WO2014019335A1 - 上行控制信息uci的传输方法和设备 - Google Patents

上行控制信息uci的传输方法和设备 Download PDF

Info

Publication number
WO2014019335A1
WO2014019335A1 PCT/CN2013/000870 CN2013000870W WO2014019335A1 WO 2014019335 A1 WO2014019335 A1 WO 2014019335A1 CN 2013000870 W CN2013000870 W CN 2013000870W WO 2014019335 A1 WO2014019335 A1 WO 2014019335A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
downlink carrier
current subframe
bits
bit
Prior art date
Application number
PCT/CN2013/000870
Other languages
English (en)
French (fr)
Inventor
高雪娟
林亚男
司倩倩
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/419,086 priority Critical patent/US9497742B2/en
Priority to JP2015524598A priority patent/JP5990644B2/ja
Priority to EP13826279.5A priority patent/EP2882127B1/en
Priority to ES13826279.5T priority patent/ES2657919T3/es
Priority to KR1020157005585A priority patent/KR101739763B1/ko
Publication of WO2014019335A1 publication Critical patent/WO2014019335A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for transmitting uplink control information UCI.
  • Carrier Aggregation (CA) technology is introduced to implement multiple consecutive continuous evolutionary Node Bs (eNBs) under multiple evolved Node Bs (eNBs). Or the discontinuous carriers are aggregated together and serve the user equipment (User Equipment, UE, ie, the terminal equipment).
  • UE User Equipment
  • UCI Uplink Control Information
  • the periodic CSI includes: RI (Rank Indicator) information, CQI (Channel Quality Indicator) information, PMI (Precoding Matrix Indicator) information, and PTI (Precoder Type Indication, Pre-PTI) Encoding type indication) information.
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • PTI Precoder Type Indication, Pre-PTI
  • a PUCCH (Physical Uplink Control Channel) format 3 is defined for transmitting multi-bit ACK/NACK information of multiple aggregated carriers.
  • PUCCH format 3 has a maximum transmission capacity of 22 bits and can support up to 20 bits of ACK/NACK and 1-bit SR joint code transmission.
  • the ACK/NACK information of the multi-carrier is not supported and the periodic CSI is transmitted simultaneously on the PUCCH. If the ACK/NACK and the periodic CSI of the multi-carrier are simultaneously present in the current subframe, the ACK/NACK is transmitted only on the PUCCH. , discard CSI.
  • CSI uses PUCCH format 2/2a/2b for simultaneous transmission. If there are multiple carriers in the current subframe, and the CSI needs to be fed back, the CSI of the carrier with a high CSI Reporting Type priority is selected according to the pre-defined CSI reporting type priority, wherein the highest priority Reporting Types are type 3, 5, 6, and 2a, followed by type 2, 2b, 2c, and 4.
  • the lowest priority Reporting Types are type 1 and la, and each CSI reporting type has a corresponding CSI in different reporting modes (Reporting Mode).
  • the reported content and the bit are as shown in Table 1.
  • Each active carrier of the UE reports only one reporting type according to the currently configured reporting type and specific status in one uplink subframe. If multiple carriers have the same Reporting Type priority at the same time, the CSI of the reported minimum carrier is further selected according to the carrier number.
  • Table 1 Contents and ratios of CSI reporting corresponding to CSI reporting type in different reporting modes
  • Sub-ba 8 antenna ports RI 1 NA 8+L NA NA nd CQI 8 antenna ports 1 ⁇ RI ⁇ 5 NA 9+L NA NA la
  • Bits/BP indicates the number of reported bits per Bandwidth Part; CQI/PMI is divided into Wideband CQI/PMI and Sub-band CQI/PMI; antenna ports are antenna ports; layer is transmission
  • the spatial multiplexing indicates spatial multiplexing; NA indicates that the reporting type is not supported in the corresponding reporting mode; L is the sub-band identification information of the selected sub-band, and the maximum is 2 bits.
  • the UCI transmission enhancement study is carried out to avoid the excessive drop of CSI and affect the downlink scheduling of the eNB.
  • the PUCCH format 3 is also used to simultaneously transmit multi-carrier ACK/NACK and 1 carrier.
  • the periodic CSI when there is an SR, can also support simultaneous transmission with a 1-bit SR.
  • Embodiments of the present invention provide a UCI transmission method and device, which solve the existing technical methods.
  • the specific transmission bits of ACK/NACK and CSI cannot be accurately determined in the case, and thus the problem of ACK/NACK and CSI cannot be transmitted simultaneously without guaranteeing that the maximum number of bearers is exceeded.
  • an embodiment of the present invention provides a method for transmitting uplink control information UCI, including at least the following steps:
  • the terminal device generates a first type of UCI that needs to be transmitted in the current subframe
  • the terminal device generates, according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first UCI, a second UCI that needs to be transmitted in the current subframe, where the second UCI
  • the number of transmission bits does not exceed the difference between the maximum number of bits in which the UCI simultaneously transmits a plurality of UCIs in the current subframe and the number of transmission bits of the first type of UCI;
  • the terminal device transmits the generated first UCI and second UCI on the corresponding channel resource in the current subframe.
  • an embodiment of the present invention further provides a terminal device, including:
  • a first generation module configured to generate a first type of UCI that needs to be transmitted in the current subframe
  • a second generation module configured to: generate, according to a number of threshold bits simultaneously transmitted by the UCI in the current subframe, and the first generation module
  • the second UCI is transmitted in the current subframe, and the number of transmission bits of the second UCI does not exceed the number of threshold bits simultaneously transmitted by the UCI in the current subframe.
  • an embodiment of the present invention further provides a UCI transmission method, including the following Steps:
  • an embodiment of the present invention further provides a base station, including:
  • a first determining module configured to determine a first type that the terminal device needs to transmit in the current subframe
  • a second determining module configured to determine, according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first UCI determined by the first determining module, that the terminal device needs to be transmitted in the current subframe The number of transmission bits of the second type of UCI, wherein the number of transmission bits of the second UCI does not exceed the difference between the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first type of UCI;
  • a receiving module configured to transmit, according to the first determining module, the number of transmission bits of the first type of UCI and the second type of UCI determined by the second determining module, on the corresponding channel resource in the current subframe The number of bits receives the first UCI and the second UCI transmitted by the terminal device.
  • an ACK/NACK and a ACK/NACK are simultaneously transmitted on a channel resource corresponding to a current subframe.
  • Periodic CSI method based on the current subframe The number of threshold bits transmitted simultaneously in the UCI, and the number of transmission bits of the first UCI in the current subframe, dynamically determining the number of transmission bits of the second UCI transmitted simultaneously with the first UCI to ensure simultaneous transmission of UCI bits.
  • FIG. 1 is a schematic flowchart diagram of a UCI transmission method according to an embodiment of the present invention.
  • 2A is a flow chart showing a processing method of a terminal device side in the first embodiment of the present invention.
  • FIG. 2B is a schematic flowchart of a first manner in which a terminal device side determines CSI to be transmitted in a current subframe according to the first embodiment of the present invention.
  • 2C is a schematic flowchart of a second manner in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 2D is a schematic flowchart of a third mode in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 2E is a schematic flowchart of a fourth manner in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 2F is a schematic flowchart of a fifth mode in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 2G is a schematic flowchart of a sixth mode in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 2H is a schematic flowchart of a seventh mode in which the terminal device side determines the CSI to be transmitted in the current subframe according to the first embodiment of the present invention.
  • 21 is a terminal device side determined to need to transmit in a current subframe according to the first embodiment of the present invention.
  • FIG. 3A is a flowchart of a method for processing a base station side according to a second embodiment of the present invention.
  • FIG. 3B is a schematic flowchart diagram of a first manner of determining, by the base station side, the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3C is a schematic flowchart of a second manner in which the base station side determines the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3D is a schematic flow chart showing a third manner in which the base station side determines the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3E is a schematic flowchart of a fourth manner of determining, by the base station side, the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3F is a schematic flowchart of a fifth manner of determining, by the base station side, the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3G is a schematic flowchart diagram of a sixth manner of determining, by the base station side, the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • FIG. 3H is a schematic flowchart diagram of a seventh manner of determining, by the base station side, the number of transmission bits of the second UCI in the second embodiment of the present invention.
  • Figure 31 is a flow chart showing the eighth mode of determining the number of transmission bits of the second UCI by the base station side in the second embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for processing a terminal device side according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart of a processing method on a base station side in a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the maximum number of bearers in PUCCH format 3 is 22. According to Table 1, the maximum number of CSIs per carrier is 11. When ACK/NACK and periodic CSI are transmitted, how to determine the specific ACK/NACK and CSI. It is a problem that needs to be solved to transmit bits to ensure that the maximum number of bearer bits of format3 is not exceeded, but no clear solution has been proposed in the prior art.
  • PUCCH format 3 is used to simultaneously transmit ACK/NACK information of multiple aggregated carriers and periodic CSI of one carrier, but at the same time, it is not clear at the time of transmission. Bearer bit division method for ACK/NACK and CSI.
  • the embodiment of the present invention provides a UCI transmission method, for a UE that supports a PUCCH format3 transmission scheme and supports multi-carrier ACK/NACK and periodic CSI to be simultaneously transmitted on a PUCCH, according to UCI in the current subframe.
  • the number of consecutively transmitted threshold bits A, and the number of transmission bits of the first type of UCI in the current subframe dynamically determine the number of transmission bits of the second UCI transmitted simultaneously with the first type of UCI, that is, dynamically determine that the current subframe is simultaneously
  • the number of transmitted ACK/NACK transmission bits and the number of CSI transmission bits are such that the sum of the number of transmission bits does not exceed A.
  • FIG. 1 is a schematic flowchart of a method for transmitting uplink control information UCI according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S101 The terminal device generates a first type of UCI that needs to be transmitted in the current subframe.
  • the first UCI is ACK/NACK
  • the second UCI is CSI
  • the first UCI is In the case of CSI
  • the second UCI is ACK/NACK.
  • the first type of UCI is ACK/NACK
  • the second type of UCI is
  • step S101 is specifically as follows:
  • the terminal device determines the number of transmission bits of the ACK/NACK to be generated according to the number of configured carriers N, the transmission mode of each configured carrier, and the number of downlink subframes on each carrier that need to perform ACK/NACK feedback in the current subframe. For:
  • the terminal device generates an ACK/NACK of a corresponding number of transmission bits that need to be transmitted in the current subframe
  • B is the number of transmission bits of the ACK/NACK that need to be generated by the terminal device
  • the value rules of ⁇ specifically include:
  • M i represents the number of downlink subframes that the current carrier needs to perform ACK/NACK feedback in the current subframe, and the value rule is specifically:
  • M l for the frequency division multiplexing FDD system, M l , for the time division multiplexing TDD system, different aggregation carriers The corresponding values are the same or different.
  • Application scenario 2 The first type of UCI is CSI, and the second type of UCI is ACK/NACK.
  • step S101 is specifically as follows: The terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number;
  • the terminal device the downlink carrier CSI feedback report type corresponding to the actual number of bits needed as c rcal CSI transmission number of bits transmitted in the current subframe, the terminal device, the downlink carrier as the CSI bit C rcal
  • the CSI needs to be transmitted in the current subframe; or, the terminal device uses the maximum number of feedback bits c type — max corresponding to the CSI reporting type of the downlink carrier as the number of CSI transmission bits transmitted by the terminal device in the current subframe.
  • the terminal device supplements the c type — max — c rcal bit after the actual CSI feedback information of the downlink carrier.
  • the terminal device uses the C calcal bit CSI of the downlink carrier as the CSI that needs to be transmitted in the current subframe.
  • the placeholder information is a fixed value pre-agreed by the terminal device and the base station, and may be
  • Step S102 The terminal device generates a second UCI that needs to be transmitted in the current subframe according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first type of UCI.
  • the number of transmission bits of the second type of UCI does not exceed the difference between the number of threshold bits A transmitted simultaneously by the UCI in the current subframe and the number of transmission bits of the first type of UCI.
  • the threshold number A is a pre-agreed value or a value notified by the high layer signaling or the physical downlink control channel PDCCH signaling, where A is a positive integer, and A is used in the current subframe.
  • the maximum number of bearers of the uplink transmission scheme for simultaneously transmitting ACK/NACK feedback information and CSI feedback information, or the maximum bearing of the uplink transmission scheme described by A The difference between the number of bits carried and the number of SR bits.
  • step S101 corresponding to the two application scenarios in step S101, there are corresponding differences in the processing of this step, and the specific description is as follows:
  • the first type of UCI is ACK/NACK
  • the second type of UCI is
  • step S102 can be specifically divided into the following methods:
  • the terminal device determines a downlink carrier set in which the number of CSI actual feedback bits in the downlink carrier in which the CSI feedback exists in the current subframe does not exceed AB bits, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, and B represents the The number of transmission bits of the ACK/NACK generated by the terminal device;
  • the terminal device selects one downlink carrier in the downlink carrier set according to the CSI report type priority and/or the carrier number, generates Crcal bit actual CSI feedback information of the downlink carrier, and selects the selected downlink carrier C.
  • the rcal bit CSI is used as the CSI that the terminal device needs to transmit in the current subframe;
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • Step A The terminal device selects one downlink carrier in a downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B The terminal device determines whether the number of CSI feedback bits of the selected downlink carrier exceeds AB bits, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, and B represents the generated by the terminal device.
  • A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe
  • B represents the generated by the terminal device.
  • the terminal device If the determination result is no, the terminal device generates a CRr bit of the downlink carrier.
  • the CSI feedback information, and the C calcal bit CSI of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe;
  • the terminal device determines that the CSI is not transmitted in the current subframe.
  • the terminal device removes the step in the downlink carrier set
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • the terminal device determines that the maximum number of feedback bits corresponding to the CSI reporting type in the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the AB, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, B Indicates the number of transmission bits of the ACK/NACK generated by the terminal device;
  • the terminal device selects one downlink carrier in the downlink carrier set according to the CSI report type priority and/or the carrier number, and determines that the number of transmission bits of the CSI that the terminal device needs to transmit in the current subframe is the downlink.
  • the terminal device When the actual feedback bit number c rcal of the CSI reporting type corresponding to the downlink carrier is less than c type — max , the terminal device supplements c type — max ⁇ after the actual CSI feedback information of the CR carrier of the downlink carrier. C rcal bit occupancy information, and will be added after the placeholder information
  • C type _ max bit CSI is used as the CSI that the terminal device needs to transmit in the current subframe.
  • the actual feedback bit number c rcal of the CSI reporting type corresponding to the downlink carrier is equal to
  • the terminal device uses the Cr eal specific CSI feedback information of the downlink carrier as the CSI that needs to be transmitted in the current subframe.
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • Step A The terminal device selects one downlink carrier in a downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B The terminal device determines whether the maximum number of feedback bits C type — max corresponding to the “3 ⁇ 4 type” of the downlink carrier exceeds the AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, B Indicates the number of transmission bits of the ACK/NACK generated by the terminal device;
  • the terminal device determines that the number of transmission bits of the CSI to be transmitted in the current subframe is the maximum number of feedback bits C type _ max corresponding to the CSI reporting type of the downlink carrier, where the downlink carrier
  • the terminal device supplements the place information of the C type — max — C rcal bit after the actual CSI feedback information of the CR carrier of the downlink carrier.
  • the terminal device uses the actual CSI of the CR Calbit bit of the downlink carrier as the CSI that needs to be transmitted in the current subframe;
  • the terminal device determines that the CSI is not transmitted in the current subframe.
  • the terminal device removes the step in the downlink carrier set
  • the terminal device determines that CSI is not transmitted in the current subframe. Way five
  • Step A The terminal device selects one downlink carrier in a downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B The terminal device determines whether the minimum feedback bit number C type corresponding to the type of the downlink carrier 81 exceeds the AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, B Indicates the number of transmission bits of the ACK/NACK generated by the terminal device;
  • the terminal apparatus determines that an AB bits, wherein, when the selected downlink carrier CSI feedback report type corresponding to the actual number of bits less than C rcal number of transmission bits AB in the current subframe CSI transmission
  • the terminal device supplements the placeholder information of the ABC rcal bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the placeholder information is supplemented as the CSI that the terminal needs to transmit in the current subframe.
  • the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is greater than the AB bit
  • the first AB bit information in the actual CSI feedback information of the downlink carrier is used as the terminal device needs to be transmitted in the current subframe.
  • the terminal device determines that the CSI is not transmitted in the current subframe.
  • the terminal device removes the downlink carrier selected in step A in the downlink carrier set, and performs step A again, and continues to select a downlink carrier CSI in the currently updated downlink carrier set to perform corresponding deal with;
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • Way six
  • the terminal device determines that the minimum number of feedback bits C type — mm corresponding to the CSI reporting type of the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the AB bit, where A indicates that the UCI in the current subframe is simultaneously transmitted.
  • the number of threshold bits, B represents the number of transmission bits of the ACK/NACK generated by the terminal device;
  • the terminal device selects a downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and determines whether the actual feedback bit number C rea i corresponding to the CSI reporting type of the downlink carrier exceeds AB. Bit
  • the terminal device When the judgment is less, the terminal device supplements the placeholder information of the ABC rcal bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the placeholder information is added as the terminal needs to be in the current subframe. Transmitted CSI;
  • the actual CSI of the Creal bit of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe;
  • the pre-AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be CSI of the current subframe transmission;
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • the terminal device determines that the number of transmission bits of the CSI to be transmitted in the current subframe is AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the ACK/NACK generated by the terminal device. Number of transmitted bits;
  • the terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number, and determines the actual feedback bit number corresponding to the CSI reporting type of the downlink carrier. Whether C rcal exceeds AB bits; When the judgment is less, the terminal device supplements the placeholder information of the ABC rcal bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the placeholder information is added as the terminal needs to be in the current subframe. Transmitted CSI;
  • the actual CSI of the CRrcal bit of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe;
  • the first AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be currently
  • the CSI of the subframe transmission, or the terminal device removes the downlink carrier selected in step A in the downlink carrier set, and performs step A again, and continues to select a downlink carrier CSI in the currently updated downlink carrier set.
  • the terminal device determines that CSI is not transmitted in the current subframe.
  • the terminal device determines that the number of transmission bits of the CSI to be transmitted in the current subframe is AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the ACK/NACK generated by the terminal device. Number of transmitted bits;
  • the terminal device When the judgment is less, the terminal device supplements the placeholder information of the ABC rcal bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the placeholder information is added as the terminal needs to be in the current subframe. Transmitted CSI;
  • the actual CSI of the CR Calbit bit of the downlink carrier is used as the terminal
  • the device needs the CSI transmitted in the current subframe
  • the first AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be currently CSI for subframe transmission;
  • the terminal device When the downlink carrier set determined by the terminal device is an empty set, the terminal device generates A-B bit placeholder information as the CSI that the terminal device needs to transmit in the current subframe.
  • Application scenario 2 The first type of UCI is CSI, and the second type of UCI is ACK/NACK.
  • the terminal device determines whether the number of feedback bits of the ACK/NACK to be fed back exceeds AC, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and C represents the transmission bit of the CSI generated by the terminal device. Number
  • the terminal device If the result of the determination is no, the terminal device generates an ACK/NACK of the corresponding number of bits according to the number of feedback bits of the ACK/NACK to be fed back, and uses the generated ACK/NACK as the current subframe required by the terminal device. Transmitted ACK/NACK;
  • Step S103 The terminal device transmits the generated first UCI and second UCI on the corresponding channel resource in the current subframe.
  • the maximum number of feedback bits c type — max corresponding to the CSI reporting type is specifically: for the CSI reporting type that is reported based on the RI value, the maximum number of feedback bits C type — max corresponding to the CSI reporting type is the CSI
  • the CSI report type corresponding to the maximum number of feedback bits c type - max actual number of feedback bits.
  • the current subframe is specifically a scheduling request SR transmission subframe, it is specifically:
  • the terminal device transmits the generated first UCI and the second UCI and the 1-bit SR on the corresponding channel resource in the current subframe.
  • the base station side it is also necessary to perform the determination process of the number of transmission bits similar to the foregoing steps S101 to S103, and determine the specific UCI receiving mode according to the corresponding processing result, and the specific processing manner is similar to that of the terminal device side.
  • the corresponding UCI is no longer generated according to the determination result of the number of transmission bits, but the terminal device directly determines the form and the number of bits of the UCI in the current subframe, and performs UCI reception according to the corresponding determination result, and the specific processing procedure Similar to the foregoing description, the description will not be repeated here.
  • an ACK/NACK and a ACK/NACK are simultaneously transmitted on a channel resource corresponding to a current subframe.
  • the method of periodic CSI according to the number of threshold bits simultaneously transmitted by UCI in the current subframe, and the transmission bit of the first UCI in the current subframe.
  • the number of transmission bits of the second UCI transmitted simultaneously with the first UCI is dynamically determined to ensure that the sum of the UCI bits transmitted simultaneously does not exceed the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and ACK/ is avoided as much as possible.
  • NACK merging and CSI discarding ensure the accuracy and integrity of uplink information transmission to the utmost extent.
  • Step 201 The terminal device generates the required ACK/NACK transmitted in the current subframe.
  • the processing on the terminal device side is specifically:
  • the terminal device generates the ACK/NACK feedback of the corresponding number of bits according to the number of configured carriers N, the transmission mode of each configured carrier, and the number of downlink subframes on each carrier i that need to perform ACK/NACK feedback in the current subframe.
  • Information wherein the number of bits of the generated ACK/NACK feedback information can be specifically obtained by the following formula:
  • represents the number of transmission bits of the ACK/NACK that need to be generated by the terminal device
  • the value rules of ⁇ specifically include:
  • ⁇ . 1
  • Step 202 The terminal device performs, according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe.
  • the processing on the terminal device side can be divided into the following eight modes, as shown in Figure 2B to Figure 21:
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 210 The terminal device determines, in the downlink subframe where the CSI feedback exists in the current subframe, that the number of CSI feedback bits does not exceed the downlink carrier set of the A-B bit.
  • Step 212 Select one downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and use the CSI of the selected downlink carrier as the CSI that the UE needs to transmit in the current subframe.
  • the foregoing downlink carrier set may include at least one carrier, or is an empty set (excluding any carrier), and when there is no downlink carrier whose CSI feedback bit number does not exceed AB bits, the terminal device may directly determine The number of transmission bits of the CSI in the current subframe is 0, that is, the CSI is not transmitted.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 220 The terminal device reports the type priority and/or the carrier number according to the CSI.
  • One downlink carrier is selected from the downlink carrier set in which the CSI feedback exists in the previous subframe.
  • Step 222 Determine whether the number of CSI feedback bits of the downlink carrier exceeds the A-B bit; if not, perform step 224; otherwise, perform step 226.
  • Step 224 The CSI of the downlink carrier is used as a terminal to be transmitted in the current subframe.
  • Step 226 Determine that the terminal device does not transmit CSI in the current subframe, or remove the selected downlink carrier in the downlink carrier set, and returns to step 220 to continue selecting the CSI corresponding to the next priority.
  • step 220 if there is no downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe, whether the number of CSI feedback bits exceeds the downlink carrier of the AB bit, the terminal device may directly determine that the number of transmission bits of the CSI in the current subframe is 0. , that is, CSI is not transmitted.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 230 The terminal device determines that the maximum number of feedback bits corresponding to the CSI reporting type in the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the A-B bit.
  • Step 232 The terminal device selects one downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and determines that the number of transmission bits of the CSI that the terminal needs to transmit in the current subframe is the selected downlink carrier.
  • the C is added to the actual CSI feedback bit number of the downlink carrier.
  • Type — max -C bit 0 the CSI after the complement is used as the CSI that the terminal needs to transmit in the current subframe.
  • the actual CSI of the selected downlink carrier is used as the terminal in the current subframe.
  • the CSI of the transmission is used as the terminal in the current subframe.
  • the foregoing downlink carrier set may include at least one carrier, or is an empty set (excluding any carrier), but when there is no CSI reporting type, the maximum number of feedback bits does not exceed the downlink carrier of the AB bit.
  • the terminal device may directly determine that the number of transmission bits of the CSI in the current subframe is 0, that is, not to transmit CSI.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 240 The terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 242 The terminal device determines whether the maximum number of feedback bits C type — max corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. If not, step 244 is performed; otherwise, step 246 is performed.
  • Step 244 Determine the number of transmission bits of the CSI that the terminal needs to transmit in the current subframe is the maximum number of feedback bits C type — max corresponding to the CSI reporting type of the selected downlink carrier. In this case, when the number of actual feedback bits C corresponding to the type of the downlink carrier of the selected downlink carrier is less than C type — max , the number of actual CSI feedback bits of the downlink carrier is supplemented.
  • the actual CSI of the downlink carrier is used as the CSI that the terminal needs to transmit in the current subframe.
  • Step 246 The terminal device determines that the CSI is not transmitted in the current subframe, or removes the selected downlink carrier in the downlink carrier set, and returns to the foregoing step 240 to continue selecting the CSI corresponding to the next priority.
  • the terminal determines that the number of transmission bits of the CSI in the current subframe is 0, that is, does not transmit CSI.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 250 The terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 252 Determine whether the minimum feedback bit number C type — corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. If not, perform step 254; otherwise, perform step 256.
  • Step 254 determining that the number of transmission bits of the CSI that the terminal device needs to transmit in the current subframe is AB, and when the number of actual feedback bits C corresponding to the CSI reporting type of the selected downlink carrier is smaller than AB, the actual downlink carrier is The CSI feedback bit number is complemented by the ABC bit 0, and the CSI after the complement is used as the CSI that the terminal needs to transmit in the current subframe.
  • the first AB bit information in the actual CSI feedback bit of the downlink carrier is used as the CSI that the terminal needs to transmit in the current subframe, or the AB bit placeholder information (for example, 0 bit information) is generated as the CSI that the terminal needs to transmit in the current subframe.
  • the actual number of feedback bits C corresponding to the CSI reporting type of the selected downlink carrier is equal to AB, the actual CSI of the downlink carrier is used as the CSI that the terminal needs to transmit in the current subframe.
  • Step 256 The terminal device determines that the number of CSI transmission bits of the terminal in the current subframe is 0, that is, does not transmit CSI, or removes the selected downlink carrier in the downlink carrier set, and returns to step 250 above, and continues to select A CSI corresponding to a priority.
  • the terminal device determines the current subframe.
  • the number of transmission bits of the medium CSI is 0, that is, the CSI is not transmitted.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 260 The terminal device determines that the minimum feedback bit number C type — mm corresponding to the CSI reporting type of the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the AB bit.
  • Step 262 Select a downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and determine whether the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. Step 264 is performed; if equal to, step 266 is performed; if greater, step 268 is performed.
  • Step 264 the terminal device supplements the location information of the ABC real bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the location information is supplemented as the CSI that the terminal needs to transmit in the current subframe.
  • Step 266 The actual CSI of the CR Calbit bit of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe.
  • Step 268 The first AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be in the current subframe.
  • the CSI of the transmission ie, the terminal does not transmit the true CSI information of the carrier, but uses the AB bit placeholder information to ensure that the total transmission bit is A);
  • step 260 when the downlink carrier set determined by the terminal device is an empty set, the terminal device determines that CSI is not transmitted in the current subframe, that is, the number of CSI transmission bits is 0.
