WO2014020654A1 - 全固体イオン二次電池 - Google Patents

全固体イオン二次電池 Download PDF

Info

Publication number
WO2014020654A1
WO2014020654A1 PCT/JP2012/069284 JP2012069284W WO2014020654A1 WO 2014020654 A1 WO2014020654 A1 WO 2014020654A1 JP 2012069284 W JP2012069284 W JP 2012069284W WO 2014020654 A1 WO2014020654 A1 WO 2014020654A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
solid electrolyte
electrode active
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2012/069284
Other languages
English (en)
French (fr)
Inventor
正 藤枝
拓也 青柳
内藤 孝
純 川治
尚貴 木村
良幸 高森
心 高橋
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2014527829A priority Critical patent/JPWO2014020654A1/ja
Priority to PCT/JP2012/069284 priority patent/WO2014020654A1/ja
Publication of WO2014020654A1 publication Critical patent/WO2014020654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all solid ion secondary battery.
  • the contact area between the active material particles and the solid electrolyte particles is small and the ion conduction resistance between the two is large, sufficient output density and energy density cannot be obtained.
  • the positive electrode active material and the solid electrolyte are hardly sinterable ceramics, and it is difficult to completely sinter them at a low temperature where they do not react.
  • Patent Document 1 in order to increase the contact area between the active material particles and the solid electrolyte, a unipolar electrode composed of a porous structure of the active material particles and the particle binding material, and voids of the porous structure are disclosed.
  • a solid electrolyte battery having a solid electrolyte layer made of an ion conductive material deposited on the surface of the part, another active material filled in the void of the porous structure, and another polar side electrode made of the filled material It is disclosed.
  • An object of the present invention is to improve the energy density and output density of an all-solid ion secondary battery.
  • the present invention is characterized in that in the all-solid-state ion secondary battery in which a solid electrolyte layer is bonded between a positive electrode active material layer and a negative electrode active material layer, the positive electrode active material layer includes a positive electrode
  • the active material particles and the solid electrolyte particles are formed by binding with vanadium oxide glass having ion conductivity
  • the negative electrode active material layer is formed by vanadium oxidation in which the negative electrode active material particles and the solid electrolyte particles have ion conductivity. This is because it is formed by binding with glass.
  • the energy density of the all solid state ion secondary battery can be improved.
  • Example 1 Sectional drawing of the positive electrode / solid electrolyte layer / negative electrode laminated body in Example 1 Sectional drawing of the positive electrode / vanadium oxide glass layer / negative electrode laminated body in Example 3 Sectional drawing of the positive electrode / solid electrolyte layer / negative electrode laminated body in Example 4
  • the positive electrode active material layer is formed by mixing the positive electrode active material particles and the solid electrolyte particles and then binding the both with the vanadium oxide glass.
  • the negative electrode active material layer the negative electrode active material particles and the solid electrolyte particles are bound by vanadium oxide glass.
  • Ions move between the active material particles and the vanadium oxide glass using the surface of the active material particles in contact with the vanadium oxide glass as an ion conduction path. Further, ions move between the vanadium oxide glass and the solid electrolyte particles using the surface of the solid electrolyte particles in contact with the vanadium oxide glass as an ion conduction path. Thereby, a sufficient ion conduction path can be secured between the active material particles and the solid electrolyte particles, and the ion conductivity can be improved. Further, since vanadium oxide glass softens and flows at a low temperature of 500 ° C. or less so that the active material particles and the solid electrolyte particles do not react, a dense sintered body can be easily formed.
  • FIG. 1 shows a cross-sectional view of a main part of an all solid state ion secondary battery according to a first embodiment of the present invention.
  • a positive electrode active material layer 107 formed on the positive electrode current collector 101 and a negative electrode active material layer 109 formed on the negative electrode current collector 106 are joined via a solid electrolyte layer 108.
  • the positive electrode active material layer and the negative electrode active material layer are completely electrically insulated by a solid electrolyte layer.
  • a conductive support agent in order to improve the electroconductivity in the active material layer of each electrode.
  • the conductive auxiliary agent can be omitted.
  • Conductive aids include carbon materials such as graphite, acetylene black, ketjen black, metal powders such as gold, silver, copper, nickel, aluminum, titanium, indium / tin oxide (ITO), titanium oxide, tin oxide And conductive oxides such as zinc oxide and tungsten oxide are preferred.
  • the vanadium oxide glass contains vanadium and at least one of tellurium and phosphorus which are vitrification components. In addition, water resistance can be remarkably improved by adding iron or tungsten. In order to prevent the reaction between the active material particles and the solid electrolyte particles, the softening point of the vanadium oxide glass is preferably 500 ° C. or lower.
  • the amount of vanadium oxide glass added to the active material or solid electrolyte is preferably 10% by volume or more and 40% by volume or less in terms of volume.
  • the volume is 5% by volume or more, the space between the active material particles and the solid electrolyte particles can be sufficiently filled.
  • the volume is 40% by volume or less, the charge / discharge capacity and the charge / discharge rate associated with the decrease in the amount of the active material and the solid electrolytic mass are reduced. Decline can be prevented.
  • the vanadium oxide glass in the positive and negative electrode active material layers.
  • the solid electrolyte layer is formed by binding the solid electrolyte particles with glass, it is necessary to ensure electrical insulation, so the vanadium oxide glass must be amorphous. For this reason, it is effective to apply different types of vanadium oxide glasses to the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer.
  • the positive electrode active material layer and the negative electrode active material layer contain a crystallization component such as lithium or copper, apply a glass that crystallizes after softening, and are a vitrification component to the solid electrolyte layer.
  • the positive electrode active material a known positive electrode active material capable of occluding and releasing lithium ions can be used.
  • a known positive electrode active material capable of occluding and releasing lithium ions can be used.
  • spinel system, olivine system, layered oxide system, solid solution system, silicate system and the like can be mentioned.
  • Vanadium oxide glass can be used as the positive electrode active material, and ionic conductivity and electronic conductivity can be improved by crystallizing at least a part of the glass.
  • a known negative electrode active material capable of occluding and releasing lithium ions can be used.
  • a carbon material typified by graphite an alloy material such as a TiSn alloy or a TiSi alloy, a nitride such as LiCoN, or an oxide such as Li 4 Ti 5 O 12 or LiTiO 4 can be used.
  • Vanadium oxide glass can be used as the negative electrode active material, and ionic conductivity and electronic conductivity can be improved by crystallizing at least a part of the glass.
