WO2014007570A1 - Carbon nanotube structure, production method for same and field emission device using same - Google Patents

Carbon nanotube structure, production method for same and field emission device using same Download PDF

Info

Publication number
WO2014007570A1
WO2014007570A1 PCT/KR2013/005968 KR2013005968W WO2014007570A1 WO 2014007570 A1 WO2014007570 A1 WO 2014007570A1 KR 2013005968 W KR2013005968 W KR 2013005968W WO 2014007570 A1 WO2014007570 A1 WO 2014007570A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
nanotube structure
carbon nanotubes
carbon nanotube
carbon
Prior art date
Application number
PCT/KR2013/005968
Other languages
French (fr)
Korean (ko)
Inventor
김용협
강태준
장의윤
이정석
송혜린
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2014007570A1 publication Critical patent/WO2014007570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a nanotube structure and a field emission device using the same, and more particularly, to a nanotube structure that can be used in the field emission device using a nanotube and a field emission device using the same.
  • field emission is a physical phenomenon in which electrons are emitted by a tunneling effect on a solid surface when an external strong electric field is applied, and the electrons bound below the solid Fermi energy are thinned by a strong electric field. Because tunnels are released by tunneling, they are highly dependent on the strength of the electric field and the work function of the solid.
  • the device using the field emission principle has excellent luminous efficiency, light and small size, and is environmentally friendly, and thus can be applied to general illumination light sources, displays, and LCD back light units.
  • it can be applied to the field of electron source such as THz vacuum element, X-ray tube, ionization gauge, etc., which require stable high current density.
  • Carbon nanotubes have excellent field concentration effects, low work functions, and chemical stability due to their high aspect ratio and high electrical conductivity. As a result, it is expected to be used as an ideal electron emission source for the field emission devices.
  • Cathode electrodes using carbon nanotubes according to this method are difficult to manufacture as a whole, difficult to control the length and density of the carbon nanotubes, which is difficult to use for high current field emission.
  • a method of controlling the density before the growth of carbon nanotubes there is a method of patterning a catalyst metal, a method of controlling the concentration of a catalyst solution, a method of growing by using a template, and the like. There is a method of etching with a plasma after the growth of, etc., all of which are difficult to control the density effectively and also did not provide electrons effectively when used as a field emission source.
  • an object of the present invention is to provide a nanotube structure that can provide a more efficient field emission device by utilizing technologies such as carbon nanotubes as a key new material of nanotechnology in the field emission device.
  • Another object of the present invention is to provide a carbon nanotube structure capable of stably emitting electrons without damaging the carbon nanotube structure due to efficient heat transfer and electron transfer when used as a field emission device.
  • the carbon nanotubes are divided into high density and low density parts of the body, the high density parts are arranged side by side carbon nanotubes, the low density part is the high density Compared to the lower density and relatively far away from the high density boundary portion provides a carbon nanotube structure characterized in that the density is gradually lowered.
  • the high-density portion of the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes are arranged side by side vertically.
  • the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes of the high density and low density portion are continuously connected.
  • the present invention provides a carbon nanotube structure comprising a high density portion formed by pressing a portion of the vertically arranged carbon nanotubes in a horizontal direction and a low density portion not pressurized.
  • the present invention provides a carbon nanotube structure characterized in that the pressing in both directions when the pressure in the horizontal direction.
  • the present invention provides a carbon nanotube structure characterized in that the pressing in all directions when the pressure in the horizontal direction.
  • the present invention provides a carbon nanotube structure characterized in that the density is gradually lowered away from the boundary portion of the high density and low density portion.
  • the present invention provides a carbon nanotube structure, characterized in that the cross section of the low density portion is fan-shaped.
  • the density of the high density carbon nanotubes is 3 ⁇ 10 13 pieces / cm 2 to 8 ⁇ 10 14 pieces / cm 2
  • the density of the low density carbon nanotubes is 7 ⁇ 10 11 pieces. It provides a carbon nanotube structure characterized in that / cm 2 ⁇ 2 ⁇ 10 13 / cm 2.
  • the present invention provides a carbon nanotube structure characterized in that the high-density portion is cylindrical, the shape of the low-density portion is hemispherical.
  • the density of the high-density carbon nanotubes is 7 ⁇ 10 13 pieces / cm 2 to 2 ⁇ 10 15 pieces / cm 2, and the low density carbon nanotubes
  • the density of 3 ⁇ 10 12 / cm 2 ⁇ 8 ⁇ 10 13 provides a carbon nanotube structure, characterized in that.
  • the present invention provides a carbon nanotube structure, characterized in that the continuous length of the carbon nanotubes of high density and low density is 100 ⁇ m ⁇ 100mm.
  • the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the present invention provides a carbon nanotube structure characterized in that it is utilized in the field emission device including a crimping mechanism of the metal pressed to the high-density portion.
  • the present invention is a vertical alignment step of vertically arranging carbon nanotubes; And vertically squeezing the vertically arranged carbon nanotubes, wherein the low-density portion is divided into a compressed high-density portion and a low-density portion that is not compressed, and the low-density portion is relatively low density compared to the high-density and is separated from the high-density boundary portion. It provides a method for producing a carbon nanotube structure characterized in that the density is gradually lowered.
  • the present invention provides a method for producing a carbon nanotube structure for vertically arranging carbon nanotubes by patterning a metal catalyst and using a carrier gas and a reaction gas after depositing a catalytic metal on a silicon (Si) wafer in the vertical alignment step. do.
  • the present invention provides a method for producing a carbon nanotube structure, characterized in that the reaction gas using C 2 H 2 or CH 4 .
  • the present invention provides a method for producing a carbon nanotube structure in which a plurality of vertically arranged carbon nanotubes are present in the pressing step so that a plurality of carbon nanotube structures are formed by the pressing mechanism.
  • the present invention provides a method for producing a carbon nanotube structure, characterized in that the cross-section of the low density portion is fan-shaped.
  • the present invention provides a method for producing a carbon nanotube structure, characterized in that the shape of the low density portion is hemispherical.
  • the present invention provides a method for producing a carbon nanotube structure, characterized in that the continuous length of the carbon nanotubes of high density and low density is 100 ⁇ m ⁇ 100mm.
  • the present invention provides a method for producing a carbon nanotube structure, characterized in that the carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the present invention is a nanotube structure, wherein the nanotubes are divided into a single high density and low density parts, the high density parts are arranged side by side nanotubes, the low density parts are relatively low density and high density compared to the high density It is characterized in that the density is gradually lowered away from the boundary portion, the nanotubes provide a nanotube structure, characterized in that consisting of CuO, or ZnO.
  • the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes of the high density and low density portion are continuously connected.
  • the present invention provides a carbon nanotube structure, characterized in that the cross section of the low density portion is fan-shaped.
  • the present invention provides a field emission device comprising the carbon nanotube structure, nanotube structure or carbon nanotube structure prepared by the manufacturing method.
  • the present invention provides a field emission device characterized in that the electron is emitted from the low-density partial end of the nanotube structure.
  • the present invention provides a field emission device comprising a compression mechanism and a nanotube structure for transmitting a current, a plurality of nanotube structure between the compression mechanism.
  • the carbon nanotube structure according to the present invention, a method for manufacturing the same, and a field emission device using the same provide a more efficient field emission device by utilizing a technology such as carbon nanotubes, which attracts attention as a core new material of nanotechnology, in a field emission device. It is effective.
  • the carbon nanotube structure according to the present invention a method for manufacturing the same, and a field emission device using the same can efficiently emit heat without damaging the carbon nanotube structure due to efficient heat transfer and electron transfer when used as a field emission device. It works.
  • the field emission device according to the present invention can be used directly without manufacturing the crimping mechanism and the carbon nanotube structure through which the current is transmitted and can be used directly without separation, the contact area is widened to further improve the electron transfer ability to the cathode electrode There is.
  • FIG. 1 and 2 show a perspective view and a front view of the carbon nanotube structure according to an embodiment of the present invention.
  • 3 to 5 show a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
  • FIG. 6 is a perspective view of carbon nanotube structures according to another embodiment.
  • Figure 7 shows a schematic diagram for producing a vertically aligned carbon nanotubes used in the present invention.
  • FIG. 8 shows an SEM image of carbon nanotubes in which carbon nanotubes are vertically arranged.
  • Figure 9 shows a schematic process diagram of pressing the vertically arranged carbon nanotubes on both sides.
  • FIG. 10 is a photograph showing a front view and a plan view of a carbon nanotube structure formed by pressing vertically arranged carbon nanotubes through a pressing device.
  • FIG. 11 shows a plan view of a shape in which a plurality of carbon nanotube structures are manufactured by a pressing mechanism.
  • FIG. 12 shows an SEM image of a carbon nanotube structure manufactured according to an embodiment of the present invention.
  • Figure 13 shows the current value according to the electric field and time when used as a field emission source using a carbon nanotube structure according to an embodiment of the present invention.
  • the present invention relates to a carbon nanotube structure, wherein the carbon nanotubes are divided into a single high density and low density portions, the high density portions are arranged side by side carbon nanotubes, the low density portion is relatively low density compared to the high density As the distance from the high density boundary portion, the density is gradually lowered.
  • FIG. 1 and 2 show a perspective view and a front view of the carbon nanotube structure according to an embodiment of the present invention.
  • the carbon nanotube structure according to the present invention is integrally formed with a high density and a low density portion. That is, the carbon nanotubes of the high density portion and the carbon nanotubes of the low density portion are connected.
  • a low density and high density boundary portion is formed, and the low density portion is characterized by having the highest density at the boundary portion with the high density, and the density decreases gradually as the distance from the boundary portion increases.
  • the carbon nanotube structure When the carbon nanotube structure is formed in such a form, when it is used as an electric field emission source, the electron movement is activated. The emission of electrons due to the tunneling effect moves from the high density part to the low density part to generate electrons. do.
  • Carbon nanotube structure according to the present invention is characterized in that the high-density parts are vertically arranged side by side. In order to increase the density of the vertically aligned carbon nanotubes by applying a force from the outside to form a high density.
  • the carbon nanotube structure has a boundary portion that can distinguish between the high density portion and the low density portion, and the low density portion is characterized in that the density gradually decreases away from the boundary portion.
  • the carbon nanotubes of the high density portion and the low density portion are characterized in that connected continuously. Numerous carbon nanotubes are arranged side by side at a high density, and at the boundary portion, the carbon nanotubes become low density as the array is gradually decreased in density in various directions.
  • the cross section of the low density portion may be formed in a fan shape, the continuous length of the high density and low density carbon nanotubes is characterized in that 100 ⁇ m ⁇ 100mm.
  • the density of the high density portion is made of 3 ⁇ 10 13 / cm 2 ⁇ 8 ⁇ 10 14 / cm 2
  • the density of the low density portion is 7 ⁇ 10 11 / cm 2 ⁇ 2 ⁇ 10 13 / cm 2 desirable.
  • the field emission effect is excellent when made within the above range.
  • the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the number of walls of the carbon nanotubes may be 1 to 20 layers.
  • 3 to 5 show a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
  • the middle portion is the high density portion 110 and the low density portion 130 is formed up and down.
  • the carbon nanotube structure has a boundary portion that can distinguish the high density portion and the low density portion, and the low density portion is characterized in that the density gradually decreases away from the boundary portion.
  • the high density portion may be formed in a cylindrical shape, and the low density portion may be formed in a hemispherical shape.
  • Other features of the high density portion and the low density portion are as described above. That is, the carbon nanotubes of the high density portion and the low density portion are continuously connected, and a large number of carbon nanotubes are arranged side by side at a high density, and at the boundary portion, the carbon nanotubes form a low density while gradually decreasing in density as the array is directed in various directions.
  • the carbon nanotube structures also preferably have a continuous length of high density and low density carbon nanotubes of 100 ⁇ m to 100 mm.
  • the density of the high-density carbon nanotubes is 7 ⁇ 10 13 pieces / cm 2 to 2 ⁇ 10 15 pieces / cm 2
  • the density of the low-density carbon nanotubes is 3 It is characterized by the fact that it is * 10 ⁇ 12> / cm ⁇ 2> -8 * 10 ⁇ 13> piece / cm ⁇ 2>.
  • Figure 6 shows a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
  • the present invention is also characterized in that the carbon nanotubes are divided into a single high density and low density portion, the high density portion is arranged side by side carbon nanotubes, the low density portion is relatively low density and farther away from the boundary portion of the high density than the high density While gradually lowering the density, a portion of the side of the low density portion may be cut and formed.
  • FIG. 6 a portion of the side of the low density portion of the carbon nanotube structure shown in FIG. 1 is cut and formed.
  • the electric field concentration of the carbon nanotube structure of the low density portion is strengthened, thereby providing a more efficient field emission device.
  • the carbon nanotube structure according to the present invention may vertically squeeze the carbon nanotubes and horizontally squeeze the vertically arranged carbon nanotubes so that a high density portion and a low density portion are formed. That is, it may be formed by pressing a portion of the vertically arranged carbon nanotubes horizontally and compressed.
  • a high density portion is formed, and a portion that is not pressurized may have a relatively low density portion compared to the high density.
  • the method of vertically arranging the carbon nanotubes is not particularly limited, and it is preferable to vertically align the carbon nanotubes using a metal catalyst.
  • Figure 7 shows a schematic diagram for producing a vertically aligned carbon nanotubes used in the present invention.
  • Carbon nanotubes can be grown on a metal catalyst, and a carrier gas and a reaction gas are injected after the metal catalyst is deposited on a silicon (Si) wafer. In addition, it may be carried out by forming a diffusion barrier layer between the metal catalyst and silicon.
  • the carrier gas Ar, He, N 2 , and the like, which are inert gases, may be used, and C 2 H 2 , CH 4 , and the like may be used as the reaction gas.
  • C 2 H 2 , CH 4 , and the like may be used as the reaction gas.
  • injecting the carrier gas and the reaction gas and applying a temperature of 700 ⁇ 900 °C carbon nanotubes are formed as the carbon of the reaction gas is bonded to the metal catalyst and grown.
  • the growth of carbon nanotubes may have a uniform height and vertically aligned carbon nanotubes having a uniform density may be formed.
  • the length of the vertically arranged carbon nanotubes according to the present invention can produce a carbon nanotube 100 ⁇ m ⁇ 100mm when the vertical alignment using a metal catalyst as described above.
  • FIG. 8 shows an SEM image of carbon nanotubes in which carbon nanotubes are vertically arranged.
  • the Fe catalyst it is possible to identify the carbon nanotubes having a uniform height and vertically arranged at a uniform density.
  • the vertically arranged carbon nanotubes are about 1.5mm in height, and the carbon nanotubes having a diameter of about 5nm are vertically arranged side by side.
  • the vertically arranged carbon nanotubes are pressed by horizontally pressing a portion to form carbon nanotubes with a high density portion and a low density portion with a low density portion.
  • FIG. 10 is a photograph showing a front view and a plan view of a carbon nanotube structure formed by pressing vertically arranged carbon nanotubes through a pressing mechanism.
  • the vertically arranged carbon nanotubes on the Si wafer 10 are positioned between the pressing mechanisms.
  • a portion of the vertically arranged carbon nanotubes, except for the Si wafers, is positioned between the pressing mechanisms, and thus, through the pressing mechanisms. By pressing, it can be formed to be divided into a high density portion, a boundary portion and a low density portion.
  • the crimping mechanism is not particularly limited, but has a strength that allows the vertically arranged carbon nanotubes to be more densely arranged, and can be used as it is for the cathode electrode together with the carbon nanotube structure. It is preferable.
  • the pressing surface of the pressing mechanism is preferably flat, and the pressing surface of the pressing mechanism and the upper surface of the pressing mechanism are preferably perpendicular to each other.
  • a plurality of carbon nanotube structure can be manufactured at the same time by using a pressing mechanism.
  • FIG. 11 shows a plan view of a shape in which a plurality of carbon nanotube structures are manufactured by a pressing mechanism.
  • a plurality of Si wafers in which vertically aligned carbon nanotubes are synthesized are positioned in a row between the pressing mechanisms so that a portion of the vertically aligned carbon nanotubes, except for the Si wafers, is positioned between the pressing mechanisms, and thus compressed.
  • Nanotubes can be prepared simultaneously. That is, a plurality of vertically arranged carbon nanotubes are simultaneously compressed in both directions through the crimping mechanism to form a high density portion, a boundary portion, and a low density portion, thereby manufacturing a carbon nanotube structure.
  • the carbon nanotube structure pressed using the pressing mechanism may be used as the cathode electrode of the field emission device together with the pressing mechanism.
  • the low-density portion is formed at the upper and lower portions, and the high-density portion is formed at the middle by pressing the middle portion of the vertically arranged carbon nanotubes. May be (see FIG. 3).
  • the low density portion may be formed in a hemispherical shape (see FIGS. 4 and 5).
  • the vertical arrangement and the structure formed by pressing a portion of the carbon nanotubes, as well as CuO, ZnO and the like can be arranged in a nanotube shape.
  • a portion of the vertically arranged nanotubes may be compressed to form nanotube structures having the same shape as carbon nanotubes by the manufacturing method described above.
  • FIG. 12 shows an SEM image of a carbon nanotube structure manufactured according to an embodiment of the present invention.
  • the carbon nanotubes are radially formed around the boundary portion in the low density portion of the carbon nanostructure. In other words, it can be seen that as the distance from the high-density boundary portion gradually decreases the density of the carbon nanotubes.
  • the present invention can provide a field emission device including the carbon nanotube structure.
  • the carbon nanotube structure may be included in the cathode portion, and the field emission device may be manufactured by placing electrons at the end of the low density portion of the carbon nanotube.
  • Figure 13 shows the current value according to the electric field and time when used as a field emission source using a carbon nanotube structure according to an embodiment of the present invention.
  • the carbon nanotube structure is a cathode in a vacuum of 1 ⁇ 10 -7 Torr to 3 ⁇ 10 -7 Torr, and the anode is positioned at regular intervals from the hemisphere of the structure, and an electric field is applied to form a hemisphere of the carbon nanotube structure.
  • an electric field is applied to form a hemisphere of the carbon nanotube structure.
  • electrons tunnel into the vacuum.
  • the electrons escaped to the vacuum are moved to the anode by the electric field so that a current flows.
  • the current increases with increasing electric field, and shows 42 mA at 12 V / ⁇ m.
  • the carbon nanotube structure operates stably without deterioration even at a current of 5 mA for 10 hours under a constant electric field.
  • the field emission device may have a high current density and a net current amount at a low electric field as many carbon nanotubes constitute a field emission unit by maintaining proper spacing, and the high density portion of the carbon nanotube structure is wide between nanotubes. Since the contact area has an electrical / thermal contact resistance reduction effect and a high mechanical adhesion effect, the contact area may have stable field emission performance even in the high current region.
  • the field emission device may include a compression mechanism and a carbon nanotube structure integrally.
  • the compression mechanism is preferably a metal compression mechanism.
  • the crimping mechanism and the carbon nanotube structure can be utilized as a cathode electrode, and the contact portion is compressed by a high pressure portion and the compression mechanism and the high-density portion are compressed by a considerable pressure. The movement can flow freely with little effect of resistance.
  • the field emission device according to the present invention can serve as a cathode electrode very efficiently.
  • a silicon (Si) wafer is prepared, and a catalytic metal is deposited on the silicon (Si) wafer.
  • Ar may be used as an inert gas, and C 2 H 2 was used as a reaction gas, and a temperature of about 900 ° C.
  • C 2 H 2 was used as a reaction gas, and a temperature of about 900 ° C.
  • the growth of the manufactured carbon nanotubes may have a uniform height.
  • the vertically arranged carbon nanotubes on the Si wafer are positioned between the compression mechanisms, so that a portion of the vertically aligned carbon nanotubes, except for the Si wafer, is positioned between the compression mechanisms.
  • the vertically arranged carbon nanotubes were pressed in both directions through the pressing device to form a carbon nanotube structure, which was divided into a high density portion, a boundary portion, and a low density portion.
  • the plurality of Si wafers in which the vertically aligned carbon nanotubes are synthesized are positioned between the pressing mechanisms, and a portion of the vertically aligned carbon nanotubes except for the Si wafers is positioned between the pressing mechanisms.
  • a plurality of vertically arranged carbon nanotubes were simultaneously pressed in both directions through the crimping mechanism to form a carbon nanotube structure to be divided into a high density portion, a boundary portion, and a low density portion.

Abstract

The present invention relates to a carbon nanotube structure, to a production method for same and to a field emission device using same. More specifically, the present invention relates to: a carbon nanotube structure wherein the carbon nanotubes are divided into integral high-density and low-density portions, and in the high-density portions the carbon nanotubes are disposed in line whereas the low-density portions are of relatively low density as compared with the high density and, at the same time, the density thereof progressively lessens with increasing distance from the high-density interface area; a production method for same; and a field emission device using same.

Description

탄소나노튜브 구조체, 이의 제조방법 및 이를 이용한 전계방출장치Carbon nanotube structure, manufacturing method thereof and field emission device using same
본 발명은 나노튜브 구조체 및 이를 이용한 전계방출장치에 관한 것으로 보다 상세하게는 나노튜브를 이용하여 전계방출 장치에 활용할 수 있는 나노튜브 구조체 및 이를 이용한 전계방출장치에 관한 것이다.The present invention relates to a nanotube structure and a field emission device using the same, and more particularly, to a nanotube structure that can be used in the field emission device using a nanotube and a field emission device using the same.
일반적으로, 전계 방출(Field Emission, FE)은 외부의 강한 전계가 가해졌을때 고체 표면에서 전자가 터널링 효과에 의해 방출되는 물리적 현상으로 고체의 페르미 에너지 아래에 속박된 전자들이 강한 전계에 의해 얇아진 전위 장벽을 터널링하여 방출되기 때문에 전계의 세기와 고체의 일함수(Work function)에 크게 의존하게 된다.In general, field emission (FE) is a physical phenomenon in which electrons are emitted by a tunneling effect on a solid surface when an external strong electric field is applied, and the electrons bound below the solid Fermi energy are thinned by a strong electric field. Because tunnels are released by tunneling, they are highly dependent on the strength of the electric field and the work function of the solid.
상기 전계 방출 원리를 이용한 장치는 발광 효율이 우수하고 경박단소화가 가능하며 환경친화적이어서 일반 조명광원, 디스플레이 및 LCD 백라이트 유닛(back light unit)에 응용 가능하다. 또한 안정적으로 높은 전류 밀도를 요하는 THz 진공소자, X-선 튜브(X-ray tube), 이온 게이지(ionization gauge) 등의 전자 소스(electron source) 분야에 응용 가능하다.The device using the field emission principle has excellent luminous efficiency, light and small size, and is environmentally friendly, and thus can be applied to general illumination light sources, displays, and LCD back light units. In addition, it can be applied to the field of electron source such as THz vacuum element, X-ray tube, ionization gauge, etc., which require stable high current density.
상기 전계 방출 소자용 전자 방출원으로 최근에 탄소나노튜브에 대한 많은 연구가 이루어지고 있는데, 탄소나노튜브는 큰 종횡비와 높은 전기전도도로 인해 전계 집중 효과가 우수하고, 일함수가 낮으며 화학적 안정성이 높아 상기 전계 방출 소자들에 이상적인 전자 방출원으로의 사용이 기대되고 있다.Recently, many studies on carbon nanotubes have been made as electron emission sources for field emission devices. Carbon nanotubes have excellent field concentration effects, low work functions, and chemical stability due to their high aspect ratio and high electrical conductivity. As a result, it is expected to be used as an ideal electron emission source for the field emission devices.
한 가닥의 탄소나노튜브는 높은 전류 밀도를 보이지만 순 전류량은 매우 미미하여 전자빔원 응용의 한계를 보여 왔다. 탄소나노튜브 기반의 전계방출 에미터의 응용 분야를 확대하기 위해서는 전류 밀도와 순 전류량을 동시에 향상시키는 노력이 필요하다. 이를 위해 복수의 탄소나노튜브들을 동일한 기판에 합성하여 전류방출 영역을 증가시키는 시도가 진행되어 왔다. 그러나 상기 복수의 탄소나노튜브들인 경우는 기판과의 높은 전기적/열적 계면저항과 기계적으로 약한 접착력 때문에 고전류 밀도에서 전압강하, 열분해, 기계적 파손 등의 많은 문제점이 발생하였다. 또한 성장된 탄소나노튜브가 적절한 밀도를 가지고 배열되어 있는 경우 전계방출원으로서의 효율이 높아지는 것으로 알려져 있다. 즉, 탄소나노튜브가 에미터로 사용될 때 탄소나노튜브의 밀도가 상당히 높아 전계차폐효과(field screening effect)의 영향을 많이 받게 되어 전류밀도가 감소하게 된다. 따라서 전계방출원인 탄소나노튜브의 밀도를 적정 수준으로 낮추어 전계방출 특성을 향상시키는 방법이 제안되었다.One strand of carbon nanotubes shows a high current density, but the net current is very small, limiting the application of electron beam sources. In order to expand the field of application of carbon nanotube-based field emission emitters, it is necessary to simultaneously improve current density and net current amount. To this end, attempts have been made to increase the current emission region by synthesizing a plurality of carbon nanotubes on the same substrate. However, in the case of the plurality of carbon nanotubes, many problems, such as voltage drop, thermal decomposition, and mechanical breakdown, occur at high current densities due to high electrical / thermal interface resistance with the substrate and weak mechanical adhesion. In addition, when the grown carbon nanotubes are arranged with an appropriate density, it is known that the efficiency as a field emission source is increased. In other words, when carbon nanotubes are used as emitters, the density of the carbon nanotubes is considerably high, which is affected by the field screening effect, thereby reducing the current density. Therefore, a method of improving the field emission characteristics by reducing the density of carbon nanotubes, which is a field emission source, to an appropriate level has been proposed.
이러한 방법에 의한 탄소나노튜브를 이용한 캐소드 전극은 전체적으로 제조방법이 까다로우며, 탄소나노튜브의 길이, 밀도 제어가 어려워 고전류형 전계방출용으로는 사용하기 힘든 문제점이 있었다.Cathode electrodes using carbon nanotubes according to this method are difficult to manufacture as a whole, difficult to control the length and density of the carbon nanotubes, which is difficult to use for high current field emission.
현재까지 알려진 탄소나노튜브의 밀도를 제어하는 방법으로, 탄소나노튜브의 성장 전에 밀도를 제어하는 방법과 탄소나노튜브의 성장 후에 밀도를 제어하는 방법이 있다.As a method of controlling the density of carbon nanotubes known to date, there are a method of controlling the density before the growth of carbon nanotubes and a method of controlling the density after the growth of carbon nanotubes.
탄소나노튜브의 성장 전에 밀도를 제어하는 방법으로는, 촉매금속을 패터닝(patterning)하는 방법, 촉매용액의 농도를 조절하는 방법, 템플레이트(template)를 이용하여 성장시키는 방법 등이 있으며, 탄소나노튜브의 성장 후에 플라즈마로 에칭(etching)하는 방법 등이 있는 데, 이들은 모두 효과적으로 밀도를 제어하기 힘들며 또한 전계방출원으로 사용시에 효과적으로 전자를 제공하지 못하였다.As a method of controlling the density before the growth of carbon nanotubes, there is a method of patterning a catalyst metal, a method of controlling the concentration of a catalyst solution, a method of growing by using a template, and the like. There is a method of etching with a plasma after the growth of, etc., all of which are difficult to control the density effectively and also did not provide electrons effectively when used as a field emission source.
또한 수직배열된 탄소나노튜브가 전계방출원으로 이용되는 경우 고전류 밀도에서 높은 계면저항으로 인해 열이 수반되며, 기판으로 열전달이 효과적으로 이루어지지 않아 누적된 고열에 의해 탄소나노튜브가 분해되는 문제점이 있었다.In addition, when vertically arranged carbon nanotubes are used as field emission sources, heat is accompanied by high interfacial resistance at high current density, and heat transfer is not effectively performed to the substrate, thereby decomposing carbon nanotubes by accumulated high heat. .
따라서, 효과적인 나노튜브의 밀도 제어와 동시에 전계방출원으로 보다 안정적인 성능을 보일 수 있는 나노튜브 구조체에 대한 개발이 소망되었다.Therefore, it is desired to develop a nanotube structure that can exhibit more stable performance as a field emission source while simultaneously controlling density of nanotubes effectively.
상기 문제점을 해결하기 위해 본 발명의 목적은 나노기술의 핵심 신소재로 관심을 끄는 탄소나노튜브 등의 기술을 전계방출장치에 활용하여 보다 효율성이 좋은 전계방출장치를 제공할 수 있는 나노튜브 구조체를 제공하는 데 있다.In order to solve the above problems, an object of the present invention is to provide a nanotube structure that can provide a more efficient field emission device by utilizing technologies such as carbon nanotubes as a key new material of nanotechnology in the field emission device. There is.
또한 본 발명의 목적으로 전계방출장치로 사용시에 열전달 및 전자전달이 효율적으로 이루어져 탄소나노튜브 구조체가 손상되지 않고 안정적으로 전자를 방출할 수 있는 탄소나노튜브 구조체를 제공하는 데 있다.Another object of the present invention is to provide a carbon nanotube structure capable of stably emitting electrons without damaging the carbon nanotube structure due to efficient heat transfer and electron transfer when used as a field emission device.
상기 목적을 달성하기 위해 본 발명은 탄소나노튜브 구조체에 있어서, 상기 탄소나노튜브는 일체의 고밀도 및 저밀도 부분으로 구분되되, 상기 고밀도 부분은 탄소나노튜브가 나란하게 배열되며, 상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In order to achieve the above object of the present invention, in the carbon nanotube structure, the carbon nanotubes are divided into high density and low density parts of the body, the high density parts are arranged side by side carbon nanotubes, the low density part is the high density Compared to the lower density and relatively far away from the high density boundary portion provides a carbon nanotube structure characterized in that the density is gradually lowered.
또한 본 발명의 상기 고밀도 부분은 탄소나노튜브가 나란하게 수직배열된 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In addition, the high-density portion of the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes are arranged side by side vertically.
또한 본 발명은 상기 고밀도 및 저밀도부분의 탄소나노튜브가 연속적으로 연결된 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes of the high density and low density portion are continuously connected.
또한 본 발명은 수직배열된 탄소나노튜브의 일부를 수평방향으로 가압하여 형성된 고밀도 부분과 가압하지 않는 저밀도 부분으로 이루어지는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure comprising a high density portion formed by pressing a portion of the vertically arranged carbon nanotubes in a horizontal direction and a low density portion not pressurized.
또한 본 발명은 상기 수평방향으로 가압시에 양쪽방향에서 압착하는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure characterized in that the pressing in both directions when the pressure in the horizontal direction.
또한 본 발명은 상기 수평방향으로 가압시에 모든 방향에서 가압하는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure characterized in that the pressing in all directions when the pressure in the horizontal direction.
또한 본 발명은 고밀도 및 저밀도 부분의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure characterized in that the density is gradually lowered away from the boundary portion of the high density and low density portion.
또한 본 발명은 상기 저밀도 부분의 단면이 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the cross section of the low density portion is fan-shaped.
또한 본 발명은 저밀도 부분의 단면이 부채꼴 형상인 경우 고밀도 탄소나노튜브의 밀도는 3×1013개/㎠ ~ 8×1014개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 7×1011개/㎠ ~ 2×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In the present invention, when the cross-section of the low density portion has a fan shape, the density of the high density carbon nanotubes is 3 × 10 13 pieces / cm 2 to 8 × 10 14 pieces / cm 2, and the density of the low density carbon nanotubes is 7 × 10 11 pieces. It provides a carbon nanotube structure characterized in that / cm 2 ~ 2 × 10 13 / cm 2.
또한 본 발명은 상기 고밀도 부분이 원통형이며, 상기 저밀도 부분의 형상은 반구형인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure characterized in that the high-density portion is cylindrical, the shape of the low-density portion is hemispherical.
또한 본 발명은 상기 고밀도 부분이 원통형이며, 상기 저밀도 부분의 형상이 상기 반구형인 경우 고밀도 탄소나노튜브의 밀도는 7×1013개/㎠ ~ 2×1015개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 3×1012개/㎠ ~ 8×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In the present invention, when the high-density portion is cylindrical, and the shape of the low-density portion is the hemispherical shape, the density of the high-density carbon nanotubes is 7 × 10 13 pieces / cm 2 to 2 × 10 15 pieces / cm 2, and the low density carbon nanotubes The density of 3 × 10 12 / cm 2 ~ 8 × 10 13 provides a carbon nanotube structure, characterized in that.
또한 본 발명은 상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이가 100㎛ ~ 100mm인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the continuous length of the carbon nanotubes of high density and low density is 100㎛ ~ 100mm.
또한 본 발명은 상기 탄소나노튜브가 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
또한 본 발명은 상기 고밀도 부분을 압착한 금속의 압착기구를 포함하여 전계방출장치에 활용되는 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure characterized in that it is utilized in the field emission device including a crimping mechanism of the metal pressed to the high-density portion.
또한 본 발명은 탄소나노튜브를 수직배열하는 수직배열단계; 및 수직배열된 탄소나노튜브를 수평으로 압착하는 단계를 포함하되, 압착한 고밀도 부분과 압착하지 않은 저밀도 부분으로 구분되며, 상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention is a vertical alignment step of vertically arranging carbon nanotubes; And vertically squeezing the vertically arranged carbon nanotubes, wherein the low-density portion is divided into a compressed high-density portion and a low-density portion that is not compressed, and the low-density portion is relatively low density compared to the high-density and is separated from the high-density boundary portion. It provides a method for producing a carbon nanotube structure characterized in that the density is gradually lowered.
또한 본 발명은 상기 수직배열단계에서 실리콘(Si) 웨이퍼 상에 촉매 금속을 증착한 후에 금속촉매를 패터닝하고 운반가스 및 반응가스를 이용하여 탄소나노튜브를 수직배열하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure for vertically arranging carbon nanotubes by patterning a metal catalyst and using a carrier gas and a reaction gas after depositing a catalytic metal on a silicon (Si) wafer in the vertical alignment step. do.
또한 본 발명은 상기 반응가스가 C2H2 또는 CH4 을 이용하는 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure, characterized in that the reaction gas using C 2 H 2 or CH 4 .
또한 본 발명은 상기 압착하는 단계에서 수직배열된 탄소나노튜브가 복수개 존재하여 압착기구의 압착에 의해 복수개의 탄소나노튜브 구조체가 형성되는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure in which a plurality of vertically arranged carbon nanotubes are present in the pressing step so that a plurality of carbon nanotube structures are formed by the pressing mechanism.
또한 본 발명은 상기 저밀도 부분의 단면이 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure, characterized in that the cross-section of the low density portion is fan-shaped.
또한 본 발명은 상기 저밀도 부분의 형상이 반구형인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure, characterized in that the shape of the low density portion is hemispherical.
또한 본 발명은 상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이가 100㎛ ~ 100mm인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure, characterized in that the continuous length of the carbon nanotubes of high density and low density is 100㎛ ~ 100mm.
또한 본 발명은 상기 탄소나노튜브가 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a carbon nanotube structure, characterized in that the carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
또한 본 발명은 나노튜브 구조체에 있어서, 상기 나노튜브는 일체의 고밀도 및 저밀도 부분으로 구분되되, 상기 고밀도 부분은 나노튜브가 나란하게 배열되며, 상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하되, 상기 나노튜브는 CuO, 또는 ZnO로 이루어진 것을 특징으로 하는 나노튜브 구조체를 제공한다.In another aspect, the present invention is a nanotube structure, wherein the nanotubes are divided into a single high density and low density parts, the high density parts are arranged side by side nanotubes, the low density parts are relatively low density and high density compared to the high density It is characterized in that the density is gradually lowered away from the boundary portion, the nanotubes provide a nanotube structure, characterized in that consisting of CuO, or ZnO.
또한 본 발명은 상기 고밀도 및 저밀도부분의 탄소나노튜브가 연속적으로 연결된 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the carbon nanotubes of the high density and low density portion are continuously connected.
또한 본 발명은 상기 저밀도 부분의 단면이 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체를 제공한다.In another aspect, the present invention provides a carbon nanotube structure, characterized in that the cross section of the low density portion is fan-shaped.
또한 본 발명은 상기 탄소나노튜브 구조체, 나노튜브 구조체 또는 상기 제조방법으로 제조된 탄소나노튜브 구조체를 포함하는 전계방출장치를 제공한다.In another aspect, the present invention provides a field emission device comprising the carbon nanotube structure, nanotube structure or carbon nanotube structure prepared by the manufacturing method.
또한 본 발명은 상기 나노튜브 구조체의 저밀도 부분 말단에서 전자가 방출되는 것을 특징으로 하는 전계방출장치를 제공한다.In another aspect, the present invention provides a field emission device characterized in that the electron is emitted from the low-density partial end of the nanotube structure.
또한 본 발명은 상기 전계방출장치는 전류를 전달하는 압착기구 및 나노튜브 구조체를 포함하는 데, 상기 압착기구 사이에 복수개의 나노튜브 구조체를 포함되는 것을 특징으로 하는 전계방출장치를 제공한다.In another aspect, the present invention provides a field emission device comprising a compression mechanism and a nanotube structure for transmitting a current, a plurality of nanotube structure between the compression mechanism.
본 발명에 따른 탄소나노튜브 구조체, 이의 제조방법 및 이를 이용한 전계방출장치는 나노기술의 핵심 신소재로 관심을 끄는 탄소나노튜브 등의 기술을 전계방출장치에 활용하여 보다 효율성이 좋은 전계방출장치를 제공하는 효과가 있다.The carbon nanotube structure according to the present invention, a method for manufacturing the same, and a field emission device using the same provide a more efficient field emission device by utilizing a technology such as carbon nanotubes, which attracts attention as a core new material of nanotechnology, in a field emission device. It is effective.
또한 본 발명에 따른 탄소나노튜브 구조체, 이의 제조방법 및 이를 이용한 전계방출장치는 전계방출장치로 사용시에 열전달 및 전자전달이 효율적으로 이루어져 탄소나노튜브 구조체가 손상되지 않고 안정적으로 전자를 방출할 수 있는 효과가 있다.In addition, the carbon nanotube structure according to the present invention, a method for manufacturing the same, and a field emission device using the same can efficiently emit heat without damaging the carbon nanotube structure due to efficient heat transfer and electron transfer when used as a field emission device. It works.
또한 본 발명에 따른 전계방출장치는 전류가 전달되는 압착기구 및 탄소나노튜브 구조체를 제조함과 동시에 이를 분리할 필요없이 직접 이용할 수 있어 접촉면적이 넓어져 캐소드 전극에 전자 전달 능력이 더욱 향상되는 효과가 있다.In addition, the field emission device according to the present invention can be used directly without manufacturing the crimping mechanism and the carbon nanotube structure through which the current is transmitted and can be used directly without separation, the contact area is widened to further improve the electron transfer ability to the cathode electrode There is.
도 1 및 도 2는 본 발명의 일실시예에 따른 탄소나노튜브 구조체에 관한 사시도 및 정면도를 나타낸 것이다.1 and 2 show a perspective view and a front view of the carbon nanotube structure according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 다른 실시예에 따른 탄소나노튜브 구조체들에 관한 사시도를 나타낸 것이다.3 to 5 show a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
도 6은 또 다른 실시예에 따른 탄소나노튜브 구조체들에 관한 사시도를 나타낸 것이다.6 is a perspective view of carbon nanotube structures according to another embodiment.
도 7은 본 발명에서 사용되는 수직배열된 탄소나노튜브를 제조하는 개략도를 나타낸 것이다.Figure 7 shows a schematic diagram for producing a vertically aligned carbon nanotubes used in the present invention.
도 8은 탄소나노튜브가 수직배열된 탄소나노튜브의 SEM 사진을 나타낸 것이다.8 shows an SEM image of carbon nanotubes in which carbon nanotubes are vertically arranged.
도 9는 수직배열된 탄소나노튜브를 양쪽면에서 압착하는 개략적인 공정도를 나타낸 것이다.Figure 9 shows a schematic process diagram of pressing the vertically arranged carbon nanotubes on both sides.
도 10은 수직배열된 탄소나노튜브를 압착기구를 통해 압착하여 형성된 탄소나노튜브 구조체의 정면도 및 평면도를 사진으로 나타낸 것이다.FIG. 10 is a photograph showing a front view and a plan view of a carbon nanotube structure formed by pressing vertically arranged carbon nanotubes through a pressing device.
도 11은 복수개의 탄소나노튜브 구조체가 압착기구에 의해 제조된 형상의 평면도를 나타낸 것이다.11 shows a plan view of a shape in which a plurality of carbon nanotube structures are manufactured by a pressing mechanism.
도 12는 본 발명의 일실시예에 따라 제조된 탄소나노튜브 구조체의 SEM 사진을 나타낸 것이다.12 shows an SEM image of a carbon nanotube structure manufactured according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 탄소나노튜브 구조체를 이용하여 전계방출원으로 이용하였을 경우, 전기장 및 시간에 따른 전류값을 나타낸 것이다.Figure 13 shows the current value according to the electric field and time when used as a field emission source using a carbon nanotube structure according to an embodiment of the present invention.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 발명은 탄소나노튜브 구조체에 관한 것으로, 탄소나노튜브는 일체의 고밀도 및 저밀도 부분으로 구분되되, 상기 고밀도 부분은 탄소나노튜브가 나란하게 배열되며, 상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 한다.The present invention relates to a carbon nanotube structure, wherein the carbon nanotubes are divided into a single high density and low density portions, the high density portions are arranged side by side carbon nanotubes, the low density portion is relatively low density compared to the high density As the distance from the high density boundary portion, the density is gradually lowered.
도 1 및 도 2는 본 발명의 일실시예에 따른 탄소나노튜브 구조체에 관한 사시도 및 정면도를 나타낸 것이다.1 and 2 show a perspective view and a front view of the carbon nanotube structure according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명에 따른 탄소나노튜브 구조체는 고밀도와 저밀도 부분이 일체로 형성된다. 즉, 고밀도 부분의 탄소나노튜브와 저밀도 부분의 탄소나노튜브는 연결되어 있다.1 and 2, the carbon nanotube structure according to the present invention is integrally formed with a high density and a low density portion. That is, the carbon nanotubes of the high density portion and the carbon nanotubes of the low density portion are connected.
저밀도와 고밀도의 경계부분이 형성되어 있으며, 상기 저밀도 부분은 고밀도와의 경계부분에서 밀도가 가장 크고, 경계 부분에서 멀어질수록 밀도가 점점 낮아지는 것이 특징이다.A low density and high density boundary portion is formed, and the low density portion is characterized by having the highest density at the boundary portion with the high density, and the density decreases gradually as the distance from the boundary portion increases.
이와 같은 형태로 탄소나노튜브 구조체가 형성될 경우, 이를 전계방출원으로 활용하게 되면 전자 움직임이 활성화되는 데, 터널링 효과에 의한 전자의 방출은 고밀도 부분에서 저밀도 부분의 말단으로 이동하여 전자를 발생시키게 된다.When the carbon nanotube structure is formed in such a form, when it is used as an electric field emission source, the electron movement is activated. The emission of electrons due to the tunneling effect moves from the high density part to the low density part to generate electrons. do.
본 발명에 따른 탄소나노튜브 구조체는 고밀도 부분이 나란하게 수직배열된 것이 특징이다. 수직배열된 탄소나노튜브를 밀도를 높게 하기 위해서 외부에서 힘을 가해 압착하여 고밀도를 형성하도록 한다.Carbon nanotube structure according to the present invention is characterized in that the high-density parts are vertically arranged side by side. In order to increase the density of the vertically aligned carbon nanotubes by applying a force from the outside to form a high density.
또한 상기 탄소나노튜브 구조체는 고밀도 부분과 저밀도 부분을 구분할 수 있는 경계 부분이 존재하며, 상기 저밀도 부분은 상기 경계 부분에서 멀어질수록 점진적으로 밀도가 낮아지는 것이 특징이다. In addition, the carbon nanotube structure has a boundary portion that can distinguish between the high density portion and the low density portion, and the low density portion is characterized in that the density gradually decreases away from the boundary portion.
또한 상기 고밀도 부분과 저밀도 부분의 탄소나노튜브는 연속적으로 연결된 것이 특징이다. 수많은 탄소나노튜브가 고밀도 나란히 배열되며 경계 부분에서 탄소나노튜브는 배열이 여러방향으로 향하면서 점차적으로 밀도가 낮아지면서 저밀도를 이루게 된다.In addition, the carbon nanotubes of the high density portion and the low density portion are characterized in that connected continuously. Numerous carbon nanotubes are arranged side by side at a high density, and at the boundary portion, the carbon nanotubes become low density as the array is gradually decreased in density in various directions.
저밀도 부분의 단면은 부채꼴형상으로 이루어질 수 있으며, 상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이는 100㎛ ~ 100mm인 것이 특징이다.The cross section of the low density portion may be formed in a fan shape, the continuous length of the high density and low density carbon nanotubes is characterized in that 100㎛ ~ 100mm.
한편, 상기 고밀도 부분의 밀도는 3×1013개/㎠ ~ 8×1014개/㎠로 이루어지며, 상기 저밀도 부분의 밀도는 7×1011개/㎠ ~ 2×1013개/㎠인 것이 바람직하다. 상기 범위내로 이루어질 때 전계방출 효과가 뛰어나다.On the other hand, the density of the high density portion is made of 3 × 10 13 / cm 2 ~ 8 × 10 14 / cm 2, the density of the low density portion is 7 × 10 11 / cm 2 ~ 2 × 10 13 / cm 2 desirable. The field emission effect is excellent when made within the above range.
또한, 상기 탄소나노튜브는 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브일 수 있다. 탄소나노튜브의 벽(wall)의 개수는 1~20겹으로 이루어질 수 있다.In addition, the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes. The number of walls of the carbon nanotubes may be 1 to 20 layers.
도 3 내지 도 5는 본 발명의 다른 실시예에 따른 탄소나노튜브 구조체들에 관한 사시도를 나타낸 것이다.3 to 5 show a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
도 3를 참조하면, 중간부분이 고밀도 부분(110)이며 위아래로 저밀도 부분(130)이 형성되어 있다. 앞서 설명한 바와 같이 탄소나노튜브 구조체는 고밀도 부분과 저밀도 부분을 구분할 수 있는 경계 부분이 존재하며, 상기 저밀도 부분은 상기 경계 부분에서 멀어질수록 점진적으로 밀도가 낮아지는 것이 특징이다. Referring to FIG. 3, the middle portion is the high density portion 110 and the low density portion 130 is formed up and down. As described above, the carbon nanotube structure has a boundary portion that can distinguish the high density portion and the low density portion, and the low density portion is characterized in that the density gradually decreases away from the boundary portion.
도 4 및 도 5를 참조하면, 고밀도 부분은 원통형으로 이루어져 있으며, 저밀도 부분은 반구형으로 이루어질 수 있다. 이 외의 고밀도 부분 및 저밀도 부분의 특징은 앞서 살펴본 바와 같다. 즉, 상기 고밀도 부분과 저밀도 부분의 탄소나노튜브는 연속적으로 연결되며, 수많은 탄소나노튜브가 고밀도 나란히 배열되며 경계 부분에서 탄소나노튜브는 배열이 여러방향으로 향하면서 점차적으로 밀도가 낮아지면서 저밀도를 이룬다. 또한, 상기 탄소나노튜브 구조체들도 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이는 100㎛ ~ 100mm인 것 바람직하다.4 and 5, the high density portion may be formed in a cylindrical shape, and the low density portion may be formed in a hemispherical shape. Other features of the high density portion and the low density portion are as described above. That is, the carbon nanotubes of the high density portion and the low density portion are continuously connected, and a large number of carbon nanotubes are arranged side by side at a high density, and at the boundary portion, the carbon nanotubes form a low density while gradually decreasing in density as the array is directed in various directions. . In addition, the carbon nanotube structures also preferably have a continuous length of high density and low density carbon nanotubes of 100 μm to 100 mm.
또한, 고밀도 부분이 원통형이며, 저밀도 부분의 형상이 상기 반구형인 경우 고밀도 탄소나노튜브의 밀도는 7×1013개/㎠ ~ 2×1015개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 3×1012개/㎠ ~ 8×1013개/㎠인 것을 특징이다.In addition, when the high-density portion is cylindrical and the shape of the low-density portion is the hemispherical shape, the density of the high-density carbon nanotubes is 7 × 10 13 pieces / cm 2 to 2 × 10 15 pieces / cm 2, and the density of the low-density carbon nanotubes is 3 It is characterized by the fact that it is * 10 <12> / cm <2> -8 * 10 <13> piece / cm <2>.
도 6은 본 발명의 또 다른 실시예에 따른 탄소나노튜브 구조체들에 관한 사시도를 나타낸 것이다.Figure 6 shows a perspective view of the carbon nanotube structures according to another embodiment of the present invention.
본 발명은 또한 상기 탄소나노튜브가 일체의 고밀도 및 저밀도 부분으로 구분되되, 고밀도 부분은 탄소나노튜브가 나란하게 배열되며, 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지되, 저밀도 부분의 측면 일부가 절단되어 형성될 수 있다.The present invention is also characterized in that the carbon nanotubes are divided into a single high density and low density portion, the high density portion is arranged side by side carbon nanotubes, the low density portion is relatively low density and farther away from the boundary portion of the high density than the high density While gradually lowering the density, a portion of the side of the low density portion may be cut and formed.
도 6을 참조하면, 도 1에 표현된 탄소나노튜브 구조체의 저밀도 부분의 측면 일부가 절단되어 형성된 것을 나타낸다. 도 6과 같이 저밀도 부분의 일부가 절단되어 형성되어 이를 전계방출장치에 활용할 경우, 저밀도 부분의 탄소나노튜브 구조체의 전계 집중이 강화되어 이에 따라 더욱 효율적인 전계방출장치에 제공할 수 있는 효과가 있다.Referring to FIG. 6, a portion of the side of the low density portion of the carbon nanotube structure shown in FIG. 1 is cut and formed. When a portion of the low density portion is cut and formed as shown in FIG. 6 and used in the field emission device, the electric field concentration of the carbon nanotube structure of the low density portion is strengthened, thereby providing a more efficient field emission device.
본 발명에 따른 탄소나노튜브 구조체는 탄소나노튜브를 수직배열하는 수직배열단계 및 수직배열된 탄소나노튜브를 수평으로 압착하여 고밀도 부분과 저밀도 부분이 형성되도록 할 수 있다. 즉, 수직배열된 탄소나노튜브의 일부를 수평으로 가압하여 압착함으로써 형성될 수 있다.The carbon nanotube structure according to the present invention may vertically squeeze the carbon nanotubes and horizontally squeeze the vertically arranged carbon nanotubes so that a high density portion and a low density portion are formed. That is, it may be formed by pressing a portion of the vertically arranged carbon nanotubes horizontally and compressed.
가압에 의해 탄소나노튜브의 배열이 조밀하게 형성됨으로써 고밀도 부분이 형성되고, 가압하지 않은 부분은 고밀도에 비해 상대적으로 저밀도인 부분이 형성될 수 있다.By densely forming the arrangement of carbon nanotubes by pressing, a high density portion is formed, and a portion that is not pressurized may have a relatively low density portion compared to the high density.
먼저, 탄소나노튜브를 수직배열하는 방법을 살펴보면, 상기 탄소나노튜브를 수직배열시키는 방법은 특별히 제한되는 것은 아니며, 금속촉매를 이용하여 탄소나노튜브를 수직배향하는 것이 바람직하다.First, referring to a method of vertically arranging carbon nanotubes, the method of vertically arranging the carbon nanotubes is not particularly limited, and it is preferable to vertically align the carbon nanotubes using a metal catalyst.
도 7은 본 발명에서 사용되는 수직배열된 탄소나노튜브를 제조하는 개략도를 나타낸 것이다.Figure 7 shows a schematic diagram for producing a vertically aligned carbon nanotubes used in the present invention.
탄소나노튜브는 금속촉매에서 성장할 수 있는 데, 실리콘(Si) 웨이퍼에 금속 촉매를 증착한 후에 운반가스 및 반응가스를 주입한다. 추가적으로 금속 촉매 및 실리콘 사이에는 확산방지층막으로 형성하여 실시할 수도 있다.Carbon nanotubes can be grown on a metal catalyst, and a carrier gas and a reaction gas are injected after the metal catalyst is deposited on a silicon (Si) wafer. In addition, it may be carried out by forming a diffusion barrier layer between the metal catalyst and silicon.
상기 운반가스로는 비활성가스인 Ar, He, N2 등을 이용할 수 있으며, 반응가스로는 C2H2, CH4 등을 이용할 수 있다. 운반가스 및 반응가스를 주입하고 700~900℃의 온도를 가하여 주는 경우, 반응가스의 탄소가 금속촉매에 결합되어 성장되면서 탄소나노튜브가 형성된다. 탄소나노튜브의 성장은 균일한 높이를 갖는 것과 동시에 균일한 밀도를 갖는 수직배열된 탄소나노튜브가 형성될 수 있다.As the carrier gas, Ar, He, N 2 , and the like, which are inert gases, may be used, and C 2 H 2 , CH 4 , and the like may be used as the reaction gas. Injecting the carrier gas and the reaction gas and applying a temperature of 700 ~ 900 ℃, carbon nanotubes are formed as the carbon of the reaction gas is bonded to the metal catalyst and grown. The growth of carbon nanotubes may have a uniform height and vertically aligned carbon nanotubes having a uniform density may be formed.
본 발명에 따른 상기 수직배열된 탄소나노튜브의 길이는 상기와 같이 금속촉매를 이용하여 수직배향시키시는 경우 100㎛ ~ 100mm인 탄소나노튜브를 제조할 수 있다.The length of the vertically arranged carbon nanotubes according to the present invention can produce a carbon nanotube 100㎛ ~ 100mm when the vertical alignment using a metal catalyst as described above.
도 8은 탄소나노튜브가 수직배열된 탄소나노튜브의 SEM 사진을 나타낸 것이다.8 shows an SEM image of carbon nanotubes in which carbon nanotubes are vertically arranged.
Fe 촉매를 이용하여 균일한 높이를 가지면서 균일한 밀도로 수직배열되어 있는 탄소나노튜브를 확인할 수 있다. 상기 수직배열된 탄소나노튜브는 높이가 약 1.5mm이며 직경이 약 5nm인 탄소나노튜브가 수직으로 나란히 배열된 것을 확인할 수 있다.By using the Fe catalyst it is possible to identify the carbon nanotubes having a uniform height and vertically arranged at a uniform density. The vertically arranged carbon nanotubes are about 1.5mm in height, and the carbon nanotubes having a diameter of about 5nm are vertically arranged side by side.
상기 수직배열된 탄소나노튜브는 일부를 수평으로 가압하여 압착함으로써 고밀도 부분 및 가압하지 않는 부분은 저밀도 부분으로 탄소나노튜브를 형성시킬 수 있다.The vertically arranged carbon nanotubes are pressed by horizontally pressing a portion to form carbon nanotubes with a high density portion and a low density portion with a low density portion.
도 9는 수직배열된 탄소나노튜브를 양쪽면에서 압착하는 개략적인 공정도를 나타낸 것이다. 또한, 도 10은 수직배열된 탄소나노튜브를 압착기구를 통해 압착하여 형성된 탄소나노튜브 구조체의 정면도 및 평면도를 사진으로 나타낸 것이다.Figure 9 shows a schematic process diagram of pressing the vertically arranged carbon nanotubes on both sides. In addition, FIG. 10 is a photograph showing a front view and a plan view of a carbon nanotube structure formed by pressing vertically arranged carbon nanotubes through a pressing mechanism.
Si 웨이퍼(10) 상에 수직배열된 탄소나노튜브는 압착기구 사이에 위치하도록 하는 데, Si 웨이퍼를 제외한 부분인 수직배열된 탄소나노튜브의 일부가 압착기구 사이에 위치하도록 하여 상기 압착기구를 통해 압착하여 고밀도 부분, 경계 부분 및 저밀도 부분으로 구분되도록 형성할 수 있다.The vertically arranged carbon nanotubes on the Si wafer 10 are positioned between the pressing mechanisms. A portion of the vertically arranged carbon nanotubes, except for the Si wafers, is positioned between the pressing mechanisms, and thus, through the pressing mechanisms. By pressing, it can be formed to be divided into a high density portion, a boundary portion and a low density portion.
상기 압착기구는 특별히 제한되는 것은 아니나, 수직배열된 탄소나노튜브를더욱 조밀하게 배열될 수 있는 정도의 강도를 갖고, 그리고 탄소나노튜브 구조체와 함께 캐소드 전극에 그대로 사용될 수 있으므로 전류가 잘 통하는 금속성분인 것이 바람직하다. 또한 상기 압착기구의 압착면은 평평한 것이 바람직하며, 또한 압착기구의 압착면과 압착기구 상면은 서로 수직인 것이 바람직하다.The crimping mechanism is not particularly limited, but has a strength that allows the vertically arranged carbon nanotubes to be more densely arranged, and can be used as it is for the cathode electrode together with the carbon nanotube structure. It is preferable. In addition, the pressing surface of the pressing mechanism is preferably flat, and the pressing surface of the pressing mechanism and the upper surface of the pressing mechanism are preferably perpendicular to each other.
압착기구를 이용하여 양면에서 수평으로 탄소나노튜브의 일부를 압착함으로 인해 수직배열된 탄소나노튜브의 일부가 압착되어 고밀도를 형성하게 된다.By pressing a portion of the carbon nanotubes horizontally on both sides using a pressing mechanism, a portion of the vertically arranged carbon nanotubes are compressed to form a high density.
한편, 탄소나노튜브 구조체를 압착기구를 이용하여 동시에 복수개를 제조할 수 있다.On the other hand, a plurality of carbon nanotube structure can be manufactured at the same time by using a pressing mechanism.
도 11은 복수개의 탄소나노튜브 구조체가 압착기구에 의해 제조된 형상의 평면도를 나타낸 것이다.11 shows a plan view of a shape in which a plurality of carbon nanotube structures are manufactured by a pressing mechanism.
수직배열된 탄소나노튜브가 합성된 복수개의 Si 웨이퍼들을 압착기구 사이에 일렬로 위치하도록 하여 Si 웨이퍼를 제외한 부분인 수직배열된 탄소나노튜브의 일부가 압착기구 사이에 위치하도록 하여 압착함으로써 복수개의 탄소나노튜브를 동시에 제조할 수 있다. 즉, 복수의 수직배열된 탄소나노튜브들을 상기 압착기구를 통해 양쪽방향에서 동시에 압착하여 고밀도 부분, 경계 부분 및 저밀도 부분으로 구분되도록 형성하여 탄소나노튜브 구조체를 제조할 수 있다.A plurality of Si wafers in which vertically aligned carbon nanotubes are synthesized are positioned in a row between the pressing mechanisms so that a portion of the vertically aligned carbon nanotubes, except for the Si wafers, is positioned between the pressing mechanisms, and thus compressed. Nanotubes can be prepared simultaneously. That is, a plurality of vertically arranged carbon nanotubes are simultaneously compressed in both directions through the crimping mechanism to form a high density portion, a boundary portion, and a low density portion, thereby manufacturing a carbon nanotube structure.
이러한 압착기구를 이용하여 압착된 탄소나노튜브 구조체는 앞서에서도 설명하였듯이 압착기구에 의해 일부가 압착되어진 탄소나노튜브 구조체는 상기 압착기구와 함께 전계방출장치의 캐소드 전극에 이용될 수 있다.As described above, the carbon nanotube structure pressed using the pressing mechanism may be used as the cathode electrode of the field emission device together with the pressing mechanism.
또한, 본 발명에 있어서, 수직배열된 탄소나노튜브의 일부에 대하여 고밀도 부분을 형성하는 데 있어서, 수직배열된 탄소나노튜브의 중간부분을 압착함으로 인해 위아래는 저밀도 부분이, 중간에는 고밀도 부분이 형성될 수도 있다.(도 3 참조)Further, in the present invention, in forming a high-density portion with respect to a portion of the vertically arranged carbon nanotubes, the low-density portion is formed at the upper and lower portions, and the high-density portion is formed at the middle by pressing the middle portion of the vertically arranged carbon nanotubes. May be (see FIG. 3).
또한, 본 발명에 있어서, 수직배열된 탄소나노튜브의 일부에 대하여 고밀도 부분을 형성하는 데 모든 방향에서 압착함으로 인해 원통형의 고밀도 부분을 형성할 수도 있다. 모든 방향에서 압착하는 경우 저밀도 부분은 반구형상으로 형성될 수 있다.(도 4 및 도 5 참조)In addition, in the present invention, by pressing in all directions to form a high-density portion with respect to a portion of the vertically aligned carbon nanotubes, it is also possible to form a cylindrical high-density portion. When pressed in all directions, the low density portion may be formed in a hemispherical shape (see FIGS. 4 and 5).
한편, 상기의 수직배열 및 일부를 압착하여 형성되는 구조체는 탄소나노튜브 뿐만 아니라, CuO, ZnO 등도 수직배열하여 나노튜브 형상으로 제조할 수 있다.On the other hand, the vertical arrangement and the structure formed by pressing a portion of the carbon nanotubes, as well as CuO, ZnO and the like can be arranged in a nanotube shape.
수직배열된 나노튜브의 일부는 압착하여 상기에서 설명한 바와 같은 제조방법으로 탄소나노튜브와 동일한 형태의 나노튜브 구조체를 형성할 수 있다.A portion of the vertically arranged nanotubes may be compressed to form nanotube structures having the same shape as carbon nanotubes by the manufacturing method described above.
도 12는 본 발명의 일실시예에 따라 제조된 탄소나노튜브 구조체의 SEM 사진을 나타낸 것이다.12 shows an SEM image of a carbon nanotube structure manufactured according to an embodiment of the present invention.
도 12를 참조하면, 탄소나노구조체의 저밀도 부분에서 경계 부분을 중심을 탄소나노튜브가 방사형으로 형성되어 있음을 확인할 수 있다. 즉, 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 탄소나노튜브의 밀도가 낮아지는 것을 알 수 있다.Referring to FIG. 12, it can be seen that the carbon nanotubes are radially formed around the boundary portion in the low density portion of the carbon nanostructure. In other words, it can be seen that as the distance from the high-density boundary portion gradually decreases the density of the carbon nanotubes.
한편, 본 발명은 상기 탄소나노튜브 구조체를 포함하는 전계방출장치를 제공할 수 있다.On the other hand, the present invention can provide a field emission device including the carbon nanotube structure.
상기 전계방출장치에 있어서, 캐소드 부분에 상기 탄소나노튜브 구조체가 포함될 수 있는 데, 상기 탄소나노튜브의 저밀도 부분 말단에서 전자가 방출되도록 위치시켜 전계방출장치를 제조할 수 있다.In the field emission device, the carbon nanotube structure may be included in the cathode portion, and the field emission device may be manufactured by placing electrons at the end of the low density portion of the carbon nanotube.
도 13은 본 발명의 일실시예에 따른 탄소나노튜브 구조체를 이용하여 전계방출원으로 이용하였을 경우, 전기장 및 시간에 따른 전류값을 나타낸 것이다.Figure 13 shows the current value according to the electric field and time when used as a field emission source using a carbon nanotube structure according to an embodiment of the present invention.
1×10-7 Torr ~ 3×10-7 Torr의 진공 상에서 탄소나노튜브 구조체를 음극으로 하고 구조체의 반구면으로부터 일정 간격을 두어 양극을 위치한 후 전기장을 인가하면 탄소나노튜브 구조체의 반구면을 이루는 개별 탄소나노튜브 끝단에서 전자가 진공으로 터널링하게 된다. 진공으로 탈출된 전자는 전기장에 의해 양극으로 이동하게 되어 전류가 흐르게 된다. 도 12에서 보는 바와 같이 전기장의 증가에 따라 전류가 증가하게 되고, 12 V/μm에서 42mA를 보인다.The carbon nanotube structure is a cathode in a vacuum of 1 × 10 -7 Torr to 3 × 10 -7 Torr, and the anode is positioned at regular intervals from the hemisphere of the structure, and an electric field is applied to form a hemisphere of the carbon nanotube structure. At the ends of individual carbon nanotubes, electrons tunnel into the vacuum. The electrons escaped to the vacuum are moved to the anode by the electric field so that a current flows. As shown in FIG. 12, the current increases with increasing electric field, and shows 42 mA at 12 V / μm.
도 13의 시간에 따른 전류 그래프에서 보는 바와 같이 일정한 전기장 하에서 탄소나노튜브 구조체는 10 시간 동안 5 mA의 전류에서도 성능 저하 없이 안정적으로 작동하는 것을 확인할 수 있다.As shown in the current graph over time of FIG. 13, it can be seen that the carbon nanotube structure operates stably without deterioration even at a current of 5 mA for 10 hours under a constant electric field.
본 발명에 따른 전계방출장치는 많은 탄소나노튜브들이 적절한 간격을 유지하여 전계방출부를 구성함에 따라 낮은 전계에서 높은 전류 밀도 및 순 전류량을 가질 수 있으며, 탄소나노튜브 구조체의 고밀도 부분은 나노튜브 간의 넓은 접촉 면적은 전기적/열적 접촉저항 저감 효과 및 높은 기계적 부착효과를 가지므로, 상기의 고전류 영역에도 안정적인 전계방출 성능을 가질 수 있다.The field emission device according to the present invention may have a high current density and a net current amount at a low electric field as many carbon nanotubes constitute a field emission unit by maintaining proper spacing, and the high density portion of the carbon nanotube structure is wide between nanotubes. Since the contact area has an electrical / thermal contact resistance reduction effect and a high mechanical adhesion effect, the contact area may have stable field emission performance even in the high current region.
한편, 본 발명에 따른 전계방출장치는 압착기구 및 탄소나노튜브 구조체를 일체로 하여 포함할 수 있다. 상기 압착기구가 전계방출장치에 포함되어 구성되려면, 전류가 흐를 수 있어야 하므로 금속의 압착기구인 것이 바람직하다.On the other hand, the field emission device according to the present invention may include a compression mechanism and a carbon nanotube structure integrally. In order for the compression mechanism to be included in the field emission device, since the current must flow, the compression mechanism is preferably a metal compression mechanism.
상기 압착기구 및 탄소나노튜브 구조체는 캐소드 전극으로 활용될 수 있는 데, 상기 압착기구에 의해 압착된 부분은 고밀도 부분으로 압착기구 및 고밀도 부분은 상당한 압력으로 압착된 부분이기 때문에 접촉면적이 넓어 전자의 이동이 저항의 영향을 거의 받지 않고 자유롭게 흐를 수 있다.The crimping mechanism and the carbon nanotube structure can be utilized as a cathode electrode, and the contact portion is compressed by a high pressure portion and the compression mechanism and the high-density portion are compressed by a considerable pressure. The movement can flow freely with little effect of resistance.
따라서, 본 발명에 따른 전계방출장치는 매우 효율적으로 캐소드 전극의 역할을 할 수 있다.Therefore, the field emission device according to the present invention can serve as a cathode electrode very efficiently.
이하, 본 발명의 일실시예에 대하여 상세하게 설명한다.Hereinafter, an embodiment of the present invention will be described in detail.
수직배열된 탄소나노튜브의 제조Preparation of Vertically Arranged Carbon Nanotubes
실리콘(Si) 웨이퍼를 준비하여, 실리콘(Si) 웨이퍼 상에 촉매 금속을 증착한다.A silicon (Si) wafer is prepared, and a catalytic metal is deposited on the silicon (Si) wafer.
이후에 운반가스 및 반응가스를 이용하여 수직배열된 탄소나노튜브를 제조할 수 있는 상기 운반가스로는 비활성가스인 Ar을 이용할 수 있으며, 반응가스로는 C2H2을 이용하였으며, 약 900℃의 온도를 가하여 탄소나노튜브를 제조한다. 제조된 탄소나노튜브의 성장은 균일한 높이를 가질 수 있다.Thereafter, as a carrier gas for preparing vertically arranged carbon nanotubes using a carrier gas and a reaction gas, Ar may be used as an inert gas, and C 2 H 2 was used as a reaction gas, and a temperature of about 900 ° C. To add a carbon nanotubes. The growth of the manufactured carbon nanotubes may have a uniform height.
탄소나노튜브 구조체 제조Carbon Nanotube Structure Manufacturing
Si 웨이퍼 상에 수직배열된 탄소나노튜브는 압착기구 사이에 위치하도록 하는 데, Si 웨이퍼를 제외한 부분인 수직배열된 탄소나노튜브의 일부가 압착기구 사이에 위치하도록 한다.The vertically arranged carbon nanotubes on the Si wafer are positioned between the compression mechanisms, so that a portion of the vertically aligned carbon nanotubes, except for the Si wafer, is positioned between the compression mechanisms.
수직배열된 탄소나노튜브를 상기 압착기구를 통해 양쪽방향에서 압착하여 고밀도 부분, 경계 부분 및 저밀도 부분으로 구분되도록 형성하여 탄소나노튜브 구조체를 제조하였다.The vertically arranged carbon nanotubes were pressed in both directions through the pressing device to form a carbon nanotube structure, which was divided into a high density portion, a boundary portion, and a low density portion.
복수의 탄소나노튜브 구조체 제조Manufacture of a plurality of carbon nanotube structures
수직배열된 탄소나노튜브가 합성된 복수의 Si 웨이퍼들을 압착기구 사이에 위치하도록 하는 데, Si 웨이퍼를 제외한 부분인 수직배열된 탄소나노튜브의 일부가 압착기구 사이에 위치하도록 한다.The plurality of Si wafers in which the vertically aligned carbon nanotubes are synthesized are positioned between the pressing mechanisms, and a portion of the vertically aligned carbon nanotubes except for the Si wafers is positioned between the pressing mechanisms.
복수의 수직배열된 탄소나노튜브들을 상기 압착기구를 통해 양쪽방향에서 동시에 압착하여 고밀도 부분, 경계 부분 및 저밀도 부분으로 구분되도록 형성하여 탄소나노튜브 구조체를 제조하였다.A plurality of vertically arranged carbon nanotubes were simultaneously pressed in both directions through the crimping mechanism to form a carbon nanotube structure to be divided into a high density portion, a boundary portion, and a low density portion.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (34)

  1. 탄소나노튜브 구조체에 있어서,In the carbon nanotube structure,
    상기 탄소나노튜브는 일체의 고밀도 및 저밀도 부분으로 구분되되,The carbon nanotubes are divided into high density and low density parts,
    상기 고밀도 부분은 탄소나노튜브가 나란하게 배열되며,The high density portion is arranged side by side carbon nanotubes,
    상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체.The low density portion of the carbon nanotube structure, characterized in that the relatively low density compared to the high density and gradually decrease the density away from the high density boundary portion.
  2. 제1항에 있어서,The method of claim 1,
    상기 고밀도 부분은 탄소나노튜브가 나란하게 수직배열된 것을 특징으로 하는 탄소나노튜브 구조체.The high density portion of the carbon nanotube structure, characterized in that the carbon nanotubes are arranged side by side vertically.
  3. 제1항에 있어서,The method of claim 1,
    상기 고밀도 및 저밀도부분의 탄소나노튜브는 연속적으로 연결된 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that the high density and low density carbon nanotubes are continuously connected.
  4. 제1항에 있어서,The method of claim 1,
    상기 저밀도 부분의 단면은 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체.Cross section of the low density portion is a carbon nanotube structure, characterized in that the fan shape.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 고밀도 탄소나노튜브의 밀도는 3×1013개/㎠ ~ 8×1014개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 7×1011개/㎠ ~ 2×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체.The density of the high-density carbon nanotubes is 3 × 10 13 / cm 2 ~ 8 × 10 14 / cm 2, the density of the low density carbon nanotubes is 7 × 10 11 / cm 2 ~ 2 × 10 13 / cm 2 Carbon nanotube structure characterized in that.
  6. 제1항에 있어서,The method of claim 1,
    상기 고밀도 부분은 원통형이며, 상기 저밀도 부분의 형상은 반구형인 것을 특징으로 하는 탄소나노튜브 구조체.The high density portion is cylindrical, carbon nanotube structure, characterized in that the shape of the low density portion is hemispherical.
  7. 제6에 있어서,The method according to claim 6,
    상기 고밀도 탄소나노튜브의 밀도는 7×1013개/㎠ ~ 2×1015개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 3×1012개/㎠ ~ 8×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체.The density of the high-density carbon nanotubes is 7 × 10 13 pieces / cm 2 to 2 × 10 15 pieces / cm 2, and the density of the low density carbon nanotubes is 3 × 10 12 pieces / cm 2 to 8 × 10 13 pieces / cm 2. Carbon nanotube structure characterized in that.
  8. 제1항에 있어서,The method of claim 1,
    상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이는 100㎛ ~ 100mm인 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that the continuous length of the high density and low density carbon nanotubes are 100㎛ ~ 100mm.
  9. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브는 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브 구조체.The carbon nanotubes are carbon nanotube structures, characterized in that single-walled carbon nanotubes or multi-walled carbon nanotubes.
  10. 수직배열된 탄소나노튜브의 일부를 수평방향으로 가압하여 형성된 고밀도 부분과 가압하지 않는 저밀도 부분으로 이루어지는 것을 특징으로 하는 탄소나노튜브 구조체.A carbon nanotube structure comprising a high density portion formed by pressing a portion of the vertically arranged carbon nanotubes in a horizontal direction and a low density portion not being pressurized.
  11. 제10항에 있어서,The method of claim 10,
    상기 수평방향으로 가압시에 양쪽방향에서 압착하는 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure characterized in that the pressing in both directions when the pressure in the horizontal direction.
  12. 제10항에 있어서,The method of claim 10,
    상기 수평방향으로 가압시에 모든 방향에서 가압하는 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that the pressing in all directions when the pressure in the horizontal direction.
  13. 제10항에 있어서,The method of claim 10,
    고밀도 및 저밀도 부분의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that the density is gradually lowered away from the boundary portion of the high density and low density portion.
  14. 제10항에 있어서,The method of claim 10,
    상기 저밀도 부분의 단면은 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체.Cross section of the low density portion is a carbon nanotube structure, characterized in that the fan shape.
  15. 제14항에 있어서,The method of claim 14,
    상기 고밀도 탄소나노튜브의 밀도는 3×1013개/㎠ ~ 8×1014개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 7×1011개/㎠ ~ 2×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체.The density of the high-density carbon nanotubes is 3 × 10 13 / cm 2 ~ 8 × 10 14 / cm 2, the density of the low density carbon nanotubes is 7 × 10 11 / cm 2 ~ 2 × 10 13 / cm 2 Carbon nanotube structure characterized in that.
  16. 제10항에 있어서,The method of claim 10,
    상기 고밀도 부분은 원통형이며, 상기 저밀도 부분의 형상은 반구형인 것을 특징으로 하는 탄소나노튜브 구조체.The high density portion is cylindrical, carbon nanotube structure, characterized in that the shape of the low density portion is hemispherical.
  17. 제16에 있어서,The method of claim 16,
    상기 고밀도 탄소나노튜브의 밀도는 7×1013개/㎠ ~ 2×1015개/㎠이며, 상기 저밀도 탄소나노튜브의 밀도는 3×1012개/㎠ ~ 8×1013개/㎠인 것을 특징으로 하는 탄소나노튜브 구조체.The density of the high-density carbon nanotubes is 7 × 10 13 pieces / cm 2 to 2 × 10 15 pieces / cm 2, and the density of the low density carbon nanotubes is 3 × 10 12 pieces / cm 2 to 8 × 10 13 pieces / cm 2. Carbon nanotube structure characterized in that.
  18. 제10항에 있어서,The method of claim 10,
    상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이는 100㎛ ~ 100mm인 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that the continuous length of the high density and low density carbon nanotubes are 100㎛ ~ 100mm.
  19. 제10항에 있어서,The method of claim 10,
    상기 탄소나노튜브는 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브 구조체.The carbon nanotubes are carbon nanotube structures, characterized in that single-walled carbon nanotubes or multi-walled carbon nanotubes.
  20. 제10항에 있어서,The method of claim 10,
    상기 고밀도 부분을 압착한 금속의 압착기구를 포함하여 전계방출장치에 활용되는 것을 특징으로 하는 탄소나노튜브 구조체.Carbon nanotube structure, characterized in that it is utilized in the field emission device including a crimping mechanism of the metal pressed to the high-density portion.
  21. 탄소나노튜브를 수직배열하는 수직배열단계; 및 A vertical alignment step of vertically arranging carbon nanotubes; And
    수직배열된 탄소나노튜브를 수평으로 압착하는 단계를 포함하되,Including horizontally compressing the vertically arranged carbon nanotubes,
    압착한 고밀도 부분과 압착하지 않은 저밀도 부분으로 구분되며,It is divided into crushed high density part and crushed low density part,
    상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.The low density portion is relatively low density compared to the high density and carbon nanotube structure manufacturing method characterized in that the density is gradually lowered away from the high density boundary portion.
  22. 제21항에 있어서,The method of claim 21,
    상기 수직배열단계에서 실리콘(Si) 웨이퍼 상에 촉매 금속을 증착 후 운반가스 및 반응가스를 이용하여 탄소나노튜브를 수직배열하는 탄소나노튜브 구조체 제조방법.A method of manufacturing a carbon nanotube structure for vertically arranging carbon nanotubes using a carrier gas and a reaction gas after depositing a catalyst metal on a silicon (Si) wafer in the vertical array step.
  23. 제22항에 있어서,The method of claim 22,
    상기 반응가스는 C2H2 또는 CH4 을 이용하는 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.The reaction gas is a carbon nanotube structure manufacturing method characterized in that using C 2 H 2 or CH 4 .
  24. 제21항에 있어서,The method of claim 21,
    상기 압착하는 단계에서 수직배열된 탄소나노튜브가 복수개 존재하여 압착기구의 압착에 의해 복수개의 탄소나노튜브 구조체가 형성되는 탄소나노튜브 구조체 제조방법.And a plurality of vertically arranged carbon nanotubes in the pressing step so that a plurality of carbon nanotube structures are formed by pressing the pressing mechanism.
  25. 제21항에 있어서,The method of claim 21,
    상기 저밀도 부분의 단면은 부채꼴 형상인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.Cross section of the low density portion is a carbon nanotube structure manufacturing method characterized in that the fan-shaped.
  26. 제21항에 있어서,The method of claim 21,
    상기 저밀도 부분의 형상은 반구형인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.Carbon nanotube structure manufacturing method characterized in that the shape of the low density portion is hemispherical.
  27. 제21항에 있어서,The method of claim 21,
    상기 고밀도 및 저밀도의 탄소나노튜브의 연속된 길이는 100㎛ ~ 100mm인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.Carbon nanotube structure manufacturing method, characterized in that the continuous length of the high-density and low-density carbon nanotubes are 100㎛ ~ 100mm.
  28. 제21항에 있어서,The method of claim 21,
    상기 탄소나노튜브는 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 탄소나노튜브 구조체 제조방법.The carbon nanotubes are a single-walled carbon nanotubes or multi-walled carbon nanotubes, characterized in that the carbon nanotube structure manufacturing method.
  29. 나노튜브 구조체에 있어서,In the nanotube structure,
    상기 나노튜브는 일체의 고밀도 및 저밀도 부분으로 구분되되,The nanotubes are divided into high density and low density parts,
    상기 고밀도 부분은 나노튜브가 나란하게 배열되며,The high density portion is arranged side by side nanotubes,
    상기 저밀도 부분은 상기 고밀도에 비해 상대적으로 저밀도이면서 고밀도의 경계 부분에서부터 멀어질수록 점진적으로 밀도가 낮아지는 것을 특징으로 하되,The low density portion is relatively low density compared to the high density, characterized in that the density is gradually lowered away from the boundary portion of the high density,
    상기 나노튜브는 CuO, 또는 ZnO로 이루어진 것을 특징으로 하는 나노튜브 구조체.The nanotube structure is characterized in that consisting of CuO, or ZnO.
  30. 제29항에 있어서,The method of claim 29,
    상기 고밀도 및 저밀도부분의 나노튜브는 연속적으로 연결된 것을 특징으로 하는 나노튜브 구조체.Nanotube structure, characterized in that the high-density and low-density portion of the nanotubes are continuously connected.
  31. 제29항에 있어서,The method of claim 29,
    상기 저밀도 부분의 단면은 부채꼴 형상인 것을 특징으로 하는 나노튜브 구조체.The cross section of the low density portion is a nanotube structure, characterized in that the fan shape.
  32. 제1항 내지 제20항, 제29항 내지 제31항 중 어느 한항의 나노튜브 구조체 또는 제21항 내지 제28항 중 어느 한항에 따른 제조방법으로 제조된 나노튜브 구조체를 포함하는 전계방출장치.32. A field emission device comprising a nanotube structure according to any one of claims 1 to 20, 29 to 31 or a nanotube structure prepared by the method according to any one of claims 21 to 28.
  33. 제32항에 있어서,33. The method of claim 32,
    상기 나노튜브 구조체의 저밀도 부분 말단에서 전자가 방출되는 것을 특징으로 하는 전계방출장치.The field emission device, characterized in that electrons are emitted from the low-density partial end of the nanotube structure.
  34. 제32항에 있어서,33. The method of claim 32,
    상기 전계방출장치는 전류를 전달하는 압착기구 및 나노튜브 구조체를 포함하는 데, 상기 압착기구 사이에 복수개의 나노튜브 구조체를 포함되는 것을 특징으로 하는 전계방출장치.The field emission device includes a compression mechanism and a nanotube structure for transmitting a current, the field emission device characterized in that it comprises a plurality of nanotube structure between the compression mechanism.
PCT/KR2013/005968 2012-07-06 2013-07-05 Carbon nanotube structure, production method for same and field emission device using same WO2014007570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0074136 2012-07-06
KR1020120074136A KR101436948B1 (en) 2012-07-06 2012-07-06 Field emission device using CNT structure

Publications (1)

Publication Number Publication Date
WO2014007570A1 true WO2014007570A1 (en) 2014-01-09

Family

ID=49882262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005968 WO2014007570A1 (en) 2012-07-06 2013-07-05 Carbon nanotube structure, production method for same and field emission device using same

Country Status (2)

Country Link
KR (1) KR101436948B1 (en)
WO (1) WO2014007570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748230B (en) * 2019-07-16 2021-12-01 鴻海精密工業股份有限公司 Carbon nanotube field emitter and making method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659745B1 (en) * 2014-05-29 2016-10-11 서울대학교산학협력단 CNT structure for water treatment, preparing thereof and seperating film using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867628B1 (en) * 2007-06-04 2008-11-10 한국표준과학연구원 Method of controlling density and conductance of carbon nanotubes on substrate
KR20090011818A (en) * 2007-07-27 2009-02-02 성균관대학교산학협력단 Density controlled carbon nanotube field emission source, preparation method thereof, and density control method of carbon nanotube
KR20100089397A (en) * 2009-02-03 2010-08-12 명지대학교 산학협력단 Method for preparing zno nanowires having enhanced field emission property and method for enhancing field emission property of devices using zno nanowires by applying dc voltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867628B1 (en) * 2007-06-04 2008-11-10 한국표준과학연구원 Method of controlling density and conductance of carbon nanotubes on substrate
KR20090011818A (en) * 2007-07-27 2009-02-02 성균관대학교산학협력단 Density controlled carbon nanotube field emission source, preparation method thereof, and density control method of carbon nanotube
KR20100089397A (en) * 2009-02-03 2010-08-12 명지대학교 산학협력단 Method for preparing zno nanowires having enhanced field emission property and method for enhancing field emission property of devices using zno nanowires by applying dc voltage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUZNETZOV A. A. ET AL.: "Electron field emission from transparent multiwalled carbon nanotube sheet for inverted field emission displays.", CARBON., vol. 48, 2010, pages 41 - 46 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748230B (en) * 2019-07-16 2021-12-01 鴻海精密工業股份有限公司 Carbon nanotube field emitter and making method thereof

Also Published As

Publication number Publication date
KR101436948B1 (en) 2014-09-03
KR20140006659A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2013009083A2 (en) Electric field emitting source, element using same, and production method therefor
WO2009120044A2 (en) Light-emitting element and a production method therefor
KR101092540B1 (en) Enhanced electron field emission from carbon nanotubes without activation
WO2012074271A2 (en) Field emission display device and manufacturing method thereof
EP2346779A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
WO2014046373A1 (en) Organic light-emitting diode provided with transparent electrode having conductive filaments and method for manufacturing same
WO2014007570A1 (en) Carbon nanotube structure, production method for same and field emission device using same
TW200947505A (en) Field emission display
US9666400B2 (en) Field emission electron source and field emission device
KR101046976B1 (en) Composition for forming electron emission source, method for manufacturing electron emission source using same and electron emission source
US8727827B2 (en) Method for making field emission electron source
JP2001043792A5 (en)
WO2019168273A1 (en) Ultraviolet light-emitting element
WO2012138041A1 (en) High-efficient flat type photo bar using field emitter and manufacturing method thereof
KR101533048B1 (en) Field electron emitter containing nucleic acid coated carbon nanotube and methode for manufactring the same
WO2016111405A1 (en) Carbon nanotube paste for a high power field emission emitter and method of manufacturing the same
KR100819446B1 (en) Field Emission Display with Selective Aarray of Electron Emission Source and Manufacturing of Method the Same
WO2017014385A1 (en) Electron emitter and light emitting apparatus comprising same
Cho et al. Carbon nanotube-based triode field emission lamps using metal meshes with spacers
US20050099111A1 (en) Method for the preparation of graphite nanofibers and emitter and display elements comprising the nanofibers
WO2012096499A2 (en) Horizontal field emission device
WO2021246578A1 (en) Manufacturing apparatus and manufacturing method for light-emitting device
CN108987576B (en) Preparation method of carbon nanotube composite film, carbon nanotube TFT and preparation method thereof
JP2000311590A5 (en)
WO2013176484A1 (en) Transparent electrode and method for forming transparent electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812982

Country of ref document: EP

Kind code of ref document: A1