  • Method 7 The terminal device always determines that the number of transmission bits of the CSI to be transmitted in the current subframe is AB, that is, the terminal always assumes that the total number of transmission bits of the ACK/NACK and the CSI is A, and after generating the B-bit ACK/NACK information, determining The AB bit information is the bit position occupied by the CSI. The AB bit information needs to be transmitted regardless of whether the CSI of the appropriate downlink carrier is selected or not.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 270 The terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 272 Determine whether the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit; if not, perform step 274; if yes, perform step 276; if yes, perform step 278.
  • Step 274 The terminal device fills the placeholder information of the ABC real bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the placeholder information is added as the CSI that the terminal needs to transmit in the current subframe.
  • Step 276 The actual CSI of the CRrcal bit of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe.
  • Step 278 The first AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be in the current subframe.
  • the CSI of the transmission, or the terminal device removes the downlink carrier selected in step 270 in the downlink carrier set, and performs step 270 again, and continues to select a CSI of the downlink carrier to perform corresponding processing on the currently updated downlink carrier set, If the current updated downlink carrier set is an empty set, the terminal device determines that CSI is not transmitted in the current subframe, that is, the number of CSI transmission bits is 0.
  • Method 8 The terminal device always determines that the number of transmission bits of the CSI to be transmitted in the current subframe is AB, that is, the terminal always assumes that the total number of transmission bits of the ACK/NACK and the CSI is A, and after generating the B-bit ACK/NACK information, determining The AB bit information is the bit position occupied by the CSI. The AB bit information needs to be transmitted regardless of whether the CSI of the appropriate downlink carrier is selected or not.
  • generating CSI required to be transmitted in the current subframe includes the following steps:
  • Step 280 The terminal device determines, in the downlink subframe where the CSI feedback exists in the current subframe, that the number of CSI actual feedback bits does not exceed the downlink carrier set of the A-B bit.
  • Step 282 Select a downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and determine whether the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. If it is less, step 284 is performed; if it is equal to, step 286 is performed; if it is greater, step 288 is performed.
  • Step 284 The terminal device supplements the location information of the ABC real bit after the actual CSI feedback information of the CR carrier of the downlink carrier, and uses the AB bit CSI after the location information is supplemented as the CSI that the terminal needs to transmit in the current subframe.
  • Step 286 The actual CSI of the CRrcal bit of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe.
  • Step 288 The first AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that the terminal device needs to transmit in the current subframe, or the AB bit placeholder information is generated as the terminal device needs to be in the current subframe. Transmitted CSI;
  • step 280 when the downlink carrier set is an empty set, the terminal device generates A-B bit placeholder information as the CSI that the terminal device needs to transmit in the current subframe.
  • Step 203 The terminal device simultaneously transmits the generated first UCI and the second UCI on the channel resource corresponding to the current subframe.
  • the sum of the number of bits of the two UCIs does not exceed the maximum number of bits simultaneously supported for transmission of multiple UCIs supported by the channel resources.
  • the processing scheme of the base station side proposed by the embodiment of the present invention is as shown in FIG. 3A, and includes:
  • Step 301 The base station determines the number of transmission bits of the first type of UCI, and the processing procedure is specifically: the base station performs the ACK according to the configured carrier number N of the terminal device, the transmission mode of each configured carrier, and the current subframe on each carrier i.
  • the number of downlink subframes fed back by the NACK is determined by the number of bits of the ACK/NACK feedback information transmitted by the terminal.
  • the specific determination method is consistent with the foregoing description, and the description is not repeated here.
  • Step 302 The base station determines the number of transmission bits of the second UCI, and the processing process specifically includes any one of the following eight manners, as shown in FIG. 3B to FIG.
  • the process of determining the number of transmission bits of the second UCI in the manner includes the following steps:
  • Step 310 The base station determines, in the downlink carrier where the CSI feedback exists in the current subframe, that the number of CSI feedback bits does not exceed the downlink carrier set of A-B bits.
  • Step 312 The base station selects one downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number, and uses the number of transmission bits corresponding to the CSI reporting type of the downlink carrier as the terminal transmits in the current subframe. The number of CSI transmission bits.
  • the foregoing downlink carrier set may include at least one carrier, or is an empty set (excluding any carrier), and when there is no downlink carrier whose CSI feedback bit number does not exceed AB bits, the base station may directly determine the current The number of transmission bits of the CSI in the subframe is 0, that is, the terminal does not transmit CSI.
  • the process of determining the number of transmission bits of the second UCI in the manner includes the following steps:
  • Step 320 The base station selects one downlink carrier from the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 322 The base station determines whether the number of transmission bits corresponding to the CSI reporting type of the downlink carrier exceeds the A-B bit. If not, go to step 324; otherwise, go to step 326.
  • Step 324 The number of transmission bits corresponding to the type of the CSI of the downlink carrier is used as the number of CSI transmission bits transmitted by the terminal in the current subframe.
  • Step 326 Determine that the number of transmission bits of the CSI in the current subframe is 0, or remove the selected downlink carrier in the downlink carrier set, and return to the foregoing step 320, and continue to select the CSI corresponding to the next priority. .
  • the base station determines that the number of transmission bits of the CSI in the current subframe is 0. That is, the terminal does not transmit CSI.
  • the process of determining the number of transmission bits of the second UCI transmission bit number in the manner includes the following steps:
  • Step 330 The base station determines, in the downlink carrier where the CSI feedback exists in the current subframe, that the maximum number of feedback bits C type — max corresponding to the CSI reporting type does not exceed the downlink carrier set of the AB bit.
  • Step 332 The base station selects one downlink carrier in the downlink carrier set according to the CSI reporting type priority and/or the carrier number.
  • the base station uses the maximum number of transmission bits corresponding to the CSI reporting type of the downlink carrier as the number of CSI transmission bits transmitted by the terminal in the current subframe;
  • the foregoing downlink carrier set may include at least one carrier, or is an empty set (excluding any carrier).
  • the base station may directly determine The number of transmission bits of the CSI in the current subframe is 0, that is, the terminal device does not transmit CSI.
  • Step 342 The base station determines whether the maximum number of transmission bits C type — max corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. If not, step 344 is performed; otherwise, step 346 is performed.
  • Step 350 The base station selects one downlink carrier from the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 352 The base station determines whether the minimum feedback bit number C type corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit. If not, step 354 is performed; otherwise, step 356 is performed.
  • the process of determining the number of transmission bits of the second UCI in the manner includes the following steps:
  • Step 366 The base station determines that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0, that is, determines that the terminal does not transmit CSI information.
  • the process of determining the number of transmission bits of the second UCI in the manner includes the following steps:
  • the base station always determines that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is AB bits, that is, the base station always assumes that the total number of transmission bits of the ACK/NACK and the CSI is A, and after receiving the A bit information, classifies B from the B bit.
  • the bit ACK/NACK, and the remaining AB bit information is CSI information, which may be specifically processed as follows:
  • Step 370 The base station selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step 372 Determine whether the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit; if not, perform step 374; if yes, execute step 376; if yes, perform step 378.
  • Step 374 The base station determines that the AB bit CSI feedback information includes the placeholder information of the ABC rcal bit, and removes the C calcal bit CSI of the placeholder information as the actual CSI of the downlink carrier.
  • Step 378 The base station determines that the AB bit CSI feedback information is the first AB bit information in the actual CSI feedback bit of the downlink carrier, or determines that the AB bit CSI feedback information is all the place information (ie, determining that the terminal does not transmit the carrier. CSI information, but The AB bit occupancy information is used to ensure that the total transmission bit is A), or the downlink carrier selected by the step 370 is removed from the downlink carrier set, and step 370 is re-executed, and the downlink carrier set after the current update continues to be selected.
  • the process of determining the number of transmission bits of the second UCI in the manner includes the following steps:
  • Step 380 The base station determines, in the downlink subframe where the CSI feedback exists in the current subframe, that the number of CSI actual feedback bits does not exceed the downlink carrier set of the A-B bit.
  • Step 384 the base station determines that the AB bit CSI feedback information includes the placeholder information of the ABC rcal bit, and removes the C calcal bit CSI of the placeholder information as the actual CSI of the downlink carrier.
  • the base station determines that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0, that is, determines that the terminal does not transmit CSI information.
  • the foregoing manners 1 and 2 are more suitable for ACK/NACK and CSI independent coding, for example, respectively corresponding to independent RM encoders, and codes corresponding to ACK/NACK and CSI.
  • the latter bit is a high-level signaling pre-configuration or a fixed value transmission method pre-agreed by the UE and the base station to avoid an ACK/NACK transmission error caused by a CSI transmission bit error; the above manners 3, 4, 5, 6, 7, and 8 can be used.
  • the ACK/NACK and CSI are independently coded or jointly coded, and the number of CSI feedback bits of the fixed transmission is used to avoid ACK/NACK transmission errors due to CSI transmission bit errors.
  • Embodiment 3 The sum of the bit numbers of the two UCIs does not exceed the maximum number of bits of the simultaneous transmission of multiple UCIs supported by the channel resources.
  • the processing scheme of the terminal device side proposed by the embodiment of the present invention is as shown in FIG. 4, and includes:
  • the terminal device selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number, and the maximum feedback bit number corresponding to the CSI reporting type of the downlink carrier.
  • type - max number of terminals as CSI transmission of bits transmitted in the current sub-frame, when the selected downlink carrier CSI feedback report type corresponding to the actual number of bits less than C C type - max, the downlink carrier in the actual CSI feedback
  • the number of bits is complemented by C type — max — C bit 0, and the CSI after the complement is used as the CSI that the terminal needs to transmit in the current subframe. Otherwise, the CSI of the selected downlink carrier is used as the terminal to be transmitted in the current subframe.
  • CSI is used as the terminal to be transmitted in the current subframe.
  • Step 402 The terminal device generates a second UCI that needs to be transmitted in the current subframe according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first type of UCI.
  • the processing on the terminal device side is as follows:
  • the terminal device determines the number of feedback bits of the ACK/NACK to be fed back according to the number of configured carriers N, the transmission mode of each configured carrier, and the number of downlink subframes M on each carrier i that need to perform ACK/NACK feedback in the current subframe:
  • the number of ACK/NACK feedback bits does not exceed A-C, and the combined ACK/NACK feedback information is used as ACK/NACK information transmitted by the terminal in the current subframe.
  • C is the number of transmission bits of the CSI generated by the terminal device.
  • the processing scheme of the base station side proposed by the embodiment of the present invention is as shown in FIG. 5, and includes:
  • the base station selects one downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number, and the maximum feedback bit number corresponding to the CSI reporting type of the downlink carrier C type – max is the number of transmission bits of the CSI in the current subframe.
  • Step 502 The base station determines the number of transmission bits of the second UCI, and the processing procedure is specifically: the base station performs the ACK/NACK in the current subframe according to the configured carrier number N of the terminal, the transmission mode of each configured carrier, and each carrier i.
  • the number of downlink subframes M that are fed back calculates the number of ACK/NACK feedback bits that the terminal needs to transmit:
  • the base station determines whether B exceeds A-C.
  • the base station determines that the number of ACK/NACK transmission bits transmitted by the terminal in the current subframe is B.
  • the base station determines that the terminal performs a predefined merging of the ACK/NACK, so that the number of combined ACK/NACK feedback bits does not exceed AB, and according to a predefined merge mode.
  • the number of combined ACK/NACK feedback bits is used as the number of transmission bits of the second UCI transmitted by the terminal in the current subframe.
  • Step 503 After the base station determines the number of transmission bits of the first UCI, and further determines the number of transmission bits of the second UCI, the base station simultaneously receives the corresponding channel resources in the current subframe according to the determined result.
  • the maximum (minimum) feedback bit number corresponding to the CSI reporting type is the current antenna in the CSI reporting type.
  • the maximum (minimum) feedback bit number corresponding to the CSI reporting type is The actual number of feedback bits.
  • the maximum number of CSI feedback bits corresponding to the CSI reporting type 2 is 8 bits, and the maximum number of CSI feedback bits corresponding to the CSI reporting type 2 is 6 bits.
  • the number of specifically reported bits is independent of the RI value.
  • the actual bit of the CSI reporting type is 2 bits, and the CSI reporting type 3
  • the corresponding maximum and minimum CSI feedback bits are both 2 bits.
  • the PUCCH format for transmitting the UCI may be PUCCH format 2, 3, Or other newly defined large-capacity PUCCH format, such as PUCCH format based on PUSCH transmission structure
  • the PUCCH format 3 channel resource may be a channel resource corresponding to the ACK/NACK or a channel resource corresponding to the periodic CSI.
  • the A value is a predefined value (no signaling required) or a value notified by higher layer signaling or PDCCH signaling, and the value is not more than the maximum number of bearer bits of the PUCCH format or the PUCCH. Any positive integer of the difference between the maximum number of bearers and the number of SR bits in the format.
  • the maximum number of feedback bits of the CSI reporting type is A2, pre-arranged or signaling configuration
  • an embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG. 6, which at least includes:
  • the transmitting module 63 is configured to: in the corresponding channel resource in the current subframe, transmit the first UCI generated by the first generating module 61 and the second generated by the second generating module 62 UCI.
  • the first type of UCI is CSI
  • the second type of UCI is ACK/NACK.
  • ⁇ . 1
  • the second generating module 62 is specifically configured to generate a current subframe according to one of the following eight methods.
  • Step A Select a downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B Determine whether the number of CSI feedback bits of the selected downlink carrier exceeds the AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the ACK generated by the first generation module 61. /NACK transmission bit number;
  • step A If the result of the determination is yes, the downlink carrier currently selected in step A is removed from the downlink carrier set, and step A is re-executed, and the CSI of one downlink carrier is continuously selected in the currently updated downlink carrier set to perform corresponding processing;
  • the current updated downlink carrier set is an empty set, it is determined that the CSI is not transmitted in the current subframe.
  • the carriers of the downlink C real-bit actual CSI feedback information supplements the c type - max -C real Laid of Placeholder information, and the C type — max bit CSI after the placeholder information is added as the CSI that needs to be transmitted in the current subframe.
  • the actual feedback bit number c rcal of the CSI reporting type corresponding to the downlink carrier is equal to c type — max , the actual CSI feedback information of the CR Calet bit of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe.
  • Step A Select a downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B Determine whether the maximum number of feedback bits C type — max corresponding to the CSI type of the downlink carrier exceeds the AB bit, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, and B represents the first generation.
  • the number of transmission bits of the CSI that need to be transmitted in the current subframe is the maximum number of feedback bits C type — max corresponding to the CSI reporting type of the downlink carrier, where the CSI reporting type of the downlink carrier is used.
  • the C type — max —C rcal bit placeholder information is supplemented after the C real bit CSI feedback information of the downlink carrier, and the placeholder information is added.
  • C type — max bit CSI as the CSI that the terminal needs to transmit in the current subframe, when the CSI reporting type of the downlink carrier
  • the corresponding actual feedback bit number c rcal is equal to c type — max
  • the actual CSI of the c calcal bit of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe
  • step A If the result of the determination is yes, the downlink carrier currently selected in step A is removed from the downlink carrier set, and step A is re-executed, and the downlink CSI of the current update continues to select a downlink CSI for corresponding processing;
  • the current updated downlink carrier set is an empty set, it is determined that the CSI is not transmitted in the current subframe.
  • Step A Select a downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • the determination result determines that the number of transmission bits of the current subframe CSI is transmitted bits AB, wherein, when the CSI reported by the selected downlink carrier corresponding to the type of feedback the actual number of bits less than C rcal AB, in the The actual CSI feedback information of the CR carrier of the downlink carrier is complemented by the placeholder information of the ABC rcal bit, and the AB bit CSI after the placeholder information is supplemented is used as the CSI that the terminal needs to transmit in the current subframe, when the CSI of the downlink carrier is used.
  • the pre-AB bit information in the actual CSI feedback bit of the downlink carrier is used as the CSI required to be transmitted in the current subframe, or the AB bit placeholder information is generated as the
  • the terminal device needs to transmit CSI in the current subframe
  • the actual feedback bit number c rcal corresponding to the CSI reporting type of the downlink carrier is equal to AB
  • the actual CSI of the CR carrier of the downlink carrier is used as the current subframe.
  • step A If the result of the determination is yes, the downlink carrier selected in step A is removed from the downlink carrier set, and step A is performed again, and the CSI of one downlink carrier is continuously selected in the currently updated downlink carrier set to perform corresponding processing;
  • the minimum number of feedback bits C type — mm corresponding to the CSI reporting type of the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the AB bit, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, B represents the number of transmission bits of the ACK/NACK generated by the first generation module 61;
  • the camping information of the AB-Qeai bit is added after the actual CSI feedback information of the CRrcal bit of the downlink carrier, and the AB bit CSI after the placeholder information is supplemented is used as the CSI that needs to be transmitted in the current subframe;
  • the actual CSI of the CR Calbit of the downlink carrier is taken as the CSI that needs to be transmitted in the current subframe;
  • the pre-A-B bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe, or the A-B bit placeholder information is generated as the CSI that needs to be transmitted in the current subframe;
  • the location information of the ABC real bit is complemented by the actual CSI feedback information of the CRrcal bit of the downlink carrier, and the AB bit CSI after the placeholder information is supplemented is used as the CSI that needs to be transmitted in the current subframe;
  • the actual CSI of the CRrcal bit of the downlink carrier is taken as the CSI that needs to be transmitted in the current subframe;
  • the pre-AB bit information in the actual CSI feedback information of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe, or the AB bit placeholder information is generated as the CSI that needs to be transmitted in the current subframe, or Deleting the downlink carrier selected in step A in the downlink carrier set, and performing step A again, and continuing to select a CSI of the downlink carrier in the current updated downlink carrier set to perform corresponding processing, where, if the current update is performed, The downlink carrier set is an empty set, and it is determined that CSI is not transmitted in the current subframe.
  • the location information of the ABC real bit is complemented by the actual CSI feedback information of the CRrcal bit of the downlink carrier, and the AB bit CSI after the placeholder information is supplemented is used as the CSI that needs to be transmitted in the current subframe;
  • the first generating module 61 is specifically configured to:
  • the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is used as the number of CSI transmission bits that need to be transmitted in the current subframe, and the CR Calbit CSI of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe. ; or,
  • the maximum number of feedback bits Ctype_max corresponding to the CSI reporting type of the downlink carrier is used as the number of CSI transmission bits transmitted in the current subframe, and the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is smaller than C type — max When the actual carrier of the downlink carrier
  • the C- type information of the c- type - max- c rcal bit is complemented, and the CSI after the placeholder information is added is used as the CSI that needs to be transmitted in the current subframe, and the CSI reporting type of the downlink carrier corresponds to the actual
  • the number of feedback bits c rcal is equal to c type — max
  • the c rcal bit CSI of the downlink carrier is used as the CSI that needs to be transmitted in the current subframe.
  • the second generating module 62 is specifically configured to:
  • the processing module is specifically configured to:
  • an embodiment of the present invention further provides a terminal device, which is shown in FIG. 7 and includes:
  • the second determining module 72 is configured to determine, according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first UCI determined by the first determining module 71.
  • the number of transmission bits of the second UCI that the terminal device needs to transmit in the current subframe, where the number of transmission bits of the second UCI does not exceed the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the first type The difference in the number of transmission bits of the UCI;
  • the receiving module 73 is configured to: according to the corresponding channel resource in the current subframe, the number of transmission bits of the first UCI determined by the first determining module 71 and the second determined by the second determining module 72 The number of transmission bits of the UCI receives the first UCI and the second UCI transmitted by the terminal device.
  • the first type of UCI is CSI
  • the second type of UCI is ACK/NACK.
  • the first determining module 71 determines that the terminal device transmits the first one in the current subframe.
  • the number of transmission bits of the UCI includes:
  • the number of transmission bits of the ACK/NACK transmitted in the subframe is:
  • the value rules of ⁇ include:
  • the second determining module 72 determines the number of transmission bits of the second UCI transmitted by the terminal device in the current subframe according to one of the following eight methods:
  • the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe determined by the module 71;
  • Step A Select a downlink carrier in the downlink carrier set in which the CSI feedback exists in the current subframe according to the CSI reporting type priority and/or the carrier number.
  • Step B Determine whether the number of transmission bits corresponding to the CSI reporting type of the selected downlink carrier exceeds the AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the first determining module 71. Determining the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe;
  • the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is used as the number of transmission bits of the CSI transmitted by the terminal device in the current subframe;
  • step A If the result of the determination is yes, the downlink carrier currently selected in step A is removed from the downlink carrier set, and step A is re-executed, and the CSI of one downlink carrier is continuously selected in the currently updated downlink carrier set to perform corresponding processing;
  • the current updated downlink carrier set is an empty set, it is determined that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0.
  • the determined downlink carrier set is an empty set, it is determined that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0.
  • Step A Store the current sub-frame according to the CSI reporting type priority and/or carrier number. Selecting a downlink carrier in a downlink carrier set fed back by the CSI;
  • Step B Determine whether the maximum number of feedback bits C type — max corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the first determination.
  • the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe determined by the module 71;
  • the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is the maximum number of feedback bits C type _ max corresponding to the CSI reporting type of the downlink carrier; wherein, when the downlink carrier corresponds to When the actual feedback bit number C real of the CSI reporting type is less than C type — max , it is determined that the C type — max bit CSI feedback information includes the place information of the Ctype_max ⁇ C rea i bit, and the C of the placeholder information is removed.
  • the rcal bit CSI is used as the actual CSI of the downlink carrier.
  • the actual feedback bit number C rcal of the CSI reporting type corresponding to the downlink carrier is equal to C type — max
  • determining CSI feedback information of the C type — max bit is The actual CSI of the downlink carrier;
  • step A If the result of the determination is yes, the downlink carrier currently selected in step A is removed from the downlink carrier set, and step A is re-executed, and the CSI of one downlink carrier is continuously selected in the currently updated downlink carrier set to perform corresponding processing;
  • Step B Determine the minimum number of feedback bits corresponding to the CSI reporting type of the downlink carrier (whether ⁇ exceeds the AB bit, where A indicates that the UCI in the current subframe is simultaneously transmitted. a number of threshold bits, B represents the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe determined by the first determining module 71;
  • determining that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is AB bit; wherein, when the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is less than AB, determining The AB bit CSI feedback information includes the placeholder information of the ABC rcal bit, and the C rcal bit CSI of the placeholder information is used as the actual CSI of the downlink carrier, and the actual feedback corresponding to the CSI report type of the downlink carrier is used.
  • determining that the AB bit CSI feedback information is the first AB bit information in the actual CSI feedback bit of the downlink carrier, or determining that the AB bit CSI feedback information is all the place information, when When the actual feedback bit number C rcal corresponding to the CSI type of the downlink carrier is equal to AB, determining the CSI feedback information of the AB bit is the actual CSI of the downlink carrier;
  • the current updated downlink carrier set is an empty set, it is determined that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0.
  • the minimum number of feedback bits C type — mm corresponding to the CSI reporting type of the downlink carrier in which the CSI feedback exists in the current subframe does not exceed the downlink carrier set of the AB bit, where A represents the number of threshold bits for simultaneous transmission of UCI in the current subframe, B represents the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe determined by the first determining module 71;
  • the downlink carrier set is not an empty set, determining that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is AB bits, according to a CSI reporting type priority and/or a carrier number, in the downlink carrier Selecting a downlink carrier in the set, and determining whether the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier exceeds the AB bit; when the judgment is less, determining that the AB bit CSI feedback information includes the ABC rcal bit Bit information, and removing the C calcal bit CSI of the placeholder information as
  • determining CSI feedback information of the A-B bit is the actual CSI of the downlink carrier
  • the A-B bit CSI feedback information is the first A-B bit information in the actual CSI feedback bit of the downlink carrier, or determining that the A-B bit CSI feedback information is all the placeholder information;
  • the downlink carrier set is an empty set, it is determined that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0.
  • Determining, by the terminal device, the number of transmission bits of the CSI transmitted in the current subframe is AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the determined by the first determining module 71.
  • determining that the AB bit CSI feedback information includes the placeholder information of the ABC rcal bit, and removing the C rcal bit CSI of the placeholder information as the actual CSI of the downlink carrier;
  • determining that the AB bit CSI feedback information is the actual CSI of the downlink carrier;
  • step A determines that the AB bit CSI feedback information is the first AB bit information in the actual CSI feedback bit of the downlink carrier, or determining that the AB bit CSI feedback information is all the place information, or
  • the downlink carrier selected in step A is removed from the set, and step A is re-executed, and the CSI of one downlink carrier is continuously selected in the current updated downlink carrier set to perform corresponding processing, where if the currently updated downlink carrier set is The empty set determines that the number of transmission bits of the CSI transmitted by the terminal device in the current subframe is 0.
  • Determining, by the terminal device, the number of transmission bits of the CSI transmitted in the current subframe is AB bit, where A represents the number of threshold bits simultaneously transmitted by the UCI in the current subframe, and B represents the determined by the first determining module 71.
  • the AB bit CSI feedback information includes the placeholder information of the ABC rcal bit, and removing the C rcal bit CSI of the placeholder information as the actual CSI of the downlink carrier;
  • determining that the AB bit CSI feedback information is the first AB bit information in the actual CSI feedback bit of the downlink carrier, or determining the AB bit CSI feedback signal All information is placeholder information;
  • the first determining module 71 is specifically configured to:
  • the actual feedback bit number C rcal corresponding to the CSI reporting type of the downlink carrier is used as the number of CSI transmission bits transmitted by the terminal device in the current subframe;
  • the maximum number of feedback bits c type — max corresponding to the CSI reporting type of the downlink carrier is used as the number of CSI transmission bits transmitted by the terminal device in the current subframe.
  • the second determining module 72 is specifically configured to:
  • Determining whether the number of feedback bits of the ACK/NACK to be fed back exceeds AC where A indicates the number of threshold bits for simultaneous transmission of UCI in the current subframe, and C indicates that the terminal device determined by the first determining module 71 is The number of transmission bits of the CSI transmitted in the current subframe; if the determination result is no, determining the number of feedback bits of the ACK/NACK to be fed back as the number of transmission bits of the ACK/NACK transmitted by the terminal device in the current subframe;
  • the processing module is specifically configured to:
  • the first type of UCI and the second type of UCI and one bit of SR are received on a corresponding channel resource in the current subframe.
  • an ACK/NACK and a ACK/NACK are simultaneously transmitted on a channel resource corresponding to a current subframe.
  • the method of periodic CSI dynamically determines the number of transmission bits of the second UCI transmitted simultaneously with the first UCI according to the number of threshold bits simultaneously transmitted by the UCI in the current subframe and the number of transmission bits of the first UCI in the current subframe.
  • the embodiments of the present invention can be implemented by hardware, or by software plus necessary general hardware platforms.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a number of instructions are included to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform the methods described in various implementation scenarios of embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios can be combined into one Modules can also be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

终端设备生成需要在当前子帧中传输的第一种UCI;根据当前子帧中UCI同时传输的门限比特数和所述第一种UCI的传输比特数,生成需要在当前子帧中传输的第二种UCI;在当前子帧中对应的信道资源上,传输所生成的所述第一种UCI和第二种UCI。

Description

上行控制信息 UCI的传输方法和设备 技术领域 本发明涉及通信技术领域, 特别涉及一种上行控制信息 UCI的传输 方法和设备。 发明背景 在 LTE-A( Long Term Evolution-Advanced,长期演进增强 )***中, 引入了载波聚合(Carrier Aggregation, CA )技术, 将同一个演进型基 站(evolved Node B, eNB ) 下的多个连续或不连续的载波聚合在一起, 同时为用户设备 ( User Equipment , UE , 即终端设备 )服务。
UCI ( Uplink Control Information, 上行控制信息)包括 ACK/NACK
( ACKnowledgement/Non-ACKnowlegement,肯定确认 /否定确认)信息、 周期 CSI ( Channel State Information, 信道状态信息) 、 SR ( Scheduling Request, 调度请求)信息。
其中, 周期 CSI具体包括: RI ( Rank Indicator, 秩指示)信息, CQI ( Channel Quality Indicator,信道质量指示 )信息 , PMI ( Precoding Matrix Indicator, 预编码矩阵指示)信息, 及 PTI ( Precoder Type Indication, 预编码类型指示)信息。
LTE-A CA***中,定义了 PUCCH( Physical Uplink Control Channel, 物理上行控制信道) format (格式) 3 , 用于传输多个聚合载波的多比 特 ACK/NACK信息。 PUCCH format 3最大传输容量为 22比特, 可支 持最大 20比特 ACK/NACK与 1比特 SR联合编码传输。
在 Rel-10***中, 不支持多载波的 ACK/NACK信息与周期 CSI在 PUCCH同时传输,如果当前子帧中同时存在多载波的 ACK/NACK和周 期 CSI, 则仅在 PUCCH上传输 ACK/NACK, 丟弃 CSI。
对于使用 PUCCH format3传输 ACK/NACK的 UE, 仅当配置了支 持 ACK/NACK 与 CSI 在一个子帧同时传输, 且仅在 PCC ( Primary Component Carrier, 主成员载波)上接收到了一个下行子帧时, 支持该 下行子帧的 ACK/NACK与 1 个载波的周期 CSI采用 PUCCH format 2/2a/2b同时传输。 如果当前子帧中同时存在多个载波需要反馈 CSI, 则 按照预定义的 CSI上报类型( Reporting Type )优先级, 选择上报一个具 有高 CSI Reporting Type 优先级的载波的 CSI , 其中, 最高优先级 Reporting Types为 type 3、 5、 6和 2a, 其次为 type 2、 2b、 2c和 4, 最 低优先级 Reporting Types为 type 1和 la,每种 CSI reporting type在不同 上报模式( Reporting Mode )下对应的 CSI上报内容和比特如表 1所示, UE 的每个激活载波在一个上行子帧中只根据当前配置的上报类型和具 体状态上报 1 种 reporting type。 如果同时存在多个载波具有相同的 Reporting Type优先级, 则进一步根据载波编号选择上报编号最小载波 的 CSI。
表 1 CSI reporting type在不同上报模式下对应的 CSI上报内容和比
Reporting Modes
Reporti Mode Mode Mode Mode
上报内
ng 模式状态 1-1 2-1 1-0 2-0
Type (bits/B (bits/B (bits/B (bits/B
P) P) P) P)
Sub-ba RI = 1 NA 4+L NA 4+L
1 nd
CQI RI > 1 NA 7+L NA 4+L
Sub-ba 8 antenna ports RI = 1 NA 8+L NA NA nd CQI 8 antenna ports 1 < RI < 5 NA 9+L NA NA la
1
second 8 antenna ports RI > 4 NA 7+L NA NA PMI
Wideba 2 antenna ports RI = 1 6 6 NA NA nd 4 antenna ports RI = 1 8 8 NA NA
CQI/P 2 antenna ports RI > 1 8 8 NA NA MI 4 antenna ports RI > 1 11 11 NA NA
Wideba 8 antenna ports RI < 3 NA 4 NA NAa nd first 8 antenna ports 2 < RI < 8 NA 2 NA NA PMI 8 antenna ports RI = 8 NA 0 NA NA
Wideba 8 antenna ports RI = 1 8 8 NA NA nd CQI 8 antenna ports 1 < RI < 4 11 11 NA NAb 1 8 antenna ports RI = 4 10 10 NA NA second
PMI 8 antenna ports RI > 4 7 7 NA NA
Wideba 8 antenna ports RI = 1 8 NA NA NA nd CQI 8 antenna ports 1 < RI≤ 4 11 NA NA NA 1 first 8 antenna ports 4 < RI≤ 7 9 NA NA NAc
PMI 1
second
PMI 8 antenna ports RI = 8 7 NA NA NA
2/4 antenna ports, 2-layer spatial
multiplexing 1 1 1 1
8 antenna ports, 2-layer spatial
multiplexing 1 NA NA NA
RI 4 antenna ports, 4-layer spatial
multiplexing 2 2 2 2
8 antenna ports, 4-layer spatial
multiplexing 2 NA NA NA
8-layer spatial multiplexing 3 NA NA NA Wideba
4 RI = 1 or RI>l NA NA 4 4 nd CQI
8 antenna ports, 2-layer spatial
4
RL/ first multiplexing
5 NA NA NA
PMI 8 antenna ports, 4 and 8 -layer spatial
5
multiplexing
8 antenna ports, 2-layer spatial
NA 2 NA NA multiplexing
6
8 antenna ports, 4-layer spatial
RI/PTI NA 3 NA NA multiplexing
8 antenna ports, 8 -layer spatial
NA 4 NA NA multiplexing
对于表 1 , 需要说明的是:
bits/BP表示每个带宽部分( Bandwidth Part )的上报比特数; CQI/PMI 分为宽带( Wideband ) CQI/PMI以及子带( Sub-band ) CQI/PMI; antenna ports为天线端口; layer为传输层; spatial multiplexing表示空间复用; NA表示对应的上报模式中不支持该上报类型; L为选择子带的子带标 识信息, 最大为 2比特。
在 LTE-A Rel-ll CA***中, 进行了 UCI传输增强研究, 为避免过 多的丟弃 CSI而影响 eNB的下行调度, 支持采用 PUCCH format 3同时 传输多载波的 ACK/NACK和 1个载波的周期 CSI, 当存在 SR时, 还可 支持与 1比特 SR同时传输。
发明内容 本发明实施例提供一种 UCI的传输方法和设备,解决现有的技术方 案中不能准确确定 ACK/NACK和 CSI的具体传输比特, 并因此无法在 保证不超过最大承载比特数的情况下, 同时传输 ACK/NACK和 CSI的 问题。
为达到上述目的, 本发明实施例一方面提供了一种上行控制信息 UCI的传输方法, 至少包括以下步骤:
终端设备生成需要在当前子帧中传输的第一种 UCI;
所述终端设备根据当前子帧中 UCI 同时传输的门限比特数和所述 第一种 UCI的传输比特数, 生成需要在当前子帧中传输的第二种 UCI, 其中,所述第二种 UCI的传输比特数不超过当前子帧中 UCI同时传输多 种 UCI的最大比特数与所述第一种 UCI的传输比特数之差;
所述终端设备在当前子帧中对应的信道资源上, 传输所生成的所述 第一种 UCI和第二种 UCI。 另一方面, 本发明实施例还提供了一种终端设备, 包括:
第一生成模块, 用于生成需要在当前子帧中传输的第一种 UCI; 第二生成模块,用于根据当前子帧中 UCI同时传输的门限比特数和 所述第一生成模块所生成的第一种 UCI的传输比特数,生成需要在当前 子帧中传输的第二种 UCI, 其中, 所述第二种 UCI的传输比特数不超过 当前子帧中 UCI同时传输的门限比特数与所述第一种 UCI的传输比特数 之差;
传输模块, 用于在当前子帧中对应的信道资源上, 传输所述第一生 成模块所生成的所述第一种 UCI 和所述第二生成模块所生成的所述第 二种 UCI。 另一方面, 本发明实施例还提供了一种 UCI的传输方法, 包括以下 步骤:
基站确定终端设备在当前子帧中传输的第一种 UCI的传输比特数; 所述基站根据当前子帧中 UCI 同时传输的门限比特数和所述第一 种 UCI 的传输比特数, 确定所述终端设备在当前子帧中传输的第二种 UCI的传输比特数, 其中, 所述第二种 UCI的传输比特数不超过当前子 帧中 UCI同时传输的门限比特数与所述第一种 UCI的传输比特数之差; 所述基站在当前子帧中对应的信道资源上,根据所述第一种 UCI的 传输比特数和所述第二种 UCI的传输比特数,接收所述终端设备所传输 的第一种 UCI和第二种 UCI。 另一方面, 本发明实施例还提供了一种基站, 包括:
第一确定模块, 用于确定终端设备需要在当前子帧中传输的第一种
UCI的传输比特数;
第二确定模块,用于根据当前子帧中 UCI同时传输的门限比特数和 所述第一确定模块所确定的第一种 UCI的传输比特数,确定所述终端设 备需要在当前子帧中传输的第二种 UCI的传输比特数, 其中, 所述第二 种 UCI的传输比特数不超过当前子帧中 UCI同时传输的门限比特数与所 述第一种 UCI的传输比特数之差;
接收模块, 用于在当前子帧中对应的信道资源上, 根据所述第一确 定模块所确定的第一种 UCI 的传输比特数和所述第二确定模块所确定 的第二种 UCI 的传输比特数, 接收所述终端设备所传输的第一种 UCI 和第二种 UCI。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 实现了一种在当前子帧所对应 的信道资源上同时传输 ACK/NACK和周期 CSI的方法, 根据当前子帧 中 UCI同时传输的门限比特数,以及第一种 UCI在当前子帧的传输比特 数,动态确定与第一种 UCI同时传输的第二种 UCI的传输比特数, 以保 证同时传输的 UCI比特之和不超过当前子帧中 UCI同时传输的门限比特 数, 并尽可能避免 ACK/NACK合并和 CSI丟弃, 最大限度的保障了上 行信息传输的准确性和完整性。 附图简要说明
图 1为本发明实施例所提出的一种 UCI的传输方法的流程示意图。 图 2A 为本发明第一实施例中一种终端设备侧的处理方法的流程 图。
图 2B为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第一种方式的流程示意图。
图 2C为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第二种方式的流程示意图。
图 2D为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第三种方式的流程示意图。
图 2E为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第四种方式的流程示意图。
图 2F为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第五种方式的流程示意图。
图 2G为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第六种方式的流程示意图。
图 2H为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第七种方式的流程示意图。
图 21 为本发明第一实施例中终端设备侧确定需要在当前子帧传输 的 CSI的第八种方式的流程示意图。
图 3A为本发明第二实施例中一种基站侧的处理方法的流程图。 图 3B为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第一种方式的流程示意图。
图 3C为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第二种方式的流程示意图。
图 3D为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第三种方式的流程示意图。
图 3E为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第四种方式的流程示意图。
图 3F为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第五种方式的流程示意图。
图 3G为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第六种方式的流程示意图。
图 3H为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第七种方式的流程示意图。
图 31为本发明第二实施例中基站侧确定第二种 UCI的传输比特数 的第八种方式的流程示意图。
图 4为本发明第三实施例中终端设备侧的处理方法的流程图。 图 5为本发明第四实施例中基站侧的处理方法的流程图。
图 6为本发明实施例所提出的一种终端设备的结构示意图。
图 7为本发明实施例所提出的一种基站的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本 发明作进一步的详细阐述。
目前 PUCCH format3的最大承载比特数为 22,根据表 1所示,可知 1个载波的 CSI的最大比特数为 11 , 当同时传输 ACK/NACK、 周期 CSI 时,如何确定 ACK/NACK和 CSI的具体传输比特,以保证不超过 format3 的最大承载比特数是目前需要解决的问题, 但是现有技术中还没有提出 明确的解决方案。
在 LTE-A Rel-11 CA***中, 对于支持 PUCCH format 3的 UE, 支 持采用 PUCCH format 3同时传输多个聚合载波的 ACK/NACK信息和 1 个载波的周期 CSI, 但同时传输时还没有明确的 ACK/NACK和 CSI的 承载比特划分方法。 为了克服这样的缺陷, 本发明实施例提出了一种 UCI的传输方法, 对于支持 PUCCH format3传输方案且支持多载波的 ACK/NACK与周期 CSI在 PUCCH上同时传输的 UE, 根据当前子帧中 UCI同时传输的门限比特数 A, 以及第一种 UCI在当前子帧的传输比特 数,动态确定与第一种 UCI同时传输的第二种 UCI的传输比特数, 即动 态确定在当前子帧中同时传输的 ACK/NACK的传输比特数和 CSI的传 输比特数, 以满足传输比特数之和不超过 A的要求。
如图 1所示, 为本发明实施例所提出的一种上行控制信息 UCI的传 输方法的流程示意图, 该方法具体包括以下步骤:
步骤 S101、 终端设备生成需要在当前子帧中传输的第一种 UCI。 需要说明的是, 在本发明实施例所提出的技术方案的处理过程中, 当所述第一种 UCI为 ACK/NACK时, 所述第二种 UCI为 CSI , 当所述 第一种 UCI为 CSI时, 所述第二种 UCI为 ACK/NACK。
下面, 就分别针对这样的两种不同的应用场景, 对本发明的实施例 中确定两种 UCI的方法进行说明。
应用场景一、 所述第一种 UCI为 ACK/NACK, 所述第二种 UCI为
CSI
在此应用场景中, 步骤 S101的处理过程具体如下:
所述终端设备根据配置载波数 N, 每个配置载波的传输模式, 以及 每个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 ,确 定需要生成的 ACK/NACK的传输比特数为:
Β=∑ς ·Μ' ;
'·=ο
所述终端设备生成需要在当前子帧中传输的相应传输比特数的 ACK/NACK
其中, B表示所述终端设备所确定的需要生成的 ACK/NACK的传 输比特数;
ς.的取值规则具体包括:
对于单码字传输的载波, ς 1 , 对于多码字传输的载波, ς. =2; 或,
对单码字传输, 或多码字传输且采用空间合并的载波, ς. =ι , 对于 多码字传输且不采用空间合并的载波, ς. =2;
Mi表示当前载波需要在当前子帧进行 ACK/NACK反馈的下行子帧 数量, 其取值规则具体为: 对于频分复用 FDD***, M l , 对于时分 复用 TDD***, 不同聚合载波所对应的 的取值相同或不同。
应用场景二、 所述第一种 UCI 为 CSI , 所述第二种 UCI 为 ACK/NACK
在此应用场景中, 步骤 S101的处理过程具体如下: 所述终端设备根据 CSI上报类型优先级和 /或载波编号,在当前子帧 中存在 CSI反馈的下行载波集合中选择一个下行载波;
所述终端设备将所述下行载波的 CSI上报类型对应的实际反馈比特 数 crcal作为需要在当前子帧中传输的 CSI传输比特数, 所述终端设备将 所述下行载波的 Crcal比特 CSI作为需要在当前子帧传输的 CSI; 或, 所述终端设备将该下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax作为所述终端设备在当前子帧中传输的 CSI传输比特数,当所述 下行载波的 CSI上报类型对应的实际反馈比特数 crcal小于 ctypemax时, 所述终端设备在所述下行载波的实际 CSI反馈信息后补 ctypemax-crcal比 特的占位信息, 并将补充占位信息后的 CSI作为所述终端设备需要在当 前子帧传输的 CSI, 当所述下行载波的 CSI上报类型对应的实际反馈比 特数 crcal等于 Ctypemax时,所述终端设备将所述下行载波的 Crcal比特 CSI 作为需要在当前子帧传输的 CSI。
其中, 所述占位信息为终端设备与基站预先约定的固定值, 可以为
0或 1 , 较优的, 约定为 0, 后文中所提到的占位信息也与此相同, 不再 重复说明。
步骤 S102、所述终端设备根据当前子帧中 UCI同时传输的门限比特 数和所述第一种 UCI的传输比特数,生成需要在当前子帧中传输的第二 种 UCI。
其中,所述第二种 UCI的传输比特数不超过当前子帧中 UCI同时传 输的门限比特数 A与所述第一种 UCI的传输比特数之差。
在实际应用中, 所述门限比特数 A为预先约定的值或由高层信令或 物理下行控制信道 PDCCH信令通知的值, 其中, 所述 A为正整数, 且 A 在当前子帧中用于同时传输 ACK/NACK反馈信息和 CSI反馈信息 的上行传输方案的最大承载比特数, 或 A 所述上行传输方案的最大承 载比特数与 SR比特数之差。
同样的,对应步骤 S101中的两种应用场景,本步骤的处理也会存在 相应的区别, 具体说明如下:
应用场景一、 所述第一种 UCI为 ACK/NACK, 所述第二种 UCI为
CSI。
在此应用场景中, 步骤 S102 的处理过程具体可以分为以下几种方 式:
方式一
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI实际 反馈比特数不超过 A-B比特的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK 的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 生成该下行载波的 Crcal比特实际 CSI反 馈信息, 并将所选择的下行载波的 Crcal比特 CSI作为所述终端设备需要 在当前子帧中传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备确定在当前子帧中不传输 CSI。
方式二
步骤 A、 所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述终端设备判断所选择的所述下行载波的 CSI反馈比特 数是否超过 A-B比特,其中, A表示当前子帧中 UCI同时传输的门限比 特数, B表示所述终端设备所生成的 ACK/NACK的传输比特数;
如果判断结果为否, 则所述终端设备生成该下行载波的 Crcal比特实 际 CSI反馈信息, 并将所述下行载波的 Crcal比特 CSI作为所述终端设备 需要在当前子帧中传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤
A当前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载 波集合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI。
方式三
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI上报 类型对应的最大反馈比特数不超过 A-B的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 并确定所述终端设备需要在当前子帧传 输的 CSI的传输比特数为所述下行载波的 CSI上报类型对应的最大反馈 比特数 ctype_ max?
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal 小于 ctypemax时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI反 馈信息后补充 ctypemax-crcal比特的占位信息, 并将补充占位信息后的
Ctype_max比特 CSI作为所述终端设备需要在当前子帧传输的 CSI,
当所述下行载波对应的 CSI 上报类型的实际反馈比特数 crcal等于
Ctypemax时,所述终端设备将所述下行载波的 Creal 特实际 CSI反馈信息 作为需要在当前子帧传输的 CSI, 当所述终端设备所确定的下行载波集合为空集时, 所述终端设备确 定在当前子帧中不传输 CSI。
方式四
步骤 A、 所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述终端设备判断所述下行载波的 CSI上"¾类型对应的最 大反馈比特数 Ctypemax是否超过 A-B比特,其中, A表示当前子帧中 UCI 同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的 传输比特数;
如果判断结果为否, 所述终端设备确定需要在当前子帧传输的 CSI 的传输比特数为所述下行载波的 CSI 上报类型对应的最大反馈比特数 Ctype_max, 其中, 当所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal小于 Ctypemax时,所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补充 Ctypemax-Crcal比特的占位信息, 并将补充占位信息后的 ctypemax比特 CSI作为终端需要在当前子帧传输的 CSI, 当所述下行载波 的 CSI上报类型对应的实际反馈比特数 crcal等于 ctypemax时, 所述终端 设备将所述下行载波的 Crcal比特实际 CSI作为需要在当前子帧传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤
A当前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载 波集合继续选择一个下行载的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI。 方式五
步骤 A、 所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述终端设备判断所述下行载波的 81上"¾类型对应的最 小反馈比特数 Ctype—皿是否超过 A-B比特,其中, A表示当前子帧中 UCI 同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的 传输比特数;
如果判断结果为否, 所述终端设备确定需要在当前子帧传输的 CSI 的传输比特数为 A-B比特, 其中, 当所述选择的下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal小于 A-B时,所述终端设备在所述下行载 波的 Crcal比特实际 CSI反馈信息后补 A-B-Crcal比特的占位信息,并将补 充占位信息后的 A-B比特 CSI作为终端需要在当前子帧传输的 CSI, 当 所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal大于 A-B比特 时,将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为所述 终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为所 述终端设备需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal等于 A-B时,将所述下行载波的 Crcal比特 实际 CSI作为所述终端设备需要在当前子帧传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤 A所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集 合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI。 方式六
所述终端设备确定当前子帧中存在 CSI反馈的下行载波的 CSI上报 类型对应的最小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述终端 设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对 应的实际反馈比特数 Creai是否超过 A-B比特;
当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Creal比特实际 CSI作为所述终 端设备需要在当前子帧传输的 CSI;
当判断大于 A-B 时, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为所述终端设备需要在当前子帧传输的 CSI,或产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备确定在当前子帧中不传输 CSI。
方式七
所述终端设备确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在当前子帧 中存在 CSI反馈的下行载波集合中选择一个下行载波, 并判断所述下行 载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为所述终端 设备需要在当前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特 占位信息作为所述终端设备需要在当前子帧传输的 CSI, 或者, 所述终 端设备在所述下行载波集合中去掉步骤 A所选择的下行载波,并重新执 行步骤 A, 在当前更新后的下行载波集合继续选择一个下行载波的 CSI 进行相应的处理, 其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备确定在当前子帧中不传输 CSI。
方式八
所述终端设备确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI实际 反馈比特数不超过 A-B比特的下行载波集合,根据 CSI上报类型优先级 和 /或载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述 下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比 特;
当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为所述终端 设备需要在当前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特 占位信息作为所述终端设备需要在当前子帧传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI。
在具体的处理场景中, 具体采用上述的哪种方式可以根据实际的需 要进行设定, 这样的变化并不影响本发明的保护范围。
应用场景二、 所述第一种 UCI 为 CSI , 所述第二种 UCI 为 ACK/NACK。
在此种应用场景下, 本步骤的具体处理过程如下:
所述终端设备根据配置载波数, 每个配置载波的传输模式, 以及每 个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数, 确定待 反馈的 ACK/NACK的反馈比特数;
所述终端设备判断所述待反馈的 ACK/NACK的反馈比特数是否超 过 A-C, 其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示 所述终端设备所生成的 CSI的传输比特数;
如果判断结果为否, 所述终端设备根据所述待反馈的 ACK/NACK 的反馈比特数生成相应比特数的 ACK/NACK , 并将所生成的 ACK/NACK作为所述终端设备需要在当前子帧传输的 ACK/NACK;
如果判断结果为是, 所述终端设备对待反馈的 ACK/NACK进行空 间合并, 以满足空间合并后的 ACK/NACK的反馈比特数不超过 A-C, 并将空间合并后的 ACK/NACK作为所述终端设备需要在当前子帧传输 的 ACK/NACK0 步骤 S103、 所述终端设备在当前子帧中对应的信道资源上, 传输所 生成的所述第一种 UCI和第二种 UCI。
在上述的各处理步骤中, 需要说明的是:
所述 CSI上报类型所对应的最大反馈比特数 ctypemax, 具体为: 对于基于 RI值进行上报的 CSI上报类型, 所述 CSI上报类型所对 应的最大反馈比特数 Ctypemax为该 CSI上报类型中在当前配置下不同的 RI值对应的反馈比特数的最大值, 其中, 当前配置具体包括 CSI反馈模 式和 /或天线端口配置等信息;
对于其他 CSI上报类型, 所述 CSI上报类型所对应的最大反馈比特 数 ctypemax为实际反馈比特数。
需要进一步说明的是, 当所述当前子帧具体为调度请求 SR传输子 帧时, 具体为:
所述终端设备在当前子帧中对应的信道资源上, 传输所生成的所述 第一种 UCI和第二种 UCI和 1比特 SR。 另一方面, 在基站侧, 同样需要进行类似前述的步骤 S101 至步骤 S103的传输比特数的确定处理,并根据相应的处理结果确定具体的 UCI 的接收方式, 具体的处理方式与终端设备侧类似, 只是不再根据传输比 特数的确定结果生成相应的 UCI, 而是直接确定终端设备在当前子帧中 上报 UCI的形式和比特数,并根据相应的确定结果进行 UCI的接收,具 体的处理过程与前述说明相类似, 在此不再重复叙述。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 实现了一种在当前子帧所对应 的信道资源上同时传输 ACK/NACK和周期 CSI的方法, 根据当前子帧 中 UCI同时传输的门限比特数,以及第一种 UCI在当前子帧的传输比特 数,动态确定与第一种 UCI同时传输的第二种 UCI的传输比特数, 以保 证同时传输的 UCI比特之和不超过当前子帧中 UCI同时传输的门限比特 数, 并尽可能避免 ACK/NACK合并和 CSI丟弃, 最大限度的保障了上 行信息传输的准确性和完整性。 下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案进 行说明。
为了方便描述, 本发明实施例具体根据前述的应用场景的差异, 分 别从终端设备侧和基站侧对本发明实施例所提出的技术方案进行说明。
实施例一
在第一种 UCI为 ACK/NACK, 第二种 UCI为 CSI的情况下, 本发 明实施例所提出的终端设备侧的处理方案如图 2A所示, 包括如下步骤: 步骤 201 , 终端设备生成需要在当前子帧传输的 ACK/NACK。
对于第一种 UCI的生成, 终端设备侧的处理过程具体为:
终端设备根据配置载波数 N、 每个配置载波的传输模式, 以及每个 载波 i上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 Μ,. , 生成 相应比特数的 ACK/NACK反馈信息,其中,所生成的 ACK/NACK反馈 信息的比特数具体可以通过以下公式得出:
'•=0
其中, Β表示所述终端设备所确定的需要生成的 ACK/NACK的传 输比特数;
ς.的取值规则具体包括:
对于单码字传输的载波, ς. =1 ,对于多码字传输的载波, ς. =2; 或, 对单码字传输, 或多码字传输且采用空间合并的载波, ς. =ι , 对于 多码字传输且不采用空间合并的载波, ς. =2;
表示当前载波需要在当前子帧进行 ACK/NACK反馈的下行子帧数 量, 其取值规则具体为: 对于频分复用 FDD***, M^l , 对于时分复 用 TDD***, 不同聚合载波所对应的 的取值相同或不同。
步骤 202, 终端设备根据当前子帧中 UCI同时传输的门限比特数和
ACK/NACK的传输比特数, 生成需要在当前子帧传输的 CSI。
对于第二种 UCI的生成, 终端设备侧的处理过程可以分为以下八种 方式, 分别如图 2B至图 21所示:
方式 1 :
如图 2B所示, 该方式中生成需要在当前子帧传输的 CSI包括以下 步骤:
步骤 210,终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI 反馈比特数不超过 A-B比特的下行载波集合。
步骤 212, 根据 CSI上报类型优先级和 /或载波编号, 在所述下行载 波集合中选择 1个下行载波, 将所述选择的下行载波的 CSI作为 UE需 要在当前子帧传输的 CSI。
在实际应用中, 上述的下行载波集合可能包含至少一个载波, 或者 为空集(不包含任何载波), 而且, 当不存在 CSI反馈比特数不超过 A-B 比特的下行载波时, 终端设备可以直接确定当前子帧中 CSI的传输比特 数为 0, 即不传输 CSI。
方式 2:
如图 2C所示, 该方式中生成需要在当前子帧传输的 CSI包括以下 步骤:
步骤 220, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在当 前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 222, 判断该下行载波的 CSI反馈比特数是否超过 A-B比特; 如果不超过, 执行步骤 224; 否则执行步骤 226。
步骤 224, 将该下行载波的 CSI作为终端需要在当前子帧传输的
CSI。
步骤 226, 确定终端设备在当前子帧中不传输 CSI, 或者, 在所述下 行载波集合中去掉所述选择的下行载波, 并返回步骤 220, 继续选择下 一个优先级对应的 CSI。
在步骤 220中, 如果在当前子帧中存在 CSI反馈的下行载波集合中 不存在 CSI反馈比特数是否超过 A-B比特的下行载波,则终端设备可以 直接确定当前子帧中 CSI的传输比特数为 0, 即不传输 CSI。
方式 3:
如图 2D所示, 该方式中生成需要在当前子帧传输的 CSI包括以下 步骤:
步骤 230,终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI 上报类型对应的最大反馈比特数不超过 A-B比特的下行载波集合。
步骤 232, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在所 述下行载波集合中选择一个下行载波, 确定终端需要在当前子帧传输的 CSI的传输比特数为所述选择的下行载波的 CSI上报类型对应的最大反 馈比特数 ctype_ max°
当所述选择的下行载波对应的 CSI 上报类型的实际反馈比特数 C (即根据实际 RI值确定的反馈比特数 )小于 Ctypemax时, 在该下行载波 的实际 CSI反馈比特数后补 Ctypemax-C比特 0, 并将补 0后的 CSI作为 终端需要在当前子帧传输的 CSI。
否则, 将所述选择的下行载波的实际 CSI作为终端需要在当前子帧 传输的 CSI。
在具体的应用场景中,上述的下行载波集合可能包含至少一个载波, 或者为空集(不包含任何载波), 但是, 当不存在 CSI上报类型对应的 最大反馈比特数不超过 A-B比特的下行载波时,终端设备可以直接确定 当前子帧中 CSI的传输比特数为 0, 即不传输 CSI。
方式 4:
如图 2E所示, 该方式中生成需要在当前子帧传输的 CSI包括如下 步骤:
步骤 240, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在当 前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 242, 终端设备判断该下行载波的 CSI上报类型对应的最大反 馈比特数 Ctypemax是否超过 A-B比特; 如果不超过, 执行步骤 244; 否 则, 执行步骤 246。
步骤 244, 确定终端需要在当前子帧传输的 CSI的传输比特数为所 述选择的下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax。 在 此种情况下, 当所述选择的下行载波的 CSI上 "¾类型对应的实际反馈比 特数 C 小于 Ctypemax时, 在该下行载波的实际 CSI反馈比特数后补
Ctype_max-C比特 0, 并将补 0后的 CSI作为终端需要在当前子帧传输的
CSI, 当所述选择的下行载波的 CSI上报类型对应的实际反馈比特数 C 等于 ctypemax时, 将该下行载波的实际 CSI作为终端需要在当前子帧传 输的 CSI。
步骤 246, 终端设备确定在当前子帧中不传输 CSI, 或者, 在所述下 行载波集合中去掉所述选择的下行载波, 并返回上述步骤 240, 继续选 择下一个优先级对应的 CSI。
在实际应用中, 如果在当前子帧中存在 CSI反馈的下行载波集合中 不存在最大反馈比特数 Ctypemax不超过 A-B比特的下行载波, 则终端确 定当前子帧中 CSI的传输比特数为 0, 即不传输 CSI。
方式 5:
如图 2F所示, 该方式中生成需要在当前子帧传输的 CSI包括以下 步骤:
步骤 250, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在当 前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 252, 判断该下行载波的 CSI上报类型对应的最小反馈比特数 Ctype—:^是否超过 A-B比特, 如果不超过, 执行步骤 254; 否则, 执行步 骤 256。
步骤 254, 确定终端设备需要在当前子帧传输的 CSI的传输比特数 为 A-B比特, 当所述选择的下行载波的 CSI上报类型对应的实际反馈比 特数 C小于 A-B时, 在该下行载波的实际 CSI反馈比特数后补 A-B-C 比特 0, 并将补 0后的 CSI作为终端需要在当前子帧传输的 CSI, 当所 述下行载波的 CSI上报类型对应的实际反馈比特数 C大于 A-B比特时, 将该下行载波的实际 CSI反馈比特中的前 A-B比特信息作为终端需要在 当前子帧传输的 CSI, 或者产生 A-B比特占位信息 (例如 0比特信息 ) 作为终端需要在当前子帧传输的 CSI, 当所述选择的下行载波的 CSI上 报类型对应的实际反馈比特数 C等于 A-B时,将该下行载波的实际 CSI 作为终端需要在当前子帧传输的 CSI。
步骤 256, 终端设备确定终端在当前子帧中的 CSI传输比特数为 0, 即不传输 CSI, 或者在所述下行载波集合中去掉所述选择的下行载波, 并返回上述步骤 250, 继续选择下一个优先级对应的 CSI。
如果在当前子帧中存在 CSI反馈的下行载波集合中不存在最小反馈 比特数 Ctype mm不超过 A-B比特的下行载波, 则终端设备确定当前子帧 中 CSI的传输比特数为 0, 即不传输 CSI。
方式 6:
如图 2G所示, 该方式中生成需要在当前子帧传输的 CSI包括以下 步骤:
步骤 260,终端设备确定当前子帧中存在 CSI反馈的下行载波的 CSI 上报类型对应的最小反馈比特数 Ctypemm不超过 A-B比特的下行载波集 合。
步骤 262, 根据 CSI上报类型优先级和 /或载波编号, 在下行载波集 合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实 际反馈比特数 Crcal是否超过 A-B比特, 如果小于, 执行步骤 264; 如果 等于, 执行步骤 266; 如果大于, 执行步骤 268。
步骤 264, 终端设备在所述下行载波的 Crcal比特实际 CSI反馈信息 后补 A-B-Creal比特的占位信息, 并将补充占位信息后的 A-B 比特 CSI 作为终端需要在当前子帧传输的 CSI;
步骤 266, 将所述下行载波的 Crcal比特实际 CSI作为所述终端设备 需要在当前子帧传输的 CSI;
步骤 268, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信 息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特占位 信息作为所述终端设备需要在当前子帧传输的 CSI (即终端没有传输该 载波真正的 CSI信息,而是使用了 A-B比特占位信息保证总传输比特为 A );
其中, 在步骤 260中, 当所述终端设备所确定的下行载波集合为空 集时, 所述终端设备确定在当前子帧中不传输 CSI, 即 CSI传输比特数 为 0。
方式 7: 终端设备总是确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 即终端总是假设 ACK/NACK和 CSI的总传输比特数为 A, 在产 生 B比特 ACK/NACK信息后,确定 A-B比特信息为 CSI占用的比特位 置, 不论是否选择到适合的下行载波的 CSI, 该 A-B比特信息都需要传 输, 具体可有如下处理方式:
如图 2H所示, 该方式中生成需要在当前子帧传输的 CSI包括如下 步骤:
步骤 270, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在当 前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 272, 判断所述下行载波的 CSI上报类型对应的实际反馈比特 数 Crcal是否超过 A-B比特; 如果小于, 执行步骤 274; 如果等于, 执行 步骤 276; 如果大于, 执行步骤 278。
步骤 274, 终端设备在所述下行载波的 Crcal比特实际 CSI反馈信息 后补 A-B-Creal比特的占位信息, 并将补充占位信息后的 A-B 比特 CSI 作为终端需要在当前子帧传输的 CSI;
步骤 276, 将所述下行载波的 Crcal比特实际 CSI作为所述终端设备 需要在当前子帧传输的 CSI;
步骤 278, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信 息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特占位 信息作为所述终端设备需要在当前子帧传输的 CSI, 或者, 终端设备在 所述下行载波集合中去掉步骤 270所选择的下行载波, 并重新执行步骤 270, 在当前更新后的下行载波集合继续选择一个下行载波的 CSI进行 相应的处理, 其中, 如果所述当前更新后的下行载波集合为空集, 终端 设备确定在当前子帧中不传输 CSI, 即 CSI传输比特数为 0。
方式 8: 终端设备总是确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 即终端总是假设 ACK/NACK和 CSI的总传输比特数为 A, 在产 生 B比特 ACK/NACK信息后,确定 A-B比特信息为 CSI占用的比特位 置, 不论是否选择到适合的下行载波的 CSI, 该 A-B比特信息都需要传 输, 具体可有如下处理方式:
如图 21所示,该方式中生成需要在当前子帧传输的 CSI包括以下步 骤:
步骤 280,终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI 实际反馈比特数不超过 A-B比特的下行载波集合。
步骤 282, 根据 CSI上报类型优先级和 /或载波编号, 在所述下行载 波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应 的实际反馈比特数 Crcal是否超过 A-B比特; 如果小于, 执行步骤 284; 如果等于, 执行步骤 286; 如果大于, 执行步骤 288。
步骤 284, 终端设备在所述下行载波的 Crcal比特实际 CSI反馈信息 后补 A-B-Creal比特的占位信息, 并将补充占位信息后的 A-B 比特 CSI 作为终端需要在当前子帧传输的 CSI;
步骤 286, 将所述下行载波的 Crcal比特实际 CSI作为所述终端设备 需要在当前子帧传输的 CSI;
步骤 288, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信 息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特占位 信息作为所述终端设备需要在当前子帧传输的 CSI;
其中, 在步骤 280中, 当该下行载波集合为空集时, 终端设备产生 A-B比特占位信息作为所述终端设备需要在当前子帧传输的 CSI。
, 步骤 203 , 终端设备在当前子帧对应的信道资源上, 同时传输所 生成的第一种 UCI和第二种 UCI。 两种 UCI的比特数之和没有超过该信道资源上所支持的同时传输多 种 UCI的最大比特数。 实施例二
在第一种 UCI为 ACK/NACK, 第二种 UCI为 CSI的情况下, 本发 明实施例所提出的基站侧的处理方案如图 3A所示, 包括:
步骤 301 , 基站确定第一种 UCI的传输比特数, 处理过程具体为: 基站根据终端设备的配置载波数 N、 每个配置载波的传输模式以及 每个载波 i上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 f , 确定终端传输的 ACK/NACK反馈信息的比特数, 具体的确定方法与前 述说明相一致, 在此不再重复说明。
步骤 302, 基站确定第二种 UCI的传输比特数, 处理过程具体包括 以下八种方式中的任意一种, 如图 3B至图 31所示。
方式 1 :
如图 3B所示, 该方式中确定第二种 UCI的传输比特数的过程包括 以下步骤:
步骤 310, 基站确定在当前子帧中存在 CSI反馈的下行载波中 CSI 反馈比特数不超过 A-B比特的下行载波集合。
步骤 312, 基站根据 CSI上报类型优先级和 /或载波编号, 在所述下 行载波集合中选择 1个下行载波, 将该下行载波的 CSI上报类型对应的 传输比特数作为终端在当前子帧中传输的 CSI传输比特数。
在实际应用中, 上述的下行载波集合可能包含至少一个载波, 或者 为空集(不包含任何载波), 而且, 当不存在 CSI反馈比特数不超过 A-B 比特的下行载波时, 基站可以直接确定当前子帧中 CSI的传输比特数为 0, 即终端没有传输 CSI。 方式 2:
如图 3C所示, 该方式中确定第二种 UCI的传输比特数的过程包括 以下步骤:
步骤 320, 基站根据 CSI上报类型优先级和 /或载波编号, 在当前子 帧中存在 CSI反馈的下行载波集合中选择 1个下行载波。
步骤 322, 基站判断该下行载波的 CSI上报类型对应的传输比特数 是否超过 A-B比特, 如果不超过, 执行步骤 324; 否则, 执行步骤 326。
步骤 324, 将该下行载波的 CSI上 "¾类型对应的传输比特数作为终 端在当前子帧中传输的 CSI传输比特数。
步骤 326, 确定终端在当前子帧中 CSI的传输比特数为 0, 或者, 在 所述下行载波集合中去掉所述选择的下行载波, 并返回上述步骤 320, 继续选择下一个优先级对应的 CSI。
在具体的处理过程中, 如果在当前子帧中存在 CSI反馈的下行载波 集合中不存在 CSI传输比特数不超过 A-B比特的下行载波,则基站确定 当前子帧中 CSI的传输比特数为 0, 即终端没有传输 CSI。
方式 3:
如图 3D所示, 该方式中确定第二种 UCI的传输比特数的传输比特 数的过程包括以下步骤:
步骤 330, 基站确定在当前子帧中存在 CSI反馈的下行载波中 CSI 上报类型对应的最大反馈比特数 Ctypemax不超过 A-B比特的下行载波集 合。
步骤 332, 基站根据 CSI上报类型优先级和 /或载波编号, 在所述下 行载波集合中选择一个下行载波。
基站将该下行载波的 CSI上报类型对应的最大传输比特数作为终端 在当前子帧中传输的 CSI传输比特数; 在具体的应用场景中,上述的下行载波集合可能包含至少 1个载波, 或者为空集(不包含任何载波), 当不存在 CSI反馈比特数不超过 A-B 比特的下行载波时, 基站可以直接确定当前子帧中 CSI的传输比特数为 0, 即终端设备没有传输 CSI。
方式 4:
如图 3E所示, 该方式中确定第二种 UCI的传输比特数的过程包括 如下步骤:
步骤 340, 基站根据 CSI上报类型优先级和 /或载波编号, 在当前子 帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 342, 基站判断该下行载波的 CSI上报类型对应的最大传输比 特数 Ctypemax是否超过 A-B比特, 如果不超过, 执行步骤 344; 否则, 执行步骤 346。
步骤 344, 将该下行载波的 CSI上 "¾类型对应的最大传输比特数作 为终端在当前子帧中传输的 CSI传输比特数。
步骤 346, 确定终端在当前子帧中 CSI的传输比特数为 0, 或者, 在 所述下行载波集合中去掉所述选择的下行载波, 并返回上述步骤 340, 继续选择下一个优先级对应的 CSI。
在实际应用中, 如果在当前子帧中存在 CSI反馈的下行载波集合中 不存在最大传输比特数 Ctypemax不超过 A-B比特的下行载波, 则基站确 定当前子帧中 CSI的传输比特数为 0, 即终端没有传输 CSI。
方式 5:
如图 3F所示, 该方式中确定第二种 UCI的传输比特数的过程包括 如下步骤:
步骤 350, 基站根据 CSI上报类型优先级和 /或载波编号, 在当前子 帧中存在 CSI反馈的下行载波集合中选择一个下行载波。 步骤 352, 基站判断该下行载波的 CSI上报类型对应的最小反馈比 特数 Ctype—皿是否超过 A-B比特, 如果不超过, 执行步骤 354; 否则, 执行步骤 356。
步骤 354, 确定终端在当前子帧中 CSI的传输比特数为 A-B比特。 步骤 356, 确定当前子帧中 CSI的传输比特数为 0, 即不存在 CSI 传输, 或者在所述下行载波集合中去掉所述选择的下行载波, 并返回步 骤 350, 继续选择下一个优先级对应的 CSI。
如果在当前子帧中存在 CSI反馈的下行载波集合中不存在最小反馈 比特数 Ctypemm不超过 A-B比特的下行载波,则基站确定当前子帧中 CSI 的传输比特数为 0, 即不存在 CSI传输。
方式 6:
如图 3G所示, 该方式中确定第二种 UCI的传输比特数的过程包括 如下步骤:
步骤 360, 基站确定当前子帧中存在 CSI反馈的下行载波的 CSI上 报类型对应的最小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合。
步骤 362, 判断该下行载波集合是否为空集, 如果该下行载波集合 不为空集, 执行步骤 364; 否则, 执行步骤 366。
步骤 364, 基站总是确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 A-B比特, 进一步, 基站可根据 CSI上报类型优先级和 / 或载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述下 行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 基站确定所述 A-B 比特 CSI 反馈信息中包含 A-B-Creal比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述 下行载波的实际 CSI;当判断等于时,所述基站确定所述 A-B比特的 CSI 反馈信息即为所述下行载波的实际 CSI; 当判断大于时, 所述基站确定所述 A-B比特 CSI反馈信息为所述下 行载波的实际 CSI反馈比特中的前 A-B比特信息,或确定 A-B比特 CSI 反馈信息全部为占位信息;
步骤 366, 基站确定所述终端设备在当前子帧中传输的 CSI的传输 比特数为 0, 即确定终端没有传输 CSI信息。
方式 7:
如图 3H所示, 该方式中确定第二种 UCI的传输比特数的过程包括 如下步骤:
基站总是确定终端设备在当前子帧传输的 CSI的传输比特数为 A-B 比特, 即基站总是假设 ACK/NACK和 CSI的总传输比特数为 A, 在接 收 A比特信息后, 从中分类出 B比特 ACK/NACK, 并^殳剩余的 A-B 比特信息为 CSI信息, 具体可有如下处理方式:
步骤 370, 基站根据 CSI上报类型优先级和 /或载波编号, 在当前子 帧中存在 CSI反馈的下行载波集合中选择一个下行载波。
步骤 372, 判断该下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 如果小于, 执行步骤 374; 如果等于, 执行步 骤 376; 如果大于, 执行步骤 378。
步骤 374, 基站确定所述 A-B比特 CSI反馈信息中包含 A-B-Crcal比 特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波的 实际 CSI;
步骤 376, 基站确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
步骤 378, 基站确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息(即确定终端没有传输该载波真正的 CSI信息, 而是 使用了 A-B比特占位信息保证总传输比特为 A ), 或者, 在所述下行载 波集合中去掉步骤, 370所选择的下行载波, 并重新执行步骤 370, 在当 前更新后的下行载波集合继续选择一个下行载波的 CSI 进行相应的处 理, 其中, 如果所述当前更新后的下行载波集合为空集, 所述基站确定 所述终端设备在当前子帧传输的 CSI的传输比特数为 0, 即确定终端没 有传输 CSI信息。
方式 8:
如图 31所示,该方式中确定第二种 UCI的传输比特数的过程包括如 下步骤:
基站确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B 比特, 具体接收和信息分离方式同方式 7; 对 A-B比特假设 CSI信息的 处理过程如下:
步骤 380, 基站确定当前子帧中存在 CSI反馈的下行载波中 CSI实 际反馈比特数不超过 A-B比特的下行载波集合。
步骤 382, 根据 CSI上报类型优先级和 /或载波编号, 在所述下行载 波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应 的实际反馈比特数 Crcal是否超过 A-B比特; 如果小于, 执行步骤 384; 如果等于, 执行步骤 386; 如果大于, 执行步骤 388。
步骤 384, 基站确定所述 A-B比特 CSI反馈信息中包含 A-B-Crcal比 特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波的 实际 CSI;
步骤 386, 基站确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
步骤 388, 基站确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息;
其中, 当该下行载波集合为空集时, 基站确定所述终端设备在当前 子帧传输的 CSI的传输比特数为 0, 即确定终端没有传输 CSI信息。
需要说明的是, 无论是对于基站侧还是终端设备侧, 上述方式 1和 方式 2较适用于 ACK/NACK和 CSI独立编码,例如分别对应独立的 RM 编码器, 并且 ACK/NACK和 CSI对应的编码后比特为高层信令预先配 置或者 UE与基站预先约定的固定值的传输方式, 以避免由于 CSI传输 比特错误造成 ACK/NACK传输错误; 上述方式 3、 4、 5、 6、 7、 8可以 用于 ACK/NACK和 CSI独立编码或联合编码, 通过固定传输的 CSI反 馈比特数, 避免由于 CSI传输比特错误造成 ACK/NACK传输错误。
步骤 303, 在基站确定了第一种 UCI的传输比特数, 并进一步确定 了第二种 UCI的传输比特数之后, 基站根据所确定的结果, 在当前子帧 中对应的信道资源上, 同时接收终端设备所发送的第一种 UCI和第二种 UCL
两种 UCI的比特数之和没有超过该信道资源上所支持的同时传输多 种 UCI的最大比特数。 实施例三
在第一种 UCI为 CSI, 第二种 UCI为 ACK/NACK的情况下, 本发 明实施例所提出的终端设备侧的处理方案如图 4所示, 包括:
步骤 401 , 终端设备生成需要在当前子帧传输的第一种 UCI。
终端设备侧的处理过程具体为:
终端设备根据 CSI上报类型优先级和 /或载波编号,在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波, 将该下行载波的 CSI 上 类型对应的传输比特数作为终端在当前子帧中传输的 CSI传输比特 数。
或者, 终端设备根据 CSI上报类型优先级和 /或载波编号, 在当前子 帧中存在 CSI反馈的下行载波集合中选择 1个下行载波, 将该下行载波 的 CSI上报类型对应的最大反馈比特数 ctypemax作为终端在当前子帧中 传输的 CSI传输比特数, 当所述选择的下行载波的 CSI上报类型对应的 实际反馈比特数 C小于 Ctypemax时, 在该下行载波的实际 CSI反馈比特 数后补 Ctypemax-C比特 0, 并将补 0后的 CSI作为终端需要在当前子帧 传输的 CSI, 否则, 将所述选择的下行载波的 CSI作为终端需要在当前 子帧传输的 CSI。
步骤 402, 终端设备根据当前子帧中 UCI同时传输的门限比特数和 第一种 UCI的传输比特数, 生成需要在当前子帧传输的第二种 UCI。
终端设备侧的处理过程如下:
终端设备根据配置载波数 N、 每个配置载波的传输模式以及每个载 波 i上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 M 确定待 反馈的 ACK/NACK的反馈比特数为:
Figure imgf000037_0001
B= 比特。
终端设备判断 B是否超过 A-C。
当判断结果为不超过时, 生成 B比特 ACK/NACK反馈信息。
否则, 对 ACK/NACK 进行预定义的合并, 以满足合并后的
ACK/NACK反馈比特数不超过 A-C, 并将合并后的 ACK/NACK反馈信 息作为终端在当前子帧传输的 ACK/NACK信息。
其中, C表示终端设备所生成的 CSI的传输比特数。
步骤 403, 终端设备在当前子帧中对应的信道资源上, 同时传输所 生成的第一种 UCI和第二种 UCI。 两种 UCI的比特数之和没有超过该信道资源上所支持的同时传输多 种 UCI的最大比特数。 实施例四
在第一种 UCI为 CSI, 第二种 UCI为 ACK/NACK的情况下, 本发 明实施例所提出的基站侧的处理方案如图 5所示, 包括:
步骤 501 ,基站先确定第一种 UCI的传输比特数, 处理过程具体为: 基站根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波, 将该下行载波的 CSI上 报类型对应的传输比特数作为当前子帧中的 CSI的传输比特数。
或者, 基站根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中 存在 CSI反馈的下行载波集合中选择 1 个下行载波, 将该下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax作为当前子帧中的 CSI的 传输比特数。
步骤 502, 基站确定第二种 UCI的传输比特数, 处理过程具体为: 基站根据终端的配置载波数 N、 每个配置载波的传输模式以及每个 载波 i上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 M 计算 终端需要传输的 ACK/NACK反馈比特数:
Figure imgf000038_0001
B= 比特。
基站判断 B是否超过 A-C。
当判断结果为不超过时, 基站确定终端在当前子帧中传输的 ACK/NACK传输比特数为 B。
否则, 基站确定终端对 ACK/NACK进行预定义的合并, 以满足合 并后的 ACK/NACK反馈比特数不超过 A-B, 并将根据预定义合并方式 合并后的 ACK/NACK反馈比特数作为终端在当前子帧中传输的第二种 UCI的传输比特数。
在具体的应用场景中, 上述的预定义的合并优先使用空间合并, 当 空间合并不足以满足合并后反馈比特数不超过 A-B 时, 可使用时域合 并、 频域合并等方式。
步骤 503 , 在基站确定了第一种 UCI的传输比特数, 并进一步确定 了第二种 UCI的传输比特数之后, 基站根据所确定的结果, 在当前子帧 中对应的信道资源上, 同时接收终端设备所发送的第一种 UCI和第二种 UCL
对于上述的各实施例中所提出的技术方案, 需要进行进一步说明如 下:
( 1 )对于基于 RI值进行上报的 CSI上报类型( typel/la/2/2a/2b/2c ), 所述 CSI上报类型对应的最大(最小 )反馈比特数为该 CSI上报类型中 在当前天线端口配置下不同的 RI值对应的反馈比特数的最大值(最小 值); 对于其他 CSI上报类型 ( type3/4/5/6 ), 所述 CSI上报类型对应的 最大(最小 )反馈比特数为实际反馈比特数。
例如: type2上报类型中, 如表 1所示, 在反馈模式 1-1或 1-2中, 对于 2天线端口传输的终端, RI=1时对应 6比特, RI>1时对应 8比特, 则 2天线端口配置情况下, CSI上报类型 2对应的最大 CSI反馈比特数 为 8比特, CSI上报类型 2对应的最大 CSI反馈比特数为 6比特。
又例如, type3上报类型中, 具体上报比特数与 RI值无关, 当选择 的下行载波在当前子帧中的为 4层传输时, 该 CSI上报类型的实际比特 为 2比特, 则 CSI上报类型 3对应的最大和最小 CSI反馈比特数都为 2 比特。
( 2 )传输所述 UCI的 PUCCH format可以为 PUCCH format2、 3 , 或者其他新定义的大容量 PUCCH format,例如基于 PUSCH传输结构的 PUCCH format
当所述 PUCCH format为 format3时, 所述 PUCCH format3信道资 源可以为 ACK/NACK对应的信道资源或者周期 CSI对应的信道资源。
较优的, 当 ACK/NACK被配置采用 PUCCH format3传输时, 所述
PUCCH format3 信道资源可以为 ACK/NACK 对应的信道资源, 当 ACK/NACK被配置采用 PUCCH formatlb with channel selection传输时, 所述 PUCCH format3信道资源可以为 CSI对应的信道资源。
( 3 )如前所述, 所述 A值为预先定义的 (不需要信令通知 )或者 通过高层信令或 PDCCH信令通知的值, 该值为不超过 PUCCH format 的最大承载比特数或 PUCCH format的最大承载比特数与 SR比特数之 差的任一正整数。
当所述 PUCCH format为 format3时, 举例如下:
对于用于判定的反馈比特数具体为 CSI上报类型的实际反馈比特数 Creal的场景, 约定 A=21或 22; 或者, 在 SR传输子帧中, 约定 A=21 , 在非 SR传输子帧中, 约定 A=22;
对于用于判定的反馈比特数具体为 CSI上报类型的最大反馈比特数 Ctype_max的场景, 对 type3/4/5/6, 约定八=21或 = 22; 或者, 在 SR 传输子帧中, 约定 A=21 , 在非 SR传输子帧中, 约定 A=22; 对除了 type3/4/5/6以外的 type, 根据 ACK/NACK反馈比特数和 CSI反馈比特 数, 预先约定或者高层信令或 PDCCH信令通知一个不超过 21或 22比 特的任一正整数值;
或者, 对于所有 CSI reporting type , 根据在一个子帧中反馈的 ACK/NACK比特数 Al , CSI reporting type的最大反馈比特数为 A2, 预 先约定或者信令配置 A=min( A1+A2, 22 ),或 A=min( A1+A2, 22-ASR ), 或 A为不超过 min ( A1+A2, 22 ), 或 min ( A1+A2, 22-ASR ) 的任一 正整数, 其中 ASR为 SR比特数, 可约定在 SR子帧中 =1 , 在非 SR子 帧中 =0, 或者在所有子帧中都为 1或 0。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 实现了一种在当前子帧所对应 的信道资源上同时传输 ACK/NACK和周期 CSI的方法, 根据当前子帧 中 UCI同时传输的门限比特数,以及第一种 UCI在当前子帧的传输比特 数,动态确定与第一种 UCI同时传输的第二种 UCI的传输比特数, 以保 证同时传输的 UCI比特之和不超过当前子帧中 UCI同时传输的门限比特 数, 并尽可能避免 ACK/NACK合并和 CSI丟弃, 最大限度的保障了上 行信息传输的准确性和完整性。 为了实现本发明实施例的技术方案, 本发明实施例还提供了一种基 站, 其结构示意图如图 6所示, 至少包括:
第一生成模块 61 , 用于生成需要在当前子帧中传输的第一种 UCI; 第二生成模块 62,用于根据当前子帧中 UCI同时传输的门限比特数 和所述第一生成模块 61所生成的第一种 UCI的传输比特数, 生成需要 在当前子帧中传输的第二种 UCI, 其中, 所述第二种 UCI的传输比特数 不超过当前子帧中 UCI同时传输的门限比特数与所述第一种 UCI的传输 比特数之差;
传输模块 63, 用于在当前子帧中对应的信道资源上, 传输所述第一 生成模块 61所生成的所述第一种 UCI和所述第二生成模块 62所生成的 所述第二种 UCI。
在实际的应用场景中,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者,
所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
在一种具体的应用场景中, 当所述第一种 UCI为 ACK/ NACK, 所 述第二种 UCI为 CSI时, 所述第一生成模块 61具体用于:
根据配置载波数 N, 每个配置载波的传输模式, 以及每个载波上需 要在当前子帧进行 ACK/NACK反馈的下行子帧数 ,确定需要生成的
ACK/NACK的传输比特数为:
'·=ο
生成需要在当前子帧中传输的相应传输比特数的 ACK/NACK;
其中, ς.的取值规则具体包括:
对于单码字传输的载波, ς. =1 ,对于多码字传输的载波, ς. =2; 或, 对单码字传输, 或多码字传输且采用空间合并的载波, ς. =ι , 对于 多码字传输且不采用空间合并的载波, ς. =2;
的取值规则具体为: 对于频分复用 FDD***, M^l , 对于时分复 用 TDD***, 不同聚合载波所对应的 的取值相同或不同。
进一步的, 当所述第一种 UCI为 ACK/ NACK, 所述第二种 UCI为 CSI时,所述第二生成模块 62具体用于根据如下八种方法中的一种生成 需要在当前子帧中传输的第二种 UCI:
方法 1:
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合,其中, A表示当前子帧中 UCI同时传输 的门限比特数, B表示所述第一生成模块 61所生成的 ACK/NACK的传 输比特数; 根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 生成该下行载波的 Crcal比特实际 CSI反馈信息, 并将 所选择的下行载波的 Crcal比特 CSI作为需要在当前子帧中传输的 CSI; 其中, 当所述确定的下行载波集合为空集时, 确定在当前子帧中不 传输 CSI。
方法 2:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、判断所选择的所述下行载波的 CSI反馈比特数是否超过 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述第一生成模块 61所生成的 ACK/NACK的传输比特数;
如果判断结果为否, 则生成该下行载波的 Crcal比特实际 CSI反馈信 息, 并将所述下行载波的 Crcal比特 CSI作为需要在当前子帧中传输的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI。
方法 3:
确定当前子帧中存在 CSI反馈的下行载波中 CSI上报类型对应的最 大反馈比特数不超过 A-B 的下行载波集合, 其中, A表示当前子帧中 UCI 同时传输的门限比特数, B 表示所述第一生成模块 61 所生成的 ACK/NACK的传输比特数; 根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 并确定需要在当前子帧传输的 CSI的传输比特数为所 述下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 creal 小于 ctypemax时, 在所述下行载波的 Creal比特实际 CSI反馈信息后补充 ctypemax-Creal 特的占位信息, 并将补充占位信息后的 Ctypemax比特 CSI 作为需要在当前子帧传输的 CSI,
当所述下行载波对应的 CSI 上报类型的实际反馈比特数 crcal等于 ctypemax时,将所述下行载波的 Crcal比特实际 CSI反馈信息作为需要在当 前子帧传输的 CSI,
当所述确定的下行载波集合为空集时, 确定在当前子帧中不传输
CSI。
方法 4:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上 类型对应的最大反馈比特数 Ctypemax是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一生成模块 61所生成的 ACK/NACK的传输 比特数;
如果判断结果为否, 确定需要在当前子帧传输的 CSI的传输比特数 为所述下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax, 其中, 当所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal小于 ctype_max时, 在所述下行载波的 Creal比特实际 CSI 反馈信息后补充 Ctypemax-Crcal比特的占位信息, 并将补充占位信息后的 Ctypemax比特 CSI 作为终端需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类型 对应的实际反馈比特数 crcal等于 ctypemax时, 将所述下行载波的 crcal比 特实际 CSI作为需要在当前子帧传输的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI。
方法 5:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最小反馈比特数 Ctype—:^是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一生成模块 61所生成的 ACK/NACK的传输 比特数;
如果判断结果为否, 确定需要在当前子帧传输的 CSI的传输比特数 为 A-B比特, 其中, 当所述选择的下行载波的 CSI上报类型对应的实际 反馈比特数 Crcal小于 A-B时,在所述下行载波的 Crcal比特实际 CSI反馈 信息后补 A-B-Crcal比特的占位信息, 并将补充占位信息后的 A-B 比特 CSI作为终端需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报 类型对应的实际反馈比特数 Crcal大于 A-B比特时,将所述下行载波的实 际 CSI反馈比特中的前 A-B比特信息作为需要在当前子帧传输的 CSI, 或产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类型对应的实际反馈比特数 crcal等于 A-B时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当前子帧传输 的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A所选择的下 行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择一 个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI。
方法 6:
确定当前子帧中存在 CSI反馈的下行载波的 CSI上报类型对应的最 小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模块 61 所生成的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈 比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Qeai比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断相等时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为 需要在当前子帧传输的 CSI;
其中, 当所述确定的下行载波集合为空集时, 确定在当前子帧中不 传输 CSI。 方法 7:
确定需要在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模 块 61所生成的 ACK/NACK的传输比特数;
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Creal比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为 需要在当前子帧传输的 CSI, 或者, 在所述下行载波集合中去掉步骤 A 所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合 继续选择一个下行载波的 CSI进行相应的处理, 其中, 如果所述当前更 新后的下行载波集合为空集, 确定在当前子帧中不传输 CSI。
方法 8:
确定需要在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模 块 61所生成的 ACK/NACK的传输比特数;
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合, 根据 CSI上报类型优先级和 /或载波编 号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Creal比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于 A-B 时, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信 息作为需要在当前子帧传输的 CSI;
其中, 当所述确定的下行载波集合为空集时, 产生 A-B比特占位信 息作为需要在当前子帧传输的 CSI。
具体的, 当所述第一种 UCI为 CSI,所述第二种 UCI为 ACK/NACK 时, 所述第一生成模块 61生成具体用于:
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波;
将所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal作为需 要在当前子帧中传输的 CSI传输比特数, 将所述下行载波的 Crcal比特 CSI作为需要在当前子帧传输的 CSI; 或,
将该下行载波的 CSI上报类型对应的最大反馈比特数 Ctype_max作 为在当前子帧中传输的 CSI传输比特数, 当所述下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal小于 Ctypemax时, 在所述下行载波的实际
CSI反馈信息数后补 ctypemax-crcal比特的占位信息,并将补充占位信息后 的 CSI作为需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类 型对应的实际反馈比特数 crcal等于 ctypemax时, 将所述下行载波的 crcal 比特 CSI作为需要在当前子帧传输的 CSI。 进一步的, 当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所述第二生成模块 62具体用于:
根据配置载波数, 每个配置载波的传输模式, 以及每个载波上需要 在当前子帧进行 ACK/NACK 反馈的下行子帧数, 确定待反馈的 ACK/NACK的反馈比特数;
判断所述待反馈的 ACK/NACK的反馈比特数是否超过 A-C, 其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示所述第一生成模 块 61所生成的 CSI的传输比特数;
如果判断结果为否, 根据所述待反馈的 ACK/NACK的反馈比特数 生成相应比特数的 ACK/NACK,并将所生成的 ACK/NACK作为需要在 当前子帧传输的 ACK/NACK;
如果判断结果为是, 对待反馈的 ACK/NACK进行空间合并, 以满 足空间合并后的 ACK/NACK的反馈比特数不超过 A-C, 并将空间合并 后的 ACK/NACK作为需要在当前子帧传输的 ACK/NACK。
需要说明的是, 当所述当前子帧具体为调度请求 SR传输子帧时, 所述处理模块具体用于:
在当前子帧中对应的信道资源上, 传输所生成的所述第一种 UCI和 第二种 UCI和 1比特 SR。 另一方面, 本发明实施例还提供了一种终端设备, 其结构示意图如 图 7所示, 包括:
第一确定模块 71 , 用于确定终端设备需要在当前子帧中传输的第一 种 UCI的传输比特数;
第二确定模块 72,用于根据当前子帧中 UCI同时传输的门限比特数 和所述第一确定模块 71所确定的第一种 UCI的传输比特数, 确定所述 终端设备需要在当前子帧中传输的第二种 UCI的传输比特数, 其中, 所 述第二种 UCI的传输比特数不超过当前子帧中 UCI同时传输的门限比特 数与所述第一种 UCI的传输比特数之差;
接收模块 73, 用于在当前子帧中对应的信道资源上, 根据所述第一 确定模块 71所确定的第一种 UCI的传输比特数和所述第二确定模块 72 所确定的第二种 UCI的传输比特数,接收所述终端设备所传输的第一种 UCI和第二种 UCI。
在实际的应用场景中,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者,
所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
在一种具体的应用场景中, 当所述第一种 UCI为 ACK/ NACK, 所 述第二种 UCI为 CSI时, 所述第一确定模块 71确定终端设备在当前子 帧中传输的第一种 UCI的传输比特数, 具体包括:
根据所述终端设备的配置载波数 N, 每个配置载波的传输模式, 以 及每个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 Μ,. , 确定所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数为:
'•=0
其中, ς的取值规则具体包括:
对于单码字传输的载波, ς =ι ,对于多码字传输的载波, ς=2; 或, 对单码字传输, 或多码字传输且采用空间合并的载波, ς=ι , 对于 多码字传输且不采用空间合并的载波, ς=2;
Λ^.的取值规则具体为: 对于频分复用 FDD***, M^l , 对于时分 复用 TDD***, 不同聚合载波所对应的 的取值相同或不同。
进一步的,所述第二确定模块 72根据如下八种方法中的一种确定所 述终端设备在当前子帧中传输的第二种 UCI的传输比特数:
方法 1:
确定当前子帧中存在 CSI反馈的下行载波中 CSI反馈比特数不超过 Α-Β比特的下行载波集合, 其中, Α表示当前子帧中 UCI同时传输的门 限比特数, B表示所述第一确定模块 71所确定的所述终端设备在当前子 帧中传输的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 将所选择的下行载波的 CSI上报类型所对应的实际反 馈比特数 Crcal作为所述终端设备在当前子帧中传输的 ACK/NACK的传 输比特数;
其中, 当所述确定的下行载波集合为空集时, 确定所述终端设备在 当前子帧中传输的 CSI的传输比特数为 0。
方法 2:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所选择的下行载波的 CSI上报类型所对应的传输比特 数是否超过 A-B比特,其中, A表示当前子帧中 UCI同时传输的门限比 特数, B表示所述第一确定模块 71所确定的所述终端设备在当前子帧中 传输的 ACK/NACK的传输比特数;
如果判断结果为否, 则将所述下行载波的 CSI上报类型所对应的实 际反馈比特数 Crcal作为所述终端设备在当前子帧中传输的 CSI的传输比 特数;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0。
方法 3:
确定当前子帧中存在 CSI反馈的下行载波中 CSI上报类型对应的最 大反馈比特数不超过 A-B 的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一确定模块 71所确定的所述 终端设备在当前子帧中传输的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 确定当前子帧传输的 CSI的传输比特数为所述下行载 波的 CSI上报类型对应的最大反馈比特数 Ctypemax
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 Crcal 小于 ctypemax时, 确定所述 Ctypemax比特 CSI反馈信息包含 ctypemax-crcal 比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI,
当所述下行载波对应的 CSI 上报类型的实际反馈比特数 crcal等于 ctype_max时, 确定所述 Ctypemax比特的 CSI反馈信息即为所述下行载波的 实际 CSI,
当所述所确定的下行载波集合为空集时, 确定所述终端设备在在当 前子帧中传输的 CSI的传输比特数为 0。
方法 4:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一确定模块 71所确定的所述终端设备在当前 子帧中传输的 ACK/NACK的传输比特数;
如果判断结果为否, 确定所述终端设备在当前子帧传输的 CSI的传 输比特数为所述下行载波的 CSI 上报类型对应的最大反馈比特数 Ctype_max; 其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 Creal小于 Ctypemax时, 确定所述 Ctypemax比特 CSI 反馈信息中包含 Ctype_max-Creai比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作 为所述下行载波的实际 CSI, 当所述下行载波对应的 CSI上报类型的实 际反馈比特数 Crcal等于 Ctypemax时,确定所述 Ctypemax比特的 CSI反馈信 息即为所述下行载波的实际 CSI;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0。
方法 5:
步骤 A、 根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最小反馈比特数 ( ^ 匪是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一确定模块 71所确定的所述终端设备在当前 子帧中传输的 ACK/NACK的传输比特数;
如果判断结果为否, 确定所述终端设备在当前子帧传输的 CSI的传 输比特数为 A-B比特; 其中, 当所述下行载波的 CSI上报类型对应的实 际反馈比特数 Crcal小于 A-B时, 确定所述 A-B比特 CSI反馈信息中包 含 A-B-Crcal比特的占位信息,并将除去占位信息的 Crcal比特 CSI作为所 述下行载波的实际 CSI, 当所述下行载波的 CSI上报类型对应的实际反 馈比特数 Crcal大于 A-B比特时, 确定所述 A-B比特 CSI反馈信息为所 述下行载波的实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比 特 CSI反馈信息全部为占位信息, 当所述下行载波的 CSI上 类型对应 的实际反馈比特数 Crcal等于 A-B时, 确定所述 A-B比特的 CSI反馈信 息即为所述下行载波的实际 CSI;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是, 在所述下行载波集合中去掉步骤 A所选择的下 行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择一 个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0。
方法 6:
确定当前子帧中存在 CSI反馈的下行载波的 CSI上报类型对应的最 小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述第一确定模块 71 所确定的所述终端设备在当前子帧中传输的 ACK/NACK 的传输比特 数; 当所述下行载波集合不为空集时, 确定所述终端设备在当前子帧中 传输的 CSI的传输比特数为 A-B比特, 根据 CSI上报类型优先级和 /或 载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行 载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI;
当判断等于时,确定所述 A-B比特的 CSI反馈信息即为所述下行载 波的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息;
当所述下行载波集合为空集时, 确定所述终端设备在当前子帧中传 输的 CSI的传输比特数为 0。
方法 7:
确定所述终端设备在当前子帧传输的 CSI 的传输比特数为 A-B 比 特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述 第一确定模块 71 所确定的所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数;
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI; 当判断等于时,确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息, 或者, 在所述下行载波集合中去掉步骤 A所选择的 下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择 一个下行载波的 CSI进行相应的处理, 其中, 如果所述当前更新后的下 行载波集合为空集, 确定所述终端设备在当前子帧传输的 CSI的传输比 特数为 0。
方法 8:
确定所述终端设备在当前子帧传输的 CSI 的传输比特数为 A-B 比 特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述 第一确定模块 71 所确定的所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数;
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合, 根据 CSI上报类型优先级和 /或载波编 号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI;
当判断等于时,确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息;
其中, 当所述确定的下行载波集合为空集时, 确定所述终端设备在 当前子帧传输的 CSI的传输比特数为 0。
进一步的,当所述第一种 UCI为 CSI,所述第二种 UCI为 ACK/NACK 时, 所述第一确定模块 71具体用于:
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波;
将所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal作为所 述终端设备在当前子帧中传输的 CSI传输比特数; 或,
将所述下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax作 为所述终端设备在当前子帧中传输的 CSI传输比特数。
进一步的, 当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所述第二确定模块 72具体用于:
根据配置载波数, 每个配置载波的传输模式, 以及每个载波上需要 在当前子帧进行 ACK/NACK 反馈的下行子帧数, 确定待反馈的 ACK/NACK的反馈比特数;
判断所述待反馈的 ACK/NACK的反馈比特数是否超过 A-C, 其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示所述第一确定模 块 71所确定的所述终端设备在当前子帧中传输的 CSI的传输比特数; 如果判断结果为否, 确定所述待反馈的 ACK/NACK的反馈比特数 作为所述终端设备在当前子帧传输的 ACK/NACK的传输比特数;
如果判断结果为是, 确定所述终端设备对待反馈的 ACK/NACK进 行空间合并, 以满足空间合并后的 ACK/NACK 的反馈比特数不超过 A-C,并将空间合并后的 ACK/NACK的传输比特数作为所述终端设备在 当前子帧传输的 ACK/NACK的传输比特数。 进一步的, 当所述当前子帧具体为调度请求 SR传输子帧时, 所述 处理模块具体用于:
在当前子帧中对应的信道资源上, 接收所述第一种 UCI 和第二种 UCI和 1比特 SR。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 实现了一种在当前子帧所对应 的信道资源上同时传输 ACK/NACK和周期 CSI的方法, 根据当前子帧 中 UCI同时传输的门限比特数,以及第一种 UCI在当前子帧的传输比特 数,动态确定与第一种 UCI同时传输的第二种 UCI的传输比特数, 以保 证同时传输的 UCI比特之和不超过当前子帧中 UCI同时传输的门限比特 数, 并尽可能避免 ACK/NACK合并和 CSI丟弃, 最大限度的保障了上 行信息传输的准确性和完整性。 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到 本发明实施例可以通过硬件实现, 也可以借助软件加必要的通用硬件平 台的方式来实现。 基于这样的理解, 本发明实施例的技术方案可以以软 件产品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或网络侧设备等)执行本 发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附 图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施 场景描述进行分布于实施场景的装置中, 也可以进行相应变化位于不同 于本实施场景的一个或多个装置中。 上述实施场景的模块可以合并为一 个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 实施例并非局限于此, 任何本领域的技术人员能思之的变化都应落入本 发明实施例的业务限制范围。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种上行控制信息 UCI的传输方法, 其特征在于, 包括以下步 骤:
终端设备生成需要在当前子帧中传输的第一种 UCI;
所述终端设备根据当前子帧中 UCI 同时传输的门限比特数和所述 第一种 UCI的传输比特数, 生成需要在当前子帧中传输的第二种 UCI, 其中,所述第二种 UCI的传输比特数不超过当前子帧中 UCI同时传输多 种 UCI的最大比特数与所述第一种 UCI的传输比特数之差;
所述终端设备在当前子帧中对应的信道资源上, 传输所生成的所述 第一种 UCI和第二种 UCI。
2、 如权利要求 1所述的方法, 其特征在于,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者,
所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
3、 如权利要求 2所述的方法, 其特征在于, 当所述第一种 UCI为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述终端设备生成需要在当 前子帧中传输的第一种 UCI, 具体包括:
所述终端设备根据配置载波数 N, 每个配置载波的传输模式, 以及 每个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 ,确 定需要生成的 ACK/NACK的传输比特数为:
'•=0
所述终端设备生成需要在当前子帧中传输的相应传输比特数的
ACK/NACK;
其中, 的取值规则具体包括: 对于单码字传输的载波, ς. =ΐ , 对于多码字传输的载波, ς. =2; 或,
对单码字传输, 或多码字传输且采用空间合并的载波, ς. =ι , 对于 多码字传输且不采用空间合并的载波, ς. =2;
Μ,.的取值规则具体为: 对于频分复用 FDD ***, M^l , 对于时 分复用 TDD***, 不同聚合载波所对应的 Mt的取值相同或不同。
4、 如权利要求 2所述的方法, 其特征在于, 当所述第一种 UCI为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述终端设备根据当前子帧 中 UCI同时传输的门限比特数和所述第一种 UCI的传输比特数,生成需 要在当前子帧中传输的第二种 UCI , 具体包括如下方法的一种:
方法 1:
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI实际 反馈比特数不超过 A-B比特的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK 的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 生成该下行载波的 creal比特实际 CSI反 馈信息, 并将所选择的下行载波的 Crcal比特 CSI作为所述终端设备需要 在当前子帧中传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备确定在当前子帧中不传输 CSI; 或者,
方法 2:
步骤 A、所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波; 步骤 B、 所述终端设备判断所选择的所述下行载波的 CSI反馈比特 数是否超过 A-B比特,其中, A表示当前子帧中 UCI同时传输的门限比 特数, B表示所述终端设备所生成的 ACK/NACK的传输比特数;
如果判断结果为否, 则所述终端设备生成该下行载波的 creal比特实 际 CSI反馈信息, 并将所述下行载波的 Crcal比特 CSI作为所述终端设备 需要在当前子帧中传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤 A当前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载 波集合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI; 或者,
方法 3:
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI上报 类型对应的最大反馈比特数不超过 A-B的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 并确定所述终端设备需要在当前子帧传 输的 CSI的传输比特数为所述下行载波的 CSI上报类型对应的最大反馈 比特数 ctype_ max?
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal 小于 ctypemax时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI反 馈信息后补充 ctype max-crcal比特的占位信息, 并将补充占位信息后的 Ctype_max比特 CSI作为所述终端设备需要在当前子帧传输的 CSI, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal等于
Ctypemax时,所述终端设备将所述下行载波的 Creal 特实际 CSI反馈信息 作为需要在当前子帧传输的 CSI,
当所述终端设备所确定的下行载波集合为空集时, 所述终端设备确 定在当前子帧中不传输 CSI; 或者,
方法 4:
步骤 A、所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述终端设备判断所述下行载波的 CSI上报类型对应的最 大反馈比特数 Ctypemax是否超过 A-B比特,其中, A表示当前子帧中 UCI 同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的 传输比特数;
如果判断结果为否, 所述终端设备确定需要在当前子帧传输的 CSI 的传输比特数为所述下行载波的 CSI 上报类型对应的最大反馈比特数 Ctype_max, 其中, 当所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal小于 Ctypemax时,所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补充 Ctypemax-Crcal比特的占位信息, 并将补充占位信息后的 ctypemax比特 CSI作为终端需要在当前子帧传输的 CSI, 当所述下行载波 的 CSI上报类型对应的实际反馈比特数 crcal等于 ctypemax时, 所述终端 设备将所述下行载波的 Crcal比特实际 CSI作为需要在当前子帧传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤 A当前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载 波集合继续选择一个下行载的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI; 或者,
方法 5:
步骤 A、所述终端设备根据 CSI上报类型优先级和 /或载波编号, 在 当前子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述终端设备判断所述下行载波的 CSI上报类型对应的最 小反馈比特数 Ctype—皿是否超过 A-B比特,其中, A表示当前子帧中 UCI 同时传输的门限比特数, B表示所述终端设备所生成的 ACK/NACK的 传输比特数;
如果判断结果为否, 所述终端设备确定需要在当前子帧传输的 CSI 的传输比特数为 A-B比特, 其中, 当所述选择的下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal小于 A-B时,所述终端设备在所述下行载 波的 Crcal比特实际 CSI反馈信息后补 A-B-Crcal比特的占位信息,并将补 充占位信息后的 A-B比特 CSI作为终端需要在当前子帧传输的 CSI, 当 所述下行载波的 CSI上报类型对应的实际反馈比特数 Creai大于 A-B比特 时,将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为所述 终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为所 述终端设备需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal等于 A-B时,将所述下行载波的 Crcal比特 实际 CSI作为所述终端设备需要在当前子帧传输的 CSI;
如果判断结果为是, 所述终端设备确定在当前子帧中不传输 CSI; 或,
如果判断结果为是, 所述终端设备在所述下行载波集合中去掉步骤 A所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集 合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备 确定在当前子帧中不传输 CSI; 或者,
方法 6:
所述终端设备确定当前子帧中存在 CSI反馈的下行载波的 CSI上报 类型对应的最小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述终端 设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在所述下行 载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对 应的实际反馈比特数 Creai是否超过 A-B比特;
当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为所述终端 设备需要在当前子帧传输的 CSI;
当判断大于 A-B 时, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为所述终端设备需要在当前子帧传输的 CSI,或产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备确定在当前子帧中不传输 CSI; 或者,
方法 7:
所述终端设备确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在当前子帧 中存在 CSI反馈的下行载波集合中选择一个下行载波, 并判断所述下行 载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为所述终端 设备需要在当前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特 占位信息作为所述终端设备需要在当前子帧传输的 CSI, 或者, 所述终 端设备在所述下行载波集合中去掉步骤 A所选择的下行载波,并重新执 行步骤 A, 在当前更新后的下行载波集合继续选择一个下行载波的 CSI 进行相应的处理, 其中, 如果所述当前更新后的下行载波集合为空集, 所述终端设备确定在当前子帧中不传输 CSI; 或者,
方法 8:
所述终端设备确定需要在当前子帧传输的 CSI的传输比特数为 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述终端设备所生成的 ACK/NACK的传输比特数;
所述终端设备确定当前子帧中存在 CSI反馈的下行载波中 CSI实际 反馈比特数不超过 A-B比特的下行载波集合,根据 CSI上报类型优先级 和 /或载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述 下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比 特; 当判断小于时, 所述终端设备在所述下行载波的 Crcal比特实际 CSI 反馈信息后补 A-B-Crcal比特的占位信息,并将补充占位信息后的 A-B比 特 CSI作为终端需要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为所述终端 设备需要在当前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为所述终端设备需要在当前子帧传输的 CSI, 或产生 A-B比特 占位信息作为所述终端设备需要在当前子帧传输的 CSI;
其中, 当所述终端设备所确定的下行载波集合为空集时, 所述终端 设备产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI。
5、 如权利要求 2所述的方法, 其特征在于, 当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK时, 所述终端设备生成需要在当 前子帧中传输的第一种 UCI, 具体包括:
所述终端设备根据 CSI上报类型优先级和 /或载波编号,在当前子帧 中存在 CSI反馈的下行载波集合中选择一个下行载波;
所述终端设备将所述下行载波的 CSI上报类型对应的实际反馈比特 数 crcal作为需要在当前子帧中传输的 CSI传输比特数, 所述终端设备将 所述下行载波的 Crcal比特 CSI作为需要在当前子帧传输的 CSI; 或, 所述终端设备将该下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax作为所述终端设备在当前子帧中传输的 CSI传输比特数,当所述 下行载波的 CSI上报类型对应的实际反馈比特数 crcal小于 ctypemax时, 所述终端设备在所述下行载波的实际 CSI反馈信息后补 ctype_ max" Creal比 特的占位信息, 并将补充占位信息后的 CSI作为所述终端设备需要在当 前子帧传输的 CSI, 当所述下行载波的 CSI上报类型对应的实际反馈比 特数 crcal等于 Ctypemax时,所述终端设备将所述下行载波的 Crcal比特 CSI 作为需要在当前子帧传输的 CSI。
6、 如权利要求 5所述的方法, 其特征在于, 当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所述终端设备 居当前子帧 中 UCI同时传输的门限比特数和所述第一种 UCI的传输比特数,生成需 要在当前子帧中传输的第二种 UCI, 具体包括:
所述终端设备根据配置载波数, 每个配置载波的传输模式, 以及每 个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数, 确定待 反馈的 ACK/NACK的反馈比特数;
所述终端设备判断所述待反馈的 ACK/NACK的反馈比特数是否超 过 A-C, 其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示 所述终端设备所生成的 CSI的传输比特数;
如果判断结果为否, 所述终端设备根据所述待反馈的 ACK/NACK 的反馈比特数生成相应比特数的 ACK/NACK , 并将所生成的 ACK/NACK作为所述终端设备需要在当前子帧传输的 ACK/NACK; 如果判断结果为是, 所述终端设备对待反馈的 ACK/NACK进行空 间合并, 以满足空间合并后的 ACK/NACK的反馈比特数不超过 A-C, 并将空间合并后的 ACK/NACK作为所述终端设备需要在当前子帧传输 的 ACK/NACK0
7、 如权利要求 1至 6中任一项所述的方法, 其特征在于, 所述 CSI 上报类型所对应的最大反馈比特数 Ctypemax, 具体为:
对于基于秩指示 RI值进行上报的 CSI上报类型, 所述 CSI上报类 型所对应的最大反馈比特数 Ctypemax为该 CSI上报类型中在当前配置下 不同的 RI值对应的反馈比特数的最大值;
对于其他 CSI上报类型, 所述 CSI上报类型所对应的最大反馈比特 数 Ctypemax为实际反馈比特数;
和 /或,
所述门限比特数 A 为预先约定的值或由高层信令或物理下行控制 信道 PDCCH信令通知的值, 其中, 所述 A值不超过在当前子帧中用于 同时传输 ACK/NACK反馈信息和 CSI反馈信息的上行传输方案的最大 承载比特数或所述上行传输方案的最大承载比特数与 SR比特数之差的 任一正整数。
8、 如权利要求 1至 6中任一项所述的方法, 其特征在于, 当所述 当前子帧具体为调度请求 SR传输子帧时, 具体为:
所述终端设备在当前子帧中对应的信道资源上, 传输所生成的所述 第一种 UCI和第二种 UCI和 1比特 SR。
9、 一种终端设备, 其特征在于, 包括:
第一生成模块, 用于生成需要在当前子帧中传输的第一种 UCI; 第二生成模块,用于根据当前子帧中 UCI同时传输的门限比特数和 所述第一生成模块所生成的第一种 UCI的传输比特数,生成需要在当前 子帧中传输的第二种 UCI, 其中, 所述第二种 UCI的传输比特数不超过 当前子帧中 UCI同时传输的门限比特数与所述第一种 UCI的传输比特数 之差;
传输模块, 用于在当前子帧中对应的信道资源上, 传输所述第一生 成模块所生成的所述第一种 UCI 和所述第二生成模块所生成的所述第 二种 UCI。
10、 如权利要求 9所述的终端设备, 其特征在于,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者, 所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
11、 如权利要求 10 所述的终端设备, 其特征在于, 当所述第一种
UCI为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述第一生成模块具 体用于:
根据配置载波数 N, 每个配置载波的传输模式, 以及每个载波上需 要在当前子帧进行 ACK/NACK反馈的下行子帧数 ,确定需要生成的
ACK/NACK的传输比特数为:
Β=∑ς ·Μ' ;
'·=ο
生成需要在当前子帧中传输的相应传输比特数的 ACK/NACK;
其中, ς.的取值规则具体包括: 对于单码字传输的载波, ς. =ΐ , 对于多码字传输的载波, ς. =2; 或,
对单码字传输, 或多码字传输且采用空间合并的载波, ς.=ι, 对于 多码字传输且不采用空间合并的载波, ς. =2;
Μ,.的取值规则具体为: 对于频分复用 FDD ***, M^l , 对于时 分复用 TDD***, 不同聚合载波所对应的 Mt的取值相同或不同; 和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK时, 所 述第一生成模块生成具体用于:
根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波;
将所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal作为需 要在当前子帧中传输的 CSI传输比特数, 将所述下行载波的 crcal比特 CSI作为需要在当前子帧传输的 CSI; 或,
将该下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax作为 在当前子帧中传输的 CSI传输比特数, 当所述下行载波的 CSI上报类型 对应的实际反馈比特数 Crcal小于 Ctypemax时,在所述下行载波的实际 CSI 反馈信息数后补 ctypemax-crcal比特的占位信息, 并将补充占位信息后的
CSI作为需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类型 对应的实际反馈比特数 crcal等于 ctypemax时, 将所述下行载波的 crcal比 特 CSI作为需要在当前子帧传输的 CSI。
12、 如权利要求 10所述的方法, 其特征在于, 当所述第一种 UCI 为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述第二生成模块具体用 于根据如下方法的一种生成需要在当前子帧中传输的第二种 UCI:
方法 1:
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合,其中, A表示当前子帧中 UCI同时传输 的门限比特数, B表示所述第一生成模块所生成的 ACK/NACK的传输 比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 生成该下行载波的 Crcal比特实际 CSI反馈信息, 并将 所选择的下行载波的 Crcal比特 CSI作为需要在当前子帧中传输的 CSI; 其中, 当所述确定的下行载波集合为空集时, 确定在当前子帧中不 传输 CSI; 或者,
方法 2:
步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、判断所选择的所述下行载波的 CSI反馈比特数是否超过 A-B 比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所 述第一生成模块所生成的 ACK/NACK的传输比特数;
如果判断结果为否, 则生成该下行载波的 Crcal比特实际 CSI反馈信 息, 并将所述下行载波的 Crcal比特 CSI作为需要在当前子帧中传输的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI。
方法 3:
确定当前子帧中存在 CSI反馈的下行载波中 CSI上报类型对应的最 大反馈比特数不超过 A-B 的下行载波集合, 其中, A表示当前子帧中 UCI 同时传输的门限比特数, B 表示所述第一生成模块所生成的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 并确定需要在当前子帧传输的 CSI的传输比特数为所 述下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal 小于 ctypemax时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补充 ctypemax-Crcal比特的占位信息, 并将补充占位信息后的 Ctypemax比特 CSI 作为需要在当前子帧传输的 CSI,
当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal等于 ctype max时,将所述下行载波的 Crcal比特实际 CSI反馈信息作为需要在当 前子帧传输的 CSI,
当所述确定的下行载波集合为空集时, 确定在当前子帧中不传输
CSI; 或者,
方法 4:
步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一生成模块所生成的 ACK/NACK的传输比 特数;
如果判断结果为否, 确定需要在当前子帧传输的 CSI的传输比特数 为所述下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax, 其中, 当所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal小于 Ctype_max时, 在所述下行载波的 Crcal比特实际 CSI 反馈信息后补充 Ctypemax-Crcal比特的占位信息, 并将补充占位信息后的 Ctypemax比特 CSI 作为终端需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类型 对应的实际反馈比特数 crcal等于 ctypemax时, 将所述下行载波的 crcal比 特实际 CSI作为需要在当前子帧传输的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI; 或者,
方法 5: 步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最小反馈比特数 Ctype—:^是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一生成模块所生成的 ACK/NACK的传输比 特数;
如果判断结果为否, 确定需要在当前子帧传输的 CSI的传输比特数 为 A-B比特, 其中, 当所述选择的下行载波的 CSI上报类型对应的实际 反馈比特数 Crcal小于 A-B时,在所述下行载波的 Crcal比特实际 CSI反馈 信息后补 A-B-Crcal比特的占位信息, 并将补充占位信息后的 A-B 比特 CSI作为终端需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报 类型对应的实际反馈比特数 Crcal大于 A-B比特时,将所述下行载波的实 际 CSI反馈比特中的前 A-B比特信息作为需要在当前子帧传输的 CSI, 或产生 A-B 比特占位信息作为所述终端设备需要在当前子帧传输的 CSI, 当所述下行载波的 CSI上报类型对应的实际反馈比特数 crcal等于 A-B时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当前子帧传输 的 CSI;
如果判断结果为是, 确定在当前子帧中不传输 CSI; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A所选择的下 行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择一 个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定在当前子 帧中不传输 CSI; 或者,
方法 6:
确定当前子帧中存在 CSI反馈的下行载波的 CSI上报类型对应的最 小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模块所生 成的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈 比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Qeai比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断相等时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为 需要在当前子帧传输的 CSI;
其中, 当所述确定的下行载波集合为空集时, 确定在当前子帧中不 传输 CSI; 或者,
方法 7:
确定需要在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模 块所生成的 ACK/NACK的传输比特数;
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Qeai比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于时,将所述下行载波的实际 CSI反馈信息中的前 A-B比 特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信息作为 需要在当前子帧传输的 CSI, 或者, 在所述下行载波集合中去掉步骤 A 所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合 继续选择一个下行载波的 CSI进行相应的处理, 其中, 如果所述当前更 新后的下行载波集合为空集, 确定在当前子帧中不传输 CSI; 或者, 方法 8:
确定需要在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一生成模 块所生成的 ACK/NACK的传输比特数;
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合, 根据 CSI上报类型优先级和 /或载波编 号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 在所述下行载波的 Crcal比特实际 CSI反馈信息后补 A-B-Qeai比特的占位信息, 并将补充占位信息后的 A-B比特 CSI作为需 要在当前子帧传输的 CSI;
当判断等于时, 将所述下行载波的 Crcal比特实际 CSI作为需要在当 前子帧传输的 CSI;
当判断大于 A-B 时, 将所述下行载波的实际 CSI反馈信息中的前 A-B比特信息作为需要在当前子帧传输的 CSI, 或产生 A-B比特占位信 息作为需要在当前子帧传输的 CSI; 其中, 当所述确定的下行载波集合为空集时, 产生 A-B比特占位信 息作为需要在当前子帧传输的 CSI;
和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所 述第二生成模块具体用于:
根据配置载波数, 每个配置载波的传输模式, 以及每个载波上需要 在当前子帧进行 ACK/NACK 反馈的下行子帧数, 确定待反馈的 ACK/NACK的反馈比特数;
判断所述待反馈的 ACK/NACK的反馈比特数是否超过 A-C,其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示所述第一生成模 块所生成的 CSI的传输比特数;
如果判断结果为否, 根据所述待反馈的 ACK/NACK的反馈比特数 生成相应比特数的 ACK/NACK,并将所生成的 ACK/NACK作为需要在 当前子帧传输的 ACK/NACK;
如果判断结果为是, 对待反馈的 ACK/NACK进行空间合并, 以满 足空间合并后的 ACK/NACK的反馈比特数不超过 A-C, 并将空间合并 后的 ACK/NACK作为需要在当前子帧传输的 ACK/NACK。
13、 如权利要求 9至 12中任一项所述的终端设备, 其特征在于, 当所述当前子帧具体为调度请求 SR传输子帧时, 所述处理模块具体用 于:
在当前子帧中对应的信道资源上,传输所生成的所述第一种 UCI和 第二种 UCI和 1比特 SR。
14、 一种 UCI的传输方法, 其特征在于, 包括以下步骤:
基站确定终端设备在当前子帧中传输的第一种 UCI的传输比特数; 所述基站根据当前子帧中 UCI 同时传输的门限比特数和所述第一 种 UCI 的传输比特数, 确定所述终端设备在当前子帧中传输的第二种 UCI的传输比特数, 其中, 所述第二种 UCI的传输比特数不超过当前子 帧中 UCI同时传输的门限比特数与所述第一种 UCI的传输比特数之差; 所述基站在当前子帧中对应的信道资源上,根据所述第一种 UCI的 传输比特数和所述第二种 UCI的传输比特数,接收所述终端设备所传输 的第一种 UCI和第二种 UCI。
15、 如权利要求 14所述的方法, 其特征在于,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者,
所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
16、 如权利要求 15所述的方法, 其特征在于, 当所述第一种 UCI 为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述基站确定终端设备在 当前子帧中传输的第一种 UCI的传输比特数, 具体包括:
所述基站根据所述终端设备的配置载波数 N, 每个配置载波的传输 模式, 以及每个载波上需要在当前子帧进行 ACK/NACK反馈的下行子 帧数 Λ^. ,确定所述终端设备在当前子帧中传输的 ACK/NACK的传输比 特数为 ·Μ ;
Figure imgf000078_0001
其中, ς.的取值规则具体包括:
对于单码字传输的载波, ς. =ι , 对于多码字传输的载波, ς. =2; 或,
对单码字传输, 或多码字传输且采用空间合并的载波, ς. =ι , 对于 多码字传输且不采用空间合并的载波, ς. =2; Μ,.的取值规则具体为: 对于频分复用 FDD ***, M^l , 对于时 分复用 TDD***, 不同聚合载波所对应的 的取值相同或不同; 和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK时, 所 述基站确定终端设备在当前子帧中传输的第一种 UCI的传输比特数,具 体包括:
所述基站根据 CSI上报类型优先级和 /或载波编号,在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
所述基站将所述下行载波的 CSI 上报类型对应的实际反馈比特数 crcal作为所述终端设备在当前子帧中传输的 CSI传输比特数; 或,
所述基站将所述下行载波的 CSI 上报类型对应的最大反馈比特数 ctypemax作为所述终端设备在当前子帧中传输的 CSI传输比特数。
17、 如权利要求 15 所述的方法, 其特征在于, 所述基站根据当前 子帧中 UCI同时传输的门限比特数和所述第一种 UCI的传输比特数,确 定所述终端设备在当前子帧中传输的第二种 UCI的传输比特数,具体包 括如下方法中的一种:
方法 1:
所述基站确定当前子帧中存在 CSI反馈的下行载波中 CSI反馈比特 数不超过 A-B比特的下行载波集合,其中, A表示当前子帧中 UCI同时 传输的门限比特数, B表示所述基站所确定的所述终端设备在当前子帧 中传输的 ACK/NACK的传输比特数;
所述基站根据 CSI上报类型优先级和 /或载波编号,在所述下行载波 集合中选择一个下行载波, 将所选择的下行载波的 CSI上报类型所对应 的实际反馈比特数 Crcal作为所述基站所确定的所述终端设备在当前子帧 中传输的 ACK/NACK的传输比特数; 其中, 当所述基站所确定的下行载波集合为空集时, 所述基站确定 所述终端设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 2:
步骤 A、所述基站根据 CSI上报类型优先级和 /或载波编号, 在当前 子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述基站判断所选择的下行载波的 81上"¾类型所对应的 传输比特数是否超过 A-B比特,其中, A表示当前子帧中 UCI同时传输 的门限比特数, B表示所述基站所确定的所述终端设备在当前子帧中传 输的 ACK/NACK的传输比特数;
如果判断结果为否, 则所述基站将所述下行载波的 CSI上报类型所 对应的实际反馈比特数 Crcal作为所述终端设备在当前子帧中传输的 CSI 的传输比特数;
如果判断结果为是, 所述基站确定所述终端设备在当前子帧中传输 的 CSI的传输比特数为 0; 或,
如果判断结果为是,所述基站在所述下行载波集合中去掉步骤 A当 前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集 合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述基站确定 所述终端设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 3:
所述基站确定当前子帧中存在 CSI反馈的下行载波中 CSI上报类型 对应的最大反馈比特数不超过 A-B的下行载波集合, 其中, A表示当前 子帧中 UCI同时传输的门限比特数, B表示所述基站所确定的所述终端 设备在当前子帧中传输的 ACK/NACK的传输比特数;
所述基站根据 CSI上报类型优先级和 /或载波编号,在所述下行载波 集合中选择一个下行载波, 确定所述终端设备在当前子帧传输的 CSI的 传输比特数为所述下行载波的 CSI 上报类型对应的最大反馈比特数 c-'type_max .?
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal 小于 ctypemax时, 所述基站确定所述 Ctypemax比特 CSI反馈信息包含
Ctype_max-Creal比特的占位信息,并将除去占位信息的 Crcal比特 CSI作为所 述选择的下行载波的实际 CSI,
当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal等于 ctype_max时, 所述基站确定所述 Ctypemax比特的 CSI反馈信息即为所述选 择的下行载波的实际 CSI,
当所述所确定的下行载波集合为空集时, 所述基站确定所述终端设 备在在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 4:
步骤 A、所述基站根据 CSI上报类型优先级和 /或载波编号, 在当前 子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述基站判断所述下行载波的 CSI上报类型对应的最大反 馈比特数 Ctypemax是否超过 A-B比特, 其中, A表示当前子帧中 UCI同 时传输的门限比特数, B表示所述基站所确定的所述终端设要在当前子 帧中传输的 ACK/NACK的传输比特数;
如果判断结果为否, 所述基站确定所述终端设备在当前子帧传输的 CSI的传输比特数为所述下行载波的 CSI上报类型对应的最大反馈比特 数 ctypemax; 其中, 当所述下行载波对应的 CSI上报类型的实际反馈比 特数 crcal小于 Ctypemax时,所述基站确定所述 Ctypemax比特 CSI反馈信息 中包含 ctypemax-Crcal比特的占位信息,并将去除占位信息的 Crcal比特 CSI 作为所述选择的下行载波的实际 CSI, 当所述下行载波对应的 CSI上报 类型的实际反馈比特数 crcal等于 ctypemax时 , 所述基站确定所述 ctypemax 比特的 CSI反馈信息即为所述选择的下行载波的实际 CSI;
如果判断结果为是, 所述基站确定所述终端设备在当前子帧中传输 的 CSI的传输比特数为 0; 或,
如果判断结果为是,所述基站在所述下行载波集合中去掉步骤 A当 前所选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集 合继续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述基站确定 所述终端设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 5:
步骤 A、所述基站根据 CSI上报类型优先级和 /或载波编号, 在当前 子帧中存在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 所述基站判断所述下行载波的 CSI上报类型对应的最小反 馈比特数 Ctype-min是否超过 A-B比特, 其中, A表示当前子帧中 UCI 同时传输的门限比特数, B表示所述基站所确定的所述终端设备在当前 子帧中传输的 ACK/NACK的传输比特数;
如果判断结果为否, 所述基站确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B比特; 其中, 当所述下行载波的 CSI上报类型 对应的实际反馈比特数 Crcal小于 A-B时, 所述基站确定所述 A-B比特 CSI反馈信息中包含 A-B-Crcal比特的占位信息,并将除去占位信息的 Crcal 比特 CSI作为所述下行载波的实际 CSI, 当所述下行载波的 CSI上报类 型对应的实际反馈比特数 Crcal大于 A-B比特时,所述基站确定所述 A-B 比特 CSI反馈信息为所述下行载波的实际 CSI反馈比特中的前 A-B比特 信息, 或确定 A-B比特 CSI反馈信息全部为占位信息, 当所述下行载波 的 CSI上报类型对应的实际反馈比特数 Crcal等于 A-B时,所述基站确定 所述 A-B比特的 CSI反馈信息即为所述下行载波的实际 CSI;
如果判断结果为是, 所述基站确定所述终端设备在当前子帧中传输 的 CSI的传输比特数为 0; 或,
如果判断结果为是,所述基站在所述下行载波集合中去掉步骤 A所 选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继 续选择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 所述基站确定 所述终端设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 6:
所述基站确定当前子帧中存在 CSI反馈的下行载波的 CSI上报类型 对应的最小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合,其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述基站所确定 的所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数;
当所述下行载波集合不为空集时, 所述基站确定所述终端设备在当 前子帧中传输的 CSI的传输比特数为 A-B比特,根据 CSI上报类型优先 级和 /或载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所 述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比 特;
当判断小于时, 所述基站确定所述 A-B 比特 CSI反馈信息中包含 A-B-Creal比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述 下行载波的实际 CSI;
当判断等于时,所述基站确定所述 A-B比特的 CSI反馈信息即为所 述下行载波的实际 CSI;
当判断大于时,所述基站确定所述 A-B比特 CSI反馈信息为所述下 行载波的实际 CSI反馈比特中的前 A-B比特信息,或确定 A-B比特 CSI 反馈信息全部为占位信息;
当所述下行载波集合为空集时, 所述基站确定所述终端设备在当前 子帧中传输的 CSI的传输比特数为 0; 或者,
方法 7:
所述基站确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表 示所述基站所确定的所述终端设备在当前子帧中传输的 ACK/NACK的 传输比特数;
所述基站根据 CSI上报类型优先级和 /或载波编号,在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波, 并判断所述下行载波 的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 所述基站确定所述 A-B 比特 CSI反馈信息中包含 A-B-Creal比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述 下行载波的实际 CSI;
当判断等于时,所述基站确定所述 A-B比特 CSI反馈信息即为所述 下行载波的实际 CSI;
当判断大于时,所述基站确定所述 A-B比特 CSI反馈信息为所述下 行载波的实际 CSI反馈比特中的前 A-B比特信息,或确定 A-B比特 CSI 反馈信息全部为占位信息, 或者, 在所述下行载波集合中去掉步骤 A所 选择的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继 续选择一个下行载波的 CSI进行相应的处理, 其中, 如果所述当前更新 后的下行载波集合为空集, 所述基站确定所述终端设备在当前子帧传输 的 CSI的传输比特数为 0; 或者,
方法 8:
所述基站确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B比特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表 示所述基站所确定的所述终端设备在当前子帧中传输的 ACK/NACK的 传输比特数;
所述基站确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈 比特数不超过 A-B比特的下行载波集合, 根据 CSI上报类型优先级和 / 或载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述下 行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 所述基站确定所述 A-B 比特 CSI反馈信息中包含 A-B-Creal比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述 下行载波的实际 CSI;
当判断等于时,所述基站确定所述 A-B比特 CSI反馈信息即为所述 下行载波的实际 CSI;
当判断大于时,所述基站确定所述 A-B比特 CSI反馈信息为所述下 行载波的实际 CSI反馈比特中的前 A-B比特信息,或确定 A-B比特 CSI 反馈信息全部为占位信息;
其中, 当所述确定的下行载波集合为空集时, 所述基站确定所述终 端设备在当前子帧传输的 CSI的传输比特数为 0;
和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所 述基站根据当前子帧中 UCI 同时传输的门限比特数和所述第一种 UCI 的传输比特数, 确定所述终端设备需要在当前子帧中传输的第二种 UCI 的传输比特数, 具体包括:
所述基站根据配置载波数, 每个配置载波的传输模式, 以及每个载 波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数, 确定待反馈 的 ACK/NACK的反馈比特数; 所述基站判断所述待反馈的 ACK/NACK 的反馈比特数是否超过 A-C, 其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示所 述基站所确定的所述终端设备在当前子帧中传输的 CSI的传输比特数; 如果判断结果为否, 所述基站确定所述待反馈的 ACK/NACK的反 馈比特数作为所述终端设备在当前子帧传输的 ACK/NACK的传输比特 数;
如果判断结果为是, 所述基站确定所述终端设备对待反馈的 ACK/NACK进行空间合并,以满足空间合并后的 ACK/NACK的反馈比 特数不超过 A-C, 并将空间合并后的 ACK/NACK的传输比特数作为所 述终端设备在当前子帧传输的 ACK/NACK的传输比特数。
18、 如权利要求 14至 17中任一项所述的方法, 其特征在于, 所述
CSI上报类型所对应的最大反馈比特数 ctypemax, 具体为:
对于基于秩指示 RI值进行上报的 CSI上报类型, 所述 CSI上报类 型所对应的最大反馈比特数 Ctypemax为该 CSI上报类型中在当前配置下 不同的 RI值对应的反馈比特数的最大值;
对于其他 CSI上报类型, 所述 CSI上报类型所对应的最大反馈比特 数 ctypemax为实际反馈比特数;
和 /或,
所述门限比特数 A 为预先约定的或由所述基站确定并通过高层信 令或物理下行控制信道 PDCCH信令通知给所述终端设备的, 其中, 所 述 A为不超过在当前子帧中用于同时传输 ACK/NACK反馈信息和 CSI 反馈信息的上行传输方案的最大承载比特数或所述上行传输方案的最 大承载比特数与 SR比特数之差的任一正整数。
19、 如权利要求 14至 17中任一项所述的方法, 其特征在于, 当所 述当前子帧具体为调度请求 SR传输子帧时, 具体为: 所述基站在当前子帧中对应的信道资源上,接收所述第一种 UCI和 第二种 UCI和 1比特 SR。
20、 一种基站, 其特征在于, 包括以下步骤:
第一确定模块, 用于确定终端设备需要在当前子帧中传输的第一种 UCI的传输比特数;
第二确定模块,用于根据当前子帧中 UCI同时传输的门限比特数和 所述第一确定模块所确定的第一种 UCI的传输比特数,确定所述终端设 备需要在当前子帧中传输的第二种 UCI的传输比特数, 其中, 所述第二 种 UCI的传输比特数不超过当前子帧中 UCI同时传输的门限比特数与所 述第一种 UCI的传输比特数之差;
接收模块, 用于在当前子帧中对应的信道资源上, 根据所述第一确 定模块所确定的第一种 UCI 的传输比特数和所述第二确定模块所确定 的第二种 UCI 的传输比特数, 接收所述终端设备所传输的第一种 UCI 和第二种 UCI。
21、 如权利要求 20所述的基站, 其特征在于,
所述第一种 UCI为肯定确认 ACK/否定确认 NACK,所述第二种 UCI 为信道状态信息 CSI; 或者,
所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK。
22、 如权利要求 21所述的基站, 其特征在于, 当所述第一种 UCI 为 ACK/ NACK, 所述第二种 UCI为 CSI时, 所述第一确定模块确定终 端设备在当前子帧中传输的第一种 UCI的传输比特数, 具体包括:
根据所述终端设备的配置载波数 N, 每个配置载波的传输模式, 以 及每个载波上需要在当前子帧进行 ACK/NACK反馈的下行子帧数 Μ,. , 确定所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数为:
W— 1
Β=∑ς ·Μ' ;
'•=0
其中, ς.的取值规则具体包括: 对于单码字传输的载波, ς 1 , 对于多码字传输的载波, ς. =2; 或,
对单码字传输, 或多码字传输且采用空间合并的载波, ς.=ι, 对于 多码字传输且不采用空间合并的载波, ς. =2;
Λ^.的取值规则具体为: 对于频分复用 FDD ***, M^l , 对于时 分复用 TDD***, 不同聚合载波所对应的 Mt的取值相同或不同; 和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/NACK时, 所 述第一确定模块具体用于:
根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波;
将所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal作为所 述终端设备在当前子帧中传输的 CSI传输比特数; 或,
将所述下行载波的 CSI上报类型对应的最大反馈比特数 ctypemax作 为所述终端设备在当前子帧中传输的 CSI传输比特数。
23、 如权利要求 21 所述的方法, 其特征在于, 所述第二确定模块 根据如下方法中的一种确定所述终端设备在当前子帧中传输的第二种
UCI的传输比特数:
方法 1:
确定当前子帧中存在 CSI反馈的下行载波中 CSI反馈比特数不超过 A-B比特的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门 限比特数, B表示所述第一确定模块所确定的所述终端设备在当前子帧 中传输的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 将所选择的下行载波的 CSI上报类型所对应的实际反 馈比特数 Crcal作为所述终端设备在当前子帧中传输的 ACK/NACK的传 输比特数;
其中, 当所述确定的下行载波集合为空集时, 确定所述终端设备在 当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 2:
步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所选择的下行载波的 CSI上报类型所对应的传输比特 数是否超过 A-B比特,其中, A表示当前子帧中 UCI同时传输的门限比 特数, B表示所述第一确定模块所确定的所述终端设备在当前子帧中传 输的 ACK/NACK的传输比特数;
如果判断结果为否, 则将所述下行载波的 CSI上报类型所对应的实 际反馈比特数 Crcal作为所述终端设备在当前子帧中传输的 CSI的传输比 特数;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0; 或者, 方法 3:
确定当前子帧中存在 CSI反馈的下行载波中 CSI上报类型对应的最 大反馈比特数不超过 A-B 的下行载波集合, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述第一确定模块所确定的所述终 端设备在当前子帧中传输的 ACK/NACK的传输比特数;
根据 CSI上报类型优先级和 /或载波编号,在所述下行载波集合中选 择一个下行载波, 确定当前子帧传输的 CSI的传输比特数为所述下行载 波的 CSI上报类型对应的最大反馈比特数 Ctypemax
其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 Crcal 小于 ctypemax时, 确定所述 Ctypemax比特 CSI反馈信息包含 ctypemax-crcal 比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI,
当所述下行载波对应的 CSI上报类型的实际反馈比特数 crcal等于 ctype_max时, 确定所述 Ctypemax比特的 CSI反馈信息即为所述下行载波的 实际 CSI,
当所述所确定的下行载波集合为空集时, 确定所述终端设备在在当 前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 4:
步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最大反馈比特数 Ctypemax是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一确定模块所确定的所述终端设备在当前子 帧中传输的 ACK/NACK的传输比特数; 如果判断结果为否, 确定所述终端设备在当前子帧传输的 CSI的传 输比特数为所述下行载波的 CSI 上报类型对应的最大反馈比特数 Ctype_max; 其中, 当所述下行载波对应的 CSI上报类型的实际反馈比特数 Creal小于 Ctypemax时, 确定所述 Ctypemax比特 CSI 反馈信息中包含
Ctype_max-Creal比特的占位信息,并将去除占位信息的 Crcal比特 CSI作为所 述下行载波的实际 CSI, 当所述下行载波对应的 CSI上报类型的实际反 馈比特数 Crcal等于 Ctypemax时,确定所述 Ctypemax比特的 CSI反馈信息即 为所述下行载波的实际 CSI;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A当前所选择 的下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选 择一个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 5:
步骤 A、根据 CSI上报类型优先级和 /或载波编号, 在当前子帧中存 在 CSI反馈的下行载波集合中选择一个下行载波;
步骤 B、 判断所述下行载波的 CSI上报类型对应的最小反馈比特数 (^^匪是否超过 A-B比特, 其中, A表示当前子帧中 UCI同时传输的 门限比特数, B表示所述第一确定模块所确定的所述终端设备在当前子 帧中传输的 ACK/NACK的传输比特数;
如果判断结果为否, 确定所述终端设备在当前子帧传输的 CSI的传 输比特数为 A-B比特; 其中, 当所述下行载波的 CSI上报类型对应的实 际反馈比特数 Crcal小于 A-B时, 确定所述 A-B比特 CSI反馈信息中包 含 A-B-Crcal比特的占位信息,并将除去占位信息的 Crcal比特 CSI作为所 述下行载波的实际 CSI, 当所述下行载波的 CSI上报类型对应的实际反 馈比特数 Crcal大于 A-B比特时, 确定所述 A-B比特 CSI反馈信息为所 述下行载波的实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比 特 CSI反馈信息全部为占位信息, 当所述下行载波的 CSI上 类型对应 的实际反馈比特数 Creal等于 A-B时, 确定所述 A-B比特的 CSI反馈信 息即为所述下行载波的实际 CSI;
如果判断结果为是, 确定所述终端设备在当前子帧中传输的 CSI的 传输比特数为 0; 或,
如果判断结果为是,在所述下行载波集合中去掉步骤 A所选择的下 行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择一 个下行载波的 CSI进行相应的处理;
其中, 如果所述当前更新后的下行载波集合为空集, 确定所述终端 设备在当前子帧中传输的 CSI的传输比特数为 0; 或者,
方法 6:
确定当前子帧中存在 CSI反馈的下行载波的 CSI上报类型对应的最 小反馈比特数 Ctypemm不超过 A-B比特的下行载波集合, 其中, A表示 当前子帧中 UCI同时传输的门限比特数, B表示所述第一确定模块所确 定的所述终端设备在当前子帧中传输的 ACK/NACK的传输比特数; 当所述下行载波集合不为空集时, 确定所述终端设备在当前子帧中 传输的 CSI的传输比特数为 A-B比特, 根据 CSI上报类型优先级和 /或 载波编号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行 载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特; 当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将除去占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI;
当判断等于时,确定所述 A-B比特的 CSI反馈信息即为所述下行载 波的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息;
当所述下行载波集合为空集时, 确定所述终端设备在当前子帧中传 输的 CSI的传输比特数为 0; 或者,
方法 7:
确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B 比 特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述 第一确定模块所确定的所述终端设备在当前子帧中传输的 ACK/NACK 的传输比特数;
根据 CSI 上报类型优先级和 /或载波编号, 在当前子帧中存在 CSI 反馈的下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI 上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI;
当判断等于时,确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息, 或者, 在所述下行载波集合中去掉步骤 A所选择的 下行载波, 并重新执行步骤 A, 在当前更新后的下行载波集合继续选择 一个下行载波的 CSI进行相应的处理, 其中, 如果所述当前更新后的下 行载波集合为空集, 确定所述终端设备在当前子帧传输的 CSI的传输比 特数为 0; 或者,
方法 8:
确定所述终端设备在当前子帧传输的 CSI的传输比特数为 A-B 比 特, 其中, A表示当前子帧中 UCI同时传输的门限比特数, B表示所述 第一确定模块所确定的所述终端设备在当前子帧中传输的 ACK/NACK 的传输比特数;
确定当前子帧中存在 CSI反馈的下行载波中 CSI实际反馈比特数不 超过 A-B比特的下行载波集合, 根据 CSI上报类型优先级和 /或载波编 号, 在所述下行载波集合中选择一个下行载波, 并判断所述下行载波的 CSI上报类型对应的实际反馈比特数 Crcal是否超过 A-B比特;
当判断小于时, 确定所述 A-B 比特 CSI反馈信息中包含 A-B-Crcal 比特的占位信息, 并将去除占位信息的 Crcal比特 CSI作为所述下行载波 的实际 CSI;
当判断等于时,确定所述 A-B比特 CSI反馈信息即为所述下行载波 的实际 CSI;
当判断大于时,确定所述 A-B比特 CSI反馈信息为所述下行载波的 实际 CSI反馈比特中的前 A-B比特信息, 或确定 A-B比特 CSI反馈信 息全部为占位信息;
其中, 当所述确定的下行载波集合为空集时, 确定所述终端设备在 当前子帧传输的 CSI的传输比特数为 0;
和 /或,
当所述第一种 UCI为 CSI, 所述第二种 UCI为 ACK/ NACK时, 所 述第二确定模块具体用于: 根据配置载波数, 每个配置载波的传输模式, 以及每个载波上需要 在当前子帧进行 ACK/NACK 反馈的下行子帧数, 确定待反馈的 ACK/NACK的反馈比特数;
判断所述待反馈的 ACK/NACK的反馈比特数是否超过 A-C,其中, A表示当前子帧中 UCI同时传输的门限比特数, C表示所述第一确定模 块所确定的所述终端设备在当前子帧中传输的 CSI的传输比特数;
如果判断结果为否, 确定所述待反馈的 ACK/NACK的反馈比特数 作为所述终端设备在当前子帧传输的 ACK/NACK的传输比特数;
如果判断结果为是, 确定所述终端设备对待反馈的 ACK/NACK进 行空间合并, 以满足空间合并后的 ACK/NACK 的反馈比特数不超过 A-C,并将空间合并后的 ACK/NACK的传输比特数作为所述终端设备在 当前子帧传输的 ACK/NACK的传输比特数。
24、 如权利要求 20至 23中任一项所述的基站, 其特征在于, 当所 述当前子帧具体为调度请求 SR传输子帧时, 所述处理模块具体用于: 在当前子帧中对应的信道资源上, 接收所述第一种 UCI 和第二种 UCI和 1比特 SR。
PCT/CN2013/000870 2012-08-03 2013-07-19 上行控制信息uci的传输方法和设备 WO2014019335A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/419,086 US9497742B2 (en) 2012-08-03 2013-07-19 Method and device for transmitting uplink control information (UCI)
JP2015524598A JP5990644B2 (ja) 2012-08-03 2013-07-19 アップリンク制御情報(uci)の伝送方法及び装置
EP13826279.5A EP2882127B1 (en) 2012-08-03 2013-07-19 Method and device for transmitting uplink control information (uci)
ES13826279.5T ES2657919T3 (es) 2012-08-03 2013-07-19 Procedimiento y dispositivo para transmitir información de control de enlace ascendente (UCI)
KR1020157005585A KR101739763B1 (ko) 2012-08-03 2013-07-19 업링크 제어 정보(uci)의 전송 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210276325.3A CN103580797B (zh) 2012-08-03 2012-08-03 上行控制信息uci的传输方法和设备
CN201210276325.3 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014019335A1 true WO2014019335A1 (zh) 2014-02-06

