0.5 nm or more and 6 nm or less.
  • the HEMT device 20 includes an intermediate layer 6a between the barrier layer 5 and the cap layer 6b. This is to keep the mobility of the two-dimensional electron gas high. More specifically, when the cap layer 6b as described above is formed directly on the barrier layer 5, the mobility of the two-dimensional electron gas is reduced. Therefore, in the present embodiment, this is suppressed.
  • an intermediate layer 6a is formed on the barrier layer 5, and a cap layer 6b is formed thereon.
  • the thickness of the intermediate layer 6a is preferably 0.5 nm or more and 6 nm or less. By forming it to a thickness of 0.5 nm or more, higher mobility is realized as compared with the case where the intermediate layer 6a is not provided.
  • the upper limit of the thickness of the intermediate layer 6a may be determined within a range that is kept low without affecting the sheet resistance. For example, if the thickness of the cap layer 6b is 0.5 nm or more and 6 nm or less, the sheet resistance is reduced to 300 ⁇ / ⁇ or less by setting the thickness of the intermediate layer 6a to (0.5 nm or more) 6 nm or less.
  • the intermediate layer 6a and the cap layer 6b are entirely formed on the barrier layer 5, and not only directly below the gate electrode 9, but also directly below the source electrode 7 and the drain electrode 8. It can be said that it is also characteristic in that it is uniformly provided. Originally, if the intermediate layer 6a and the cap layer 6b exist only directly under the gate electrode 9, the effect of reducing the reverse leakage current can be obtained, but in order to realize such a configuration, photolithography is required. A process, an etching process, and the like are required, which causes a high cost.
  • the intermediate layer 6a and the cap layer 6b are only formed on the barrier layer 5 entirely, and since such a process is not performed, a HEMT device having excellent characteristics while suppressing cost is realized. It can be said that it is done.
  • the cap layer 6b, the intermediate layer 6a, and a part of the barrier layer 5 are removed by etching before forming both electrodes. After performing ohmic, the aspect which forms the source electrode 7 and the drain electrode 8 on the barrier layer 5 exposed by this may be sufficient.
  • the epitaxial substrate 10 can be manufactured using a known MOCVD furnace. Specifically, organometallic (MO) source gases (TMI, TMA, TMG), ammonia gas (NH 3 gas), hydrogen gas, and nitrogen gas for In, Al, and Ga can be supplied into the reactor.
  • MOCVD furnace constructed as follows is used.
  • a 2 inch 6H-SiC substrate having a (0001) plane orientation is prepared as a base substrate 1, and the base substrate 1 is placed on a susceptor provided in a reactor of an MOCVD furnace. After replacing the inside of the reactor with vacuum gas, the temperature of the substrate is raised by susceptor heating after forming an atmosphere in a hydrogen / nitrogen mixed flow state while maintaining the reactor pressure at a predetermined value between 5 kPa and 50 kPa.
  • the susceptor temperature reaches a predetermined temperature (for example, 1050 ° C.) between 950 ° C. and 1250 ° C. which is the buffer layer formation temperature, Al source gas and NH 3 gas are introduced into the reactor, and the AlN layer as the buffer layer 2 is formed.
  • a predetermined temperature for example, 1050 ° C.
  • 950 ° C. and 1250 ° C. which is the buffer layer formation temperature
  • Al source gas and NH 3 gas are introduced into the reactor, and the AlN layer as the buffer layer 2 is formed.
  • the susceptor temperature is maintained at a predetermined channel layer formation temperature, an organometallic source gas and ammonia gas corresponding to the composition of the channel layer 3 are introduced into the reactor, and In x1 Al as the channel layer 3 is introduced.
  • the channel layer formation temperature T1 is a value determined according to the value of the AlN molar fraction y1 of the channel layer 3 from a temperature range of 950 ° C. or more and 1250 ° C. or less.
  • the reactor pressure at the time of forming the channel layer 3 is not particularly limited, and can be appropriately selected from the range of 10 kPa to atmospheric pressure (100 kPa).
  • the reactor When the In x1 Al y1 Ga z1 N layer is formed, the reactor is maintained in a nitrogen gas atmosphere with the susceptor temperature maintained, the reactor pressure is set to 10 kPa, and the organometallic source gas and ammonia gas are then reacted with the reactor. Then, an In x3 Al y3 Ga z3 N layer as the spacer layer 4 is formed to a predetermined thickness.
  • the susceptor temperature is maintained at a predetermined barrier layer forming temperature of 650 ° C. or higher and 800 ° C. or lower in order to form In x2 Al y2 N to be the barrier layer 5.
  • the internal pressure is maintained at a predetermined value between 1 kPa and 30 kPa.
  • ammonia gas and an organic metal source gas having a flow rate ratio corresponding to the composition of the barrier layer 5 are introduced into the reactor so that the so-called V / III ratio is a predetermined value between 3000 and 20000.
  • the susceptor temperature is set to a predetermined intermediate layer formation temperature, TMG and NH 3 gas are supplied, and the GaN layer as the intermediate layer 6a is formed. A predetermined thickness is formed.
  • TMA and NH 3 gas are supplied after the susceptor temperature is set to a predetermined cap layer forming temperature, and an AlN layer as the cap layer 6b is formed to a predetermined thickness. . If the cap layer 6b is formed, the epitaxial substrate 10 is manufactured.
  • a HEMT element is formed using this.
  • Each subsequent process is realized by a known method.
  • a multilayer metal pattern to be the source electrode 7 and the drain electrode 8 is formed at a formation target portion of the cap layer 6b by using a photolithography process and a vacuum deposition method.
  • a nitrogen gas atmosphere at a predetermined temperature of 650 ° C. to 1000 ° C. is applied to the epitaxial substrate 10 on which the source electrode 7 and the drain electrode 8 are formed. Inside, heat treatment is performed for several tens of seconds.
  • a multilayer metal pattern to be the gate electrode 9 is formed at a formation target portion of the cap layer 6b by using a photolithography process and a vacuum deposition method.
  • HEMT elements 20 are obtained by dicing into chips of a predetermined size.
  • the obtained HEMT element 20 is appropriately subjected to die bonding or wire bonding.
  • the intermediate layer made of GaN is provided on the barrier layer, the cap layer made of AlN is further provided, and the gate electrode is formed by Schottky junction to the cap layer.
  • the MIS junction By forming the MIS junction, the reverse leakage current is greatly reduced as compared with the case where the gate electrode is formed directly on the barrier layer by the Schottky junction, and the two-dimensional electron gas is formed.
  • a HEMT element having a high mobility is realized.
  • the HEMT element is described as an object.
  • an aspect in which the MIS junction is formed between the gate electrode and the barrier layer is another electronic device using a Schottky junction, for example, a shot
  • a Schottky junction for example, a shot
  • the cap layer 6b is formed of AlN, but the cap layer 6b is larger than the band gap of the second group III nitride and has an insulating group III nitride. It may be an aspect formed by.
  • the group III nitride has insulation means that the specific resistance is 10 8 ⁇ cm or more. If it has the specific resistance of the range, the MIS junction mentioned above is formed suitably. In addition, as long as the specific resistance is satisfied, the presence of conductive impurities is allowed in the cap layer 6b.
  • Example 1 Comparative Example 1, and Comparative Example
  • the epitaxial substrate 10 according to the above-described embodiment including the intermediate layer 6a and the cap layer 6b is prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance And evaluated.
  • the epitaxial substrate 10 using this epitaxial substrate 10, four types of HEMT elements 20 having different configurations of the gate electrode 9 were produced, and the reverse leakage current when ⁇ 100 V was applied to each HEMT element 20 was evaluated.
  • Comparative Example 1 an epitaxial substrate not including both the intermediate layer 6a and the cap layer 6b was prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance were evaluated.
  • four types of HEMT devices were fabricated by forming the gate electrode 9 on the epitaxial substrate in the same manner as in Example 1, and the reverse leakage current when -100 V was applied was evaluated for each HEMT device. .
  • Comparative Example 2 an epitaxial substrate provided with only the cap layer 6b without the intermediate layer 6a was prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance were evaluated.
  • four types of HEMT devices were fabricated by forming the gate electrode 9 on the epitaxial substrate in the same manner as in Example 1, and the reverse leakage current when -100 V was applied was evaluated for each HEMT device. .
  • a total of 12 types of HEMT elements were obtained by forming four types of gate electrodes 9 having different configurations on three types of epitaxial substrates.
  • an epitaxial substrate 10 was produced. At that time, all the epitaxial substrates 10 were subjected to the same conditions until the formation of the spacer layer 4.
  • the base substrate 1 a plurality of 2 inch 6H—SiC substrates having a (0001) plane orientation were prepared. The thickness was 300 ⁇ m. About each board
  • the susceptor temperature was set to a predetermined temperature
  • TMG bubbling gas as an organic metal source gas and ammonia gas were introduced into the reactor at a predetermined flow ratio, and a GaN layer as a channel layer 3 was formed to a thickness of 2 ⁇ m. .
  • the reactor pressure was set to 10 kPa, then TMA bubbling gas and ammonia gas were introduced into the reactor, and an AlN layer having a thickness of 1 nm was formed as the spacer layer 4.
  • the barrier layer 5 was subsequently formed to a thickness of 15 nm.
  • the composition of the barrier layer 5 was In 0.18 Al 0.82 N.
  • the susceptor temperature was 745 ° C.
  • a GaN layer as the intermediate layer 6a is formed to a thickness of 3 nm, and then the cap layer 6b.
  • the AlN layer was formed to a thickness of 3 nm.
  • the cap layer 6b was formed to a thickness of 3 nm.
  • nothing was formed.
  • each epitaxial substrate 10 was obtained by the above procedure.
  • the gate electrode 9 includes three types of multilayer metal electrodes, Ni / Au (film thickness 6 nm / 12 nm), Pd / Au (6 nm / 12 nm), and Pt / Au (6 nm / 12 nm), and a single-layer metal made of only Au. A total of four types with electrodes (12 nm) were formed.
  • the gate electrode 9 was formed such that the gate length was 1 ⁇ m, the gate width was 100 ⁇ m, the distance from the source electrode 7 was 2 ⁇ m, and the distance from the drain electrode was 10 ⁇ m.
  • the obtained HEMT device was subjected to die bonding and wire bonding, and the reverse leakage current when -100 V was applied was measured.
  • the structure of the intermediate layer 6a and the cap layer 6b of the epitaxial substrate, the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, the sheet resistance, the structure of the gate electrode for each HEMT element, and Table 1 lists the measurement results of the reverse leakage current when 100 V is applied.
  • providing the intermediate layer 6a on the barrier layer 5 and then providing the cap layer 6b is effective in reducing the reverse leakage current while suitably maintaining the two-dimensional electron gas concentration and the sheet resistance. It shows that there is.
  • Example 2 HEMT devices were produced in which the thickness of the intermediate layer 6a was variously changed, including the case where the intermediate layer 6a was not provided. Specifically, the thickness of the intermediate layer 6a is set to eight levels of 0 nm, 0.1 nm, 0.5 nm, 1.5 nm, 3 nm, 6 nm, 8 nm, and 10 nm, while the material for forming the gate electrode 9 is Ni / Au ( A HEMT device was fabricated in the same procedure as in Example 1 except that the thickness was only 6 nm / 12 nm.
  • Example 2 the Hall effect measurement was performed in the same manner as in Example 1 when an epitaxial substrate was obtained during the HEMT element fabrication. Thereby, the two-dimensional electron gas concentration, the two-dimensional electron gas mobility, and the sheet resistance were determined for each epitaxial substrate.
  • the thickness of the epitaxial substrate For each HEMT element, the thickness of the epitaxial substrate, the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, the sheet resistance, and the measurement result of the reverse leakage current when applying ⁇ 100 V to the HEMT element are shown.
  • Table 2 shows a list.
  • the thickness of the intermediate layer 6a when the thickness of the intermediate layer 6a is 0.5 nm or more, the mobility of the two-dimensional electron gas is higher than when the intermediate layer 6a is not provided. Further, if the thickness of the intermediate layer 6a is 6 nm or less, the value of the two-dimensional electron gas concentration is almost the same as the case where the intermediate layer 6a is not provided. Furthermore, if the thickness of the intermediate layer 6a is 0.5 nm or more and 6 nm or less, the value of the sheet resistance is kept at a value of 300 ⁇ / ⁇ or lower, which is lower than when the intermediate layer 6a is not provided. .
  • the value of the leakage current is 1/1000 or less of the case of Comparative Example 1 shown in Table 1 (when the gate electrode is the same Ni / Au). Has been reduced to.
  • the intermediate layer 6a between the cap layer 6b and the barrier layer 5 is formed to a thickness of 0.5 nm or more, the leakage current is reduced and the mobility of the two-dimensional electron gas is high. It can be seen that a HEMT element is realized. Furthermore, it can be seen that a HEMT element having a high two-dimensional electron gas concentration and a low sheet resistance can be realized by setting the thickness of the intermediate layer 6a to 6 nm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Provided is a semiconductor element wherein a reverse-direction leak current is suppressed, and mobility of a two-dimensional electron gas is high. This semiconductor element is provided with: an epitaxial substrate, which is formed by laminating, on a base substrate, a III nitride layer group such that the (0001) crystal plane is substantially parallel to the substrate surface; and a Schottky electrode. The epitaxial substrate is provided with: a channel layer formed of a first III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); a barrier layer formed of a second III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0); an intermediate layer, which is formed of GaN, and which is adjacent to the barrier layer; and a cap layer, which is formed of AlN, and which is adjacent to the intermediate layer. The Schottky electrode is formed by being bonded to the cap layer.

Description

半導体素子、HEMT素子、および半導体素子の製造方法Semiconductor device, HEMT device, and method for manufacturing semiconductor device
 本発明は、半導体素子に関し、特に、III族窒化物半導体により構成される多層構造エピタキシャル基板と金属電極とのショットキーダイオード接合を有する半導体素子に関する。 The present invention relates to a semiconductor element, and more particularly to a semiconductor element having a Schottky diode junction between a multilayer structure epitaxial substrate made of a group III nitride semiconductor and a metal electrode.
 窒化物半導体は、高い絶縁破壊電界、高い飽和電子速度を有することから次世代の高周波/ハイパワーデバイス用半導体材料として注目されている。例えば、AlGaNからなる障壁層とGaNからなるチャネル層とを積層してなるHEMT(高電子移動度トランジスタ)素子は、窒化物材料特有の大きな分極効果(自発分極効果とピエゾ分極効果)により積層界面(ヘテロ界面)に高濃度の二次元電子ガス(2DEG)が生成するという特徴を活かしたものである(例えば、非特許文献1参照)。 Nitride semiconductors are attracting attention as semiconductor materials for next-generation high-frequency / high-power devices because they have a high breakdown electric field and a high saturation electron velocity. For example, a HEMT (High Electron Mobility Transistor) element formed by laminating a barrier layer made of AlGaN and a channel layer made of GaN has a laminated interface due to a large polarization effect (spontaneous polarization effect and piezoelectric polarization effect) peculiar to nitride materials. This utilizes the feature that a high-concentration two-dimensional electron gas (2DEG) is generated at the (heterointerface) (see, for example, Non-Patent Document 1).
 HEMT素子用基板の下地基板として、例えばシリコンやSiCのような、III族窒化物とは異なる組成の単結晶(異種単結晶)を用いることがある。この場合、歪み超格子層や低温成長緩衝層などの緩衝層が、初期成長層として下地基板の上に形成されるのが一般的である。よって、下地基板の上に障壁層、チャネル層、および緩衝層をエピタキシャル形成してなるのが、異種単結晶からなる下地基板を用いたHEMT素子用基板の最も基本的な構成態様となる。これに加えて、障壁層とチャネル層の間に、二次元電子ガスの空間的な閉じ込めを促進する目的として、厚さ1nm前後のスペーサ層が設けられることもある。スペーサ層は、例えばAlNなどで構成される。さらには、HEMT素子用基板の最表面におけるエネルギー準位の制御や、電極とのコンタクト特性の改善を目的として、例えばn型GaN層や超格子層からなるキャップ層が、障壁層の上に形成される場合もある。 As a base substrate of a substrate for a HEMT element, a single crystal (heterogeneous single crystal) having a composition different from that of a group III nitride such as silicon or SiC may be used. In this case, a buffer layer such as a strained superlattice layer or a low temperature growth buffer layer is generally formed on the base substrate as an initial growth layer. Therefore, epitaxially forming the barrier layer, the channel layer, and the buffer layer on the base substrate is the most basic configuration of the HEMT element substrate using the base substrate made of different single crystals. In addition, a spacer layer having a thickness of about 1 nm may be provided between the barrier layer and the channel layer for the purpose of promoting spatial confinement of the two-dimensional electron gas. The spacer layer is made of, for example, AlN. Furthermore, a cap layer made of, for example, an n-type GaN layer or a superlattice layer is formed on the barrier layer for the purpose of controlling the energy level at the outermost surface of the substrate for HEMT elements and improving the contact characteristics with the electrode. Sometimes it is done.
 チャネル層をGaNにて形成し、障壁層をAlGaNにて形成するという、最も一般的な構成の窒化物HEMT素子の場合、HEMT素子用基板に内在する二次元電子ガスの濃度は、障壁層を形成するAlGaNのAlNモル分率の増加に伴い増加することが知られている(例えば、非特許文献2参照)。二次元電子ガス濃度を大幅に増やすことができれば、HEMT素子の可制御電流密度、すなわち取り扱える電力密度を大幅に向上させることが可能と考えられる。 In the case of a nitride HEMT device having the most general configuration in which the channel layer is formed of GaN and the barrier layer is formed of AlGaN, the concentration of the two-dimensional electron gas existing in the substrate for the HEMT device is It is known that it increases with an increase in the AlN mole fraction of AlGaN to be formed (see, for example, Non-Patent Document 2). If the two-dimensional electron gas concentration can be significantly increased, it is considered that the controllable current density of the HEMT element, that is, the power density that can be handled, can be significantly improved.
 また、チャネル層をGaNにて形成し、障壁層をInAlNにて形成したHEMT素子のように、ピエゾ分極効果への依存が小さくほぼ自発分極のみにより高い濃度で二次元電子ガスを生成できる歪の少ない構造を有するHEMT素子も注目されている(例えば、非特許文献3参照)。 In addition, unlike HEMT devices in which the channel layer is formed of GaN and the barrier layer is formed of InAlN, the strain is less dependent on the piezoelectric polarization effect and can generate a two-dimensional electron gas at a high concentration only by spontaneous polarization. A HEMT element having a small number of structures is also attracting attention (see, for example, Non-Patent Document 3).
 チャネル層をGaNにて形成し、障壁層をInAlNにて形成することにより、HEMT素子を作製する場合、ゲート電極と障壁層との接合はショットキー接合とされるのが一般的である。しかしながら、この場合、InAlN層の組成や形成条件によっては、ショットキー接合への逆方向電圧印加の際に、大きな漏れ電流が発生することがある。 When a HEMT device is manufactured by forming the channel layer with GaN and the barrier layer with InAlN, the junction between the gate electrode and the barrier layer is generally a Schottky junction. However, in this case, depending on the composition and formation conditions of the InAlN layer, a large leakage current may be generated when a reverse voltage is applied to the Schottky junction.
 この漏れ電流は、InAlN層上にAlNからなるコンタクト層を形成することによって低減させることが可能であるが、一方で、係る構成のHEMT素子には、二次元電子ガスの移動度が低いという問題が生じる。これは、AlN層の格子定数がInAlN層に比して小さいために、InAlN層に歪が発生することが原因であると推定される。 This leakage current can be reduced by forming a contact layer made of AlN on the InAlN layer. On the other hand, the HEMT element having such a configuration has a low mobility of the two-dimensional electron gas. Occurs. This is presumed to be caused by distortion in the InAlN layer because the lattice constant of the AlN layer is smaller than that of the InAlN layer.
 本発明は、以上の課題に鑑みてなされたものであり、逆方向漏れ電流が抑制されてなるとともに二次元電子ガスの移動度が高い半導体素子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor element in which reverse leakage current is suppressed and the mobility of a two-dimensional electron gas is high.
 上記課題を解決するため、本発明の第1の態様では、下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、ショットキー性電極と、を備える半導体素子において、前記エピタキシャル基板が、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層と、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層と、GaNからなり前記障壁層に隣接する中間層と、AlNからなり前記中間層に隣接するキャップ層と、を備え、前記ショットキー性電極が前記キャップ層に接合されてなるようにした。 In order to solve the above problem, in the first aspect of the present invention, an epitaxial substrate in which a group (III) nitride layer group is formed on a base substrate so that the (0001) crystal plane is substantially parallel to the substrate surface; In a semiconductor device including a Schottky electrode, the epitaxial substrate includes a channel layer made of a first group III nitride having a composition of In x1 Al y1 Ga z1 N (x1 + y1 + z1 = 1, z1> 0), In x2 Al y2 N (x2 + y2 = 1, x2> 0, y2> 0) and a barrier layer made of made of a second group III nitride having a composition, an intermediate layer adjacent to the barrier layer consists of GaN, the composed AlN A cap layer adjacent to the intermediate layer, and the Schottky electrode is bonded to the cap layer.
 本発明の第2の態様では、第1の態様に係る半導体素子において、前記中間層の膜厚が0.5nm以上であるようにした。 In the second aspect of the present invention, in the semiconductor element according to the first aspect, the film thickness of the intermediate layer is 0.5 nm or more.
 本発明の第3の態様では、第2の態様に係る半導体素子において、前記中間層の膜厚が6nm以下であるようにした。 In the third aspect of the present invention, in the semiconductor element according to the second aspect, the film thickness of the intermediate layer is 6 nm or less.
 本発明の第4の態様では、第1ないし第3のいずれかの態様に係る半導体素子において、前記キャップ層の膜厚が0.5nm以上6nm以下であるようにした。 In the fourth aspect of the present invention, in the semiconductor element according to any one of the first to third aspects, the thickness of the cap layer is 0.5 nm or more and 6 nm or less.
 本発明の第5の態様では、第1ないし第4のいずれかの態様に係る半導体素子において、前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きいようにした。 According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, the band gap of the second group III nitride is larger than the band gap of the first group III nitride. I made it bigger.
 本発明の第6の態様では、第1ないし第5のいずれかの態様に係る半導体素子において、前記ショットキー性電極がNi、Pt、Pd、Auの少なくとも1つを含んでなるようにした。 In the sixth aspect of the present invention, in the semiconductor element according to any one of the first to fifth aspects, the Schottky electrode includes at least one of Ni, Pt, Pd, and Au.
 本発明の第7の態様では、第1ないし第6のいずれかの態様に係る半導体素子において、前記キャップ層の自乗平均表面粗さが0.5nm以下であるようにした。 In the seventh aspect of the present invention, in the semiconductor element according to any one of the first to sixth aspects, the root mean square surface roughness of the cap layer is 0.5 nm or less.
 本発明の第8の態様では、第1ないし第7のいずれかの態様に係る半導体素子において、前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)であるようにした。 According to an eighth aspect of the present invention, in the semiconductor device according to any one of the first to seventh aspects, the second group III nitride is In x2 Al y2 N (x2 + y2 = 1, 0.14 ≦ x2 ≦ 0.24).
 本発明の第9の態様では、第1ないし第8のいずれかの態様に係る半導体素子において、前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)であるようにした。 In a ninth aspect of the present invention, in the semiconductor element according to any one of the first to eighth aspects, the first group III nitride is Al y1 Ga z1 N (y1 + z1 = 1, z1> 0). I did it.
 本発明の第10の態様では、第9の態様に係る半導体素子において、前記第1のIII族窒化物がGaNであるようにした。 In the tenth aspect of the present invention, in the semiconductor element according to the ninth aspect, the first group III nitride is GaN.
 本発明の第11の態様では、第9または第10の態様に係る半導体素子が、前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物からなるスペーサ層を、さらに備えるようにした。 In an eleventh aspect of the present invention, the semiconductor element according to the ninth or tenth aspect includes In x3 Al y3 Ga z3 N (x3 + y3 + z3 = 1, y3> 0) between the channel layer and the barrier layer. And a spacer layer made of a third group III nitride having a composition and a band gap larger than that of the second group III nitride.
 本発明の第12の態様では、第11の態様に係る半導体素子において、前記第3のIII族窒化物がAlNであるようにした。 In the twelfth aspect of the present invention, in the semiconductor element according to the eleventh aspect, the third group III nitride is AlN.
 本発明の第13の態様では、第1ないし第12のいずれかの態様に係る半導体素子において、オーミック性電極が前記ショットキー性電極と同一の前記キャップ層に接合されてなるようにした。 In the thirteenth aspect of the present invention, in the semiconductor element according to any one of the first to twelfth aspects, an ohmic electrode is bonded to the same cap layer as the Schottky electrode.
 本発明の第14の態様では、第13の態様に係る半導体素子であるHEMT素子において、前記ショットキー性電極がゲート電極であり、前記オーミック性電極がソース電極およびドレイン電極であるようにした。 In the fourteenth aspect of the present invention, in the HEMT element which is a semiconductor element according to the thirteenth aspect, the Schottky electrode is a gate electrode, and the ohmic electrode is a source electrode and a drain electrode.
 本発明の第15の態様では、下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、ショットキー性電極と、を備える半導体素子の製造方法が、下地基板の上に、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物にてチャネル層を形成するチャネル層形成工程と、前記チャネル層の上に、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物にて障壁層を形成する障壁層形成工程と、GaNにて中間層を前記障壁層に隣接形成する中間層形成工程と、AlNにてキャップ層を前記中間層に隣接形成するキャップ層形成工程と、前記キャップ層にショットキー性電極を接合形成するショットキー性電極形成工程と、を備えるようにした。 In a fifteenth aspect of the present invention, an epitaxial substrate obtained by stacking a group III nitride layer group on a base substrate so that a (0001) crystal plane is substantially parallel to the substrate surface, and a Schottky electrode, A method for manufacturing a semiconductor device comprising: forming a channel layer on a base substrate by forming a channel layer with a first group III nitride having a composition of In x1 Al y1 Ga z1 N (x1 + y1 + z1 = 1, z1> 0) And a barrier layer forming step of forming a barrier layer on the channel layer with a second group III nitride having a composition of In x2 Al y2 N (x2 + y2 = 1, x2> 0, y2> 0) , An intermediate layer forming step of forming an intermediate layer adjacent to the barrier layer with GaN, a cap layer forming step of forming a cap layer adjacent to the intermediate layer with AlN, and a Schottky electrode bonded to the cap layer To And a Cottky electrode forming step.
 本発明の第16の態様では、第15の態様に係る半導体素子の製造方法において、前記中間層を0.5nm以上の厚みに形成するようにした。 In the sixteenth aspect of the present invention, in the method for manufacturing a semiconductor element according to the fifteenth aspect, the intermediate layer is formed to a thickness of 0.5 nm or more.
 本発明の第17の態様では、第16の態様に係る半導体素子の製造方法において、前記中間層を6nm以下の厚みに形成するようにした。 In the seventeenth aspect of the present invention, in the semiconductor element manufacturing method according to the sixteenth aspect, the intermediate layer is formed to a thickness of 6 nm or less.
 本発明の第18の態様では、第15ないし第17のいずれかの態様に係る半導体素子の製造方法において、前記キャップ層を0.5nm以上6nm以下の厚みに形成するようにした。 In the eighteenth aspect of the present invention, in the method for manufacturing a semiconductor element according to any one of the fifteenth to seventeenth aspects, the cap layer is formed to a thickness of 0.5 nm or more and 6 nm or less.
 本発明の第19の態様では、第15ないし第18のいずれかの態様に係る半導体素子の製造方法において、前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きいようにした。 According to a nineteenth aspect of the present invention, in the semiconductor device manufacturing method according to any one of the fifteenth to eighteenth aspects, the band gap of the second group III nitride is the band of the first group III nitride. It was made larger than the gap.
 本発明の第20の態様では、第15ないし第19のいずれかの態様に係る半導体素子の製造方法において、前記ショットキー性電極形成工程においては、前記ショットキー性電極をNi、Pt、Pd、Auの少なくとも1つを含むように形成するようにした。 In a twentieth aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the fifteenth to nineteenth aspects, in the Schottky electrode formation step, the Schottky electrode is formed of Ni, Pt, Pd, It was formed so as to include at least one of Au.
 本発明の第21の態様では、第15ないし第20のいずれかの態様に係る半導体素子の製造方法において、前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)であるようにした。 In a twenty-first aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the fifteenth to twentieth aspects, the second group III nitride is In x2 Al y2 N (x2 + y2 = 1, 0. 14 ≦ x2 ≦ 0.24).
 本発明の第22の態様では、第15ないし第21のいずれかの態様に係る半導体素子の製造方法において、前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)であるようにした。 According to a twenty-second aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the fifteenth to twenty-first aspects, the first group III nitride is Al y1 Ga z1 N (y1 + z1 = 1, z1> 0). ).
 本発明の第23の態様では、第22の態様に係る半導体素子の製造方法において、前記第1のIII族窒化物がGaNであるようにした。 In the twenty-third aspect of the present invention, in the method for manufacturing a semiconductor device according to the twenty-second aspect, the first group III nitride is GaN.
 本発明の第24の態様では、第22または第23の態様に係る半導体素子の製造方法が、前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物にてスペーサ層を形成するスペーサ層形成工程、をさらに備えるようにした。 In a twenty-fourth aspect of the present invention, in the method for manufacturing a semiconductor element according to the twenty-second or twenty-third aspect, In x3 Al y3 Ga z3 N (x3 + y3 + z3 = 1, y3) is provided between the channel layer and the barrier layer. A spacer layer forming step of forming a spacer layer with a third group III nitride having a composition of> 0) and a band gap larger than that of the second group III nitride.
 本発明の第25の態様では、第24の態様に係る半導体素子の製造方法において、前記第3のIII族窒化物がAlNであるようにした。 In the twenty-fifth aspect of the present invention, in the semiconductor element manufacturing method according to the twenty-fourth aspect, the third group III nitride is AlN.
 本発明の第26の態様では、第15ないし第25のいずれかの態様に係る半導体素子の製造方法が、前記ショットキー性電極が形成される前記キャップ層にオーミック性電極を接合形成するオーミック性電極形成工程、をさらに備えるようにした。 In a twenty-sixth aspect of the present invention, the method for manufacturing a semiconductor device according to any one of the fifteenth to twenty-fifth aspects includes an ohmic property in which an ohmic electrode is bonded to the cap layer on which the Schottky electrode is formed. An electrode forming step.
 本発明の第1ないし第26の態様によれば、障壁層の上にGaNからなる中間層とAlNからなるキャップ層をこの順に設け、該キャップ層に対してショットキー接合により電極形成を行い、MIS接合を形成することで、障壁層の上に直接にショットキー接合により電極形成を行う場合に比して、逆方向漏れ電流が抑制され、かつ二次元電子ガスの移動度が高く保たれた半導体素子が実現される。 According to the first to twenty-sixth aspects of the present invention, the intermediate layer made of GaN and the cap layer made of AlN are provided in this order on the barrier layer, and electrodes are formed on the cap layer by Schottky junction, By forming the MIS junction, the reverse leakage current is suppressed and the mobility of the two-dimensional electron gas is kept high as compared with the case where the electrode is formed directly on the barrier layer by the Schottky junction. A semiconductor element is realized.
本発明の実施の形態に係る半導体素子の一態様であるHEMT素子20の構成を概略的に示す断面模式図である。It is a cross-sectional schematic diagram which shows roughly the structure of the HEMT element 20 which is one aspect | mode of the semiconductor element which concerns on embodiment of this invention. キャップ層6bの表面粗さとその厚みとの関係を例示する図である。It is a figure which illustrates the relationship between the surface roughness of the cap layer 6b, and its thickness. 逆方向漏れ電流とキャップ層6bとの関係を例示する図である。It is a figure which illustrates the relationship between reverse direction leakage current and the cap layer 6b. オーミック性電極におけるコンタクト抵抗をキャップ層6bの厚みに対してプロットした図である。It is the figure which plotted the contact resistance in an ohmic electrode with respect to the thickness of the cap layer 6b.
  <HEMT素子の構成>
 図1は、本発明の実施の形態に係る半導体素子の一態様であるHEMT素子20の構成を概略的に示す断面模式図である。HEMT素子20は、概略、エピタキシャル基板10の上に、ソース電極7、ドレイン電極8、およびゲート電極9を設けた構成を有する。具体的には、エピタキシャル基板10は、下地基板1と、バッファ層2と、チャネル層3と、スペーサ層4と、障壁層5と、中間層6aと、キャップ層6bとが積層形成された構成を有する。そして、キャップ層6bの上に、ソース電極7、ドレイン電極8、およびゲート電極9が形成されてなる。なお、図1における各層の厚みの比率は、実際のものを反映したものではない。バッファ層2と、チャネル層3と、スペーサ層4と、障壁層5と、中間層6aと、キャップ層6bとはいずれも、MOCVD法(有機金属化学的気相成長法)を用いてエピタキシャル形成される(詳細は後述)のが好適な一例である。
<Configuration of HEMT element>
FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a HEMT element 20 which is an aspect of a semiconductor element according to an embodiment of the present invention. The HEMT element 20 generally has a configuration in which a source electrode 7, a drain electrode 8, and a gate electrode 9 are provided on an epitaxial substrate 10. Specifically, the epitaxial substrate 10 has a configuration in which a base substrate 1, a buffer layer 2, a channel layer 3, a spacer layer 4, a barrier layer 5, an intermediate layer 6a, and a cap layer 6b are stacked. Have A source electrode 7, a drain electrode 8, and a gate electrode 9 are formed on the cap layer 6b. In addition, the ratio of the thickness of each layer in FIG. 1 does not reflect the actual one. The buffer layer 2, the channel layer 3, the spacer layer 4, the barrier layer 5, the intermediate layer 6a, and the cap layer 6b are all formed epitaxially using MOCVD (metal organic chemical vapor deposition). (A detail will be described later) is a suitable example.
 以降においては、各層の形成にMOCVD法を用いる場合を対象に説明を行うが、良好な結晶性を有するように各層を形成できる手法であれば、他のエピタキシャル成長手法、例えば、MBE、HVPE、LPEなど、種々の気相成長法や液相成長法の中から適宜選択した手法を用いてもよいし、異なる成長法を組み合わせて用いる態様であってもよい。 In the following description, the case where the MOCVD method is used for forming each layer will be described. However, other epitaxial growth methods such as MBE, HVPE, and LPE can be used as long as each layer can be formed so as to have good crystallinity. For example, a method appropriately selected from various vapor phase growth methods and liquid phase growth methods may be used, or a mode in which different growth methods are used in combination may be used.
 下地基板1は、その上に結晶性の良好な窒化物半導体層を形成できるものであれば、特段の制限なく用いることができる。単結晶6H-SiC基板を用いるのが好適な一例であるが、サファイア、Si、GaAs、スピネル、MgO、ZnO、フェライトなどからなる基板を用いる態様であってもよい。 The base substrate 1 can be used without any particular limitation as long as a nitride semiconductor layer with good crystallinity can be formed thereon. A single crystal 6H—SiC substrate is preferably used, but an embodiment using a substrate made of sapphire, Si, GaAs, spinel, MgO, ZnO, ferrite, or the like may be used.
 また、バッファ層2は、その上に形成されるチャネル層3、スペーサ層4、障壁層5、中間層6a、およびキャップ層6bの結晶品質を良好なものとするべく、AlNにて数百nm程度の厚みに形成される層である。例えば、200nmの厚みに形成するのが好適な一例である。 Further, the buffer layer 2 is made of several hundreds of nanometers in AlN in order to improve the crystal quality of the channel layer 3, the spacer layer 4, the barrier layer 5, the intermediate layer 6a, and the cap layer 6b formed thereon. It is a layer formed to a certain thickness. For example, it is a preferable example that the thickness is 200 nm.
 チャネル層3は、Inx1Aly1Gaz1N(x1+y1+z1=1)なる組成のIII族窒化物(第1のIII族窒化物)にて、数μm程度の厚みに形成される層である。好ましくは、チャネル層3はAly1Gaz1N(y1+z1=1、z1>0)組成のIII族窒化物にて形成され、より好ましくは、GaNにて形成される。 The channel layer 3 is a group III nitride (first group III nitride) having a composition of In x1 Al y1 Ga z1 N (x1 + y1 + z1 = 1) and is formed to a thickness of about several μm. Preferably, the channel layer 3 is formed of a group III nitride having a composition of Al y1 Ga z1 N (y1 + z1 = 1, z1> 0), more preferably, GaN.
 一方、障壁層5は、Inx2Aly2N(x2+y2=1、x2>、y2>0)なる組成を有するIII族窒化物(第2のIII族窒化物)にて、数nm~数十nm程度の厚みに形成される層である。好ましくは0.14≦x2≦0.24である。x2の値がこの範囲の外にある場合は、障壁層5に作用する歪みが±0.5%を超えることとなり、ショットキー接合の信頼性に及ぼす結晶歪みの影響が大きくなり始めるため好ましくない。 On the other hand, the barrier layer 5 is a group III nitride (second group III nitride) having a composition of In x2 Al y2 N (x2 + y2 = 1, x2>, y2> 0) and is several nm to several tens nm. It is a layer formed to a certain thickness. Preferably, 0.14 ≦ x2 ≦ 0.24. When the value of x2 is outside this range, the strain acting on the barrier layer 5 exceeds ± 0.5%, which is not preferable because the influence of crystal strain on the reliability of the Schottky junction starts to increase. .
 なお、チャネル層3と障壁層5とは、前者を構成する第1のIII族窒化物のバンドギャップよりも後者を構成する第2のIII族窒化物のバンドギャップの方が大きいという組成範囲をみたして形成される。 The channel layer 3 and the barrier layer 5 have a composition range in which the band gap of the second group III nitride constituting the latter is larger than the band gap of the first group III nitride constituting the former. It is formed.
 中間層6aは、GaNにて形成される層である。また、キャップ層6bは、AlNにて形成される層である。HEMT素子20がこれら中間層6aとキャップ層6bを有することの作用効果については後述する。 The intermediate layer 6a is a layer formed of GaN. The cap layer 6b is a layer formed of AlN. The effect of the HEMT element 20 having these intermediate layer 6a and cap layer 6b will be described later.
 さらに、チャネル層3と障壁層5の間にはスペーサ層4が設けられる。スペーサ層4は、Inx3Aly3Gaz3N(x3+y3+z3=1)なる組成を有し、少なくともAlを含む(y3>0をみたす)III族窒化物(第3のIII族窒化物)にて、0.5nm~1.5nmの範囲の厚みで形成される層である。 Further, a spacer layer 4 is provided between the channel layer 3 and the barrier layer 5. The spacer layer 4 has a composition of In x3 Al y3 Ga z3 N (x3 + y3 + z3 = 1), and includes at least Al (represents y3> 0) in a group III nitride (third group III nitride). It is a layer formed with a thickness in the range of 0.5 nm to 1.5 nm.
 このような層構成を有するエピタキシャル基板10においては、チャネル層3とスペーサ層4の界面に(より詳細には、チャネル層3の当該界面近傍に)二次元電子ガスが高濃度に存在する二次元電子ガス領域3eが形成される。 In the epitaxial substrate 10 having such a layer structure, a two-dimensional electron gas is present at a high concentration at the interface between the channel layer 3 and the spacer layer 4 (more specifically, near the interface of the channel layer 3). An electron gas region 3e is formed.
 好ましくは、スペーサ層4と障壁層5とはそれぞれ、前者を構成する第3のIII族窒化物のバンドギャップが、後者を構成する第2のIII族窒化物のバンドギャップ以上という組成範囲をみたして形成される。係る場合、合金散乱効果が抑制され、二次元電子ガスの濃度および移動度が向上する。より好ましくは、スペーサ層4はAlN(x3=0、y3=1、z3=0)にて形成される。係る場合、スペーサ層4がAlとNの二元系化合物となるので、Gaを含む3元系化合物の場合よりもさらに合金散乱効果が抑制され、二次元電子ガスの濃度および移動度が向上することとなる。なお、係る組成範囲についての議論は、スペーサ層4が不純物を含有することを除外するものではない。 Preferably, each of the spacer layer 4 and the barrier layer 5 has a composition range in which the band gap of the third group III nitride constituting the former is equal to or greater than the band gap of the second group III nitride constituting the latter. Formed. In such a case, the alloy scattering effect is suppressed, and the concentration and mobility of the two-dimensional electron gas are improved. More preferably, the spacer layer 4 is made of AlN (x3 = 0, y3 = 1, z3 = 0). In such a case, since the spacer layer 4 is a binary compound of Al and N, the alloy scattering effect is further suppressed as compared with the case of a ternary compound containing Ga, and the concentration and mobility of the two-dimensional electron gas are improved. It will be. Note that the discussion on the composition range does not exclude that the spacer layer 4 contains impurities.
 なお、エピタキシャル基板10においてスペーサ層4を備えるのは必須の態様ではなく、チャネル層3の上に直接に障壁層5を形成する態様であってもよい。係る場合、チャネル層3と障壁層5の界面に二次元電子ガス領域3eが形成される。 It should be noted that providing the spacer layer 4 in the epitaxial substrate 10 is not an essential aspect, and may be an aspect in which the barrier layer 5 is formed directly on the channel layer 3. In such a case, a two-dimensional electron gas region 3 e is formed at the interface between the channel layer 3 and the barrier layer 5.
 ソース電極7とドレイン電極8とは、それぞれの金属層が十数nm~百数十nm程度の厚みを有する多層金属電極であり、キャップ層6bとの間にオーミック性接触を有してなる。ソース電極7およびドレイン電極8に用いる金属は、エピタキシャル基板10に対し(キャップ層6bに対し)良好なオーミック性接触が得られる金属材料にて形成されればよい。Ti/Al/Ni/Auからなる多層金属電極をソース電極7およびドレイン電極8として形成するのが好適であるが、これに限定されるものでなく、例えばTi/Al/Pt/AuあるいはTi/Alなどからなる多層金属電極を形成する態様であってもよい。ソース電極7およびドレイン電極8の形成は、フォトリソグラフィープロセスと真空蒸着法とにより行うことができる。 The source electrode 7 and the drain electrode 8 are multi-layer metal electrodes in which each metal layer has a thickness of about 10 to 100 nm, and has an ohmic contact with the cap layer 6b. The metal used for the source electrode 7 and the drain electrode 8 should just be formed with the metal material with which favorable ohmic contact is obtained with respect to the epitaxial substrate 10 (with respect to the cap layer 6b). It is preferable to form a multilayer metal electrode made of Ti / Al / Ni / Au as the source electrode 7 and the drain electrode 8, but the present invention is not limited to this. For example, Ti / Al / Pt / Au or Ti / An embodiment in which a multilayer metal electrode made of Al or the like may be formed. The source electrode 7 and the drain electrode 8 can be formed by a photolithography process and a vacuum deposition method.
 一方、ゲート電極9は、一または複数の金属層が十数nm~百数十nm程度の厚みを有するように形成されてなる単層または多層の金属電極であり、障壁層5との間にショットキー性接触を有してなる。ゲート電極9は、Pd、Pt、Ni、Auなどの仕事関数が高い金属を形成材料として形成されるのが好適である。あるいは、上述の各金属同士の、あるいは各金属とAlなどとの多層金属膜として形成される態様であってもよい。なお、AlNからなるキャップ層6bを設けることから、上記に加えて、Ti/Alを含む多層金属膜など、III族窒化物半導体との間でオーミック接合をなす場合に用いられる金属材料も、ゲート電極9の形成材料として利用可能である。なぜならば、この場合、バンドギャップが大きいAlNと仕事関数が比較的小さい金属材料とが接合されるので、比較的容易にショットキー性のコンタクトが得られるからである。ゲート電極9の形成は、フォトリソグラフィープロセスと真空蒸着法とにより行うことができる。 On the other hand, the gate electrode 9 is a single-layer or multi-layer metal electrode in which one or a plurality of metal layers are formed so as to have a thickness of about ten to several hundreds of nanometers. It has a Schottky contact. The gate electrode 9 is preferably formed using a metal having a high work function such as Pd, Pt, Ni, or Au as a forming material. Or the aspect formed as a multilayer metal film of the above-mentioned each metal or each metal, Al, etc. may be sufficient. Since the cap layer 6b made of AlN is provided, in addition to the above, a metal material used for forming an ohmic junction with a group III nitride semiconductor such as a multilayer metal film containing Ti / Al is also used for the gate. It can be used as a material for forming the electrode 9. This is because, in this case, AlN having a large band gap and a metal material having a relatively small work function are joined, so that a Schottky contact can be obtained relatively easily. The gate electrode 9 can be formed by a photolithography process and a vacuum deposition method.
  <キャップ層とゲート電極とのショットキー接合>
 上述のような構成を有するHEMT素子20においては、ゲート電極9と、キャップ層6bと、障壁層5とによって(厳密には中間層6aを介して)、いわゆるMIS(metal-insulator-semiconductor)接合が形成されてなる。このようなMIS接合を有することで、HEMT素子20は、障壁層5に対して直接にゲート電極9をショットキー接合させた従来のHEMT素子よりも、原理上、逆方向漏れ電流が抑制されてなる。具体的な値は各部の組成や厚みなどによっても異なるが、本実施の形態のようにHEMT素子20を構成した場合には、例えば-100V印加時の漏れ電流が、障壁層に直接にゲート電極を形成した場合の1/100から1/1000程度にまで抑制される。
<Schottky junction between cap layer and gate electrode>
In the HEMT device 20 having the above-described configuration, a so-called MIS (metal-insulator-semiconductor) junction is formed by the gate electrode 9, the cap layer 6b, and the barrier layer 5 (strictly, through the intermediate layer 6a). Is formed. By having such a MIS junction, the HEMT element 20 has, in principle, a reverse leakage current suppressed more than a conventional HEMT element in which the gate electrode 9 is directly Schottky-bonded to the barrier layer 5. Become. Although specific values vary depending on the composition and thickness of each part, when the HEMT device 20 is configured as in the present embodiment, for example, a leakage current when -100 V is applied is directly applied to the barrier electrode in the barrier layer. Is suppressed from about 1/100 to about 1/1000 when formed.
 図2ないし図4は、HEMT素子においてゲート電極9の直下にキャップ層6bを具備することの効果、つまりは、HEMT素子が上述のMIS接合を有することの効果を説明するための図である。具体的には、図2は、障壁層5の組成をIn0.14Al0.86N、In0.18Al0.82N、In0.24Al0.76Nの3水準に違えた3種類のHEMT素子について、キャップ層6bの表面粗さとその厚みとの関係を例示している。ただし、係るHEMT素子については議論の簡単のため中間層6aは設けていない。また、図3は、同じHEMT素子について、逆方向漏れ電流とキャップ層6bの厚みとの関係を例示している。さらに、図4は、同じHEMT素子についてコンタクト抵抗とキャップ層6bの厚みとの関係を例示している。 2 to 4 are diagrams for explaining the effect of providing the cap layer 6b immediately below the gate electrode 9 in the HEMT element, that is, the effect of the HEMT element having the MIS junction described above. Specifically, FIG. 2 shows that the composition of the barrier layer 5 is changed to three levels of In 0.14 Al 0.86 N, In 0.18 Al 0.82 N, and In 0.24 Al 0.76 N. For three types of HEMT elements, the relationship between the surface roughness of the cap layer 6b and its thickness is illustrated. However, the intermediate layer 6a is not provided for the HEMT element for the sake of easy discussion. FIG. 3 illustrates the relationship between the reverse leakage current and the thickness of the cap layer 6b for the same HEMT element. Furthermore, FIG. 4 illustrates the relationship between the contact resistance and the thickness of the cap layer 6b for the same HEMT element.
 図2および図3においてはいずれも、キャップ層6bの厚みが0nmの場合(つまりはキャップ層6bを設けない場合)に値が最大で、キャップ層6bの厚みが0.5nmまでの間で値が急落し、0.5nm以上では0nmのときよりも小さな値(0.5nm以下)で概ね横ばいとなっている。このことは、キャップ層6bを0.5nm以上の厚みに形成することで、その表面平坦性が向上し、かつ、係る表面平坦性の優れたキャップ層6bの上にゲート電極9を設けることで、逆方向漏れ電流が低減されることを意味している。また、障壁層5の表面よりもキャップ層6bの表面の方が平坦化される。 2 and 3, the value is maximum when the thickness of the cap layer 6b is 0 nm (that is, when the cap layer 6b is not provided), and the value is between the thickness of the cap layer 6b up to 0.5 nm. Drops sharply, and at 0.5 nm or more, it is almost flat at a smaller value (0.5 nm or less) than at 0 nm. This is because the surface flatness is improved by forming the cap layer 6b to a thickness of 0.5 nm or more, and the gate electrode 9 is provided on the cap layer 6b having excellent surface flatness. This means that the reverse leakage current is reduced. Further, the surface of the cap layer 6 b is flattened more than the surface of the barrier layer 5.
 一方、図4においては、キャップ層6bの厚みが6nm以下の範囲ではコンタクト抵抗が1.0×10-5/Ωcm以下でほぼ一定であるのに対して、キャップ層6bの厚みが6nmを越えると、コンタクト抵抗が急激に増大することがわかる。係る結果は、オーミック性電極におけるコンタクト抵抗を十分に低い値に保つという観点からは、キャップ層6bの厚みを6nm以下とするのがよいことを示している。 On the other hand, in FIG. 4, when the thickness of the cap layer 6b is 6 nm or less, the contact resistance is substantially constant at 1.0 × 10 −5 / Ωcm 2 or less, whereas the thickness of the cap layer 6b is 6 nm. It can be seen that the contact resistance increases abruptly when the value is exceeded. This result indicates that the thickness of the cap layer 6b should be 6 nm or less from the viewpoint of keeping the contact resistance of the ohmic electrode at a sufficiently low value.
 以上のことから、キャップ層6bは、0.5nm以上6nm以下の厚みに形成するのが好適であることがわかる。 From the above, it can be seen that the cap layer 6b is preferably formed to a thickness of 0.5 nm or more and 6 nm or less.
  <中間層と二次元電子ガス濃度との関係>
 また、本実施の形態に係るHEMT素子20は、障壁層5とキャップ層6bとの間に中間層6aを備える。これは、二次元電子ガスの移動度を高く保つためである。より具体的には、上述のようなキャップ層6bを障壁層5の上に直接に形成した場合、二次元電子ガスの移動度が低下してしまうので、本実施の形態においては、これを抑制するために、障壁層5の上に中間層6aを形成し、その上にキャップ層6bを形成する。
<Relationship between intermediate layer and 2D electron gas concentration>
In addition, the HEMT device 20 according to the present embodiment includes an intermediate layer 6a between the barrier layer 5 and the cap layer 6b. This is to keep the mobility of the two-dimensional electron gas high. More specifically, when the cap layer 6b as described above is formed directly on the barrier layer 5, the mobility of the two-dimensional electron gas is reduced. Therefore, in the present embodiment, this is suppressed. For this purpose, an intermediate layer 6a is formed on the barrier layer 5, and a cap layer 6b is formed thereon.
 なお、中間層6aの厚みは、0.5nm以上6nm以下とするのが好適である。0.5nm以上の厚みに形成することで、中間層6aを設けない場合に比して高い移動度が実現される。一方、中間層6aの厚みの上限は、シート抵抗に影響を及ぼさない低く保たれる範囲で定めればよい。例えば、キャップ層6bの厚みが0.5nm以上6nm以下の場合であれば、中間層6aの厚みを、(0.5nm以上)6nm以下とすることで、シート抵抗が300Ω/□以下に低減される。 The thickness of the intermediate layer 6a is preferably 0.5 nm or more and 6 nm or less. By forming it to a thickness of 0.5 nm or more, higher mobility is realized as compared with the case where the intermediate layer 6a is not provided. On the other hand, the upper limit of the thickness of the intermediate layer 6a may be determined within a range that is kept low without affecting the sheet resistance. For example, if the thickness of the cap layer 6b is 0.5 nm or more and 6 nm or less, the sheet resistance is reduced to 300Ω / □ or less by setting the thickness of the intermediate layer 6a to (0.5 nm or more) 6 nm or less. The
 なお、本実施の形態に係るHEMT素子20は、中間層6aおよびキャップ層6bが障壁層5の上に全面的に形成され、ゲート電極9の直下のみならずソース電極7およびドレイン電極8の直下にまで一様に備わっている点についても特徴的であるといえる。本来的には、ゲート電極9の直下にのみ中間層6aおよびキャップ層6bが存在すれば、逆方向漏れ電流の低減という作用効果が得られるものの、そのような構成を実現するには、フォトリソグラフィープロセスやエッチングプロセスなどが必要となり、コスト高の要因となる。本実施の形態においては、中間層6aおよびキャップ層6bを障壁層5の上に全面的に形成するのみであり、そうしたプロセスを行わないので、コストを抑制しつつ特性の優れたHEMT素子が実現されているともいえる。もちろん、ソース電極7およびドレイン電極8を障壁層5の上に直接に形成するべく、両電極の形成前に、キャップ層6b、中間層6a、障壁層5の一部をエッチングによって取り除く、いわゆるリセスオーミックを実施したうえで、これによって露出した障壁層5の上にソース電極7およびドレイン電極8を形成する態様であってもよい。 In the HEMT device 20 according to the present embodiment, the intermediate layer 6a and the cap layer 6b are entirely formed on the barrier layer 5, and not only directly below the gate electrode 9, but also directly below the source electrode 7 and the drain electrode 8. It can be said that it is also characteristic in that it is uniformly provided. Originally, if the intermediate layer 6a and the cap layer 6b exist only directly under the gate electrode 9, the effect of reducing the reverse leakage current can be obtained, but in order to realize such a configuration, photolithography is required. A process, an etching process, and the like are required, which causes a high cost. In the present embodiment, the intermediate layer 6a and the cap layer 6b are only formed on the barrier layer 5 entirely, and since such a process is not performed, a HEMT device having excellent characteristics while suppressing cost is realized. It can be said that it is done. Of course, in order to form the source electrode 7 and the drain electrode 8 directly on the barrier layer 5, the cap layer 6b, the intermediate layer 6a, and a part of the barrier layer 5 are removed by etching before forming both electrodes. After performing ohmic, the aspect which forms the source electrode 7 and the drain electrode 8 on the barrier layer 5 exposed by this may be sufficient.
  <HEMT素子の作製方法>
 次に、上述のような構成を有するHEMT素子20を作製する方法を説明する。
<Method for Manufacturing HEMT Element>
Next, a method for manufacturing the HEMT device 20 having the above-described configuration will be described.
 まず、エピタキシャル基板10の作製は、公知のMOCVD炉を用いて行うことができる。具体的には、In、Al、Gaについての有機金属(MO)原料ガス(TMI、TMA、TMG)と、アンモニアガス(NHガス)と、水素ガスと、窒素ガスとをリアクタ内に供給可能に構成されてなるMOCVD炉を用いる。 First, the epitaxial substrate 10 can be manufactured using a known MOCVD furnace. Specifically, organometallic (MO) source gases (TMI, TMA, TMG), ammonia gas (NH 3 gas), hydrogen gas, and nitrogen gas for In, Al, and Ga can be supplied into the reactor. An MOCVD furnace constructed as follows is used.
 まず、例えば(0001)面方位の2インチ径の6H-SiC基板などを下地基板1として用意し、該下地基板1を、MOCVD炉のリアクタ内に設けられたサセプタの上に設置する。リアクタ内を真空ガス置換した後、リアクタ内圧力を5kPa~50kPaの間の所定の値に保ちつつ、水素/窒素混合フロー状態の雰囲気を形成した上で、サセプタ加熱によって基板を昇温する。 First, for example, a 2 inch 6H-SiC substrate having a (0001) plane orientation is prepared as a base substrate 1, and the base substrate 1 is placed on a susceptor provided in a reactor of an MOCVD furnace. After replacing the inside of the reactor with vacuum gas, the temperature of the substrate is raised by susceptor heating after forming an atmosphere in a hydrogen / nitrogen mixed flow state while maintaining the reactor pressure at a predetermined value between 5 kPa and 50 kPa.
 サセプタ温度がバッファ層形成温度である950℃~1250℃の間の所定温度(例えば1050℃)に達すると、Al原料ガスとNHガスをリアクタ内に導入し、バッファ層2としてのAlN層を形成する。 When the susceptor temperature reaches a predetermined temperature (for example, 1050 ° C.) between 950 ° C. and 1250 ° C. which is the buffer layer formation temperature, Al source gas and NH 3 gas are introduced into the reactor, and the AlN layer as the buffer layer 2 is formed. Form.
 AlN層が形成されると、サセプタ温度を所定のチャネル層形成温度に保ち、チャネル層3の組成に応じた有機金属原料ガスとアンモニアガスをリアクタ内に導入し、チャネル層3としてのInx1Aly1Gaz1N層(ただし、x1=0、0≦y1≦0.3)を形成する。ここで、チャネル層形成温度T1は、950℃以上1250℃以下の温度範囲から、チャネル層3のAlNモル分率y1の値に応じて定められる値である。なお、チャネル層3形成時のリアクタ圧力には特に限定はなく、10kPaから大気圧(100kPa)の範囲から適宜選ぶことができる。 When the AlN layer is formed, the susceptor temperature is maintained at a predetermined channel layer formation temperature, an organometallic source gas and ammonia gas corresponding to the composition of the channel layer 3 are introduced into the reactor, and In x1 Al as the channel layer 3 is introduced. A y1 Ga z1 N layer (where x1 = 0, 0 ≦ y1 ≦ 0.3) is formed. Here, the channel layer formation temperature T1 is a value determined according to the value of the AlN molar fraction y1 of the channel layer 3 from a temperature range of 950 ° C. or more and 1250 ° C. or less. The reactor pressure at the time of forming the channel layer 3 is not particularly limited, and can be appropriately selected from the range of 10 kPa to atmospheric pressure (100 kPa).
 Inx1Aly1Gaz1N層が形成されると、次いで、サセプタ温度を保ったまま、リアクタ内を窒素ガス雰囲気に保ち、リアクタ圧力を10kPaとした後、有機金属原料ガスとアンモニアガスとをリアクタ内に導入して、スペーサ層4としてのInx3Aly3Gaz3N層を所定の厚みに形成する。 When the In x1 Al y1 Ga z1 N layer is formed, the reactor is maintained in a nitrogen gas atmosphere with the susceptor temperature maintained, the reactor pressure is set to 10 kPa, and the organometallic source gas and ammonia gas are then reacted with the reactor. Then, an In x3 Al y3 Ga z3 N layer as the spacer layer 4 is formed to a predetermined thickness.
 Inx3Aly3Gaz3N層が形成されると、障壁層5となるInx2Aly2Nを形成するために、サセプタ温度を650℃以上800℃以下の所定の障壁層形成温度に保ち、リアクタ内圧力が1kPa~30kPaの間の所定の値に保たれるようにする。そして、アンモニアガスと、障壁層5の組成に応じた流量比の有機金属原料ガスとを、いわゆるV/III比が3000以上20000以下の間の所定の値となるようにリアクタ内に導入する。 When the In x3 Al y3 Ga z3 N layer is formed, the susceptor temperature is maintained at a predetermined barrier layer forming temperature of 650 ° C. or higher and 800 ° C. or lower in order to form In x2 Al y2 N to be the barrier layer 5. The internal pressure is maintained at a predetermined value between 1 kPa and 30 kPa. Then, ammonia gas and an organic metal source gas having a flow rate ratio corresponding to the composition of the barrier layer 5 are introduced into the reactor so that the so-called V / III ratio is a predetermined value between 3000 and 20000.
 Inx3Aly3Gaz3N層が形成されると、引き続いて、サセプタ温度を所定の中間層形成温度としたうえで、TMGとNHガスとを供給して、中間層6aとしてのGaN層を所定の厚みに形成する。 When the In x3 Al y3 Ga z3 N layer is formed, the susceptor temperature is set to a predetermined intermediate layer formation temperature, TMG and NH 3 gas are supplied, and the GaN layer as the intermediate layer 6a is formed. A predetermined thickness is formed.
 GaN層が形成されると、引き続いて、サセプタ温度を所定のキャップ層形成温度としたうえで、TMAとNHガスとを供給して、キャップ層6bとしてのAlN層を所定の厚みに形成する。キャップ層6bが形成されれば、エピタキシャル基板10が作製されたことになる。 When the GaN layer is formed, TMA and NH 3 gas are supplied after the susceptor temperature is set to a predetermined cap layer forming temperature, and an AlN layer as the cap layer 6b is formed to a predetermined thickness. . If the cap layer 6b is formed, the epitaxial substrate 10 is manufactured.
 エピタキシャル基板10が形成されると、これを用いてHEMT素子が形成される。以降の各工程は、公知の手法で実現されるものである。 When the epitaxial substrate 10 is formed, a HEMT element is formed using this. Each subsequent process is realized by a known method.
 まず、フォトリソグラフィープロセスと真空蒸着法を用いて、キャップ層6bの形成対象個所に、ソース電極7およびドレイン電極8となる多層金属パターンを形成する。 First, a multilayer metal pattern to be the source electrode 7 and the drain electrode 8 is formed at a formation target portion of the cap layer 6b by using a photolithography process and a vacuum deposition method.
 次いで、ソース電極7およびドレイン電極8のオーミック性を良好なものにするため、これらソース電極7およびドレイン電極8が形成されたエピタキシャル基板10に対し、650℃~1000℃の所定温度の窒素ガス雰囲気中において、数十秒間の熱処理を施す。 Next, in order to improve the ohmic property of the source electrode 7 and the drain electrode 8, a nitrogen gas atmosphere at a predetermined temperature of 650 ° C. to 1000 ° C. is applied to the epitaxial substrate 10 on which the source electrode 7 and the drain electrode 8 are formed. Inside, heat treatment is performed for several tens of seconds.
 続いて、フォトリソグラフィープロセスと真空蒸着法を用いて、キャップ層6bの形成対象個所に、ゲート電極9となる多層金属パターンを形成する。 Subsequently, a multilayer metal pattern to be the gate electrode 9 is formed at a formation target portion of the cap layer 6b by using a photolithography process and a vacuum deposition method.
 その後、ダイシングにより所定のサイズにチップ化することで、多数個のHEMT素子20が得られる。得られたHEMT素子20に対しては、適宜にダイボンディングやワイヤボンディングが施される。 Thereafter, a large number of HEMT elements 20 are obtained by dicing into chips of a predetermined size. The obtained HEMT element 20 is appropriately subjected to die bonding or wire bonding.
 以上、説明したように、本実施の形態によれば、障壁層の上にGaNからなる中間層を設け、さらに、AlNからなるキャップ層を設け、該キャップ層に対してショットキー接合によりゲート電極の形成を行い、MIS接合を形成することで、障壁層の上に直接にショットキー接合によりゲート電極の形成を行う場合に比して、逆方向漏れ電流が大きく低減され、かつ二次元電子ガスの移動度が高いHEMT素子が実現される。 As described above, according to the present embodiment, the intermediate layer made of GaN is provided on the barrier layer, the cap layer made of AlN is further provided, and the gate electrode is formed by Schottky junction to the cap layer. By forming the MIS junction, the reverse leakage current is greatly reduced as compared with the case where the gate electrode is formed directly on the barrier layer by the Schottky junction, and the two-dimensional electron gas is formed. A HEMT element having a high mobility is realized.
  <変形例>
 上述の実施の形態においては、HEMT素子を対象として説明を行っているが、ゲート電極と障壁層との間にMIS接合を形成する態様は、ショットキー接合を用いる他の電子デバイス、例えば、ショットキーバリアダイオードや、フォトセンサなどにも、同様に適用が可能である。
<Modification>
In the above-described embodiment, the HEMT element is described as an object. However, an aspect in which the MIS junction is formed between the gate electrode and the barrier layer is another electronic device using a Schottky junction, for example, a shot The same applies to key barrier diodes and photosensors.
 また、上述の実施の形態においては、キャップ層6bをAlNにて形成しているが、キャップ層6bは、第2のIII族窒化物のバンドギャップよりも大きく、絶縁性を有するIII族窒化物にて形成される態様であってもよい。ここで、III族窒化物が絶縁性を有するとは、比抵抗が10Ωcm以上であることを意味する。係る範囲の比抵抗を有していれば、上述するMIS接合が好適に形成される。また、係る比抵抗をみたす限りにおいて、キャップ層6bにおいて導電性不純物の存在は許容される。 In the above-described embodiment, the cap layer 6b is formed of AlN, but the cap layer 6b is larger than the band gap of the second group III nitride and has an insulating group III nitride. It may be an aspect formed by. Here, that the group III nitride has insulation means that the specific resistance is 10 8 Ωcm or more. If it has the specific resistance of the range, the MIS junction mentioned above is formed suitably. In addition, as long as the specific resistance is satisfied, the presence of conductive impurities is allowed in the cap layer 6b.
 (実施例1、比較例1、および比較例)
 まず、実施例1として、中間層6aおよびキャップ層6bを備える、上述の実施の形態に係るエピタキシャル基板10を作成し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。そして、係るエピタキシャル基板10を用いて、ゲート電極9の構成が異なる、4種類のHEMT素子20を作製し、それぞれのHEMT素子20について、-100V印加時の逆方向漏れ電流を評価した。
(Example 1, Comparative Example 1, and Comparative Example)
First, as Example 1, the epitaxial substrate 10 according to the above-described embodiment including the intermediate layer 6a and the cap layer 6b is prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance And evaluated. Then, using this epitaxial substrate 10, four types of HEMT elements 20 having different configurations of the gate electrode 9 were produced, and the reverse leakage current when −100 V was applied to each HEMT element 20 was evaluated.
 一方、比較例1として、中間層6aおよびキャップ層6bをともに備えていないエピタキシャル基板を用意し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。また、係るエピタキシャル基板に対して、実施例1と同様にゲート電極9を形成することによって4種類のHEMT素子を作製し、それぞれのHEMT素子について、-100V印加時の逆方向漏れ電流を評価した。 On the other hand, as Comparative Example 1, an epitaxial substrate not including both the intermediate layer 6a and the cap layer 6b was prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance were evaluated. In addition, four types of HEMT devices were fabricated by forming the gate electrode 9 on the epitaxial substrate in the same manner as in Example 1, and the reverse leakage current when -100 V was applied was evaluated for each HEMT device. .
 さらに、比較例2として、中間層6aを備えずキャップ層6bのみを備えるエピタキシャル基板を用意し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。また、係るエピタキシャル基板に対して、実施例1と同様にゲート電極9を形成することによって4種類のHEMT素子を作製し、それぞれのHEMT素子について、-100V印加時の逆方向漏れ電流を評価した。 Furthermore, as Comparative Example 2, an epitaxial substrate provided with only the cap layer 6b without the intermediate layer 6a was prepared, and the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, and the sheet resistance were evaluated. In addition, four types of HEMT devices were fabricated by forming the gate electrode 9 on the epitaxial substrate in the same manner as in Example 1, and the reverse leakage current when -100 V was applied was evaluated for each HEMT device. .
 すなわち、3種類のエピタキシャル基板に対してそれぞれ、構成が異なる4種類のゲート電極9を形成することにより、計12種類のHEMT素子を得た。 That is, a total of 12 types of HEMT elements were obtained by forming four types of gate electrodes 9 having different configurations on three types of epitaxial substrates.
 はじめに、エピタキシャル基板10を作製した。その際、スペーサ層4の形成までは、全てのエピタキシャル基板10について同一の条件で行った。 First, an epitaxial substrate 10 was produced. At that time, all the epitaxial substrates 10 were subjected to the same conditions until the formation of the spacer layer 4.
 具体的には、まず、下地基板1として(0001)面方位の2インチ径の6H-SiC基板を複数枚用意した。厚みは300μmであった。それぞれの基板について、MOCVD炉リアクタ内に設置し、真空ガス置換した後、リアクタ内圧力を30kPaとし、水素/窒素混合フロー状態の雰囲気を形成した。次いで、サセプタ加熱によって下地基板1を昇温した。 Specifically, first, as the base substrate 1, a plurality of 2 inch 6H—SiC substrates having a (0001) plane orientation were prepared. The thickness was 300 μm. About each board | substrate, after installing in a MOCVD furnace reactor and carrying out vacuum gas substitution, the pressure in a reactor was 30 kPa and the atmosphere of the hydrogen / nitrogen mixed flow state was formed. Next, the temperature of the base substrate 1 was raised by susceptor heating.
 サセプタ温度が1050℃に達すると、TMAバブリングガスとアンモニアガスをリアクタ内に導入し、バッファ層として厚さ200nmのAlN層を形成した。 When the susceptor temperature reached 1050 ° C., TMA bubbling gas and ammonia gas were introduced into the reactor, and an AlN layer having a thickness of 200 nm was formed as a buffer layer.
 続いて、サセプタ温度を所定の温度とし、有機金属原料ガスとしてのTMGバブリングガスとアンモニアガスとを所定の流量比でリアクタ内に導入し、チャネル層3としてのGaN層を2μmの厚みに形成した。 Subsequently, the susceptor temperature was set to a predetermined temperature, TMG bubbling gas as an organic metal source gas and ammonia gas were introduced into the reactor at a predetermined flow ratio, and a GaN layer as a channel layer 3 was formed to a thickness of 2 μm. .
 チャネル層3が得られると、リアクタ圧力を10kPaとし、次いでTMAバブリングガスとアンモニアガスをリアクタ内に導入し、スペーサ層4として厚さ1nmのAlN層を形成した。 When the channel layer 3 was obtained, the reactor pressure was set to 10 kPa, then TMA bubbling gas and ammonia gas were introduced into the reactor, and an AlN layer having a thickness of 1 nm was formed as the spacer layer 4.
 スペーサ層4を形成した後、続いて、障壁層5を15nmの厚みに形成した。障壁層5の組成は、In0.18Al0.82Nとした。また、サセプタ温度は745℃とした。 After the formation of the spacer layer 4, the barrier layer 5 was subsequently formed to a thickness of 15 nm. The composition of the barrier layer 5 was In 0.18 Al 0.82 N. The susceptor temperature was 745 ° C.
 障壁層5の形成後、実施例1については、サセプタ温度を障壁層形成温度である745℃に保ったまま、中間層6aとしてのGaN層を3nmの厚みに形成し、続いて、キャップ層6bとしてのAlN層を3nmの厚みに形成した。比較例2については、キャップ層6bを3nmの厚みに形成した。比較例1については、何も形成しなかった。 After the formation of the barrier layer 5, in Example 1, while maintaining the susceptor temperature at 745 ° C., which is the barrier layer formation temperature, a GaN layer as the intermediate layer 6a is formed to a thickness of 3 nm, and then the cap layer 6b. The AlN layer was formed to a thickness of 3 nm. For Comparative Example 2, the cap layer 6b was formed to a thickness of 3 nm. For Comparative Example 1, nothing was formed.
 それぞれのエピタキシャル基板に対して最後の層を形成した後、サセプタ温度を室温付近まで降温し、リアクタ内を大気圧に復帰させた後、作製されたエピタキシャル基板10を取り出した。以上の手順により、それぞれのエピタキシャル基板10が得られた。 After the last layer was formed on each epitaxial substrate, the susceptor temperature was lowered to near room temperature, the inside of the reactor was returned to atmospheric pressure, and the fabricated epitaxial substrate 10 was taken out. Each epitaxial substrate 10 was obtained by the above procedure.
 次いで、それぞれのエピタキシャル基板の一部をダイシングにより切り出し、得られた評価用試料を対象に、ホール効果測定を行った。これにより、それぞれのエピタキシャル基板についての、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とを求めた。 Next, a part of each epitaxial substrate was cut out by dicing, and the Hall effect measurement was performed on the obtained evaluation sample. Thereby, the two-dimensional electron gas concentration, the two-dimensional electron gas mobility, and the sheet resistance were determined for each epitaxial substrate.
 続いて、それぞれのエピタキシャル基板の上面の、ソース電極7およびドレイン電極8の形成対象箇所に、フォトリソグラフィープロセスと真空蒸着法とを用いて、Ti/Al/Ni/Au(それぞれの膜厚は25/75/15/100nm)からなる電極パターンを形成した。その後、窒素中で800℃、30秒間の熱処理を行った。 Subsequently, Ti / Al / Ni / Au (each film thickness is 25) is formed on the upper surface of each epitaxial substrate by using a photolithography process and a vacuum deposition method on the formation target portion of the source electrode 7 and the drain electrode 8. / 75/15/100 nm) was formed. Thereafter, heat treatment was performed in nitrogen at 800 ° C. for 30 seconds.
 続いて、それぞれのエピタキシャル基板の上面の、ゲート電極9の形成対象個所に、フォトリソグラフィープロセスと真空蒸着法とを用いて、ゲート電極9のパターンを形成した。ゲート電極9としては、Ni/Au(膜厚6nm/12nm)、Pd/Au(6nm/12nm)、およびPt/Au(6nm/12nm)の3種類の多層金属電極と、Auのみの単層金属電極(12nm)との計4種類を形成した。なお、ゲート電極9は、ゲート長を1μm、ゲート幅を100μmとし、ソース電極7との間隔が2μm、ドレイン電極との間隔が10μmとなるように形成した。 Subsequently, a pattern of the gate electrode 9 was formed on the upper surface of each epitaxial substrate at a formation target portion of the gate electrode 9 by using a photolithography process and a vacuum deposition method. The gate electrode 9 includes three types of multilayer metal electrodes, Ni / Au (film thickness 6 nm / 12 nm), Pd / Au (6 nm / 12 nm), and Pt / Au (6 nm / 12 nm), and a single-layer metal made of only Au. A total of four types with electrodes (12 nm) were formed. The gate electrode 9 was formed such that the gate length was 1 μm, the gate width was 100 μm, the distance from the source electrode 7 was 2 μm, and the distance from the drain electrode was 10 μm.
 最後に、ダイシングによりチップ化することで、HEMT素子を得た。 Finally, a HEMT element was obtained by dicing into chips.
 得られたHEMT素子について、ダイボンディングおよびワイヤボンディングを行ったうえで、-100V印加時の逆方向漏れ電流を測定した。 The obtained HEMT device was subjected to die bonding and wire bonding, and the reverse leakage current when -100 V was applied was measured.
 それぞれのHEMT素子について、エピタキシャル基板の中間層6aおよびキャップ層6bの構成と、二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗と、HEMT素子ごとのゲート電極の構成と-100V印加時の逆方向漏れ電流の測定結果とを、表1に一覧にして示す。 For each HEMT element, the structure of the intermediate layer 6a and the cap layer 6b of the epitaxial substrate, the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, the sheet resistance, the structure of the gate electrode for each HEMT element, and Table 1 lists the measurement results of the reverse leakage current when 100 V is applied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果からは、実施例1に係る全てのHEMT素子において、つまりは、ゲート電極9の構成によらず、その逆方向漏れ電流が、中間層6aおよびキャップ層6b以外を同一の条件として作製した比較例1に係るHEMT素子における逆方向漏れ電流の1/100から1/1000程度にまで抑制されていることがわかる。また、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とについては、実施例1と比較例1との間でほとんど差異がないこともわかる。 From the results shown in Table 1, in all HEMT devices according to Example 1, that is, regardless of the configuration of the gate electrode 9, the reverse leakage current is the same under the conditions except for the intermediate layer 6a and the cap layer 6b. It can be seen that the reverse leakage current in the HEMT device according to Comparative Example 1 manufactured as above is suppressed to about 1/100 to 1/1000. It can also be seen that there is almost no difference between Example 1 and Comparative Example 1 regarding the two-dimensional electron gas concentration, the two-dimensional electron gas mobility, and the sheet resistance.
 これに対して、中間層6aを設けずキャップ層6bのみを設けた比較例2のHEMT素子の場合、逆方向漏れ電流については実施例1と同程度にまで抑制されているものの、二次元電子ガス移動度は実施例1および比較例1よりもより低く、シート抵抗が実施例1および比較例1よりも高くなっていることがわかる。 On the other hand, in the case of the HEMT device of Comparative Example 2 in which only the cap layer 6b is provided without providing the intermediate layer 6a, the reverse leakage current is suppressed to the same level as in Example 1, but the two-dimensional electron It can be seen that the gas mobility is lower than in Example 1 and Comparative Example 1, and the sheet resistance is higher than in Example 1 and Comparative Example 1.
 以上の結果は、キャップ層6bを障壁層5の上に直接に設けることには、漏れ電流低減という効果がある一方で、二次元電子ガスの移動度やシート抵抗の低下を引き起こすという短所があること、および、中間層6aを両層の間に介在させることで、漏れ電流低減というキャップ層6bの効果を維持しつつ、二次元電子ガスの移動度の低下によるシート抵抗の悪化を抑止することができるということを、指し示している。 The above results show that providing the cap layer 6b directly on the barrier layer 5 has the effect of reducing the leakage current, but also has the disadvantage of reducing the mobility of the two-dimensional electron gas and the sheet resistance. In addition, by interposing the intermediate layer 6a between the two layers, the deterioration of the sheet resistance due to the decrease in the mobility of the two-dimensional electron gas is suppressed while maintaining the effect of the cap layer 6b that reduces the leakage current. Indicates that they can
 換言すれば、障壁層5の上に中間層6aを設けたうえでキャップ層6bを設けることが、二次元電子ガス濃度およびシート抵抗を好適に保ちつつ、逆方向漏れ電流を低減させるうえで効果があることを示している。 In other words, providing the intermediate layer 6a on the barrier layer 5 and then providing the cap layer 6b is effective in reducing the reverse leakage current while suitably maintaining the two-dimensional electron gas concentration and the sheet resistance. It shows that there is.
 (実施例2)
 本実施例では、中間層6aを設けない場合を含め、中間層6aの厚みを種々に違えたHEMT素子を作製した。具体的には、中間層6aの厚みを0nm、0.1nm、0.5nm、1.5nm、3nm、6nm、8nm、10nmの8水準とする一方、ゲート電極9の形成材料をNi/Au(膜厚6nm/12nm)のみとしたほかは、実施例1と同様の手順でHEMT素子を作製した。
(Example 2)
In this example, HEMT devices were produced in which the thickness of the intermediate layer 6a was variously changed, including the case where the intermediate layer 6a was not provided. Specifically, the thickness of the intermediate layer 6a is set to eight levels of 0 nm, 0.1 nm, 0.5 nm, 1.5 nm, 3 nm, 6 nm, 8 nm, and 10 nm, while the material for forming the gate electrode 9 is Ni / Au ( A HEMT device was fabricated in the same procedure as in Example 1 except that the thickness was only 6 nm / 12 nm.
 なお、係るHEMT素子作製の途中、エピタキシャル基板が得られた時点で実施例1と同様に、ホール効果測定を行った。これにより、それぞれのエピタキシャル基板についての、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とを求めた。 In addition, the Hall effect measurement was performed in the same manner as in Example 1 when an epitaxial substrate was obtained during the HEMT element fabrication. Thereby, the two-dimensional electron gas concentration, the two-dimensional electron gas mobility, and the sheet resistance were determined for each epitaxial substrate.
 また、得られたHEMT素子について、実施例1と同様に逆方向漏れ電流を測定した。 Further, the reverse leakage current of the obtained HEMT element was measured in the same manner as in Example 1.
 それぞれのHEMT素子について、エピタキシャル基板の膜厚と、二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗と、HEMT素子の-100V印加時の逆方向漏れ電流の測定結果とを、表2に一覧にして示す。 For each HEMT element, the thickness of the epitaxial substrate, the two-dimensional electron gas concentration, the mobility of the two-dimensional electron gas, the sheet resistance, and the measurement result of the reverse leakage current when applying −100 V to the HEMT element are shown. Table 2 shows a list.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、中間層6aの厚みが0.5nm以上の場合、中間層6aを設けない場合に比して、二次元電子ガスの移動度が高い値となっている。また、中間層6aの厚みが6nm以下の場合であれば、二次元電子ガス濃度の値が中間層6aを設けない場合と同程度となっている。さらには、中間層6aの厚みが0.5nm以上6nm以下の場合であれば、シート抵抗の値が、中間層6aを設けない場合に比して低い300Ω/□以下の値に保たれている。 As shown in Table 2, when the thickness of the intermediate layer 6a is 0.5 nm or more, the mobility of the two-dimensional electron gas is higher than when the intermediate layer 6a is not provided. Further, if the thickness of the intermediate layer 6a is 6 nm or less, the value of the two-dimensional electron gas concentration is almost the same as the case where the intermediate layer 6a is not provided. Furthermore, if the thickness of the intermediate layer 6a is 0.5 nm or more and 6 nm or less, the value of the sheet resistance is kept at a value of 300Ω / □ or lower, which is lower than when the intermediate layer 6a is not provided. .
 一方で、表2に示すように、いずれのHEMT素子についても、漏れ電流の値は、表1に示した比較例1の場合(ゲート電極が同じNi/Auの場合)の1/1000以下にまで低減されている。 On the other hand, as shown in Table 2, for any HEMT element, the value of the leakage current is 1/1000 or less of the case of Comparative Example 1 shown in Table 1 (when the gate electrode is the same Ni / Au). Has been reduced to.
 以上のことから、キャップ層6bと障壁層5との間に中間層6aを0.5nm以上の厚みに形成することで、漏れ電流が低減されているとともに、二次元電子ガスの移動度が高いHEMT素子が実現されることがわかる。さらに、中間層6aの厚みを6nm以下とすることで、二次元電子ガス濃度が高く、かつシート抵抗が小さいHEMT素子が実現されることがわかる。 From the above, by forming the intermediate layer 6a between the cap layer 6b and the barrier layer 5 to a thickness of 0.5 nm or more, the leakage current is reduced and the mobility of the two-dimensional electron gas is high. It can be seen that a HEMT element is realized. Furthermore, it can be seen that a HEMT element having a high two-dimensional electron gas concentration and a low sheet resistance can be realized by setting the thickness of the intermediate layer 6a to 6 nm or less.

Claims (26)

  1.  下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、
     ショットキー性電極と、
    を備える半導体素子であって、
     前記エピタキシャル基板が、
      Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層と、
      Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層と、
      GaNからなり前記障壁層に隣接する中間層と、
      AlNからなり前記中間層に隣接するキャップ層と、
    を備え、
     前記ショットキー性電極が前記キャップ層に接合されてなる、
    ことを特徴とする半導体素子。
    An epitaxial substrate in which a group III nitride layer group is laminated on the base substrate so that the (0001) crystal plane is substantially parallel to the substrate surface;
    A Schottky electrode,
    A semiconductor device comprising:
    The epitaxial substrate is
    A channel layer made of a first group III nitride having a composition of In x1 Al y1 Ga z1 N (x1 + y1 + z1 = 1, z1>0);
    A barrier layer made of a second group III nitride having a composition of In x2 Al y2 N (x2 + y2 = 1, x2> 0, y2>0);
    An intermediate layer made of GaN and adjacent to the barrier layer;
    A cap layer made of AlN and adjacent to the intermediate layer;
    With
    The Schottky electrode is joined to the cap layer,
    The semiconductor element characterized by the above-mentioned.
  2.  請求項1に記載の半導体素子であって、
     前記中間層の膜厚が0.5nm以上である、
    ことを特徴とする半導体素子。
    The semiconductor device according to claim 1,
    The intermediate layer has a thickness of 0.5 nm or more.
    The semiconductor element characterized by the above-mentioned.
  3.  請求項2に記載の半導体素子であって、
     前記中間層の膜厚が6nm以下である、
    ことを特徴とする半導体素子。
    The semiconductor device according to claim 2,
    The intermediate layer has a thickness of 6 nm or less.
    The semiconductor element characterized by the above-mentioned.
  4.  請求項1ないし請求項3のいずれかに記載の半導体素子であって、
     前記キャップ層の膜厚が0.5nm以上6nm以下である、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 3,
    The film thickness of the cap layer is 0.5 nm or more and 6 nm or less,
    The semiconductor element characterized by the above-mentioned.
  5.  請求項1ないし請求項4のいずれかに記載の半導体素子であって、
     前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 4,
    The band gap of the second group III nitride is larger than the band gap of the first group III nitride;
    The semiconductor element characterized by the above-mentioned.
  6.  請求項1ないし請求項5のいずれかに記載の半導体素子であって、
     前記ショットキー性電極がNi、Pt、Pd、Auの少なくとも1つを含んでなる、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 5,
    The Schottky electrode comprises at least one of Ni, Pt, Pd, Au,
    The semiconductor element characterized by the above-mentioned.
  7.  請求項1ないし請求項6のいずれかに記載の半導体素子であって、
     前記キャップ層の自乗平均表面粗さが0.5nm以下である、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 6,
    The root mean square surface roughness of the cap layer is 0.5 nm or less.
    The semiconductor element characterized by the above-mentioned.
  8.  請求項1ないし請求項7のいずれかに記載の半導体素子であって、
     前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 7,
    The second group III nitride is In x2 Al y2 N (x2 + y2 = 1, 0.14 ≦ x2 ≦ 0.24).
    The semiconductor element characterized by the above-mentioned.
  9.  請求項1ないし請求項8のいずれかに記載の半導体素子であって、
     前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 8,
    The first group III nitride is Al y1 Ga z1 N (y1 + z1 = 1, z1> 0).
    The semiconductor element characterized by the above-mentioned.
  10.  請求項9に記載の半導体素子であって、
     前記第1のIII族窒化物がGaNである、
    ことを特徴とする半導体素子。
    The semiconductor element according to claim 9,
    The first group III nitride is GaN;
    The semiconductor element characterized by the above-mentioned.
  11.  請求項9または請求項10に記載の半導体素子であって、
     前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物からなるスペーサ層をさらに備える、
    ことを特徴とする半導体素子。
    The semiconductor device according to claim 9 or 10, wherein
    A third layer having a composition of In x3 Al y3 Ga z3 N (x3 + y3 + z3 = 1, y3> 0) between the channel layer and the barrier layer and having a band gap larger than that of the second group III nitride. A spacer layer made of Group III nitride of
    The semiconductor element characterized by the above-mentioned.
  12.  請求項11に記載の半導体素子であって、
     前記第3のIII族窒化物がAlNである、
    ことを特徴とする半導体素子。
    The semiconductor device according to claim 11,
    The third group III nitride is AlN;
    The semiconductor element characterized by the above-mentioned.
  13.  請求項1ないし請求項12のいずれかに記載の半導体素子であって、
     オーミック性電極が前記ショットキー性電極と同一の前記キャップ層に接合されてなる、
    ことを特徴とする半導体素子。
    A semiconductor device according to any one of claims 1 to 12,
    An ohmic electrode is joined to the same cap layer as the Schottky electrode;
    The semiconductor element characterized by the above-mentioned.
  14.  請求項13に記載の半導体素子であるHEMT素子であって、
     前記ショットキー性電極がゲート電極であり、前記オーミック性電極がソース電極およびドレイン電極である、
    ことを特徴とするHEMT素子。
    A HEMT device which is a semiconductor device according to claim 13,
    The Schottky electrode is a gate electrode, and the ohmic electrode is a source electrode and a drain electrode,
    The HEMT element characterized by the above-mentioned.
  15.  下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、
     ショットキー性電極と、
    を備える半導体素子の製造方法であって、
     下地基板の上に、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物にてチャネル層を形成するチャネル層形成工程と、
     前記チャネル層の上に、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物にて障壁層を形成する障壁層形成工程と、
     GaNにて中間層を前記障壁層に隣接形成する中間層形成工程と、
     AlNにてキャップ層を前記中間層に隣接形成するキャップ層形成工程と、
     前記キャップ層にショットキー性電極を接合形成するショットキー性電極形成工程と、
    を備えることを特徴とする半導体素子の製造方法。
    An epitaxial substrate in which a group III nitride layer group is laminated on the base substrate so that the (0001) crystal plane is substantially parallel to the substrate surface;
    A Schottky electrode,
    A method for manufacturing a semiconductor device comprising:
    A channel layer forming step of forming a channel layer on a base substrate with a first group III nitride having a composition of In x1 Al y1 Ga z1 N (x1 + y1 + z1 = 1, z1>0);
    A barrier layer forming step of forming a barrier layer on the channel layer with a second group III nitride having a composition of In x2 Al y2 N (x2 + y2 = 1, x2> 0, y2>0);
    An intermediate layer forming step of forming an intermediate layer adjacent to the barrier layer with GaN;
    A cap layer forming step of forming a cap layer adjacent to the intermediate layer with AlN;
    A Schottky electrode forming step of bonding a Schottky electrode to the cap layer;
    The manufacturing method of the semiconductor element characterized by the above-mentioned.
  16.  請求項15に記載の半導体素子の製造方法であって、
     前記中間層を0.5nm以上の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 15,
    Forming the intermediate layer to a thickness of 0.5 nm or more;
    A method for manufacturing a semiconductor device, comprising:
  17.  請求項16に記載の半導体素子の製造方法であって、
     前記中間層を6nm以下の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 16,
    Forming the intermediate layer to a thickness of 6 nm or less;
    A method for manufacturing a semiconductor device, comprising:
  18.  請求項15ないし請求項17のいずれかに記載の半導体素子の製造方法であって、
     前記キャップ層を0.5nm以上6nm以下の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 15 to 17,
    Forming the cap layer in a thickness of 0.5 nm to 6 nm;
    A method for manufacturing a semiconductor device, comprising:
  19.  請求項15ないし請求項18のいずれかに記載の半導体素子の製造方法であって、
     前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、
    ことを特徴とする半導体素子の製造方法。
    A method for manufacturing a semiconductor device according to any one of claims 15 to 18, comprising:
    The band gap of the second group III nitride is larger than the band gap of the first group III nitride;
    A method for manufacturing a semiconductor device, comprising:
  20.  請求項15ないし請求項19のいずれかに記載の半導体素子の製造方法であって、
     前記ショットキー性電極形成工程においては、前記ショットキー性電極をNi、Pt、Pd、Auの少なくとも1つを含むように形成する、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 15 to 19,
    In the Schottky electrode forming step, the Schottky electrode is formed so as to include at least one of Ni, Pt, Pd, and Au.
    A method for manufacturing a semiconductor device, comprising:
  21.  請求項15ないし請求項20のいずれかに記載の半導体素子の製造方法であって、
     前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 15 to 20,
    The second group III nitride is In x2 Al y2 N (x2 + y2 = 1, 0.14 ≦ x2 ≦ 0.24).
    A method for manufacturing a semiconductor device, comprising:
  22.  請求項15ないし請求項21のいずれかに記載の半導体素子の製造方法であって、
     前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 15 to 21,
    The first group III nitride is Al y1 Ga z1 N (y1 + z1 = 1, z1> 0).
    A method for manufacturing a semiconductor device, comprising:
  23.  請求項22に記載の半導体素子の製造方法であって、
     前記第1のIII族窒化物がGaNである、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 22,
    The first group III nitride is GaN;
    A method for manufacturing a semiconductor device, comprising:
  24.  請求項22または請求項23に記載の半導体素子の製造方法であって、
     前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物にてスペーサ層を形成するスペーサ層形成工程、
    をさらに備えることを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 22 or claim 23,
    A third layer having a composition of In x3 Al y3 Ga z3 N (x3 + y3 + z3 = 1, y3> 0) between the channel layer and the barrier layer and having a band gap larger than that of the second group III nitride. A spacer layer forming step of forming a spacer layer with a group III nitride of
    A method for manufacturing a semiconductor device, further comprising:
  25.  請求項24に記載の半導体素子の製造方法であって、
     前記第3のIII族窒化物がAlNである、
    ことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device according to claim 24,
    The third group III nitride is AlN;
    A method for manufacturing a semiconductor device, comprising:
  26.  請求項15ないし請求項25のいずれかに記載の半導体素子の製造方法であって、
     前記ショットキー性電極が形成される前記キャップ層にオーミック性電極を接合形成するオーミック性電極形成工程、
    をさらに備えることを特徴とする半導体素子の製造方法。
    A method for manufacturing a semiconductor device according to any one of claims 15 to 25, wherein:
    An ohmic electrode forming step of bonding an ohmic electrode to the cap layer where the Schottky electrode is formed;
    A method for manufacturing a semiconductor device, further comprising:
PCT/JP2012/070521 2012-08-10 2012-08-10 Semiconductor element, hemt element, and method for manufacturing semiconductor element WO2014024310A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12842688.9A EP2720257A4 (en) 2012-08-10 2012-08-10 Semiconductor element, hemt element, and method for manufacturing semiconductor element
PCT/JP2012/070521 WO2014024310A1 (en) 2012-08-10 2012-08-10 Semiconductor element, hemt element, and method for manufacturing semiconductor element
KR1020137010864A KR101933230B1 (en) 2012-08-10 2012-08-10 Semiconductor device, hemt device, and method of manufacturing semiconductor device
CN201280003274.5A CN103828030B (en) 2012-08-10 2012-08-10 The manufacture method of semiconductor element, HEMT elements and semiconductor element
US13/855,148 US9478650B2 (en) 2012-08-10 2013-04-02 Semiconductor device, HEMT device, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070521 WO2014024310A1 (en) 2012-08-10 2012-08-10 Semiconductor element, hemt element, and method for manufacturing semiconductor element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/855,148 Continuation US9478650B2 (en) 2012-08-10 2013-04-02 Semiconductor device, HEMT device, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2014024310A1 true WO2014024310A1 (en) 2014-02-13

Family

ID=50065536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070521 WO2014024310A1 (en) 2012-08-10 2012-08-10 Semiconductor element, hemt element, and method for manufacturing semiconductor element

Country Status (5)

Country Link
US (1) US9478650B2 (en)
EP (1) EP2720257A4 (en)
KR (1) KR101933230B1 (en)
CN (1) CN103828030B (en)
WO (1) WO2014024310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158785A1 (en) * 2015-03-29 2016-10-06 住友化学株式会社 Multi-layer substrate measurement method, multi-layer substrate, and measurement device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637620B (en) * 2013-11-06 2018-11-20 夏普株式会社 Nitride-based semiconductor
JP6149786B2 (en) * 2014-04-11 2017-06-21 豊田合成株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6792135B2 (en) * 2015-10-30 2020-11-25 富士通株式会社 Compound semiconductor device and its manufacturing method
CN105576031A (en) * 2015-12-30 2016-05-11 东莞市青麦田数码科技有限公司 GaAs channel MOS interface structure taking GaN as interface layer
CN106601787B (en) * 2016-12-01 2020-06-26 北京大学 InxAlyGa1-x-yN/GaN heterostructure and epitaxial method thereof
CN108573853B (en) * 2017-03-09 2021-01-29 合肥彩虹蓝光科技有限公司 GaN-based HEMT device epitaxial structure and growth method thereof
CN108682625A (en) * 2018-05-22 2018-10-19 西安电子科技大学 RESURF GaN base Schottky-barrier diodes based on field plate and p-type GaN cap
JP7439536B2 (en) * 2020-01-28 2024-02-28 富士通株式会社 semiconductor equipment
CN112736131B (en) * 2021-01-05 2023-02-10 西安电子科技大学 YAlN/GaN high electron mobility transistor and manufacturing method thereof
CN117239001A (en) * 2023-11-13 2023-12-15 合肥美镓传感科技有限公司 Photoelectric detector, preparation method thereof, detection method thereof and photoelectric detector array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294768A (en) * 1999-04-01 2000-10-20 Sony Corp Semiconductor element and manufacture thereof
JP2007103778A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Field effect transistor
WO2012014675A1 (en) * 2010-07-29 2012-02-02 日本碍子株式会社 Semiconductor element, hemt element, and production method for semiconductor element
JP2012119638A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209270B2 (en) * 1999-01-29 2001-09-17 日本電気株式会社 Heterojunction field effect transistor
US6495894B2 (en) * 2000-05-22 2002-12-17 Ngk Insulators, Ltd. Photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
JP4001262B2 (en) * 2001-02-27 2007-10-31 日本碍子株式会社 Method for manufacturing nitride film
JP4179539B2 (en) * 2003-01-15 2008-11-12 富士通株式会社 Compound semiconductor device and manufacturing method thereof
JP4727169B2 (en) * 2003-08-04 2011-07-20 日本碍子株式会社 Epitaxial substrate, method for manufacturing epitaxial substrate, method for suppressing warpage of epitaxial substrate, and semiconductor multilayer structure using epitaxial substrate
EP1612866B1 (en) * 2004-06-30 2014-07-30 Imec AlGaN/GaN Hemt Devices
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7253454B2 (en) * 2005-03-03 2007-08-07 Cree, Inc. High electron mobility transistor
JP2006295126A (en) * 2005-03-15 2006-10-26 Sumitomo Electric Ind Ltd Group iii nitride semiconductor device and epitaxial substrate
JP4462330B2 (en) * 2007-11-02 2010-05-12 住友電気工業株式会社 Group III nitride electronic devices
EP3067921B1 (en) 2008-03-24 2020-08-26 NGK Insulators, Ltd. Process for producing an epitaxial substrate for a semiconductor element
CN101981658B (en) * 2008-03-24 2014-10-29 日本碍子株式会社 Semiconductor element, epitaxial substrate for semiconductor element, and process for producing epitaxial substrate for semiconductor element
JP5465469B2 (en) * 2008-09-04 2014-04-09 日本碍子株式会社 Epitaxial substrate, semiconductor device substrate, and HEMT element
JP4677499B2 (en) * 2008-12-15 2011-04-27 Dowaエレクトロニクス株式会社 Epitaxial substrate for electronic device and manufacturing method thereof
WO2010151721A1 (en) 2009-06-25 2010-12-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with enhanced channel charge inducing material layer and threshold voltage control
JP5580009B2 (en) * 2009-08-28 2014-08-27 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
JP5702058B2 (en) * 2009-08-28 2015-04-15 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
DE102009041548A1 (en) * 2009-09-15 2011-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor structure
JP5308290B2 (en) * 2009-09-15 2013-10-09 日本碍子株式会社 Epitaxial substrate for semiconductor device, Schottky junction structure, and method for suppressing leakage current of Schottky junction structure
JP5576771B2 (en) * 2009-11-04 2014-08-20 Dowaエレクトロニクス株式会社 Group III nitride epitaxial multilayer substrate
EP2498293B1 (en) * 2009-11-06 2018-08-01 NGK Insulators, Ltd. Epitaxial substrate for semiconductor element and method for producing epitaxial substrate for semiconductor element
WO2011102045A1 (en) * 2010-02-16 2011-08-25 日本碍子株式会社 Epitaxial substrate and method for producing same
JP5758880B2 (en) * 2010-03-24 2015-08-05 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
WO2011136052A1 (en) * 2010-04-28 2011-11-03 日本碍子株式会社 Epitaxial substrate and method for producing epitaxial substrate
WO2012014883A1 (en) * 2010-07-29 2012-02-02 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, pn junction diode, and production method for epitaxial substrate for semiconductor element
EP2610898B1 (en) * 2010-08-25 2020-11-25 NGK Insulators, Ltd. Method for fabricating epitaxial substrate for semiconductor device, and method for fabricating semiconductor device
US8895993B2 (en) * 2011-01-31 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Low gate-leakage structure and method for gallium nitride enhancement mode transistor
JP5776217B2 (en) * 2011-02-24 2015-09-09 富士通株式会社 Compound semiconductor device
US8710511B2 (en) * 2011-07-29 2014-04-29 Northrop Grumman Systems Corporation AIN buffer N-polar GaN HEMT profile
JP5117609B1 (en) * 2011-10-11 2013-01-16 株式会社東芝 Nitride semiconductor wafer, nitride semiconductor device, and method for growing nitride semiconductor crystal
US9165766B2 (en) * 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
EP2667415B1 (en) * 2012-05-22 2021-02-17 Nexperia B.V. Heterojunction semiconductor device and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294768A (en) * 1999-04-01 2000-10-20 Sony Corp Semiconductor element and manufacture thereof
JP2007103778A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Field effect transistor
WO2012014675A1 (en) * 2010-07-29 2012-02-02 日本碍子株式会社 Semiconductor element, hemt element, and production method for semiconductor element
JP2012119638A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. MEDJDOUB; J.-F. CARLIN; M. GONSCHOREK; E. FELTIN; M.A. PY; D. DUCATTEAU; C. GAQUIERE; N. GRANDJEAN; E. KOHN: "Can InAN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?", IEEE IEDM TECH. DIGEST IN IEEE IEDM, 2006, pages 673
See also references of EP2720257A4
STACIA KELLER; YI-FENG WU; GIACINTA PARISH; NAIQIAN ZIANG; JANE J. XU; BERND P. KELLER; STEVEN P. DENBAARS; UMESH K. MISHRA: "Gallium Nitride Based High Power Heterojunction Field Effect Transistors: process Development and Present Status at USCB", IEEE TRANS. ELECTRON DEVICES, vol. 48, 2001, pages 552, XP011017534
TOSHIHIDE KIKKAWA: "Highly Reliable 250W High Electron Mobility Transistor Power Amplifier", JPN. J. APPL. PHYS., vol. 44, 2005, pages 4896, XP001502263, DOI: doi:10.1143/JJAP.44.4896

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158785A1 (en) * 2015-03-29 2016-10-06 住友化学株式会社 Multi-layer substrate measurement method, multi-layer substrate, and measurement device
JPWO2016158785A1 (en) * 2015-03-29 2018-01-18 住友化学株式会社 LAMINATED SUBSTRATE MEASUREMENT METHOD, LAMINATED SUBSTRATE AND MEASUREMENT DEVICE
US10222321B2 (en) 2015-03-29 2019-03-05 Sumitomo Chemical Company, Limited Laminate substrate measurement method, laminate substrate and measurement apparatus

Also Published As

Publication number Publication date
KR20150043182A (en) 2015-04-22
CN103828030A (en) 2014-05-28
US20140042451A1 (en) 2014-02-13
EP2720257A4 (en) 2015-09-23
KR101933230B1 (en) 2018-12-27
US9478650B2 (en) 2016-10-25
CN103828030B (en) 2017-11-10
EP2720257A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2014024310A1 (en) Semiconductor element, hemt element, and method for manufacturing semiconductor element
JP6170893B2 (en) Method for producing epitaxial substrate for semiconductor device
JP5782033B2 (en) Epitaxial substrate for semiconductor element, semiconductor element, PN junction diode element, and method for manufacturing epitaxial substrate for semiconductor element
WO2012026396A1 (en) Epitaxial substrate for semiconductor element, semiconductor element, method for fabricating epitaxial substrate for semiconductor element, and method for fabricating semiconductor element
JP5758880B2 (en) Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
JP5580009B2 (en) Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
JP2010232377A (en) Semiconductor device
JP5562579B2 (en) Method for producing epitaxial substrate for semiconductor device
JPWO2013125126A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2014053639A (en) Manufacturing method of epitaxial substrate for semiconductor element
WO2012014675A1 (en) Semiconductor element, hemt element, and production method for semiconductor element
JP5308290B2 (en) Epitaxial substrate for semiconductor device, Schottky junction structure, and method for suppressing leakage current of Schottky junction structure
US10332975B2 (en) Epitaxial substrate for semiconductor device and method for manufacturing same
JP5806545B2 (en) Semiconductor device, HEMT device, and method for manufacturing semiconductor device
JP6707837B2 (en) Semiconductor crystal substrate, semiconductor device, method of manufacturing semiconductor crystal substrate, and method of manufacturing semiconductor device
WO2015005083A1 (en) Nitride semiconductor multilayer substrate, nitride semiconductor device, and method for manufacturing nitride semiconductor multilayer substrate
JP2011222969A (en) Method of manufacturing epitaxial substrate for semiconductor device, epitaxial substrate for semiconductor device, and semiconductor device
JP2012186268A (en) Epitaxial substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137010864

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012842688

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP