WO2014020776A1 - SiC成形体およびSiC成形体の製造方法 - Google Patents

SiC成形体およびSiC成形体の製造方法 Download PDF

Info

Publication number
WO2014020776A1
WO2014020776A1 PCT/JP2012/073413 JP2012073413W WO2014020776A1 WO 2014020776 A1 WO2014020776 A1 WO 2014020776A1 JP 2012073413 W JP2012073413 W JP 2012073413W WO 2014020776 A1 WO2014020776 A1 WO 2014020776A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
molded body
sic
sic molded
volume
Prior art date
Application number
PCT/JP2012/073413
Other languages
English (en)
French (fr)
Inventor
杉原 孝臣
正明 朝倉
武士 徳永
哲也 貞木
Original Assignee
東海カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海カーボン株式会社 filed Critical 東海カーボン株式会社
Priority to US14/418,765 priority Critical patent/US9975779B2/en
Priority to EP12882269.9A priority patent/EP2881494B1/en
Priority to SG11201500717TA priority patent/SG11201500717TA/en
Priority to KR1020147035979A priority patent/KR101818805B1/ko
Priority to CN201280075046.9A priority patent/CN104508178B/zh
Publication of WO2014020776A1 publication Critical patent/WO2014020776A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/722Nitrogen content

Definitions

  • the present invention relates to a SiC molded body and a method for producing a SiC molded body.
  • a SiC molded body (CVD-SiC molded body) obtained by depositing SiC on the surface of the substrate by CVD (chemical vapor deposition), forming a film, and then removing the substrate is produced by a sintering method. Because it is dense and high-purity compared to the manufactured SiC compact, and has excellent corrosion resistance, heat resistance, and strength characteristics, it is used in heaters, etching equipment (etchers), CVD equipment, etc. for semiconductor manufacturing equipment. It has been proposed as various members such as a dummy wafer, a susceptor, and a furnace core tube (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2006-16662)).
  • the CVD-SiC molded body described in Patent Document 2 can be suitably used as an etcher member having low light transmittance and resistivity, but has low light transmittance and a resistivity of more than 10 ⁇ ⁇ cm.
  • An etcher member made of a high CVD-SiC molded body is also required.
  • the present invention provides a CVD-SiC molded body having a low light transmittance and a high resistivity, which can be suitably used as a member for an etcher used in a semiconductor manufacturing process.
  • An object of the present invention is to provide a method for easily producing a molded body by a CVD method.
  • an SiC molded body formed by a CVD method containing 1 to 30 ppm by mass of boron atoms and more than 100 ppm by mass and less than 1000 ppm by mass of nitrogen atoms, and its The present inventors have found that the above technical problem can be solved by a manufacturing method, and have completed the present invention based on this finding.
  • the present invention (1) A SiC molded body formed by a CVD method, wherein the SiC molded body contains 1 to 30 ppm by mass of boron atoms and more than 100 ppm by mass and 1000 ppm by mass or less of nitrogen atoms, (2) The SiC molded body according to (1), wherein the resistivity is more than 10 ⁇ ⁇ cm and less than or equal to 100000 ⁇ ⁇ cm, and the light transmittance at a wavelength of 950 nm is 0 to 1%, (3) A SiC molded body manufacturing method including a step of introducing a boron compound gas, a nitrogen atom-containing compound gas, and a carrier gas together with a source gas into a reaction chamber, and forming a SiC film on the surface of the substrate by a CVD method.
  • the boron compound gas is 5 ⁇ 10 ⁇ 4 to 0.02% by volume with respect to the total amount of the boron compound gas, the nitrogen atom-containing compound gas, and the carrier gas at a volume ratio at a temperature of 20 ° C.
  • the amount of the nitrogen atom-containing compound gas is 0.05 to 3.0% by volume relative to the total amount of the nitrogen atom-containing compound gas and the carrier gas, and the amount relative to the total amount of the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas is The amount of carrier gas is 96.9800-99.9495 vol%,
  • the raw material gas, boron compound gas, nitrogen atom-containing compound gas, and carrier gas in an amount by volume at a volume ratio of 2 to 15% by volume with respect to the total amount of the raw material gas, boron compound gas, nitrogen
  • a CVD-SiC molded body having a low light transmittance and a high resistivity that can be suitably used as an etcher member used in a semiconductor manufacturing process, and the SiC molded body. It is possible to provide a method for simple production by a CVD method.
  • the SiC molded body of the present invention is an SiC molded body formed by a CVD method, and is characterized by containing 1 to 30 ppm by mass of boron atoms and more than 100 ppm by mass and 1000 ppm by mass or less of nitrogen atoms. is there.
  • the SiC compact of the present invention contains 1 to 30 ppm by mass of boron atoms (1.8 ⁇ 10 17 atoms / cm 3 to 5.4 ⁇ 10 18 atoms / cm 3 ), and contains 1 to 20 ppm by mass. It is preferable that it contains 1 to 10 ppm by mass.
  • the SiC molded body of the present invention when the boron atom content is in the above range, the decrease in resistivity due to nitrogen atoms is suppressed, and when used as a member for a semiconductor manufacturing apparatus, boron atoms are present in a semiconductor wafer. It can suppress mixing as an impurity.
  • the content of boron atoms in the SiC molded body means a value measured by a glow discharge mass spectrometer (GD-MS, VG-9000 manufactured by FI Elemental).
  • a glow discharge is generated using a sample as a cathode in an Ar gas atmosphere, the constituent elements on the surface of the sputtered sample are ionized in the discharge plasma, and then the ionized constituent elements are measured with a mass spectrometer.
  • the content of the target element (boron atom) is calculated by correcting the ionic strength ratio of the main component element and the target element (boron atom) with the relative sensitivity coefficient (RSF).
  • the SiC molded body of the present invention contains nitrogen atoms more than 100 ppm by mass and 1000 ppm by mass or less (more than 1.37 ⁇ 10 19 atoms / cm 3 and 1.37 ⁇ 10 20 atoms / cm 3 or less).
  • the content is preferably 600 ppm by mass, more preferably 100 to 300 ppm by mass.
  • the light transmittance can be suitably reduced when the nitrogen atom content is in the above range.
  • the content of nitrogen atoms in the SiC molded body means a value measured by a secondary ion mass spectrometer (SIMS, for example, SIMS-4000 manufactured by ATOMICA).
  • SIMS secondary ion mass spectrometer
  • the sample constituent atoms released as secondary ions in vacuum are mass-separated and detected by a mass spectrometer.
  • the concentration of nitrogen atoms in the SiC compact is measured.
  • the atomic ratio of boron atom and nitrogen atom represented by boron atom / nitrogen atom is preferably 0.01 to 2, more preferably 0.01 to 1, More preferably, the ratio is 0.01 to 0.5.
  • the SiC molded body of the present invention when the atomic ratio of boron atoms to nitrogen atoms is within the above range, it is possible to easily provide an SiC molded body having low light transmittance and high resistivity.
  • the amount of boron atoms and the amount of nitrogen atoms contained in the SiC molded body of the present invention are adjusted by adjusting the amount of boron atom compound introduced and the amount of nitrogen atom-containing compound introduced during the production of the SiC molded body of the present invention. Can be controlled.
  • the SiC molded body of the present invention means that the content ratio of SiC is 99.900 to 99.988% by mass, and it is preferable that all components other than boron atoms and nitrogen atoms are SiC.
  • the content ratio of SiC was measured by the nitrogen atom content (mass%) measured by the secondary ion mass spectrometer (SIMS) and the glow discharge mass spectrometer (GD-MS). It means the value obtained by removing the content of boron atoms and the content (% by mass) of other metal elements that are harmful to semiconductor production from 100% by mass.
  • the SiC constituting the SiC molded body of the present invention usually takes a polycrystalline crystal form, for example, 3C type, 2H type, 4H type, 15R type, etc., which are polytypes (crystal polymorphs) of ⁇ -SiC crystals. Can be included.
  • the content ratio of each polytype can be calculated from the integrated intensity ratio of the main peak by the powder X-ray diffraction method.
  • the SiC crystal constituting the SiC molded body of the present invention is considered to be one in which a part of carbon atoms (C) in the SiC crystal is substituted with nitrogen atoms (N) which are n-type dopants.
  • N nitrogen atoms
  • the SiC molded body of the present invention is considered to be one in which a part of carbon atoms (C) in the SiC crystal is substituted with boron atoms (B) which are p-type dopants.
  • C with boron atoms (B) electron holes increase, and similarly the resistivity of the SiC compact decreases.
  • both the nitrogen atom and the boron atom reduce the resistivity of the SiC molded body, but the nitrogen atom free electron is canceled out by the boron atom hole. It has been found that the boron atom can suppress the decrease in resistivity due to the above, and as a result, a SiC molded body having a high resistivity can be obtained. For this reason, in the SiC compact of the present invention, the resistivity can be easily controlled by controlling the boron atomic weight (number of electron holes) and nitrogen atomic weight (number of free electrons).
  • the light transmittance can be easily reduced when the SiC compact of the present invention contains a predetermined amount of boron atoms and nitrogen atoms. For this reason, in the SiC molded object of this invention, light transmittance can also be easily controlled by controlling the amount of boron atoms and the amount of nitrogen atoms.
  • the SiC molded body of the present invention has a resistivity of more than 10 ⁇ ⁇ cm and less than or equal to 100,000 ⁇ ⁇ cm, more preferably 11 to 100,000 ⁇ ⁇ cm, and more preferably 11 to 20000 ⁇ ⁇ cm. Is more appropriate.
  • the resistivity of the SiC molded body was measured by a 4-terminal voltage drop method with a distance of 20 mm between terminals by processing a test piece of 4 mm long ⁇ 40 mm wide ⁇ 0.5 mm thick from the SiC molded body. It means the value obtained from electrical resistance.
  • the SiC molded body of the present invention is suitably one having a light transmittance of 0 to 1% at a wavelength of 950 nm, more suitably 0 to 0.5%, and 0 to 0.1%. Those are more suitable.
  • the light transmittance in wavelength 950nm means the value measured by the quantity of the light which the red LED light of wavelength 950nm emitted from the photoelectric sensor head passed through the SiC molded object, and reached the light-receiving part. It shall be.
  • the SiC molded body of the present invention can be suitably used as an etcher member used in, for example, a semiconductor manufacturing process.
  • the SiC molded body of the present invention is formed by the CVD method, and the details of the method of forming the SiC molded body of the present invention by the CVD method are as described later.
  • the method for producing a SiC molded body of the present invention includes a step of introducing a boron compound gas, a nitrogen atom-containing compound gas, and a carrier gas together with a source gas into a reaction chamber, and forming a SiC film on the surface of the substrate by a CVD method.
  • a method for producing a SiC molded body comprising: The boron compound gas is 5 ⁇ 10 ⁇ 4 to 0.02% by volume with respect to the total amount of the boron compound gas, the nitrogen atom-containing compound gas, and the carrier gas at a volume ratio at a temperature of 20 ° C.
  • the amount of the nitrogen atom-containing compound gas is 0.05 to 3.0% by volume relative to the total amount of the nitrogen atom-containing compound gas and the carrier gas, and the amount relative to the total amount of the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas is
  • the amount of the carrier gas is 96.9800 to 99.9495% by volume, and the volume ratio of the source gas with respect to the total amount of the source gas, boron compound gas, nitrogen atom-containing compound gas, and carrier gas is 20% by volume.
  • the apparatus having a reaction chamber for performing a CVD reaction is not particularly limited.
  • a high-frequency coil for heating the reaction chamber is provided inside or outside, and the reaction chamber has a reaction chamber.
  • a reaction vessel provided with a gas introduction pipe for introducing a source gas, a boron compound gas, a nitrogen atom-containing compound gas and a carrier gas and an exhaust port for exhausting the reaction chamber can be given.
  • the raw material gas means a gas capable of generating a SiC crystal by reaction (SiC crystal forming gas).
  • a raw material gas as a unitary raw material, a CH 3 SiCl 3 gas, One or more types selected from (CH 3 ) 2 SiCl 2 gas, (CH 3 ) 3 SiCl gas, and the like can be mentioned, and binary materials include SiCl 4 gas, SiHCl 3 gas, SiCl 2 H 2 gas, and SiH 4.
  • One or more silicon source compounds selected from gases and the like, and one or more carbon source compounds selected from CH 4 gas, C 2 H 6 gas, C 3 H 8 gas and the like can be mentioned.
  • examples of the boron compound gas include one or more gases selected from BF 3 gas, BCl 3 gas, BBr 3 gas, B 2 O 3 gas, and the like.
  • examples of the nitrogen atom-containing compound gas include one or more gases selected from N 2 gas and NH 3 gas.
  • N 2 gas one having a purity of 99.99 mass% or more and an oxygen content of 5 mass ppm or less is suitable.
  • the carrier gas is not particularly limited as long as it is usually used in the CVD method, and may include one or more selected from hydrogen gas, argon gas and the like.
  • the introduction amount of the boron compound gas with respect to the total amount of the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas at a volume ratio of 20 ° C. is 5 ⁇ 10 ⁇ 4 to 0.00. 02 vol%, preferably 5 ⁇ 10 ⁇ 4 to 0.005 vol%, and more preferably 5 ⁇ 10 ⁇ 4 to 0.0025 vol%.
  • the introduction amount of the nitrogen atom-containing compound gas with respect to the total amount of the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas at a volume ratio of 20 ° C. is 0.05 to 3.
  • the volume is 0% by volume, preferably 0.05 to 1.0% by volume, and more preferably 0.05 to 0.1% by volume.
  • the introduction amount of the carrier gas with respect to the total amount of the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas at a volume ratio of 20 ° C. is 96.9800 to 99.9495 vol%. It is preferably 99.0000 to 99.9495% by volume, more preferably 99.9000 to 99.9495% by volume.
  • the boron compound gas and the nitrogen atom-containing compound gas are sufficiently mixed into the reaction chamber, and boron A SiC molded body containing desired amounts of atoms and nitrogen atoms, having low light transmittance and high resistivity can be efficiently produced.
  • the introduction amount of the source gas with respect to the total amount of the source gas, boron compound gas, nitrogen atom-containing compound gas and carrier gas is 2 to 15% by volume at a volume ratio at a temperature of 20 ° C. It is preferably 2 to 10% by volume, and more preferably 5 to 10% by volume.
  • the boron compound gas, the nitrogen atom-containing compound gas, and the carrier gas with respect to the total amount of the raw material gas, boron compound gas, nitrogen atom-containing compound gas, and carrier gas at a volume ratio at a temperature of 20 ° C.
  • the total introduction amount is 85 to 98% by volume, preferably 90 to 98% by volume, and more preferably 90 to 95% by volume.
  • the SiC molded body can be formed at a suitable film formation speed by having the content ratio of the raw material gas and the total content ratio of the boron compound gas, the nitrogen atom-containing compound gas, and the carrier gas within the above range. This makes it easy to obtain a SiC molded body having stoichiometry (stoichiometric composition) instead of a Si-rich SiC molded body.
  • a boron compound gas, a nitrogen atom-containing compound gas, and a carrier gas are introduced into a reaction chamber together with a raw material gas, and an SiC film is formed on the surface of the substrate by a CVD method.
  • the boron compound gas, the nitrogen atom-containing compound gas and the carrier gas may be introduced individually into the reaction chamber, or may be introduced in a state where two or more kinds of gases are mixed, It is preferable to introduce in a mixed gas state in which a boron compound gas, a nitrogen atom-containing compound gas and a carrier gas are mixed.
  • a graphite material is suitable as a substrate on which a SiC film is formed on the surface.
  • the base preferably it has an impurity content of not more than 20 mass ppm, as a coefficient of thermal expansion of 3.0 ⁇ 10 -6 /°C ⁇ 4.5 ⁇ 10 -6 / °C preferably Those having a bulk specific gravity of 1.75 to 1.85 are preferred.
  • the base material has a shape corresponding to the shape of the SiC molded body to be obtained.
  • the base material is also a circle. Use a plate.
  • the raw material liquid stored in the raw material tank is mixed with a boron compound gas and a nitrogen atom-containing compound gas at a predetermined ratio.
  • a mixed gas of a raw material gas, a boron compound gas, a nitrogen atom-containing compound gas and a carrier gas, which is generated by bubbling with a gas is introduced into a mixer and thoroughly mixed, and then introduced into a reaction chamber via a gas introduction pipe.
  • a method of forming a film by depositing a SiC film by vapor deposition by the CVD method on the surface of the base material introduced and heated to a predetermined temperature in the reaction chamber can be mentioned.
  • the reaction temperature of the raw material gas is preferably 1050 to 1700 ° C., more preferably 1150 to 1600 ° C., and further preferably 1200 to 1500 ° C.
  • the reaction temperature of the raw material gas when the reaction temperature of the raw material gas is within the above range, a SiC molded body with controlled resistivity can be easily obtained.
  • the reaction temperature is less than 1050 ° C., free Si is likely to be formed simultaneously with the SiC crystal, and when the reaction temperature exceeds 1700 ° C., the corrosion resistance, heat resistance, and durability of the reaction apparatus are easily affected.
  • the degree of freedom in selecting the device material is likely to decrease, and frequent maintenance is likely to be required.
  • the reaction temperature can be controlled by adjusting the substrate temperature when the source gas is deposited on the substrate.
  • the deposition rate of the SiC film formed on the substrate is preferably 20 to 100 ⁇ m / hour.
  • the film formation rate is determined by the supply rate of the source gas, boron compound gas, nitrogen atom-containing compound gas and carrier gas into the reaction chamber (the residence time of the source gas, boron compound gas, nitrogen atom-containing compound gas and carrier gas in the reaction chamber) ) And adjusting the substrate temperature (reaction temperature).
  • the manufacturing method of the present invention may include a step of removing an unnecessary SiC film by machining or grinding after the formation of the SiC film.
  • the base graphite is appropriately removed by a method such as air oxidation, machining, or grinding to obtain a SiC molded body having a desired shape.
  • the obtained SiC molded body may be further processed as necessary to be finished in a shape or surface property suitable for various applications.
  • a gas containing nitrogen atoms (nitrogen atom-containing compound gas), which is an n-type dopant, is introduced at the same time as the raw material gas during the formation of a SiC molded body by the CVD method.
  • Part of the atoms (C) is replaced with nitrogen atoms (N), which are n-type dopants, to increase free electrons and to reduce the resistivity of the obtained SiC compact.
  • the SiC molded body obtained by the production method of the present invention contains a predetermined amount of boron atoms and nitrogen atoms. It was. For this reason, in the manufacturing method of this invention, the SiC molded object which controlled the light transmittance can also be easily obtained by controlling the introduction amount of boron compound gas and nitrogen atom containing compound gas.
  • the method of manufacturing simply the SiC molded object which can be used suitably as a member for etchers etc. which are used by a semiconductor manufacturing process, and has a low light transmittance and a high resistivity is provided by CVD method. can do.
  • Example 1 As a reaction vessel having a 200 L reaction chamber inside, a high frequency coil for heating the reaction chamber is provided outside, a raw material gas introduction pipe for introducing a raw material gas into the reaction chamber, and a boron compound gas , Using a reaction vessel provided with a mixed gas introduction tube for introducing a mixed gas of a nitrogen atom-containing compound gas and a carrier gas and an exhaust port for exhausting the reaction chamber, the reaction chamber has a diameter of 200 mm, A disk-shaped graphite substrate (impurity content 16 mass ppm, thermal expansion coefficient 4.2 ⁇ 10 ⁇ 6 / ° C., bulk specific gravity 1.79) having a thickness of 5 mm was disposed.
  • the mixed gas is in a volume ratio in a temperature of 20 ° C.
  • the BCl 3 gas, BCl 3 the amount of gas is 0.0025 vol% to the total amount of N 2 gas and H 2 gas
  • the amount of H 2 gas to the total amount of the BCl 3 gas, N 2 gas and H 2 gas is 99.9475 vol% So that they are mixed.
  • the introduction amount of the source gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C. is based on the total amount of the CH 3 SiCl 3 gas, BCl 3 gas, N 2 gas, and H 2 gas.
  • the raw material gas and the mixed gas are simultaneously mixed so that the introduced amount of the mixed gas is 90% by volume with respect to the total amount of the CH 3 SiCl 3 gas, BCl 3 gas, N 2 gas and H 2 gas. Introduced. Table 1 shows the mixing ratio of each gas.
  • the raw material gas was reacted until a 2 mm-thick disc-shaped SiC molded body was formed on the graphite substrate.
  • the graphite base material was ground and removed, and surface grinding was performed to obtain a disc-like SiC molded body having a thickness of 1 mm.
  • the obtained SiC molded body contains 5.2 ppm by mass of boron atoms and 125 ppm by mass of nitrogen atoms, has a resistivity of 85000 ⁇ ⁇ cm, and a light transmittance of 0.6% at a wavelength of 950 nm. there were.
  • Table 2 shows the physical properties of the obtained SiC molded body.
  • Example 2 In Example 1, a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, the amount of BCl 3 gas to the total amount of N 2 gas and H 2 gas is 0.0006 vol%, BCl 3 gas, N 2 gas and H 2 amount is 0.05% by volume of N 2 gas to the total amount of gas, the amount of H 2 gas to the total amount of the BCl 3 gas, N 2 gas and H 2 gas is 99.9494 vol%
  • the introduction amount of the raw material gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C. is CH 3 SiCl 3 gas, BCl 3 gas, N 2.
  • Example 3 In Example 1, a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, BCl 3 amount of 0.005% by volume of the gas to the total amount of N 2 gas and H 2 gas, BCl 3 gas, N 2 gas and H 2 amount is 0.1% by volume of N 2 gas to the total amount of gas, the amount of H 2 gas to the total amount of the BCl 3 gas, N 2 gas and H 2 gas is 99.8950 vol%
  • the introduction amount of the raw material gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C. is CH 3 SiCl 3 gas, BCl 3 gas, N 2.
  • Example 2 12% by volume based on the total amount of gas and H 2 gas, the introduction amount of the mixed gas, the CH 3 SiCl 3 gas, BCl 3 gas, so as to be 88% by volume based on the total amount of N 2 gas and H 2 gas , Except for introducing a raw material gas and gas mixture at the same time, in the same manner as in Example 1 to obtain a disk-shaped SiC shaped body with a thickness of 1 mm.
  • Table 1 shows the mixing ratio of each gas.
  • the obtained SiC molded body contains 9.6 mass ppm of boron atoms and 240 mass ppm of nitrogen atoms, has a resistivity of 16000 ⁇ ⁇ cm, and a light transmittance of 0.3% at a wavelength of 950 nm. there were.
  • Table 2 shows the physical properties of the obtained SiC molded body.
  • Example 4 In Example 1, a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, BCl 3 amount 0.02% by volume of the gas to the total amount of N 2 gas and H 2 gas, BCl 3 gas, The amount of N 2 gas with respect to the total amount of N 2 gas and H 2 gas is 3% by volume, and the amount of H 2 gas with respect to the total amount of BCl 3 gas, N 2 gas and H 2 gas is 96.9800% by volume. In addition, the introduction amount of the raw material gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C.
  • the raw material gas CH 3 SiCl 3 gas
  • the obtained SiC molded body contained 29 mass ppm of boron atoms and 940 mass ppm of nitrogen atoms, had a resistivity of 13 ⁇ ⁇ cm, and a light transmittance of 0.05% at a wavelength of 950 nm. .
  • Table 2 shows the physical properties of the obtained SiC molded body.
  • Example 5 In Example 1, a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, BCl 3 amount of 0.005% by volume of the gas to the total amount of N 2 gas and H 2 gas, BCl 3 gas, The amount of N 2 gas with respect to the total amount of N 2 gas and H 2 gas is 1% by volume, and the amount of H 2 gas with respect to the total amount of BCl 3 gas, N 2 gas and H 2 gas is 98.9950% by volume. In addition, the introduction amount of the raw material gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C.
  • the raw material gas CH 3 SiCl 3 gas
  • the obtained SiC molded body contains 9.8 mass ppm of boron atoms and 580 mass ppm of nitrogen atoms, has a resistivity of 690 ⁇ ⁇ cm, and a light transmittance of 0.1% at a wavelength of 950 nm. there were.
  • Table 2 shows the physical properties of the obtained SiC molded body.
  • Example 1 (Comparative Example 1)
  • a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, BCl 3 amount 0.1% by volume of the gas to the total amount of N 2 gas and H 2 gas, BCl 3 gas, N 2 gas and H 2 amount is 0.005% by volume of N 2 gas to the total amount of gas
  • the amount of H 2 gas to the total amount of the BCl 3 gas, N 2 gas and H 2 gas is 99.8950 vol%
  • the introduction amount of the raw material gas (CH 3 SiCl 3 gas) at a volume ratio at a temperature of 20 ° C. is CH 3 SiCl 3 gas, BCl 3 gas, N 2.
  • Example 2 (Comparative Example 2) In Example 1, a mixed gas, in volume ratio at a temperature of 20 ° C., BCl 3 gas, BCl 3 amount 0.0025% by volume of the gas to the total amount of N 2 gas and H 2 gas, BCl 3 gas, The amount of N 2 gas with respect to the total amount of N 2 gas and H 2 gas is 5% by volume, and the amount of H 2 gas with respect to the total amount of BCl 3 gas, N 2 gas and H 2 gas is 94.9975% by volume.
  • Example 1 is CH 3 SiCl 3 gas, BCl 3 gas, N 2 gas and 18% by volume based on the total amount of H 2 gas, the introduction amount of the mixed gas, the CH 3 SiCl 3 gas, BCl 3 gas, such that 82% by volume based on the total amount of N 2 gas and H 2 gas Except for introducing a raw material gas and the mixed gas at the same time, in the same manner as in Example 1 to obtain a disk-shaped SiC shaped body with a thickness of 1 mm. Table 1 shows the mixing ratio of each gas.
  • the obtained SiC molded body contains 5.3 mass ppm of boron atoms and 1800 mass ppm of nitrogen atoms, has a resistivity of 0.17 ⁇ ⁇ cm, and a light transmittance of 0.05% at a wavelength of 950 nm. It was a thing.
  • Table 2 shows the physical properties of the obtained SiC molded body.
  • the resistivity is high at 13 ⁇ ⁇ cm to 85000 ⁇ ⁇ cm by containing 1.5 to 29 mass ppm of boron atoms and 120 to 940 mass ppm of nitrogen atoms. It can be seen that a SiC molded article having a low light transmittance of 0.05 to 0.8% at a wavelength of 950 nm can be easily produced.
  • the nitrogen atom was more than 100 ppm by mass and 1000 masses. It can be seen that the transmittance at a wavelength of 950 nm can be controlled to 0 to 1% by containing not more than ppm.
  • the SiC molded bodies obtained in Example 1 and Example 2 have substantially the same nitrogen atom weight. In these SiC molded bodies, the resistivity increases as the boron atom weight increases. It turns out that becomes high. For this reason, it turns out that the resistivity and the transmittance
  • Comparative Examples 1 and 2 the boron atom content is too high at 54 ppm by mass (Comparative Example 1), or the nitrogen atom content is too high at 1800 ppm by mass (Comparative Example 2). Therefore, the resistivity is as low as 0.17 to 6.5 ⁇ ⁇ cm (Comparative Example 1 to Comparative Example 2), and the transmittance at a wavelength of 950 nm is as high as 2.8% (Comparative Example 1) It turns out that it cannot be obtained.
  • a CVD-SiC molded body having a low light transmittance and a high resistivity that can be suitably used as an etcher member used in a semiconductor manufacturing process, and the SiC molded body. It is possible to provide a method for simple production by a CVD method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 半導体製造工程で使用されるエッチャー用部材等として好適に使用することができる、光透過性が低く抵抗率が高いCVD-SiC成形体を提供する。 CVD法により形成されてなるSiC成形体であって、ホウ素原子を1~30質量ppm、窒素原子を100質量ppm超1000質量ppm以下含み、好ましくは抵抗率が10Ω・cm超100000Ω・cm以下、波長950nmにおける光透過率が0~1%であるSiC成形体を提供するものである。

Description

SiC成形体およびSiC成形体の製造方法
 本発明は、SiC成形体およびSiC成形体の製造方法に関する。
 CVD法(化学気相蒸着法)により基材の表面にSiCを析出させ、成膜した後、基材を除去して得られるSiC成形体(CVD-SiC成形体)は、焼結法で製造されたSiC成形体に比較して緻密で高純度であり、耐食性、耐熱性、強度特性にも優れているため、半導体製造装置用の加熱ヒータやエッチング装置(エッチャー)、CVD装置等に用いられるダミーウエハ、サセプター、炉芯管等の各種部材として提案されている(例えば、特許文献1(特開2006-16662号公報)参照)。
 しかしながら、例えば、CVD-SiC成形体を半導体製造用の加熱ヒータとして使用する場合、上記諸特性に加えて焼結法により製造されるSiC並の低抵抗率が必要とされ、また、ダミーウエハとして使用する場合には、光透過率が低いことが必要とされており、半導体製造用基材として汎用し得る十分な特性をそなえたCVD-SiC成形体は得られていなかった。
 このため、本件出願人は、先に、窒素ガスの存在下に原料ガスを供給してなる、抵抗率および光透過性が低いCVD-SiC成形体を提案した(特許文献2(特開2002-47066号公報)参照)。
特開2006-16662号公報 特開2002-47066号公報
 ところで、CVD-SiC成形体を、半導体製造工程で使用されるエッチャー用部材に適用する場合、その使用条件から、光透過性が低いとともに、様々な抵抗率を有するものが求められるようになっている。
 すなわち、特許文献2記載のCVD-SiC成形体は、光透過性および抵抗率が低いエッチャー用部材として好適に使用し得るものであるが、光透過性が低く、抵抗率が10Ω・cm超と高いCVD-SiC成形体からなるエッチャー用部材も求められるようになっている。
 このような状況下、本件発明は、半導体製造工程で使用されるエッチャー用部材として好適に使用することができる、光透過性が低く抵抗率が高いCVD-SiC成形体を提供するとともに、該SiC成形体を、CVD法により簡便に作製する方法を提供することを目的とするものである。
 本発明者等が鋭意検討したところ、CVD法により形成されてなるSiC成形体であって、ホウ素原子を1~30質量ppm、窒素原子を100質量ppm超1000質量ppm以下含むSiC成形体およびその製造方法により、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)CVD法により形成されてなるSiC成形体であって、ホウ素原子を1~30質量ppm、窒素原子を100質量ppm超1000質量ppm以下含むことを特徴とするSiC成形体、
(2)抵抗率が10Ω・cm超100000Ω・cm以下、波長950nmにおける光透過率が0~1%である上記(1)に記載のSiC成形体、
(3)反応室内に、原料ガスとともに、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスを導入し、CVD法により基材の表面にSiC膜を形成する工程を含むSiC成形体の製造方法であって、
 20℃の温度下における体積割合で、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記ホウ素化合物ガスの量が5×10-4~0.02体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記窒素原子含有化合物ガスの量が0.05~3.0体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記キャリアガスの量が96.9800~99.9495体積%であり、
 20℃の温度下における体積割合で、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記原料ガスの量が2~15体積%、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量が85~98体積%であることを特徴とするSiC成形体の製造方法、
を提供するものである。
 本発明によれば、半導体製造工程で使用されるエッチャー用部材等として好適に使用することができる、光透過性が低く抵抗率が高いCVD-SiC成形体を提供するとともに、該SiC成形体を、CVD法により簡便に作製する方法を提供することができる。
 先ず、本発明のSiC成形体について説明する。
 本発明のSiC成形体は、CVD法により形成されてなるSiC成形体であって、ホウ素原子を1~30質量ppm、窒素原子を100質量ppm超1000質量ppm以下含むことを特徴とするものである。
 本発明のSiC成形体は、ホウ素原子を1~30質量ppm(1.8×1017atoms/cm~5.4×1018atoms/cm)含むものであり、1~20質量ppm含むものであることが好ましく、1~10質量ppm含むものであることがより好ましい。
 本発明のSiC成形体において、ホウ素原子の含有量が上記範囲内にあることにより、窒素原子による抵抗率の低下を抑制するとともに、半導体製造装置用部材として用いたときに半導体ウェハにホウ素原子が不純物として混入することを抑制することができる。
 なお、本出願書類において、SiC成形体中のホウ素原子の含有量は、グロー放電質量分析装置(GD-MS、FI Elemental社製 VG-9000)により測定した値を意味する。
 上記測定においては、Arガス雰囲気下で試料を陰極としてグロー放電を発生させ、スパッタリングされた試料表面の構成元素を放電プラズマ中でイオン化した後、このイオン化された構成元素を質量分析計で計測し、主成分元素と目的元素(ホウ素原子)のイオン強度比を相対感度係数(RSF)で補正することにより、目的元素(ホウ素原子)の含有量を算出する。
 本発明のSiC成形体は、窒素原子を100質量ppm超1000質量ppm以下(1.37×1019atoms/cm超1.37×1020atoms/cm以下)含むものであり、100~600質量ppm含むものであることが好ましく、100~300質量ppm含むものであることがより好ましい。
 本発明のSiC成形体において、窒素原子の含有量が上記範囲内にあることにより、光透過率を好適に低減することができる。
 なお、本出願書類において、SiC成形体中の窒素原子の含有量は、二次イオン質量分析計(SIMS、例えばATOMIKA社製SIMS-4000)により測定した値を意味する。
 上記測定においては、イオン(CsまたはO )を固体表面に照射することによって、真空中に二次イオンとして放出された試料構成原子を、質量分析計で質量分離・検出することにより、SiC成形体中の窒素原子の濃度を計測する。
 本発明のSiC成形体において、ホウ素原子/窒素原子で表わされるホウ素原子と窒素原子の原子比が、0.01~2であることが好ましく、0.01~1であることがより好ましく、0.01~0.5であることがさらに好ましい。
 本発明のSiC成形体において、ホウ素原子と窒素原子の原子比が上記範囲内にあることにより、光透過性が低く抵抗率が高いSiC成形体を容易に提供することができる。
 本発明のSiC成形体に含まれる、ホウ素原子の量や窒素原子の量は、本発明のSiC成形体製造時におけるホウ素原子化合物の導入量や窒素原子含有化合物の導入量を調整すること等により制御することができる。
 本発明のSiC成形体は、SiCの含有割合が99.900~99.988質量%であるものを意味し、ホウ素原子および窒素原子以外の成分が全てSiCであるものが好適である。
 なお、本出願書類において、SiCの含有割合は、上記二次イオン質量分析計(SIMS)により測定した窒素原子含有量(質量%)と、上記グロー放電質量分析装置(GD-MS)により測定したホウ素原子の含有量およびその他半導体製造に有害となる金属元素の含有量(質量%)とを、100質量%から除いた値を意味する。
 本発明のSiC成形体を構成するSiCは、通常多結晶型の結晶形態を採り、例えば、α-SiC結晶のポリタイプ(結晶多形)である3C型、2H型、4H型、15R型等を含むものを挙げることができる。
 なお、各ポリタイプの含有比率は、粉末X線回折法によるメインピークの積分強度比により算出することができる。
 本発明のSiC成形体を構成するSiC結晶は、SiC結晶中の炭素原子(C)の一部がn型ドーパントである窒素原子(N)と置換されたものであると考えられ、SiC中の炭素原子(C)が窒素原子(N)に置換されることよって自由電子が増加して、SiC成形体の抵抗率が低下する。
 一方、本発明のSiC成形体は、SiC結晶中の炭素原子(C)の一部がp型ドーパントであるホウ素原子(B)と置換されたものであるとも考えられ、SiC中の炭素原子(C)がホウ素原子(B)に置換されることよって電子ホールが増加して、同様にSiC成形体の抵抗率が低下する。
 本発明者等の検討によれば、窒素原子とホウ素原子は何れもSiC成形体の抵抗率を低減するものであるが、窒素原子の自由電子をホウ素原子のホールが相殺する事で、窒素電子による抵抗率の低減をホウ素原子が抑制することができ、結果として高い抵抗率を有するSiC成形体を得ることができることが判明した。
 このため、本発明のSiC成形体においては、ホウ素原子量(電子ホール数)と窒素原子量(自由電子数)とを制御することにより、容易に抵抗率を制御することができる。
 また、本発明者等が検討したところ、本発明のSiC成形体が所定量のホウ素原子と窒素原子とを含有することにより、容易に光透過性を低減し得ることを見出した。このため、本発明のSiC成形体においては、ホウ素原子量と窒素原子量とを制御することにより、容易に光透過性を制御することもできる。
 本発明のSiC成形体は、抵抗率が10Ω・cmを超え100000Ω・cm以下であるものが適当であり、11~100000Ω・cmであるものがより適当であり、11~20000Ω・cmであるものがさらに適当である。
 なお、本出願書類において、SiC成形体の抵抗率は、SiC成形体から縦4mm×横40mm×厚さ0.5mmのテストピースを加工し、端子間距離20mmで4端子電圧降下法で測定した電気抵抗より求めた値を意味する。
 本発明のSiC成形体は、波長950nmにおける光透過率が0~1%であるものが適当であり、0~0.5%であるものがより適当であり、0~0.1%であるものがさらに適当である。
 なお、本出願書類において、波長950nmにおける光透過率は、光電センサヘッドから発光された波長950nmの赤色LED光がSiC成形体を通過し、受光部に達した光の量により測定した値を意味するものとする。
 本発明のSiC成形体は、例えば半導体製造工程で使用されるエッチャー用部材等として好適に使用することができる。
 本発明のSiC成形体は、CVD法により形成されてなるものであり、本発明のSiC成形体をCVD法により形成する方法の詳細は、後述するとおりである。