Family

ID=50027181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000870 WO2014019335A1 (zh) 2012-08-03 2013-07-19 上行控制信息uci的传输方法和设备

Country Status (7)

Country Link
US (1) US9497742B2 (zh)
EP (1) EP2882127B1 (zh)
JP (1) JP5990644B2 (zh)
KR (1) KR101739763B1 (zh)
CN (1) CN103580797B (zh)
ES (1) ES2657919T3 (zh)
WO (1) WO2014019335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438059A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合***的harq-ack传输方法和设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867070B2 (en) * 2014-02-26 2018-01-09 Qualcomm Incorporated Techniques for reporting channel state information (CSI) for an unlicensed radio frequency spectrum band
CN105493553B (zh) * 2014-08-05 2019-09-20 华为技术有限公司 终端、网络设备和上行控制信息处理方法
EP3273734B1 (en) 2015-03-20 2020-07-08 Huawei Technologies Co., Ltd. Channel state information transmission method, user equipment, and access network device
CN113438060A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合***的harq-ack传输方法和设备
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN112615707B (zh) 2015-06-19 2024-04-23 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
US10356765B2 (en) * 2015-07-21 2019-07-16 Lg Electronics Inc. Method for reporting channel status information in wireless communication system and device for same
WO2017028058A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 一种传输上行控制信息的方法及装置
CN110380823A (zh) 2015-11-06 2019-10-25 华为技术有限公司 一种传输上行控制信息uci的方法及装置
CN108377555B (zh) * 2017-01-31 2020-09-01 上海朗帛通信技术有限公司 一种用于无线通信中的用户设备、基站中的方法和装置
CN108401298B (zh) * 2017-02-07 2019-11-15 上海朗帛通信技术有限公司 一种用于无线通信中的方法和装置
CN108462971B (zh) * 2017-02-22 2020-07-31 大唐移动通信设备有限公司 一种上报上行控制信息的方法及装置
CN110892766B (zh) * 2017-07-03 2022-12-27 上海朗帛通信技术有限公司 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006717A1 (zh) * 2017-07-05 2019-01-10 南通朗恒通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN109803404B (zh) 2017-11-17 2022-09-23 华为技术有限公司 一种上行控制信息传输的方法及装置
US10856270B2 (en) 2018-01-22 2020-12-01 Lg Electronics Inc. Method and apparatus for transmitting a plurality of uplink control information on a physical uplink control channel in a wireless communication system
WO2019147000A1 (ko) * 2018-01-25 2019-08-01 엘지전자 주식회사 무선 통신 시스템에서 물리 상향 링크 제어 채널 상에서 다수의 상향 링크 제어 정보를 전송하는 방법 및 이를 위한 장치
CN110474792B (zh) 2018-05-11 2021-01-29 华为技术有限公司 网络配置方法、设备及***
JP7153468B2 (ja) 2018-05-25 2022-10-14 日本コークス工業株式会社 粉砕機
CN110752904A (zh) * 2018-07-24 2020-02-04 电信科学技术研究院有限公司 一种信息传输方法、终端及基站
US11770727B2 (en) 2018-08-10 2023-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for channel state information reporting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013938A (zh) * 2009-12-07 2011-04-13 华为技术有限公司 传输上行控制信息的方法和装置
WO2011126239A2 (ko) * 2010-04-05 2011-10-13 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102469612A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 发送和检测上行控制信息的方法、装置和***

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2418900B1 (en) * 2009-04-27 2017-01-11 Huawei Technologies Co., Ltd. Method for receiving physical uplink control information, base station and relay device
US9485060B2 (en) * 2009-10-01 2016-11-01 Interdigital Patent Holdings, Inc. Uplink control data transmission
US8848643B2 (en) * 2010-01-08 2014-09-30 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system for supporting multi-carriers
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101703865B1 (ko) * 2010-01-27 2017-02-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
JP4948671B1 (ja) 2010-10-29 2012-06-06 シャープ株式会社 移動局装置、処理方法および集積回路
CN101984568B (zh) * 2010-11-05 2016-01-13 中兴通讯股份有限公司 一种信息发送方法及***
WO2012061996A1 (en) * 2010-11-12 2012-05-18 Nokia Corporation Enhanced channel state information reporting for carrier aggregation
CN102143568B (zh) * 2010-11-26 2015-02-04 华为技术有限公司 功率控制方法和基站
US9930677B2 (en) * 2010-12-07 2018-03-27 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US9515808B2 (en) * 2011-07-26 2016-12-06 Qualcomm Incorporated Transmission of control information in a wireless network with carrier aggregation
CN102437901B (zh) * 2011-12-31 2014-09-10 电信科学技术研究院 一种上行控制信息的联合反馈方法及装置
JP5926402B2 (ja) * 2012-01-17 2016-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク制御情報転送方法及び装置
US9072087B2 (en) 2012-03-28 2015-06-30 Qualcomm Incorporated Channel state information dependent ACK/NAK bundling
CN103580825B (zh) * 2012-08-03 2017-05-24 电信科学技术研究院 Uci的传输方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013938A (zh) * 2009-12-07 2011-04-13 华为技术有限公司 传输上行控制信息的方法和装置
WO2011126239A2 (ko) * 2010-04-05 2011-10-13 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102469612A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 发送和检测上行控制信息的方法、装置和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882127A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438059A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合***的harq-ack传输方法和设备
CN113438059B (zh) * 2015-04-09 2024-04-26 北京三星通信技术研究有限公司 一种增强载波聚合***的harq-ack传输方法和设备

Also Published As

Publication number Publication date
JP2015529052A (ja) 2015-10-01
EP2882127A4 (en) 2015-08-19
ES2657919T3 (es) 2018-03-07
EP2882127B1 (en) 2018-01-03
CN103580797A (zh) 2014-02-12
JP5990644B2 (ja) 2016-09-14
CN103580797B (zh) 2017-05-03
EP2882127A1 (en) 2015-06-10
KR20150041026A (ko) 2015-04-15
US9497742B2 (en) 2016-11-15
US20150245345A1 (en) 2015-08-27
KR101739763B1 (ko) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2014019335A1 (zh) 上行控制信息uci的传输方法和设备
JP6144787B2 (ja) Mimoをサポートする無線通信システムにおけるアップリンクでの再伝送制御方法及び装置
JP5705965B2 (ja) 複数のキャリアについての制御情報のフィードバック
WO2017050078A1 (zh) 上行控制信息的发送、获取方法及装置
JP5992102B2 (ja) アップリンク制御情報(uci)の伝送方法及び装置
US10681682B2 (en) Uplink control information transmission method and apparatus
KR101600408B1 (ko) Ack/nack 피드백 정보 전송 방법 및 장치
KR102083813B1 (ko) 업링크 제어 정보 송신 방법과 수신 방법, 및 관련 장치
WO2017049463A1 (zh) 载波聚合下的上行控制信息传输方法及装置
EP3547584B1 (en) Method for transmitting channel state information, user equipment, and base station
WO2017045138A1 (zh) 控制信息的发送方法和通信设备
WO2011120411A1 (zh) 上行控制信道资源的确定方法和设备
WO2013010468A1 (zh) 信道状态信息传输方法和设备
WO2014180185A1 (zh) 数据发送、接收方法、数据发送及接收端
WO2011020439A1 (zh) 传输方案和/或反馈模式的配置方法和设备
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
WO2012155499A1 (zh) 一种信道状态信息的发送方法和用户设备
WO2012062209A1 (zh) Ack/nack反馈信息和周期cqi/pmi/ri反馈比特同时传输的方法和设备
WO2017075838A1 (zh) 一种传输上行控制信息uci的方法及装置
WO2010133042A1 (zh) 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备
WO2017028058A1 (zh) 一种传输上行控制信息的方法及装置
TWI794078B (zh) 載波切換的傳輸處理方法、裝置及處理器可讀存儲介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419086

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015524598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013826279

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157005585

Country of ref document: KR

Kind code of ref document: A