  • the solid electrolyte is not particularly limited as long as it is a solid and a reforming material that conducts lithium ions, but an incombustible inorganic solid electrolyte is preferable from the viewpoint of safety.
  • lithium halides such as LiCl and LiI
  • sulfide glasses represented by Li 2 S—SiS 2 , Li 3 PO 4 —Li 2 S—SiS 2 , Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3
  • An oxide glass typified by Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O 6 or the like, or a perovskite oxide typified by Li 0.34 La 0.51 TiO 2.94 or the like can be used.
  • the said ion conductive vanadium oxide glass can also be used as a solid electrolyte.
  • the said ion conductive vanadium oxide glass can also be used as a solid electrolyte.
  • the said oxide-type material about a solid electrolyte.
  • vanadium oxide glass Two types of ion-conductive vanadium oxide glasses having different softening points were produced.
  • raw materials vanadium pentoxide (V 2 O 5 ), phosphorus pentoxide (P 2 O 5 ), tellurium dioxide (TeO 2 ) powder, and ferric oxide (Fe 2 O 3 ) were used.
  • V 2 O 5 vanadium pentoxide
  • P 2 O 5 phosphorus pentoxide
  • TeO 2 tellurium dioxide
  • Fe 2 O 3 ferric oxide
  • These raw material powders were put into a platinum crucible and heated and held at 1100 ° C. for 1 hour using an electric furnace. During heating, stirring was performed so that the raw materials in the platinum crucible were uniform. Thereafter, the platinum crucible was taken out from the electric furnace, poured onto a stainless steel plate heated to 150 ° C. in advance, and naturally cooled to obtain vanadium oxide glass.
  • the softening points of Glass A and Glass B measured by differential thermal analysis were 356 ° C. and 345 ° C., respectively. Further, the produced glass was mechanically pulverized so that the average particle size was about 3 ⁇ m.
  • LATP solid electrolyte
  • ethyl cellulose or nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent.
  • This positive electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m, and after heat treatment for removing the solvent and removing the binder, the positive electrode paste was fired at 360 ° C. ⁇ 1 hr in the atmosphere to obtain a positive electrode sheet having a positive electrode active material layer thickness of 10 ⁇ m. This was punched out into a disk shape having a diameter of 14 mm to obtain a positive electrode.
  • This negative electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m, and after heat treatment for removing the solvent and removing the binder, the negative electrode paste was fired in the atmosphere at 360 ° C. ⁇ 1 hr to obtain a negative electrode sheet having a negative electrode active material layer thickness of 10 ⁇ m. This was punched out into a disk shape having a diameter of 14 mm to obtain a negative electrode.
  • the vanadium oxide glass used for the positive electrode active material layer and the vanadium oxide glass used for the negative electrode active material layer are the same, but both are the same as long as the vanadium oxide glass has ion conductivity. It does not have to be of composition. The same applies to the following embodiments.
  • ⁇ Solid electrolyte layer> LATP with an average particle diameter of 3 ⁇ m, which is a solid electrolyte, and the prepared glass B powder were prepared so that the volume ratio was 70:30, and a proper amount of resin binder and solvent was added to the mixed powder to obtain a solid.
  • An electrolyte paste was prepared. After applying this solid electrolyte paste to either the positive electrode layer or the negative electrode layer, and after heat treatment for removing the solvent and removing the binder, the temperature is higher than the softening point of the glass B, 350 ° C. ⁇ 1 hr. Firing was performed in the air to form a solid electrolyte layer having a thickness of 15 ⁇ m. This was punched into a disk shape having a diameter of 15 mm.
  • the solid electrolyte layer is not limited to a solid electrolyte layer formed of a particulate solid electrolyte as in the present embodiment as long as it allows ions to pass therethrough and does not pass electrons. The same applies to the following embodiments.
  • the mixed powder is allowed to collide with the base material in a solid state in supersonic flow with an inert gas without melting or gasifying.
  • AD aerosol deposition method for forming a film by spraying an aerosol obtained by mixing a mixed powder with a gas through a nozzle to the substrate through a nozzle.
  • CS Cold spray
  • AD aerosol deposition
  • a battery manufacturing method by the CS method will be described below.
  • a mixed powder of the same LiCoO 2 powder, glass A powder, LATP powder, and conductive titanium oxide was sprayed onto an aluminum foil having a thickness of 20 ⁇ m to form a positive electrode active material layer having a thickness of 10 ⁇ m.
  • Each powder may be put into a separate feeder and sprayed at the same time.
  • a mixed powder of the same LATP powder and the produced glass A powder or glass B powder was sprayed onto the positive electrode active material layer to form a solid electrolyte layer having a thickness of 15 ⁇ m.
  • the platinum crucible was taken out from the electric furnace, poured onto a stainless steel plate heated to 150 ° C. in advance, and naturally cooled to obtain vanadium oxide glass.
  • the softening point of glass C measured by differential thermal analysis was 390 ° C., and the crystallization start temperature was 434 ° C. Further, the produced glass was mechanically pulverized so that the average particle size was about 3 ⁇ m.
  • ethyl cellulose or nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent.
  • This positive electrode paste is applied to an aluminum foil having a thickness of 20 ⁇ m, heat-treated for removal of the solvent and binder, fired at 400 ° C. ⁇ 1 hr in the atmosphere, and further subjected to heat treatment at 430 ° C. ⁇ 0.5 hr.
  • a positive electrode sheet having a positive electrode active material layer thickness of 10 ⁇ m was obtained.
  • the vanadium oxide glass may be crystallized only partially or entirely. This was punched out into a disk shape having a diameter of 14 mm to obtain a positive electrode.
  • This negative electrode paste is applied to an aluminum foil having a thickness of 20 ⁇ m, heat-treated for removal of the solvent and binder, fired at 400 ° C. ⁇ 1 hr in the air, and further subjected to heat treatment at 430 ° C. ⁇ 0.5 hr to produce crystals.
  • a negative electrode sheet having a negative electrode active material layer thickness of 10 ⁇ m was obtained. This was punched out into a disk shape having a diameter of 14 mm to obtain a negative electrode.
  • ⁇ Solid electrolyte layer> LATP with an average particle diameter of 3 ⁇ m, which is a solid electrolyte, and the prepared glass B powder were prepared so that the volume ratio was 70:30, and a proper amount of resin binder and solvent was added to the mixed powder to obtain a solid.
  • An electrolyte paste was prepared. After applying this solid electrolyte paste to either the positive electrode layer or the negative electrode layer, and after heat treatment for removing the solvent and removing the binder, the temperature is higher than the softening point of the glass B, 350 ° C. ⁇ 1 hr. Firing was performed in the air to form a solid electrolyte layer having a thickness of 15 ⁇ m. This was punched into a disk shape having a diameter of 14 mm.
  • This positive electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m, and after heat treatment for removing the solvent and removing the binder, the positive electrode paste was fired at 360 ° C. ⁇ 1 hr in the atmosphere to obtain a positive electrode sheet having a positive electrode active material layer thickness of 10 ⁇ m. This was punched out into a disk shape having a diameter of 14 mm to obtain a positive electrode.
  • titanium oxide a rutile titanium oxide base material coated with SnO 2
  • a paste prepared by adding appropriate amounts of the resin binder and solvent to glass B powder is applied to either the positive electrode layer or the negative electrode layer, and after heat treatment for removal of the solvent and debinding, 350 ° C. in the atmosphere.
