WO2014010961A1 - Method for manufacturing carbon nanotube film - Google Patents

Method for manufacturing carbon nanotube film Download PDF

Info

Publication number
WO2014010961A1
WO2014010961A1 PCT/KR2013/006192 KR2013006192W WO2014010961A1 WO 2014010961 A1 WO2014010961 A1 WO 2014010961A1 KR 2013006192 W KR2013006192 W KR 2013006192W WO 2014010961 A1 WO2014010961 A1 WO 2014010961A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
binder layer
wet
layer
cnt coating
Prior art date
Application number
PCT/KR2013/006192
Other languages
French (fr)
Korean (ko)
Inventor
정다정
김승렬
방윤영
천기영
Original Assignee
(주)탑나노시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)탑나노시스 filed Critical (주)탑나노시스
Publication of WO2014010961A1 publication Critical patent/WO2014010961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Definitions

  • the present invention relates to a method for manufacturing a carbon nanotube film, and more specifically, to form a carbon nanotube pattern in a desired shape on a substrate, and can be applied to various fields such as charging, display, and optical fields. It relates to a film production method.
  • the transparent conductive film has high conductivity (for example, sheet resistance of less than 1 ⁇ 10 3 ⁇ / sq) and high transmittance (more than 80%) in the visible region.
  • the transparent conductive film may include a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode (LED), an organic light emitting diode (OLED), and an organic light emitting diode (OLED).
  • PDP plasma display panel
  • LCD liquid crystal display
  • LED light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • the carbon nanotubes are evaluated as an ideal material capable of realizing conductivity while maintaining optical properties due to the theoretical percolation concentration of only 0.04%, and when light is coated on a specific substrate in nanometer units, light transmits in the visible region. It can be used as a transparent electrode because it shows transparency and maintains electrical property, which is a unique characteristic of carbon nanotubes.
  • carbon nanotubes can be printed and used in a paste state in addition to the direct growth method, so that the large area is easy.
  • Carbon nanotubes are chemically very stable and resistant to wet etching. Accordingly, dry etching is used to form the carbon nanotube pattern.
  • the carbon nanotube film manufacturing method of the present invention includes forming a wet etchable base binder layer on a substrate. Forming a CNT coating layer on the upper surface of the base binder layer, the CNT coating layer including carbon nanotubes and wet-etchable nanoparticles. Forming a wet etchable top binder layer on the CNT coating layer. And removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer through wet etching.
  • the nanoparticles may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • the size of the nanoparticles may be 1nm to 1 ⁇ m.
  • the forming of the CNT coating layer is performed by coating a CNT coating solution in which a nanoparticle and carbon nanotubes are mixed in a solvent, and the nanoparticles may have a content of 1 to 500 with respect to 100 parts by weight of carbon nanotubes. Can be.
  • At least one of the base binder layer and the top binder layer may include ceramic-based or metal oxide-based nanoparticles.
  • a pattern may be formed by wet etching carbon nanotubes. Accordingly, it is possible to form a fine carbon nanotube pattern, and even in the case of a large-area carbon nanotube film, it is possible to quickly form a carbon nanotube pattern.
  • FIG. 1 is a flow chart of a carbon nanotube film production method according to an embodiment of the present invention.
  • FIGS 2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention.
  • FIG. 1 is a flow chart showing each step of the method for producing a carbon nanotube film (S100) according to an embodiment of the present invention.
  • the carbon nanotube film manufacturing method (S100) according to an embodiment of the present invention, the step of forming a wet etchable base binder layer on the substrate (S110), and the base binder layer upper surface Forming a CNT coating layer including carbon nanotubes and wet etchable nanoparticles (S120), and forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S130), and through wet etching. Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer (S140).
  • FIGS. 2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention. With reference to Figures 2 to 6, each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention will be described in more detail.
  • a wet etchable base binder layer 120 is formed on the substrate 110.
  • the substrate 110 may be glass, a polymer such as PET, PC, PI, PEN, COC, or a material such as paper.
  • the substrate 110 may be applied as a display panel or a touch screen.
  • the substrate 110 is preferably made of a transparent material.
  • the substrate 110 may be used as a member requiring flexibility such as electronic paper.
  • the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
  • the base binder layer 120 is wet etchable.
  • the base binder layer 120 may include a wet etchable binder.
  • the binder used in the base binder layer 120 is applied according to the material of the base material. Therefore, the binder used in the base binder layer 120 may not be wet etched.
  • the base binder layer 120 may further include wet particles capable of wet etching nanoparticles 123.
  • the nanoparticles may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • the base binder layer 120 may be formed by mixing the binder 121 and the nanoparticles 123 in a solvent to form a base binder solution and then coating the substrate on the substrate.
  • the solvent may be selected from alcohols, amines, distilled water and general organic solvents. It is preferable that the boiling point is 150 ° C. or lower so that the solvent is easily removed later.
  • the wet etchable nanoparticles 123 may be mixed to enable wet etching.
  • the size of the nanoparticles 123 may be 1nm to 1 ⁇ m.
  • the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effects on the binder layer are insignificant, so that the nanoparticles cannot be etched together with the binder layer. This is because there is a problem that the coating surface is not uniformly dispersed in the sink, or the coating surface is formed unevenly after coating. In this case, it is more preferable that the nanoparticles are 1 nm to 100 nm.
  • the nanoparticles 123 preferably has a content of 1 to 500 parts by weight with respect to 100 parts by weight of the base binder, which is wet when less than 1 part by weight If the etching is not properly, if the amount exceeds 500 parts by weight, the physical properties of the base binder layer is changed, and the particles after coating have a problem that the haze is increased by scattering light.
  • the nanoparticles may be 1 to 100 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the base binder.
  • the base binder layer 120 serves to bond the substrate 110 and the CNT coating layer 130 (see FIG. 3) to be described later.
  • the base binder layer 120 is wet-etched together with the top binder layer 140 (see FIG. 4), which will be described later, and the CNT coating layer 130 between the base binder layer 120 and the top binder layer. 4) is wet etched.
  • the CNT coating layer 130 is formed on the base binder layer 120.
  • the CNT coating layer 130 includes carbon nanotubes (c). Carbon Nanotubes (CNTs) form a tube where one carbon is bonded to another carbon atom in a hexagonal honeycomb pattern to form a tube. The diameter of the tube is extremely small, at the nanometer level, and exhibits unique electrochemical properties. When the nanotubes are formed of a thin conductive film on a plastic or glass substrate, they can be used as transparent electrodes because they exhibit high transmittance and conductivity in the visible light region.
  • the coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
  • a part of the carbon nanotubes (C) constituting the CNT coating layer 130 may be inserted into the base binder layer 120 to be bonded. Accordingly, while the base binder layer 120 is wet etched, the CNT coating layer 130 may be wet etched together.
  • the CNT coating layer 130 may include wet etchable nanoparticles 133.
  • the nanoparticles 133 are bound to a binder together with the carbon nanotubes (C), thereby adhering to the carbon nanotubes (C). Accordingly, during the wet etching, the nanoparticles 133 are etched to allow the etching liquid to escape to the base binder layer 120 so that the carbon nanotubes C may be etched together with the base binder layer 120 later. To help.
