WO2014010259A1 - Conductive oxide sintered body and method for producing same - Google Patents

Conductive oxide sintered body and method for producing same Download PDF

Info

Publication number
WO2014010259A1
WO2014010259A1 PCT/JP2013/051043 JP2013051043W WO2014010259A1 WO 2014010259 A1 WO2014010259 A1 WO 2014010259A1 JP 2013051043 W JP2013051043 W JP 2013051043W WO 2014010259 A1 WO2014010259 A1 WO 2014010259A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sintered body
less
sputtering
mol
Prior art date
Application number
PCT/JP2013/051043
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 奈良
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2013551455A priority Critical patent/JP5727043B2/en
Priority to CN201380002734.7A priority patent/CN103748055B/en
Priority to KR1020137034721A priority patent/KR101583124B1/en
Publication of WO2014010259A1 publication Critical patent/WO2014010259A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a target for forming an optical thin film that does not contain sulfur, has low bulk resistance, can be DC-sputtered, and has a low refractive index, and a method for manufacturing the same.
  • ZnS—SiO 2 which is generally used mainly for a protective layer of a phase change type optical information recording medium has excellent characteristics in optical characteristics, thermal characteristics, adhesion to the recording layer, etc. in use.
  • rewritable optical disks represented by Blu-Ray are now strongly required to increase the number of rewrites, increase the capacity, and increase the recording speed.
  • One of the causes of deterioration of the number of rewrites of the optical information recording medium is diffusion of sulfur components from ZnS—SiO 2 to the recording layer material arranged so as to be sandwiched between the protective layers ZnS—SiO 2. .
  • pure Ag or an Ag alloy having high reflectivity and high thermal conductivity has been used for the reflective layer material in order to increase the capacity and increase the recording speed.
  • Such a reflective layer is also a protective layer material. It is arranged so as to be in contact with ZnS—SiO 2 .
  • the pure Ag or Ag alloy reflective layer material also corrodes and becomes a factor that causes the characteristics such as the reflectance of the optical information recording medium to deteriorate. It was.
  • an intermediate layer mainly composed of nitride or carbide is provided between the reflective layer and the protective layer and between the recording layer and the protective layer.
  • the protective layer material is replaced with an oxide-only material that does not contain sulfides, and a material system having optical characteristics equal to or better than ZnS-SiO 2 and amorphous stability is studied. Has been.
  • a ceramic target such as ZnS—SiO 2 has a high bulk resistance value, it cannot be formed by a direct current sputtering apparatus, and a high frequency sputtering (RF) apparatus is usually used.
  • RF high frequency sputtering
  • this high-frequency sputtering (RF) apparatus has not only an expensive apparatus itself, but also has a number of disadvantages such as poor sputtering efficiency, large power consumption, complicated control, and slow film formation speed.
  • RF high frequency sputtering
  • ZnS—SiO 2 has a large film thickness, there has been a problem of a decrease in throughput and an increase in cost.
  • a ZnO sputtering target has been proposed under the condition that at least one element to be added is dissolved in ZnO (see Patent Document 3). Since this is a condition that the additive element is dissolved, there is a problem that the component composition is limited, and therefore the optical characteristics are also limited.
  • Patent Document 4 that is, Al 2 O 3 : 0.2 to 3.0 at%, MgO and / or SiO 2 : 1 to 27 at%.
  • a sputtering target having a low refractive index and a low bulk resistance made of the remaining ZnO, the target and the film formation characteristics could be greatly improved.
  • Patent Document 4 is a sputtering target capable of forming a film having a low refractive index.
  • the present invention provides a sintered body capable of forming a thin film having a low refractive index by DC sputtering and a method for producing the same. As a result, it is possible to increase the deposition rate, and to significantly improve the throughput of forming a thin film having a low refractive index.
  • the present inventors have conducted intensive research. As a result, low bulk resistance is achieved by sintering in an inert gas or vacuum atmosphere even in a low refractive index composition region. And obtained knowledge that DC sputtering is possible. And the high-speed film-forming by DC sputtering was attained, and the knowledge that the characteristic improvement and productivity improvement of an optical information recording medium were possible was acquired.
  • the present invention is based on this finding, 1) It consists of zinc (Zn), aluminum (Al), magnesium (Mg) and / or silicon (Si), oxygen (O), and the Al content is 0.1 to 3.0 mol in terms of Al 2 O 3. %, Mg and / or 27 ⁇ 70 mol% total content of MgO and / or SiO 2 in terms of Si, sintered, wherein the balance of the content of ZnO conversion Zn. 2) The sintered body according to 1) above, wherein the sintered body has a bulk resistance of 10 ⁇ ⁇ cm or less. 3) The sintered body according to 1) or 2) above, wherein the relative density is 90% or more. 4) A metal that further forms an oxide having a melting point of 1000 ° C.
  • the oxide selected from B 2 O 3, P 2 O 5, K 2 O, V 2 O 5, Sb 2 O 3, TeO 2, Ti 2 O 3, PbO, Bi 2 O 3, MoO 3
  • the sintered body according to 4) above which is one or more kinds of materials.
  • Al 2 O 3 powder is 0.1 to 3.0 mol%
  • MgO and / or SiO 2 powder is 27 to 70 mol%
  • the balance is ZnO powder
  • these raw material powders are adjusted so that the total amount becomes 100 mol%.
  • a method for producing a sintered body comprising adjusting and sintering the raw material powder in an inert gas or vacuum atmosphere at 1050 ° C. or higher and 1500 ° C. or lower. 9) The method for producing a sintered body according to 8) above, further comprising adding 0.1 to 5 wt% of an oxide powder having a melting point of 1000 ° C. or less to obtain a raw material powder.
  • the present invention has an excellent effect that it is possible to provide a sintered body capable of forming a thin film having a low refractive index by DC sputtering and a method for manufacturing the same.
  • a sputtering target that is particularly useful for a thin film for an optical information recording medium (particularly for use as a protective film, a reflective layer, or a semi-transmissive film layer).
  • the present invention is a sintered body having zinc (Zn), aluminum (Al), magnesium (Mg) and / or silicon (Si), and oxygen (O) as constituent elements, and the Al content is Al 2 O. 3 0.1 ⁇ 3.0 mol% in terms of, Mg and / or 27 ⁇ 70 mol% total content of MgO and / or SiO 2 in terms of Si, a content of ZnO in terms of the balance Zn, DC It has a low bulk resistance that allows sputtering. In adjusting the raw materials, the balance is adjusted so that the balance of each oxide is 100 mol% with the balance being ZnO, and therefore the Zn content can be determined from the balance of ZnO.
  • each metal in a sintered compact exists in part or all as complex oxide.
  • each content is measured not as an oxide but as a metal.
  • the sintered body of the present invention is characterized by adding 0.1 to 3.0 mol% of an oxide of Al in terms of Al 2 O 3 in order to impart conductivity. Addition of an Al oxide exceeding this range makes it difficult to impart desired conductivity.
  • the sintered body of the present invention is characterized by adding an oxide of Mg and / or Si in order to lower the refractive index. MgO and SiO 2 can be added individually or in combination, respectively, and both can achieve the object of the present invention.
  • the sintered body of the present invention has a bulk resistance value that allows DC sputtering, but is more preferably 10 ⁇ ⁇ cm or less. More preferably, it is 1 ⁇ ⁇ cm or less.
  • the sintered body of the present invention preferably has a relative density of 90% or more. By setting the relative density to 90% or more, the film thickness uniformity of the thin film formed by sputtering can be improved.
  • the present invention is characterized by containing 0.1 to 5 wt% of a metal forming an oxide having a melting point of 1000 ° C. or less in terms of oxide.
  • a metal forming an oxide having a melting point of 1000 ° C. or less in terms of oxide.
  • this low melting point oxide especially from B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO 3
  • Addition of selected materials is effective. If the content is less than 0.1 wt%, the above effect cannot be obtained sufficiently, and if it exceeds 5 wt%, the properties are affected depending on the composition, which is not preferable.
  • the sintered compact sputtering target of the present invention is useful for industrially producing an optical thin film for an optical disc having a refractive index of 2.00 or less with respect to light having a wavelength of 550 nm.
  • it can be used as a target for forming a protective layer, a reflective layer, or a semi-transmissive layer of an optical information recording medium.
  • the raw material Al 2 O 3 powder is 0.1 to 3.0 mol%, MgO and / or SiO 2 powder is 27 to 70 mol%, and the balance is ZnO powder. %,
  • the basic raw material powder is adjusted, and this mixed powder is sintered at 1050 ° C. or higher and 1500 ° C. or lower.
  • Of particular importance in the present invention is sintering under an inert gas or vacuum atmosphere. Sintering in an inert gas or vacuum atmosphere causes oxygen vacancies in part of ZnO. Due to this oxygen deficiency, conductivity can be obtained, and a sintered body having a low bulk resistance capable of DC sputtering can be produced.
  • As the atmospheric gas there are argon gas, nitrogen gas and the like, and those generally used as so-called inert atmosphere can be used.
  • the Al 2 O 3 powder and the ZnO powder as raw materials are preliminarily mixed and pre-calcined, and then the pre-sintered Al 2 O 3 —ZnO powder (AZO powder) is mixed with MgO and / or SiO 2 powder. Can also be mixed and sintered.
  • AZO powder pre-sintered Al 2 O 3 —ZnO powder
  • MgO and / or SiO 2 powder Al 2 O 3 and MgO and / or SiO 2 are likely to react to form spinel, and the bulk resistance value tends to increase. Therefore, in order to achieve a lower bulk resistance of the sintered body, it is desired to sinter using a pre-sintered Al 2 O 3 —ZnO content (AZO powder).
  • the raw material Al 2 O 3 powder and ZnO powder are mixed in advance and preliminarily calcined to obtain AZO powder, and the raw material MgO powder and SiO 2 powder are similarly mixed and calcined.
  • the MgO—SiO 2 calcined powder be mixed with the calcined Al 2 O 3 —ZnO powder (AZO powder) and sintered. This is because spinelization can be further suppressed and low bulk resistance can be achieved.
  • 0.1 to 5 wt% of a low melting point oxide powder having a melting point of 1000 ° C. or lower can be added to obtain a raw material for sintering. It is also effective to mix this low melting point oxide powder with the calcined powder previously mixed and calcined.
  • the sintered body having such a component composition can retain electrical conductivity, and a thin film can be formed by direct current sputtering (DC sputtering).
  • DC sputtering is superior to RF sputtering in that the deposition rate is high and sputtering efficiency is good, and the throughput can be significantly improved.
  • the DC sputtering apparatus is advantageous in that it is inexpensive, easy to control, and consumes less power. Since it is possible to reduce the thickness of the protective film itself, it is possible to further improve productivity and prevent substrate heating.
  • Example 1 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 100.0%, and the bulk resistance was 3.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.2 m ⁇ ⁇ cm).
  • the density displayed in this specification means a relative density.
  • Each relative density is obtained by measuring the density of a target, which is a produced complex oxide, with respect to the theoretical density of the target calculated from the density of the raw material, and obtaining the relative density from each density. Since it is not a simple mixture of raw materials, as shown in Table 1, there is an example in which the relative density exceeds 100%.
  • Sputtering was performed using the above-mentioned 6-inch ⁇ -sized target that was finished.
  • the sputtering conditions were DC sputtering, sputtering power 500 W, Ar-2% O 2 mixed gas pressure 0.5 Pa, and a film thickness of 1500 mm was formed.
  • the film formation rate was 2.8 ⁇ / sec, stable DC sputtering was possible, and good sputtering properties were obtained.
  • Example 2 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 99.5%, and the bulk resistance was 2.9 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (2.9 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 99.8%, and the bulk resistance was 3.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.0 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 4 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 107.9%, and the bulk resistance was 3.7 ⁇ 10 ⁇ 1 ⁇ ⁇ cm (0.37 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 5 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 98.1%, and the bulk resistance was 9.0 ⁇ 10 ⁇ 1 ⁇ ⁇ cm (0.9 ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 6 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 101.5%, and the bulk resistance was 2.8 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (2.8 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 7 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • the raw materials were used, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, it hot-pressed (HP) at the temperature of 1200 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 97.8%, and the bulk resistance was 1.6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (1.6 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 8 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • Table 1 after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 ⁇ m corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it sintered at the temperature of 1400 degreeC by nitrogen atmosphere.
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 94.5%, and the bulk resistance was 3.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.0 m ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target was 90.9%, but the bulk resistance exceeded 1 ⁇ 10 3 ⁇ ⁇ cm (1 k ⁇ ⁇ cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch diameter target, but stable DC sputtering could not be performed.
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target was 98.7%, but the bulk resistance was a value exceeding 1 ⁇ 10 3 ⁇ ⁇ cm (1 k ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch diameter target, but stable DC sputtering could not be performed.
  • the refractive index (wavelength 550 nm) of the film formation sample was 1.67.
  • Example 9 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent of MgO powder with an average particle size of 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less
  • 3N which is a low melting point oxide having a melting point of 1000 ° C. or less, and has an average particle size of 5 ⁇ m.
  • the following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 99.2%, and the bulk resistance was 3.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.0 ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 10 ZnO powder of 3N equivalent to 5 ⁇ m or less, 3N equivalent MgO powder with an average particle size of 5 ⁇ m or less, and 3N equivalent Al 2 O 3 powder with an average particle size of 5 ⁇ m or less as a basic raw material, as shown in Table 1, the total amount After adjusting the ratio of the basic raw material so as to be 100 mol%, the ratio shown in Table 1 is the B 2 O 3 powder equivalent to 3N and having an average particle diameter of 5 ⁇ m or less, which is a low melting point oxide having a melting point of 1000 ° C. or less. Prepared with. Next, these powders were prepared in the mixing ratio shown in Table 1, mixed, and then hot pressed (HP) at a temperature of 1050 ° C. in an argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 99.6%, and the bulk resistance was 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.0 ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • Example 11 ZnO powder of 3N equivalent to 5 ⁇ m or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 ⁇ m or less, and 3N equivalent of SiO 2 powder with an average particle size of 5 ⁇ m or less as a basic raw material.
  • B 2 O 3 powder having an average particle diameter of 5 ⁇ m or less corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less is shown in Table 1. Formulated in proportions. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
  • the sintered body was finished into a target shape by machining.
  • the density of the sintered compact target reached 99.3%, and the bulk resistance was 4.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (3.0 ⁇ ⁇ cm).
  • sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch ⁇ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained.
  • the feature of the present invention is to achieve low bulk resistance of the sintered body by sintering in an inert gas or vacuum atmosphere even when the component adjustment for lowering the refractive index is performed. This is in that stable DC sputtering is possible. And there is a remarkable effect that the controllability of sputtering, which is the feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. In addition, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
  • the sintered compact sputtering target of the present invention is extremely useful for forming thin films such as optical thin films, organic EL televisions, touch panel electrodes, and hard disk seed layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This sintered body is characterized by comprising zinc (Zn), aluminum (Al), magnesium (Mg) and/or silicon (Si), and oxygen (O), the Al content being 0.1-3.0 mol% in terms of Al2O3, the total content of Mg and/or Si being 27-70 mol% in terms of MgO and/or SiO2, and the remainder being the Zn content in terms of ZnO. Provided are: the sintered body that, by means of sintering in an inert gas atmosphere or a vacuum, can have a reduced bulk resistance of the sintered body, and is such that a thin film having a low refractive index can be formed by means of DC sputtering; and a method for producing the sintered body.

Description

導電性酸化物焼結体及びその製造方法Conductive oxide sintered body and method for producing the same
 本発明は、硫黄を含有せず、バルク抵抗が低くDCスパッタリングが可能であり、低屈折率の光学薄膜形成用ターゲット及びその製造方法に関する。 The present invention relates to a target for forming an optical thin film that does not contain sulfur, has low bulk resistance, can be DC-sputtered, and has a low refractive index, and a method for manufacturing the same.
従来、主として相変化型の光情報記録媒体の保護層に一般的に使用されるZnS-SiOは、光学特性、熱特性、記録層との密着性等において、優れた特性を有し、広く使用されている。しかし、今日Blu-Rayに代表される書き換え型光ディスクは、さらに書き換え回数の増加、大容量化、高速記録化が強く求められている。 Conventionally, ZnS—SiO 2 which is generally used mainly for a protective layer of a phase change type optical information recording medium has excellent characteristics in optical characteristics, thermal characteristics, adhesion to the recording layer, etc. in use. However, rewritable optical disks represented by Blu-Ray are now strongly required to increase the number of rewrites, increase the capacity, and increase the recording speed.
光情報記録媒体の書き換え回数等が劣化する原因の一つとして、保護層ZnS-SiOに挟まれるように配置された記録層材への、ZnS-SiOからの硫黄成分の拡散が挙げられる。また、大容量化、高速記録化のため高反射率で高熱伝導特性を有する純AgまたはAg合金が反射層材に使用されるようになったが、このような反射層も保護層材であるZnS-SiOと接するように配置されている。
したがって、この場合も同様に、ZnS-SiOからの硫黄成分の拡散により、純AgまたはAg合金反射層材も腐食劣化して、光情報記録媒体の反射率等の特性劣化を引き起こす要因となっていた。
One of the causes of deterioration of the number of rewrites of the optical information recording medium is diffusion of sulfur components from ZnS—SiO 2 to the recording layer material arranged so as to be sandwiched between the protective layers ZnS—SiO 2. . In addition, pure Ag or an Ag alloy having high reflectivity and high thermal conductivity has been used for the reflective layer material in order to increase the capacity and increase the recording speed. Such a reflective layer is also a protective layer material. It is arranged so as to be in contact with ZnS—SiO 2 .
Accordingly, in this case as well, due to the diffusion of the sulfur component from ZnS—SiO 2 , the pure Ag or Ag alloy reflective layer material also corrodes and becomes a factor that causes the characteristics such as the reflectance of the optical information recording medium to deteriorate. It was.
これら硫黄成分の拡散防止対策として、反射層と保護層、記録層と保護層の間に、窒化物や炭化物を主成分とした中間層を設けた構成にすることも行なわれている。しかし、これは積層数の増加となり、スループット低下、コスト増加になるという問題を発生している。上記のような問題を解決するため、保護層材に硫化物を含まない酸化物のみの材料へと置き換え、ZnS-SiOと同等以上の光学特性、非晶質安定性を有する材料系が検討されている。 In order to prevent diffusion of these sulfur components, an intermediate layer mainly composed of nitride or carbide is provided between the reflective layer and the protective layer and between the recording layer and the protective layer. However, this causes an increase in the number of layers, resulting in a problem that throughput decreases and costs increase. In order to solve the above problems, the protective layer material is replaced with an oxide-only material that does not contain sulfides, and a material system having optical characteristics equal to or better than ZnS-SiO 2 and amorphous stability is studied. Has been.
また、ZnS-SiO等のセラミックスターゲットは、バルク抵抗値が高いため、直流スパッタリング装置により成膜することができず、通常高周波スパッタリング(RF)装置が使用されている。ところが、この高周波スパッタリング(RF)装置は、装置自体が高価であるばかりでなく、スパッタリング効率が悪く、電力消費量が大きく、制御が複雑であり、成膜速度も遅いという多くの欠点がある。また、成膜速度を上げるため、高電力を加えた場合、基板温度が上昇し、ポリカーボネート製基板の変形を生ずるという問題がある。また、ZnS-SiOは膜厚が厚いために起因するスループット低下やコスト増も問題となっていた。 In addition, since a ceramic target such as ZnS—SiO 2 has a high bulk resistance value, it cannot be formed by a direct current sputtering apparatus, and a high frequency sputtering (RF) apparatus is usually used. However, this high-frequency sputtering (RF) apparatus has not only an expensive apparatus itself, but also has a number of disadvantages such as poor sputtering efficiency, large power consumption, complicated control, and slow film formation speed. In addition, when high power is applied to increase the deposition rate, there is a problem that the substrate temperature rises and the polycarbonate substrate is deformed. In addition, since ZnS—SiO 2 has a large film thickness, there has been a problem of a decrease in throughput and an increase in cost.
以上のようなことから、DCスパッタリング可能なターゲットとして、ZnOの使用すなわち硫黄成分を含有させずに透明導電性の薄膜を形成するために、ZnOに正三価以上の原子価を有する元素を単独で添加するという焼結体ターゲットの提案がなされている(例えば、特許文献1参照)。しかし、この場合は低バルク抵抗値と低屈折率化を両立させるということが十分にできないと考えられる。
また、透明導電膜及びそれを製造するための焼結体として、I族、III族、IV族元素を様々に組合せた高周波又は直流マグネトロンスパッタリング法による製造方法が提案されている(特許文献2参照)。しかし、この技術の目的は、ターゲットの低抵抗化を目途とするものではなく、さらに、低バルク抵抗値と低屈折率化を両立させるということが十分にできないと考えられる。
From the above, as a target capable of DC sputtering, use of ZnO, that is, an element having a positive trivalent or higher valence alone is used to form a transparent conductive thin film without containing a sulfur component. The proposal of the sintered compact target of adding is made | formed (for example, refer patent document 1). However, in this case, it is considered that it is not possible to achieve both a low bulk resistance value and a low refractive index.
Further, as a transparent conductive film and a sintered body for manufacturing the transparent conductive film, a manufacturing method by a high frequency or direct current magnetron sputtering method in which various group I, group III, and group IV elements are combined has been proposed (see Patent Document 2). ). However, the purpose of this technique is not to reduce the resistance of the target, and it is considered that it is not possible to achieve both a low bulk resistance value and a low refractive index.
また、添加する元素の少なくとも1種がZnOに固溶されるという条件のZnOスパッタリングターゲットが提案されている(特許文献3参照)。これは添加元素の固溶が条件であるから、成分組成に制限があり、したがって光学特性にも制限が生ずるという問題がある。 Further, a ZnO sputtering target has been proposed under the condition that at least one element to be added is dissolved in ZnO (see Patent Document 3). Since this is a condition that the additive element is dissolved, there is a problem that the component composition is limited, and therefore the optical characteristics are also limited.
以上から、本出願人は、下記の特許文献4に示す内容の発明を行い、すなわち、Al:0.2~3.0 at%、MgO及び/又はSiO:1~27 at%、残部ZnOからなる低屈折率でありかつ低バルク抵抗を備えているスパッタリングターゲットを提供することにより、ターゲット及び成膜特性は非常に向上させることができた。 From the above, the present applicant has invented the contents shown in Patent Document 4 below, that is, Al 2 O 3 : 0.2 to 3.0 at%, MgO and / or SiO 2 : 1 to 27 at%. In addition, by providing a sputtering target having a low refractive index and a low bulk resistance made of the remaining ZnO, the target and the film formation characteristics could be greatly improved.
特開平2-149459号公報Japanese Patent Laid-Open No. 2-14959 特開平8-264022号公報JP-A-8-264022 特開平11-322332号公報Japanese Patent Laid-Open No. 11-322332 特許第4828529号公報Japanese Patent No. 4828529
 上記の特許文献4は、低屈折率の膜が成膜可能なスパッタリングターゲットであるが、さらなる屈折率を低下させるように成分組成を調整した場合、低バルク抵抗が得られず、DCスパッタリングができないことがあった。
そこで、本発明は低屈折率の薄膜をDCスパッタリングによって成膜することのできる焼結体及びその製造方法を提供するものである。これによって、成膜速度の向上を可能とし、低屈折率の薄膜形成のスループットを大幅に改善することが可能となる。
The above-mentioned Patent Document 4 is a sputtering target capable of forming a film having a low refractive index. However, when the component composition is adjusted so as to further reduce the refractive index, low bulk resistance cannot be obtained and DC sputtering cannot be performed. There was a thing.
Therefore, the present invention provides a sintered body capable of forming a thin film having a low refractive index by DC sputtering and a method for producing the same. As a result, it is possible to increase the deposition rate, and to significantly improve the throughput of forming a thin film having a low refractive index.
 上記の課題を解決するために本発明者らは鋭意研究を行った結果、低屈折率の組成領域においても、不活性ガス又は真空雰囲気下で焼結を行うことにより、低バルク抵抗を達成することができ、DCスパッタリングが可能との知見を得た。そして、DCスパッタリングによる高速成膜が可能となり、光情報記録媒体の特性改善、生産性向上が可能であるとの知見を得た。 In order to solve the above problems, the present inventors have conducted intensive research. As a result, low bulk resistance is achieved by sintering in an inert gas or vacuum atmosphere even in a low refractive index composition region. And obtained knowledge that DC sputtering is possible. And the high-speed film-forming by DC sputtering was attained, and the knowledge that the characteristic improvement and productivity improvement of an optical information recording medium were possible was acquired.
本発明はこの知見に基づき、
1)亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)及び/又は珪素(Si)、酸素(O)からなり、Alの含有量がAl換算で0.1~3.0 mol%、Mg及び/又はSiの総含有量がMgO及び/又はSiO換算で27~70 mol%、残部がZnのZnO換算の含有量であることを特徴とする焼結体。
2)焼結体のバルク抵抗が10Ω・cm以下であることを特徴とする上記1)に記載の焼結体。
3)相対密度が90%以上であることを特徴とする上記1)又は2)に記載の焼結体。
4)さらに融点が1000°C以下の酸化物を形成する金属を含有し、前記酸化物を形成する金属の含有量が酸化物重量換算で0.1~5wt%であることを特徴とする上記1)~3)のいずれか一に記載の焼結体。
5)前記酸化物として、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOから選択した一種以上の材料であることを特徴とする上記4)記載の焼結体。
6)スパッタリングターゲットとして用いることを特徴とする上記1)~5)のいずれか一に記載の焼結体。
The present invention is based on this finding,
1) It consists of zinc (Zn), aluminum (Al), magnesium (Mg) and / or silicon (Si), oxygen (O), and the Al content is 0.1 to 3.0 mol in terms of Al 2 O 3. %, Mg and / or 27 ~ 70 mol% total content of MgO and / or SiO 2 in terms of Si, sintered, wherein the balance of the content of ZnO conversion Zn.
2) The sintered body according to 1) above, wherein the sintered body has a bulk resistance of 10 Ω · cm or less.
3) The sintered body according to 1) or 2) above, wherein the relative density is 90% or more.
4) A metal that further forms an oxide having a melting point of 1000 ° C. or lower, and the content of the metal that forms the oxide is 0.1 to 5 wt% in terms of oxide weight. The sintered body according to any one of 1) to 3).
As 5) the oxide, selected from B 2 O 3, P 2 O 5, K 2 O, V 2 O 5, Sb 2 O 3, TeO 2, Ti 2 O 3, PbO, Bi 2 O 3, MoO 3 The sintered body according to 4) above, which is one or more kinds of materials.
6) The sintered body according to any one of 1) to 5) above, which is used as a sputtering target.
 7)上記6)に記載の焼結体を用いてスパッタリングにより形成した膜であって、屈折率が2.0以下であることを特徴とする薄膜。 7) A thin film formed by sputtering using the sintered body described in 6) above, having a refractive index of 2.0 or less.
8)Al粉が0.1~3.0mol%、MgO及び/又はSiO粉が27~70mol%、残部をZnO粉として、合計量が100mol%となるようにこれらの原料粉を調整し、この原料粉を不活性ガス又は真空雰囲気下、1050°C以上、1500°C以下で焼結することを特徴とする焼結体の製造方法。
 9)さらに融点が1000°C以下の酸化物粉を0.1~5wt%添加して原料粉とすることを特徴とする上記8)記載の焼結体の製造方法。
8) Al 2 O 3 powder is 0.1 to 3.0 mol%, MgO and / or SiO 2 powder is 27 to 70 mol%, the balance is ZnO powder, and these raw material powders are adjusted so that the total amount becomes 100 mol%. A method for producing a sintered body, comprising adjusting and sintering the raw material powder in an inert gas or vacuum atmosphere at 1050 ° C. or higher and 1500 ° C. or lower.
9) The method for producing a sintered body according to 8) above, further comprising adding 0.1 to 5 wt% of an oxide powder having a melting point of 1000 ° C. or less to obtain a raw material powder.
以上により、本発明は、低屈折率の薄膜をDCスパッタリングによって成膜することのできる焼結体及びその製造方法を提供することができるという優れた効果を有する。また、特に光情報記録媒体用薄膜(特に保護膜、反射層、半透過膜層としての使用)に有用であるスパッタリングターゲットを提供できる。以上の通り、光情報記録媒体の特性の向上、設備コストの低減化、成膜速度の向上によるスループットを大幅に改善することが可能となるという優れた効果を有する。 As described above, the present invention has an excellent effect that it is possible to provide a sintered body capable of forming a thin film having a low refractive index by DC sputtering and a method for manufacturing the same. In addition, it is possible to provide a sputtering target that is particularly useful for a thin film for an optical information recording medium (particularly for use as a protective film, a reflective layer, or a semi-transmissive film layer). As described above, there are excellent effects that it is possible to significantly improve the throughput by improving the characteristics of the optical information recording medium, reducing the equipment cost, and improving the film forming speed.
本発明は、亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)及び/又は珪素(Si)、酸素(O)を構成元素とする焼結体であって、Alの含有量がAl換算で0.1~3.0 mol%、Mg及び/又はSiの総含有量がMgO及び/又はSiO換算で27~70 mol%、残部がZnのZnO換算の含有量であり、DCスパッタリングが可能な程度の低バルク抵抗を備えることを特徴とする。
原料の調整の際、残部をZnOとして各酸化物の比率をその合計が100mol%の組成となるように調整するため、Znの含有量は、残部のZnO換算から求めることができる。
なお、本発明では、焼結体中の各金属の含有量を酸化物換算で規定しているが、焼結体中の各金属はその一部又は全てが複合酸化物として存在している。また、通常用いられる焼結体の成分分析では、酸化物ではなく、金属として、それぞれの含有量が測定される。
The present invention is a sintered body having zinc (Zn), aluminum (Al), magnesium (Mg) and / or silicon (Si), and oxygen (O) as constituent elements, and the Al content is Al 2 O. 3 0.1 ~ 3.0 mol% in terms of, Mg and / or 27 ~ 70 mol% total content of MgO and / or SiO 2 in terms of Si, a content of ZnO in terms of the balance Zn, DC It has a low bulk resistance that allows sputtering.
In adjusting the raw materials, the balance is adjusted so that the balance of each oxide is 100 mol% with the balance being ZnO, and therefore the Zn content can be determined from the balance of ZnO.
In addition, in this invention, although content of each metal in a sintered compact is prescribed | regulated in conversion of an oxide, each metal in a sintered compact exists in part or all as complex oxide. Moreover, in the component analysis of the sintered body normally used, each content is measured not as an oxide but as a metal.
本発明の焼結体は、導電性を付与するために、Alの酸化物をAl換算で0.1~3.0 mol%添加することを特徴とする。この範囲を超えるAlの酸化物の添加は、所望の導電性を付与することが困難となる。
また、本発明の焼結体は、屈折率を低下させるために、Mg及び/又はSiの酸化物を添加することを特徴とする。MgOとSiOは、それぞれ単独添加又は複合添加が可能であり、いずれも本発明の目的を達成することができる。通常、MgO及び/又はSiOが27mol%以上では、バルク抵抗値が高くなってDCスパッタリングが困難となるが、本発明によれば、MgO及び/又はSiOが27mol%以上であっても、DCスパッタリングが可能な程度のバルク抵抗値を得ることが可能となる。一方、70mol%超となると、低バルク抵抗を維持することが困難となるため、好ましくない。
The sintered body of the present invention is characterized by adding 0.1 to 3.0 mol% of an oxide of Al in terms of Al 2 O 3 in order to impart conductivity. Addition of an Al oxide exceeding this range makes it difficult to impart desired conductivity.
In addition, the sintered body of the present invention is characterized by adding an oxide of Mg and / or Si in order to lower the refractive index. MgO and SiO 2 can be added individually or in combination, respectively, and both can achieve the object of the present invention. Usually, when MgO and / or SiO 2 is 27 mol% or more, the bulk resistance value becomes high and DC sputtering becomes difficult, but according to the present invention, even if MgO and / or SiO 2 is 27 mol% or more, A bulk resistance value capable of DC sputtering can be obtained. On the other hand, if it exceeds 70 mol%, it is difficult to maintain a low bulk resistance, which is not preferable.
また、本発明の焼結体は、DCスパッタリングが可能な程度のバルク抵抗値を有するものであるが、より好ましくは10Ω・cm以下である。さらに好ましくは1Ω・cm以下である。 In addition, the sintered body of the present invention has a bulk resistance value that allows DC sputtering, but is more preferably 10 Ω · cm or less. More preferably, it is 1 Ω · cm or less.
また、本発明の焼結体は、相対密度が90%以上であることが好ましい。相対密度が90%以上とすることにより、スパッタリングにより成膜した薄膜の膜厚均一性を向上することができる。 The sintered body of the present invention preferably has a relative density of 90% or more. By setting the relative density to 90% or more, the film thickness uniformity of the thin film formed by sputtering can be improved.
また、本発明は、融点が1000°C以下の酸化物を形成する金属を、酸化物換算で0.1~5wt%含有することを特徴とする。融点が1000°C以下の酸化物の添加することにより、低温焼結化、高密度化が可能となり、異常放電がなく、安定したスパッタリングが可能となる。この低融点酸化物として、特にB、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOから選択した材料の添加が有効である。含有量が0.1wt%未満であると前記の効果が十分に得られず、5wt%を超えると、組成によっては特性に影響を与えるので好ましくない。 Further, the present invention is characterized by containing 0.1 to 5 wt% of a metal forming an oxide having a melting point of 1000 ° C. or less in terms of oxide. By adding an oxide having a melting point of 1000 ° C. or lower, low-temperature sintering and high density can be achieved, no abnormal discharge occurs, and stable sputtering is possible. As this low melting point oxide, especially from B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO 3 Addition of selected materials is effective. If the content is less than 0.1 wt%, the above effect cannot be obtained sufficiently, and if it exceeds 5 wt%, the properties are affected depending on the composition, which is not preferable.
本発明の焼結体スパッタリングターゲットは、波長550nmの光に対して、屈折率2.00以下の低屈折率の光ディスク用光学薄膜を工業的に製造するために有用である。特に、光情報記録媒体の保護層、反射層又は半透過層を形成するためのターゲットとして用いることができる。 The sintered compact sputtering target of the present invention is useful for industrially producing an optical thin film for an optical disc having a refractive index of 2.00 or less with respect to light having a wavelength of 550 nm. In particular, it can be used as a target for forming a protective layer, a reflective layer, or a semi-transmissive layer of an optical information recording medium.
本発明のスパッタリングターゲットの製造に際しては、原料となるAl粉を0.1~3.0mol%、MgO及び/又はSiO粉を27~70mol%、残部をZnO粉として、これらが100mol%となるように、基本となる原料粉を調整し、この混合粉を、1050℃以上、1500℃以下で焼結する。
本発明において特に重要な点は、不活性ガス又は真空雰囲気下で焼結することである。不活性ガス又は真空雰囲気下で焼結することにより、ZnOの一部に酸素欠損が生じる。この酸素欠損により導電性が得られるようになり、DCスパッタが可能な低バルク抵抗値を備える焼結体を作製することができる。雰囲気ガスとしては、アルゴンガス、窒素ガスなどがあるが、いわゆる不活性雰囲気として一般に用いられているものを使用することができる。
In the production of the sputtering target of the present invention, the raw material Al 2 O 3 powder is 0.1 to 3.0 mol%, MgO and / or SiO 2 powder is 27 to 70 mol%, and the balance is ZnO powder. %, The basic raw material powder is adjusted, and this mixed powder is sintered at 1050 ° C. or higher and 1500 ° C. or lower.
Of particular importance in the present invention is sintering under an inert gas or vacuum atmosphere. Sintering in an inert gas or vacuum atmosphere causes oxygen vacancies in part of ZnO. Due to this oxygen deficiency, conductivity can be obtained, and a sintered body having a low bulk resistance capable of DC sputtering can be produced. As the atmospheric gas, there are argon gas, nitrogen gas and the like, and those generally used as so-called inert atmosphere can be used.
また、原料となるAl粉とZnO粉を予め混合して予め仮焼し、次にこの仮焼結したAl-ZnO粉(AZO粉)に、MgO及び/又はSiO粉を混合して焼結することもできる。単にMgO及び/又はSiO粉を添加する場合には、AlとMgO及び/又はSiOが反応してスピネルとなり易く、バルク抵抗値が上昇する傾向にある。したがって、焼結体のより低バルク抵抗化を達成するためには、仮焼結したAl-ZnO分(AZO粉)を使用して焼結することが望まれる。 Further, the Al 2 O 3 powder and the ZnO powder as raw materials are preliminarily mixed and pre-calcined, and then the pre-sintered Al 2 O 3 —ZnO powder (AZO powder) is mixed with MgO and / or SiO 2 powder. Can also be mixed and sintered. When merely adding MgO and / or SiO 2 powder, Al 2 O 3 and MgO and / or SiO 2 are likely to react to form spinel, and the bulk resistance value tends to increase. Therefore, in order to achieve a lower bulk resistance of the sintered body, it is desired to sinter using a pre-sintered Al 2 O 3 —ZnO content (AZO powder).
さらに、原料となるAl粉とZnO粉を予め混合して予め仮焼してAZO粉とするとともに、原料となるMgO粉とSiO粉とを同様に混合して仮焼し、次に前記仮焼したAl-ZnO粉(AZO粉)に、このMgO-SiO仮焼粉を混合して焼結することが推奨される。これによって、スピネル化をさらに抑制でき低バルク抵抗化を達成できるからである。 Further, the raw material Al 2 O 3 powder and ZnO powder are mixed in advance and preliminarily calcined to obtain AZO powder, and the raw material MgO powder and SiO 2 powder are similarly mixed and calcined. In addition, it is recommended that the MgO—SiO 2 calcined powder be mixed with the calcined Al 2 O 3 —ZnO powder (AZO powder) and sintered. This is because spinelization can be further suppressed and low bulk resistance can be achieved.
本発明は、これにさらに、融点が1000°C以下の低融点酸化物粉を0.1~5wt%添加して焼結用原料とすることができる。また、この低融点酸化物粉を予め混合し仮焼した仮焼粉に混合することも有効である。 In the present invention, 0.1 to 5 wt% of a low melting point oxide powder having a melting point of 1000 ° C. or lower can be added to obtain a raw material for sintering. It is also effective to mix this low melting point oxide powder with the calcined powder previously mixed and calcined.
本発明は、このような成分組成を有する焼結体において、導電性を保有させることができ、直流スパッタ(DCスパッタ)によって薄膜を形成することが可能となる。DCスパッタリングはRFスパッタリングに比べ、成膜速度が速く、スパッタリング効率が良いという点で優れており、スループットを著しく向上できる。また、DCスパッタリング装置は価格が安く、制御が容易であり、電力の消費量も少なくて済むという利点がある。保護膜自体の膜厚を薄くすることも可能となるため、生産性向上、基板加熱防止効果をさらに発揮できる。 In the present invention, the sintered body having such a component composition can retain electrical conductivity, and a thin film can be formed by direct current sputtering (DC sputtering). DC sputtering is superior to RF sputtering in that the deposition rate is high and sputtering efficiency is good, and the throughput can be significantly improved. Further, the DC sputtering apparatus is advantageous in that it is inexpensive, easy to control, and consumes less power. Since it is possible to reduce the thickness of the protective film itself, it is possible to further improve productivity and prevent substrate heating.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 1)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
 焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は100.0%に達し、バルク抵抗は3.2×10-3Ω・cm(3.2mΩ・cm)となった。なお、本明細書で表示する密度は相対密度を意味する。各相対密度は、原料の密度から計算されたターゲットの理論密度に対して、製造した複合酸化物であるターゲットの密度を計測し、それぞれの密度から相対密度を求めたものである。原料の単なる混合物でないため、表1に示すように、相対密度が100%を超える例がある。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 100.0%, and the bulk resistance was 3.2 × 10 −3 Ω · cm (3.2 mΩ · cm). In addition, the density displayed in this specification means a relative density. Each relative density is obtained by measuring the density of a target, which is a produced complex oxide, with respect to the theoretical density of the target calculated from the density of the raw material, and obtaining the relative density from each density. Since it is not a simple mixture of raw materials, as shown in Table 1, there is an example in which the relative density exceeds 100%.
上記の仕上げ加工した6インチφサイズのターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、Ar-2%O混合ガス圧0.5Paとし、膜厚1500Åに成膜した。成膜速度は2.8Å/secが達成され、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.92、体積抵抗率:2E+05(2×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。これらの条件及び結果を、まとめて表1に示す。 Sputtering was performed using the above-mentioned 6-inch φ-sized target that was finished. The sputtering conditions were DC sputtering, sputtering power 500 W, Ar-2% O 2 mixed gas pressure 0.5 Pa, and a film thickness of 1500 mm was formed. The film formation rate was 2.8 Å / sec, stable DC sputtering was possible, and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.92, volume resistivity: 2E + 05 (2 × 10 5 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01. These conditions and results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 2)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は99.5%に達し、バルク抵抗は2.9×10-3Ω・cm(2.9mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.90、体積抵抗率:6E+04(6×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 99.5%, and the bulk resistance was 2.9 × 10 −3 Ω · cm (2.9 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.90, volume resistivity: 6E + 04 (6 × 10 4 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例3)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 3)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は99.8%に達し、バルク抵抗は3.0×10-3Ω・cm(3.0mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.93、体積抵抗率:4E+05(4×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 99.8%, and the bulk resistance was 3.0 × 10 −3 Ω · cm (3.0 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.93, volume resistivity: 4E + 05 (4 × 10 5 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例4)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
Example 4
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は107.9%に達し、バルク抵抗は3.7×10-1Ω・cm(0.37mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.70、体積抵抗率:8E+08(8×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 107.9%, and the bulk resistance was 3.7 × 10 −1 Ω · cm (0.37 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.70, volume resistivity: 8E + 08 (8 × 10 8 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例5)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 5)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は98.1%に達し、バルク抵抗は9.0×10-1Ω・cm(0.9Ω・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.83、体積抵抗率:4E+05(4×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 98.1%, and the bulk resistance was 9.0 × 10 −1 Ω · cm (0.9 Ω · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.83, volume resistivity: 4E + 05 (4 × 10 8 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例6)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 6)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は101.5%に達し、バルク抵抗は2.8×10-3Ω・cm(2.8mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.88、体積抵抗率:5E+07(5×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 101.5%, and the bulk resistance was 2.8 × 10 −3 Ω · cm (2.8 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.88, volume resistivity: 5E + 07 (5 × 10 7 Ω · cm), extinction coefficient (λ = 450 nm): <0.01.
(実施例7)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、アルゴン雰囲気下、1200°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 7)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less The raw materials were used, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, it hot-pressed (HP) at the temperature of 1200 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は97.8%に達し、バルク抵抗は1.6×10-3Ω・cm(1.6mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.92、体積抵抗率:2E+05(2×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 97.8%, and the bulk resistance was 1.6 × 10 −3 Ω · cm (1.6 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.92, volume resistivity: 2E + 05 (2 × 10 5 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例8)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、窒素雰囲気下、1400°Cの温度で焼結した。
(Example 8)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it sintered at the temperature of 1400 degreeC by nitrogen atmosphere.
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は94.5%に達し、バルク抵抗は3.0×10-3Ω・cm(3.0mΩ・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.92、体積抵抗率:3E+05(3×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 94.5%, and the bulk resistance was 3.0 × 10 −3 Ω · cm (3.0 mΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.92, volume resistivity: 3E + 05 (3 × 10 5 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(比較例1)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、大気中、1200°Cの温度で焼結した。
(Comparative Example 1)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it sintered at the temperature of 1200 degreeC in air | atmosphere.
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は90.9%であったが、バルク抵抗は1×10Ω・cm(1kΩ・cm)を超える値となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行ったが、安定したDCスパッタができなかった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target was 90.9%, but the bulk resistance exceeded 1 × 10 3 Ω · cm (1 kΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch diameter target, but stable DC sputtering could not be performed.
(比較例2)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Comparative Example 2)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, the average particle diameter is 5 μm corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は98.7%であったが、バルク抵抗は1×10Ω・cm(1kΩ・cm)を超える値となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行ったが、安定したDCスパッタができなかった。また、成膜サンプルの屈折率(波長550nm)は1.67であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target was 98.7%, but the bulk resistance was a value exceeding 1 × 10 3 Ω · cm (1 kΩ · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch diameter target, but stable DC sputtering could not be performed. The refractive index (wavelength 550 nm) of the film formation sample was 1.67.
(実施例9)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本組成の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
Example 9
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of MgO powder with an average particle size of 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less As shown in Table 1, after adjusting the ratio of the basic composition so that the total amount becomes 100 mol% as shown in Table 1, it is equivalent to 3N, which is a low melting point oxide having a melting point of 1000 ° C. or less, and has an average particle size of 5 μm. The following B 2 O 3 powder was prepared at the ratio shown in Table 1. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は99.2%に達し、バルク抵抗は3.0×10-3Ω・cm(3.0Ω・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.93、体積抵抗率:3E+05(3×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 99.2%, and the bulk resistance was 3.0 × 10 −3 Ω · cm (3.0 Ω · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.93, volume resistivity: 3E + 05 (3 × 10 5 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例10)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgO粉、3N相当で平均粒径5μm以下のAl粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これらの粉末を表1に示す配合比に調合し、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 10)
ZnO powder of 3N equivalent to 5 μm or less, 3N equivalent MgO powder with an average particle size of 5 μm or less, and 3N equivalent Al 2 O 3 powder with an average particle size of 5 μm or less as a basic raw material, as shown in Table 1, the total amount After adjusting the ratio of the basic raw material so as to be 100 mol%, the ratio shown in Table 1 is the B 2 O 3 powder equivalent to 3N and having an average particle diameter of 5 μm or less, which is a low melting point oxide having a melting point of 1000 ° C. or less. Prepared with. Next, these powders were prepared in the mixing ratio shown in Table 1, mixed, and then hot pressed (HP) at a temperature of 1050 ° C. in an argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は99.6%に達し、バルク抵抗は2.0×10-3Ω・cm(3.0Ω・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.93、体積抵抗率:9E+04(9×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 99.6%, and the bulk resistance was 2.0 × 10 −3 Ω · cm (3.0 Ω · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.93, volume resistivity: 9E + 04 (9 × 10 4 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
(実施例11)
3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のAl粉、3N相当で平均粒径5μm以下のSiO粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、これに融点が1000℃以下の低融点酸化物である3N相当で平均粒径5μm以下のB粉を表1に示す比率にて調合した。次に、これを混合した後、アルゴン雰囲気下、1050°Cの温度でホットプレス(HP)した。ホットプレスの圧力は220kg/cmとした。
(Example 11)
ZnO powder of 3N equivalent to 5 μm or less, 3N equivalent of Al 2 O 3 powder with an average particle size of 5 μm or less, and 3N equivalent of SiO 2 powder with an average particle size of 5 μm or less as a basic raw material. After adjusting the ratio of the basic raw material so that the amount becomes 100 mol%, B 2 O 3 powder having an average particle diameter of 5 μm or less corresponding to 3N which is a low melting point oxide having a melting point of 1000 ° C. or less is shown in Table 1. Formulated in proportions. Next, after mixing this, it hot-pressed (HP) at the temperature of 1050 degreeC by argon atmosphere. The pressure of the hot press was 220 kg / cm 2 .
焼結後、この焼結体を機械加工でターゲット形状に仕上げた。焼結体ターゲットの密度は99.3%に達し、バルク抵抗は4.0×10-3Ω・cm(3.0Ω・cm)となった。また、上記の仕上げ加工した6インチφサイズのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、安定したDCスパッタができ、良好なスパッタ性を有した。成膜サンプルの屈折率(波長550nm)は1.92、体積抵抗率:6E+07(6×10Ω・cm)、消衰係数(λ=450nm):<0.01であった。 After sintering, the sintered body was finished into a target shape by machining. The density of the sintered compact target reached 99.3%, and the bulk resistance was 4.0 × 10 −3 Ω · cm (3.0 Ω · cm). Further, sputtering was performed under the same conditions as in Example 1 using the above-finished 6-inch φ target. As a result, stable DC sputtering was possible and good sputtering properties were obtained. The refractive index (wavelength 550 nm) of the film formation sample was 1.92, volume resistivity: 6E + 07 (6 × 10 7 Ω · cm), and extinction coefficient (λ = 450 nm): <0.01.
本発明の特徴は、屈折率を低下させるための成分調整を行った場合であっても、不活性ガス又は真空雰囲気下で焼結することにより、焼結体の低バルク抵抗化を達成し、安定したDCスパッタを可能とした点にある。そして、このDCスパッタリングの特徴である、スパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。また、成膜の際にスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができる。
 本発明の焼結体スパッタリングターゲットは、光学薄膜、有機ELテレビ用、タッチパネル用電極用、ハードディスクのシード層等の薄膜形成のために極めて有用である。
The feature of the present invention is to achieve low bulk resistance of the sintered body by sintering in an inert gas or vacuum atmosphere even when the component adjustment for lowering the refractive index is performed. This is in that stable DC sputtering is possible. And there is a remarkable effect that the controllability of sputtering, which is the feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. In addition, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
The sintered compact sputtering target of the present invention is extremely useful for forming thin films such as optical thin films, organic EL televisions, touch panel electrodes, and hard disk seed layers.

Claims (9)

  1. 亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)及び/又は珪素(Si)、酸素(O)からなり、Alの含有量がAl換算で0.1~3.0 mol%、Mg及び/又はSiの総含有量がMgO及び/又はSiO換算で27~70 mol%、残部がZnのZnO換算の含有量であることを特徴とする焼結体。 It consists of zinc (Zn), aluminum (Al), magnesium (Mg) and / or silicon (Si), oxygen (O), and the Al content is 0.1 to 3.0 mol% in terms of Al 2 O 3 , A sintered body characterized in that the total content of Mg and / or Si is 27 to 70 mol% in terms of MgO and / or SiO 2 and the balance is the content of Zn in terms of ZnO.
  2. 焼結体のバルク抵抗が10Ω・cm以下であることを特徴とする請求項1に記載の焼結体。 The sintered body according to claim 1, wherein a bulk resistance of the sintered body is 10 Ω · cm or less.
  3. 相対密度が90%以上であることを特徴とする請求項1又は2に記載の焼結体。 The sintered compact according to claim 1 or 2, wherein a relative density is 90% or more.
  4. さらに融点が1000°C以下の酸化物を形成する金属を含有し、前記酸化物を形成する金属の含有量が酸化物重量換算で0.1~5wt%であることを特徴とする請求項1~3のいずれか一項に記載の焼結体。 2. The metal that forms an oxide having a melting point of 1000 ° C. or less, and the content of the metal that forms the oxide is 0.1 to 5 wt% in terms of oxide weight. 4. The sintered body according to any one of items 1 to 3.
  5. 前記酸化物として、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOから選択した一種以上の材料であることを特徴とする請求項4記載の焼結体。 The oxide selected from B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO 3 The sintered body according to claim 4, wherein the sintered body is made of the above material.
  6. スパッタリングターゲットとして用いることを特徴とする請求項1~5のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 5, wherein the sintered body is used as a sputtering target.
  7.  請求項6記載の焼結体を用いてスパッタリングにより形成した膜であって、屈折率が2.0以下であることを特徴とする薄膜。 A thin film formed by sputtering using the sintered body according to claim 6 and having a refractive index of 2.0 or less.
  8.   Al粉が0.2~3.0mol%、MgO及び/又はSiO粉が27~70mol%、残部をZnO粉として、合計量が100mol%となるようにこれらの原料粉を調整し、この原料粉を不活性ガス又は真空雰囲気下、1050°C以上、1500°C以下で焼結することを特徴とする焼結体の製造方法。 These raw material powders are adjusted so that the total amount becomes 100 mol%, with Al 2 O 3 powder being 0.2 to 3.0 mol%, MgO and / or SiO 2 powder being 27 to 70 mol% and the balance being ZnO powder. The raw material powder is sintered at 1050 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere.
  9. さらに融点が1000°C以下の酸化物粉を0.1~5wt%添加して原料粉とすることを特徴とする請求項8記載の焼結体の製造方法。 9. The method for producing a sintered body according to claim 8, further comprising adding 0.1 to 5 wt% of oxide powder having a melting point of 1000 ° C. or less to obtain raw material powder.
PCT/JP2013/051043 2012-07-09 2013-01-21 Conductive oxide sintered body and method for producing same WO2014010259A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013551455A JP5727043B2 (en) 2012-07-09 2013-01-21 Conductive oxide sintered body and method for producing the same
CN201380002734.7A CN103748055B (en) 2012-07-09 2013-01-21 Electroconductive oxide sintered body and its manufacture method
KR1020137034721A KR101583124B1 (en) 2012-07-09 2013-01-21 Sintered compact of conductive oxide and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-153243 2012-07-09
JP2012153243 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010259A1 true WO2014010259A1 (en) 2014-01-16

Family

ID=49915738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051043 WO2014010259A1 (en) 2012-07-09 2013-01-21 Conductive oxide sintered body and method for producing same

Country Status (5)

Country Link
JP (1) JP5727043B2 (en)
KR (1) KR101583124B1 (en)
CN (1) CN103748055B (en)
TW (1) TWI568705B (en)
WO (1) WO2014010259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151325A (en) * 2014-02-18 2015-08-24 京セラ株式会社 Ceramic sintered body and package

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110175B2 (en) 2018-03-30 2022-08-01 Jx金属株式会社 MgAl2O4 sintered body, sputtering target using said sintered body, and method for producing MgAl2O4 sintered body
EP3875443A4 (en) 2018-10-31 2022-08-03 Idemitsu Kosan Co., Ltd. Sintered body
EP3992168A4 (en) * 2019-06-27 2023-08-02 Idemitsu Kosan Co.,Ltd. Oxide sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062130A (en) * 1992-06-15 1994-01-11 Mitsubishi Materials Corp Zinc oxide-based target for sputtering
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
JP2011202268A (en) * 2010-03-04 2011-10-13 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805813B2 (en) 1988-08-09 1998-09-30 東ソー株式会社 Sputtering target and method for manufacturing the same
JPH08264022A (en) 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film
JPH11322332A (en) 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
CN100476017C (en) * 2003-03-04 2009-04-08 日矿金属株式会社 Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
JP5388266B2 (en) * 2008-03-19 2014-01-15 国立大学法人岩手大学 ZnO-based target and manufacturing method thereof, conductive thin film manufacturing method, and conductive thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062130A (en) * 1992-06-15 1994-01-11 Mitsubishi Materials Corp Zinc oxide-based target for sputtering
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
JP2011202268A (en) * 2010-03-04 2011-10-13 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151325A (en) * 2014-02-18 2015-08-24 京セラ株式会社 Ceramic sintered body and package

Also Published As

Publication number Publication date
KR20140019000A (en) 2014-02-13
CN103748055B (en) 2017-10-13
JPWO2014010259A1 (en) 2016-06-20
KR101583124B1 (en) 2016-01-07
TW201402517A (en) 2014-01-16
CN103748055A (en) 2014-04-23
JP5727043B2 (en) 2015-06-03
TWI568705B (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JPWO2006129410A1 (en) Sputtering target and manufacturing method thereof
JP5727043B2 (en) Conductive oxide sintered body and method for producing the same
EP2028287B1 (en) Sputtering target
JP5329537B2 (en) Sputtering target and amorphous optical thin film
JP4628685B2 (en) Sputtering target for optical information recording medium and optical information recording medium
JP5450906B1 (en) Sputtering target and manufacturing method thereof
JPWO2005078152A1 (en) Sputtering target, optical information recording medium and manufacturing method thereof
JP4642494B2 (en) Sputtering target and optical information recording medium
WO2014069367A1 (en) Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide
JP5337016B2 (en) Sintered sputtering target, method for producing thin film for optical recording medium, and thin film for optical recording medium
CN107012435B (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP5172868B2 (en) Sputtering target, optical information recording medium and manufacturing method thereof
JP5476636B2 (en) Sputtering target manufacturing method and sputtering target
KR20070017503A (en) Sputtering target, optical information recording medium and process for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013551455

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034721

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817336

Country of ref document: EP

Kind code of ref document: A1