  • the glass B layer was formed by firing at x 1 hr. Then, in order to improve the adhesion at the interface of the positive electrode layer / glass B layer / negative electrode layer, the temperature is higher than the softening point of glass B and lower than the softening point of glass A while pressing this laminate. Firing was performed in the air at 350 ° C. ⁇ 1 hr to sufficiently adhere the interfaces of the layers.
  • FIG. 2 is a cross-sectional view of this laminate, and an amorphous glass layer 207 having a thickness of several ⁇ m is formed between the positive electrode active material layer 204 and the negative electrode active material layer 208, so that The electrical insulation is maintained. That is, instead of the solid electrolyte layer, vanadium oxide glass having ionic conductivity and being amorphous is used.
  • the positive electrode active material particles 202 are bound by vanadium oxide glass 203
  • the negative electrode active material particles 205 are bound by vanadium oxide glass 203.
  • the side surface of the obtained laminate was masked with an insulator, and this was incorporated into a CR2025 type coin battery to produce an all-solid battery.
  • vanadium oxide glass (glass D) to be crystallized was produced.
  • vanadium pentoxide (V 2 O 5 ), lithium oxide (Li 2 O), phosphorus pentoxide (P 2 O 5 ), and ferric oxide (Fe 2 O 3 ) were used.
  • the platinum crucible was taken out from the electric furnace, poured onto a stainless steel plate heated to 150 ° C. in advance, and naturally cooled to obtain vanadium oxide glass.
  • Glass D measured by differential thermal analysis had a first crystallization onset temperature of 315 ° C. and a second crystallization onset temperature of 428 ° C., but no clear softening point was observed. Further, the produced glass was mechanically pulverized so that the average particle size was about 3 ⁇ m.
  • ⁇ Positive electrode> As the positive electrode active material, glass D powder having an average particle diameter of 3 ⁇ m, glass A powder, LATP having an average particle diameter of 3 ⁇ m which is a solid electrolyte, and aciculars which are conductive assistants (short axis: 0.13 ⁇ m, long axis: the conductive titanium oxide (rutile type titanium oxide 1.68) maternal ones coated with SnO 2 conductive layer doped with Sb) and at each volume ratio, 53: 30: 10: 7 become so formulated A proper amount of a resin binder and a solvent was added to the mixed powder to prepare a positive electrode paste.
  • ethyl cellulose or nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent.
  • This positive electrode paste is applied to an aluminum foil having a thickness of 20 ⁇ m, and after the heat treatment for removing the solvent and removing the binder, the second crystallization of the glass D is started at the softening point of the glass A and the first crystallization start temperature of the glass D. Firing was performed in the air at 375 ° C. below the temperature for 2 hours to obtain a positive electrode sheet having a positive electrode active material layer thickness of 10 ⁇ m. This was punched out into a disk shape having a diameter of 14 mm to obtain a positive electrode.
  • ⁇ Negative electrode> As the negative electrode, a lithium metal foil punched into a disk shape having a diameter of 14 mm was used instead of the negative electrode active material layer in the above examples. An alloy of lithium metal and another metal may be used.
  • ⁇ Solid electrolyte layer> LATP with an average particle diameter of 3 ⁇ m, which is a solid electrolyte, and the prepared glass B powder were prepared so that the volume ratio was 70:30, and a proper amount of resin binder and solvent was added to the mixed powder to obtain a solid.
  • An electrolyte paste was prepared. After applying this solid electrolyte paste to either the positive electrode layer or the negative electrode layer, and after heat treatment for removing the solvent and removing the binder, the temperature is higher than the softening point of the glass B, 350 ° C. ⁇ 1 hr. Baking in air. This was punched into a disk shape having a diameter of 14 mm.
  • this laminate is added. While pressing, firing was performed in an inert gas atmosphere at 350 ° C. ⁇ 1 hr, which is higher than the softening point of glass B and lower than the softening point of glass A, to sufficiently adhere the interfaces of the layers.
  • FIG. 3 shows a cross-sectional view of this laminate.
  • a lithium metal negative electrode 305 is used instead of the negative electrode current collector, and a positive electrode active material layer 306 and a solid electrolyte layer 307 are formed between the positive electrode current collector 301 and the lithium metal negative electrode 305.
  • the positive electrode active material particles 302 are bound by vanadium oxide glass 303.
  • the side surface of the obtained laminate was masked with an insulator, and this was incorporated into a CR2025 type coin battery to produce an all-solid battery.
  • LiCoO 2 powder having an average particle diameter of 5 ⁇ m as a positive electrode active material, and polyvinylidene fluoride as a binder, and LATP an average particle diameter of 3 ⁇ m is a solid electrolyte, conductive additive and a needle (minor axis: 0.13 [mu] m,
  • the volume ratio of conductive titanium oxide (major axis: 1.68 ⁇ m) with rutile-type titanium oxide coated with SnO 2 conductive layer doped with Sb is 53: 30: 10: 7, respectively.
  • NMP N-methyl-2-pyrodrine
  • This positive electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m, dried by heating in the atmosphere of 90 ° C. ⁇ 1 hr, and then pressed to obtain a positive electrode sheet having a positive electrode active material layer thickness of 10 ⁇ m. This was punched into a disk shape having a diameter of 14 mm.
  • This negative electrode paste was applied to an aluminum foil having a thickness of 20 ⁇ m, dried by heating in the atmosphere of 90 ° C. ⁇ 1 hr, and then pressed to obtain a negative electrode sheet having a negative electrode active material layer thickness of 10 ⁇ m. This was punched into a disk shape having a diameter of 14 mm.
  • This paste was applied to a polyimide sheet having a thickness of 50 ⁇ m, dried by heating in the atmosphere of 90 ° C. ⁇ 1 hr, and then pressed to obtain a solid electrolyte sheet having a thickness of 15 ⁇ m. This was punched out into a disk shape having a diameter of 14 mm and separated from the polyimide sheet to obtain a solid electrolyte layer.
  • ⁇ Battery> In order to laminate the positive electrode, the solid electrolyte layer, and the negative electrode and improve the adhesion at the interface of the positive electrode layer / solid electrolyte layer / negative electrode layer, a heat treatment in vacuum of 120 ° C. ⁇ 1 hr is performed while pressing the laminate. Thus, the interface of each layer was sufficiently adhered.
  • the side surface of the obtained laminate was masked with an insulator, and this was incorporated into a CR2025 type coin battery to produce an all-solid battery.
  • the all-solid lithium ion secondary battery of this example is superior to the comparative example in the rate characteristics and cycle retention rate of the discharge capacity of the battery. This is because a sufficient ion conduction path is secured between the active material particles and the solid electrolyte particles by filling the gap between the active material particles and the solid electrolyte particles with vanadium oxide glass having ion conductivity.
  • the battery of Example 4 has a particularly large discharge capacity because the capacity of the vanadium oxide glass used as the positive electrode active material is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の目的は、全固体イオン二次電池のエネルギー密度および出力密度を向上させることである。 上記目的を達成するために、本発明は、正極活物質層と負極活物質層との間に固体電解質層が接合された全固体イオン二次電池において、前記正極活物質層は、正極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成され、前記負極活物質層は、負極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成されていることを特徴とする。

Description

全固体イオン二次電池
 本発明は、全固体イオン二次電池に関する。
 近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、電気自動車、ハイブリッド電気自動車等に、不燃性又は難燃性の無機固体電解質を用いた全固体イオン二次電池が用いられている。
 しかし、固体電池においては、活物質粒子と固体電解質粒子との接触面積が小さく、両者間でのイオン伝導抵抗が大きいため、十分な出力密度やエネルギー密度が得られない。また、正極活物質や固体電解質は難焼結性のセラミックスであり、これらが反応しないような低温下で完全に焼結させることは困難である。
 特許文献1では、活物質粒子と固体電解質との接触面積を増大させるために、活物質粒子と粒子結着物質との多孔質構造体から成る一極性側電極と、この多孔質構造体の空隙部表面に被着したイオン伝導性物質から成る固体電解質層と、この多孔質構造体の空隙部に充填された他の活物質と充填物質から成る他の極性側電極とを有する固体電解質電池が開示されている。
特開2001-243984号公報
 しかし、上記特許文献のものは、活物質粒子と固体電解質層との接触面積を増大させることについて、更なる改善の余地がある。
 本発明の目的は、全固体イオン二次電池のエネルギー密度および出力密度を向上させることにある。
 前記課題を解決するために、本発明の特徴は、正極活物質層と負極活物質層との間に固体電解質層が接合された全固体イオン二次電池において、前記正極活物質層は、正極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成され、前記負極活物質層は、負極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成されていることにある。
 本発明によれば、全固体イオン二次電池のエネルギー密度を向上させることができる。
実施例1における正極/固体電解質層/負極積層体の断面図 実施例3における正極/バナジウム酸化物ガラス層/負極積層体の断面図 実施例4における正極/固体電解質層/負極積層体の断面図
 次に、本発明の実施形態(実施例)について、適宜図面を参照しながら詳細に説明する。なお、本発明は、ここで取り上げた複数の実施形態(実施例)の個々に限定されることはなく、適宜組み合わせてもよい。
 全固体電池の出力密度やエネルギー密度向上のためには、正極活物質粒子と固体電解質粒子との間、負極活物質粒子と固体電解質粒子との間において、十分なイオン伝導経路を確保し、イオン伝導性を向上させることが必要である。そこで、活物質粒子と固体電解質粒子とを混合し、イオン伝導性を有するバナジウム酸化物ガラスにより両者の間隙を充たすことを考えた。つまり、正極活物質粒子と固体電解質粒子とを混在させた上で、両者をバナジウム酸化物ガラスで結着することで、正極活物質層が形成されている。また、負極活物質層は、負極活物質粒子と固体電解質粒子とがバナジウム酸化物ガラスで結着されている。バナジウム酸化物ガラスと接触している活物質粒子の表面をイオン伝導経路として、その活物質粒子とバナジウム酸化物ガラスとの間でイオンが移動する。更に、バナジウム酸化物ガラスと接触している固体電解質粒子の表面をイオン伝導経路として、バナジウム酸化物ガラスと固体電解質粒子との間でイオンが移動する。これにより、活物質粒子と固体電解質粒子との間におけるイオン伝導経路を十分確保でき、イオン伝導性を向上させることができる。また、バナジウム酸化物ガラスは活物質粒子と固体電解質粒子とが反応しないような500℃以下の低温で軟化流動するため、緻密な焼結体を容易に形成することができる。
 図1に、本発明の第1の実施形態に係る全固体イオン二次電池の要部の断面図を示す。正極集電体101上に形成された正極活物質層107と、負極集電体106上に形成された負極活物質層109とが、固体電解質層108を介して接合されている。
 なお、正極活物質層と負極活物質層とは固体電解質層により、完全に電気絶縁されている。
 なお、各極の活物質層における導電性向上のために、導電助剤を添加してもよい。しかし、活物質粒子と固体電解質粒子との結着材であるバナジウム酸化物ガラスを結晶化させ、活物質層の導電性を向上させた場合には、導電助剤を省略することも可能である。導電助剤としては、黒鉛、アセチレンブラック、ケッチェンブラック等の炭素材料や金、銀、銅、ニッケル、アルミニウム、チタン等の金属粉、インジウム・錫酸化物(ITO)、チタン酸化物、錫酸化物、亜鉛酸化物、タングステン酸化物等の導電性酸化物等が好ましい。
 バナジウム酸化物ガラスは、バナジウム、及び、ガラス化成分であるテルルと燐の少なくとも1種を含む。この他に鉄やタングステンを添加することにより、耐水性を著しく向上させることができる。また、活物質粒子と固体電解質粒子との反応を防止するために、バナジウム酸化物ガラスの軟化点を500℃以下にすることが好ましい。
 活物質あるいは固体電解質に対するバナジウム酸化物ガラスの添加量は、体積換算で10体積%以上、40体積%以下であることが望ましい。5体積%以上にすると、活物質粒子と固体電解質粒子の間を十分に埋めることができ、40体積%以下にすると、活物質量や固体電解質量の減少に伴う充放電容量や充放電レートの低下を防止できる。
 また、正負極活物質層におけるバナジウム酸化物ガラスの少なくとも一部を結晶化させることにより、イオン伝導性や電子伝導性を向上させることが可能である。しかし、固体電解質粒子をガラスで結着させて固体電解質層を形成する場合は、電気絶縁性を確保する必要があるため、バナジウム酸化物ガラスは非晶質でなければならない。このため、正極活物質層、負極活物質層、固体電解質層の各々に異なる種類のバナジウム酸化物ガラスを適用することが有効である。具体的には、正極活物質層と負極活物質層は、リチウムや銅等の結晶化成分を含有し、軟化後、結晶化するガラスを適用し、固体電解質層へは、ガラス化成分であるテルルや燐の含有量を増加させ、結晶化し難くしたガラスを適用するのが好ましい。なお、バナジウム酸化物ガラスのイオン伝導性を向上させるために、バナジウムガラスにリチウムイオンをプレドープしておくことがより好ましい。
 正極活物質としては、リチウムイオンを吸蔵・放出可能である既知の正極活物質を使用することができる。例えば、スピネル系、オリビン系、層状酸化物系、固溶体系、ケイ酸塩系等が挙げられる。また、バナジウム酸化物ガラスを正極活物質として使用することができ、そのガラスの少なくとも一部を結晶化させることでイオン伝導性や電子伝導性を向上させることができる。
 負極活物質としては、リチウムイオンを吸蔵・放出可能である既知の負極活物質を使用することができる。たとえば、黒鉛に代表される炭素材料や、TiSn合金、TiSi合金などの合金材料、LiCoNなどの窒化物、Li4Ti512、LiTiO4などの酸化物を用いることができる。また、リチウム金属箔を用いてもよい。また、バナジウム酸化物ガラスを負極活物質として使用することができ、そのガラスの少なくとも一部を結晶化させることでイオン伝導性や電子伝導性を向上させることができる。
 固体電解質については、リチウムイオンを伝導する固体で改質材料であれば、特に限定する必要はないが、安全性の観点から不燃性の無機固体電解質が好ましい。例えば、LiCl、LiIなどのハロゲン化リチウム、Li2S-SiS2、Li3PO4-Li2S-SiS2などに代表される硫化物ガラス、Li1.4Al0.4Ti1.6(PO43、Li3.40.6Si0.44、Li226などで代表される酸化物ガラス、Li0.34La0.51TiO2.94などで代表されるペロブスカイト型酸化物などが使用できる。また、前記イオン伝導性のバナジウム酸化物ガラスも固体電解質として使用することができる。なお、ハロゲン化リチウムや硫化物ガラスについては、水や酸素に対する安定性が低いことなどから、固体電解質については、酸化物系の材料を使用するのがより好ましい。
 以下、実施例にて本発明を具体的に説明する。
 <バナジウム酸化物ガラスの作製>
 軟化点の異なる2種類のイオン伝導性のバナジウム酸化物ガラスを作製した。原料として、五酸化バナジウム(V25)、五酸化リン(P25)、二酸化テルル(TeO2)粉末、酸化第二鉄(Fe23)を用いた。軟化点の高いガラスAの原料組成としては、それぞれの原料をモル比でV25:P25:TeO2:Fe23=47:13:30:10とした。また、軟化点の低いガラスBの原料組成としては、モル比でV25:P25:TeO2:Fe23=55:14:22:9とした。これらの原料粉末を白金るつぼに投入し、電気炉を用いて1100℃、1時間加熱保持した。なお、加熱中は、白金るつぼ内の原材料が均一になるように攪拌した。その後、白金るつぼを電気炉から取り出し、あらかじめ150℃に加熱しておいたステンレス板上に流し、これを自然冷却することでバナジウム酸化物ガラスを得た。示差熱分析法により測定したガラスA、ガラスBの軟化点はそれぞれ、356℃、345℃であった。また、作製したガラスを平均粒径が3μm程度になるように機械的に粉砕した。
 <正極>
 正極活物質である平均粒径5μmのLiCoO2粉末と、作製したガラスA粉末と、固体電解質である平均粒径3μmのLi1.5Al0.5Ti1.5(PO43粉末(以下LATPと記述する)と、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して正極ペーストを作製した。なお、樹脂バインダーとしては、エチルセルロースやニトロセルロース、溶剤としてはブチルカルビトールアセテートを用いた。この正極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中360℃×1hrで焼成し、正極活物質層厚さが10μmの正極シートを得た。これを直径14mmの円盤状に打ち抜き、正極とした。
 <負極>
 負極活物質である平均粒径5μmのLi4Ti512粉末と、作製したガラスA粉末と、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して負極ペーストを作製した。この負極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中360℃×1hrで焼成し、負極活物質層厚さが10μmの負極シートを得た。これを直径14mmの円盤状に打ち抜き、負極とした。
 なお、本実施例では正極活物質層に用いるバナジウム酸化物ガラスと負極活物質層に用いるバナジウム酸化物ガラスを同じ物としたが、イオン電導性のあるバナジウム酸化物ガラスであれば、両者は同一組成のものでなくてもよい。以下の実施例についても同様である。
 <固体電解質層> 
 固体電解質である平均粒径3μmのLATPと、作製したガラスB粉末とをそれぞれ体積比で、70:30となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して固体電解質ペーストを作製した。この固体電解質ペーストを正極あるいは負極の電極層のいずれかに塗布した後、脱媒、脱バインダーのための熱処理を施した後、ガラスBの軟化点よりも高い温度である、350℃×1hrで大気中焼成し、厚さ15μmの固体電解質層を形成した。これを直径15mmの円盤状に打ち抜いた。
 固体電解質層は、イオンを通し電子を通さないものであればよく、本実施例のような粒子状の固体電解質で固体電解質層を形成するものに限られない。以下の実施例についても同様である。
 <電池化>
 上記の固体電解質層が形成された電極層と、もう一方の電極層を積層し、正極活物質層/固体電解質層/負極活物質層の界面の密着性を向上させるため、この積層体を加圧しながら、ガラスBの軟化点よりも高く、ガラスAの軟化点よりも低い温度である、350℃×1hrで大気中焼成し、各層の界面を十分密着させた。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
 なお、上記した混合粉末ペーストの塗布、焼成による各層の形成法の代わりに、混合粉末を溶融またはガス化させること無く、不活性ガスと共に超音速流で固相状態のまま基材に衝突させて皮膜を形成するコールドスプレー(CS)法や、混合粉末をガスと混合したエアロゾルを圧力差により生じるガスの流れを利用し、ノズルを通して基板に噴射して皮膜を形成するエアロゾルデポジション(AD)法を適用することもできる。
 CS法による電池作製方法について以下に説明する。上記同様のLiCoO2粉末と、ガラスA粉末と、LATP粉末と、前記導電性酸化チタンとの混合粉末を厚さ20μmのアルミニウム箔上に噴射し、厚さ10μmの正極活物質層を形成させた。なお、各粉末をそれぞれ別のフィーダーに投入し、同時に噴射させてもよい。
 上記同様のLATP粉末と、作製したガラスA粉末あるいはガラスB粉末との混合粉末を正極活物質層上に噴射し、厚さ15μmの固体電解質層を形成させた。
 次に、上記同様のLi4Ti512粉末と、ガラスA粉末と、LATP粉末と、前記導電性酸化チタンとの混合粉末を固体電解質層上に噴射し、厚さ10μmの負極活物質層を形成させた。
 さらに、負極電解質層の上に、アルミニウム粉末を噴射し、厚さ20μmの負極集電体層を形成した。
 <バナジウム酸化物ガラスの作製>
 軟化点を有し、結晶化するイオン伝導性のバナジウム酸化物ガラス(ガラスC)を作製した。原料として、五酸化バナジウム(V25)、五酸化リン(P25)、酸化第二鉄(Fe23)を用いた。それぞれの原料をモル比でV25:P25:Fe23=60:20:20で混合した原料粉末を白金るつぼに投入し、電気炉を用いて1100℃、1時間加熱保持した。なお、加熱中は、白金るつぼ内の原材料が均一になるように攪拌した。その後、白金るつぼを電気炉から取り出し、あらかじめ150℃に加熱しておいたステンレス板上に流し、これを自然冷却することでバナジウム酸化物ガラスを得た。示差熱分析法により測定したガラスCの軟化点は390℃、結晶化開始温度は434℃であった。また、作製したガラスを平均粒径が3μm程度になるように機械的に粉砕した。
 <正極>
 正極活物質である平均粒径5μmのLiCoO2粉末と、作製したガラスC粉末と、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して正極ペーストを作製した。なお、樹脂バインダーとしては、エチルセルロースやニトロセルロース、溶剤としてはブチルカルビトールアセテートを用いた。この正極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中400℃×1hrで焼成後、さらに、430℃×0.5hrの熱処理を施すことにより結晶化させ、正極活物質層厚さが10μmの正極シートを得た。このときバナジウム酸化物ガラスを一部だけ結晶化させても、全て結晶化させてもよい。これを直径14mmの円盤状に打ち抜き、正極とした。
 <負極>
 負極活物質である平均粒径5μmのLi4Ti512粉末と、作製したガラスC粉末と、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して負極ペーストを作製した。この負極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中400℃×1hrで焼成後、さらに、430℃×0.5hrの熱処理を施すことにより結晶化させ、負極活物質層厚さが10μmの負極シートを得た。これを直径14mmの円盤状に打ち抜き、負極とした。
 <固体電解質層> 
 固体電解質である平均粒径3μmのLATPと、作製したガラスB粉末とをそれぞれ体積比で、70:30となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して固体電解質ペーストを作製した。この固体電解質ペーストを正極あるいは負極の電極層のいずれかに塗布した後、脱媒、脱バインダーのための熱処理を施した後、ガラスBの軟化点よりも高い温度である、350℃×1hrで大気中焼成し、厚さ15μmの固体電解質層を形成した。これを直径14mmの円盤状に打ち抜いた。
 <電池化>
 上記の固体電解質層が形成された電極層と、もう一方の電極層を積層し、正極活物質層/固体電解質層/負極活物質層の界面の密着性を向上させるため、この積層体を加圧しながら、ガラスBの軟化点よりも高く、ガラスCの軟化点よりも低い温度である、350℃×1hrで大気中焼成し、各層の界面を十分密着させた。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
 <電池特性評価>
 0.1C、1Cレートでの放電容量を実施例1と比較した結果、0.1Cレートではほぼ同等であったが、1Cレートのものに関しては、若干の放電容量が向上した。これは、バナジウム酸化物ガラスの結晶化に伴い、活物質層の導電性が向上したためである。
 <正極>
 正極活物質である平均粒径5μmのLiCoO2粉末と、作製したガラスA粉末と、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、63:30:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して正極ペーストを作製した。なお、樹脂バインダーとしては、エチルセルロースやニトロセルロース、溶剤としてはブチルカルビトールアセテートを用いた。この正極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中360℃×1hrで焼成し、正極活物質層厚さが10μmの正極シートを得た。これを直径14mmの円盤状に打ち抜き、正極とした。
