WO2014007262A1 - Fresh-water manufacturing device and fresh-water manufacturing method - Google Patents

Fresh-water manufacturing device and fresh-water manufacturing method Download PDF

Info

Publication number
WO2014007262A1
WO2014007262A1 PCT/JP2013/068173 JP2013068173W WO2014007262A1 WO 2014007262 A1 WO2014007262 A1 WO 2014007262A1 JP 2013068173 W JP2013068173 W JP 2013068173W WO 2014007262 A1 WO2014007262 A1 WO 2014007262A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
semipermeable membrane
fresh water
fresh
Prior art date
Application number
PCT/JP2013/068173
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 雅英
一憲 富岡
寛生 高畠
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014523753A priority Critical patent/JPWO2014007262A1/en
Publication of WO2014007262A1 publication Critical patent/WO2014007262A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Definitions

  • the present invention relates to a fresh water production apparatus using a semipermeable membrane unit for treating seawater, river water, ground water, wastewater treated water to obtain fresh water. More specifically, the present invention relates to a fresh water production apparatus capable of purifying concentrated water using the energy of concentrated water in a semipermeable membrane, and to obtain concentrated water that is easy to be released into the environment and easy to reuse. The present invention relates to a fresh water production apparatus capable of Moreover, it is related with the freshwater manufacturing method using the said freshwater manufacturing apparatus.
  • Membrane separation technology can be broadly divided into microfiltration membranes with submicrometer order pores, smaller ultrafiltration membranes, nanofiltration membranes capable of nano-order separation, and reverse osmosis membranes capable of sub-nanoorder separation. Is done.
  • nanofiltration membranes with small pores and reverse osmosis membranes are called semipermeable membranes, and are classified as membranes that allow water to permeate but not solutes, and obtain fresh water suitable for drinking water.
  • the water to be treated of the semipermeable membrane is supplied after it has been turbidized by the pretreatment, but the pretreatment often cannot sufficiently remove the organic polymer or the high molecular weight polysaccharide, and the reverse osmosis membrane or the nanofiltration membrane. Will be supplied. Therefore, there are many cases where microorganisms propagate in the semipermeable membrane, and in order to prevent this, there is a method of adding a disinfectant to the water to be treated intermittently or continuously while operating as in Non-Patent Documents 1 and 2. It is taken.
  • the object of the present invention is to use concentrated energy of reverse osmosis membranes and nanofiltration membranes operated at low pressure to purify concentrated water and to make effective use of it.
  • An object of the present invention is to provide a fresh water producing apparatus capable of discharging.
  • a fresh water producing apparatus that pressurizes and feeds first treated water to the first semipermeable membrane unit A and separates it into concentrated water and fresh water that is permeated water by the semipermeable membrane.
  • the flow rate adjusting unit and the filtration unit are disposed in the concentrated water line for taking out the concentrated water from the semipermeable membrane unit A, and the pressure of the concentrated water is applied to at least one selected from the upstream side of the filtration unit and the filtration unit itself.
  • a fresh water production apparatus provided with a protection unit that controls the pressure below the upper limit pressure of the filtration unit.
  • the fresh water producing apparatus includes at least one selected from sand filtration, microfiltration membrane, ultrafiltration membrane, cartridge filter, activated carbon filter, and adsorbent filter.
  • the protection unit includes a concentrated water discharge line and a pressure release valve provided in the concentrated water discharge line and opened at a set pressure or higher.
  • the first treated water is wastewater treated water.
  • a pretreatment unit for treating the first treated water is disposed on the upstream side of the first semipermeable membrane unit A, and the treated water of the filtration unit is placed in the cleaning line of the pretreatment unit.
  • the fresh water producing apparatus according to any one of (1) to (4), further including a pretreatment water supply line to be supplied.
  • the on-off valve is provided in the pretreatment water supply line, and the flow control valve is provided on the line for taking out the treated water from the filtration unit and downstream of the branch with the pretreatment water supply line.
  • Fresh water production apparatus (7)
  • the operating pressure of the first semipermeable membrane unit A is not less than 80 psi and not more than 300 psi, the ratio of permeate flow rate / first treated water flow rate is 0.7 or more, and the operation pressure of the filtration unit is The fresh water producing apparatus according to any one of (1) to (6), wherein the apparatus is 40 psi or less.
  • the fresh water producing apparatus according to any one of (1) to (7), further including a mechanism for applying a back pressure to the permeate side of the first semipermeable membrane unit A.
  • a mixing unit that mixes the water filtered by the filtration unit with the first treated water and a second treated water having at least one of water quality and water temperature, and obtained from the mixing unit.
  • the method further comprises a second semipermeable membrane unit B that performs a semipermeable membrane separation process on the mixed water, and obtains fresh water comprising the permeated water of the second semipermeable membrane unit B (1)
  • the fresh water producing apparatus according to any one of (8) to (8).
  • a third semipermeable membrane unit C for treating the first treated water is disposed on the upstream side of the first semipermeable membrane unit A, and is transmitted through the third semipermeable membrane unit C. After the pressure is released once and stored in the intermediate permeate tank, the pressure is increased and sent to the first semipermeable membrane unit A, and the treated water of the filtration unit is upstream of the third semipermeable membrane unit C.
  • the fresh water producing apparatus according to any one of (1) to (8), wherein the fresh water is refluxed to the side.
  • the filter medium of (5), (6), (9), wherein the filter medium of the filtration unit is made of the same material as at least one of the filter medium of the pretreatment unit and the membrane material of the second semipermeable membrane unit B The fresh water manufacturing apparatus in any one.
  • the on / off valve is fully closed, the flow rate adjusting valve is opened, and when the pretreatment unit is washed with treated water of the filtration unit, the on / off valve is fully opened, and then the flow rate is set.
  • a method for producing fresh water in which one or two of the following relational expressions [1] to [3] are satisfied when the silica concentration of water is CsB, the calcium concentration is CcB, and the magnesium concentration is CmB. [1] CsA> CsB [2] CcA> CcB [3] CmA> CmB
  • the filtration unit is directly connected to the semipermeable membrane unit, particularly the concentrated water line of the reverse osmosis membrane or nanofiltration membrane operated at low pressure, the pressure remaining in the concentrated water It is possible to purify the concentrated water by effectively using energy, to effectively use the concentrated water, or to discharge the concentrated water with less environmental impact.
  • FIG. 1 is a schematic flow diagram showing an example of an embodiment of a fresh water producing apparatus according to the present invention.
  • FIG. 2 is a schematic flow diagram showing an example of another embodiment of the fresh water producing apparatus according to the present invention.
  • FIG. 3 is a schematic flow diagram showing an example of still another embodiment of the fresh water producing apparatus according to the present invention.
  • FIG. 4 is a schematic flowchart showing an example of still another embodiment of the fresh water producing apparatus according to the present invention.
  • FIG. 5 is a schematic flow diagram showing an example of still another embodiment of the fresh water producing apparatus according to the present invention.
  • FIG. 1 An example of an embodiment of the fresh water production apparatus of the present invention is shown in FIG.
  • the fresh water producing apparatus shown in FIG. 1 after the first treated water 1 (raw water) is stored in the treated water tank 2, it is supplied to the pretreatment unit 4 by the intake pump 3, and pretreatment such as turbidity removal is performed. Then, after being temporarily stored in the intermediate tank 5, it is supplied and processed to the first semipermeable membrane unit A by the booster pump 6. In the semipermeable membrane unit A, the introduced pretreatment water is separated into a permeable component (permeated water) and a non-permeable component (concentrated water) of the semipermeable membrane, and the permeable water is stored in the permeated water tank 9 as fresh water.
  • the concentrated water is taken out from the semipermeable membrane unit A to the concentrated water line 11, supplied to the filtration unit 10 through the concentrated water flow rate adjustment valve 8, and filtered.
  • the treated water filtered by the filtration unit 10 is effectively used as will be described later, or discharged through the concentrated water discharge valve 14.
  • the flow rate (permeated water amount) of the permeated water taken out from the semipermeable membrane unit A varies according to the pressure of the pretreatment water.
  • the amount of permeated water is determined by adjusting the output of the pre-treatment water boost pump 6 and adjusting the ratio of the amount of concentrated water and the amount of permeated water by a concentrated water flow rate adjusting unit comprising the concentrated water flow rate adjusting valve 8. I can do it.
  • the permeated water is used as fresh water after appropriately adjusting pH, Langeria index, bactericidal agent concentration, mineral concentration and the like as necessary.
  • the fresh water producing apparatus of the present invention has a protection unit for protecting the filtration unit 10 from the high pressure.
  • the protection unit is not particularly limited, and if the filtration unit 10 has a mechanism that does not exceed the set pressure, it is normally closed by a rupture disc that opens above the set pressure, or a spring, but the spring pressure is applied. Even a mechanical mechanism that opens in the event of a failure, a valve that is opened by a pressure sensor, a mechanism that closes the valve 8 according to the indicated value of the pressure sensor, or suppresses the output of the booster pump 6 Good.
  • valve 17 and the concentrated water discharge line 19 that are opened above the set upper limit pressure of the filtration unit 10 are arranged on the upstream side of the filtration unit 10, and the valve that the filtration unit 10 itself opens above the set upper limit pressure. 18 and at least one selected from having the concentrated water discharge line 20 is required.
  • FIG. 1 shows an example in which both of these protection units are provided, the object of the present invention can be achieved by providing any one of them.
  • a mechanical on / off valve may be arranged.
  • one of the concentrated water is added to the filtration unit 10 while maintaining the upper limit pressure. It is preferable to adopt a method of supplying the parts.
  • valves 17 and 18 are preferably pressure control valves. By controlling with the set upper limit pressure with this pressure control valve, when the pressure is lower than the upper limit pressure, the valve 17 and valve 18 are fully closed, and all the concentrated water is processed by the filtration unit 10 and becomes higher than the set upper limit pressure.
  • the set upper limit pressure is maintained by slightly opening the valve 17 or the valve 18 by automatic pressure control, and the concentrated water can be processed by the filtration unit 10 as much as possible instead of draining the entire amount of concentrated water.
  • the water intake pump 3 and the booster pump 6 can be appropriately selected according to the required capacity, and the treated water tank 2 and the intermediate tank 5 are not indispensable components and are appropriately omitted according to the design ( That is, it is also possible to directly connect the upstream and downstream pipes.
  • Various filtering materials such as biological filters, pre-coated filters, flotation separation and sedimentation separation can be used.
  • a filtration method a method using a separation membrane, a pressurizing method using a separation membrane to pressurize water to be treated (illustrated in FIG.
  • the filtration unit 10 is a filtration unit that can be directly filtered using the pressure of the concentrated water taken out from the semipermeable membrane unit A. For this reason, as a filtration method of the filtration unit 10, it is necessary to employ pressure filtration, and it is preferable that the entire amount is filtered. Any filter material can be used as long as it can be applied to the pressurization method. Cartridge filter, disk filter, microfiltration, ultrafiltration, sand filtration, biological carrier filtration, nanofilter, precoat filter, activated carbon filter, ion exchange An adsorbent filter or the like represented by the resin can be used.
  • Examples of substances to be removed by the filtration unit 10 include turbid substances and soluble substances, and in particular, microorganisms, metabolites, and by-products thereof.
  • turbid substances and soluble substances and in particular, microorganisms, metabolites, and by-products thereof.
  • microorganisms, metabolites, and by-products thereof When the concentrated water is filtered and released to the outside of the system, or when it is reused, it easily becomes a problem if microorganisms, metabolites, by-products, etc. are contained. It is preferable to reduce the organic substance concentration.
  • the organic substance concentration or the microbial concentration contained in the concentrated water of the semipermeable membrane unit A is the supply water to the semipermeable membrane unit A (first treated water, pretreated water, or third described later).
  • the organic substance concentration or microbial concentration of the treated water of the filtration unit 10 is larger than the organic substance concentration or microbial concentration of the filtration unit 10 [permeated water of the semipermeable membrane unit C].
  • (the feed water flow rate of the semipermeable membrane unit A / the concentrated water flow rate of the semipermeable membrane unit A) represents the concentration ratio in the semipermeable membrane unit A.
  • the organic substance concentration or microbial concentration of the treated water of the filtration unit is smaller than the organic substance concentration or microbial concentration of the feed water of the semipermeable membrane unit A.
  • the organic substance concentration is TOC (total organic carbon content), AOC (assimilable organic carbon), DOC (soluble organic carbon), BOD ( Biochemical oxygen demand), COD (chemical oxygen demand), etc. are common.
  • Bacterial accounts, ATP (adenosine triphosphate), chlorophyll, etc. can be applied for the microbial concentration.
  • a measurement method usually used in the technical field of water treatment can be applied.
  • the TOC is preferably 5 mg / l or more, and more preferably 10 mg / l or more.
  • the regulation value released into the environment is exceeded, so that a greater effect can be obtained by applying the fresh water producing apparatus of the present invention.
  • the treated water of the filtration unit 10 may be discharged out of the system as it is.
  • the pretreatment water supply line 15 branched from the concentrated water line 11 is connected to the outlet of the pretreatment unit 4, so that the treated water of the filtration unit 10 flows back to the pretreatment unit 4.
  • Effective use for cleaning is also a preferred embodiment.
  • the pretreatment unit 4 can be washed by closing the pretreatment water valve 12 and opening the pretreatment washing valve 13.
  • the components contained in the concentrated water such as microorganisms concentrated in the semipermeable membrane unit A or contaminated / propagated in the semipermeable membrane unit A, were removed by the filtration unit 10 and thus obtained.
  • the filtered water is preferably applied to the washing water of the pretreatment unit 4.
  • the pretreatment water supply line 15 can be directly connected if the treated water of the filtration unit 10 can be temporarily stored in the treated water tank and then supplied by a pump. In the case of direct connection, it is necessary to give a residual pressure to the treated water side of the filtration unit, and the pressure supplied as washing water to the pretreated unit through the pretreated water supply line 15 by adjusting the opening of the concentrated water discharge valve 14. It is possible to control the flow rate. However, more preferably, when the pretreatment water supply line 15 is branched from the concentrated water line 11 communicating with the filtration unit 10 and directly connected to the outlet of the pretreatment unit 4, the filtered water pressure of the filtration unit 10 is used and no power is generated.
  • the pretreatment cleaning valve 13 is an on / off valve
  • the concentrated water discharge valve 14 is a flow control valve in the concentrated water line 11
  • the on / off valve (pretreatment cleaning valve 13) is fully closed and the flow control is adjusted during normal operation.
  • the valve concentrated water discharge valve 14
  • the on-off valve pretreatment washing valve 13
  • the wastewater used for cleaning the pretreatment unit 4 is discharged out of the system from the pretreatment wastewater line 16.
  • a disinfectant may be added previously.
  • the addition position of the disinfectant is not particularly limited, such as the upstream side of the semipermeable membrane unit A, the upstream side of the filtration unit 10, the downstream side of the filtration unit 10.
  • the semipermeable membrane unit A, the filtration unit 10 and the pretreatment unit 4 are preferable because they can be sterilized at a time.
  • An intermediate boost pump can also be incorporated.
  • a back pressure valve 30 on the permeate side of the semipermeable membrane unit A as a mechanism for applying a back pressure, that is, a pressure to the permeate side
  • a required operating pressure of the semipermeable membrane unit A is provided.
  • the required operating pressure can be reduced by applying the back pressure by applying the back pressure valve 30 on the permeate side (applying pressure to the permeate side).
  • the pressure on the treated water side that is, the pressure of the concentrated water can be kept high, and the pressure required for the reflux for the filtration unit 10 and the pretreatment washing can be increased, so that an intermediate booster pump is unnecessary.
  • waste water and its treated water particularly waste water containing a large amount of organic matter as described above and its treated water are suitable for the present invention, and particularly, waste water is organic waste water mainly composed of organic matter, more specifically, When wastewater with a BOD (Biochemical Oxygen Demand) of 100 mg / L or more is treated with biological treatment, biological treatment is unstable or removal of suspended solids is insufficient Therefore, it is particularly effective to apply the present invention.
  • BOD Biochemical Oxygen Demand
  • the semipermeable membrane unit used in the semipermeable membrane unit A applicable to the present invention is not particularly limited, but in order to facilitate handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing and fluid It is preferable to use a separation vessel (element) loaded in a pressure vessel.
  • the fluid separation element is formed of a flat membrane-like semipermeable membrane, for example, the semipermeable membrane is wound in a cylindrical shape together with a channel material (net) around a cylindrical central pipe having a large number of holes. What was rotated is common and as a commercial product, the reverse osmosis membrane element TM700 series and TM800 series by Toray Industries, Inc. can be mentioned.
  • One of these fluid separation elements can constitute a semipermeable membrane unit, and a plurality of fluid separation elements can be connected in series or in parallel to constitute a semipermeable membrane unit.
  • the present invention is very effective when applied to a low-pressure reverse osmosis membrane or a nanofiltration membrane having low cost performance when equipped with an energy recovery unit for concentrated water as described above.
  • the upper limit pressure of the semipermeable membrane unit A is preferably 450 psi or less
  • the upper limit pressure of the filtration unit 10 is preferably 100 psi or less.
  • the operating pressure of the semipermeable membrane unit A is not less than 80 psi and not more than 300 psi, the recovery rate (permeated water flow rate / treated water flow rate ratio) in the semipermeable membrane unit A is 0.7 or more, and the filtration unit 10
  • the operating pressure is preferably 40 psi or less. Also, in the case of a pressure exceeding this or a recovery rate lower than this, depending on the cost reduction of the energy recovery unit and the unit price of power, it may become reasonable to equip the energy recovery unit. A detailed comparison is required as to whether the freshwater production equipment or the energy recovery unit is adopted.
  • polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer can be used as the material of the semipermeable membrane.
  • the membrane structure also includes an asymmetric membrane having a fine layer having micropores on at least one side of the membrane, and having fine pores with gradually increasing pore diameters from the dense layer toward the inside of the membrane or the other side, and the denseness of the asymmetric membrane. Either a composite membrane having a very thin functional layer formed of another material on the layer may be used.
  • the water to be treated is concentrated. Therefore, the water to be treated (feed water) of each semipermeable membrane unit is used to prevent scale precipitation due to concentration or to adjust pH. It is possible to add scale inhibitors and acids / alkalis. In addition, it is preferable to make the position which adds a scale inhibitor upstream from the position which adds a pH adjuster (acid, alkali) so that the addition effect can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the chemical addition, or by directly contacting the addition port with the flow of the supply water.
  • the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
  • organic polymers synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer.
  • polyphosphate etc. can be used as an inorganic type scale inhibitor.
  • polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost.
  • the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
  • Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
  • sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used.
  • hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used.
  • acids and alkalis containing calcium or magnesium in order to prevent an increase in scale components.
  • the treated water of the filtration unit is used as the second treatment water. It is also preferable for application of the present invention that a mixing unit for mixing with the water to be treated is provided and the resulting mixed water is desalinated. Such an embodiment is illustrated in FIG.
  • the second treated water 21 is pretreated by the pretreatment unit 24 through the treated water tank 22 and the water intake pump 23 as necessary, and then mixed with the treated water of the filtration unit 10.
  • the mixed water tank 25 which is one aspect, after pressurizing with the pressure
  • the permeated water obtained from the second semipermeable membrane unit B is stored in the permeated water tank 29.
  • the concentrated water discharged from the semipermeable membrane unit B is discharged through the concentrated water flow rate adjustment valve 28.
  • the filter medium it is preferable to use the same material as the filter medium of the second semipermeable membrane unit B or the filter medium of the pretreatment unit 4. That is, for example, if the second semipermeable membrane unit B is a polyamide semipermeable membrane, if the filtration unit 10 also uses a polyamide filter, it may be adsorbed to the second semipermeable membrane unit B and cause performance degradation. This is preferable because it is possible to remove a material having a property.
  • the second treated water 21 is preferably water that is different from the first treated water 1 in water quality and water temperature. That is, if two types of water to be treated with different water quality and / or water temperature can be mixed at an arbitrary ratio, fluctuations in water quality can be suppressed, and the second semipermeable membrane unit B can be operated stably. I can do it. Furthermore, when the scale component necessary for determining the upper limit of the recovery rate of the semipermeable membrane unit B can be diluted, it is particularly preferable because the recovery rate can be increased and the risk of scale deposition can be reduced.
  • the semipermeable membrane unit has a component composition in which silica, calcium, and magnesium that normally cause scale deposition are mixed so that the risk of scale deposition after mixing is reduced.
  • the silica concentration of the treated water of the filtration unit 10 is CsA
  • the calcium concentration is CcA
  • the magnesium concentration is CmA
  • the silica concentration of the second treated water 21 is CsB
  • the calcium concentration is CcB
  • the magnesium concentration is CmB.
  • the magnesium concentration is CmB.
  • the first treated water 1 has a relatively high silica concentration, which is often found in river water, groundwater, wastewater treated water, etc., and the second treated water 21 is rich in calcium and magnesium. If the seawater contained in is used, the mixed water with which the density
  • FIG. 5 a desalination system in which the third semipermeable membrane unit C is arranged on the upstream side of the first semipermeable membrane unit A is exemplified. Is done.
  • the concentrated water of the semipermeable membrane unit A can be returned to the intermediate tank 5 after being purified by the filtration unit 10, which is one of the very preferred embodiments.
  • the first treated water 1 is stored in the treated water tank 2, it is supplied to the pretreatment unit 4 by the intake pump 3 and subjected to pretreatment, and then temporarily stored in the intermediate tank 5.
  • the concentrated water of the semipermeable membrane unit C is discharged through the concentrated water flow rate adjustment valve 38.
  • the permeated water of the semipermeable membrane unit C is once stored in the intermediate permeated water tank 39 and then supplied to the semipermeable membrane unit A by the booster pump 6 to perform the second stage process.
  • the permeated water of the semipermeable membrane unit A is stored in the permeated water tank 9.
  • the concentrated water of the semipermeable membrane unit A is taken out to the concentrated water line 11, supplied to the filtration unit 10 through the concentrated water flow rate adjusting valve 8, filtered, and then returned to the intermediate tank 5 to be semipermeable. Further processing in membrane unit C.
  • the semipermeable membrane unit A and the filtration unit 10 are each constituted by one unit, but it is also preferred that each is constituted by a plurality of units.
  • the filtration unit 10 is directly connected to the semipermeable membrane unit A, since the cleaning timing is not always the same when directly connected one-to-one, at least a plurality of filtration units 10 arranged in parallel are arranged.
  • the semipermeable membrane unit A is also composed of a plurality of series arranged in parallel.
  • the filtration unit is made of a microfiltration membrane or an ultrafiltration membrane, the washing is generally carried out every several tens of minutes to every few hours, so multiple series of filtration units arranged in parallel one by one sequentially. Automatic cleaning is preferred.
  • the present invention relates to a fresh water production apparatus using a semipermeable membrane unit for treating seawater, river water, groundwater, wastewater treated water to obtain fresh water, and more specifically, utilizing the energy of concentrated water of the semipermeable membrane. It is related to fresh water production equipment that can purify concentrated water, and it is easy to recycle into the environment without consuming energy by filtering using concentrated water pressure. Can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

A fresh-water manufacturing device for obtaining fresh water by putting first water to be treated (1) under pressure, sending said water to a semipermeable-membrane unit (A), and using a semipermeable membrane to separate said water into concentrated water and fresh pass-through water. This fresh-water manufacturing device is characterized in that: a flow control unit (8) and a filtration unit (10) are located on a concentrated-water line (11) that removes the concentrated water from the semipermeable-membrane unit (A); and protective units (17 and 19, or 18 and 20) that keep the pressure of the concentrated water from exceeding a maximum pressure limit for the filtration unit are provided upstream of the filtration unit (10) and/or on the filtration unit (10) itself.

Description

淡水製造装置および淡水製造方法Fresh water production apparatus and fresh water production method
 本発明は、海水、河川水、地下水、廃水処理水を処理して淡水を得るための半透膜ユニットを用いた淡水製造装置に関する。さらに詳しくは、半透膜の濃縮水のエネルギーを利用して、濃縮水の浄化を行うことが出来る淡水製造装置に関し、環境中に放流するのに優しい、また再利用しやすい濃縮水を得ることが出来る淡水製造装置に関する。また、当該淡水製造装置を用いた淡水製造方法に関する。 The present invention relates to a fresh water production apparatus using a semipermeable membrane unit for treating seawater, river water, ground water, wastewater treated water to obtain fresh water. More specifically, the present invention relates to a fresh water production apparatus capable of purifying concentrated water using the energy of concentrated water in a semipermeable membrane, and to obtain concentrated water that is easy to be released into the environment and easy to reuse. The present invention relates to a fresh water production apparatus capable of Moreover, it is related with the freshwater manufacturing method using the said freshwater manufacturing apparatus.
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、分離膜利用技術が非常に幅広く適用されてきている。海水、かん水、地下水、河川水など様々な水資源を処理して、飲料水、工業用水、農業用水として利用されている。膜分離技術は、サブマイクロメートルオーダーの細孔をもって分離する精密ろ過膜、さらに小さな限外ろ過膜、ナノオーダーの分離が可能なナノろ過膜、サブナノオーダーの分離が可能な逆浸透膜に大別される。この中で、ナノろ過膜の小さな細孔を持つものや逆浸透膜は半透膜と呼ばれ、水は透過させるが、溶質は透過しない膜として分類され、飲料水に適した淡水を得ることが出来る技術として、特に幅広く適用されている。海水から淡水を得る場合は、3MPa程度の浸透圧に対抗して圧力をかけ、海水中の水だけを透過させる。具体的には、5~7MPaの高圧をポンプで供給し、半透膜を介して淡水を取り出すとともに、濃縮海水を排出する。海水淡水化用の逆浸透膜設備では、ほぼ供給された圧力エネルギーを有する濃縮海水が排出されるため、これをエネルギー回収ユニットによって圧力回収を行うのが一般的であり、これによってさらに、所要動力が低減できる仕組みになっている。 With the recent worsening of the water environment, water treatment technology has become more important than ever, and separation membrane technology has been applied very widely. Various water resources such as seawater, brine, groundwater and river water are treated and used as drinking water, industrial water, and agricultural water. Membrane separation technology can be broadly divided into microfiltration membranes with submicrometer order pores, smaller ultrafiltration membranes, nanofiltration membranes capable of nano-order separation, and reverse osmosis membranes capable of sub-nanoorder separation. Is done. Among these, nanofiltration membranes with small pores and reverse osmosis membranes are called semipermeable membranes, and are classified as membranes that allow water to permeate but not solutes, and obtain fresh water suitable for drinking water. As a technology that can be used, it is particularly widely applied. When obtaining fresh water from seawater, pressure is applied against the osmotic pressure of about 3 MPa, and only water in seawater is permeated. Specifically, a high pressure of 5 to 7 MPa is supplied by a pump to take out fresh water through a semipermeable membrane and discharge concentrated seawater. In a reverse osmosis membrane facility for seawater desalination, concentrated seawater having almost the supplied pressure energy is discharged, and this is generally recovered by an energy recovery unit. It has become a mechanism that can reduce.
 ただし、被処理水の溶質濃度が低い場合は、浸透圧が小さいため、運転圧力が小さくなる。さらに、被処理水の濃度が低い場合は、低圧用逆浸透膜やナノろ過膜が適用されるが、淡水を取り出せる割合である回収率(=透過水量/被処理水量)が大きくできるため、濃縮水量が少なくなる。そのため、エネルギー回収ユニットを設置しても回収できるエネルギーは小さく、エネルギー回収ユニットのコストパフォーマンスが小さくなり、経済的に見合わない場合が多いため、低圧で運転される半透膜ユニットでは、通常濃縮水のエネルギー回収はされずに、系外に排出されることが多い。この圧力エネルギーを活用して、特許文献1に例示するように、前処理ユニットの洗浄に活用するといった提案がなされているが、分離膜濃縮水の圧力は、分離膜の運転条件に左右されると共に、溶質が濃縮された水質であることから水質に問題がある場合もあるため、洗浄効果が十分に得られなかったり、制御が容易でないため、あまり適用されていない。 However, when the solute concentration of the water to be treated is low, the operating pressure is small because the osmotic pressure is small. Furthermore, when the concentration of water to be treated is low, a reverse osmosis membrane for low pressure or a nanofiltration membrane is applied. The amount of water decreases. Therefore, even if an energy recovery unit is installed, the energy that can be recovered is small, the cost performance of the energy recovery unit is small, and it is often not economically appropriate. In many cases, water is not recovered and discharged outside the system. As exemplified in Patent Document 1, by utilizing this pressure energy, it has been proposed to use it for cleaning the pretreatment unit. However, the pressure of the separation membrane concentrated water depends on the operating conditions of the separation membrane. At the same time, since there is a case where there is a problem in water quality because the solute is a concentrated water quality, the cleaning effect is not sufficiently obtained, and control is not easy, so it is not so much applied.
 一方、半透膜の被処理水は前処理で除濁されてから供給されるが、前処理では有機高分子や高分子多糖類を十分に除去できないことが多く、逆浸透膜やナノろ過膜に供給されてしまう。そのため、半透膜では微生物が繁殖する場合が多く、それを防止するために、非特許文献1、2のように運転しながら間欠的もしくは連続的に被処理水に殺菌剤を添加する方法が採られている。 On the other hand, the water to be treated of the semipermeable membrane is supplied after it has been turbidized by the pretreatment, but the pretreatment often cannot sufficiently remove the organic polymer or the high molecular weight polysaccharide, and the reverse osmosis membrane or the nanofiltration membrane. Will be supplied. Therefore, there are many cases where microorganisms propagate in the semipermeable membrane, and in order to prevent this, there is a method of adding a disinfectant to the water to be treated intermittently or continuously while operating as in Non-Patent Documents 1 and 2. It is taken.
日本国特開昭56-111006号公報Japanese Unexamined Patent Publication No. 56-111006
 しかし、洗浄が不十分な場合や被処理水中の有機物濃度が多い場合は、半透膜内で微生物の繁殖が生じるため、半透膜の性能を損ねることはもちろんであるが、剥離してきた微生物を含む汚れ成分が、濃縮排水と一緒に系外、すなわち、環境中に排出されることになるため、好ましいことではない。また、濃縮水を用いて前処理の洗浄に用いる場合は、剥離してきた微生物汚れが入っていると、前処理を汚染してしまうため問題である。
 本発明の目的は、低圧で運転される逆浸透膜やナノろ過膜の濃縮水のエネルギーを活用して、濃縮水の浄化を行い、有効利用が可能であり、また環境影響の小さい濃縮水を排出できる淡水製造装置を提供することにある。
However, when washing is insufficient or the concentration of organic matter in the water to be treated is high, microorganisms grow in the semipermeable membrane, so that the performance of the semipermeable membrane is impaired. This is not preferable because the soil component containing the water is discharged out of the system together with the concentrated waste water, that is, into the environment. In addition, when using concentrated water for pretreatment washing, there is a problem because the pretreatment is contaminated if microbial soil that has peeled off is contained.
The object of the present invention is to use concentrated energy of reverse osmosis membranes and nanofiltration membranes operated at low pressure to purify concentrated water and to make effective use of it. An object of the present invention is to provide a fresh water producing apparatus capable of discharging.
 前記課題を解決するために、本発明は次の構成をとる。
(1) 第1の被処理水を加圧して第1の半透膜ユニットAに送り、半透膜によって濃縮水と透過水である淡水とに分離する淡水製造装置であって、前記第1の半透膜ユニットAから濃縮水を取り出す濃縮水ラインに流量調整ユニットおよびろ過ユニットを配置するとともに、前記ろ過ユニットの上流側および前記ろ過ユニット自体から選ばれる少なくとも一つに、濃縮水の圧力をろ過ユニットの上限圧力以下に制御する保護ユニットを備える淡水製造装置。
(2) 前記ろ過ユニットが、砂ろ過、精密ろ過膜、限外ろ過膜、カートリッジフィルター、活性炭フィルター、および吸着剤フィルターから選ばれる少なくとも一つを含む前記(1)に記載の淡水製造装置。
(3) 前記保護ユニットが、濃縮水排出ラインと、前記濃縮水排出ラインに設けられ設定圧力以上で開く圧力開放バルブとを含む前記(1)または(2)に記載の淡水製造装置。
(4) 前記第1の被処理水が廃水処理水である前記(1)~(3)のいずれかに記載の淡水製造装置。
(5) 前記第1の半透膜ユニットAの上流側に、前記第1の被処理水を処理する前処理ユニットを配置するとともに、前記ろ過ユニットの処理水を前記前処理ユニットの洗浄ラインに供給する前処理水供給ラインを有する前記(1)~(4)のいずれかに記載の淡水製造装置。
(6) 前記前処理水供給ラインにオンオフバルブを設けるとともに、前記ろ過ユニットから処理水を取り出すライン上であって前処理水供給ラインとの分岐の下流側に、流量調節バルブを有する前記(5)に記載の淡水製造装置。
(7) 前記第1の半透膜ユニットAの運転圧力が80psi以上300psi以下であるとともに、透過水流量/第1の被処理水流量比が0.7以上、かつ前記ろ過ユニットの運転圧力が40psi以下である前記(1)~(6)のいずれかに記載の淡水製造装置。
(8) 前記第1の半透膜ユニットAの透過水側に背圧を付与するための機構を備える前記(1)~(7)のいずれかに記載の淡水製造装置。
(9) 前記ろ過ユニットでろ過処理した水と、前記第1の被処理水と水質および水温の少なくとも一つが異なる第2の被処理水とを混合する混合ユニットと、前記混合ユニットから得られた混合水に対し半透膜分離処理を行う第2の半透膜ユニットBをさらに有し、前記第2の半透膜ユニットBの透過水からなる淡水を得ることを特徴とする前記(1)~(8)のいずれかに記載の淡水製造装置。
(10) 前記第1の半透膜ユニットAの上流側に、前記第1の被処理水を処理する第3の半透膜ユニットCを配置し、前記第3の半透膜ユニットCの透過水を一旦圧力開放して中間透過水タンクに貯留した後、昇圧して前記第1の半透膜ユニットAに送ると共に、前記ろ過ユニットの処理水が前記第3の半透膜ユニットCの上流側に還流される前記(1)~(8)のいずれかに記載の淡水製造装置。
(11) 前記ろ過ユニットが、精密ろ過膜または限外ろ過膜の複数系列からなり、1系列ずつ順次に自動洗浄される前記(1)~(10)のいずれかに記載の淡水製造装置。
(12) 前記ろ過ユニットのろ材が前記前処理ユニットのろ材および前記第2の半透膜ユニットBの膜素材の少なくとも一方と同種の素材からなる前記(5)、(6)、(9)のいずれかに記載の淡水製造装置。
(13) 前記(1)~(12)のいずれかに記載の淡水製造装置を用いる淡水製造方法であって、前記第1の半透膜ユニットAの濃縮水に含有される有機物濃度または微生物濃度が、前記第1の半透膜ユニットAの供給水に含有される有機物濃度または微生物濃度よりも大きく、かつ前記ろ過ユニットの処理水の有機物濃度または微生物濃度が、[(第1の半透膜ユニットAの濃縮水の有機物濃度もしくは微生物濃度)×供給水流量/濃縮水流量]よりも小さい淡水製造方法。
(14) 前記(1)~(12)のいずれかに記載の淡水製造装置を用いる淡水製造方法であって、前記第1の半透膜ユニットAの運転圧力を80psi以上300psi以下、透過水流量/第1の被処理水流量比を0.7以上にするとともに、前記ろ過ユニットの運転圧力を40psi以下にする淡水製造方法。
(15) 前記(6)に記載の淡水製造装置を用いる淡水製造方法であって、前記第1の被処理水を前処理ユニットで処理してから前記第1の半透膜ユニットAに供給するとともに、通常運転の時は、前記オンオフバルブを全閉、前記流量調節バルブを開とし、前記ろ過ユニットの処理水で前処理ユニットを洗浄する時は、前記オンオフバルブを全開にしてから、前記流量調節バルブを徐々に閉じて洗浄水の流量が設定値に達するようにする淡水製造方法。
(16) 前記(9)に記載の淡水製造装置を用いる淡水製造方法であって、前記ろ過ユニットの処理水のシリカ濃度をCsA、カルシウム濃度をCcA、マグネシウム濃度をCmA、前記第2の被処理水のシリカ濃度をCsB、カルシウム濃度をCcB、マグネシウム濃度をCmBとするとき、下記関係式[1]~[3]のうち、1つまたは2つの関係式が成り立つ淡水製造方法。
[1] CsA>CsB
[2] CcA>CcB
[3] CmA>CmB
In order to solve the above problems, the present invention has the following configuration.
(1) A fresh water producing apparatus that pressurizes and feeds first treated water to the first semipermeable membrane unit A and separates it into concentrated water and fresh water that is permeated water by the semipermeable membrane. The flow rate adjusting unit and the filtration unit are disposed in the concentrated water line for taking out the concentrated water from the semipermeable membrane unit A, and the pressure of the concentrated water is applied to at least one selected from the upstream side of the filtration unit and the filtration unit itself. A fresh water production apparatus provided with a protection unit that controls the pressure below the upper limit pressure of the filtration unit.
(2) The fresh water producing apparatus according to (1), wherein the filtration unit includes at least one selected from sand filtration, microfiltration membrane, ultrafiltration membrane, cartridge filter, activated carbon filter, and adsorbent filter.
(3) The fresh water producing apparatus according to (1) or (2), wherein the protection unit includes a concentrated water discharge line and a pressure release valve provided in the concentrated water discharge line and opened at a set pressure or higher.
(4) The fresh water producing apparatus according to any one of (1) to (3), wherein the first treated water is wastewater treated water.
(5) A pretreatment unit for treating the first treated water is disposed on the upstream side of the first semipermeable membrane unit A, and the treated water of the filtration unit is placed in the cleaning line of the pretreatment unit. The fresh water producing apparatus according to any one of (1) to (4), further including a pretreatment water supply line to be supplied.
(6) The on-off valve is provided in the pretreatment water supply line, and the flow control valve is provided on the line for taking out the treated water from the filtration unit and downstream of the branch with the pretreatment water supply line. ) Fresh water production apparatus.
(7) The operating pressure of the first semipermeable membrane unit A is not less than 80 psi and not more than 300 psi, the ratio of permeate flow rate / first treated water flow rate is 0.7 or more, and the operation pressure of the filtration unit is The fresh water producing apparatus according to any one of (1) to (6), wherein the apparatus is 40 psi or less.
(8) The fresh water producing apparatus according to any one of (1) to (7), further including a mechanism for applying a back pressure to the permeate side of the first semipermeable membrane unit A.
(9) A mixing unit that mixes the water filtered by the filtration unit with the first treated water and a second treated water having at least one of water quality and water temperature, and obtained from the mixing unit. The method further comprises a second semipermeable membrane unit B that performs a semipermeable membrane separation process on the mixed water, and obtains fresh water comprising the permeated water of the second semipermeable membrane unit B (1) The fresh water producing apparatus according to any one of (8) to (8).
(10) A third semipermeable membrane unit C for treating the first treated water is disposed on the upstream side of the first semipermeable membrane unit A, and is transmitted through the third semipermeable membrane unit C. After the pressure is released once and stored in the intermediate permeate tank, the pressure is increased and sent to the first semipermeable membrane unit A, and the treated water of the filtration unit is upstream of the third semipermeable membrane unit C. The fresh water producing apparatus according to any one of (1) to (8), wherein the fresh water is refluxed to the side.
(11) The fresh water producing apparatus according to any one of (1) to (10), wherein the filtration unit is composed of a plurality of series of microfiltration membranes or ultrafiltration membranes and is automatically automatically washed one by one.
(12) The filter medium of (5), (6), (9), wherein the filter medium of the filtration unit is made of the same material as at least one of the filter medium of the pretreatment unit and the membrane material of the second semipermeable membrane unit B The fresh water manufacturing apparatus in any one.
(13) A fresh water production method using the fresh water production apparatus according to any one of (1) to (12), wherein the concentration of organic matter or microorganism contained in the concentrated water of the first semipermeable membrane unit A Is higher than the organic substance concentration or microbial concentration contained in the feed water of the first semipermeable membrane unit A, and the organic substance concentration or microbial concentration of the treated water of the filtration unit is [(first semipermeable membrane Organic water concentration or microbial concentration of the concentrated water of unit A) × feed water flow rate / concentrated water flow rate].
(14) A fresh water production method using the fresh water production apparatus according to any one of (1) to (12), wherein an operating pressure of the first semipermeable membrane unit A is 80 psi or more and 300 psi or less, and a permeate flow rate. / The fresh water manufacturing method which makes 1st to-be-processed water flow rate ratio 0.7 or more, and makes the operating pressure of the said filtration unit 40 psi or less.
(15) A fresh water production method using the fresh water production apparatus according to (6), wherein the first treated water is treated by a pretreatment unit and then supplied to the first semipermeable membrane unit A. At the time of normal operation, the on / off valve is fully closed, the flow rate adjusting valve is opened, and when the pretreatment unit is washed with treated water of the filtration unit, the on / off valve is fully opened, and then the flow rate is set. A fresh water production method in which the control valve is gradually closed so that the flow rate of the washing water reaches a set value.
(16) A fresh water production method using the fresh water production apparatus according to (9), wherein the silica concentration of the treated water of the filtration unit is CsA, the calcium concentration is CcA, the magnesium concentration is CmA, and the second treatment target. A method for producing fresh water in which one or two of the following relational expressions [1] to [3] are satisfied when the silica concentration of water is CsB, the calcium concentration is CcB, and the magnesium concentration is CmB.
[1] CsA> CsB
[2] CcA> CcB
[3] CmA> CmB
 本発明の淡水製造装置によれば、半透膜ユニット、特に、低圧で運転される逆浸透膜やナノろ過膜の濃縮水ラインにろ過ユニットを直結するようにしたので、濃縮水に残留する圧力エネルギーを有効に活用して、濃縮水の浄化を行い、濃縮水を有効利用したり、環境影響の小さい濃縮水にして排出することが可能となる。 According to the fresh water producing apparatus of the present invention, since the filtration unit is directly connected to the semipermeable membrane unit, particularly the concentrated water line of the reverse osmosis membrane or nanofiltration membrane operated at low pressure, the pressure remaining in the concentrated water It is possible to purify the concentrated water by effectively using energy, to effectively use the concentrated water, or to discharge the concentrated water with less environmental impact.
図1は本発明に係る淡水製造装置の実施形態の一例を示す概略フロー図である。FIG. 1 is a schematic flow diagram showing an example of an embodiment of a fresh water producing apparatus according to the present invention. 図2は本発明に係る淡水製造装置の他の実施形態の一例を示す概略フロー図である  。FIG. 2 is a schematic flow diagram showing an example of another embodiment of the fresh water producing apparatus according to the present invention. 図3は本発明に係る淡水製造装置の更に他の実施形態の一例を示す概略フロー図である。FIG. 3 is a schematic flow diagram showing an example of still another embodiment of the fresh water producing apparatus according to the present invention. 図4は本発明に係る淡水製造装置の更に他の実施形態の一例を示す概略フロー図である。FIG. 4 is a schematic flowchart showing an example of still another embodiment of the fresh water producing apparatus according to the present invention. 図5は本発明に係る淡水製造装置の更に他の実施形態の一例を示す概略フロー図である。FIG. 5 is a schematic flow diagram showing an example of still another embodiment of the fresh water producing apparatus according to the present invention.
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。また図面の説明において共通する符号の説明についての記載は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these. Further, description of common reference numerals in the description of the drawings is omitted.
 本発明の淡水製造装置の実施形態の一例を図1に示す。 An example of an embodiment of the fresh water production apparatus of the present invention is shown in FIG.
 図1に示す淡水製造装置では、第1の被処理水1(原水)が被処理水タンク2に貯留された後、取水ポンプ3で前処理ユニット4に供給され、濁質除去などの前処理を施された後、中間タンク5に一旦貯留されてから、昇圧ポンプ6によって第1の半透膜ユニットAに供給・処理される。半透膜ユニットAでは、導入された前処理水を半透膜の透過成分(透過水)と非透過成分(濃縮水)に分離し、透過水を淡水として透過水タンク9に貯留する。濃縮水は、半透膜ユニットAから濃縮水ライン11に取り出され、濃縮水流量調節バルブ8を通って、ろ過ユニット10に供給され、ろ過処理される。ろ過ユニット10でろ過処理された処理水は、後述するように有効利用されるか、或いは濃縮水排出バルブ14を通って排出される。 In the fresh water producing apparatus shown in FIG. 1, after the first treated water 1 (raw water) is stored in the treated water tank 2, it is supplied to the pretreatment unit 4 by the intake pump 3, and pretreatment such as turbidity removal is performed. Then, after being temporarily stored in the intermediate tank 5, it is supplied and processed to the first semipermeable membrane unit A by the booster pump 6. In the semipermeable membrane unit A, the introduced pretreatment water is separated into a permeable component (permeated water) and a non-permeable component (concentrated water) of the semipermeable membrane, and the permeable water is stored in the permeated water tank 9 as fresh water. The concentrated water is taken out from the semipermeable membrane unit A to the concentrated water line 11, supplied to the filtration unit 10 through the concentrated water flow rate adjustment valve 8, and filtered. The treated water filtered by the filtration unit 10 is effectively used as will be described later, or discharged through the concentrated water discharge valve 14.
 ここで、半透膜ユニットAから取り出される透過水の流量(透過水量)は、前処理水の圧力に応じて変動する。このため、前処理水の昇圧ポンプ6の出力を調整すると共に、濃縮水流量調節バルブ8からなる濃縮水流量調節ユニットで濃縮水量と透過水量の比率を調節することによって、透過水量を決定することが出来る。なお、透過水は、必要に応じてpH、ランゲリア指数、殺菌剤濃度、ミネラル濃度などを適宜調節された後、淡水として使用に供される。 Here, the flow rate (permeated water amount) of the permeated water taken out from the semipermeable membrane unit A varies according to the pressure of the pretreatment water. For this reason, the amount of permeated water is determined by adjusting the output of the pre-treatment water boost pump 6 and adjusting the ratio of the amount of concentrated water and the amount of permeated water by a concentrated water flow rate adjusting unit comprising the concentrated water flow rate adjusting valve 8. I can do it. The permeated water is used as fresh water after appropriately adjusting pH, Langeria index, bactericidal agent concentration, mineral concentration and the like as necessary.
 ここで、半透膜ユニットAは、ろ過ユニット10よりも高圧で運転されるため、本発明の淡水製造装置はろ過ユニット10を高圧から保護する保護ユニットを有する。保護ユニットとしては特に制約はなくろ過ユニット10が設定圧力以上にならないような機構を有していれば、設定圧力以上で開放する破裂板や、バネによって通常は閉じているがバネ圧力以上がかかった場合に開放するような機械的な機構でも、圧力センサーによって開放するバルブや、圧力センサーの指示値に応じてバルブ8を閉じたり、昇圧ポンプ6の出力を抑えるような機構のようなものでもよい。本発明では、ろ過ユニット10の設定上限圧力以上で開放されるバルブ17と濃縮水排出ライン19をろ過ユニット10の上流側に配置すること、ろ過ユニット10自体が、設定上限圧力以上で開放するバルブ18と濃縮水排出ライン20を有することから選ばれる少なくとも一つが必要である。図1には、これら両方の保護ユニットを備えた例を示しているが、いずれか一つを備えることにより本発明の目的を達成することが可能である。これらの保護ユニットにおいては、機械的なオンオフバルブを配置しても構わないが、濃縮水をなるべくろ過ユニットで処理したいという観点からすると、上限圧力を維持しながら、ろ過ユニット10に濃縮水の一部を供給する方法を採ることが好ましい。その為にはバルブ17及びバルブ18がオンオフバルブの場合、設定上限圧力以上で開放されてしまうとろ過ユニット10への供給水が全て濃縮水排出ライン19または濃縮水排出ライン20から排出されてしまい、濃縮水がろ過ユニット10でろ過出来なくなってしまうので、バルブ17及びバルブ18を圧力調節弁とするのが好ましい。この圧力調節弁にて設定上限圧力で制御することにより、圧力が上限圧力以下の場合はバルブ17、バルブ18は全閉で濃縮水は全てろ過ユニット10で処理され、設定上限圧力以上となった場合は、自動圧力制御によりバルブ17又はバルブ18を若干開とすることで設定上限圧力を保持し、濃縮水を全量排水するのではなく、濃縮水をなるべくろ過ユニット10で処理することが可能となる。ここで、取水ポンプ3や昇圧ポンプ6は、必要能力に応じて適宜選択することも出来るし、被処理水タンク2や中間タンク5は必須の構成ではなく、設計に応じて適宜省略すること(すなわち、上流側および下流側の配管を直結すること)も可能である。 Here, since the semipermeable membrane unit A is operated at a higher pressure than the filtration unit 10, the fresh water producing apparatus of the present invention has a protection unit for protecting the filtration unit 10 from the high pressure. The protection unit is not particularly limited, and if the filtration unit 10 has a mechanism that does not exceed the set pressure, it is normally closed by a rupture disc that opens above the set pressure, or a spring, but the spring pressure is applied. Even a mechanical mechanism that opens in the event of a failure, a valve that is opened by a pressure sensor, a mechanism that closes the valve 8 according to the indicated value of the pressure sensor, or suppresses the output of the booster pump 6 Good. In the present invention, the valve 17 and the concentrated water discharge line 19 that are opened above the set upper limit pressure of the filtration unit 10 are arranged on the upstream side of the filtration unit 10, and the valve that the filtration unit 10 itself opens above the set upper limit pressure. 18 and at least one selected from having the concentrated water discharge line 20 is required. Although FIG. 1 shows an example in which both of these protection units are provided, the object of the present invention can be achieved by providing any one of them. In these protection units, a mechanical on / off valve may be arranged. However, from the viewpoint of treating the concentrated water with the filtration unit as much as possible, one of the concentrated water is added to the filtration unit 10 while maintaining the upper limit pressure. It is preferable to adopt a method of supplying the parts. Therefore, when the valve 17 and the valve 18 are on / off valves, all the water supplied to the filtration unit 10 is discharged from the concentrated water discharge line 19 or the concentrated water discharge line 20 if the valve 17 and the valve 18 are opened above the set upper limit pressure. Since the concentrated water cannot be filtered by the filtration unit 10, the valves 17 and 18 are preferably pressure control valves. By controlling with the set upper limit pressure with this pressure control valve, when the pressure is lower than the upper limit pressure, the valve 17 and valve 18 are fully closed, and all the concentrated water is processed by the filtration unit 10 and becomes higher than the set upper limit pressure. In this case, the set upper limit pressure is maintained by slightly opening the valve 17 or the valve 18 by automatic pressure control, and the concentrated water can be processed by the filtration unit 10 as much as possible instead of draining the entire amount of concentrated water. Become. Here, the water intake pump 3 and the booster pump 6 can be appropriately selected according to the required capacity, and the treated water tank 2 and the intermediate tank 5 are not indispensable components and are appropriately omitted according to the design ( That is, it is also possible to directly connect the upstream and downstream pipes.
 前処理ユニット4については、糸巻きやプリーツ式に代表されるカートリッジフィルター、ディスクフィルター、精密ろ過膜、限外ろ過膜、ナノフィルター、砂ろ過、生物担体ろ過、活性炭フィルター、吸着剤フィルター、イオン交換樹脂、生物フィルター、プレコートフィルター、浮上分離、沈降分離など、様々なろ過材料を用いることが出来る。またろ過法としても、分離膜を使用する方法、分離膜を使用し被処理水を加圧する加圧法(図1に例示)、分離膜を使用し透過側を吸引する減圧法、また、重力による緩速ろ過分離を適用する方法も出来るし、被処理水を全量ろ過する方法でも、一部を排出するクロスフロー方式と呼ばれる方法でも差し支えない。さらに、物理的な分離のみならず、凝集剤などの薬剤を併用した化学的処理も可能であるし、活性汚泥などで生物処理することも差し支えない。 For the pretreatment unit 4, cartridge filters, disk filters, microfiltration membranes, ultrafiltration membranes, nanofilters, sand filtration, biological carrier filtration, activated carbon filters, adsorbent filters, ion exchange resins represented by spools and pleats Various filtering materials such as biological filters, pre-coated filters, flotation separation and sedimentation separation can be used. Also, as a filtration method, a method using a separation membrane, a pressurizing method using a separation membrane to pressurize water to be treated (illustrated in FIG. 1), a decompression method using a separation membrane and sucking the permeate side, and gravity A method of applying slow filtration separation can be used, and a method of filtering the whole amount of water to be treated or a method called a cross flow method of discharging a part of the water can be used. Furthermore, not only physical separation but also chemical treatment using a chemical such as a flocculant is possible, and biological treatment with activated sludge or the like is allowed.
 一方、ろ過ユニット10は、半透膜ユニットAから取り出された濃縮水の圧力を利用し、直接ろ過できるろ過ユニットである。このため、ろ過ユニット10のろ過方式としては、加圧ろ過を採用する必要があるし、全量ろ過であることが好ましい。ろ過材料としては、加圧方式に適用できるものであれば、差し支えなく、カートリッジフィルター、ディスクフィルター、精密ろ過、限外ろ過、砂ろ過、生物担体ろ過、ナノフィルター、プリコートフィルター、活性炭フィルター、イオン交換樹脂に体表される吸着剤フィルターなどを用いることが出来る。 On the other hand, the filtration unit 10 is a filtration unit that can be directly filtered using the pressure of the concentrated water taken out from the semipermeable membrane unit A. For this reason, as a filtration method of the filtration unit 10, it is necessary to employ pressure filtration, and it is preferable that the entire amount is filtered. Any filter material can be used as long as it can be applied to the pressurization method. Cartridge filter, disk filter, microfiltration, ultrafiltration, sand filtration, biological carrier filtration, nanofilter, precoat filter, activated carbon filter, ion exchange An adsorbent filter or the like represented by the resin can be used.
 ろ過ユニット10による除去対象物質としては、濁質や溶解性物質が挙げられるが、特に、微生物やその代謝物、副生成物などである。濃縮水をろ過処理して系外に放出する場合、再利用する場合のいずれでも、微生物やその代謝物、副生成物などが含まれていると問題となりやすいため、上述したろ過処理により濃縮水中の有機物濃度を低減させることが好ましい。 Examples of substances to be removed by the filtration unit 10 include turbid substances and soluble substances, and in particular, microorganisms, metabolites, and by-products thereof. When the concentrated water is filtered and released to the outside of the system, or when it is reused, it easily becomes a problem if microorganisms, metabolites, by-products, etc. are contained. It is preferable to reduce the organic substance concentration.
 具体的には、半透膜ユニットAの濃縮水に含有される有機物濃度もしくは微生物濃度が、半透膜ユニットAへの供給水(第1の被処理水、前処理水または後述する第3の半透膜ユニットCの透過水)の有機物濃度もしくは微生物濃度よりも大きく、かつろ過ユニット10の処理水の有機物濃度もしくは微生物濃度が、[(半透膜ユニットAの濃縮水の有機物濃度もしくは微生物濃度)×半透膜ユニットAの供給水流量/半透膜ユニットAの濃縮水流量]よりも小さいことが好ましい。ここで(半透膜ユニットAの供給水流量/半透膜ユニットAの濃縮水流量)は半透膜ユニットAにおける濃縮倍率を表わす。さらに、ろ過ユニットのろ過水を再利用する場合には、ろ過ユニットの処理水の有機物濃度もしくは微生物濃度が半透膜ユニットAの供給水の有機物濃度もしくは微生物濃度よりも小さくなるようにすると特に好ましい。 Specifically, the organic substance concentration or the microbial concentration contained in the concentrated water of the semipermeable membrane unit A is the supply water to the semipermeable membrane unit A (first treated water, pretreated water, or third described later). The organic substance concentration or microbial concentration of the treated water of the filtration unit 10 is larger than the organic substance concentration or microbial concentration of the filtration unit 10 [permeated water of the semipermeable membrane unit C]. ) × feed water flow rate of semipermeable membrane unit A / concentrated water flow rate of semipermeable membrane unit A]. Here, (the feed water flow rate of the semipermeable membrane unit A / the concentrated water flow rate of the semipermeable membrane unit A) represents the concentration ratio in the semipermeable membrane unit A. Further, when the filtrate water of the filtration unit is reused, it is particularly preferable that the organic substance concentration or microbial concentration of the treated water of the filtration unit is smaller than the organic substance concentration or microbial concentration of the feed water of the semipermeable membrane unit A. .
 ここで、有機物濃度や微生物濃度の測定に関しては、特に制約はないが、有機物濃度については、TOC(全有機炭素量)、AOC(同化可能有機炭素)、DOC(溶解性有機炭素)、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)などが一般的である。微生物濃度に関しては、バクテリアカウント、ATP(アデノシン三リン酸)、クロロフィルなどを適用することができる。これらの有機物濃度および微生物濃度の測定は、水処理の技術分野において、通常用いられる測定方法を適用することができる。 Here, there are no particular restrictions on the measurement of the organic substance concentration and the microorganism concentration, but the organic substance concentration is TOC (total organic carbon content), AOC (assimilable organic carbon), DOC (soluble organic carbon), BOD ( Biochemical oxygen demand), COD (chemical oxygen demand), etc. are common. Bacterial accounts, ATP (adenosine triphosphate), chlorophyll, etc. can be applied for the microbial concentration. For the measurement of the organic substance concentration and the microbial concentration, a measurement method usually used in the technical field of water treatment can be applied.
 なお、本発明の適用に効果的な半透膜ユニットAの濃縮水としては、TOCとして5mg/l以上が好ましく、さらに好ましくは10mg/l以上であるとよい。とくに、10mg/l以上の場合は、環境中に放出する規制値を超える場合が多いので、本発明の淡水製造装置を適用することにより一層大きな効果が得られる。 In addition, as concentrated water of the semipermeable membrane unit A effective for application of the present invention, the TOC is preferably 5 mg / l or more, and more preferably 10 mg / l or more. In particular, in the case of 10 mg / l or more, there are many cases where the regulation value released into the environment is exceeded, so that a greater effect can be obtained by applying the fresh water producing apparatus of the present invention.
 ところで、ろ過ユニット10の処理水は、そのまま系外に排出することも差し支えない。また図2に例示するように、濃縮水ライン11から分岐させた前処理水供給ライン15を、前処理ユニット4の出口に接続することにより、ろ過ユニット10の処理水を前処理ユニット4の逆流洗浄に有効利用することも好ましい実施態様である。この場合、前処理水バルブ12を閉じて、前処理洗浄バルブ13を開くことによって前処理ユニット4を洗浄することが出来る。特に、本発明では、半透膜ユニットAにおいて濃縮されたり、半透膜ユニットA内部で汚染・繁殖したりした微生物など、濃縮水に含有される成分をろ過ユニット10によって除去したため、得られたろ過処理水を前処理ユニット4の洗浄水へ適用するのが好ましい。なお、前処理水供給ライン15は、ろ過ユニット10の処理水を一旦処理水タンクに貯留してからポンプで供給することも出来れば、直結することも可能である。直結する場合、ろ過ユニットの処理水側に残圧を持たせる必要があり、濃縮水排出バルブ14の開度を調節することによって前処理水供給ライン15を通して前処理ユニットに洗浄水として供給する圧力と流量を制御することが可能である。しかしながら、より好ましくは、ろ過ユニット10と連通する濃縮水ライン11から前処理水供給ライン15を分岐し前処理ユニット4の出口へ直結させると、ろ過ユニット10のろ過水の水圧を利用し無動力で前処理ユニット4の洗浄ができるため非常に好ましい。この場合、前処理洗浄バルブ13をオンオフバルブとし、濃縮水ライン11に濃縮水排出バルブ14を流量調節バルブとし、通常運転の時は、オンオフバルブ(前処理洗浄バルブ13)を全閉、流量調節バルブ(濃縮水排出バルブ14)を開にすると共に、ろ過ユニット10のろ過水を用いて前処理ユニット4を洗浄する際、オンオフバルブ(前処理洗浄バルブ13)を全開にしてから、洗浄水の流量が設定値に達するまで、流量調節バルブ(濃縮水排出バルブ14)を徐々に閉じるように制御することが好ましい。なお前処理ユニット4の洗浄に使用された排水は、前処理排水ライン16から系外に排出される。 By the way, the treated water of the filtration unit 10 may be discharged out of the system as it is. In addition, as illustrated in FIG. 2, the pretreatment water supply line 15 branched from the concentrated water line 11 is connected to the outlet of the pretreatment unit 4, so that the treated water of the filtration unit 10 flows back to the pretreatment unit 4. Effective use for cleaning is also a preferred embodiment. In this case, the pretreatment unit 4 can be washed by closing the pretreatment water valve 12 and opening the pretreatment washing valve 13. In particular, in the present invention, the components contained in the concentrated water, such as microorganisms concentrated in the semipermeable membrane unit A or contaminated / propagated in the semipermeable membrane unit A, were removed by the filtration unit 10 and thus obtained. The filtered water is preferably applied to the washing water of the pretreatment unit 4. The pretreatment water supply line 15 can be directly connected if the treated water of the filtration unit 10 can be temporarily stored in the treated water tank and then supplied by a pump. In the case of direct connection, it is necessary to give a residual pressure to the treated water side of the filtration unit, and the pressure supplied as washing water to the pretreated unit through the pretreated water supply line 15 by adjusting the opening of the concentrated water discharge valve 14. It is possible to control the flow rate. However, more preferably, when the pretreatment water supply line 15 is branched from the concentrated water line 11 communicating with the filtration unit 10 and directly connected to the outlet of the pretreatment unit 4, the filtered water pressure of the filtration unit 10 is used and no power is generated. This is very preferable because the pretreatment unit 4 can be cleaned. In this case, the pretreatment cleaning valve 13 is an on / off valve, the concentrated water discharge valve 14 is a flow control valve in the concentrated water line 11, and the on / off valve (pretreatment cleaning valve 13) is fully closed and the flow control is adjusted during normal operation. When the valve (concentrated water discharge valve 14) is opened and the pretreatment unit 4 is washed using the filtrate of the filtration unit 10, the on-off valve (pretreatment washing valve 13) is fully opened, It is preferable to control the flow rate adjustment valve (concentrated water discharge valve 14) to be closed gradually until the flow rate reaches a set value. The wastewater used for cleaning the pretreatment unit 4 is discharged out of the system from the pretreatment wastewater line 16.
 なお、ろ過ユニット10の処理水を前処理ユニット4の洗浄に適用する場合は、殺菌剤を予め添加することも差し支えない。殺菌剤の添加位置としても、半透膜ユニットAの上流側、ろ過ユニット10の上流側、ろ過ユニット10の下流側など、特に限定されないが、例えば、半透膜ユニットAの上流側に添加すると、半透膜ユニットA、ろ過ユニット10、前処理ユニット4まで、一度に殺菌できるため好ましい。ただし、半透膜ユニットAの運転条件によっては、ろ過ユニット10に必要なろ過圧力、さらには、前処理ユニット4を洗浄するための供給圧力が十分に維持できない場合もあり得るため、その場合は、中間昇圧ポンプを取り入れることも出来る。また図3に示すように、半透膜ユニットAの透過側に背圧バルブ30を、背圧、すなわち透過側への圧力を付与する機構として設けることにより、半透膜ユニットAの運転所要圧力が小さいときには、透過側の背圧バルブ30を絞ることによって背圧をかける(透過側に圧力を付与する)ことによって、運転所要圧力を減じることができる。これによって、被処理水側の圧力、すなわち濃縮水の圧力を高く維持する事が出来、ろ過ユニット10や前処理洗浄のための還流に必要な圧力を高めることが出来るため、中間昇圧ポンプが不要となり、好ましい実施態様である。 In addition, when applying the treated water of the filtration unit 10 for washing | cleaning of the pre-processing unit 4, a disinfectant may be added previously. The addition position of the disinfectant is not particularly limited, such as the upstream side of the semipermeable membrane unit A, the upstream side of the filtration unit 10, the downstream side of the filtration unit 10. For example, when added to the upstream side of the semipermeable membrane unit A The semipermeable membrane unit A, the filtration unit 10 and the pretreatment unit 4 are preferable because they can be sterilized at a time. However, depending on the operating conditions of the semipermeable membrane unit A, the filtration pressure required for the filtration unit 10 and further the supply pressure for cleaning the pretreatment unit 4 may not be sufficiently maintained. An intermediate boost pump can also be incorporated. Further, as shown in FIG. 3, by providing a back pressure valve 30 on the permeate side of the semipermeable membrane unit A as a mechanism for applying a back pressure, that is, a pressure to the permeate side, a required operating pressure of the semipermeable membrane unit A is provided. When the pressure is small, the required operating pressure can be reduced by applying the back pressure by applying the back pressure valve 30 on the permeate side (applying pressure to the permeate side). As a result, the pressure on the treated water side, that is, the pressure of the concentrated water can be kept high, and the pressure required for the reflux for the filtration unit 10 and the pretreatment washing can be increased, so that an intermediate booster pump is unnecessary. This is a preferred embodiment.
 本発明に適用可能な第1の被処理水として、特に制約はなく、代表的な原水として、河川水、海水などの自然水、工業廃水、農業廃水、生活排水やそれらの処理水を挙げることができる。この中でも、廃水やその処理水、とくに、前述のように有機物を多く含む廃水やその処理水が本発明に適しており、とくに廃水が有機物を主体とする有機性廃水、さらに具体的には、BOD(生物化学的酸素要求量)が100mg/L以上の廃水であり、それを生物処理した処理水である場合、生物処理が不安定であったり、懸濁物質の除去が不十分になる場合があるため、特に本発明を適用すると効果的である。 There is no restriction | limiting in particular as 1st to-be-treated water applicable to this invention, Natural water, such as river water and seawater, industrial wastewater, agricultural wastewater, domestic wastewater, and those treated water are mentioned as typical raw water. Can do. Among these, waste water and its treated water, particularly waste water containing a large amount of organic matter as described above and its treated water are suitable for the present invention, and particularly, waste water is organic waste water mainly composed of organic matter, more specifically, When wastewater with a BOD (Biochemical Oxygen Demand) of 100 mg / L or more is treated with biological treatment, biological treatment is unstable or removal of suspended solids is insufficient Therefore, it is particularly effective to apply the present invention.
 本発明に適用可能な半透膜ユニットAに用いる半透膜ユニットとして、特に制約はないが、取扱いを容易にするため中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に装填したものを用いることが好ましい。流体分離素子は、平膜状の半透膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的であり、市販製品としては、東レ社製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これら、流体分離素子は1本で半透膜ユニットを構成でき、また複数本を直列あるいは並列に接続して半透膜ユニットを構成することもできる。とくに、本発明においては、前述のように濃縮水のエネルギー回収ユニットを装備したときのコストパフォーマンスが低い、低圧逆浸透膜もしくはナノろ過膜へ適用すると非常に効果的である。具体的には、半透膜ユニットAの上限圧力としては好ましくは450psi以下であり、ろ過ユニット10の上限圧力としては好ましくは100psi以下である。また半透膜ユニットAの運転圧力が80psi以上300psi以下であるとともに、半透膜ユニットAにおける回収率(透過水流量/被処理水流量比)が0.7以上であり、さらに、ろ過ユニット10の運転圧力が40psi以下であることが好ましい。また、これを超える圧力やこれを下回る回収率の場合、エネルギー回収ユニットのコストダウンおよび電力単価次第ではあるが、エネルギー回収ユニットを装備することもリーズナブルになってくる場合があるので、本発明の淡水製造装置、エネルギー回収ユニットのどちらを採用するかについて、詳細の比較が必要である。 The semipermeable membrane unit used in the semipermeable membrane unit A applicable to the present invention is not particularly limited, but in order to facilitate handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing and fluid It is preferable to use a separation vessel (element) loaded in a pressure vessel. When the fluid separation element is formed of a flat membrane-like semipermeable membrane, for example, the semipermeable membrane is wound in a cylindrical shape together with a channel material (net) around a cylindrical central pipe having a large number of holes. What was rotated is common and as a commercial product, the reverse osmosis membrane element TM700 series and TM800 series by Toray Industries, Inc. can be mentioned. One of these fluid separation elements can constitute a semipermeable membrane unit, and a plurality of fluid separation elements can be connected in series or in parallel to constitute a semipermeable membrane unit. In particular, the present invention is very effective when applied to a low-pressure reverse osmosis membrane or a nanofiltration membrane having low cost performance when equipped with an energy recovery unit for concentrated water as described above. Specifically, the upper limit pressure of the semipermeable membrane unit A is preferably 450 psi or less, and the upper limit pressure of the filtration unit 10 is preferably 100 psi or less. The operating pressure of the semipermeable membrane unit A is not less than 80 psi and not more than 300 psi, the recovery rate (permeated water flow rate / treated water flow rate ratio) in the semipermeable membrane unit A is 0.7 or more, and the filtration unit 10 The operating pressure is preferably 40 psi or less. Also, in the case of a pressure exceeding this or a recovery rate lower than this, depending on the cost reduction of the energy recovery unit and the unit price of power, it may become reasonable to equip the energy recovery unit. A detailed comparison is required as to whether the freshwater production equipment or the energy recovery unit is adopted.
 本発明において、半透膜の素材としては酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に微細孔を有する緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。 In the present invention, polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer can be used as the material of the semipermeable membrane. The membrane structure also includes an asymmetric membrane having a fine layer having micropores on at least one side of the membrane, and having fine pores with gradually increasing pore diameters from the dense layer toward the inside of the membrane or the other side, and the denseness of the asymmetric membrane. Either a composite membrane having a very thin functional layer formed of another material on the layer may be used.
 半透膜ユニットにおいては、被処理水(供給水)が濃縮されるため、濃縮によるスケール析出を防止したりpHを調整したりするために、それぞれの半透膜ユニットの被処理水(供給水)に対してスケール防止剤や酸・アルカリを添加することが可能である。なお、スケール防止剤を添加する位置は、その添加効果を発揮できるように、pH調整剤(酸、アルカリ)を添加する位置よりも上流側にすることが好ましい。また、薬品添加の直後にはインラインミキサーを設けたり、添加口を供給水の流れに直接接触するようにするなどして添加口近傍での急激な濃度やpH変化を防止することも好ましい。 In the semipermeable membrane unit, the water to be treated (feed water) is concentrated. Therefore, the water to be treated (feed water) of each semipermeable membrane unit is used to prevent scale precipitation due to concentration or to adjust pH. It is possible to add scale inhibitors and acids / alkalis. In addition, it is preferable to make the position which adds a scale inhibitor upstream from the position which adds a pH adjuster (acid, alkali) so that the addition effect can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the chemical addition, or by directly contacting the addition port with the flow of the supply water.
 スケール防止剤とは、溶液中の金属、金属イオンなどと錯体を形成し、金属あるいは金属塩を可溶化させるもので、有機や無機のイオン性ポリマーあるいはモノマーが使用できる。有機系のポリマーとしてはポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーやカルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸などが使用できる。また、無機系のスケール防止剤としてはポリリン酸塩などが使用できる。これらのスケール防止剤の中では入手のしやすさ、溶解性など操作のしやすさ、価格の点から特にポリリン酸塩、エチレンジアミン四酢酸(EDTA)が好適に用いられる。ポリリン酸塩とはヘキサメタリン酸ナトリウムを代表とする分子内に2個以上のリン原子を有し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸系物質をいう。代表的なポリリン酸塩としては、ピロリン酸4ナトリウム、ピロリン酸2ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタポリリン酸ナトリウム、デカポリリン酸ナトリウム、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、およびこれらのカリウム塩などがあげられる。 The scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used. As organic polymers, synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer. Moreover, polyphosphate etc. can be used as an inorganic type scale inhibitor. Among these scale inhibitors, polyphosphate and ethylenediaminetetraacetic acid (EDTA) are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost. The polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom. Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
 一方、酸やアルカリとしては、硫酸や水酸化ナトリウム、水酸化カルシウムが一般的に用いられるが、塩酸、シュウ酸、水酸化カリウム、重炭酸ナトリウム、水酸化アンモニウムなどを使用することもできる。但し、海水の場合、スケール成分の増加を防止するためには、カルシウムやマグネシウムを含む酸およびアルカリは使用しない方がよい。 On the other hand, sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used. However, in the case of seawater, it is better not to use acids and alkalis containing calcium or magnesium in order to prevent an increase in scale components.
 本発明においては、環境に優しい、清澄な濃縮排水を得ることが出来るため、濃縮排水を系外に排出したり、前処理の洗浄に供する以外に、例えば、ろ過ユニットの処理水を第2の被処理水と混合する混合ユニットを設け、得られる混合水を淡水化処理することも本発明の適用に好ましい。かかる態様を図4に例示する。 In the present invention, it is possible to obtain environmentally friendly and clear concentrated wastewater. Therefore, in addition to discharging the concentrated wastewater out of the system or for pretreatment washing, for example, the treated water of the filtration unit is used as the second treatment water. It is also preferable for application of the present invention that a mixing unit for mixing with the water to be treated is provided and the resulting mixed water is desalinated. Such an embodiment is illustrated in FIG.
 図4において、第2の被処理水21を被処理水タンク22、取水ポンプ23を通して、必要に応じて前処理ユニット24で前処理した後、ろ過ユニット10の処理水と混合し、混合ユニットの一態様である混合水タンク25で一旦貯留した後、昇圧ポンプ26によって加圧した後、第2の半透膜ユニットBへ供給し淡水化処理する。第2の半透膜ユニットBから得られた透過水は透過水タンク29に貯留される。半透膜ユニットBから排出された濃縮水は、濃縮水流量調節バルブ28を通って排出される。 In FIG. 4, the second treated water 21 is pretreated by the pretreatment unit 24 through the treated water tank 22 and the water intake pump 23 as necessary, and then mixed with the treated water of the filtration unit 10. After temporarily storing in the mixed water tank 25 which is one aspect, after pressurizing with the pressure | voltage rise pump 26, it supplies to the 2nd semipermeable membrane unit B, and desalinates. The permeated water obtained from the second semipermeable membrane unit B is stored in the permeated water tank 29. The concentrated water discharged from the semipermeable membrane unit B is discharged through the concentrated water flow rate adjustment valve 28.
 図4に示すようにろ過ユニット10の処理水を第2の半透膜ユニットBに供給する場合、また、図2に例示するように前処理ユニット4の洗浄に用いる場合は、ろ過ユニット10のろ材として、第2の半透膜ユニットBの膜素材や前処理ユニット4のろ材と同種の素材を用いることが好ましい。すなわち、例えば、第2の半透膜ユニットBがポリアミドの半透膜であれば、ろ過ユニット10もポリアミドのフィルターを用いると、第2の半透膜ユニットBに吸着して性能低下を引き起こす可能性がある物質を除去することが出来るため、好ましい。 When supplying the treated water of the filtration unit 10 to the second semipermeable membrane unit B as shown in FIG. 4 or when used for cleaning the pretreatment unit 4 as illustrated in FIG. As the filter medium, it is preferable to use the same material as the filter medium of the second semipermeable membrane unit B or the filter medium of the pretreatment unit 4. That is, for example, if the second semipermeable membrane unit B is a polyamide semipermeable membrane, if the filtration unit 10 also uses a polyamide filter, it may be adsorbed to the second semipermeable membrane unit B and cause performance degradation. This is preferable because it is possible to remove a material having a property.
 第2の被処理水21としては、第1の被処理水1と水質、水温の少なくとも片方が異なる水であることが好ましい。すなわち、水質および/または水温が異なる2種類の被処理水を任意の割合で混合することができれば、水質変動を抑制することが出来、第2の半透膜ユニットBを安定的に運転することが出来る。さらに、半透膜ユニットBの回収率の上限を決定するのに必要なスケール成分を希釈することが出来る場合は、回収率を上げたり、スケール析出リスクを低減することが出来るため特に好ましい。すなわち、半透膜ユニットで通常スケール析出の原因となるシリカ、カルシウム、マグネシウムについて、混合後のスケール析出リスクが低減するように混合する成分構成になっていることが好ましい。具体的には、ろ過ユニット10の処理水のシリカ濃度をCsA、カルシウム濃度をCcA、マグネシウム濃度をCmA、第2の被処理水21のシリカ濃度をCsB、カルシウム濃度をCcB、マグネシウム濃度をCmBとするとき、
[1]CsA>CsB、[2]CcA>CcB、[3]CmA>CmB
のうち、1つまたは2つの関係式が成り立つと好ましい。
The second treated water 21 is preferably water that is different from the first treated water 1 in water quality and water temperature. That is, if two types of water to be treated with different water quality and / or water temperature can be mixed at an arbitrary ratio, fluctuations in water quality can be suppressed, and the second semipermeable membrane unit B can be operated stably. I can do it. Furthermore, when the scale component necessary for determining the upper limit of the recovery rate of the semipermeable membrane unit B can be diluted, it is particularly preferable because the recovery rate can be increased and the risk of scale deposition can be reduced. That is, it is preferable that the semipermeable membrane unit has a component composition in which silica, calcium, and magnesium that normally cause scale deposition are mixed so that the risk of scale deposition after mixing is reduced. Specifically, the silica concentration of the treated water of the filtration unit 10 is CsA, the calcium concentration is CcA, the magnesium concentration is CmA, the silica concentration of the second treated water 21 is CsB, the calcium concentration is CcB, and the magnesium concentration is CmB. and when,
[1] CsA> CsB, [2] CcA> CcB, [3] CmA> CmB
Of these, it is preferable that one or two relational expressions hold.
 さらに具体例としては、第1の被処理水1に河川水、地下水、廃水処理水などに多く見られる比較的シリカ濃度が大きな水、第2の被処理水21としては、カルシウム、マグネシウムを豊富に含んだ海水を用いれば、スケール成分の濃度が希釈された混合水を得ることができ、半透膜ユニットBの回収率を高くすることができる。 Further, as a specific example, the first treated water 1 has a relatively high silica concentration, which is often found in river water, groundwater, wastewater treated water, etc., and the second treated water 21 is rich in calcium and magnesium. If the seawater contained in is used, the mixed water with which the density | concentration of the scale component was diluted can be obtained, and the recovery rate of the semipermeable membrane unit B can be made high.
 また、本発明を適用する他の実施形態としては、図5に示すように、第3の半透膜ユニットCを、第1の半透膜ユニットAの上流側に配置する淡水化システムが例示される。この実施形態では、半透膜ユニットAの濃縮水をろ過ユニット10で浄化した後に中間タンク5に還流させることが出来、非常に好ましい実施態様の一つである。 As another embodiment to which the present invention is applied, as shown in FIG. 5, a desalination system in which the third semipermeable membrane unit C is arranged on the upstream side of the first semipermeable membrane unit A is exemplified. Is done. In this embodiment, the concentrated water of the semipermeable membrane unit A can be returned to the intermediate tank 5 after being purified by the filtration unit 10, which is one of the very preferred embodiments.
 図5において、第1の被処理水1が被処理水タンク2に貯留された後、取水ポンプ3で前処理ユニット4に供給され前処理を施された後、中間タンク5に一旦貯留されてから、昇圧ポンプ36によって半透膜ユニットCに供給され1段目の処理が行われる。半透膜ユニットCの濃縮水は濃縮水流量調節バルブ38を通して排出される。半透膜ユニットCの透過水は中間透過水タンク39に一旦貯留されてから、昇圧ポンプ6によって半透膜ユニットAに供給され2段目の処理が行われる。半透膜ユニットAの透過水は透過水タンク9に貯留される。半透膜ユニットAの濃縮水は、濃縮水ライン11に取り出され、濃縮水流量調節バルブ8を通って、ろ過ユニット10に供給され、ろ過処理された後、中間タンク5に還流され、半透膜ユニットCで更に処理される。 In FIG. 5, after the first treated water 1 is stored in the treated water tank 2, it is supplied to the pretreatment unit 4 by the intake pump 3 and subjected to pretreatment, and then temporarily stored in the intermediate tank 5. Are supplied to the semipermeable membrane unit C by the booster pump 36 and the first stage processing is performed. The concentrated water of the semipermeable membrane unit C is discharged through the concentrated water flow rate adjustment valve 38. The permeated water of the semipermeable membrane unit C is once stored in the intermediate permeated water tank 39 and then supplied to the semipermeable membrane unit A by the booster pump 6 to perform the second stage process. The permeated water of the semipermeable membrane unit A is stored in the permeated water tank 9. The concentrated water of the semipermeable membrane unit A is taken out to the concentrated water line 11, supplied to the filtration unit 10 through the concentrated water flow rate adjusting valve 8, filtered, and then returned to the intermediate tank 5 to be semipermeable. Further processing in membrane unit C.
 以上の実施態様は、半透膜ユニットAおよびろ過ユニット10がそれぞれ1ユニットで構成されているが、それぞれ複数ユニットで構成することも好ましい。ただし、ろ過ユニット10に関しては、半透膜ユニットAと直結しているため、1対1で直結させると、洗浄タイミングが同じになるとは限らないため、少なくともろ過ユニット10が並列に配置された複数系列から構成される、さらに好ましくは、半透膜ユニットAも併せて並列に配置された複数系列から構成されることが好ましい。とくに、ろ過ユニットが精密ろ過膜や限外ろ過膜からなる場合は、一般に洗浄が数十分から数時間毎に実施されるため、並列に配置された複数系列のろ過ユニットを1ユニットずつ順次に自動洗浄することが好ましい。もちろん、ユニット数が多い場合は、2系列ずつ運転するなどまとめて実施することも差し支えない。 In the above embodiment, the semipermeable membrane unit A and the filtration unit 10 are each constituted by one unit, but it is also preferred that each is constituted by a plurality of units. However, since the filtration unit 10 is directly connected to the semipermeable membrane unit A, since the cleaning timing is not always the same when directly connected one-to-one, at least a plurality of filtration units 10 arranged in parallel are arranged. More preferably, the semipermeable membrane unit A is also composed of a plurality of series arranged in parallel. In particular, when the filtration unit is made of a microfiltration membrane or an ultrafiltration membrane, the washing is generally carried out every several tens of minutes to every few hours, so multiple series of filtration units arranged in parallel one by one sequentially. Automatic cleaning is preferred. Of course, when there are a large number of units, it is possible to carry out such operations as two series of operations.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年7月2日出願の日本特許出願(特願2012-148486)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on July 2, 2012 (Japanese Patent Application No. 2012-148486), the contents of which are incorporated herein by reference.
 本発明は、海水、河川水、地下水、廃水処理水を処理して淡水を得るための半透膜ユニットを用いた淡水製造装置、さらに詳しくは、半透膜の濃縮水のエネルギーを利用して、濃縮水の浄化を行うことが出来る淡水製造装置に関するものであり、濃縮水圧力を利用して、ろ過を行うことでエネルギーを消費せずに、環境中に放流するのに優しい、また再利用しやすい濃縮水を得ることが出来る。 The present invention relates to a fresh water production apparatus using a semipermeable membrane unit for treating seawater, river water, groundwater, wastewater treated water to obtain fresh water, and more specifically, utilizing the energy of concentrated water of the semipermeable membrane. It is related to fresh water production equipment that can purify concentrated water, and it is easy to recycle into the environment without consuming energy by filtering using concentrated water pressure. Can be obtained.
1:第1の被処理水
2:被処理水タンク
3:取水ポンプ
4:前処理ユニット
5:中間タンク
6:昇圧ポンプ
8:濃縮水流量調節バルブ
9:透過水タンク
10:ろ過ユニット
11:濃縮水ライン
12:前処理水バルブ
13:前処理洗浄バルブ
14:濃縮水排出バルブ
15:前処理水供給ライン
16:前処理排水ライン
17:バルブ
18:バルブ
19:濃縮水排出ライン
20:濃縮水排出ライン
21:第2の被処理水
22:被処理水タンク
23:取水ポンプ
24:前処理ユニット
25:混合水タンク
26:昇圧ポンプ
28:濃縮水流量調節バルブ
29:透過水タンク
30:背圧バルブ
35:前処理水タンク
36:昇圧ポンプ
38:濃縮水流量調節バルブ
39:中間透過水タンク
A:第1の半透膜ユニット
B:第2の半透膜ユニット
C:第3の半透膜ユニット
1: First treated water 2: Treated water tank 3: Intake pump 4: Pretreatment unit 5: Intermediate tank 6: Booster pump 8: Concentrated water flow control valve 9: Permeate tank 10: Filtration unit 11: Concentration Water line 12: Pretreatment water valve 13: Pretreatment washing valve 14: Concentrated water discharge valve 15: Pretreatment water supply line 16: Pretreatment water drain line 17: Valve 18: Valve 19: Concentrated water discharge line 20: Concentrated water discharge Line 21: second treated water 22: treated water tank 23: intake pump 24: pretreatment unit 25: mixed water tank 26: booster pump 28: concentrated water flow rate adjustment valve 29: permeated water tank 30: back pressure valve 35: Pretreatment water tank 36: Booster pump 38: Concentrated water flow rate adjustment valve 39: Intermediate permeate tank A: First semipermeable membrane unit B: Second semipermeable membrane unit C: Third semipermeable Unit

Claims (16)

  1.  第1の被処理水を加圧して第1の半透膜ユニットAに送り、半透膜によって濃縮水と透過水である淡水とに分離する淡水製造装置であって、前記第1の半透膜ユニットAから濃縮水を取り出す濃縮水ラインに流量調整ユニットおよびろ過ユニットを配置するとともに、前記ろ過ユニットの上流側および前記ろ過ユニット自体から選ばれる少なくとも一つに、前記濃縮水の圧力をろ過ユニットの上限圧力以下に制御する保護ユニットを備える淡水製造装置。 A fresh water producing apparatus that pressurizes and feeds first treated water to the first semipermeable membrane unit A and separates it into concentrated water and fresh water that is permeated water by the semipermeable membrane, the first semipermeable membrane A flow rate adjusting unit and a filtration unit are arranged in a concentrated water line for taking out the concentrated water from the membrane unit A, and at least one selected from the upstream side of the filtration unit and the filtration unit itself, the pressure of the concentrated water is filtered. An apparatus for producing fresh water comprising a protection unit that controls the pressure to be lower than the upper limit pressure.
  2.  前記ろ過ユニットが、砂ろ過、精密ろ過膜、限外ろ過膜、カートリッジフィルター、活性炭フィルター、および吸着剤フィルターから選ばれる少なくとも一つを含む請求項1に記載の淡水製造装置。 The fresh water producing apparatus according to claim 1, wherein the filtration unit includes at least one selected from sand filtration, microfiltration membrane, ultrafiltration membrane, cartridge filter, activated carbon filter, and adsorbent filter.
  3.  前記保護ユニットが、濃縮水排出ラインと、前記濃縮水排出ラインに設けられ設定圧力以上で開く圧力開放バルブとを含む請求項1または2に記載の淡水製造装置。 The fresh water producing apparatus according to claim 1 or 2, wherein the protection unit includes a concentrated water discharge line and a pressure release valve provided in the concentrated water discharge line and opened at a set pressure or higher.
  4.  前記第1の被処理水が廃水処理水である請求項1~3のいずれか1項に記載の淡水製造装置。 The fresh water producing apparatus according to any one of claims 1 to 3, wherein the first treated water is wastewater treated water.
  5.  前記第1の半透膜ユニットAの上流側に、前記第1の被処理水を処理する前処理ユニットを配置するとともに、前記ろ過ユニットの処理水を前記前処理ユニットの洗浄ラインに供給する前処理水供給ラインを有する請求項1~4のいずれか1項に記載の淡水製造装置。 A pretreatment unit that treats the first treated water is disposed upstream of the first semipermeable membrane unit A, and before the treated water of the filtration unit is supplied to the cleaning line of the pretreatment unit. The fresh water producing apparatus according to any one of claims 1 to 4, further comprising a treated water supply line.
  6.  前記前処理水供給ラインにオンオフバルブを設けるとともに、前記ろ過ユニットから処理水を取り出すライン上であって前処理水供給ラインとの分岐の下流側に、流量調節バルブを有する請求項5に記載の淡水製造装置。 The on-off valve is provided in the pretreatment water supply line, and a flow rate adjusting valve is provided on a line for taking out the treated water from the filtration unit and downstream of the branch with the pretreatment water supply line. Fresh water production equipment.
  7.  前記第1の半透膜ユニットAの運転圧力が80psi以上300psi以下であるとともに、透過水流量/第1の被処理水流量比が0.7以上、かつ前記ろ過ユニットの運転圧力が40psi以下である請求項1~6のいずれか1項に記載の淡水製造装置。 The operating pressure of the first semipermeable membrane unit A is not less than 80 psi and not more than 300 psi, the ratio of permeate flow rate / first treated water flow rate is not less than 0.7, and the operation pressure of the filtration unit is not more than 40 psi. The fresh water producing apparatus according to any one of claims 1 to 6.
  8.  前記第1の半透膜ユニットAの透過水側に背圧を付与するための機構を備える請求項1~7のいずれか1項に記載の淡水製造装置。 The fresh water producing apparatus according to any one of claims 1 to 7, further comprising a mechanism for applying a back pressure to the permeate side of the first semipermeable membrane unit A.
  9.  前記ろ過ユニットでろ過処理した処理水と、前記第1の被処理水と水質および水温の少なくとも一つが異なる第2の被処理水とを混合する混合ユニットと、前記混合ユニットから得られた混合水に対し半透膜分離処理を行う第2の半透膜ユニットBをさらに有し、前記第2の半透膜ユニットBの透過水からなる淡水を得る請求項1~8のいずれか1項に記載の淡水製造装置。 A mixing unit that mixes the treated water filtered by the filtration unit, the first treated water, and a second treated water having at least one of water quality and water temperature, and mixed water obtained from the mixing unit. 9. The method according to claim 1, further comprising: a second semipermeable membrane unit B that performs a semipermeable membrane separation treatment on the surface, and obtaining fresh water made of the permeated water of the second semipermeable membrane unit B. The fresh water manufacturing apparatus of description.
  10.  前記第1の半透膜ユニットAの上流側に、前記第1の被処理水を処理する第3の半透膜ユニットCを配置し、前記第3の半透膜ユニットCの透過水を一旦圧力開放して中間透過水タンクに貯留した後、昇圧して前記第1の半透膜ユニットAに送ると共に、前記ろ過ユニットの処理水が前記第3の半透膜ユニットCの上流側に還流される請求項1~8のいずれか1項に記載の淡水製造装置。 A third semipermeable membrane unit C for treating the first treated water is disposed upstream of the first semipermeable membrane unit A, and the permeated water of the third semipermeable membrane unit C is temporarily used. After releasing the pressure and storing in the intermediate permeate tank, the pressure is increased and sent to the first semipermeable membrane unit A, and the treated water of the filtration unit is returned to the upstream side of the third semipermeable membrane unit C. The fresh water producing apparatus according to any one of claims 1 to 8.
  11.  前記ろ過ユニットが、精密ろ過膜または限外ろ過膜の複数系列からなり、1系列ずつ順次に自動洗浄される請求項1~10のいずれか1項に記載の淡水製造装置。 The fresh water producing apparatus according to any one of claims 1 to 10, wherein the filtration unit is composed of a plurality of series of microfiltration membranes or ultrafiltration membranes and is automatically washed in sequence one by one.
  12.  前記ろ過ユニットのろ材が、前記前処理ユニットのろ材および前記第2の半透膜ユニットBの膜素材の少なくとも一方と同種の素材からなる請求項5、6、9のいずれか1項に記載の淡水製造装置。 The filter medium of the said filtration unit consists of a raw material of the same kind as at least one of the filter medium of the said pre-processing unit, and the membrane raw material of the said 2nd semipermeable membrane unit B, It is any one of Claim 5, 6, 9 Fresh water production equipment.
  13.  請求項1~12のいずれか1項に記載の淡水製造装置を用いる淡水製造方法であって、前記第1の半透膜ユニットAの濃縮水に含有される有機物濃度または微生物濃度が、前記第1の半透膜ユニットAの供給水に含有される有機物濃度または微生物濃度よりも大きく、かつ前記ろ過ユニットの処理水の有機物濃度または微生物濃度が、[(第1の半透膜ユニットAの濃縮水の有機物濃度もしくは微生物濃度)×供給水流量/濃縮水流量]よりも小さい淡水製造方法。 A fresh water production method using the fresh water production apparatus according to any one of claims 1 to 12, wherein the concentration of organic matter or microorganism contained in the concentrated water of the first semipermeable membrane unit A is The concentration of organic matter or microorganisms contained in the feed water of one semipermeable membrane unit A is larger than the concentration of organic matter or microorganisms in the treated water of the filtration unit [(concentration of first semipermeable membrane unit A]. Fresh water production method smaller than (organic concentration or microbial concentration of water) × feed water flow rate / concentrated water flow rate].
  14.  請求項1~12のいずれか1項に記載の淡水製造装置を用いる淡水製造方法であって、前記第1の半透膜ユニットAの運転圧力を80psi以上300psi以下、透過水流量/第1の被処理水流量比を0.7以上にするとともに、前記ろ過ユニットの運転圧力を40psi以下にする淡水製造方法。 A fresh water production method using the fresh water production apparatus according to any one of claims 1 to 12, wherein an operating pressure of the first semipermeable membrane unit A is 80 psi or more and 300 psi or less, a permeate flow rate / a first flow rate. The fresh water manufacturing method which makes the operating pressure of the said filtration unit 40 psi or less while setting a to-be-processed water flow rate ratio to 0.7 or more.
  15.  請求項6に記載の淡水製造装置を用いる淡水製造方法であって、前記第1の被処理水を前処理ユニットで処理してから前記第1の半透膜ユニットAに供給するとともに、通常運転の時は、前記オンオフバルブを全閉、前記流量調節バルブを開とし、前記ろ過ユニットの処理水で前処理ユニットを洗浄する時は、前記オンオフバルブを全開にしてから、前記流量調節バルブを徐々に閉じて洗浄水の流量が設定値に達するようにする淡水製造方法。 A fresh water production method using the fresh water production apparatus according to claim 6, wherein the first treated water is treated by a pretreatment unit and then supplied to the first semipermeable membrane unit A, and a normal operation is performed. In this case, the on / off valve is fully closed and the flow rate adjusting valve is opened. When the pretreatment unit is washed with the treated water of the filtration unit, the on / off valve is fully opened and then the flow rate adjusting valve is gradually opened. A fresh water production method that closes the flow rate so that the flow rate of the washing water reaches a set value.
  16.  請求項9に記載の淡水製造装置を用いる淡水製造方法であって、前記ろ過ユニットの処理水のシリカ濃度をCsA、カルシウム濃度をCcA、マグネシウム濃度をCmA、前記第2の被処理水のシリカ濃度をCsB、カルシウム濃度をCcB、マグネシウム濃度をCmBとするとき、下記関係式[1]~[3]のうち、1つまたは2つの関係式が成り立つ淡水製造方法。
    [1] CsA>CsB
    [2] CcA>CcB
    [3] CmA>CmB
     
     
    It is a fresh water manufacturing method using the fresh water manufacturing apparatus of Claim 9, Comprising: The silica concentration of the treated water of the said filtration unit is CsA, the calcium concentration is CcA, the magnesium concentration is CmA, The silica concentration of the said 2nd to-be-processed water Is a fresh water production method in which one or two of the following relational expressions [1] to [3] are satisfied, where CsB is the calcium concentration and CcB is the calcium concentration.
    [1] CsA> CsB
    [2] CcA> CcB
    [3] CmA> CmB

PCT/JP2013/068173 2012-07-02 2013-07-02 Fresh-water manufacturing device and fresh-water manufacturing method WO2014007262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014523753A JPWO2014007262A1 (en) 2012-07-02 2013-07-02 Fresh water production apparatus and fresh water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-148486 2012-07-02
JP2012148486 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007262A1 true WO2014007262A1 (en) 2014-01-09

Family

ID=49882016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068173 WO2014007262A1 (en) 2012-07-02 2013-07-02 Fresh-water manufacturing device and fresh-water manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2014007262A1 (en)
WO (1) WO2014007262A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030243A (en) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 Wastewater treatment method and wastewater treatment apparatus
WO2017168721A1 (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Filtration layer cleaning method, biological membrane filtration apparatus, and desalination plant
JP2020151623A (en) * 2019-03-18 2020-09-24 栗田工業株式会社 Water treatment system
JP7044848B1 (en) 2020-10-14 2022-03-30 野村マイクロ・サイエンス株式会社 Liquid treatment equipment, pure water production system and liquid treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111006A (en) * 1980-02-07 1981-09-02 Ebara Infilco Co Ltd Method for utilization of back pressure in membrane separating process
JP2001164455A (en) * 1999-12-03 2001-06-19 Toray Ind Inc Dyeing and finishing apparatus for fiber
JP2005279614A (en) * 2004-03-31 2005-10-13 Ngk Insulators Ltd Water cleaning device
WO2010061879A1 (en) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
WO2011010500A1 (en) * 2009-07-21 2011-01-27 東レ株式会社 Water producing system
WO2011077815A1 (en) * 2009-12-25 2011-06-30 東レ株式会社 Water production system and operation method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111006A (en) * 1980-02-07 1981-09-02 Ebara Infilco Co Ltd Method for utilization of back pressure in membrane separating process
JP2001164455A (en) * 1999-12-03 2001-06-19 Toray Ind Inc Dyeing and finishing apparatus for fiber
JP2005279614A (en) * 2004-03-31 2005-10-13 Ngk Insulators Ltd Water cleaning device
WO2010061879A1 (en) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
WO2011010500A1 (en) * 2009-07-21 2011-01-27 東レ株式会社 Water producing system
WO2011077815A1 (en) * 2009-12-25 2011-06-30 東レ株式会社 Water production system and operation method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030243A (en) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 Wastewater treatment method and wastewater treatment apparatus
WO2017168721A1 (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Filtration layer cleaning method, biological membrane filtration apparatus, and desalination plant
JP2020151623A (en) * 2019-03-18 2020-09-24 栗田工業株式会社 Water treatment system
JP7120095B2 (en) 2019-03-18 2022-08-17 栗田工業株式会社 water treatment system
JP7044848B1 (en) 2020-10-14 2022-03-30 野村マイクロ・サイエンス株式会社 Liquid treatment equipment, pure water production system and liquid treatment method
WO2022080035A1 (en) * 2020-10-14 2022-04-21 野村マイクロ・サイエンス株式会社 Fluid treatment apparatus, purified water production system, and fluid treatment method
JP2022064721A (en) * 2020-10-14 2022-04-26 野村マイクロ・サイエンス株式会社 Liquid treatment apparatus, pure water manufacturing system, and liquid treatment method

Also Published As

Publication number Publication date
JPWO2014007262A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
Ang et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants
KR100204608B1 (en) Apparatus and method for multistage reverse osmosis separation
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
JP5549589B2 (en) Fresh water system
JP5804228B1 (en) Water treatment method
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
JPWO2011077815A1 (en) Fresh water generation system and operation method thereof
JP6194887B2 (en) Fresh water production method
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
CN211311217U (en) Zero liquid discharge system
WO2014007262A1 (en) Fresh-water manufacturing device and fresh-water manufacturing method
JP2003200160A (en) Water making method and water making apparatus
JP2000093751A (en) Reverse osmosis separation device and reverse osmosis separation method
JPH09248429A (en) Separation method and apparatus therefor
JP4187316B2 (en) Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method
Chang et al. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent
JP2019076827A (en) Water treatment equipment and water treatment method
Dixon et al. Membrane Bioreactor with External Side-Stream Membranes and High Cross Flow Velocity to Treat Municipal Wastewater
JP3963304B2 (en) Reverse osmosis separation method
Qin et al. Pilot study of a submerged membrane bioreactor for water reclamation
Smith et al. Effect of backwash and powder activated carbon (PAC) addition on performance of side stream membrane filtration system (SSMFS) on treatment of biological treatment effluent
JP2024009663A (en) Wastewater treatment method and wastewater treatment equipment
CN117756334A (en) Zero wastewater sewage treatment system and zero wastewater sewage treatment process
CN202529934U (en) Combined system for treating industrial wastewater by utilizing membrane distillation
Widiasa et al. Performance of an ultrafiltration membrane pilot system for treatment of waste stabilization lagoon effluent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014523753

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13813922

Country of ref document: EP

Kind code of ref document: A1