WO2014007253A1 - Thermoplastic resin composition, thermoplastic resin molded body, multilayer thermoplastic resin molded body, and solar cell module - Google Patents

Thermoplastic resin composition, thermoplastic resin molded body, multilayer thermoplastic resin molded body, and solar cell module Download PDF

Info

Publication number
WO2014007253A1
WO2014007253A1 PCT/JP2013/068151 JP2013068151W WO2014007253A1 WO 2014007253 A1 WO2014007253 A1 WO 2014007253A1 JP 2013068151 W JP2013068151 W JP 2013068151W WO 2014007253 A1 WO2014007253 A1 WO 2014007253A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
flaky glass
meth
molded body
resin molded
Prior art date
Application number
PCT/JP2013/068151
Other languages
French (fr)
Japanese (ja)
Inventor
慶之 岡本
洋 新納
林 健太郎
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2013531806A priority Critical patent/JPWO2014007253A1/en
Publication of WO2014007253A1 publication Critical patent/WO2014007253A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thermoplastic resin composition, a thermoplastic resin molded body, a thermoplastic resin laminated molded body, and a solar cell module.
  • This application claims priority based on Japanese Patent Application No. 2012-152115 for which it applied to Japan on July 6, 2012, and uses the content here.
  • a glass material has been used for a top sheet member of a solar cell module.
  • the glass topsheet member has good dimensional stability and flame retardancy, but it is necessary to use chemically tempered glass to reduce the thickness for weight reduction, which is large like a solar cell module.
  • the cost is high.
  • replacement with a resin material has been studied in order to reduce the weight of the solar cell module.
  • a resin material having good translucency is required in order to improve the photoelectric conversion efficiency of the solar cell.
  • Patent Document 1 proposes a sheet in which glass having a refractive index difference of 0.01 to 0.04 with a transparent resin is dispersed in a transparent resin as a glass substitute resin sheet.
  • the glass used is fibrous and has a small fiber diameter, multiple scattering is likely to occur in the resulting molded body, and the translucency may be reduced.
  • flaky glass discloses that the flaky glass is dispersed in an amount of 0.1 to 20% by weight in a thermoplastic resin. There has been proposed a molded body obtained by the above process.
  • the present invention has been made in view of the above circumstances, and is a heat capable of providing a top sheet member for a solar cell module that is excellent in translucency and that suppresses a decrease in the maximum output of the solar cell module even after a thermal cycle test. It is an object of the present invention to provide a thermoplastic resin composition, a thermoplastic resin molded body and a thermoplastic resin laminate molded body that can be used as a top sheet member for a solar cell module, and a solar cell module having the above performance.
  • thermoplastic resin composition comprising a thermoplastic resin (A) and flaky glass (B),
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 to 80,
  • the content of the flaky glass (B) in the thermoplastic resin composition is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
  • thermoplastic resin composition in which a difference between a refractive index of the thermoplastic resin (A) and a refractive index of the flaky glass (B) in the thermoplastic resin composition is 0 or more and 0.05 or less.
  • thermoplastic resin molded article containing the thermoplastic resin (A) and the flaky glass (B),
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70
  • the content of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
  • the difference between the refractive index of the thermoplastic resin (A) in the thermoplastic resin molded body and the refractive index of the flaky glass (B) is from 0 to 0.05
  • a thermoplastic resin molded article having a total light transmittance of 86% to 93% in the thermoplastic resin molded article is from 0 to 0.05
  • the melt flow rate of the thermoplastic resin (A) in the thermoplastic resin molded body is 5 g / 10 min or more and 20 g / 10 min or less, according to any one of the above [5] to [7] Thermoplastic resin molding.
  • thermoplastic resin molded article according to any one of [5] to [8], wherein the thermoplastic resin (A) is a (meth) acrylic resin or a polycarbonate resin.
  • thermoplastic resin laminated molded article in which a (meth) acrylic polymer protective layer is laminated on the thermoplastic resin molded article according to any one of [5] to [9].
  • the thermoplastic resin laminate molded article according to [10] comprising at least one component selected from the group consisting of products.
  • thermoplastic resin molded article according to any one of [6] to [9] or the thermoplastic resin laminate molded article according to [10] or [11] .
  • thermoplastic resin molded body or the thermoplastic resin laminated molded body is a sheet having a thickness of 1 to 3 mm.
  • thermoplastic resin molded article that is excellent in translucency and reduced in deformation due to temperature change.
  • thermoplastic resin molded body as a top sheet member for a solar cell module, it is possible to provide a lightweight solar cell module in which a decrease in maximum output is suppressed.
  • thermoplastic resin (A) is one of the components of the thermoplastic resin composition which is one embodiment of the present invention.
  • the melt flow rate (hereinafter sometimes referred to as MFR) of the thermoplastic resin (A) is preferably 5 g / 10 minutes or more and 20 g / 10 minutes or less.
  • the MFR of the thermoplastic resin is more preferably 8 g / 10 minutes or more and 17 g / 10 minutes or less, and further preferably 12 g / 10 minutes or more and 15 g / 10 minutes or less.
  • the “melt flow rate” of the thermoplastic resin (A) here means the fluidity of the molten plastic. The measurement of the melt flow rate of the thermoplastic resin (A) is performed under the conditions of a temperature of 230 degrees and a load of 37.3 N in accordance with JIS K7210.
  • the mass average molecular weight (Mw) measured by GPC is preferably 50,000 to 200,000.
  • Mw of the thermoplastic resin (A) is 50,000 or more, it is preferable in terms of improving the strength and durability of the thermoplastic resin molded article, and when the Mw of the thermoplastic resin (A) is 200,000 or less, This is preferable in terms of improving processability such as fluidity of the thermoplastic resin composition at the time of molding when obtaining a plastic resin molded body.
  • the lower limit value of Mw of the thermoplastic resin (A) is more preferably 60,000 or more.
  • the upper limit value of Mw of the thermoplastic resin (A) is more preferably 150,000 or less.
  • the Mw of the thermoplastic resin (A) is more preferably 60,000 or more and 150,000 or less.
  • the lower limit value of Mw of the thermoplastic resin (A) is more preferably 70,000 or more.
  • the upper limit value of Mw of the thermoplastic resin (A) is more preferably 100,000 or less. That is, the Mw of the thermoplastic resin (A) is more preferably 70,000 or more and 100,000 or less.
  • thermoplastic resin (A) examples include (meth) acrylic resins and polycarbonate resins.
  • a (meth) acrylic resin is used as the thermoplastic resin (A)
  • the weather resistance of the thermoplastic resin molded article of the present invention described later can be improved.
  • polycarbonate resin as a thermoplastic resin (A)
  • the impact resistance of a thermoplastic resin molding can be improved.
  • (meth) acrylic resin a polymer containing a (meth) acrylic acid ester unit, and (meth), since the difference in refractive index from the glass flake (B) described later can be easily adjusted to 0.05 or less.
  • MS resin which is a copolymer of acrylic ester and styrene is preferable, and a polymer containing (meth) acrylic ester units is more preferable. These can be used alone or in combination of two or more.
  • “(meth) acrylic resin” means one or both of “acrylic resin” and “methacrylic resin”
  • (meth) acrylic acid” means “acrylic acid”. And “methacrylic acid” or both.
  • Examples of the (meth) acrylic acid ester that is a raw material for a polymer containing a (meth) acrylic acid ester unit include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, Iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and (meth ) 2-hydroxyethyl acrylate. These can be used alone or in combination of two or more.
  • the polymer containing a (meth) acrylic acid ester unit can contain other monomer units other than the (meth) acrylic acid ester unit as needed.
  • examples of other monomers that are raw materials for constituting other monomer units include vinyl esters such as vinyl acetate; aromatic vinyls such as styrene, p-methylstyrene, ⁇ -methylstyrene, and vinylnaphthalene.
  • Monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid; and maleimides such as N-ethylmaleimide and N-cyclohexylmaleimide Compounds and the like. These can be used alone or in combination of two or more.
  • a polymer containing a (meth) acrylic acid ester unit As a polymer containing a (meth) acrylic acid ester unit, a polymer containing a (meth) acrylic acid ester unit has good light transmittance, heat resistance, mechanical properties and moldability. ) 80-100% by mass of methyl (meth) acrylate unit and 0-20% by mass of other monomer units based on the total mass of the polymer containing acrylate units, and A polymer having 50 to 100% by mass of methyl methacrylate units with respect to the total mass of methyl (meth) acrylate units is preferred.
  • the polycarbonate resin is not particularly limited, and examples thereof include “Iupilon” (registered trademark) manufactured by Mitsubishi Engineering Plastics Co., Ltd. and “SD Polyca” (registered trademark) manufactured by Sumika Stylon Co., Ltd.
  • flaky glass is one of the components of the thermoplastic resin composition that is one embodiment of the present invention.
  • flaky glass means flat glass having a thickness of 0.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 30 or more and 200 or less. Examples of the shape of the flaky glass include polygons and circles, and are not particularly limited.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 to 80.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 or more, the aspect ratio of the flaky glass (B) in the thermoplastic resin molding can be 25 or more, and the thermoplastic resin The translucency of the molded product is improved.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 80 or less, the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body can be 75 or less, The impact resistance of the plastic resin molding is improved.
  • the lower limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 35 or more, and more preferably 45 or more.
  • the upper limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 75 or less, more preferably 70 or less, and even more preferably 65 or less. That is, the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 35 or more and 75 or less, more preferably 45 or more and 75 or less, still more preferably 45 or more and 70 or less, and more preferably 45 or more and 65 or less.
  • the following are particularly preferred:
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin composition which is one embodiment of the present invention is the average particle diameter of the flaky glass (B) by the thickness value of the flaky glass (B). It is the value obtained by dividing.
  • the “thickness” of the flaky glass (B) here can be measured with an electron microscope or the like. Specifically, the “thickness of the flaky glass (B) in the thermoplastic resin composition” is obtained by measuring the cross-section or surface of the raw flaky glass (B) alone or the thermoplastic resin composition with an electron microscope. It can be observed from the surface direction of the flaky glass (B) and measured using a scale bar of an electron microscope.
  • the average particle size of the flaky glass (B) in the thermoplastic resin composition is preferably 30 to 600 ⁇ m.
  • the average particle size of the flaky glass (B) in the thermoplastic resin composition is preferably 30 to 600 ⁇ m.
  • the average particle size of the flaky glass (B) in the thermoplastic resin composition is preferable in terms of improving the translucency of the thermoplastic resin molded article.
  • the average particle diameter of the flaky glass (B) in the thermoplastic resin composition before molding exceeds 600 ⁇ m, it is preferable in that the flaky glass (B) is broken during the molding process and the average particle diameter becomes 600 ⁇ m or less.
  • the average particle diameter of the flaky glass (B) in the thermoplastic resin composition is preferably 600 ⁇ m or less from the viewpoint of workability when obtaining a thermoplastic resin composition or a thermoplastic resin molded article.
  • the lower limit of the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 80 ⁇ m or more, and even more preferably 200 ⁇ m or more.
  • the upper limit of the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 500 ⁇ m or less, and even more preferably 400 ⁇ m or less.
  • the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 80 ⁇ m or more and 500 ⁇ m or less, and further preferably 200 ⁇ m or more and 400 ⁇ m or less.
  • the “average particle diameter of the flaky glass (B) in the thermoplastic resin composition” which is one embodiment of the present invention, is obtained by ashing the thermoplastic resin composition using an electric muffle furnace. After obtaining (B), using a particle size distribution measuring device (LA-950V2 (trade name) manufactured by HORIBA, Ltd.), laser light having a wavelength of 650 ⁇ m is applied to the flaky glass (B) flowing in water. This is a value obtained by irradiating and analyzing the average particle size from the scattering pattern.
  • the glass constituting the flaky glass (B) include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz, low dielectric constant glass, and high dielectric constant glass. Is mentioned.
  • the thermoplastic resin composition according to one embodiment of the present invention contains 25 to 70 parts by mass of flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A).
  • the thermal linear expansion coefficient of the thermoplastic resin molded article obtained by molding the thermoplastic resin composition is set to the glass level ( That is, it can be close to 7-9 ppm / K), and the decrease in the maximum output of the solar cell module after the thermal cycle test can be suppressed.
  • the lower limit of the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) is preferably 30 parts by mass or more.
  • 60 mass parts or less is preferable and, as for the upper limit of content of flake shaped glass (B) with respect to 100 mass parts of thermoplastic resins (A), 50 mass parts or less are more preferable.
  • the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) is preferably 30 parts by mass or more and 60 parts by mass or less, more preferably 30 parts by mass or more and 50 parts by mass. The following is more preferable.
  • the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin composition is 0 or more and 0.05 or less.
  • the difference between the refractive index of the thermoplastic resin (A) in the thermoplastic resin composition and the refractive index of the flaky glass (B) in the thermoplastic resin composition is preferably 0 or more and 0.04 or less, more preferably 0 or more and 0.03 or less. .
  • the “refractive index of the thermoplastic resin (A) in the thermoplastic resin composition” herein refers to the refractive index of the thermoplastic resin (A) used as a raw material. means.
  • the refractive index of the thermoplastic resin (A) in the thermoplastic resin composition is the Abbe refractometer (NAR-2: manufactured by Atago Co., Ltd.) in accordance with JIS K 7142 using the thermoplastic resin (A) used as a raw material. Etc. can be measured.
  • the “refractive index of the flaky glass (B) in the thermoplastic resin composition” herein refers to the refractive index of the flaky glass (B) used as a raw material. Means rate.
  • the refractive index of the flaky glass (B) in the thermoplastic resin composition is determined by immersing the flaky glass (B) used as a raw material in a refractive index standard solution having various refractive indexes, and observing the flaky glass (B ) And the refractive index standard solution can be measured as the refractive index of the glass flake (B).
  • thermoplastic resin composition in the present invention, known stabilizers and additives may be added to the thermoplastic resin composition as necessary.
  • thermoplastic resin composition examples include powder and pellets.
  • pellet used herein means a granular form having a longest length of 1 mm or more and 10 mm or less and having a polyhedron, a cylinder, a sphere, or other shapes.
  • the longest length is preferably 1 to 5 mm, more preferably 1 to 3 mm, from the viewpoint of handleability and ease of molding.
  • the “powder” here means a powdery solid substance having a particle size of 1 mm or less.
  • the powder preferably has a particle size of 200 ⁇ m or more and 1 mm or less from the viewpoint of handleability and ease of molding.
  • the thermoplastic resin composition may be, for example, a powder obtained by mixing a thermoplastic resin (A) and flaky glass (B), and a pellet obtained by melt-kneading the thermoplastic resin (A) and flaky glass (B). It is good.
  • thermoplastic resin composition can be obtained, for example, as follows. A raw material partial polymer containing a monomer for obtaining a (meth) acrylic resin, or a (meth) acrylic resin dissolved in a raw material containing a monomer for obtaining another (meth) acrylic resin A syrup-like product (hereinafter sometimes referred to as “syrup”) is obtained. Next, the flaky glass (B) is dispersed therein, and then the syrup is polymerized. As a result, a thermoplastic resin composition can be obtained.
  • thermoplastic resin (A) and the flaky glass (B) examples include premixers such as a ribbon blender, a tumbler, a nauter mixer, a Henschel mixer, a super mixer, and a planetary mixer.
  • apparatus for melting and kneading the thermoplastic resin (A) and the flaky glass (B) include, for example, melt kneading apparatuses such as a Banbury mixer, a kneader, a roll, a kneader ruder, a single screw extruder, a twin screw extruder, and the like. Can be mentioned.
  • the temperature at the time of mixing or melt-kneading the thermoplastic resin (A) and the flaky glass (B) is preferably 250 degrees or more and 280 degrees or less.
  • a method for supplying various raw materials to the melt-kneading apparatus a method in which the respective components are mixed and supplied in advance is preferable, but it is also possible to supply each component independently to the melt-kneading apparatus.
  • thermoplastic resin molded product means a product obtained by molding a thermoplastic resin composition into a desired shape, for example, a molding method such as injection molding, extrusion molding or compression molding. Can be molded by.
  • the thermoplastic resin molded body according to one embodiment of the present invention contains 25 to 70 parts by mass of flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A).
  • the coefficient of thermal expansion of the thermoplastic resin molded body is made of glass. (That is, 7 to 9 ppm / K), and a decrease in the maximum output of the solar cell module after the thermal cycle test can be suppressed.
  • the content of the flaky glass (B) is 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A), thereby obtaining a thermoplastic resin molded body. Good processability during molding.
  • the lower limit of the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 30 parts by mass or more.
  • 60 mass parts or less is preferable and, as for the upper limit of content of flake shaped glass (B) with respect to 100 mass parts of thermoplastic resins (A) in a thermoplastic resin molding, 50 mass parts or more are more preferable.
  • the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 30 parts by mass or more and 60 parts by mass or less, more preferably 30 parts by mass or more and 50 parts by mass. The following is more preferable.
  • the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin molding is 0 or more and 0.05 or less.
  • the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) is preferably from 0 to 0.04, more preferably from 0 to 0.03.
  • the “refractive index of the thermoplastic resin (A) in the thermoplastic resin molded product” herein has the same meaning as the “refractive index of the thermoplastic resin (A) in the thermoplastic resin composition”. Means the refractive index measured using the thermoplastic resin (A). Further, the “refractive index of the flaky glass (B) in the thermoplastic resin molded product” herein has the same meaning as the “refractive index of the flaky glass (B) in the thermoplastic resin composition”. Means the refractive index measured using the flaky glass (B).
  • the total light transmittance of the thermoplastic resin molded body is 86% or more and 93% or less.
  • the total light transmittance of the resin molded product can be 86% or more and 93% or less.
  • the “total light transmittance of the thermoplastic resin molding” as used herein means the ratio of the total transmitted light beam to the parallel incident light beam of the test piece.
  • the total light transmittance of the thermoplastic resin molded body is measured with a haze meter (HM-150 (trade name) manufactured by Murakami Color Research Laboratory Co., Ltd.) according to JIS K 6361-1. I can do it.
  • the melt flow rate (MFR) of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 5 g / 10 min or more and 20 g / 10 min or less.
  • the MFR of the thermoplastic resin in the thermoplastic resin molded body is more preferably 8 g / 10 min or more and 17 g / 10 min or less, and further preferably 12 g / 10 min or more and 15 g / 10 min or less.
  • the “melt flow rate” of the thermoplastic resin (A) in the thermoplastic resin molded product means the fluidity of the molten plastic.
  • the measurement of the melt flow rate of the thermoplastic resin (A) in the thermoplastic resin molding is performed under the conditions of a temperature of 230 degrees and a load of 37.3 N in accordance with JIS K7210.
  • the flaky glass (B) in the thermoplastic resin molded product is flaky (flaky).
  • the “flaky glass” in the flaky glass (B) in the thermoplastic resin molded body means a flat glass having a thickness of 0.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 30 or more and 200 or less. . Examples of the shape include a polygon and a circle, and are not particularly limited.
  • the form of the flaky glass (B) in the thermoplastic resin molded body is the same as the form of the flaky glass (B) in the thermoplastic resin composition, or molding conditions for obtaining the thermoplastic resin molded body, etc.
  • the average particle size and aspect ratio of the flaky glass (B) may be smaller than the average particle size and aspect ratio of the flaky glass (B) in the thermoplastic resin composition.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin molded product is 25 to 70.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 25 or more.
  • the translucency of the thermoplastic resin molded body is improved.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 70 or less, the surface smoothness of the thermoplastic resin molded body is improved.
  • the lower limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin molding is preferably 30 or more, and more preferably 35 or more.
  • the upper limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is preferably 65 or less. That is, the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is preferably 30 or more and 65 or less, and more preferably 35 or more and 65 or less.
  • the aspect ratio of the flaky glass (B) in the thermoplastic resin molded product is the thickness of the flaky glass (B) using the value of the average particle diameter of the flaky glass (B) in the thermoplastic resin molded product as a raw material. It is a value obtained by dividing by the value. "The thickness of the flaky glass (B) used as a raw material" can be measured by the same method as described above.
  • the thermoplastic resin molded body preferably has a thermal linear expansion coefficient at 50 ° C. of 8 ppm / K or more and 40 ppm / K or less, and 8 ppm / K. As mentioned above, it is more preferable that it is 37 ppm / K or less.
  • the average particle size of the flaky glass (B) in the thermoplastic resin molding is preferably 25 to 500 ⁇ m.
  • the average particle size of the flaky glass (B) in the thermoplastic resin molded body is preferably 25 to 500 ⁇ m.
  • the lower limit value of the average particle diameter of the flaky glass (B) in the thermoplastic resin molded body is more preferably 60 ⁇ m or more, and further preferably 150 ⁇ m or more.
  • the upper limit of the average particle size of the flaky glass (B) in the thermoplastic resin molded body is more preferably 400 ⁇ m or less, and further preferably 300 ⁇ m or less. That is, the average particle size of the flaky glass (B) in the thermoplastic resin molded body is more preferably 60 ⁇ m or more and 400 ⁇ m or less, and further preferably 150 ⁇ m or more and 300 ⁇ m or less.
  • the flaky glass (B) was obtained by ashing the thermoplastic resin molded body using an electric muffle furnace.
  • flaky glass (B) flowing in water is irradiated with a laser beam having a wavelength of 650 ⁇ m, and its scattering pattern. To the value obtained by analyzing the average particle diameter.
  • the shape of the thermoplastic resin molded body is preferably, for example, a sheet having a thickness of 1 to 3 mm.