  • the nanoparticles 133 may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3, WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • the CNT coating layer 130 may be formed by coating a CNT coating solution on the base binder layer 120.
  • the CNT coating solution may be prepared by mixing a binder, a nanoparticle 133 and a carbon nanotube (C) in a solvent.
  • carbon nanotubes (C) are dispersed.
  • One example of the carbon nanotube dispersion method is to disperse the carbon nanotubes in an organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
  • organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
  • the carbon nanotube dispersion method may be a water-soluble dispersant.
  • the water-soluble dispersant includes sodium dodecyl sulphate (SDS), triton x-100 (tx-100), sodium dodecylbenzenesulfonate (NaDDBS), gum arabic, and the like.
  • a binder and nanoparticles are added to a solvent in which carbon nanotubes are dispersed.
  • the binder can be applied to any conventional binder for binding between the carbon nanotubes.
  • the step of forming the CNT coating layer is made by coating a CNT coating solution in which the nanoparticles and carbon nanotubes are mixed in a solvent, the nanoparticles content of 1 to 500 parts by weight relative to 100 parts by weight of carbon nanotubes Can have
  • the nanoparticles are less than 1 part by weight, wet etching is not performed properly.
  • the nanoparticles are more than 500 parts by weight, the dispersibility of the CNT coating liquid is lowered, the properties of the CNT layer are changed after coating, and the nanoparticles scatter light. There is a problem that haze increases.
  • the nanoparticles may be 1 to 100 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of carbon nanotubes.
  • the size of the nanoparticles 133 is preferably 1nm to 1 ⁇ m. If the size of the nanoparticles is less than 1nm, even if the nanoparticles are wet etched, the effect on the CNT layer is insignificant, and the etching solution penetrates into the base binder layer, thereby preventing the CNT layer and the base binder layer from etching together. This is because when the size of the nanoparticles exceeds 1 ⁇ m, the nanoparticles do not uniformly disperse in the coating solution and sink or decrease the dispersibility of CNTs.
  • the nanoparticles 133 may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • a wet etchable top binder layer 140 is applied to the upper surface of the CNT coating layer 130.
  • the top binder layer may perform a function of improving durability such as preventing scratches on the CNT coating layer.
  • optical characteristics such as brightness improvement and the prevention of diffuse reflection, can also be improved.
  • the top binder layer 140 is made of a binder 141 material.
  • the binder material typically bonds between carbon nanotube strands. Therefore, at least a portion of the top binder layer 140 is coupled to the carbon nanotube strands of the CNT coating layer 130. Accordingly, the CNT coating layer 130 is coupled to the bottom by the binder material of the base binder layer 120, and is coupled to the binder 141 material of the top binder layer 140 to the upper side.
  • the top binder layer 140 may be wet etched. To this end, a wet etchable binder may be applied as the material of the top binder layer 140.
  • the top binder layer 140 may be formed by mixing wet etchable nanoparticles 143 with a binder.
  • the binder can be selected according to the function of the top binder layer, and in this case, a binder which cannot be wet etched can be used as the main material of the top binder layer.
  • the entire top binder layer may be wet etched as the nanoparticles are wet etched.
  • the nanoparticles may have a size of 1 nm to 1 ⁇ m.
  • the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet-etched, the effect on the binder layer is minimal, so that the nanoparticles cannot be etched together with the binder layer.
  • the coating liquid is This is because there is a problem that the coating surface is not uniformly dispersed in the sink, or the coating surface is formed unevenly after coating.
  • the nanoparticles preferably have a content of 1 to 500 with respect to 100 parts by weight of the top binder, which is less than 1 part by weight of the wet etching is not properly, 500 This is because when the weight part is exceeded, the physical properties of the base binder layer are changed, and the particles after coating have a problem in that haze is increased by scattering light.
  • the etching target region E of the base binder layer 120, the CNT coating layer 130, and the top binder layer 140 is removed by wet etching.
  • the etching paste 150 is pattern-coated on the etching target region E of the top binder layer 140.
  • the surface on which the etching paste 150 is applied is etched by the wet etching equipment.
  • the etching paste has a viscosity of about thousands to tens of thousands of Cps and is patterned on the top binder layer.
  • the screen printing method can be used as a method of pattern-forming the said etching paste 150.
  • the screen printing method may be performed by disposing a screen mask on the top binder layer 140 and printing an etching paste on the top binder layer through a hollow portion of the screen mask by squeeze.
  • the CNT coating layer 130 is bound to the top binder layer 140 on the upper side and the base binder layer 120 on the lower side, and nanoparticles are added to the CNT coating layer, thereby the top binder. While the layer 140 and the base binder layer 120 are etched along the etching paste 150, the CNT coating layer 130 bound thereto is easily etched.
  • the wet etching method is not limited to the wet etching method using the above-described etching paste. That is, the wet etching that can be applied to the present invention can apply a photoresist method. That is, a photoresist, which is a photosensitive resin, is coated, and a photoresist is selectively transmitted by transmitting light having a wavelength in a specific region using a mask serving as a patterned disc, and then a photoresist is selectively developed.
  • the etching target region E which is a portion selectively exposed by the developing process, can be removed by a chemical method such as an etching solution or a reactive gas.
  • the present invention is not limited to the etching paste coating method or the photoresist method, and the top binder layer 140, the CNT coating layer 130, and the base binder layer (in the etching target region E) using a chemical solution ( If 120 can be melted, all of the present invention.
  • the coating layer may be subjected to a heat treatment step of heating to an appropriate temperature to react with the etching paste.
  • the etching rate can be increased by introducing heat into the etching paste through the above process.
  • the etching paste 150, the top binder layer 140, the CNT coating layer 130, and the base binder layer 120 to which the etching paste is applied are removed by washing. Go through the steps. In the washing step, when the etching paste 150 is rinsed in di-water, the top binder layer 140, the CNT coating layer 130, and the base are coated with the etching paste 150 and the etching paste. The binder layer 120 is etched and removed to complete the patterned carbon nanotube film 100.
  • the removing of the CNT coating layer may include removing the top binder layer 140, the base binder layer 120, and the nanoparticles of the CNT coating layer 130 by wet etching. have. And, it may have a step of removing the remaining carbon nanotubes of the CNT coating layer in the etching target region. This is first wet etching the wettable top binder layer and the base binder layer, when wet etching the nanoparticles of the CNT coating layer, the carbon nanotubes of the CNT coating layer is not networked with the top binder layer and the base binder layer It remains in a muggy state. The carbon nanotubes can be easily washed out by water.
  • the CNT coating layer is removed from the etching target region. Accordingly, a fine pattern of the carbon nanotube film is possible, and a wide range of patterns can be formed.
  • the CNT coating layer 130 is patterned by wet etching. Accordingly, there is an advantage in that the conventional wet etching equipment for forming a pattern of an electrode such as ITO can be applied as it is. In addition, there is an advantage that can be quickly etched, and have a fine pattern width.
  • the CNT coating layer itself can be wet-etched, at least one of the top binder layer and the base binder layer may be omitted.
  • the present invention is applicable to manufacturing a carbon nanotube film, the carbon nanotube film produced by the above method can be applied to various fields such as charging field, display field, optical field.

Abstract

The aim of the present invention is to provide a method for manufacturing a carbon nanotube film, which enables a large and fine carbon nanotube pattern to be manufactured in a simple and quick manner. Therefore, the method for manufacturing a carbon nanotube film according to the present invention comprises a step of forming a wet-etchable base binder layer on a base. The method comprises a step of forming a CNT coating layer including carbon nanotubes and wet-etchable nanoparticles on the upper surface of the base binder layer. The method comprises a step of forming a wet-etchable top binder layer on the upper surface of the CNT coating layer. The method comprises a step of removing the etching target area of the CNT coating layer, the top binder layer, and the base binder layer by wet-etching.

Description

탄소나노튜브필름 제조 방법 Carbon Nanotube Film Manufacturing Method
본 발명은 탄소나노튜브필름 제조 방법에 관한 것으로서, 보다 구체적으로는 기재상에 원하는 형상으로 탄소나노튜브 패턴을 형성시켜서, 대전분야, 디스플레이분야, 광학분야 등 여러 분야에 적용할 수 있는 탄소나노튜브 필름 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a carbon nanotube film, and more specifically, to form a carbon nanotube pattern in a desired shape on a substrate, and can be applied to various fields such as charging, display, and optical fields. It relates to a film production method.
일반적으로 투명전도성 필름은 높은 전도성 (예를 들면,1 x 10^3Ω/sq이하의면저항)과 가시영역에서 높은 투과율(80%이상)을 가진다. 이에 따라서 상기 투명전도성 필름은 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 액정 디스플레이(Liquid crystal Display, LCD)소자, 발광다이오드(Light Emitting Diode, LED), 유기 전계 발광다이오드(Organic Light Emitting Diode, OLED), 터치패널 또는 태양전지 등에서 각종 수광소자와 발광소자의 전극으로 이용되는 것 이외에 자동차 창유리나 건축물의 창유리 등에 쓰이는 대전 방지막, 전자파 차폐막 등의 투명전자파 차폐제 및 열선 반사막, 냉동 쇼케이스 등의 투명 발열체로 사용되고 있다. In general, the transparent conductive film has high conductivity (for example, sheet resistance of less than 1 × 10 3Ω / sq) and high transmittance (more than 80%) in the visible region. Accordingly, the transparent conductive film may include a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode (LED), an organic light emitting diode (OLED), and an organic light emitting diode (OLED). ), As an electrode of various light-receiving elements and light-emitting elements in touch panels or solar cells, as well as transparent electromagnetic wave shielding agents such as antistatic films and electromagnetic wave shielding films used in automobile window glass or building window glass, and transparent heating elements such as heat ray reflecting films and refrigerated showcases. It is used.
최근에는 기재 상에 코팅되는 전극을 탄소나노튜브로 하는 것에 대한 연구가 진행되고 있다.Recently, research has been made on using carbon nanotubes as electrodes coated on a substrate.
상기 탄소나노튜브는 이론적 퍼콜레이션 농도가 0.04%에 불과하여 광학적 성질을 유지시키면서 전도성을 구현할 수 있는 이상적인 재료로 평가되고 있으며 나노미터 단위로 특정 기재위에 박막으로 코팅하게 되면 가시광선 영역에서 빛이 투과되어 투명성을 나타내며 탄소나노튜브가 가지고 있는 고유한 특성인 전기적 성질을 유지하게 되어 투명전극으로 사용할 수 있다. 또한, 탄소나노튜브는 직접적인 성장방식 외에도 페이스트 상태로 인쇄하여 사용할 수 있으므로 대면적화가 쉽다.The carbon nanotubes are evaluated as an ideal material capable of realizing conductivity while maintaining optical properties due to the theoretical percolation concentration of only 0.04%, and when light is coated on a specific substrate in nanometer units, light transmits in the visible region. It can be used as a transparent electrode because it shows transparency and maintains electrical property, which is a unique characteristic of carbon nanotubes. In addition, carbon nanotubes can be printed and used in a paste state in addition to the direct growth method, so that the large area is easy.
탄소나노튜브는 화학적으로 매우 안정적이고 내성이 강해서 습식 에칭이 어렵다. 이에 따라서 탄소나노튜브 패턴을 형성하기 위해서는 건식 에칭이 사용된다. Carbon nanotubes are chemically very stable and resistant to wet etching. Accordingly, dry etching is used to form the carbon nanotube pattern.
종래에는 탄소나노튜브 패턴을 형성시키기 위한 건식 에칭 방법의 하나로서, 레이저를 사용하였다. 그런데, 상기 레이저는 빔 사이즈가 작음으로써, 대면적의 패턴을 형성시키는데 걸리는 작업시간이 길어지고, 패턴 불량률이 높다는 문제점이 있다. Conventionally, lasers have been used as one of the dry etching methods for forming carbon nanotube patterns. However, since the laser has a small beam size, there is a problem in that a work time for forming a large area pattern is long and a pattern defect rate is high.
또한 상기 탄소나노튜브 필름에 탄소나노튜브 패턴을 형성시키기 위해서는, 종래에 통상적으로 사용되는 습식 에칭 장비 이외의 별도의 건식 장비를 제작하여 적용하여야 한다는 문제점이 있다.In addition, in order to form a carbon nanotube pattern on the carbon nanotube film, there is a problem that a separate dry equipment other than the conventional wet etching equipment used to be manufactured and applied.
본 발명은, 대면적 및 미세한 탄소나노튜브 패턴을 간단하고 신속하게 제조할 수 있는 탄소나노튜브 필름 제조 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for producing a carbon nanotube film which can produce a large area and a fine carbon nanotube pattern simply and quickly.
따라서, 본 발명의 탄소나노튜브 필름 제조 방법은, 기재 상에, 습식 에칭 가능한 베이스 바인더층을 형성시키는 단계를 포함한다. 상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계를 포함한다. 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계를 포함한다. 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계를 포함한다. Accordingly, the carbon nanotube film manufacturing method of the present invention includes forming a wet etchable base binder layer on a substrate. Forming a CNT coating layer on the upper surface of the base binder layer, the CNT coating layer including carbon nanotubes and wet-etchable nanoparticles. Forming a wet etchable top binder layer on the CNT coating layer. And removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer through wet etching.
상기 나노 입자는, 세라믹계 나노 입자 또는 금속 산화물계 나노 입자일 수 있다. 이 경우 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3 중 선택된 적어도 하나일 수 있다. The nanoparticles may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
이 경우, 상기 나노 입자의 사이즈는 1㎚ 내지1㎛일 수 있다.In this case, the size of the nanoparticles may be 1nm to 1㎛.
한편, 상기 CNT 코팅층을 형성시키는 단계는, 용매에, 나노 입자 및 탄소나노튜브를 혼합한 CNT 코팅용액을 코팅함으로써 이루어지고, 상기 나노 입자는 탄소나노튜브 100중량부 대비 1 내지 500의 함량을 가질 수 있다.Meanwhile, the forming of the CNT coating layer is performed by coating a CNT coating solution in which a nanoparticle and carbon nanotubes are mixed in a solvent, and the nanoparticles may have a content of 1 to 500 with respect to 100 parts by weight of carbon nanotubes. Can be.
상기 베이스 바인더층 및 탑 바인더층 중 적어도 하나는, 세라믹계 또는 금속 산화물계나노 입자를 포함할 수 있다.At least one of the base binder layer and the top binder layer may include ceramic-based or metal oxide-based nanoparticles.
본 발명에 따르면, 탄소나노튜브를 습식 에칭하여 패턴 형성이 가능하다. 이에 따라서 미세한 탄소나노튜브 패턴의 형성이 가능하고, 대면적의 탄소나노튜브 필름의 경우에도 신속하게 탄소나노튜브 패턴을 형성시킬 수 있다. According to the present invention, a pattern may be formed by wet etching carbon nanotubes. Accordingly, it is possible to form a fine carbon nanotube pattern, and even in the case of a large-area carbon nanotube film, it is possible to quickly form a carbon nanotube pattern.
또한, 기존의 습식 에칭 장비를 적용하여서 탄소나노튜브 패턴을 형성시킬 수 있음으로써, 제조 비용이 저감된다.In addition, by applying a conventional wet etching equipment to form a carbon nanotube pattern, the manufacturing cost is reduced.
도 1은 본 발명의 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도다.1 is a flow chart of a carbon nanotube film production method according to an embodiment of the present invention.
도 2 내지 도 6은 본 발명의 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도들이다.2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면을 참고하여 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브 필름의 제조 방법(S100)의 각 단계를 도시한 흐름도이다.1 is a flow chart showing each step of the method for producing a carbon nanotube film (S100) according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 탄소나노튜브필름 제조 방법(S100)은, 기재 상에 습식 에칭 가능한 베이스 바인더층을 형성시키는 단계(S110)와, 상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계(S120)와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계(S130)와, 습식 에칭을 통하여 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 제거하는 단계(S140)를 거친다. As shown in Figure 1, the carbon nanotube film manufacturing method (S100) according to an embodiment of the present invention, the step of forming a wet etchable base binder layer on the substrate (S110), and the base binder layer upper surface Forming a CNT coating layer including carbon nanotubes and wet etchable nanoparticles (S120), and forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S130), and through wet etching. Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer (S140).
도 2 내지 도 6은 본 발명의 일 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도이다. 도 2 내지 도 6을 참조하여, 본 발명의 일 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 보다 상세히 설명한다. 2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention. With reference to Figures 2 to 6, each step of the carbon nanotube film manufacturing method according to an embodiment of the present invention will be described in more detail.
먼저 도 2에 도시된 바와 같이, 기재(110)상에, 습식 에칭 가능한 베이스 바인더층(120)을 형성시키는 단계를 거친다.First, as shown in FIG. 2, a wet etchable base binder layer 120 is formed on the substrate 110.
기재(110)는 유리이거나, PET, PC, PI, PEN, COC등의 폴리머이거나, 종이 등의 소재일 수 있다. 이 경우, 상기 기재(110)는 디스플레이 패널 또는 터치 스크린 등으로 적용될 수 있다. 이를 위하여 상기 기재(110)는 투명한 소재로 이루어지는 것이 바람직하다. The substrate 110 may be glass, a polymer such as PET, PC, PI, PEN, COC, or a material such as paper. In this case, the substrate 110 may be applied as a display panel or a touch screen. To this end, the substrate 110 is preferably made of a transparent material.
또한 상기 기재(110)는 전자종이 등의 유연성이 필요한 부재로 사용할 수 있다. 이 경우에는 상기 기재가 투명 무기물 기판 또는 투명 폴리머 기판으로 이루어져서 유연성을 가질 수 있는 것이 바람직하다.In addition, the substrate 110 may be used as a member requiring flexibility such as electronic paper. In this case, it is preferable that the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
베이스 바인더층(120)은 습식 에칭 가능하다. 이 경우, 상기 베이스 바인더층(120)은 습식 에칭 가능한 바인더를 포함하여 이루어질 수 있다. The base binder layer 120 is wet etchable. In this case, the base binder layer 120 may include a wet etchable binder.
한편, 상기 베이스 바인더층(120)에 사용되는 바인더는 기재의 소재에 맞추어 적용한다. 따라서, 상기 베이스 바인더층(120)에 사용되는 바인더가 습식 에칭 불가능할 수도 있다. On the other hand, the binder used in the base binder layer 120 is applied according to the material of the base material. Therefore, the binder used in the base binder layer 120 may not be wet etched.
따라서, 상기 베이스 바인더층(120)은 습식 에칭 가능한 나노 입자(nano particle)(123)를 더 포함할 수 있다. 이 경우, 상기 나노 입자는 세라믹계 나노 입자 또는 금속 산화물계 나노 입자일 수 있다. 이 경우 상기 나노 입자는 TiO2,SiO2,SiON,SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3중 선택된 적어도 하나일 수 있다.Thus, the base binder layer 120 may further include wet particles capable of wet etching nanoparticles 123. In this case, the nanoparticles may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
베이스 바인더층(120)은, 용매에, 바인더(121) 및 나노 입자(123)를 혼합하여서, 베이스 바인더 용액을 형성시킨 후에, 이를 상기 기재에 코팅시킴으로써 이루어질 수 있다. The base binder layer 120 may be formed by mixing the binder 121 and the nanoparticles 123 in a solvent to form a base binder solution and then coating the substrate on the substrate.
이 경우, 용매는 알코올류, 아민류, 증류수 및 일반적인 유기 용매를 선정할 수 있다. 상기 용매는 후에 제거가 용이하도록, 끓는점이 150℃ 이하인 것이 바람직하다.In this case, the solvent may be selected from alcohols, amines, distilled water and general organic solvents. It is preferable that the boiling point is 150 ° C. or lower so that the solvent is easily removed later.
습식 에칭이 불가능한 바인더(121)라 하더라도, 습식 에칭 가능한 나노 입자(123)가 혼합되면 습식 에칭 가능해질 수 있다. 이 경우, 상기 나노 입자(123)의 사이즈는 1㎚ 내지 1㎛일 수 있다. 상기 나노 입자의 사이즈가 1㎚미만인 경우에는 나노입자가 습식 에칭 되더라도 바인더 층에 미치는 영향이 미미해 바인더층과 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛초과하는 경우에는 코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, 코팅 후 코팅면이 불균일하게 형성되는 문제점이 있기 때문이다. 이 경우, 상기 나노 입자가 1nm 내지 100nm인 것이 보다 바람직하다.Even if the binder 121 cannot be wet etched, the wet etchable nanoparticles 123 may be mixed to enable wet etching. In this case, the size of the nanoparticles 123 may be 1nm to 1㎛. When the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effects on the binder layer are insignificant, so that the nanoparticles cannot be etched together with the binder layer. This is because there is a problem that the coating surface is not uniformly dispersed in the sink, or the coating surface is formed unevenly after coating. In this case, it is more preferable that the nanoparticles are 1 nm to 100 nm.
또한, 상기 베이스 바인더층(120)을 이루는 베이스 바인더 용액에서, 상기 나노 입자(123)는 상기 베이스 바인더 100 중량부 대비 1 내지 500 중량부의 함량을 가지는 것이 바람직한데, 이는 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 베이스 바인더층의 물성을 변화시키고, 코팅 후 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있기 때문이다. 이 경우, 상기 나노 입자가 베이스 바인더 100 중량부 대비 1 내지 100 중량부, 보다 바람직하게는 20 내지 50 중량부일 수 있다.In addition, in the base binder solution constituting the base binder layer 120, the nanoparticles 123 preferably has a content of 1 to 500 parts by weight with respect to 100 parts by weight of the base binder, which is wet when less than 1 part by weight If the etching is not properly, if the amount exceeds 500 parts by weight, the physical properties of the base binder layer is changed, and the particles after coating have a problem that the haze is increased by scattering light. In this case, the nanoparticles may be 1 to 100 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the base binder.
상기 베이스 바인더층(120)은 상기 기재(110)와 후술하는 CNT 코팅층(130; 도 3 참조) 사이를 접합시키는 기능을 한다. 또한 후에 상세히 설명하겠지만, 상기 베이스 바인더층(120)은 후술하는 탑 바인더층(140; 도 4 참조)과 함께 습식 에칭되면서, 상기 베이스 바인더층(120)과 탑 바인더층 사이에 있는 CNT 코팅층(130: 도 4 참조)이 습식 에칭되도록 한다. The base binder layer 120 serves to bond the substrate 110 and the CNT coating layer 130 (see FIG. 3) to be described later. In addition, as will be described in detail later, the base binder layer 120 is wet-etched together with the top binder layer 140 (see FIG. 4), which will be described later, and the CNT coating layer 130 between the base binder layer 120 and the top binder layer. 4) is wet etched.
그 후에, 도 3에 도시된 바와 같이, 상기 베이스 바인더층(120) 상에 CNT 코팅층(130)을 형성시킨다. CNT 코팅층(130)은 탄소나노튜브(c)를 포함한다. 탄소나노튜브(Carbon Nanotube:CNT)는 하나의 탄소가 다른 탄소원자와 육각형 벌집무늬로 결합되어 튜브형태를 이루고 있고, 튜브의 직경이 나노미터 수준으로 극히 작아서 특유의 전기 화학적 특성을 나타낸다.이러한 탄소나노튜브를 플라스틱이나 유리 기판에 얇은 도전막으로 형성시키면 가시광선 영역에서 높은 투과도와 전도성을 나타내므로 투명전극으로 사용이 가능하다.Thereafter, as shown in FIG. 3, the CNT coating layer 130 is formed on the base binder layer 120. The CNT coating layer 130 includes carbon nanotubes (c). Carbon Nanotubes (CNTs) form a tube where one carbon is bonded to another carbon atom in a hexagonal honeycomb pattern to form a tube. The diameter of the tube is extremely small, at the nanometer level, and exhibits unique electrochemical properties. When the nanotubes are formed of a thin conductive film on a plastic or glass substrate, they can be used as transparent electrodes because they exhibit high transmittance and conductivity in the visible light region.
상기 CNT 코팅층(120)의 코팅 방법은 스프레이 코팅, 그라비아 코팅, 슬롯다이 코팅, 딥코팅, 바코팅, 롤투롤 코팅 등 일반적인 습식 코팅 방식을 이용할 수 있다.The coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
이 경우, 상기 CNT 코팅층(130)을 이루는 탄소나노튜브(C) 일부는 상기 베이스 바인더층(120)에 삽입되어서 결합될 수 있다. 이에 따라서 베이스 바인더층(120)이 습식 에칭되면서, 상기 CNT 코팅층(130)도 함께 습식 에칭될 수 있다.In this case, a part of the carbon nanotubes (C) constituting the CNT coating layer 130 may be inserted into the base binder layer 120 to be bonded. Accordingly, while the base binder layer 120 is wet etched, the CNT coating layer 130 may be wet etched together.
상기 CNT 코팅층(130)은, 습식 에칭 가능한 나노 입자(133)를 포함한다. 상기 나노 입자(133)는 상기 탄소나노튜브(C)와 함께 바인더에 바인딩 되어서, 상기 탄소나노튜브(C)에 붙게 된다. 이에 따라서 습식 에칭 시에, 상기 나노 입자(133)가 에칭되면서 에칭액이 베이스 바인더층(120)으로 빠져 나갈 수 있도록 하여서, 후에 상기 탄소나노튜브(C)가 베이스 바인더층(120)과 함께 에칭될 수 있도록 한다. The CNT coating layer 130 may include wet etchable nanoparticles 133. The nanoparticles 133 are bound to a binder together with the carbon nanotubes (C), thereby adhering to the carbon nanotubes (C). Accordingly, during the wet etching, the nanoparticles 133 are etched to allow the etching liquid to escape to the base binder layer 120 so that the carbon nanotubes C may be etched together with the base binder layer 120 later. To help.
상기 나노 입자(133)는 세라믹계나노입자또는금속산화물계나노입자일수있다. 이 경우 상기 나노 입자는 TiO2, SiO2, SiON,SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3 중 선택된 적어도 하나일 수 있다.The nanoparticles 133 may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3, WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
상기 CNT 코팅층(130)은 CNT 코팅용액을 상기 베이스 바인더층(120)에 코팅시킴으로써 이루어질 수 있다. 이 경우, 상기 CNT 코팅 용액은, 용매에, 바인더와, 나노 입자(133) 및 탄소나노튜브(C)를 혼합하여서 제조할 수 있다. The CNT coating layer 130 may be formed by coating a CNT coating solution on the base binder layer 120. In this case, the CNT coating solution may be prepared by mixing a binder, a nanoparticle 133 and a carbon nanotube (C) in a solvent.
상기 CNT 코팅 용액을 제조하는 일 방법으로서는 먼저 탄소나노튜브(C)를 분산시킨다. As one method of preparing the CNT coating solution, first, carbon nanotubes (C) are dispersed.
탄소나노튜브 분산 방법 중 하나의 예로는 탄소나노튜브를 amide계열의 DMF(NN-dimethylformamide), NMP(1,2-dichlorobenzene, N-methylpyrrolidone)등의 유기 용매에 넣어 초음파로 분산시킬 수 있다. One example of the carbon nanotube dispersion method is to disperse the carbon nanotubes in an organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
탄소나노튜브 분산 방법 중 다른 예로는 수용성 분산제를 적용할 수 있다. 상기 수용성 분산제로는 SDS (Sodium Dodecyl Sulfate), Triton X-100(TX-100), NaDDBS(Sodium DodecylbenzeneSulfonate), Gum Arabic 등이 있다. Another example of the carbon nanotube dispersion method may be a water-soluble dispersant. The water-soluble dispersant includes sodium dodecyl sulphate (SDS), triton x-100 (tx-100), sodium dodecylbenzenesulfonate (NaDDBS), gum arabic, and the like.
그 후에, 탄소나노튜브가 분산된 용매에, 바인더와, 나노 입자를 투입한다. 바인더는 상기 탄소나노튜브 사이를 바인딩하는 통상의 바인더는 모두 적용 가능하다. Thereafter, a binder and nanoparticles are added to a solvent in which carbon nanotubes are dispersed. The binder can be applied to any conventional binder for binding between the carbon nanotubes.
한편, 상기 CNT 코팅층을 형성시키는 단계는, 용매에, 나노 입자 및 탄소나노튜브를 혼합한 CNT 코팅용액을 코팅함으로써 이루어지고, 상기 나노 입자는 탄소나노튜 브100중량부 대비 1 내지 500중량부의 함량을 가질 수 있다. 상기 나노 입자가 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 CNT코팅액의 분산성을 저하시키며, 코팅 후 CNT층의 물성을 변화시키고, 나노 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있다.On the other hand, the step of forming the CNT coating layer is made by coating a CNT coating solution in which the nanoparticles and carbon nanotubes are mixed in a solvent, the nanoparticles content of 1 to 500 parts by weight relative to 100 parts by weight of carbon nanotubes Can have When the nanoparticles are less than 1 part by weight, wet etching is not performed properly. When the nanoparticles are more than 500 parts by weight, the dispersibility of the CNT coating liquid is lowered, the properties of the CNT layer are changed after coating, and the nanoparticles scatter light. There is a problem that haze increases.
이경우, 상기 나노 입자가 탄소나노튜브 100 중량부 대비 1 내지 100 중량부, 보다 바람직하게는 20 내지 50 중량부일 수 있다.In this case, the nanoparticles may be 1 to 100 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of carbon nanotubes.
또한, 상기 나노 입자(133)의 사이즈는 1㎚ 내지 1㎛인 것이 바람직하다. 상기 나노 입자의 사이즈가 1㎚ 미만인 경우에는 나노 입자가 습식에칭 되더라도 CNT 층에 미치는 영향이 미미하고, 베이스 바인더층으로 에칭액이 침투해 CNT 층과 베이스 바인더층이 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛를 초과하는 경우에는 코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, CNT의 분산성을 저하시키는 문제점이 있기 때문이다.In addition, the size of the nanoparticles 133 is preferably 1nm to 1㎛. If the size of the nanoparticles is less than 1nm, even if the nanoparticles are wet etched, the effect on the CNT layer is insignificant, and the etching solution penetrates into the base binder layer, thereby preventing the CNT layer and the base binder layer from etching together. This is because when the size of the nanoparticles exceeds 1 μm, the nanoparticles do not uniformly disperse in the coating solution and sink or decrease the dispersibility of CNTs.
상기 나노 입자(133)의 예로서는, 세라믹계 나노 입자 또는 금속 산화물계 나노 입자일 수 있다. 이 경우 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3 중 선택된 적어도 하나일 수 있다.Examples of the nanoparticles 133 may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
그 후에, 도 4에 도시된 바와 같이, 상기 CNT 코팅층(130) 상면에, 습식 에칭 가능한 탑 바인더층(140)을 도포한다. 상기 탑 바인더층은 CNT 코팅층 상에 스크래치를 방지하는 등 내구성을 향상시키는 기능을 행할 수 있다. 또한, 휘도 향상, 난반사 방지 등 광학적 특성을 향상시킬 수도 있다. Thereafter, as shown in FIG. 4, a wet etchable top binder layer 140 is applied to the upper surface of the CNT coating layer 130. The top binder layer may perform a function of improving durability such as preventing scratches on the CNT coating layer. Moreover, optical characteristics, such as brightness improvement and the prevention of diffuse reflection, can also be improved.
상기 탑 바인더층(140)은 바인더(141) 소재로 이루어진다. 바인더 소재는 통상적으로 탄소나노튜브 가닥 사이를 결합시킨다. 따라서 상기 탑 바인더층(140)의 적어도 일부는 상기 CNT 코팅층(130)의 탄소나노튜브 가닥들과 서로 결합되어 있다. 이에 따라서 CNT 코팅층(130)은 하측으로는 베이스 바인더층(120)의 바인더 소재에 의하여 결합되고, 상측으로는 탑 바인더층(140)의 바인더(141) 소재와 결합되어 있다. The top binder layer 140 is made of a binder 141 material. The binder material typically bonds between carbon nanotube strands. Therefore, at least a portion of the top binder layer 140 is coupled to the carbon nanotube strands of the CNT coating layer 130. Accordingly, the CNT coating layer 130 is coupled to the bottom by the binder material of the base binder layer 120, and is coupled to the binder 141 material of the top binder layer 140 to the upper side.
상기 탑 바인더층(140)은 습식 에칭 가능하다. 이를 위하여 습식 에칭 가능한 바인더를 탑 바인더층(140)의 소재로 적용할 수 있다. The top binder layer 140 may be wet etched. To this end, a wet etchable binder may be applied as the material of the top binder layer 140.
이와 달리, 상기 탑 바인더층(140)은, 습식 에칭 가능한 나노 입자(143)를 바인더와 혼합하여서 이루어질 수 있다. 이는 상기 탑 바인더층의 기능에 맞추어서, 바인더를 선택할 수 있고, 이 경우 습식 에칭 불가능한 바인더를 탑 바인더층의 주 소재로 할 수 있다. In contrast, the top binder layer 140 may be formed by mixing wet etchable nanoparticles 143 with a binder. The binder can be selected according to the function of the top binder layer, and in this case, a binder which cannot be wet etched can be used as the main material of the top binder layer.
이 경우, 상기 바인더(141)에 나노 입자(143)를 첨가하면, 상기 나노 입자가 습식 에칭됨에 따라서 전체 탑 바인더층이 습식 에칭 가능하게 된다. In this case, when the nanoparticles 143 are added to the binder 141, the entire top binder layer may be wet etched as the nanoparticles are wet etched.
상기 나노 입자의 사이즈는 1㎚ 내지 1㎛일 수 있다. 상기 나노 입자의 사이즈가 1㎚ 미만인 경우에는 나노입자가 습식에칭 되더라도 바인더 층에 미치는 영향이 미미해 바인더층과 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛초과하는 경우에는코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, 코팅 후 코팅면이 불균일하게 형성되는 문제점이 있기 때문이다.The nanoparticles may have a size of 1 nm to 1 μm. When the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet-etched, the effect on the binder layer is minimal, so that the nanoparticles cannot be etched together with the binder layer. When the size of the nanoparticles exceeds 1 μm, the coating liquid is This is because there is a problem that the coating surface is not uniformly dispersed in the sink, or the coating surface is formed unevenly after coating.
또한, 상기 탑 바인더층을 이루는 탑 바인더 용액에서, 상기 나노 입자는 상기 탑 바인더 100중량부 대비 1 내지 500의 함량을 가지는 것이 바람직한데, 이는 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 베이스 바인더층의 물성을 변화시키고, 코팅 후 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있기 때문이다.In addition, in the top binder solution constituting the top binder layer, the nanoparticles preferably have a content of 1 to 500 with respect to 100 parts by weight of the top binder, which is less than 1 part by weight of the wet etching is not properly, 500 This is because when the weight part is exceeded, the physical properties of the base binder layer are changed, and the particles after coating have a problem in that haze is increased by scattering light.
그 후에, 상기 베이스 바인더층(120), CNT 코팅층(130) 및 탑 바인더층(140)의 에칭 대상 영역(E)을 습식 에칭을 통하여 제거하는 단계를 거친다. Thereafter, the etching target region E of the base binder layer 120, the CNT coating layer 130, and the top binder layer 140 is removed by wet etching.
에칭페이스트를 사용하는 방법을 예로 들면, 도 5에 도시된 바와 같이, 상기 탑 바인더층(140)의 에칭 대상 영역(E) 상에 에칭페이스트(150)를 패턴 도포시키는 단계를 거친다. 에칭페이스트(150)가 도포된 면은 습식 에칭 장비에 의하여 에칭된다. 상기 에칭페이스트는 점도가 수천 내지 수만Cps 정도로서 상기 탑 바인더층에 패턴 형성된다. For example, as shown in FIG. 5, the etching paste 150 is pattern-coated on the etching target region E of the top binder layer 140. The surface on which the etching paste 150 is applied is etched by the wet etching equipment. The etching paste has a viscosity of about thousands to tens of thousands of Cps and is patterned on the top binder layer.
상기 에칭페이스트(150)를 패턴 형성시키는 방법으로서는, 스크린 인쇄법을 사용할 수 있다. 상기 스크린 인쇄법은 상기 탑 바인더층(140) 상에 스크린 마스크를 배치시키고, 스퀴즈로 에칭페이스트를 상기 스크린 마스크의 중공부를 통하여 상기 탑 바인더층에 인쇄함으로써 이루어질 수 있다. As a method of pattern-forming the said etching paste 150, the screen printing method can be used. The screen printing method may be performed by disposing a screen mask on the top binder layer 140 and printing an etching paste on the top binder layer through a hollow portion of the screen mask by squeeze.
본 발명은 상기 CNT 코팅층(130)이 상측으로는 탑 바인더층(140)과 바인딩되고, 하측으로는 베이스 바인더층(120)과 바인딩되도록 하는 동시에, CNT 코팅층이 나노 입자가 첨가됨으로써, 상기 탑 바인더층(140) 및 베이스 바인더층(120)이 에칭페이스트(150)를 따라서 에칭되면서, 이에 바인딩 된 CNT 코팅층(130)이 용이하게 에칭되도록 한다.According to the present invention, the CNT coating layer 130 is bound to the top binder layer 140 on the upper side and the base binder layer 120 on the lower side, and nanoparticles are added to the CNT coating layer, thereby the top binder. While the layer 140 and the base binder layer 120 are etched along the etching paste 150, the CNT coating layer 130 bound thereto is easily etched.
한편, 습식 에칭 방법으로서는 상기한 에칭페이스트를 이용한 습식 에칭 방법에 한정되지 않는 것은 명백하다. 즉, 본 발명에 적용될 수 있는 습식 에칭은 포토레지스트법을 적용할 수 있다. 즉, 감광성 수지인 포토레지스트를 도포하고, 패턴원판 역할을 하는 마스크를 이용하여서 특정 영역대의 파장을 가지는 빛을 투과시켜서 포토레지스트에 선택적으로 광반응을 일으킨 다음, 반응한 부분을 현상한다. 현상공정에 의해 선택적으로 노출된 부분인 에칭 대상 영역(E)을 에칭 용액이나 반응성 가스 등의 화학적인 방법으로 제거 할 수 있다. On the other hand, it is obvious that the wet etching method is not limited to the wet etching method using the above-described etching paste. That is, the wet etching that can be applied to the present invention can apply a photoresist method. That is, a photoresist, which is a photosensitive resin, is coated, and a photoresist is selectively transmitted by transmitting light having a wavelength in a specific region using a mask serving as a patterned disc, and then a photoresist is selectively developed. The etching target region E, which is a portion selectively exposed by the developing process, can be removed by a chemical method such as an etching solution or a reactive gas.
본 발명은 에칭페이스트도포법이나, 포토레지스트법에 한정되지는 않으며, 화학적인 용액을 이용하여 에칭 대상 영역(E)에 있는 탑 바인더층(140), CNT 코팅층(130), 및 베이스 바인더층(120)을 녹여낼 수 있다면, 모두 본 발명에 해당한다. The present invention is not limited to the etching paste coating method or the photoresist method, and the top binder layer 140, the CNT coating layer 130, and the base binder layer (in the etching target region E) using a chemical solution ( If 120 can be melted, all of the present invention.
그 후에, 도시되지는 않으나, 상기 코팅층이 에칭페이스트와 반응할 수 있도록 적절한 온도로 가열하는 열처리 단계를 거칠 수 있다. 상기 공정을 통하여 에칭페이스트에 열을 투입함으로써 에칭 속도를 높일 수 있다. Thereafter, although not shown, the coating layer may be subjected to a heat treatment step of heating to an appropriate temperature to react with the etching paste. The etching rate can be increased by introducing heat into the etching paste through the above process.
그 후에, 도 6에 도시된 바와 같이, 세정을 통하여, 상기 에칭페이스트(150)와, 상기 에칭페이스트가 도포된 탑 바인더층(140), CNT 코팅층(130) 및 베이스 바인더층(120)을 제거하는 단계를 거친다. 상기 세정단계는 초순수(Di-water)에 상기 에칭페이스트(150)를 씻어내면, 상기 에칭페이스트(150) 및 상기 에칭페이스트가 도포된 탑 바인더층(140)과, CNT 코팅층(130)과, 베이스 바인더층(120)이 에칭되어 제거됨으로써 패턴화된 탄소나노튜브 필름(100)이 완성된다.After that, as shown in FIG. 6, the etching paste 150, the top binder layer 140, the CNT coating layer 130, and the base binder layer 120 to which the etching paste is applied are removed by washing. Go through the steps. In the washing step, when the etching paste 150 is rinsed in di-water, the top binder layer 140, the CNT coating layer 130, and the base are coated with the etching paste 150 and the etching paste. The binder layer 120 is etched and removed to complete the patterned carbon nanotube film 100.
한편, 상기 CNT 코팅층 제거 단계는, 에칭 대상 영역에 있는 상기 탑 바인더층(140)과, 베이스 바인더층(120)과, CNT 코팅층(130)의 나노 입자를 습식 에칭을 통하여 제거하는 단계를 가질 수 있다. 그리고, 상기 에칭 대상 영역에서의 CNT 코팅층의 잔존하는 탄소나노튜브를 제거하는 단계를 가질 수 있다. 이는 먼저 습식 가능한 탑 바인더층 및 베이스 바인더층을 습식 에칭하면서, 상기 CNT 코팅층의 나노 입자를 습식에칭하게 되면, 상기 CNT 코팅층의 탄소나노튜브가 상기 탑 바인더층 및 베이스 바인더층과 네트워크가 형성되지 않은 상태로 흐물흐물한 상태로 잔존하게 된다. 상기 탄소나노튜브는 물에 의하여 쉽게 씻겨 나갈 수 있는 상태가 된다. 이 때, 상기 잔존하는 탄소나노튜브를 제거하는 단계는, 초순수로 상기 탄소나노튜브를 씻어내게 되면, 에칭대상영역에서 상기 CNT 코팅층이 제거된다. 이에 따라서 탄소나노튜브 필름의 미세한 패턴이 가능해지고, 넓은 범위의 패턴 형성이 가능해진다.Meanwhile, the removing of the CNT coating layer may include removing the top binder layer 140, the base binder layer 120, and the nanoparticles of the CNT coating layer 130 by wet etching. have. And, it may have a step of removing the remaining carbon nanotubes of the CNT coating layer in the etching target region. This is first wet etching the wettable top binder layer and the base binder layer, when wet etching the nanoparticles of the CNT coating layer, the carbon nanotubes of the CNT coating layer is not networked with the top binder layer and the base binder layer It remains in a muggy state. The carbon nanotubes can be easily washed out by water. At this time, in the step of removing the remaining carbon nanotubes, when the carbon nanotubes are washed with ultrapure water, the CNT coating layer is removed from the etching target region. Accordingly, a fine pattern of the carbon nanotube film is possible, and a wide range of patterns can be formed.
본 발명에 따르면, CNT 코팅층(130)을 습식 에칭으로 패턴 형성시킨다. 이에 따라서 종래의 ITO 등의 전극의 패턴을 형성하기 위한 습식 에칭장비를 그대로 적용할 수 있다는 장점이 있다. 또한, 신속한 에칭이 가능하고, 미세한 패턴 폭을 가질 수 있는 장점이 있다. According to the present invention, the CNT coating layer 130 is patterned by wet etching. Accordingly, there is an advantage in that the conventional wet etching equipment for forming a pattern of an electrode such as ITO can be applied as it is. In addition, there is an advantage that can be quickly etched, and have a fine pattern width.
한편, CNT 코팅층 자체가 습식에칭 가능하므로, 탑 바인더층 및 베이스 바인더층 중 적어도 하나가 생략도 가능하다. On the other hand, since the CNT coating layer itself can be wet-etched, at least one of the top binder layer and the base binder layer may be omitted.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to the preferred embodiment of the present invention, those skilled in the art will be variously modified and changed without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명은 탄소나노튜브 필름을 제조하는데 적용 가능하며, 상기 방법으로 제조된 탄소나노튜브 필름은 대전분야, 디스플레이분야, 광학분야 등 여러 분야에 적용될 수 있다.The present invention is applicable to manufacturing a carbon nanotube film, the carbon nanotube film produced by the above method can be applied to various fields such as charging field, display field, optical field.

Claims (11)

  1. 기재 상에, 습식 에칭 가능한 바인더 또는 습식 에칭 가능한 나노 입자를 포함하는 베이스 바인더층을 형성시키는 단계;Forming a base binder layer on the substrate, the base binder layer comprising a wet etchable binder or wet etchable nanoparticles;
    상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer on the base binder layer, the CNT coating layer including carbon nanotubes and wet-etchable nanoparticles;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 바인더 또는 습식 에칭 가능한 나노 입자를 포함하는 탑 바인더층을 형성시키는 단계; 및Forming a top binder layer on the CNT coating layer, the top binder layer including a wet etchable binder or wet etchable nanoparticles; And
    에칭 대상 영역에 있는 상기 탑 바인더층과, 베이스 바인더층과, CNT 코팅층을 습식 에칭을 통하여 제거하는 단계; Removing the top binder layer, the base binder layer, and the CNT coating layer in the etching target region through wet etching;
    를 포함하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 나노 입자는, 세라믹계나노 입자 또는 금속 산화물계 나노 입자인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The nanoparticles are ceramic nanoparticles or metal oxide nanoparticles, characterized in that the carbon nanotube film production method.
  3. 제2항에 있어서, The method of claim 2,
    상기 나노 입자는 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO,및 Sb2O3 중 선택된 적어도 하나인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The nanoparticles, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x system, SiN x system, ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO Selected from Mn 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, and Sb 2 O 3 Carbon nanotube film production method characterized in that at least one.
  4. 제2항 또는 제3항에 있어서, The method according to claim 2 or 3,
    상기 나노 입자의 사이즈는 1㎚ 내지 1㎛인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film production method characterized in that the size of the nanoparticles are 1nm to 1㎛.
  5. 제1항에 있어서,The method of claim 1,
    상기 CNT 코팅층을 형성시키는 단계는, 용매에, 나노 입자 및 탄소나노튜브를 혼합한 CNT 코팅용액을 코팅함으로써 이루어지고, Forming the CNT coating layer is made by coating a CNT coating solution in which nanoparticles and carbon nanotubes are mixed in a solvent,
    상기 나노 입자는 상기 CNT 100 중량부 대비 1 내지 500 중량부의 함량을 가지는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The nanoparticles carbon nanotube film manufacturing method characterized in that it has a content of 1 to 500 parts by weight with respect to 100 parts by weight of the CNT.
  6. 제1항에 있어서, The method of claim 1,
    상기 베이스 바인더층 및 탑 바인더층 중 적어도 하나는, 세라믹계 또는 금속 산화물계 나노 입자를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.At least one of the base binder layer and the top binder layer, the carbon nanotube film manufacturing method characterized in that it comprises a ceramic-based or metal oxide-based nanoparticles.
  7. 제1항에 있어서, The method of claim 1,
    상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계는:The wet etching of the CNT coating layer, the top binder layer, and the base binder layer may be performed by wet etching:
    습식 에칭 수단이 상기 탑 바인더층을 습식 에칭함과 동시에 상기 탑 바인더층과 바인딩된 CNT 코팅층 상부를 습식 에칭하는 단계;Wet etching means wet etching the top binder layer while wet etching the top of the CNT coating layer bound with the top binder layer;
    상기 습식 에칭 수단이 상기 CNT 코팅층에 포함된 나노 입자를 습식 에칭함과 동시에, 상기 습식 에칭된 공간을 통과하여 상기 베이스 바인더층에 도달하는 단계; 및The wet etching means wet etching the nanoparticles included in the CNT coating layer and simultaneously passing through the wet etched space to reach the base binder layer; And
    상기 베이스 바인더층을 습식 에칭함과 동시에 상기 베이스 바인더층과 바인더된 CNT 코팅층 하부를 습식 에칭하는 단계; Wet etching the base binder layer and at the same time wet etching the base binder layer and a lower portion of the CNT coating layer binder;
    를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  8. 기재 상에, 베이스 바인더층과, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층과, 탑 바인더층을 순서대로 적층시킨 후에, After laminating the base binder layer, the CNT coating layer containing the carbon nanotubes and the wet etchable nanoparticles, and the top binder layer in order on the substrate,
    습식 에칭 수단이 상기 탑 바인더층을 습식 에칭함과 동시에 상기 탑 바인더층과 바인딩된 CNT 코팅층 상부를 습식 에칭하고, 상기 CNT 코팅층에 포함된 나노 입자를 습식 에칭하여 생긴 공간을 통과하여 상기 베이스 바인더층을 습식 에칭함과 동시에 상기 베이스 바인더층과 바인더된 CNT 코팅층 하부를 습식 에칭하는 단계를 포함하는 탄소나노튜브 필름 제조 방법.The wet etching means wet-etches the top binder layer and wet-etches the upper portion of the CNT coating layer bound to the top binder layer, and passes through the space formed by wet etching the nanoparticles included in the CNT coating layer. Wet etching the carbon nanotube film manufacturing method comprising the step of wet etching at the same time the base binder layer and the binder below the CNT coating layer.
  9. 기재 상에, 습식 에칭 가능한 바인더 또는 습식 에칭 가능한 나노 입자를 포함하는 베이스 바인더층을 형성시키는 단계;Forming a base binder layer on the substrate, the base binder layer comprising a wet etchable binder or wet etchable nanoparticles;
    상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer on the base binder layer, the CNT coating layer including carbon nanotubes and wet-etchable nanoparticles;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 바인더 또는 습식 에칭 가능한 나노 입자를 포함하는 탑 바인더층을 형성시키는 단계; Forming a top binder layer on the CNT coating layer, the top binder layer including a wet etchable binder or wet etchable nanoparticles;
    에칭 대상 영역에 있는 상기 탑 바인더층과, 베이스 바인더층과, CNT 코팅층의 나노입자를 습식 에칭을 통하여 제거하는 단계; 및Removing the top binder layer, the base binder layer, and the nanoparticles of the CNT coating layer by wet etching in the etching target region; And
    에칭 대상 영역에서의 CNT 코팅층의 잔존하는 탄소나노튜브를 제거하는 단계;를 포함하는 탄소나노튜브 필름 제조 방법.Removing the remaining carbon nanotubes of the CNT coating layer in the etching target region; carbon nanotube film manufacturing method comprising a.
  10. 제9항에 있어서, The method of claim 9,
    상기 잔존하는 탄소나노튜브를 제거하는 단계는, 초순수로 상기 탄소나노튜브를 씻어내는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Removing the remaining carbon nanotubes, carbon nanotube film manufacturing method, characterized in that to wash the carbon nanotubes with ultrapure water.
  11. 제9항에 있어서, The method of claim 9,
    상기 에칭 대상 영역에 있는 상기 탑 바인더층과, 베이스 바인더층과, CNT 코팅층의 나노 입자를 습식 에칭을 통하여 제거하는 단계는:Removing the top binder layer, the base binder layer, and the nanoparticles of the CNT coating layer in the etching target region by wet etching may include:
    상기 습식 에칭 수단이 상기 탑 바인더층을 습식 에칭하는 단계;The wet etching means wet etching the top binder layer;
    상기 탑 바인더층의 습식 에칭을 통하여 노출된 CNT 코팅층의 나노 입자를 습식 에칭하는 단계; 및Wet etching nanoparticles of the CNT coating layer exposed through wet etching of the top binder layer; And
    상기 CNT 코팅층의 나노 입자를 습식에칭함으로써 노출된 베이스 바인더층을 습식 에칭하는 단계;를 포함하는 탄소나노튜브 필름 제조 방법. Wet etching the exposed base binder layer by wet etching the nanoparticles of the CNT coating layer; Carbon nanotube film manufacturing method comprising a.
PCT/KR2013/006192 2012-07-11 2013-07-11 Method for manufacturing carbon nanotube film WO2014010961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0075785 2012-07-11
KR1020120075785A KR101380911B1 (en) 2012-07-11 2012-07-11 Method for manufacturing carbon nano tube film with pattern

Publications (1)

Publication Number Publication Date
WO2014010961A1 true WO2014010961A1 (en) 2014-01-16

Family

ID=49916321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006192 WO2014010961A1 (en) 2012-07-11 2013-07-11 Method for manufacturing carbon nanotube film

Country Status (2)

Country Link
KR (1) KR101380911B1 (en)
WO (1) WO2014010961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019303A (en) * 2007-08-20 2009-02-25 재단법인 대구테크노파크 Manufacture method of conducting polymer coated carbon nanotube and conducting polymer coated carbon nanotube thereby
KR20110047515A (en) * 2009-10-30 2011-05-09 한국전기연구원 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby
US20110111202A1 (en) * 2009-11-12 2011-05-12 National Tsing Hua University Multilayer film structure, and method and apparatus for transferring nano-carbon material
US20110143496A1 (en) * 2009-12-11 2011-06-16 Du Pont Apollo Limited Method of making monolithic photovoltaic module on flexible substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019303A (en) * 2007-08-20 2009-02-25 재단법인 대구테크노파크 Manufacture method of conducting polymer coated carbon nanotube and conducting polymer coated carbon nanotube thereby
KR20110047515A (en) * 2009-10-30 2011-05-09 한국전기연구원 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby
US20110111202A1 (en) * 2009-11-12 2011-05-12 National Tsing Hua University Multilayer film structure, and method and apparatus for transferring nano-carbon material
US20110143496A1 (en) * 2009-12-11 2011-06-16 Du Pont Apollo Limited Method of making monolithic photovoltaic module on flexible substrate

Also Published As

Publication number Publication date
KR20140008219A (en) 2014-01-21
KR101380911B1 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2012177102A2 (en) Method for preparing carbon nanotube film
KR102571892B1 (en) Transparent conductive coatings based on metal nanowires
CN102741945B (en) Conductive film and method for manufacturing same
CN104838342B (en) The method that transparent conductor is made on substrate
WO2009116787A2 (en) Heating element and manufacturing method for same
KR20190035517A (en) Electrode substrate for transparent light emitting device display and method for manufacturing thereof
WO2011025281A1 (en) Transparent structures
WO2010123265A2 (en) Carbon nanotube conductive film and method for manufacturing same
US20150185890A1 (en) Transparent conductor, input device and electronic apparatus
WO2012036453A2 (en) Transparent conductive sheet coated with antireflection layer and method for manufacturing same
WO2014035172A1 (en) Nano-wire-carbon nano-tube hybrid film and manufacturing method thereof
CN104321836A (en) Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel
US20210074895A1 (en) Electrode substrate for transparent light-emitting diode display device, and transparent light-emitting diode display device comprising same
EP3651216A1 (en) Embedded electrode substrate for transparent light-emitting element display, and method for manufacturing same
JP2016508285A (en) Conductive film having low visibility pattern and method for producing the same
CN104508608A (en) Method for manufacturing capacitive input device, capacitive input device, as well as image display device provided with same
CN105593796A (en) Protective coating for printed conductive pattern on patterned nanowire transparent conductors
WO2015163535A1 (en) Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same
WO2014010961A1 (en) Method for manufacturing carbon nanotube film
KR101321097B1 (en) Carbon nano tube transparent electrode, method for manufacturing the same, and coating composition for carbon nano tube transparent electrode
KR100867402B1 (en) Transparent signboard unsing carbon nanotube and fabricating method thereof
TWI441577B (en) Method of thermal dissipation
WO2011129613A2 (en) Method for manufacturing carbon nanotubes
KR20140030281A (en) Nanowire-carbon nano tube hybrid film and method for manufacturing the same
WO2019177319A1 (en) Embedded-type transparent electrode substrate and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816889

Country of ref document: EP

Kind code of ref document: A1