 <負極>
 負極活物質である平均粒径5μmのLi4Ti512粉末と、作製したガラスA粉末と、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、63:30:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して負極ペーストを作製した。この負極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、大気中360℃×1hrで焼成し、負極活物質層厚さが10μmの負極シートを得た。これを直径14mmの円盤状に打ち抜き、負極とした。
 <電池化>
 上記の正極あるいは負極の電極層のいずれかに、ガラスB粉末に前記樹脂バインダーと溶剤とを適量添加して作製したペーストを塗布し、脱媒、脱バインダーのための熱処理後に、大気中350℃×1hrで焼成しガラスB層を形成した。その後、正極層/ガラスB層/負極層の界面の密着性を向上させるため、この積層体を加圧しながら、ガラスBの軟化点よりも高く、ガラスAの軟化点よりも低い温度である、350℃×1hrで大気中焼成し、各層の界面を十分密着させた。図2はこの積層体の断面図であるが、正極活物質層204と負極活物質層208との間に、厚さ数μmの非晶質のガラス層207が形成することで、正負極間の電気絶縁性は保たれている。即ち、固体電解質層の替わりにイオン電導性を有し、非晶質であるバナジウム酸化物ガラスを用いている。正極活物質粒子202はバナジウム酸化物ガラス203で結着され、負極活物質粒子205はバナジウム酸化物ガラス203で結着されている。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
 <電池特性評価>
 0.1C、1Cレートでの放電容量を実施例1と比較した結果、0.1Cレートでは若干、容量が向上したが、1Cレートではほぼ同等の容量が得られた。
 <バナジウム酸化物ガラスの作製>
 結晶化するイオン伝導性のバナジウム酸化物ガラス(ガラスD)を作製した。原料として、五酸化バナジウム(V25)、酸化リチウム(Li2O)、五酸化リン(P25)、酸化第二鉄(Fe23)を用いた。それぞれの原料をモル比でV25:Li2O:P25:Fe23=70.3:10.7:9:10で混合した原料粉末を白金るつぼに投入し、電気炉を用いて1100℃、1時間加熱保持した。なお、加熱中は、白金るつぼ内の原材料が均一になるように攪拌した。その後、白金るつぼを電気炉から取り出し、あらかじめ150℃に加熱しておいたステンレス板上に流し、これを自然冷却することでバナジウム酸化物ガラスを得た。示差熱分析法により測定したガラスDの第一結晶化開始温度は315℃、第二結晶化開始温度は428℃であったが、明瞭な軟化点は認められなかった。また、作製したガラスを平均粒径が3μm程度になるように機械的に粉砕した。
 <正極>
 正極活物質として、平均粒径3μmのガラスD粉末と、ガラスA粉末と、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して正極ペーストを作製した。なお、樹脂バインダーとしては、エチルセルロースやニトロセルロース、溶剤としてはブチルカルビトールアセテートを用いた。この正極ペーストを厚さ20μmのアルミニウム箔に塗布し、脱媒、脱バインダーのための熱処理後に、ガラスAの軟化点およびガラスDの第一結晶化開始温度以上、ガラスDの第二結晶化開始温度未満の375℃で2時間大気中で焼成し、正極活物質層厚さが10μmの正極シートを得た。これを直径14mmの円盤状に打ち抜き、正極とした。
 <負極>
 負極としては、上記実施例における負極活物質層に替えて、直径14mmの円盤状に打ち抜いたリチウム金属箔を用いた。リチウム金属と他の金属との合金を用いてもよい。
 <固体電解質層> 
 固体電解質である平均粒径3μmのLATPと、作製したガラスB粉末とをそれぞれ体積比で、70:30となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して固体電解質ペーストを作製した。この固体電解質ペーストを正極あるいは負極の電極層のいずれかに塗布した後、脱媒、脱バインダーのための熱処理を施した後、ガラスBの軟化点よりも高い温度である、350℃×1hrで大気中焼成した。これを直径14mmの円盤状に打ち抜いた。
 <電池化>
 上記の固体電解質層が形成された電極層と、もう一方の電極層を積層し、正極活物質層/固体電解質層/負極活物質層の界面の密着性を向上させるため、この積層体を加圧しながら、ガラスBの軟化点よりも高く、ガラスAの軟化点よりも低い温度である、350℃×1hrで不活性ガス雰囲気中で焼成し、各層の界面を十分密着させた。図3にこの積層体の断面図を示す。負極集電体の替わりにリチウム金属負極305とし、正極集電体301とリチウム金属負極305との間に、正極活物質層306と固体電解質層307とが形成されている。正極活物質粒子302はバナジウム酸化物ガラス303で結着されている。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
[比較例]
 <正極>
 正極活物質である平均粒径5μmのLiCoO2粉末と、バインダーであるポリフッ化ビニリデンと、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、さらに、N-メチル-2-ピロドリン(NMP)を適量添加して正極ペーストを作製した。この正極ペーストを厚さ20μmのアルミニウム箔に塗布し、90℃×1hrの大気中加熱による乾燥後、プレスし、正極活物質層厚さが10μmの正極シートを得た。これを直径14mmの円盤状に打ち抜いた。
 <負極層>
 負極活物質である平均粒径5μmのLi4Ti512粉末と、バインダーであるポリフッ化ビニリデンと、固体電解質である平均粒径3μmのLATPと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンを母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、五三:30:10:7となるように調合し、さらに、NMPを適量添加して負極ペーストを作製した。この負極ペーストを厚さ20μmのアルミニウム箔に塗布し、90℃×1hrの大気中加熱による乾燥後、プレスし、負極活物質層厚さが10μmの負極シートを得た。これを直径14mmの円盤状に打ち抜いた。
 <固体電解質層>
 固体電解質である平均粒径3μmのLATPと、バインダーであるポリフッ化ビニリデンとをそれぞれ体積比で、70:30となるように調合し、さらに、NMPを適量添加して固体電解質ペーストを作製した。このペーストを厚さ50μmのポリイミドシートに塗布し、90℃×1hrの大気中加熱による乾燥後、プレスし、厚さ15μmの固体電解質シートを得た。これを直径14mmの円盤状に打ち抜き、ポリイミドシートから分離して固体電解質層とした。
 <電池化>
 上記の正極、固体電解質層、負極を積層し、正極層/固体電解質層/負極層の界面の密着性を向上させるため、この積層体を加圧しながら、120℃×1hrの真空中熱処理をして各層の界面を十分密着させた。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
 <電池特性評価>
 実施例1、実施例4、比較例で作製した電池について、0.1C、1Cレートでの放電容量を測定した。その結果を表1に示す。
 電池の放電容量のレート特性およびサイクル維持率において、本実施例の全固体リチウムイオン二次電池の方が比較例よりも優れていることが明らかになった。これはイオン伝導性を有するバナジウム酸化物ガラスで活物質粒子と固体電解質粒子との間隙を充たすことによって、両者間で十分なイオン伝導経路が確保されたことに起因している。また実施例4の電池では特に放電容量が大きいが、正極活物質として用いたバナジウム酸化物ガラスの容量が大きいためである。
Figure JPOXMLDOC01-appb-T000001
 101、201、301 正極集電体
 102、202、302 正極活物質粒子
 103、203、303 バナジウム酸化物ガラス
 104、304 固体電解質粒子
 105、205 負極活物質粒子
 106、206 負極集電体
 107、204、306 正極活物質層
 108、307 固体電解質層
 109、208 負極活物質層
 207 ガラス層
 305 リチウム金属負極

Claims (9)

  1.  正極活物質層と負極活物質層との間に固体電解質層が接合された全固体イオン二次電池において、
     前記正極活物質層は、正極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成され、
     前記負極活物質層は、負極活物質粒子と固体電解質粒子とがイオン電導性を有するバナジウム酸化物ガラスで結着されて形成されていることを特徴とする全固体イオン二次電池。
  2.  請求項1において、前記固体電解質層は、固体電解質粒子が非晶質のイオン電導性を有するバナジウム酸化物ガラスで結着されて形成されていることを特徴とする全固体イオン二次電池。
  3.  請求項1において、前記固体電解質層および前記固体電解質粒子は、非晶質のイオン電導性を有するバナジウム酸化物ガラスで形成されていることを特徴とする全固体イオン二次電池。
  4.  請求項1において、前記イオン伝導性を有するバナジウム酸化物ガラスはテルルと燐の少なくとも1種を含むことを特徴とする全固体イオン二次電池。
  5.  請求項1において、前記イオン伝導性を有するバナジウム酸化物ガラスは軟化点が500℃以下であることを特徴とする全固体イオン二次電池。
  6.  請求項1において、前記イオン伝導性を有するバナジウム酸化物ガラスの少なくとも一部が結晶化していることを特徴とする全固体イオン二次電池。
  7.  請求項1において、前記活物質粒子がイオン電導性を有するバナジウム酸化物ガラスで形成されることを特徴とする全固体イオン二次電池。
  8.  請求項7において、前記活物質粒子の少なくとも一部が結晶化していることを特徴とする全固体イオン二次電池。
  9.  請求項1において、前記負極活物質層に替えてリチウム金属またはリチウム合金である負極を用いることを特徴とするイオン二次電池。
PCT/JP2012/069284 2012-07-30 2012-07-30 全固体イオン二次電池 WO2014020654A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014527829A JPWO2014020654A1 (ja) 2012-07-30 2012-07-30 全固体イオン二次電池
PCT/JP2012/069284 WO2014020654A1 (ja) 2012-07-30 2012-07-30 全固体イオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069284 WO2014020654A1 (ja) 2012-07-30 2012-07-30 全固体イオン二次電池

Publications (1)

Publication Number Publication Date
WO2014020654A1 true WO2014020654A1 (ja) 2014-02-06

Family

ID=50027387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069284 WO2014020654A1 (ja) 2012-07-30 2012-07-30 全固体イオン二次電池

Country Status (2)

Country Link
JP (1) JPWO2014020654A1 (ja)
WO (1) WO2014020654A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132845A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 全固体電池
WO2015147279A1 (ja) * 2014-03-28 2015-10-01 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP2015204179A (ja) * 2014-04-14 2015-11-16 株式会社日立製作所 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2015220011A (ja) * 2014-05-15 2015-12-07 富士通株式会社 固体電解質構造体、及びその製造方法、並びに全固体電池
JP2016066584A (ja) * 2014-05-09 2016-04-28 ソニー株式会社 電極およびその製造方法、電池、ならびに電子機器
WO2017104405A1 (ja) * 2015-12-16 2017-06-22 富士フイルム株式会社 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018092434A1 (ja) * 2016-11-17 2018-05-24 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018123479A1 (ja) * 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018142439A (ja) * 2017-02-27 2018-09-13 富士通株式会社 全固体電池、及びその製造方法、並びに接合材
CN113471517A (zh) * 2020-03-31 2021-10-01 本田技研工业株式会社 全固态电池及其制造方法
US20220115661A1 (en) * 2019-01-25 2022-04-14 Semiconductor Energy Laboratory Co., Ltd. All-solid-state battery and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277119A (ja) * 1999-03-26 2000-10-06 Kyocera Corp リチウム電池
JP2000340261A (ja) * 1999-04-07 2000-12-08 Hydro Quebec LiPO3による複合処理
JP2001126757A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム電池
JP2011014373A (ja) * 2009-07-02 2011-01-20 Hitachi Powdered Metals Co Ltd 導電性材料及びこれを用いたLiイオン二次電池用正極材料
JP2011119141A (ja) * 2009-12-04 2011-06-16 Sumitomo Electric Ind Ltd 非水電解質電池用正極並びにその製造方法および非水電解質電池
JP2011119263A (ja) * 2009-12-04 2011-06-16 Schott Ag バッテリ電極用の材料、これを含有したバッテリ電極、ならびにこれらの電極を具備したバッテリ、およびバッテリ電極用の材料の調製方法
JP2011241133A (ja) * 2010-05-21 2011-12-01 Hitachi Ltd 結晶化ガラスとその製法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854985B2 (ja) * 2001-07-18 2006-12-06 財団法人北九州産業学術推進機構 バナジン酸塩ガラス及びバナジン酸塩ガラスの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277119A (ja) * 1999-03-26 2000-10-06 Kyocera Corp リチウム電池
JP2000340261A (ja) * 1999-04-07 2000-12-08 Hydro Quebec LiPO3による複合処理
JP2001126757A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム電池
JP2011014373A (ja) * 2009-07-02 2011-01-20 Hitachi Powdered Metals Co Ltd 導電性材料及びこれを用いたLiイオン二次電池用正極材料
JP2011119141A (ja) * 2009-12-04 2011-06-16 Sumitomo Electric Ind Ltd 非水電解質電池用正極並びにその製造方法および非水電解質電池
JP2011119263A (ja) * 2009-12-04 2011-06-16 Schott Ag バッテリ電極用の材料、これを含有したバッテリ電極、ならびにこれらの電極を具備したバッテリ、およびバッテリ電極用の材料の調製方法
JP2011241133A (ja) * 2010-05-21 2011-12-01 Hitachi Ltd 結晶化ガラスとその製法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132845A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 全固体電池
US10297859B2 (en) 2014-03-28 2019-05-21 Fujifilm Corporation All-solid-state secondary battery, solid electrolyte composition and electrode sheet for batteries used in the same, and manufacturing method of electrode sheet for batteries and all-solid-state secondary battery
WO2015147279A1 (ja) * 2014-03-28 2015-10-01 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP2015191864A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに全固体二次電池の製造方法
JP2015204179A (ja) * 2014-04-14 2015-11-16 株式会社日立製作所 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2016066584A (ja) * 2014-05-09 2016-04-28 ソニー株式会社 電極およびその製造方法、電池、ならびに電子機器
JP2015220011A (ja) * 2014-05-15 2015-12-07 富士通株式会社 固体電解質構造体、及びその製造方法、並びに全固体電池
WO2017104405A1 (ja) * 2015-12-16 2017-06-22 富士フイルム株式会社 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
US10693190B2 (en) 2015-12-16 2020-06-23 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JPWO2017104405A1 (ja) * 2015-12-16 2018-09-20 富士フイルム株式会社 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018092434A1 (ja) * 2016-11-17 2018-05-24 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018123479A1 (ja) * 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JPWO2018123479A1 (ja) * 2016-12-27 2019-10-31 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP7009390B2 (ja) 2016-12-27 2022-01-25 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018142439A (ja) * 2017-02-27 2018-09-13 富士通株式会社 全固体電池、及びその製造方法、並びに接合材
US20220115661A1 (en) * 2019-01-25 2022-04-14 Semiconductor Energy Laboratory Co., Ltd. All-solid-state battery and manufacturing method thereof
CN113471517A (zh) * 2020-03-31 2021-10-01 本田技研工业株式会社 全固态电池及其制造方法
JP2021163579A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 全固体電池及びその製造方法
US11817549B2 (en) 2020-03-31 2023-11-14 Honda Motor Co., Ltd. All-solid-state battery and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2014020654A1 (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2014020654A1 (ja) 全固体イオン二次電池
JP5987103B2 (ja) 全固体イオン二次電池
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
WO2014141456A1 (ja) 固体電解質及びそれを用いた全固体型イオン二次電池
US8808407B2 (en) Method of manufacturing a solid lithium ion secondary battery with an electrolyte layer and/or positive electrode layer containing a crystallite having a lithium ion conducting property
JP5484928B2 (ja) 全固体電池
JP5312969B2 (ja) リチウムイオン二次電池の製造方法
JP6240306B2 (ja) リチウム二次電池
US10530015B2 (en) All-solid-state lithium secondary battery and method for producing the same
JP5731278B2 (ja) 全固体リチウムイオン電池
JP5551542B2 (ja) 全固体電池および全固体電池の製造方法
TWI453973B (zh) Lithium ion secondary battery and manufacturing method thereof
WO2015037270A1 (ja) 固体電解質及びそれを用いた全固体型イオン二次電池
JP2016201310A (ja) 全固体リチウム二次電池
JP2011165410A (ja) 全固体リチウムイオン二次電池及びその製造方法
JPWO2008059987A1 (ja) 全固体電池用の固体電解質構造体、全固体電池、及びこれらの製造方法
JP4575487B2 (ja) リチウムイオン二次電池及びその製造方法
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2020184407A (ja) 全固体電池
WO2014170998A1 (ja) 全固体リチウムイオン二次電池
JPWO2018225494A1 (ja) 全固体ナトリウムイオン二次電池
JP2018170189A (ja) 全固体型二次電池
JP6578743B2 (ja) 電極の製造方法
JP2017168282A (ja) 電極複合体、電池、電極複合体の製造方法及び電池の製造方法
JP6102615B2 (ja) 負極活物質及びそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882200

Country of ref document: EP

Kind code of ref document: A1