 本発明によれば、光透過性が低く抵抗率が高いCVD-SiC成形体を提供することができる。
 次に、本発明のSiC成形体の製造方法について説明する。
 本発明のSiC成形体の製造方法は、反応室内に、原料ガスとともに、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスを導入し、CVD法により基材の表面にSiC膜を形成する工程を含むSiC成形体の製造方法であって、
 20℃の温度下における体積割合で、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記ホウ素化合物ガスの量が5×10-4~0.02体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記窒素原子含有化合物ガスの量が0.05~3.0体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記キャリアガスの量が96.9800~99.9495体積%であり、20℃の温度下における体積割合で、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記原料ガスの量が2~15体積%、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量が85~98体積%であることを特徴とするものである。
 本発明の製造方法において、CVD反応を行う反応室を有する装置としては、特に制限されず、例えば、内部または外部に反応室内を加熱するための高周波コイルが配設されてなるとともに、反応室内に原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスとを導入するためのガス導入管と、反応室内を排気するための排気口とが設けられた反応容器を挙げることができる。
 本発明の製造方法において、原料ガスとは、反応によりSiC結晶を生成し得るもの(SiC結晶形成ガス)を意味し、このような原料ガスとしては、一元型原料として、CHSiClガス、(CHSiClガス、(CHSiClガス等から選ばれる一種以上を挙げることができ、二元型原料として、SiClガス、SiHClガス、SiClガス、SiHガス等から選ばれる一種以上の珪素源化合物と、CHガス、Cガス、Cガス等から選ばれる一種以上の炭素源化合物とを挙げることができる。
 本発明の製造方法において、ホウ素化合物ガスとしては、BFガス、BClガス、BBrガス、Bガス等から選ばれる一種以上ガスを挙げることができる。
 本発明の製造方法において、窒素原子含有化合物ガスとしては、Nガス、NHガス等から選ばれる一種以上のガスを挙げることができる。
 Nガスとしては、純度99.99質量%以上で酸素含有量が5質量ppm以下であるものが好適である。
 本発明の製造方法において、キャリアガスとしては、CVD法で通常使用されているものであれば特に制限されず、水素ガス、アルゴンガス等から選ばれる一種以上を挙げることができる。
 本発明の製造方法においては、20℃の温度下における体積割合で、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対するホウ素化合物ガスの導入量が、5×10-4~0.02体積%であり、5×10-4~0.005体積%であることが好ましく、5×10-4~0.0025体積%であることがより好ましい。
 本発明の製造方法においては、20℃の温度下における体積割合で、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する窒素原子含有化合物ガスの導入量が、0.05~3.0体積%であり、0.05~1.0体積%であることが好ましく、0.05~0.1体積%であることがより好ましい。
 本発明の製造方法においては、20℃の温度下における体積割合で、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対するキャリアガスの導入量が、96.9800~99.9495体積%であり、99.0000~99.9495体積%であることが好ましく、99.9000~99.9495体積%であることがより好ましい。
 本発明の製造方法において、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの導入割合が上記範囲内にあることにより、反応室内にホウ素化合物ガスおよび窒素原子含有化合物ガスが十分に混入され、ホウ素原子および窒素原子を所望量含有し、光透過性が低く抵抗率が高いSiC成形体を効率的に製造することができる。
 本発明の製造方法においては、20℃の温度下における体積割合で、原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する原料ガスの導入量が、2~15体積%であり、2~10体積%であることが好ましく、5~10体積%であることがより好ましい。
 本発明の製造方法においては、20℃の温度下における体積割合で、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計導入量が、85~98体積%であり、90~98体積%であることが好ましく、90~95体積%であることがより好ましい。
 本発明の製造方法においては、原料ガスの含有割合と、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計含有割合が上記範囲内にあることにより、好適な成膜速度でSiC成形体を形成することができ、SiリッチなSiC成形体ではなく、ストイキオメトリー(化学量論的組成)を有するSiC成形体を得易くなる。
 本発明の製造方法においては、反応室内に、原料ガスとともに、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスを導入し、CVD法により基材の表面にSiC膜を形成する。
 本発明の製造方法においては、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスは、反応室内に個別に導入してもよいし、二種以上のガスを混合した状態で導入してもよく、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスを混合した混合ガスの状態で導入することが好ましい。
 本発明の製造方法において、表面にSiC膜を成膜する基材としては、黒鉛材が好適である。
 また、上記基材としては、不純物含有量が20質量ppm以下であるものが好ましく、熱膨張係数が3.0×10-6/℃~4.5×10-6/℃であるものが好ましく、嵩比重が1.75~1.85であるものが好ましい。
 上記基材は、得ようとするSiC成形体の形状に対応する形状を有するものであり、例えば、得ようとするSiC成形体の形状が円板状である場合には、基材としても円板状のものを使用する。
 本発明の製造方法において、反応室内へ原料ガスとキャリアガスとを導入する方法としては、原料タンク内に収容された原料液を、ホウ素化合物ガスおよび窒素原子含有化合物ガスを所定割合で混入したキャリアガスでバブリングすることにより生成する、原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの混合ガスを、混合器に導入し、十分に混合した後、ガス導入管を介して反応室に導入し、反応室内に設置され所定温度に加熱された基材の表面に、CVD法により蒸着させてSiC膜を析出させ、成膜する方法を挙げることができる。
 本発明の製造方法において、原料ガスの反応温度は、1050~1700℃が好ましく、1150~1600℃がより好ましく、1200~1500℃がさらに好ましい。
 本発明の製造方法において、原料ガスの反応温度が上記範囲内にあることにより、抵抗率が制御されたSiC成形体を容易に得ることができる。
 反応温度が1050℃未満である場合には、SiC結晶と同時に遊離Siも形成され易くなり、反応温度が1700℃を超えると、反応装置の耐食性、耐熱性、耐久性に影響を与え易くなり、装置素材の選択の自由度が低下し易くなるとともに頻繁なメンテナンスが必要になり易くなる。
 上記反応温度は、原料ガスを基材に蒸着する際の基材温度を調整すること等により制御することができる。
 また、本発明の製造方法において、基材上に形成されるSiC膜の成膜速度は、20~100μm/時間であることが好ましい。上記成膜速度は、反応室内への原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの供給速度(反応室内における原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの滞留時間)や、基材温度(反応温度)を調整することにより制御することができる。
 本発明の製造方法は、上記SiC膜の成膜後に、不要なSiC膜を機械加工や研削によって除去する工程を含んでもよい。
 本発明の製造方法においては、上記SiC膜の成膜後に、適宜、空気酸化、機械加工、研削などの方法で基材黒鉛を除去して所望形状を有するSiC成形体を得る。
 得られたSiC成形体は、さらに必要に応じて加工を施し、各種用途に適した形状や表面性状に仕上げてもよい。
 本発明の製造方法においては、CVD法によるSiC成形体の形成時にn型ドーパントである窒素原子を含有するガス(窒素原子含有化合物ガス)を原料ガスと同時に導入する事により、SiC結晶中の炭素原子(C)の一部がn型ドーパントである窒素原子(N)と置換されて自由電子が増加し、得られるSiC成形体の抵抗率を低減する。
 一方、CVD法によるSiC成形体の形成時にp型ドーパントであるホウ素原子を含有するガス(ホウ素化合物ガス)を原料ガスと同時に導入する事により、SiC結晶中の炭素原子(C)の一部がp型ドーパントであるホウ素原子(B)と置換されて電子ホールが増加し、同様にSiC成形体の抵抗率が低下する。
 本発明者等の検討によれば、窒素原子とホウ素原子は何れもSiC成形体の抵抗率を低減するが、窒素原子の自由電子をホウ素原子のホールが相殺する事で、窒素原子による抵抗率の低減をホウ素原子が抑制することができ、このために、本発明においては、ホウ素化合物ガスと窒素原子含有化合物ガスの供給量を制御することにより、抵抗率が制御されたSiC成形を容易に製造することができる。
 また、本発明者等が検討したところ、本発明の製造方法で得られるSiC成形体が所定量のホウ素原子と窒素原子とを含有することにより、容易に光透過性を低減し得ることを見出した。このため、本発明の製造方法においては、ホウ素化合物ガスおよび窒素原子含有化合物ガスの導入量を制御することにより、容易に光透過性を制御したSiC成形体を得ることもできる。
 本発明の製造方法で得られるSiC成形体の詳細は、本発明のSiC成形体の説明で述べたとおりである。
 本発明によれば、半導体製造工程で使用されるエッチャー用部材等として好適に使用することができる、光透過性が低く抵抗率が高いSiC成形体を、CVD法により簡便に作製する方法を提供することができる。
 以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。
(実施例1)
(1)内部に200Lの反応室が設けられた反応容器として、反応室内を加熱するための高周波コイルが外部に配設され、反応室内に原料ガスを導入する原料ガス導入管と、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの混合ガスを導入するための混合ガス導入管と、反応室内を排気するための排気口とが設けられた反応容器を用い、上記反応室内に、直径200mm、厚さ5mmの円板状の黒鉛基材(不純物含有量16質量ppm、熱膨張係数4.2×10-6/℃、嵩比重1.79)を配置した。
(2)原料ガスとしてCHSiClガスを原料ガス導入管から反応室内に導入するとともに、ホウ素化合物ガスとしてBClガス、窒素原子含有化合物ガスとしてNガス、キャリアガスとしてHガスを用いて、これ等ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの混合ガスを混合ガス導入管から反応室内に導入した。
 上記混合ガスは、20℃の温度下における体積割合で、上記BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.0025体積%、上記BClガス、NガスおよびHガスの合計量に対するNガスの量が0.05体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が99.9475体積%となるように混合されてなるものである。
 また、20℃の温度下における体積割合で、上記原料ガス(CHSiClガス)の導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して10体積%、上記混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して90体積%となるように、原料ガスおよび混合ガスを同時に導入した。
 上記各ガスの混合割合を表1に示す。
 反応室内の温度を1400℃に制御した状態で、黒鉛基材上に厚さ2mmの円板状SiC成形体が形成されるまで原料ガスを反応させた。
 次いで、上記黒鉛基材を研削除去し、平面研削加工を施すことにより、厚さ1mmの円板状SiC成形体を得た。
 得られたSiC成形体は、ホウ素原子を5.2質量ppm、窒素原子を125質量ppm含むものであり、抵抗率が85000Ω・cm、波長950nmにおける光透過率が0.6%であるものであった。得られたSiC成形体の物性を表2に示す。
(実施例2)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.0006体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が0.05体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が99.9494体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して2.5体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して97.5体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を1.5質量ppm、窒素原子を120質量ppm含むものであり、抵抗率が1500Ω・cm、波長950nmにおける光透過率が0.8%であるものであった。得られたSiC成形体の物性を表2に示す。
(実施例3)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.005体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が0.1体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が99.8950体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して12体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して88体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を9.6質量ppm、窒素原子を240質量ppm含むものであり、抵抗率が16000Ω・cm、波長950nmにおける光透過率が0.3%であるものであった。得られたSiC成形体の物性を表2に示す。
(実施例4)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.02体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が3体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が96.9800体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して10体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して90体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を29質量ppm、窒素原子を940質量ppm含むものであり、抵抗率が13Ω・cm、波長950nmにおける光透過率が0.05%であるものであった。得られたSiC成形体の物性を表2に示す。
(実施例5)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.005体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が1体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が98.9950体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して12体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して88体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を9.8質量ppm、窒素原子を580質量ppm含むものであり、抵抗率が690Ω・cm、波長950nmにおける光透過率が0.1%であるものであった。得られたSiC成形体の物性を表2に示す。
(比較例1)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.1体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が0.005体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が99.8950体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して1.5体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して98.5体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を54質量ppm、窒素原子を10質量ppm含むものであり、抵抗率が6.5Ω・cm、波長950nmにおける光透過率が2.8%であるものであった。得られたSiC成形体の物性を表2に示す。
(比較例2)
 実施例1において、混合ガスとして、20℃の温度下における体積割合で、BClガス、NガスおよびHガスの合計量に対するBClガスの量が0.0025体積%、BClガス、NガスおよびHガスの合計量に対するNガスの量が5体積%、上記BClガス、NガスおよびHガスの合計量に対するHガスの量が94.9975体積%となるように混合されてなるものを用い、また、20℃の温度下における体積割合で、原料ガス(CHSiClガス)の導入量が、CHSiClガス、BClガス、NガスおよびHガスの総量に対して18体積%、混合ガスの導入量が、上記CHSiClガス、BClガス、NガスおよびHガスの総量に対して82体積%となるように、原料ガスおよび混合ガスを同時に導入した以外は、実施例1と同様にして、厚さ1mmの円板状SiC成形体を得た。上記各ガスの混合割合を表1に示す。
 得られたSiC成形体は、ホウ素原子を5.3質量ppm、窒素原子を1800質量ppm含むものであり、抵抗率が0.17Ω・cm、波長950nmにおける光透過率が0.05%であるものであった。得られたSiC成形体の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~実施例5においては、ホウ素原子を1.5~29質量ppm、窒素原子を120~940質量ppm含むことにより、抵抗率が13Ω・cm~85000Ω・cmと高く、波長950nmにおける光透過率が0.05~0.8%と低いSiC成形体を簡便に製造し得ることが分かる。
 また、表2の記載から、実施例1~実施例5で得られたSiC成形体と比較例1で得られたSiC成形体とを比較することにより、特に窒素原子を100質量ppm超1000質量ppm以下含むことにより、波長950nmにおける透過率を0~1%に制御し得ることが分かる。
 さらに、表2の記載から、実施例1および実施例2で得られたSiC成形体は、窒素原子量がほぼ等しいものであるが、これ等のSiC成形体においては、ホウ素原子量が多い程抵抗率が高くなることが分かる。
 このため、SiC成形体に導入する窒素原子量およびホウ素原子量を制御することにより、得られるSiC成形体の抵抗率および透過率を制御し得ることが分かる。
 これに対して、比較例1~比較例2においては、ホウ素原子の含有量が54質量ppmと多過ぎたり(比較例1)、窒素原子の含有量が1800質量ppmと多過ぎる(比較例2)ために、抵抗率が0.17~6.5Ω・cmと低かったり(比較例1~比較例2)、波長950nmにおける透過率が2.8%と高い(比較例1)SiC成形体しか得られないことが分かる。
 本発明によれば、半導体製造工程で使用されるエッチャー用部材等として好適に使用することができる、光透過性が低く抵抗率が高いCVD-SiC成形体を提供するとともに、該SiC成形体を、CVD法により簡便に作製する方法を提供することができる。

Claims (3)

  1.  CVD法により形成されてなるSiC成形体であって、ホウ素原子を1~30質量ppm、窒素原子を100質量ppm超1000質量ppm以下含むことを特徴とするSiC成形体。
  2.  抵抗率が10Ω・cm超100000Ω・cm以下、波長950nmにおける光透過率が0~1%である請求項1に記載のSiC成形体。
  3.  反応室内に、原料ガスとともに、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスを導入し、CVD法により基材の表面にSiC膜を形成する工程を含むSiC成形体の製造方法であって、
     20℃の温度下における体積割合で、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記ホウ素化合物ガスの量が5×10-4~0.02体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記窒素原子含有化合物ガスの量が0.05~3.0体積%、前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量に対する前記キャリアガスの量が96.9800~99.9495体積%であり、
     20℃の温度下における体積割合で、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記原料ガスの量が2~15体積%、前記原料ガス、ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの総量に対する前記ホウ素化合物ガス、窒素原子含有化合物ガスおよびキャリアガスの合計量が85~98体積%である
    ことを特徴とするSiC成形体の製造方法。
PCT/JP2012/073413 2012-08-01 2012-09-13 SiC成形体およびSiC成形体の製造方法 WO2014020776A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/418,765 US9975779B2 (en) 2012-08-01 2012-09-13 SiC formed body and method for producing SiC formed body
EP12882269.9A EP2881494B1 (en) 2012-08-01 2012-09-13 SiC BODY AND METHOD FOR PRODUCING SiC BODY
SG11201500717TA SG11201500717TA (en) 2012-08-01 2012-09-13 SiC MOLDED BODY AND METHOD FOR PRODUCING SiC MOLDED BODY
KR1020147035979A KR101818805B1 (ko) 2012-08-01 2012-09-13 SiC 성형체 및 SiC 성형체의 제조 방법
CN201280075046.9A CN104508178B (zh) 2012-08-01 2012-09-13 SiC成型体以及SiC成型体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171002 2012-08-01
JP2012171002A JP5896297B2 (ja) 2012-08-01 2012-08-01 CVD−SiC成形体およびCVD−SiC成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2014020776A1 true WO2014020776A1 (ja) 2014-02-06

Family

ID=50027498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073413 WO2014020776A1 (ja) 2012-08-01 2012-09-13 SiC成形体およびSiC成形体の製造方法

Country Status (8)

Country Link
US (1) US9975779B2 (ja)
EP (1) EP2881494B1 (ja)
JP (1) JP5896297B2 (ja)
KR (1) KR101818805B1 (ja)
CN (1) CN104508178B (ja)
SG (1) SG11201500717TA (ja)
TW (1) TWI541375B (ja)
WO (1) WO2014020776A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557047A (zh) * 2014-12-31 2015-04-29 台州东新密封有限公司 挤压成型无压烧结碳化硅管材的制备法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546420B1 (en) * 2012-10-08 2017-01-17 Sandia Corporation Methods of depositing an alpha-silicon-carbide-containing film at low temperature
KR101866869B1 (ko) 2016-08-18 2018-06-14 주식회사 티씨케이 SiC 소재 및 SiC 복합 소재
JP2018035009A (ja) * 2016-08-29 2018-03-08 京セラ株式会社 SiC材料およびそれを用いた半導体製造装置用部材
JP2019112288A (ja) * 2017-12-26 2019-07-11 京セラ株式会社 炭化ケイ素部材および半導体製造装置用部材
JP7163756B2 (ja) * 2018-12-21 2022-11-01 住友金属鉱山株式会社 積層体、積層体の製造方法および炭化珪素多結晶基板の製造方法
CN109797460B (zh) * 2019-01-28 2021-07-30 江西嘉捷信达新材料科技有限公司 含铝硼SiC纤维及其超临界流体下的制备方法
JP7155089B2 (ja) * 2019-09-27 2022-10-18 東海カーボン株式会社 多結晶SiC成形体
JP7367497B2 (ja) * 2019-11-29 2023-10-24 住友金属鉱山株式会社 炭化ケイ素多結晶膜の成膜方法、および、炭化ケイ素多結晶基板の製造方法
CN111139454B (zh) * 2019-12-30 2022-05-10 东莞市志橙半导体材料有限公司 一种SiC涂层及其制备方法
CN112522788A (zh) * 2020-10-30 2021-03-19 山东天岳先进科技股份有限公司 一种富氮碳化硅粉料及其制备方法与应用
JP7183358B1 (ja) * 2021-08-04 2022-12-05 昭和電工株式会社 SiCエピタキシャルウェハ及びSiCエピタキシャルウェハの製造方法
EP4343021A1 (en) 2022-07-26 2024-03-27 Tokai Carbon Co., Ltd. Polycrystalline sic molded article and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121311A (ja) * 1997-10-13 1999-04-30 Mitsui Eng & Shipbuild Co Ltd 炭化ケイ素材およびその製造方法並びに炭化ケイ素ウエハ
JP2001220237A (ja) * 2000-02-14 2001-08-14 Asahi Glass Co Ltd 炭化ケイ素体およびその製造方法
JP2002003275A (ja) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd 光不透過性SiC成形体及びその製造方法
JP2002047066A (ja) 2000-08-02 2002-02-12 Tokai Carbon Co Ltd SiC成形体およびその製造方法
JP2002128566A (ja) * 2000-10-16 2002-05-09 Bridgestone Corp 炭化ケイ素焼結体及び電極
JP2005119925A (ja) * 2003-10-20 2005-05-12 Toshiba Ceramics Co Ltd 高比抵抗炭化ケイ素焼結体
JP2006016662A (ja) 2004-07-01 2006-01-19 Tokai Carbon Co Ltd 光不透過性SiC成形体及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419409B2 (ja) 2002-12-25 2010-02-24 住友電気工業株式会社 Cvdエピタキシャル成長方法
US8114505B2 (en) * 2003-12-05 2012-02-14 Morgan Advanced Ceramics, Inc. Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
US20050123713A1 (en) 2003-12-05 2005-06-09 Forrest David T. Articles formed by chemical vapor deposition and methods for their manufacture
US20090220788A1 (en) * 2005-12-07 2009-09-03 Ii-Vi Incorporated Method for synthesizing ultrahigh-purity silicon carbide
JP4469396B2 (ja) * 2008-01-15 2010-05-26 新日本製鐵株式会社 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
KR101266205B1 (ko) * 2008-07-08 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121311A (ja) * 1997-10-13 1999-04-30 Mitsui Eng & Shipbuild Co Ltd 炭化ケイ素材およびその製造方法並びに炭化ケイ素ウエハ
JP2001220237A (ja) * 2000-02-14 2001-08-14 Asahi Glass Co Ltd 炭化ケイ素体およびその製造方法
JP2002003275A (ja) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd 光不透過性SiC成形体及びその製造方法
JP2002047066A (ja) 2000-08-02 2002-02-12 Tokai Carbon Co Ltd SiC成形体およびその製造方法
JP2002128566A (ja) * 2000-10-16 2002-05-09 Bridgestone Corp 炭化ケイ素焼結体及び電極
JP2005119925A (ja) * 2003-10-20 2005-05-12 Toshiba Ceramics Co Ltd 高比抵抗炭化ケイ素焼結体
JP2006016662A (ja) 2004-07-01 2006-01-19 Tokai Carbon Co Ltd 光不透過性SiC成形体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881494A4 *
TSUNENOBU KIMOTO ET AL.: "Incorporation mechanism of N, Al, and B impurities in chemical vapor deposition of SiC", APPLIED PHYSICS LETTERS, vol. 67, no. 16, 1995, pages 2385 - 2387, XP012013821 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557047A (zh) * 2014-12-31 2015-04-29 台州东新密封有限公司 挤压成型无压烧结碳化硅管材的制备法

Also Published As

Publication number Publication date
SG11201500717TA (en) 2015-03-30
CN104508178B (zh) 2016-08-24
EP2881494A1 (en) 2015-06-10
TW201406985A (zh) 2014-02-16
KR20150037761A (ko) 2015-04-08
US20150151975A1 (en) 2015-06-04
TWI541375B (zh) 2016-07-11
JP5896297B2 (ja) 2016-03-30
CN104508178A (zh) 2015-04-08
JP2014031527A (ja) 2014-02-20
EP2881494B1 (en) 2018-10-31
KR101818805B1 (ko) 2018-01-15
US9975779B2 (en) 2018-05-22
EP2881494A4 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5896297B2 (ja) CVD−SiC成形体およびCVD−SiC成形体の製造方法
JP6272360B2 (ja) バナジウムドープ単結晶およびその成長方法
USRE48378E1 (en) Vanadium compensated, SI SiC single crystals of NU and PI type and the crystal growth process thereof
US8361227B2 (en) Silicon carbide single crystals with low boron content
JP5331263B1 (ja) 炭化珪素材料、炭化珪素材料の製造方法
JP2010519773A (ja) 基板上に膜を形成するための方法
JP2001316821A (ja) 低抵抗率炭化珪素
JP2018035009A (ja) SiC材料およびそれを用いた半導体製造装置用部材
JP2005132637A (ja) SiC被覆炭素系材料及びSiC被覆用炭素系材料
JP2002047066A (ja) SiC成形体およびその製造方法
JP2019112288A (ja) 炭化ケイ素部材および半導体製造装置用部材
JP2011074436A (ja) 炭化ケイ素材料
WO2020241700A1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
JP7427848B1 (ja) 多結晶SiC成形体及びその製造方法
JP3857446B2 (ja) SiC成形体
JP2019147996A (ja) 単一CVD−SiC及びその製造方法
WO2010024353A1 (ja) 耐蝕性部材およびその製造方法
JP2019147984A (ja) 炭化ケイ素部材
KR20150123075A (ko) 실리콘 카바이드 성형체 및 그 제조 방법
JP2001302397A (ja) SiC成形体
JP2013514964A (ja) 窒化ケイ素を基材とするルツボ
TW201347032A (zh) 定量示性矽烷之摻雜物的方法以及經塗覆之承熱器
JP2009149497A (ja) 耐蝕性部材
JP2009149496A (ja) 導電性セラミック材料
JP2009170534A (ja) 高温炉の製造方法及びセラミックス部材の純化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035979

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012882269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14418765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE