WO2015163535A1 - Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same - Google Patents

Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same Download PDF

Info

Publication number
WO2015163535A1
WO2015163535A1 PCT/KR2014/006136 KR2014006136W WO2015163535A1 WO 2015163535 A1 WO2015163535 A1 WO 2015163535A1 KR 2014006136 W KR2014006136 W KR 2014006136W WO 2015163535 A1 WO2015163535 A1 WO 2015163535A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
nanostructure
photomask
light blocking
Prior art date
Application number
PCT/KR2014/006136
Other languages
French (fr)
Korean (ko)
Inventor
정경호
Original Assignee
인트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인트리 주식회사 filed Critical 인트리 주식회사
Priority to JP2016559285A priority Critical patent/JP6342511B2/en
Publication of WO2015163535A1 publication Critical patent/WO2015163535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof

Definitions

  • the present invention relates to a photomask for manufacturing a transparent conductor and a method of manufacturing the same, and more particularly, to a photomask for manufacturing a transparent conductor having a pattern of nanostructures and a method of manufacturing the same.
  • the transparent conductor refers to a thin conductive film that transmits light in the visible light region and has electrical conductivity at the same time.
  • Light-transmitting conductors are widely used in a variety of electronic devices. For example, light-transmitting conductors are widely used as transparent electrodes in flat panel displays such as liquid crystal displays of flat-panel TVs and desktop PCs, touch panels of tablet PCs and smartphones, and electroluminescent devices.
  • Such light transmissive conductors can be manufactured by various methods.
  • a light-transmitting conductor is manufactured by using a metal oxide such as indium tin oxide in order to have high light transmittance and high conductivity, but the metal oxide has a problem of inferior conductivity as the light transmittance is increased. .
  • a method of dispersing nanostructures such as carbon nanotubes or silver nano-wires in a solution and then applying them to a substrate has been actively studied.
  • this method is limited in lowering the resistance value because the individual nanostructure units forming the transparent electrode are connected in contact with each other, there is a problem that the conductivity is inferior.
  • this method requires a process of dispersing and applying nanostructures every time a transparent conductor is manufactured, and the process is complicated.As the nanostructure pattern is different for each individual transparent conductive conductor, repetitive reproducibility is reduced and reliability is lowered. have.
  • a photomask having a pattern corresponding to the metal mesh pattern is used, and the pattern of the photomask is formed using a laser.
  • a krypton-ion laser or an Nd yag laser is usually used as the laser source.
  • the wavelength of the laser becomes 413 nm or 532 nm. Therefore, when the laser wavelength is used, there is a limit to precise pixel size of the pattern formed on the photomask.
  • the line width is larger than the wavelength because the laser patterns the inclined line by repetition of the vertical line and the horizontal line.
  • An object of the present invention is to provide a photomask and a method for manufacturing the light-transmitting conductor having a nanostructured pattern.
  • the invention according to claim 1 is a photomask, comprising: a light transmissive substrate; And a light shielding layer on the substrate, the light shielding layer comprising a light shielding material for preventing light incident from the outside from passing through the substrate, wherein the light shielding layer corresponds to a nanostructure network formed by arranging the nanostructures to cross each other. It includes a pattern to say.
  • the light shielding layer according to claim 1 has a substantially constant thickness.
  • the light shielding layer according to claim 1 is a single body formed as one unit.
  • the nanostructure according to claim 1 is one selected from the group consisting of nanotubes, nanowires, nanofibers, and mixtures thereof.
  • the pattern according to claim 1 is amorphous.
  • the pattern as set forth in claim 1 comprises: a plurality of body parts having a pattern corresponding to each nanostructure constituting the nanostructure network; A plurality of intersections in which the body portions cross each other; And an intervening portion between the main body portions.
  • the main body parts and the crossing parts according to claim 6 form at least one closed system which is connected to include an intervening part therein.
  • the main body parts and the intersection parts according to claim 6 form at least one open system connected to each other so that the inside and the outside are not distinguished.
  • the edge part of a main body part protrudes in the interposition part of Claim 6. It is characterized by the above-mentioned.
  • the width w of the main body portion according to claim 6 falls within a range of 1 ⁇ 10 2 nm ⁇ w ⁇ 2.5 ⁇ 10 3 nm.
  • intersection portion according to claim 6 has a thickness substantially the same as that of the main body.
  • the main body portion according to claim 6 is formed so that light incident on the substrate from outside does not pass through the substrate, and the interposition portion is formed so that light incident on the substrate from the outside passes through the substrate. do.
  • the main body portion according to claim 6 is formed so that light incident on the substrate passes through the substrate, and the interposition portion is formed so that light incident on the substrate from the outside does not pass through the substrate. It is done.
  • the invention according to claim 16 is a method of manufacturing a photomask, comprising the steps of: (1) applying a light-shielding material on a light transmissive substrate; (2) applying a photosensitive material on the light blocking material; (3) arranging the nanostructures to form a network arranged on the photosensitive material such that the nanostructures cross each other; (4) irradiating light through the nanostructure network to form a shape corresponding to the nanostructure network in the photosensitive material; And (5) forming a light blocking layer by forming a pattern corresponding to the nanostructure network on the light blocking material according to the shape of the photosensitive material.
  • the nanostructure of step (3) according to claim 16 is one selected from the group consisting of nanotubes, nanowires, and mixtures thereof.
  • the invention according to claim 18 is a method of manufacturing a photomask, comprising the steps of: (1) applying a light-shielding material on a light transmissive substrate; (2) arranging the nanostructures to form a network arranged on the light blocking material so that the nanostructures cross each other; And (3) contacting the caustic agent through the nanostructure network to form a pattern corresponding to the nanostructure network on the light shielding material to form a light shielding layer.
  • the nanostructure of step (2) according to claim 18 comprises a nanofiber.
  • the nanostructure of step (2) described in claim 20 includes a nanofiber.
  • the present invention can provide a photomask and a method for manufacturing the light-transmitting conductor having a nanostructured pattern.
  • FIG. 1 is a perspective view schematically showing a photomask as a first embodiment.
  • FIG. 2 is a plan view illustrating a pattern of a light blocking layer in the photomask of FIG. 1.
  • FIG. 3 is a diagram illustrating a part of the pattern of the light blocking layer of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • FIG. 5 is a plan view illustrating a pattern of a light blocking layer in a photomask as Example 2;
  • FIG. 6 is a plan view showing a pattern of a light shielding layer in a photomask as Example 3;
  • FIG. 7 is a perspective view of a fourth mask in which a second light shielding layer is provided in a photomask.
  • Example 8 is a plan view showing a pattern of a light shielding layer in a photomask as Example 5;
  • FIG. 9 is a diagram illustrating a part of a pattern of the light blocking layer of FIG. 8.
  • FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 9.
  • FIG. 11A to 11H illustrate a method of manufacturing a photomask as Example 6.
  • FIG. 11A to 11H illustrate a method of manufacturing a photomask as Example 6.
  • 12A to 12D are diagrams showing a method of manufacturing a photomask as a seventh embodiment.
  • FIG. 13A to 13C illustrate a method of manufacturing a photomask as an eighth embodiment.
  • the photomask 100 includes a substrate 110 and a light blocking layer 120.
  • the photomask 100 refers to the formation of a pattern corresponding to the fine electrode pattern in order to form the fine electrode pattern on the substrate by a photolithography process using an exposure system.
  • the photomask 100 is used to form a fine electrode pattern having a line width corresponding to the line width of the nanostructure.
  • the substrate 110 refers to a light shielding layer 120 coated or laminated thereon.
  • the substrate 110 may be rigid or flexible.
  • the substrate 110 is light transmissive.
  • the substrate 110 is formed of a material such as glass or quartz, but is not limited thereto.
  • the substrate 110 is light transmissive.
  • the substrate 110 may transmit 90% or more of the light irradiated by the exposure system.
  • the light shielding layer 120 is formed on the substrate 110 and refers to a layer that shields light from entering the substrate 110 from the outside so as not to pass through the substrate 110.
  • the light blocking layer 120 may have a substantially constant thickness. As a result, the light passing through the photomask 120 can be precisely controlled to form a precise fine electrode pattern.
  • the light blocking layer 120 preferably has a substantially constant thickness, but is not limited thereto.
  • the light blocking layer 120 may have any thickness.
  • the light shielding layer 120 may also be a unitary body formed as one body, but is not limited thereto.
  • the light shielding layer 120 may not be a unitary body as long as it forms a layer that blocks light.
  • the light blocking layer 120 includes a light blocking material.
  • the light blocking material forming the light blocking layer 120 may include a metal.
  • the light blocking layer 120 may be formed of a metal such as chromium, but is not limited thereto.
  • the light blocking material may be coated on the substrate 110 in various ways.
  • the light blocking material may be coated on the substrate 110 by deposition by sputtering.
  • the light blocking layer 120 may be formed of a chromium deposition film having a thickness of 50nm to 100nm.
  • the light blocking layer 120 includes a pattern corresponding to a network formed by arranging nanostructures to cross each other.
  • the nanostructures may be nanotubes, nanowires, nanofibers, or mixtures thereof. If the nanostructure is included in any material that is included therein.
  • carbon nanotubes, silver nanowires, carbon nanofibers, or the like may be used as the nanostructure.
  • the light blocking layer 120 since the light blocking layer 120 includes a pattern corresponding to the network formed by crossing the nanostructures, the width of the portion corresponding to each nanostructure forming the light blocking layer 120 can be formed to be highly narrow. As a result, it is possible to secure a light blocking property of a very fine nano unit size.
  • the light blocking layer 120 may be formed of a conductive material having high conductivity, and at the same time, may form a fine electrode pattern corresponding to a nanostructure network capable of securing high light transmittance.
  • the pattern corresponding to the network formed by arranging the nanostructures to intersect refers to the pattern formed to correspond to such a network, not the network itself formed by arranging the nanostructures to intersect.
  • This pattern has a plurality of body portions 121, a plurality of intersection portions 122, and interposition portions 123, as illustrated in FIG. 2.
  • the body parts 121 refer to portions corresponding to the nanostructures of the nanostructure network
  • the intersection portions 122 refer to portions where the body portions 121 intersect, and the intervening portion 123 is the body portion 121. Say the part between them.
  • the main body 121 and the intersection portion 122 are elements for preventing the light blocking layer 120 from entering the substrate 110 from the outside to pass through the substrate 110, and the intervening portion 123 may have a light blocking layer (
  • the light incident on the substrate 110 from the outside 120 is an element through which the substrate 110 is transmitted. Therefore, the light irradiated by the exposure system does not transmit the main body portion 121 and the intersection portion 122 of the light shielding layer 120, and the intervening portion 123 of the light shielding layer 120 transmits the light.
  • the photomask 100 having the 120 forms a fine electrode pattern having a pattern corresponding to the body portion 121 and the intersection portion 122 as the positive photomask 100.
  • the body parts 121a, 121b, 121c and 121d and the intersection parts 122a, 122b, 122c and 122d may form a closed system 125 that is connected to include the intervening part 123a therein. .
  • the main body parts 121 are overlapped with each other, thereby improving the reliability of the electrical connection between the micro electrode pattern parts corresponding to the main body part 121, thereby effectively preventing the disconnection of the electric electrode in the manufacturing process or use of the micro electrode pattern. You can do it.
  • the other body parts 121e, 121f, and 121g and the other intersection parts 122e and 122f may form an open system 126 connected to each other so that the inside and the outside are not distinguished from each other.
  • the intervening part 123 may be divided into a closed system intervening part 123a formed by the closed system 125 and an open system intervening part 123b formed by the open system 126.
  • the closed system 125 and the open system 126 may be located separately from each other or may be adjacent to each other.
  • the open system 126 may be located inside the closed system 125, or conversely, the closed system 125 may be located within the open system 126.
  • the body portion 121 formed using the network formed by such nanostructures may have an end portion 124.
  • the end 124 of the main body 121 may protrude to the closed system intervening part 123a or the open system intervening part 123b.
  • the width w 1 of the main body 121 may be variously formed according to what forms a network of nanostructures, as illustrated in FIG. 3.
  • the width w 1 of the body portion may mean an actual width of the body portion 121 or an average thereof.
  • the length w 1 of the body portion 121 may be formed differently according to the case of using a nanotube, nanowire, or nanofiber as a nanostructure constituting the nanostructure network. have.
  • the width w 1 of the main body portion 121 may be variously formed.
  • the body portion 121 width w 1 may be in a range of 1 ⁇ 10 2 nm ⁇ w 1 ⁇ 2.5 ⁇ 10 3 nm.
  • the thickness of the body portion 121 may be 50nm to 100nm.
  • the length d 1 of the main body 121 may be formed in various ways depending on what forms a network of nanostructures.
  • the length d 1 of the main body 121 may mean an actual length of the main body 121 or an average thereof.
  • the length d 1 of the main body portion 121 is the length of the main body portion 121 depending on the use of nanotubes, nanowires, or nanofibers as the nanostructures constituting the nanostructure network.
  • the length d 1 may be formed differently.
  • the length d 1 of the main body portion 121 may be variously formed.
  • the length d 1 of the body portion 121 may be related to the width w 1 of the body portion depending on what forms the network of nanostructures. For example, when the main body portion 121 is formed by forming a nanostructure network using nanowires, when the width of the main body portion 121 is w 1 and the length of the main body portion 121 is d 1 , 1 ⁇ 10 2 ⁇ d It may fall in the range of 1 / w 1 ⁇ 3x10 3 .
  • the nanostructure network is formed of nanofibers to form the body portion 121
  • the width of the body portion 121 is w 1 and the length of the body portion 121 is d 1 , 1 ⁇ 10 2 ⁇ d 1 / w 1 ⁇ 5x10 6 .
  • the relationship between the width and the length of the body portion 121 may be substantially determined by the aspect ratio A (ie, the ratio of the length of the nanostructure divided by the average diameter of the nanostructure) of the nanostructures constituting the nanostructure network.
  • the aspect ratio A of the nanostructure when using nanowires as a nanostructure constituting the nanostructure network, the aspect ratio A of the nanostructure may be 1x10 2 ⁇ A ⁇ 3x10 3 , and when using the nanofiber as the nanostructure, the aspect ratio A of the nanostructure is 1x10 2 ⁇ It may be A.
  • the relationship between the width and the length of the main body 121 is not limited thereto.
  • intersection portion 122 may have a thickness substantially the same as that of the main body portion 121, as exemplarily illustrated in FIGS. 3 and 4.
  • the pattern of the light shielding layer 120 may be formed as a single body, and the pattern of the microelectrode portion corresponding to the intersection portion 122 may be formed to have the same thickness as the pattern of the microelectrode portion corresponding to the body portion 121. In this way, it is possible to prevent an increase in resistance in the pattern of the fine electrode portion corresponding to the intersection portion 122.
  • the size and shape of the region of the intervening portion 123 may be variously formed.
  • the size and shape of the area of the intervening portion 123 may be determined by the distance between the main body portions 121.
  • the size of the region of the intervening portion 123 may be adjusted according to how the nanostructure network is configured, and the nanostructure network may be configured to correspond to the opening ratio of the fine electrode pattern to be formed by the photomask 100. have.
  • the pattern of the light blocking layer 120 may be amorphous. As described above, when the microelectrode pattern is formed using the light blocking layer 120 having the amorphous pattern, an amorphous microelectrode pattern may be formed, and thus a moire phenomenon in which stripes are visible due to repetition of the standardized microelectrode pattern is formed. Can be prevented.
  • the pattern of the light shielding layer is not limited to amorphous and may be any type as long as it includes a pattern corresponding to a network formed by crossing nanostructures.
  • the light blocking layer 220 formed on the substrate 210 of the photomask 200 may have a pattern corresponding to a network formed by crossing nanostructures. Although provided with a pattern including the main body portion 221 and the intersection portion 222, the main body portion 221 is continuously extended from one edge of the light shielding layer 220 to the other edge, so that the main body portion 221 in the pattern End) is not present.
  • the reliability of connection of the light shielding layer 220 by the main body 221 and the crossing portion 222 can be more surely ensured, and the disconnection part such as the end of the main body 221 does not exist. It is possible to ensure the reliability of the connection of the fine electrode pattern corresponding to 220 and to prevent the electrostatic phenomenon at the end.
  • the light shielding layer 220 pattern of this embodiment can be formed very easily by using nanofibers having a very high aspect ratio as a nanostructure.
  • the light blocking layer 320 formed on the substrate 310 of the photomask 300 has a pattern corresponding to a network formed by crossing nanostructures.
  • the main body portion 321, the crossing portion 322, and the end portion 324 of the main body portion 321 are provided, but the main body portion 321 extends continuously from one edge of the light shielding layer 320 to the other edge.
  • the body parts 321a, 321b, and 321c and the intersections 322a and 322b may form an open system 326 that is connected so that the inside and the outside are not distinguished, but intersect with the body parts 321.
  • the portions 322 are characterized in that they do not form a closed system that is connected to include the intervening portion 323 therein.
  • the light shielding layer 320 pattern of the present exemplary embodiment may be easily formed by using nanotubes or nanowires having a smaller aspect ratio than nanofibers as nanostructures.
  • a light shielding layer 430 is further provided.
  • the terminal part blocking layer 430 includes a light blocking material that prevents light incident from the outside into the substrate 410 from passing through the substrate 410 and includes a pattern corresponding to the terminal part pattern.
  • the photomask 400 may simultaneously form the fine electrode pattern formed by the light blocking layer 420 and the terminal part pattern formed by the terminal part light blocking layer 430.
  • the pattern of the terminal light blocking layer 430 includes a plurality of body parts 431 respectively connected to the plurality of light blocking parts 427 of the light blocking layer 420, and a second interposition part 433 therebetween.
  • the plurality of connection parts 432 are connected to the plurality of light blocking parts 427.
  • the light shielding layer formed on the substrate 510 of the photomask 500 may have a pattern corresponding to a network formed by crossing nanostructures. Equipped.
  • This pattern has a plurality of body portions 521, a plurality of intersections 522, and intervening portions 523.
  • the body portions 521 are portions corresponding to the nanostructures of the nanostructure network
  • the intersection portions 522 are portions where the body portions 521 intersect
  • the intervening portion 523 is between the body portions 521. Is part of.
  • the body portion 521 and the intersection portion 522 are formed so that light incident on the substrate 510 from the outside passes through the substrate 510, and the intervening portion 523 is incident on the substrate 510 from the outside.
  • the photomask 500 including the light blocking layer forms a fine electrode pattern having a pattern corresponding to the main body portion 521 and the intersection portion 522 as the negative photomask 500.
  • the body parts 521a, 521b, 521c, and 521d and the crossing parts 522a, 522b, 522c, and 522d may form a closed system 525 connected to include the intervening part 523a therein.
  • the other body parts 521e, 521f, and 521g and the other crossing parts 522e and 522f may form an open system 526 connected to each other so that the inside and the outside are not distinguished from each other.
  • the intervening part 523 may be divided into a closed system intervening part 523a formed by the closed system 525 and an open system intervening part 523b formed by the open system 526.
  • the closed system 525 and the open system 526 may be located separately from each other or may be adjacent to each other.
  • the open system 526 may be located inside the closed system 525, or conversely, the closed system 525 may be located within the open system 526.
  • the width w 2 of the body portion 521 may be variously formed according to what forms a network of nanostructures, as illustrated in FIG. 9.
  • the width w 2 of the body portion may mean an actual width of the body portion 521 or an average thereof.
  • the length w 2 of the body portion 521 may be formed differently depending on the case of using nanotubes, nanowires, or nanofibers as nanostructures constituting the nanostructure network. have.
  • the width w 2 of the body portion 521 may be variously formed.
  • the body portion 521 width w 2 may be in the range of 1 ⁇ 10 2 nm ⁇ w 2 ⁇ 2.5 ⁇ 10 3 nm.
  • the thickness of the body portion 521 may be 50 nm to 100 nm.
  • the length d 2 of the main body 521 may be formed in various ways depending on what forms a network of nanostructures.
  • the length d 2 of the main body 521 may mean an actual length of the main body 521 or an average thereof.
  • the length d 2 of the body portion 521 may be formed differently according to the case of using nanotubes, nanowires, or nanofibers as nanostructures constituting the nanostructure network. have.
  • the length d 2 of the body portion 521 may be variously formed.
  • the length d 2 of the body portion 521 may be related to the width w 2 of the body portion, depending on what forms the network of nanostructures.
  • the nanostructure network is formed by using nanowires to form the body portion 521
  • the width of the body portion 521 is w 2 and the length of the body portion 521 is d 2
  • 1 ⁇ 10 2 ⁇ d 2 / w 2 ⁇ 3x10 3 It can fall.
  • the nanostructure network is formed of nanofibers to form the main body portion 521
  • the width of the main body portion 521 is w 2 and the length of the main body portion 521 is d 2
  • 1 ⁇ 10 2 ⁇ d 2 / w 2 ⁇ 5x10 6 is 1 ⁇ 10 2 ⁇ d 2 / w 2 ⁇ 5x10 6 .
  • the relationship between the width and the length of the body portion 521 may be substantially determined by the aspect ratio A (ie, the ratio of the length of the nanostructure divided by the average diameter of the nanostructure) of the nanostructures constituting the nanostructure network.
  • the aspect ratio A of the nanostructure when using nanowires as a nanostructure constituting the nanostructure network, the aspect ratio A of the nanostructure may be 1x10 2 ⁇ A ⁇ 3x10 3 , and when using the nanofiber as the nanostructure, the aspect ratio A of the nanostructure is 1x10 2 ⁇ It may be A.
  • the relationship between the width and the length of the body portion 521 is not limited thereto.
  • a method of manufacturing a positive photomask using a photosensitive material is shown, as exemplarily shown in Figs. 11A to 11H.
  • the light-shielding material 620 is applied onto the light transmissive substrate 610 (FIG. 11A).
  • the light blocking material 620 may be a metal having good light blocking properties such as chromium. Coating the light blocking material 620 on the substrate 620 may be performed by various methods such as spin coating, plating, and deposition.
  • the photosensitive material 630 is coated on the light blocking material 620 (FIG. 11B).
  • the photosensitive material 630 may include various materials having photosensitivity including a photosensitive polymer. Coating the photosensitive material 630 on the light blocking material 620 may be performed by various methods such as a printing method.
  • the nanostructures are arranged to form a network 640 arranged on the top surface of the nanostructures to intersect (FIG. 11C).
  • the nanostructure nanotubes, nanowires, nanofibers, or mixtures thereof may be used.
  • the nanostructure network 640 is used to form a shape corresponding to the nanostructure network 640 in the photosensitive material 630 (FIG. 11D).
  • the photosensitive material 630 may be exposed to the light source 650 through the nanostructure network 640 to form a shape corresponding to the nanostructure network 640 in the photosensitive material 630.
  • the developer is sprayed into a device such as the nozzle 660 to develop the photosensitive material 630 to form a shape corresponding to the nanostructure network 640 (FIG. 11E).
  • a pattern corresponding to the nanostructure network 640 by spraying the etching solution onto a device such as a nozzle 670 above the photosensitive material 630 developed to have a shape corresponding to the nanostructure network 640. It is etched to have (FIG. 11F).
  • the pattern may be an amorphous pattern corresponding to the nanostructure network 640.
  • the photosensitive material 630 remaining on the top surface of the light blocking material 620 having a pattern corresponding to the nanostructure network 640 is peeled off using a device such as a nozzle 680 (FIG. 11G).
  • a device such as a nozzle 680
  • the photomask 600 having the light blocking layer 650 formed on the substrate 610 is completed (FIG. 11H).
  • the method may further include forming a terminal part light blocking layer (not shown) connected to the light blocking layer 650 on the substrate 610, for example, on the substrate 610 corresponding to the outside of the edge of the light blocking layer 650. can do.
  • the terminal blocking layer is a portion corresponding to the terminal portion pattern connected to the fine electrode pattern when the microelectrode pattern is formed using the photomask 600.
  • a method of manufacturing a positive photomask without using a photosensitive material is shown, as exemplarily shown in Figs. 12A to 12D.
  • a light blocking material 720 is coated on the light transmissive substrate 710 (12a).
  • the light blocking material 720 uses a material that can block light from the exposure system, such as chromium.
  • Application of the light blocking material 720 may be performed by various methods such as spin coating, printing, and deposition.
  • the nanostructures are arranged to form a network 730 arranged so that the nanostructures intersect on the light blocking material 720 (FIG. 12B).
  • the nanostructure any one of nanotubes, nanowires, nanofibers, or a mixture thereof is used. In consideration of not using a photosensitive material, it is preferable to use nanofibers as nanostructures.
  • the nanofibers When using nanofibers as nanostructures, the nanofibers may be subjected to a reflow process so that the nanofibers are stably arranged on the light blocking material 720. Thereafter, the caustic is contacted through the nanostructure network 730 to form a pattern corresponding to the nanostructure network 730 in the light blocking material 720 (FIG. 12C). The caustic is sprayed onto the substrate 710 over the nanostructure network 730 with the injector 770. After the pattern corresponding to the nanostructure network 730 is formed on the light blocking material 720, the light blocking layer 740 is formed by peeling the nanostructure network 730 to complete the positive photomask 700 (FIG. 12d).
  • a method of manufacturing a negative photomask without using a photosensitive material is shown, as exemplarily shown in Figs. 13A to 13C.
  • the nanostructures are arranged on the light transmissive substrate 810 so as to form a network 820 in which the nanostructures intersect each other (FIG. 13A).
  • the nanostructure any one of nanotubes, nanowires, nanofibers, or a mixture thereof is used. In consideration of not using a photosensitive material, it is preferable to use nanofibers as nanostructures.
  • the nanofibers may be subjected to a reflow process so that the nanofibers are stably arranged on the substrate 810.
  • a light blocking material 830 is coated on the substrate 810 to cover the nanostructure network 820 (FIG. 13B).
  • the light blocking material 830 uses a material that can block light from the exposure system, such as chromium. Application of the light blocking material 830 may be performed by various methods such as spin coating, printing, and deposition. Thereafter, the nanostructure network 820 is separated from the substrate 810 to form a pattern having an opening corresponding to the nanostructure network 820 to form the light blocking layer 840 (FIG. 13C). As a result, the negative photomask 800 is completed.
  • the present invention can be used in a field to which a photomask for manufacturing a light-transmissive conductor and a method of manufacturing the same are applied.

Abstract

The present invention provides a photomask and a method for manufacturing the same, the photomask comprising: a light-transmitting substrate; and a light-shielding layer on the substrate, wherein the light-shielding layer comprises a light-shielding material for preventing light, which is incident upon the substrate from the outside, from passing through the substrate, and the light-shielding layer comprises a pattern corresponding to a nanostructure network formed by arranging nanostructures so as to intersect with each other.

Description

나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법Photomask for manufacturing a light-transmitting conductor having a pattern of nanostructures and a method of manufacturing the same
본 발명은 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법에 관한 것으로서, 특히, 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask for manufacturing a transparent conductor and a method of manufacturing the same, and more particularly, to a photomask for manufacturing a transparent conductor having a pattern of nanostructures and a method of manufacturing the same.
광투과성 도전체는 가시광 영역의 빛을 투과시키면서 동시에 전기 전도성을 갖는 얇은 도전막을 말한다. 광투과성 도전체는 다양한 전자기기에 폭넓게 널리 사용되고 있다. 예컨대, 평판 TV나 데스탑 PC의 액정 디스플레이와 같은 평판 표시 패널, 태블릿 PC나 스마트폰의 터치 패널, 전자 발광 장치 등에서 광투과성 도전체가 투명 전극으로 널리 사용되고 있다.The transparent conductor refers to a thin conductive film that transmits light in the visible light region and has electrical conductivity at the same time. Light-transmitting conductors are widely used in a variety of electronic devices. For example, light-transmitting conductors are widely used as transparent electrodes in flat panel displays such as liquid crystal displays of flat-panel TVs and desktop PCs, touch panels of tablet PCs and smartphones, and electroluminescent devices.
이러한 광투과성 도전체는 다양한 방법에 의해 제조될 수 있다. 기존에는 광투과성이 높으면서도 도전성을 갖도록 하기 위하여 인듐 주석 산화물(indium tin oxide)과 같은 금속 산화물을 이용하여 광투과성 도전체를 제조하였으나, 이러한 금속 산화물은 광투과성을 높일수록 도전성이 떨어지는 문제점이 있었다.Such light transmissive conductors can be manufactured by various methods. Conventionally, a light-transmitting conductor is manufactured by using a metal oxide such as indium tin oxide in order to have high light transmittance and high conductivity, but the metal oxide has a problem of inferior conductivity as the light transmittance is increased. .
다른 방법으로는, 카본 나노튜브(carbon nano-tube)나 실버 나노와이어(silver nano-wire)와 같은 나노구조체를 용액에 분산시킨 후 이를 기판에 도포하는 방법이 활발하게 연구되고 있다. 그러나 이러한 방법은 투명 전극을 형성하는 개별 나노구조체 단위들이 서로 접촉된 상태로 연결되어 있어서 저항값을 낮추는 데에 한계가 있고 도전성이 떨어지는 문제점이 있다. 또한 이러한 방법은 광투과성 도전체를 제조할 때마다 나노구조체의 분산 및 도포 과정을 거쳐야 하므로 공정이 복잡하고, 개별 광투과성 도전체마다 나노구조체 패턴이 다르게 됨으로써 반복 재현성이 떨어져 신뢰성이 저하되는 문제점이 있다.As another method, a method of dispersing nanostructures such as carbon nanotubes or silver nano-wires in a solution and then applying them to a substrate has been actively studied. However, this method is limited in lowering the resistance value because the individual nanostructure units forming the transparent electrode are connected in contact with each other, there is a problem that the conductivity is inferior. In addition, this method requires a process of dispersing and applying nanostructures every time a transparent conductor is manufactured, and the process is complicated.As the nanostructure pattern is different for each individual transparent conductive conductor, repetitive reproducibility is reduced and reliability is lowered. have.
최근에는 포토 리소그래피(photo lithography)에 의해 금속에 메쉬 패턴을 형성함으로써 광투과성 도전체를 제조하는 것에 관심이 집중되고 있다. 이러한 포토 리소그래피에서는 금속 메쉬 패턴에 상응하는 패턴을 갖는 포토마스크를 이용하게 되며, 이러한 포토마스크의 패턴은 레이저를 사용하여 형성하게 된다. 이때 레이저 소스로 통상 크립톤-이온 레이저(krypton-ion laser)나 엔디 야그 레이저(Nd yag laser)를 사용하게 되는데, 이 경우 레이저의 파장은 413nm나 532nm가 된다. 따라서 이러한 레이저 파장을 이용할 경우 포토마스크에 형성되는 패턴의 화소 크기를 정밀하게 하는데에 한계가 있다. 또한, 경사진 선을 패턴화하는 경우에는 레이저가 수직선 및 수평선의 반복에 의해 경사진 선을 패턴화하기 때문에 그 선폭이 파장보다 더 크게 되는 문제점이 있다. 결과적으로 종래의 포토마스크에 의해서는 금속 메쉬 패턴을 고도로 미세하게 형성하기 어렵게 되므로 시거리에 따른 시인성 문제를 갖게 된다. 나아가 종래의 포토마스크에 의해 규칙적인 패턴을 갖는 금속 메쉬 전극을 형성할 경우에는 패턴구조로 인한 모아레 현상이 나타나는 문제점이 있다.Recently, attention has been focused on the production of a transparent conductor by forming a mesh pattern on metal by photo lithography. In such photolithography, a photomask having a pattern corresponding to the metal mesh pattern is used, and the pattern of the photomask is formed using a laser. In this case, a krypton-ion laser or an Nd yag laser is usually used as the laser source. In this case, the wavelength of the laser becomes 413 nm or 532 nm. Therefore, when the laser wavelength is used, there is a limit to precise pixel size of the pattern formed on the photomask. In addition, when the inclined line is patterned, the line width is larger than the wavelength because the laser patterns the inclined line by repetition of the vertical line and the horizontal line. As a result, it is difficult to form the metal mesh pattern highly finely by the conventional photomask, thereby having a visibility problem according to the viewing distance. Further, when forming a metal mesh electrode having a regular pattern by a conventional photomask, there is a problem that the moiré phenomenon due to the pattern structure appears.
따라서 광투과성 및 도전성이 모두 뛰어나고 시인성을 향상시키며 모아레 현상을 방지할 수 있는 광투과성 도전체를 제조할 수 있음은 물론 이러한 광투과성 도전체를 반복해서 대량 생산할 수 있는 신뢰성 있는 제조방법을 개발할 필요성이 대두되고 있다.Therefore, it is necessary to manufacture a light-transmissive conductor which is excellent in both light transmittance and conductivity, improves visibility, and prevents moiré phenomenon, and also needs to develop a reliable manufacturing method capable of repeatedly mass-producing such a light-transmissive conductor. It is emerging.
본 발명은 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a photomask and a method for manufacturing the light-transmitting conductor having a nanostructured pattern.
청구항 1에 기재된 발명은, 포토마스크로서, 광투과성 기판; 및 기판 상의 차광층을 구비하고, 차광층은 외부로부터 기판으로 입사하는 광이 기판을 투과하지 못하도록 하는 차광성 물질을 포함하며, 차광층은 나노구조체가 교차하도록 배열되어 형성하는 나노구조체 네트워크에 상응하는 패턴을 포함한다.The invention according to claim 1 is a photomask, comprising: a light transmissive substrate; And a light shielding layer on the substrate, the light shielding layer comprising a light shielding material for preventing light incident from the outside from passing through the substrate, wherein the light shielding layer corresponds to a nanostructure network formed by arranging the nanostructures to cross each other. It includes a pattern to say.
청구항 2에 기재된 발명에 있어서는, 청구항 1에 기재된 차광층이 실질적으로 일정한 두께를 갖는 것을 특징으로 한다.In the invention according to claim 2, the light shielding layer according to claim 1 has a substantially constant thickness.
청구항 3에 기재된 발명에 있어서는, 청구항 1에 기재된 차광층이 하나의 일체로 형성된 단일체인 것을 특징으로 한다.In the invention according to claim 3, the light shielding layer according to claim 1 is a single body formed as one unit.
청구항 4에 기재된 발명에 있어서는, 청구항 1에 기재된 나노구조체가 나노튜브, 나노와이어, 나노화이버(nano-fiber) 및 그 혼합체로 이루어진 군 중에서 선택된 하나인 것을 특징으로 한다.In the invention according to claim 4, the nanostructure according to claim 1 is one selected from the group consisting of nanotubes, nanowires, nanofibers, and mixtures thereof.
청구항 5에 기재된 발명에 있어서는, 청구항 1에 기재된 패턴이 무정형(amorphous)인 것을 특징으로 한다.In the invention described in claim 5, the pattern according to claim 1 is amorphous.
청구항 6에 기재된 발명에 있어서는, 청구항 1에 기재된 패턴이, 나노구조체 네트워크를 구성하는 각각의 나노구조체에 상응하는 패턴을 구비하는 복수의 본체부들; 본체부들이 서로 교차하는 복수의 교차부들; 및 본체부들 사이의 개재부를 포함하는 것을 특징으로 한다.In the invention as set forth in claim 6, the pattern as set forth in claim 1 comprises: a plurality of body parts having a pattern corresponding to each nanostructure constituting the nanostructure network; A plurality of intersections in which the body portions cross each other; And an intervening portion between the main body portions.
청구항 7에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부들과 교차부들이 내부에 개재부를 포함하도록 연결되어 있는 적어도 하나의 폐쇄계를 형성하는 것을 특징으로 한다.In the invention according to claim 7, the main body parts and the crossing parts according to claim 6 form at least one closed system which is connected to include an intervening part therein.
청구항 8에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부들과 교차부들이 내부와 외부가 구별되지 않도록 연결되어 있는 적어도 하나의 개방계를 형성하는 것을 특징으로 한다.In the invention according to claim 8, the main body parts and the intersection parts according to claim 6 form at least one open system connected to each other so that the inside and the outside are not distinguished.
청구항 9에 기재된 발명에 있어서는, 청구항 6에 기재된 개재부에 본체부의 단부가 돌출되어 있는 것을 특징으로 한다.In invention of Claim 9, the edge part of a main body part protrudes in the interposition part of Claim 6. It is characterized by the above-mentioned.
청구항 10에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부의 폭 w가 1x102nm ≤ w ≤ 2.5x103nm의 범위에 속하는 것을 특징으로 한다.In the invention described in claim 10, the width w of the main body portion according to claim 6 falls within a range of 1 × 10 2 nm ≦ w ≦ 2.5 × 10 3 nm.
청구항 11에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부의 폭이 w이고, 본체부의 길이가 d일 때에, 1x102 ≤ d/w ≤ 3x103의 범위에 속하는 것을 특징으로 한다.In the invention described in claim 11, wherein the body portion width w as set forth in claim 6, when the length of the body portion d, is characterized in that in the range of from 1x10 2 ≤ d / w ≤ 3x10 3.
청구항 12에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부의 폭이 w이고, 본체부의 길이가 d일 때에, 1x102 ≤ d/w ≤ 5x106의 범위에 속하는 것을 특징으로 한다.In invention of Claim 12, when the width | variety of the main-body part of Claim 6 is w, and the length of a main-body part is d, it exists in the range of 1x10 <2><d / w <= 5x10 <6> .
청구항 13에 기재된 발명에 있어서는, 청구항 6에 기재된 교차부가 본체부와 실질적으로 동일한 두께를 갖는 것을 특징으로 한다.In the invention described in claim 13, the intersection portion according to claim 6 has a thickness substantially the same as that of the main body.
청구항 14에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부가 외부로부터 기판으로 입사하는 광이 기판을 투과하지 못하도록 형성되고, 개재부는 외부로부터 기판으로 입사하는 광이 기판을 투과하도록 형성되어 있는 것을 특징으로 한다.In the invention according to claim 14, the main body portion according to claim 6 is formed so that light incident on the substrate from outside does not pass through the substrate, and the interposition portion is formed so that light incident on the substrate from the outside passes through the substrate. do.
청구항 15에 기재된 발명에 있어서는, 청구항 6에 기재된 본체부가 외부로부터 기판으로 입사하는 광이 기판을 투과하도록 형성되어 있고, 개재부는 외부로부터 기판으로 입사하는 광이 기판을 투과하지 못하도록 형성되어 있는 것을 특징으로 한다.In the invention described in claim 15, the main body portion according to claim 6 is formed so that light incident on the substrate passes through the substrate, and the interposition portion is formed so that light incident on the substrate from the outside does not pass through the substrate. It is done.
청구항 16에 기재된 발명은, 포토마스크의 제조방법으로서, (1) 광투과성 기판 상에 차광성 물질을 도포하는 단계; (2) 상기 차광성 물질 상에 감광성 물질을 도포하는 단계; (3) 상기 감광성 물질 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 상기 나노구조체를 배열하는 단계; (4) 상기 나노구조체 네트워크를 통해 광을 조사하여 상기 감광성 물질에 상기 나노구조체 네트워크에 상응하는 형상을 형성하는 단계; 및 (5) 상기 감광성 물질의 형상에 따라 상기 차광성 물질에 상기 나노구조체 네트워크에 상응하는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 것을 특징으로 한다.The invention according to claim 16 is a method of manufacturing a photomask, comprising the steps of: (1) applying a light-shielding material on a light transmissive substrate; (2) applying a photosensitive material on the light blocking material; (3) arranging the nanostructures to form a network arranged on the photosensitive material such that the nanostructures cross each other; (4) irradiating light through the nanostructure network to form a shape corresponding to the nanostructure network in the photosensitive material; And (5) forming a light blocking layer by forming a pattern corresponding to the nanostructure network on the light blocking material according to the shape of the photosensitive material.
청구항 17에 기재된 발명에 있어서는, 청구항 16에 기재된 (3) 단계의 나노구조체가 나노튜브, 나노와이어 및 그 혼합체로 이루어진 군 중에서 선택된 하나인 것을 특징으로 한다.In the invention described in claim 17, the nanostructure of step (3) according to claim 16 is one selected from the group consisting of nanotubes, nanowires, and mixtures thereof.
청구항 18에 기재된 발명은, 포토마스크의 제조방법으로서, (1) 광투과성 기판 상에 차광성 물질을 도포하는 단계; (2) 차광성 물질 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 나노구조체를 배열하는 단계; 및 (3) 나노구조체 네트워크를 통해 부식제를 접촉시켜 차광성 물질에 나노구조체 네트워크에 상응하는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 것을 특징으로 한다.The invention according to claim 18 is a method of manufacturing a photomask, comprising the steps of: (1) applying a light-shielding material on a light transmissive substrate; (2) arranging the nanostructures to form a network arranged on the light blocking material so that the nanostructures cross each other; And (3) contacting the caustic agent through the nanostructure network to form a pattern corresponding to the nanostructure network on the light shielding material to form a light shielding layer.
청구항 19에 기재된 발명에 있어서는, 청구항 18에 기재된 (2) 단계의 나노구조체가 나노화이버를 포함하는 것을 특징으로 한다.In the invention described in claim 19, the nanostructure of step (2) according to claim 18 comprises a nanofiber.
청구항 20에 기재된 발명은, 포토마스크의 제조방법으로서, (1) 광투과성 기판 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 나노구조체를 배열하는 단계; (2) 나노구조체 네트워크를 덮도록 기판 상에 차광성 물질을 코팅하는 단계; 및 (3) 나노구조체 네트워크를 기판으로부터 분리함으로써 나노구조체 네트워크에 상응하는 개구부를 갖는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 것을 특징으로 한다.The invention as set forth in claim 20, further comprising the steps of: (1) arranging nanostructures to form a network in which nanostructures intersect on a light transmissive substrate; (2) coating a light blocking material on the substrate to cover the nanostructure network; And (3) separating the nanostructure network from the substrate to form a pattern having openings corresponding to the nanostructure network to form a light shielding layer.
청구항 21에 기재된 발명에 있어서는, 청구항 20에 기재된 (2) 단계의 나노구조체가 나노화이버를 포함하는 것을 특징으로 한다.In the invention described in claim 21, the nanostructure of step (2) described in claim 20 includes a nanofiber.
본 발명은 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법을 제공할 수 있다.The present invention can provide a photomask and a method for manufacturing the light-transmitting conductor having a nanostructured pattern.
도 1은 실시례 1로서 포토마스크를 개략적으로 나타내는 사시도이다.1 is a perspective view schematically showing a photomask as a first embodiment.
도 2는 도 1의 포토마스크에서 차광층의 패턴을 나타내는 평면도이다.FIG. 2 is a plan view illustrating a pattern of a light blocking layer in the photomask of FIG. 1.
도 3은 도 2의 차광층의 패턴의 일부를 나타내는 도면이다.3 is a diagram illustrating a part of the pattern of the light blocking layer of FIG. 2.
도 4는 도 3의 IV-IV선을 따른 단면도이다.4 is a cross-sectional view taken along line IV-IV of FIG. 3.
도 5는 실시례 2로서 포토마스크에서 차광층의 패턴을 나타내는 평면도이다.5 is a plan view illustrating a pattern of a light blocking layer in a photomask as Example 2;
도 6은 실시례 3으로서 포토마스크에서 차광층의 패턴을 나타내는 평면도이다.6 is a plan view showing a pattern of a light shielding layer in a photomask as Example 3;
도 7은 실시례 4로서 포토마스크에 제2 차광층이 구비된 모습을 나타내는 사시도이다.FIG. 7 is a perspective view of a fourth mask in which a second light shielding layer is provided in a photomask.
도 8은 실시례 5로서 포토마스크에서 차광층의 패턴을 나타내는 평면도이다.8 is a plan view showing a pattern of a light shielding layer in a photomask as Example 5;
도 9는 도 8의 차광층의 패턴의 일부를 나타내는 도면이다.FIG. 9 is a diagram illustrating a part of a pattern of the light blocking layer of FIG. 8.
도 10은 도 9의 X-X선을 따른 단면도이다.10 is a cross-sectional view taken along the line X-X of FIG. 9.
도 11a 내지 도 11h는 실시례 6으로서 포토마스크의 제조방법을 나타내는 도면이다.11A to 11H illustrate a method of manufacturing a photomask as Example 6. FIG.
도 12a 내지 도 12d는 실시례 7로서 포토마스크의 제조방법을 나타내는 도면이다.12A to 12D are diagrams showing a method of manufacturing a photomask as a seventh embodiment.
도 13a 내지 도 13c는 실시례 8로서 포토마스크의 제조방법을 나타내는 도면이다.13A to 13C illustrate a method of manufacturing a photomask as an eighth embodiment.
발명을 실시하기 위한 구체적인 내용을 실시례에 기초하여 설명한다. 이러한 실시례는 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 실시하기 위해 구체적인 내용을 이해할 수 있도록 예시적으로 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으므로, 본 발명이 이하의 실시례에 의해 한정되는 것은 아니다.EMBODIMENT OF THE INVENTION The concrete content for implementing this invention is demonstrated based on an Example. Such embodiments are provided by way of example so that those skilled in the art can understand the specific contents to practice the invention as it can be modified in various other forms, the present invention is the following embodiments It is not limited by.
(실시례 1)(Example 1)
본 실시례에서는, 예시적으로 도 1에 나타나 있는 바와 같이, 포토마스크(100)가 기판(110) 및 차광층(120)을 포함한다.In this embodiment, as illustrated in FIG. 1, the photomask 100 includes a substrate 110 and a light blocking layer 120.
포토마스크(100)는 노광시스템(exposure system)을 이용한 포토리소그래피(photo lithography) 공정에 의해 기판에 미세 전극 패턴을 형성하기 위하여 미세 전극 패턴에 상응하는 패턴을 형성한 것을 말한다. 여기서 포토마스크(100)는 나노구조체의 선폭에 대응되는 선폭을 갖는 미세 전극 패턴을 형성하기 위해 사용되는 것이다.The photomask 100 refers to the formation of a pattern corresponding to the fine electrode pattern in order to form the fine electrode pattern on the substrate by a photolithography process using an exposure system. The photomask 100 is used to form a fine electrode pattern having a line width corresponding to the line width of the nanostructure.
기판(110)은 그 상부에 차광층(120)이 코팅되거나 적층되는 것을 말한다. 기판(110)은 강성(rigid) 또는 연성(flexible)일 수 있다. 기판(110)은 광투과성을 갖는다. 예컨대, 기판(110)은 유리(glass)나 석영과 같은 물질로 형성되지만, 이에 한정되지는 않는다. 기판(110)은 광투과성을 갖는다. 예컨대, 기판(110)은 노광시스템에 의해 조사되는 광을 90%이상 투과시킬 수 있는 것일 수 있다.The substrate 110 refers to a light shielding layer 120 coated or laminated thereon. The substrate 110 may be rigid or flexible. The substrate 110 is light transmissive. For example, the substrate 110 is formed of a material such as glass or quartz, but is not limited thereto. The substrate 110 is light transmissive. For example, the substrate 110 may transmit 90% or more of the light irradiated by the exposure system.
차광층(120)은 기판(110) 상에 형성되는 것으로서 외부로부터 기판(110)으로 입사하는 광이 기판(110)을 투과하지 못하도록 차광하는 층을 말한다. 차광층(120)은 실질적으로 일정한 두께를 가질 수 있다. 이에 의해 포토마스크(120)를 통과하는 광을 정밀하게 제어할 수 있어서 정밀한 미세 전극 패턴을 형성할 수 있게 된다. 차광층(120)은 실질적으로 일정한 두께를 갖는 것이 바람직하지만 이에 한정되지는 않고 층을 형성하는 것이면 어떠한 두께라도 가질 수 있다. 차광층(120)은 또한 하나의 일체로 형성된 단일체일 수 있으나 이에 한정되지는 않고 광을 차단하는 층을 형성하는 것이면 단일체가 아닐 수 있다.The light shielding layer 120 is formed on the substrate 110 and refers to a layer that shields light from entering the substrate 110 from the outside so as not to pass through the substrate 110. The light blocking layer 120 may have a substantially constant thickness. As a result, the light passing through the photomask 120 can be precisely controlled to form a precise fine electrode pattern. The light blocking layer 120 preferably has a substantially constant thickness, but is not limited thereto. The light blocking layer 120 may have any thickness. The light shielding layer 120 may also be a unitary body formed as one body, but is not limited thereto. The light shielding layer 120 may not be a unitary body as long as it forms a layer that blocks light.
차광층(120)은 차광성 물질을 포함한다. 차광층(120)을 형성하는 차광성 물질은 금속을 포함할 수 있다. 예컨대, 차광층(120)은 크롬과 같은 금속으로 형성될 수 있지만, 이에 한정되지는 않는다. 차광성 물질은 기판(110) 상에 다양한 방법으로 코팅될 수 있다. 예컨대, 차광성 물질은 스퍼터링에 의한 증착에 의해 기판(110) 상에 코팅될 수 있다. 예컨대, 차광층(120)은 50nm 내지 100nm의 두께를 갖는 크롬 증착막으로 형성될 수 있다.The light blocking layer 120 includes a light blocking material. The light blocking material forming the light blocking layer 120 may include a metal. For example, the light blocking layer 120 may be formed of a metal such as chromium, but is not limited thereto. The light blocking material may be coated on the substrate 110 in various ways. For example, the light blocking material may be coated on the substrate 110 by deposition by sputtering. For example, the light blocking layer 120 may be formed of a chromium deposition film having a thickness of 50nm to 100nm.
차광층(120)은 나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴을 포함한다. 여기서 나노구조체는 나노튜브, 나노와이어, 나노화이버(nano-fiber) 또는 그 혼합체일 수 있다. 나노구조체에 해당되면 어떠한 물질로 되어 있는 것이든 이에 포함된다. 예컨대, 카본나노튜브, 실버나노와이어, 카본나노화이버 등을 나노구조체로 사용할 수 있다. 이와 같이 차광층(120)이 나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴을 포함하므로, 차광층(120)을 형성하는 각각의 나노구조체에 상응하는 부분의 폭을 고도로 좁게 형성할 수 있게 되어서 고도로 미세한 나노단위 크기의 차광성을 확보할 수 있게 된다. 따라서 차광층(120)은 높은 도전성을 갖는 도전성 물질로 형성되면서 동시에 고도의 광투과성을 확보할 수 있는 나노구조체 네트워크에 상응하는 미세 전극 패턴을 형성할 수 있게 된다.The light blocking layer 120 includes a pattern corresponding to a network formed by arranging nanostructures to cross each other. Here, the nanostructures may be nanotubes, nanowires, nanofibers, or mixtures thereof. If the nanostructure is included in any material that is included therein. For example, carbon nanotubes, silver nanowires, carbon nanofibers, or the like may be used as the nanostructure. As such, since the light blocking layer 120 includes a pattern corresponding to the network formed by crossing the nanostructures, the width of the portion corresponding to each nanostructure forming the light blocking layer 120 can be formed to be highly narrow. As a result, it is possible to secure a light blocking property of a very fine nano unit size. Accordingly, the light blocking layer 120 may be formed of a conductive material having high conductivity, and at the same time, may form a fine electrode pattern corresponding to a nanostructure network capable of securing high light transmittance.
나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴은 나노구조체가 교차하도록 배열되어 형성된 네트워크 자체가 아니라 그러한 네크워크에 상응하도록 형성되는 패턴을 말한다. 이러한 패턴은, 예시적으로 도 2에 나타나 있는 바와 같이, 복수의 본체부(121)들, 복수의 교차부(122)들 및 개재부(123)들을 구비한다. 본체부(121)들은 나노구조체 네트워크의 나노구조체에 상응하는 부분을 말하며, 교차부(122)들은 본체부(121)들이 교차하여 형성되는 부분을 말하고, 개재부(123)는 본체부(121)들 사이의 부분을 말한다. 본체부(121)와 교차부(122)는 차광층(120)이 외부로부터 기판(110)으로 입사하는 광이 기판(110)을 투과하지 못하도록 하는 요소들이며, 개재부(123)는 차광층(120)이 외부로부터 기판(110)으로 입사하는 광이 기판(110)을 투과하도록 하는 요소이다. 따라서 노광시스템에 의해 조사되는 광은 차광층(120)의 본체부(121)와 교차부(122)는 투과하지 못하고 차광층(120)의 개재부(123)는 투과하게 되므로, 이러한 차광층(120)을 구비한 포토마스크(100)는 포지티브(positive) 포토마스크(100)로서 본체부(121)와 교차부(122)에 상응되는 패턴을 갖는 미세 전극 패턴을 형성하게 된다.The pattern corresponding to the network formed by arranging the nanostructures to intersect refers to the pattern formed to correspond to such a network, not the network itself formed by arranging the nanostructures to intersect. This pattern has a plurality of body portions 121, a plurality of intersection portions 122, and interposition portions 123, as illustrated in FIG. 2. The body parts 121 refer to portions corresponding to the nanostructures of the nanostructure network, and the intersection portions 122 refer to portions where the body portions 121 intersect, and the intervening portion 123 is the body portion 121. Say the part between them. The main body 121 and the intersection portion 122 are elements for preventing the light blocking layer 120 from entering the substrate 110 from the outside to pass through the substrate 110, and the intervening portion 123 may have a light blocking layer ( The light incident on the substrate 110 from the outside 120 is an element through which the substrate 110 is transmitted. Therefore, the light irradiated by the exposure system does not transmit the main body portion 121 and the intersection portion 122 of the light shielding layer 120, and the intervening portion 123 of the light shielding layer 120 transmits the light. The photomask 100 having the 120 forms a fine electrode pattern having a pattern corresponding to the body portion 121 and the intersection portion 122 as the positive photomask 100.
본체부들(121a, 121b, 121c, 121d)과 교차부들(122a, 122b, 122c, 122d)은 내부에 개재부(123a)를 포함하도록 연결되어 있는 폐쇄계(closed system)(125)를 형성할 수 있다. 이에 의해 본체부(121)들이 서로 중복적으로 연결됨으로써 본체부(121)에 상응하는 미세 전극 패턴 부분들간의 전기적 연결의 신뢰성을 향상시켜 미세 전극 패턴의 제조공정상 또는 사용상 전기적 연결의 끊김을 효과적으로 방지할 수 있게 된다. 또한 다른 본체부들(121e, 121f, 121g)과 다른 교차부들(122e, 122f)은 내부와 외부가 구별되지 않도록 연결되어 있는 개방계(open system)(126)를 형성할 수 있다. 개재부(123)는 폐쇄계(125)에 의해 형성되는 폐쇄계 개재부(123a)와 개방계(126)에 의해 형성되는 개방계 개재부(123b)로 구분될 수 있다. 폐쇄계(125)와 개방계(126)는 서로 분리되어 독립적으로 위치할 수도 있고 인접하여 위치할 수도 있다. 또한 폐쇄계(125) 내부에 개방계(126)가 위치하거나 반대로 개방계(126) 내에 폐쇄계(125)가 위치할 수도 있다. 나노구조체가 나노튜브나 나노와이어와 같이 종횡비가 유한한 것인 경우 이러한 나노구조체에 의한 네크워크를 이용하여 형성된 본체부(121)는 단부(124)를 가질 수 있다. 이러한 본체부(121)의 단부(124)는 폐쇄계 개재부(123a)나 개방계 개재부(123b)로 돌출될 수 있다.The body parts 121a, 121b, 121c and 121d and the intersection parts 122a, 122b, 122c and 122d may form a closed system 125 that is connected to include the intervening part 123a therein. . As a result, the main body parts 121 are overlapped with each other, thereby improving the reliability of the electrical connection between the micro electrode pattern parts corresponding to the main body part 121, thereby effectively preventing the disconnection of the electric electrode in the manufacturing process or use of the micro electrode pattern. You can do it. In addition, the other body parts 121e, 121f, and 121g and the other intersection parts 122e and 122f may form an open system 126 connected to each other so that the inside and the outside are not distinguished from each other. The intervening part 123 may be divided into a closed system intervening part 123a formed by the closed system 125 and an open system intervening part 123b formed by the open system 126. The closed system 125 and the open system 126 may be located separately from each other or may be adjacent to each other. In addition, the open system 126 may be located inside the closed system 125, or conversely, the closed system 125 may be located within the open system 126. When the nanostructures are finite in aspect ratio, such as nanotubes or nanowires, the body portion 121 formed using the network formed by such nanostructures may have an end portion 124. The end 124 of the main body 121 may protrude to the closed system intervening part 123a or the open system intervening part 123b.
본체부(121)의 폭 w1은, 예시적으로 도 3에 나타나 있는 바와 같이, 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 다양하게 형성될 수 있다. 여기서, 본체부의 폭 w1은 본체부(121)의 실제 폭 또는 그 평균을 의미할 수 있다. 이러한 본체부(121)의 길이 w1은, 나노구조체 네크워크를 구성하는 나노구조체로 나노튜브를 사용하는 경우, 나노와이어를 사용하는 경우, 또는 나노화이버를 사용하는 경우에 따라, 각각 다르게 형성될 수 있다. 나아가, 나노구조체 네트워크를 단일 종류의 나노구조체로 형성하는 경우에도 본체부(121)의 폭 w1을 다양하게 형성할 수 있다. 예컨대, 본체부(121) 폭 w1은 1x102nm < w1 ≤ 2.5x103nm의 범위에 속할 수 있다. 또한, 예컨대, 본체부(121)의 두께는 50nm 내지 100nm일 수 있다. The width w 1 of the main body 121 may be variously formed according to what forms a network of nanostructures, as illustrated in FIG. 3. Here, the width w 1 of the body portion may mean an actual width of the body portion 121 or an average thereof. The length w 1 of the body portion 121 may be formed differently according to the case of using a nanotube, nanowire, or nanofiber as a nanostructure constituting the nanostructure network. have. Furthermore, even when the nanostructure network is formed of a single type of nanostructure, the width w 1 of the main body portion 121 may be variously formed. For example, the body portion 121 width w 1 may be in a range of 1 × 10 2 nm <w 12.5 × 10 3 nm. In addition, for example, the thickness of the body portion 121 may be 50nm to 100nm.
본체부(121)의 길이 d1은, 예시적으로 도 2 및 도 3에 나타나 있는 바와 같이, 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 다양하게 형성될 수 있다. 여기서, 본체부(121)의 길이 d1은 본체부(121)의 실제 길이 또는 그 평균을 의미할 수 있다. 이러한 본체부(121)의 길이 d1은, 나노구조체 네크워크를 구성하는 나노구조체로 나노튜브를 사용하는 경우, 나노와이어를 사용하는 경우, 또는 나노화이버를 사용하는 경우에 따라 본체부(121)의 길이 d1이 다르게 형성될 수 있다. 나아가, 나노구조체 네트워크를 단일 종류의 나노구조체로 형성하는 경우에도 본체부(121)의 길이 d1을 다양하게 형성할 수 있다. 또한 본체부(121)의 길이 d1은 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 본체부의 폭 w1에 관련될 수 있다. 예컨대, 나노와이어로 나노구조체 네트워크를 구성하여 본체부(121)를 형성하는 경우, 본체부(121)의 폭이 w1이고, 본체부(121)의 길이가 d1일 때에, 1x102 ≤ d1/w1 ≤ 3x103의 범위에 속할 수 있다. 또한, 예컨대, 나노화이버로 나노구조체 네트워크를 구성하여 본체부(121)를 형성하는 경우, 본체부(121)의 폭이 w1이고, 본체부(121)의 길이가 d1일 때에, 1x102 ≤ d1/w1 ≤ 5x106의 범위에 속할 수 있다.As illustrated in FIGS. 2 and 3, the length d 1 of the main body 121 may be formed in various ways depending on what forms a network of nanostructures. Here, the length d 1 of the main body 121 may mean an actual length of the main body 121 or an average thereof. The length d 1 of the main body portion 121 is the length of the main body portion 121 depending on the use of nanotubes, nanowires, or nanofibers as the nanostructures constituting the nanostructure network. The length d 1 may be formed differently. Furthermore, even when the nanostructure network is formed of a single type of nanostructure, the length d 1 of the main body portion 121 may be variously formed. In addition, the length d 1 of the body portion 121 may be related to the width w 1 of the body portion depending on what forms the network of nanostructures. For example, when the main body portion 121 is formed by forming a nanostructure network using nanowires, when the width of the main body portion 121 is w 1 and the length of the main body portion 121 is d 1 , 1 × 10 2 ≤ d It may fall in the range of 1 / w 1 ≤ 3x10 3 . For example, when the nanostructure network is formed of nanofibers to form the body portion 121, when the width of the body portion 121 is w 1 and the length of the body portion 121 is d 1 , 1 × 10 2 ≤ d 1 / w 1 ≤ 5x10 6 .
본체부(121)의 폭과 길이의 관계는 나노구조체 네트워크를 구성하는 나노구조체의 종횡비(aspect ratio) A(즉, 나노구조체의 길이를 나노구조체의 평균직경으로 나눈 비율)에 의해 실질적으로 결정될 수 있다. 예컨대, 나노구조체 네크워크를 구성하는 나노구조체로 나노와이어를 사용할 때에는 나노구조체의 종횡비 A는 1x102 < A < 3x103일 수 있으며, 나노구조체로 나노화이버를 사용할 때에는 나노구조체의 종횡비 A는 1x102 < A일 수 있다. 다만, 본체부(121)의 폭과 길이의 관계는 이에 한정되지는 않는다.The relationship between the width and the length of the body portion 121 may be substantially determined by the aspect ratio A (ie, the ratio of the length of the nanostructure divided by the average diameter of the nanostructure) of the nanostructures constituting the nanostructure network. have. For example, when using nanowires as a nanostructure constituting the nanostructure network, the aspect ratio A of the nanostructure may be 1x10 2 <A <3x10 3 , and when using the nanofiber as the nanostructure, the aspect ratio A of the nanostructure is 1x10 2 < It may be A. However, the relationship between the width and the length of the main body 121 is not limited thereto.
한편, 교차부(122)는, 예시적으로 도 3 및 도 4에 나타나 있는 바와 같이, 본체부(121)와 실질적으로 동일한 두께를 가질 수 있다. 이에 의해 차광층(120)의 패턴을 단일체로 형성할 수 있으며, 교차부(122)에 상응하는 미세 전극 부분의 패턴을 본체부(121)에 상응하는 미세 전극 부분의 패턴과 동일한 두께로 형성할 수 있어서, 교차부(122)에 상응하는 미세 전극 부분의 패턴에서 저항 증가를 방지할 수 있게 된다.Meanwhile, the intersection portion 122 may have a thickness substantially the same as that of the main body portion 121, as exemplarily illustrated in FIGS. 3 and 4. As a result, the pattern of the light shielding layer 120 may be formed as a single body, and the pattern of the microelectrode portion corresponding to the intersection portion 122 may be formed to have the same thickness as the pattern of the microelectrode portion corresponding to the body portion 121. In this way, it is possible to prevent an increase in resistance in the pattern of the fine electrode portion corresponding to the intersection portion 122.
개재부(123)의 영역의 크기 및 형상은 다양하게 형성할 수 있다. 예컨대, 개재부(123)의 영역의 크기 및 형상은 사실상 본체부(121) 사이의 거리에 의해 결정될 수 있다. 이러한 개재부(123)의 영역의 크기는 나노구조체 네트워크를 어떻게 구성하느냐에 따라 조절될 수 있으며, 나노구조체 네트워크는 포토마스크(100)에 의해 형성하고자 하는 미세 전극 패턴이 갖는 개구율에 상응하도록 구성될 수 있다.The size and shape of the region of the intervening portion 123 may be variously formed. For example, the size and shape of the area of the intervening portion 123 may be determined by the distance between the main body portions 121. The size of the region of the intervening portion 123 may be adjusted according to how the nanostructure network is configured, and the nanostructure network may be configured to correspond to the opening ratio of the fine electrode pattern to be formed by the photomask 100. have.
차광층(120)의 패턴은 무정형(amorphous)일 수 있다. 이와 같이 무정형의 패턴을 갖는 차광층(120)을 이용하여 미세 전극 패턴을 형성할 경우 무정형의 미세 전극 패턴을 형성할 수 있어서 정형화된 미세 전극 패턴의 반복으로 인해 줄무늬가 보이게 되는 모아레(moire) 현상을 방지할 수 있게 된다. 다만, 차광층의 패턴은 무정형으로 한정되지는 않으며 나노구조체가 교차하여 배열되어 형성된 네트워크에 상응하는 패턴을 포함하는 것이면 어떠한 것도 가능하다.The pattern of the light blocking layer 120 may be amorphous. As described above, when the microelectrode pattern is formed using the light blocking layer 120 having the amorphous pattern, an amorphous microelectrode pattern may be formed, and thus a moire phenomenon in which stripes are visible due to repetition of the standardized microelectrode pattern is formed. Can be prevented. However, the pattern of the light shielding layer is not limited to amorphous and may be any type as long as it includes a pattern corresponding to a network formed by crossing nanostructures.
(실시례 2)(Example 2)
본 실시례에서는, 예시적으로 도 5에 나타나 있는 바와 같이, 포토마스크(200)의 기판(210) 상에 형성된 차광층(220)이, 나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴을 구비함으로써 본체부(221)와 교차부(222)를 포함하는 패턴을 구비하지만, 본체부(221)가 차광층(220)의 일 가장자리에서 타 가장자리로 연속적으로 연장되어 있어서 패턴 내에 본체부(221)의 단부가 존재하지 않는 것을 특징으로 한다.5, the light blocking layer 220 formed on the substrate 210 of the photomask 200 may have a pattern corresponding to a network formed by crossing nanostructures. Although provided with a pattern including the main body portion 221 and the intersection portion 222, the main body portion 221 is continuously extended from one edge of the light shielding layer 220 to the other edge, so that the main body portion 221 in the pattern End) is not present.
이에 의해 본체부(221)와 교차부(222)에 의한 차광층(220) 연결의 신뢰성을 더욱 확실히 할 수 있음은 물론 본체부(221)의 단부와 같은 단절된 부분이 존재하지 아니함으로써 차광층(220)에 상응하는 미세 전극 패턴의 연결의 신뢰성 확보 및 단부에서의 정전기 현상 방지를 구현할 수 있게 된다.As a result, the reliability of connection of the light shielding layer 220 by the main body 221 and the crossing portion 222 can be more surely ensured, and the disconnection part such as the end of the main body 221 does not exist. It is possible to ensure the reliability of the connection of the fine electrode pattern corresponding to 220 and to prevent the electrostatic phenomenon at the end.
본 실시례의 차광층(220) 패턴은 나노구조체로 종횡비가 매우 큰 나노화이버를 사용함으로써 매우 용이하게 형성할 수 있게 된다.The light shielding layer 220 pattern of this embodiment can be formed very easily by using nanofibers having a very high aspect ratio as a nanostructure.
(실시례 3)(Example 3)
본 실시례에서는, 예시적으로 도 6에 나타나 있는 바와 같이, 포토마스크(300)의 기판(310) 상에 형성된 차광층(320)이, 나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴을 구비함으로써 본체부(321), 교차부(322) 및 본체부(321)의 단부(324)를 구비하지만, 본체부(321)가 차광층(320)의 일 가장자리에서 타 가장자리로 연속적으로 연장되어 있지 않아서, 본체부들(321a, 321b, 321c)과 교차부들(322a, 322b)들은 내부와 외부가 구별되지 않도록 연결되어 있는 개방계(326)를 형성할 수 있으나, 본체부(321)들과 교차부(322)들은 내부에 개재부(323)를 포함하도록 연결되어 있는 폐쇄계를 형성하지 않는 것을 특징으로 한다.6, the light blocking layer 320 formed on the substrate 310 of the photomask 300 has a pattern corresponding to a network formed by crossing nanostructures. The main body portion 321, the crossing portion 322, and the end portion 324 of the main body portion 321 are provided, but the main body portion 321 extends continuously from one edge of the light shielding layer 320 to the other edge. Not present, the body parts 321a, 321b, and 321c and the intersections 322a and 322b may form an open system 326 that is connected so that the inside and the outside are not distinguished, but intersect with the body parts 321. The portions 322 are characterized in that they do not form a closed system that is connected to include the intervening portion 323 therein.
이에 의해 종횡비가 크지 않은 나노구조체를 이용하여서도 차광층 연결의 신뢰성을 확보할 수 있는 패턴을 형성할 수 있게 된다.As a result, even when a nanostructure having a small aspect ratio is used, it is possible to form a pattern capable of securing reliability of the light shielding layer connection.
본 실시례의 차광층(320) 패턴은 나노구조체로 종횡비가 나노화이버에 비해 작은 나노튜브나 나노와이어를 사용함으로써 매우 용이하게 형성할 수 있게 된다.The light shielding layer 320 pattern of the present exemplary embodiment may be easily formed by using nanotubes or nanowires having a smaller aspect ratio than nanofibers as nanostructures.
(실시례 4)(Example 4)
본 실시례에서는, 예시적으로 도 7에 나타나 있는 바와 같이, 포토마스크(400)의 차광층(420)이 포토마스크(400)에 의해 형성되는 미세 전극 패턴에 연결되는 단자부 패턴을 형성하기 위한 단자부 차광층(430)을 더 구비하는 것을 특징으로 한다. 단자부 차광층(430)은 차광층(420)과 마찬가지로 외부로부터 기판(410)으로 입사하는 광이 기판(410)을 투과하지 못하도록 하는 차광성 물질을 포함하며 단자부 패턴에 상응하는 패턴을 포함한다.In the present exemplary embodiment, as illustrated in FIG. 7, the terminal part for forming a terminal part pattern in which the light shielding layer 420 of the photomask 400 is connected to the fine electrode pattern formed by the photomask 400. A light shielding layer 430 is further provided. Like the light blocking layer 420, the terminal part blocking layer 430 includes a light blocking material that prevents light incident from the outside into the substrate 410 from passing through the substrate 410 and includes a pattern corresponding to the terminal part pattern.
이에 의해 포토마스크(400)는 차광층(420)에 의해 형성되는 미세 전극 패턴과 단자부 차광층(430)에 의해 형성되는 단자부 패턴을 동시에 형성할 수 있게 된다.As a result, the photomask 400 may simultaneously form the fine electrode pattern formed by the light blocking layer 420 and the terminal part pattern formed by the terminal part light blocking layer 430.
단자부 차광층(430)의 패턴은 차광층(420)의 복수의 차광부(427)들과 각각 연결되는 복수의 본체부(431)들과 이들 사이의 제2 개재부(433)를 포함하며, 나아가, 복수의 차광부(427)들과 접속되는 복수의 접속부(432)들을 포함한다.The pattern of the terminal light blocking layer 430 includes a plurality of body parts 431 respectively connected to the plurality of light blocking parts 427 of the light blocking layer 420, and a second interposition part 433 therebetween. In addition, the plurality of connection parts 432 are connected to the plurality of light blocking parts 427.
(실시례 5)(Example 5)
본 실시례에 있어서는, 예시적으로 도 8 내지 도 10에 나타나 있는 바와 같이, 포토마스크(500)의 기판(510) 상에 형성된 차광층이 나노구조체가 교차하도록 배열되어 형성된 네트워크에 상응하는 패턴을 구비한다. 이러한 패턴은 복수의 본체부(521)들, 복수의 교차부(522)들 및 개재부(523)들을 구비한다. 본체부(521)들은 나노구조체 네트워크의 나노구조체에 상응하는 부분이고, 교차부(522)들은 본체부(521)들이 교차하여 형성되는 부분이며, 개재부(523)는 본체부(521)들 사이의 부분이다. 여기서, 본체부(521)와 교차부(522)는 외부로부터 기판(510)으로 입사하는 광이 기판(510)을 투과하도록 형성되고, 개재부(523)는 외부로부터 기판(510)으로 입사하는 광이 기판(510)을 투과하지 못하도록 형성된다. 따라서 노광시스템에 의해 조사되는 광은 차광층의 본체부(521)와 교차부(522)는 투과하고 차광층의 개재부(523)는 투과하지 못하게 된다. 그러므로 이러한 차광층을 구비한 포토마스크(500)는 네가티브(negative) 포토마스크(500)로서 본체부(521)와 교차부(522)에 상응되는 패턴을 갖는 미세 전극 패턴을 형성하게 된다.In the present exemplary embodiment, as illustrated in FIGS. 8 to 10, the light shielding layer formed on the substrate 510 of the photomask 500 may have a pattern corresponding to a network formed by crossing nanostructures. Equipped. This pattern has a plurality of body portions 521, a plurality of intersections 522, and intervening portions 523. The body portions 521 are portions corresponding to the nanostructures of the nanostructure network, the intersection portions 522 are portions where the body portions 521 intersect, and the intervening portion 523 is between the body portions 521. Is part of. Here, the body portion 521 and the intersection portion 522 are formed so that light incident on the substrate 510 from the outside passes through the substrate 510, and the intervening portion 523 is incident on the substrate 510 from the outside. It is formed to prevent light from passing through the substrate 510. Therefore, the light irradiated by the exposure system is transmitted through the body portion 521 and the intersection portion 522 of the light shielding layer, and the intervening portion 523 of the light shielding layer is not transmitted. Therefore, the photomask 500 including the light blocking layer forms a fine electrode pattern having a pattern corresponding to the main body portion 521 and the intersection portion 522 as the negative photomask 500.
본체부들(521a, 521b, 521c, 521d)과 교차부들(522a, 522b, 522c, 522d)은 내부에 개재부(523a)를 포함하도록 연결되어 있는 폐쇄계(closed system)(525)를 형성할 수 있다. 또한 다른 본체부들(521e, 521f, 521g)과 다른 교차부들(522e, 522f)은 내부와 외부가 구별되지 않도록 연결되어 있는 개방계(open system)(526)를 형성할 수 있다. 개재부(523)는 폐쇄계(525)에 의해 형성되는 폐쇄계 개재부(523a)와 개방계(526)에 의해 형성되는 개방계 개재부(523b)로 구분될 수 있다. 폐쇄계(525)와 개방계(526)는 서로 분리되어 독립적으로 위치할 수도 있고 인접하여 위치할 수도 있다. 또한 폐쇄계(525) 내부에 개방계(526)가 위치하거나 반대로 개방계(526) 내에 폐쇄계(525)가 위치할 수도 있다.The body parts 521a, 521b, 521c, and 521d and the crossing parts 522a, 522b, 522c, and 522d may form a closed system 525 connected to include the intervening part 523a therein. . In addition, the other body parts 521e, 521f, and 521g and the other crossing parts 522e and 522f may form an open system 526 connected to each other so that the inside and the outside are not distinguished from each other. The intervening part 523 may be divided into a closed system intervening part 523a formed by the closed system 525 and an open system intervening part 523b formed by the open system 526. The closed system 525 and the open system 526 may be located separately from each other or may be adjacent to each other. In addition, the open system 526 may be located inside the closed system 525, or conversely, the closed system 525 may be located within the open system 526.
본체부(521)의 폭 w2는, 예시적으로 도 9에 나타나 있는 바와 같이, 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 다양하게 형성될 수 있다. 여기서, 본체부의 폭 w2는 본체부(521)의 실제 폭 또는 그 평균을 의미할 수 있다. 이러한 본체부(521)의 길이 w2는, 나노구조체 네크워크를 구성하는 나노구조체로 나노튜브를 사용하는 경우, 나노와이어를 사용하는 경우, 또는 나노화이버를 사용하는 경우에 따라, 각각 다르게 형성될 수 있다. 나아가, 나노구조체 네트워크를 단일 종류의 나노구조체로 형성하는 경우에도 본체부(521)의 폭 w2를 다양하게 형성할 수 있다. 예컨대, 본체부(521) 폭 w2는 1x102nm < w2 ≤ 2.5x103nm의 범위에 속할 수 있다. 또한, 예컨대, 본체부(521)의 두께는 50nm 내지 100nm일 수 있다. The width w 2 of the body portion 521 may be variously formed according to what forms a network of nanostructures, as illustrated in FIG. 9. Here, the width w 2 of the body portion may mean an actual width of the body portion 521 or an average thereof. The length w 2 of the body portion 521 may be formed differently depending on the case of using nanotubes, nanowires, or nanofibers as nanostructures constituting the nanostructure network. have. Furthermore, even when the nanostructure network is formed of a single type of nanostructure, the width w 2 of the body portion 521 may be variously formed. For example, the body portion 521 width w 2 may be in the range of 1 × 10 2 nm <w 22.5 × 10 3 nm. Also, for example, the thickness of the body portion 521 may be 50 nm to 100 nm.
본체부(521)의 길이 d2는, 예시적으로 도 8 및 도 9에 나타나 있는 바와 같이, 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 다양하게 형성될 수 있다. 여기서, 본체부(521)의 길이 d2는 본체부(521)의 실제 길이 또는 그 평균을 의미할 수 있다. 이러한 본체부(521)의 길이 d2는, 나노구조체 네크워크를 구성하는 나노구조체로 나노튜브를 사용하는 경우, 나노와이어를 사용하는 경우, 또는 나노화이버를 사용하는 경우에 따라, 각각 다르게 형성될 수 있다. 나아가, 나노구조체 네트워크를 단일 종류의 나노구조체로 형성하는 경우에도 본체부(521)의 길이 d2를 다양하게 형성할 수 있다. 또한 본체부(521)의 길이 d2는 나노구조체의 네트워크를 무엇으로 형성하느냐에 따라 본체부의 폭 w2에 관련될 수 있다. 예컨대, 나노와이어로 나노구조체 네트워크를 구성하여 본체부(521)를 형성하는 경우, 본체부(521)의 폭이 w2이고, 본체부(521)의 길이가 d2일 때에, 1x102 ≤ d2/w2 ≤ 3x103의 범위에 속할 수 있다. 또한, 예컨대, 나노화이버로 나노구조체 네트워크를 구성하여 본체부(521)를 형성하는 경우, 본체부(521)의 폭이 w2이고, 본체부(521)의 길이가 d2일 때에, 1x102 ≤ d2/w2 ≤ 5x106의 범위에 속할 수 있다.As illustrated in FIGS. 8 and 9, the length d 2 of the main body 521 may be formed in various ways depending on what forms a network of nanostructures. Here, the length d 2 of the main body 521 may mean an actual length of the main body 521 or an average thereof. The length d 2 of the body portion 521 may be formed differently according to the case of using nanotubes, nanowires, or nanofibers as nanostructures constituting the nanostructure network. have. Furthermore, even when the nanostructure network is formed of a single type of nanostructure, the length d 2 of the body portion 521 may be variously formed. Also, the length d 2 of the body portion 521 may be related to the width w 2 of the body portion, depending on what forms the network of nanostructures. For example, when the nanostructure network is formed by using nanowires to form the body portion 521, when the width of the body portion 521 is w 2 and the length of the body portion 521 is d 2 , 1 × 10 2 ≤ d 2 / w 2 ≤ 3x10 3 It can fall. In addition, for example, when the nanostructure network is formed of nanofibers to form the main body portion 521, when the width of the main body portion 521 is w 2 and the length of the main body portion 521 is d 2 , 1 × 10 2 ≤ d 2 / w 2 ≤ 5x10 6 .
본체부(521)의 폭과 길이의 관계는 나노구조체 네트워크를 구성하는 나노구조체의 종횡비(aspect ratio) A(즉, 나노구조체의 길이를 나노구조체의 평균직경으로 나눈 비율)에 의해 실질적으로 결정될 수 있다. 예컨대, 나노구조체 네크워크를 구성하는 나노구조체로 나노와이어를 사용할 때에는 나노구조체의 종횡비 A는 1x102 < A < 3x103일 수 있으며, 나노구조체로 나노화이버를 사용할 때에는 나노구조체의 종횡비 A는 1x102 < A일 수 있다. 다만, 본체부(521)의 폭과 길이의 관계는 이에 한정되지는 않는다.The relationship between the width and the length of the body portion 521 may be substantially determined by the aspect ratio A (ie, the ratio of the length of the nanostructure divided by the average diameter of the nanostructure) of the nanostructures constituting the nanostructure network. have. For example, when using nanowires as a nanostructure constituting the nanostructure network, the aspect ratio A of the nanostructure may be 1x10 2 <A <3x10 3 , and when using the nanofiber as the nanostructure, the aspect ratio A of the nanostructure is 1x10 2 < It may be A. However, the relationship between the width and the length of the body portion 521 is not limited thereto.
(실시례 6)(Example 6)
본 실시례에 있어서는, 예시적으로 도 11a 내지 도 11h에 나타나 있는 바와 같이, 감광성 물질을 사용하여 포지티브 포토마스크를 제조하는 방법이 나타나 있다.In this embodiment, a method of manufacturing a positive photomask using a photosensitive material is shown, as exemplarily shown in Figs. 11A to 11H.
본 실시례에서는, 먼저 광투과성 기판(610) 상에 차광성 물질(620)을 도포한다(도 11a). 여기서, 차광성 물질(620)은 크롬과 같은 차광성이 좋은 금속이 될 수 있다. 기판(620) 상에 차광성 물질(620)을 도포하는 것은 스핀코팅, 도금, 증착 등 다양한 방법에 의할 수 있다. 다음, 차광성 물질(620) 상에 감광성 물질(630)을 코팅한다(도 11b). 감광성 물질(630)은 감광성 폴리머를 포함하여 감광성을 갖는 다양한 물질을 사용할 수 있다. 차광성 물질(620) 상에 감광성 물질(630)을 도포하는 것은 인쇄법 등 다양한 방법에 의해 이루어질 수 있다. 감광성 물질(630)을 도포한 후에는 그 상면에 나노구조체가 교차하도록 배열된 네트워크(640)를 형성하도록 나노구조체를 배열한다(도 11c). 나노구조체로는 나노튜브, 나노와이어, 나노화이버(nano-fiber) 또는 그 혼합체를 사용할 수 있다. 다음, 나노구조체 네트워크(640)를 이용하여 감광성 물질(630)에 나노구조체 네트워크(640)에 상응하는 형상을 형성한다(도 11d). 이때, 나노구조체 네트워크(640)를 통해 감광성 물질(630)을 광원(650)으로 노광함으로써 감광성 물질(630)에 나노구조체 네트워크(640)에 상응하는 형상을 형성할 수 있다. 이후, 현상액을 노즐(660)과 같은 장치로 분사함으로써 감광성 물질(630)을 나노구조체 네트워크(640)에 상응하는 형상을 형성하도록 현상한다(도 11e). 나노구조체 네트워크(640)에 상응하는 형상을 갖도록 현상된 감광성 물질(630) 상부에서 에칭액을 노즐(670)과 같은 장치로 분사함으로써 차광성 물질(620)을 나노구조체 네트워크(640)에 상응하는 패턴을 갖도록 에칭한다(도 11f). 이때 패턴은 나노구조체 네트워크(640)에 상응하는 무정형의 패턴이 되도록 하는 것이 바람직하다. 다음, 나노구조체 네트워크(640)에 상응하는 패턴을 갖는 차광성 물질(620)의 상면에 남아 있는 감광성 물질(630)을 노즐(680)과 같은 장치를 이용하여 박리한다(도 11g). 이와 같은 과정을 거쳐 기판(610) 상에 차광층(650)이 형성된 포토마스크(600)를 완성한다(도 11h).In this embodiment, first, the light-shielding material 620 is applied onto the light transmissive substrate 610 (FIG. 11A). Here, the light blocking material 620 may be a metal having good light blocking properties such as chromium. Coating the light blocking material 620 on the substrate 620 may be performed by various methods such as spin coating, plating, and deposition. Next, the photosensitive material 630 is coated on the light blocking material 620 (FIG. 11B). The photosensitive material 630 may include various materials having photosensitivity including a photosensitive polymer. Coating the photosensitive material 630 on the light blocking material 620 may be performed by various methods such as a printing method. After applying the photosensitive material 630, the nanostructures are arranged to form a network 640 arranged on the top surface of the nanostructures to intersect (FIG. 11C). As the nanostructure, nanotubes, nanowires, nanofibers, or mixtures thereof may be used. Next, the nanostructure network 640 is used to form a shape corresponding to the nanostructure network 640 in the photosensitive material 630 (FIG. 11D). In this case, the photosensitive material 630 may be exposed to the light source 650 through the nanostructure network 640 to form a shape corresponding to the nanostructure network 640 in the photosensitive material 630. Thereafter, the developer is sprayed into a device such as the nozzle 660 to develop the photosensitive material 630 to form a shape corresponding to the nanostructure network 640 (FIG. 11E). A pattern corresponding to the nanostructure network 640 by spraying the etching solution onto a device such as a nozzle 670 above the photosensitive material 630 developed to have a shape corresponding to the nanostructure network 640. It is etched to have (FIG. 11F). In this case, the pattern may be an amorphous pattern corresponding to the nanostructure network 640. Next, the photosensitive material 630 remaining on the top surface of the light blocking material 620 having a pattern corresponding to the nanostructure network 640 is peeled off using a device such as a nozzle 680 (FIG. 11G). Through this process, the photomask 600 having the light blocking layer 650 formed on the substrate 610 is completed (FIG. 11H).
추가적으로, 기판(610) 상에, 예컨대, 차광층(650)의 가장자리 외부에 대응되는 기판(610) 상에 차광층(650)과 연결되는 단자부 차광층(미도시)을 형성하는 단계를 더 구비할 수 있다. 여기서 단자부 차광층은 포토마스크(600)를 이용하여 미세 전극 패턴을 형성할 때에 미세 전극 패턴에 연결되는 단자부 패턴에 대응되는 부분이다.In addition, the method may further include forming a terminal part light blocking layer (not shown) connected to the light blocking layer 650 on the substrate 610, for example, on the substrate 610 corresponding to the outside of the edge of the light blocking layer 650. can do. The terminal blocking layer is a portion corresponding to the terminal portion pattern connected to the fine electrode pattern when the microelectrode pattern is formed using the photomask 600.
(실시례 7)(Example 7)
본 실시례에서는, 예시적으로 도 12a 내지 도 12d에 나타나 있는 바와 같이, 감광성 물질을 사용하지 않고 포지티브 포토마스크를 제조하는 방법이 나타나 있다.In this embodiment, a method of manufacturing a positive photomask without using a photosensitive material is shown, as exemplarily shown in Figs. 12A to 12D.
본 실시례에서는, 먼저 광투과성 기판(710) 위에 차광성 물질(720)을 도포한다(12a). 차광성 물질(720)은 크롬과 같이 노광시스템으로부터의 광을 차단할 수 있는 물질을 사용한다. 차광성 물질(720)의 도포는 스핀코팅, 인쇄, 증착 등의 다양한 방법으로 이루어진다. 다음, 차광성 물질(720) 위에 나노구조체가 교차하도록 배열된 네트워크(730)를 형성하도록 나노구조체를 배열한다(도 12b). 나노구조체로는 나노튜브, 나노와이어, 나노화이버 또는 그 혼합체 중 어느 하나를 사용한다. 감광성 물질을 사용하지 않는 점을 고려할 때에는 나노구조체로는 나노화이버를 사용하는 것이 바람직하다. 나노구조체로 나노화이버를 사용할 경우에는 나노화이버가 차광성 물질(720) 위에 안정적으로 배열되도록 리플로우(reflow) 공정을 거치도록 할 수 있다. 이후, 나노구조체 네트워크(730)를 통해 부식제를 접촉시켜 차광성 물질(720)에 나노구조체 네트워크(730)에 상응하는 패턴을 형성한다(도 12c). 부식제는 분사장치(770)로 나노구조체 네트워크(730) 위에서 기판(710) 쪽으로 분사된다. 차광성 물질(720)에 나노구조체 네트워크(730)에 상응하는 패턴이 형성된 후에는 나노구조체 네트워크(730)를 박리함으로써 차광층(740)을 형성하여 포지티브 포토마스크(700)를 완성하게 된다(도 12d).In this embodiment, first, a light blocking material 720 is coated on the light transmissive substrate 710 (12a). The light blocking material 720 uses a material that can block light from the exposure system, such as chromium. Application of the light blocking material 720 may be performed by various methods such as spin coating, printing, and deposition. Next, the nanostructures are arranged to form a network 730 arranged so that the nanostructures intersect on the light blocking material 720 (FIG. 12B). As the nanostructure, any one of nanotubes, nanowires, nanofibers, or a mixture thereof is used. In consideration of not using a photosensitive material, it is preferable to use nanofibers as nanostructures. When using nanofibers as nanostructures, the nanofibers may be subjected to a reflow process so that the nanofibers are stably arranged on the light blocking material 720. Thereafter, the caustic is contacted through the nanostructure network 730 to form a pattern corresponding to the nanostructure network 730 in the light blocking material 720 (FIG. 12C). The caustic is sprayed onto the substrate 710 over the nanostructure network 730 with the injector 770. After the pattern corresponding to the nanostructure network 730 is formed on the light blocking material 720, the light blocking layer 740 is formed by peeling the nanostructure network 730 to complete the positive photomask 700 (FIG. 12d).
(실시례 8)(Example 8)
본 실시례에 있어서는, 예시적으로 도 13a 내지 도 13c에 나타나 있는 바와 같이, 감광성 물질을 사용하지 않고 네가티브 포토마스크를 제조하는 방법이 나타나 있다.In this embodiment, a method of manufacturing a negative photomask without using a photosensitive material is shown, as exemplarily shown in Figs. 13A to 13C.
본 실시례에 있어서는, 먼저 광투과성 기판(810) 위에 나노구조체가 교차하도록 배열된 네트워크(820)를 형성하도록 나노구조체를 배열한다(도 13a). 나노구조체로는 나노튜브, 나노와이어, 나노화이버 또는 그 혼합체 중 어느 하나를 사용한다. 감광성 물질을 사용하지 않는 점을 고려할 때에는 나노구조체로는 나노화이버를 사용하는 것이 바람직하다. 나노구조체로 나노화이버를 사용할 경우에는 나노화이버가 기판(810) 위에 안정적으로 배열되도록 리플로우(reflow) 공정을 거치도록 할 수 있다. 다음, 나노구조체 네트워크(820)를 덮도록 기판(810) 위에 차광성 물질(830)을 도포한다(도 13b). 차광성 물질(830)은 크롬과 같이 노광시스템으로부터의 광을 차단할 수 있는 물질을 사용한다. 차광성 물질(830)의 도포는 스핀코팅, 인쇄, 증착 등의 다양한 방법으로 이루어진다. 이후, 나노구조체 네트워크(820)를 기판(810)으로부터 분리함으로써 나노구조체 네크워크(820)에 상응하는 개구부를 갖는 패턴을 형성하여 차광층(840)을 형성하게 된다(도 13c). 이에 의해 네가티브 포토마스크(800)가 완성된다.In this embodiment, first, the nanostructures are arranged on the light transmissive substrate 810 so as to form a network 820 in which the nanostructures intersect each other (FIG. 13A). As the nanostructure, any one of nanotubes, nanowires, nanofibers, or a mixture thereof is used. In consideration of not using a photosensitive material, it is preferable to use nanofibers as nanostructures. When nanofibers are used as the nanostructures, the nanofibers may be subjected to a reflow process so that the nanofibers are stably arranged on the substrate 810. Next, a light blocking material 830 is coated on the substrate 810 to cover the nanostructure network 820 (FIG. 13B). The light blocking material 830 uses a material that can block light from the exposure system, such as chromium. Application of the light blocking material 830 may be performed by various methods such as spin coating, printing, and deposition. Thereafter, the nanostructure network 820 is separated from the substrate 810 to form a pattern having an opening corresponding to the nanostructure network 820 to form the light blocking layer 840 (FIG. 13C). As a result, the negative photomask 800 is completed.
본 발명은 도면에 나타난 실시례들을 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 이러한 실시례들로부터 다양한 변형 및 균등한 타 실시례가 가능하다는 점을 이해할 수 있다. 따라서 본 발명의 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해진다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely illustrative, and those skilled in the art to which the present invention pertains, various modifications and equivalent other embodiments from these embodiments. It can be understood that is possible. Therefore, the protection scope of the present invention is defined by the technical spirit of the appended claims.
본 발명은 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법이 적용되는 분야에 이용할 수 있다.INDUSTRIAL APPLICABILITY The present invention can be used in a field to which a photomask for manufacturing a light-transmissive conductor and a method of manufacturing the same are applied.

Claims (21)

  1. 광투과성 기판; 및Light transmissive substrates; And
    상기 기판 상의 차광층을 구비하고,A light blocking layer on the substrate,
    상기 차광층은 외부로부터 상기 기판으로 입사하는 광이 상기 기판을 투과하지 못하도록 하는 차광성 물질을 포함하며,The light blocking layer includes a light blocking material that prevents light incident from the outside to the substrate from passing through the substrate,
    상기 차광층은 나노구조체가 교차하도록 배열되어 형성하는 나노구조체 네트워크에 상응하는 패턴을 포함하는 포토마스크.The light blocking layer may include a pattern corresponding to a nanostructure network in which nanostructures are arranged to cross each other.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 차광층은 실질적으로 일정한 두께를 갖는 포토마스크.And the light blocking layer has a substantially constant thickness.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 차광층은 하나의 일체로 형성된 단일체인 포토마스크.The light shielding layer is a single body formed of a single body photomask.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 나노구조체는 나노튜브, 나노와이어, 나노화이버(nano-fiber) 및 그 혼합체로 이루어진 군 중에서 선택된 하나인 포토마스크.The nanostructure is a photomask selected from the group consisting of nanotubes, nanowires, nanofibers (nano-fiber) and mixtures thereof.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 패턴은 무정형(amorphous)인 포토마스크.The pattern is amorphous (amorphous) photomask.
  6. 청구항 1에 있어서, 상기 패턴은,The method according to claim 1, wherein the pattern,
    상기 나노구조체 네트워크를 구성하는 각각의 나노구조체에 상응하는 패턴을 구비하는 복수의 본체부들;A plurality of body parts having a pattern corresponding to each nanostructure constituting the nanostructure network;
    상기 본체부들이 서로 교차하는 복수의 교차부들; 및A plurality of intersections in which the body portions cross each other; And
    상기 본체부들 사이의 개재부를 포함하는 포토마스크.A photomask comprising intervening portions between the body portions.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부들과 상기 교차부들은 내부에 상기 개재부를 포함하도록 연결되어 있는 적어도 하나의 폐쇄계를 형성하는 포토마스크.And the body portions and the intersections form at least one closed system connected therein to include the interposition.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부들과 상기 교차부들은 내부와 외부가 구별되지 않도록 연결되어 있는 적어도 하나의 개방계를 형성하는 포토마스크.And the body parts and the intersection parts form at least one open system connected to each other so that the inside and the outside are not distinguished from each other.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 개재부에는 상기 본체부의 단부가 돌출되어 있는 포토마스크.A photomask in which the end portion of the main body portion protrudes from the interposition portion.
  10. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부의 폭 w는 1x102nm ≤ w ≤ 2.5x103nm의 범위에 속하는 포토마스크.The width w of the body portion is a photomask in the range of 1 × 10 2 nm ≦ w ≦ 2.5 × 10 3 nm.
  11. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부의 폭이 w이고, 상기 본체부의 길이가 d일 때에, 1x102 ≤ d/w ≤ 3x103의 범위에 속하는 포토마스크.A photomask in the range of 1x10 2 ≤ d / w ≤ 3x10 3 when the width of the body portion is w and the length of the body portion is d.
  12. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부의 폭이 w이고, 상기 본체부의 길이가 d일 때에, 1x102 ≤ d/w ≤ 5x106의 범위에 속하는 포토마스크.A photomask in the range of 1 × 10 2 ≦ d / w ≦ 5 × 10 6 when the width of the body portion is w and the length of the body portion is d.
  13. 청구항 6에 있어서,The method according to claim 6,
    상기 교차부는 상기 본체부와 실질적으로 동일한 두께를 갖는 포토마스크.And said intersection has a thickness substantially equal to said body portion.
  14. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부는 외부로부터 상기 기판으로 입사하는 광이 상기 기판을 투과하지 못하도록 형성되고, 상기 개재부는 외부로부터 상기 기판으로 입사하는 광이 상기 기판을 투과하도록 형성되어 있는 포토마스크.And the main body portion is formed so that light incident on the substrate from the outside does not pass through the substrate, and the interposition portion is formed so that light incident on the substrate from the outside passes through the substrate.
  15. 청구항 6에 있어서,The method according to claim 6,
    상기 본체부는 외부로부터 상기 기판으로 입사하는 광이 상기 기판을 투과하도록 형성되어 있고, 상기 개재부는 외부로부터 상기 기판으로 입사하는 광이 상기 기판을 투과하지 못하도록 형성되어 있는 포토마스크.And the main body portion is formed so that light incident on the substrate from outside is transmitted through the substrate, and the interposition portion is formed so that light incident on the substrate from outside is not transmitted through the substrate.
  16. (1) 광투과성 기판 상에 차광성 물질을 도포하는 단계;(1) applying a light blocking material on the light transmissive substrate;
    (2) 상기 차광성 물질 상에 감광성 물질을 도포하는 단계;(2) applying a photosensitive material on the light blocking material;
    (3) 상기 감광성 물질 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 상기 나노구조체를 배열하는 단계;(3) arranging the nanostructures to form a network arranged on the photosensitive material such that the nanostructures cross each other;
    (4) 상기 나노구조체 네트워크를 통해 광을 조사하여 상기 감광성 물질에 상기 나노구조체 네트워크에 상응하는 형상을 형성하는 단계; 및(4) irradiating light through the nanostructure network to form a shape corresponding to the nanostructure network in the photosensitive material; And
    (5) 상기 감광성 물질의 형상에 따라 상기 차광성 물질에 상기 나노구조체 네트워크에 상응하는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 포토마스크의 제조방법.(5) forming a light blocking layer by forming a pattern corresponding to the nanostructure network on the light blocking material according to the shape of the photosensitive material.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 (3) 단계의 상기 나노구조체는 나노튜브, 나노와이어 및 그 혼합체로 이루어진 군 중에서 선택된 하나인 포토마스크의 제조방법.The nanostructure of step (3) is a method for producing a photomask is selected from the group consisting of nanotubes, nanowires and mixtures thereof.
  18. (1) 광투과성 기판 상에 차광성 물질을 도포하는 단계;(1) applying a light blocking material on the light transmissive substrate;
    (2) 상기 차광성 물질 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 상기 나노구조체를 배열하는 단계; 및(2) arranging the nanostructures to form a network arranged on the light blocking material so that the nanostructures cross each other; And
    (3) 상기 나노구조체 네트워크를 통해 부식제를 접촉시켜 상기 차광성 물질에 상기 나노구조체 네트워크에 상응하는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 포토마스크의 제조방법.(3) forming a light shielding layer by contacting a caustic agent through the nanostructure network to form a pattern corresponding to the nanostructure network in the light blocking material.
  19. 청구항 18에 있어서,The method according to claim 18,
    상기 (2) 단계의 상기 나노구조체는 나노화이버를 포함하는 포토마스크의 제조방법.The nanostructure of step (2) is a method of manufacturing a photomask comprising a nanofiber.
  20. (1) 광투과성 기판 상에 나노구조체가 교차하도록 배열된 네트워크를 형성하도록 상기 나노구조체를 배열하는 단계;(1) arranging the nanostructures to form a network arranged on the light transmissive substrate so that the nanostructures intersect;
    (2) 상기 나노구조체 네트워크를 덮도록 상기 기판 상에 차광성 물질을 코팅하는 단계; 및(2) coating a light blocking material on the substrate to cover the nanostructure network; And
    (3) 상기 나노구조체 네트워크를 상기 기판으로부터 분리함으로써 상기 나노구조체 네트워크에 상응하는 개구부를 갖는 패턴을 형성하여 차광층을 형성하는 단계를 포함하는 포토마스크의 제조방법.(3) forming a light shielding layer by separating the nanostructure network from the substrate to form a pattern having openings corresponding to the nanostructure network.
  21. 청구항 20에 있어서,The method of claim 20,
    상기 (2) 단계의 상기 나노구조체는 나노화이버를 포함하는 포토마스크의 제조방법.The nanostructure of step (2) is a method of manufacturing a photomask comprising a nanofiber.
PCT/KR2014/006136 2014-04-22 2014-07-09 Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same WO2015163535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016559285A JP6342511B2 (en) 2014-04-22 2014-07-09 PHOTOMASK FOR MANUFACTURING LIGHT TRANSMITTING CONDUCTOR WITH NANOSTRUCTURED PATTERN AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140048206A KR101606338B1 (en) 2014-04-22 2014-04-22 Photomask for manufacturing light transmitting conductor comprising nano-structured pattern and method of manufacturing the same
KR10-2014-0048206 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015163535A1 true WO2015163535A1 (en) 2015-10-29

Family

ID=54332678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006136 WO2015163535A1 (en) 2014-04-22 2014-07-09 Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6342511B2 (en)
KR (1) KR101606338B1 (en)
WO (1) WO2015163535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132581A (en) * 2016-12-01 2018-06-08 清华大学 Photo mask board
JP2018092143A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092144A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092142A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Method for manufacturing micronano structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065305A (en) * 2004-12-10 2006-06-14 삼성코닝 주식회사 Photo mask and method for emi filter thereby
KR100730217B1 (en) * 2006-03-28 2007-06-19 삼성에스디아이 주식회사 Method of manufacturing plasma display panel and photomask to be used in that method
JP2008275934A (en) * 2007-04-27 2008-11-13 Hoya Corp Photomask blank and method for manufacturing photomask

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625241A (en) * 1985-06-29 1987-01-12 Oki Electric Ind Co Ltd Production of photomask
JPH0619118A (en) * 1992-07-03 1994-01-28 Fujitsu Ltd Exposing mask and pattern forming method
JP3164208B2 (en) * 1998-03-26 2001-05-08 日本電気株式会社 Method of manufacturing single electronic device
US6509619B1 (en) * 1999-09-10 2003-01-21 Starmega Corporation Strongly textured atomic ridge and dot Mosfets, sensors and filters
KR102103541B1 (en) * 2005-08-12 2020-04-23 캄브리오스 필름 솔루션스 코포레이션 Nanowires-based transparent conductors
WO2009011975A2 (en) * 2007-05-23 2009-01-22 California Institute Of Technology Method for fabricating monolithic two-dimensional nanostructures
JP5430921B2 (en) * 2008-05-16 2014-03-05 富士フイルム株式会社 Conductive film and transparent heating element
JP5397376B2 (en) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
JP2012028183A (en) * 2010-07-23 2012-02-09 Fujifilm Corp Conductive material and touch panel and display device with touch panel function
KR101215299B1 (en) * 2010-12-30 2012-12-26 포항공과대학교 산학협력단 Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
JP2012185770A (en) * 2011-03-08 2012-09-27 Sony Corp Transparent electrode element, information input device, and electronic apparatus
KR101586902B1 (en) * 2014-04-09 2016-01-19 인트리 주식회사 Light transmitting conductor comprising pattern of nanostructure and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065305A (en) * 2004-12-10 2006-06-14 삼성코닝 주식회사 Photo mask and method for emi filter thereby
KR100730217B1 (en) * 2006-03-28 2007-06-19 삼성에스디아이 주식회사 Method of manufacturing plasma display panel and photomask to be used in that method
JP2008275934A (en) * 2007-04-27 2008-11-13 Hoya Corp Photomask blank and method for manufacturing photomask

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132581A (en) * 2016-12-01 2018-06-08 清华大学 Photo mask board
JP2018092143A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092145A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092144A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092142A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Method for manufacturing micronano structure
CN108132581B (en) * 2016-12-01 2020-07-10 清华大学 Photoetching mask plate

Also Published As

Publication number Publication date
KR101606338B1 (en) 2016-03-24
KR20150121943A (en) 2015-10-30
JP6342511B2 (en) 2018-06-13
JP2017514164A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11106130B2 (en) Direct patterning method for a touch panel and touch panel thereof
WO2010095798A1 (en) Method for manufacturing touch screen panel of capacitive touch screen
WO2015008933A1 (en) Touch window
WO2015163535A1 (en) Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same
TWI706302B (en) Manufacturing method for touch panel and touch panel thereof
WO2012177102A2 (en) Method for preparing carbon nanotube film
TWM588283U (en) Touch panel and roll sheet of touch sensors
EP2593852A2 (en) Touch panel and method for manufacturing the same
WO2019066336A1 (en) Electrode substrate for transparent light-emitting diode display and method for manufacturing same
WO2013170684A1 (en) Touch panel and touch display device using same
WO2012091487A2 (en) Electrode, and electronic device comprising same
WO2019022500A1 (en) Transparent light emitting element display
WO2011162461A1 (en) Transparent electrode and a production method therefor
WO2014137147A1 (en) Conductive film, method for manufacturing the same, and electronic device including the same
WO2017073969A1 (en) Conductive structure, electrode comprising same, and display device
WO2015156467A1 (en) Light-transmitting conductor having nanostructure pattern and method for manufacturing same
WO2015178726A1 (en) Touch window
WO2014035172A1 (en) Nano-wire-carbon nano-tube hybrid film and manufacturing method thereof
WO2019059589A1 (en) Electrode substrate for transparent light-emitting device display, and manufacturing method therefor
WO2014112766A1 (en) Transparent electrode including nano-material layer, method for fabricating same, and optical element device, display device and touch panel device including same
WO2014178546A1 (en) Touch panel and method for manufacturing same
TW202016712A (en) Touch-sensing cover and manufacturing method thereof
WO2015016473A1 (en) Touch screen panel and method for manufacturing same
WO2016003160A1 (en) Touch panel electrode assembly and method of manufacturing same
WO2017061761A1 (en) Electrode connection part and touch screen panel comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890313

Country of ref document: EP

Kind code of ref document: A1