  • the thermoplastic resin molded article has good rigidity, and the obtained solar cell module is preferable in that the maximum output can be maintained even after the thermal cycle test.
  • the lower limit value of the sheet thickness is more preferably 1.5 mm or more.
  • the upper limit value of the sheet thickness is more preferably 2.5 mm or less. That is, the thickness of the sheet is more preferably 1.5 mm or more and 2.5 mm or less.
  • the “sheet thickness” means a thickness in a cross section cut perpendicularly to the width direction of the sheet at the center in the sheet length direction.
  • thermoplastic resin molded body examples include a method obtained by molding a thermoplastic resin composition by a molding method such as injection molding, extrusion molding, or compression molding. Among these molding methods, extrusion molding is preferred because it can be uniformly molded into a desired shape. In order to obtain a plate-shaped or film-shaped molded body by extrusion molding, the molten resin extruded using an extruder such as a T-die can be taken out while being cooled by a cooling roll.
  • a molding method such as injection molding, extrusion molding, or compression molding.
  • extrusion molding is preferred because it can be uniformly molded into a desired shape.
  • the molten resin extruded using an extruder such as a T-die can be taken out while being cooled by a cooling roll.
  • the surface of the molded body in order to obtain a thermoplastic resin molded body having a surface excellent in smoothness, the surface of the molded body can be hot-pressed as necessary.
  • the heat pressing method include a continuous press method such as a batch press method using a high-pressure press, a roll press method, and a belt press method.
  • the temperature at the time of hot pressing include heating at 200 to 300 ° C.
  • An example of the press pressure is a press at 3 to 15 MPa.
  • thermoplastic resin laminate molding The thermoplastic resin laminate molded body is obtained by laminating a (meth) acrylic polymer protective layer on a thermoplastic resin molded body.
  • laminate includes the case where a (meth) acrylic polymer protective layer is “coated” on a thermoplastic resin molded body.
  • the (meth) acrylic polymer protective layer include functional layers having various functions such as weather resistance, impact resistance, scratch resistance, high hardness, and flexibility.
  • the (meth) acrylic polymer protective layer is a protective layer formed from a (meth) acrylic polymer.
  • the “(meth) acrylic polymer” here means a polymer obtained by polymerizing (meth) acrylic acid.
  • examples of the (meth) acrylic polymer include a (meth) acrylic film and a cured product of a (meth) acrylic coating composition containing a monomer having at least two (meth) acryloyloxy groups in the molecule. It is done.
  • the (meth) acrylic film is preferably a film having a thickness of 50 to 200 ⁇ m constituted by polymerization of (meth) acrylic acid.
  • (meth) acrylic acid for example, “Acryprene HBS006” (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd. ).
  • a cured product of a (meth) acrylic coating composition containing a monomer having at least two (meth) acryloyloxy groups in the molecule is a monomer having at least two (meth) acryloyloxy groups in the molecule
  • a coating composition containing a polymer of (meth) acrylic acid containing styrene is cured. Specific examples thereof include cured products of various (meth) acrylic coating compositions for forming various functional layers such as a hard coat layer.
  • the thermoplastic resin laminated molded body is preferably a sheet having a thickness of 1 to 3 mm.
  • the thermoplastic resin laminate molded article has good rigidity, and the obtained solar cell module is preferable in that the maximum output can be maintained even after the thermal cycle test.
  • the lower limit value of the sheet thickness is more preferably 1.5 mm or more.
  • the upper limit value of the sheet thickness is more preferably 2.5 mm or less.
  • the thickness of the sheet is more preferably 1.5 mm or more and 2.5 mm or less.
  • the “thickness of the sheet of the thermoplastic resin laminate molded product” as used herein refers to the thickness of a section cut perpendicularly to the width direction of the sheet at the center in the length direction of the sheet of the thermoplastic resin laminate molded product. Means.
  • Examples of a method for obtaining a thermoplastic resin laminated molded body include a hot press method and a coating method.
  • Examples of the temperature at the time of hot pressing include heating at 200 to 250 ° C.
  • An example of the press pressure is a press at 5 to 20 MPa.
  • As a coating method methods such as bar coating, gravure coating, and spin coating can be used.
  • the solar cell module which is one embodiment of the present invention is obtained using a thermoplastic resin molded body or a thermoplastic resin laminated molded body.
  • a solar cell module which is one embodiment of the present invention for example, a front protective member (a thermoplastic resin molded body or a thermoplastic resin laminated molded body of the present invention), a back surface protective member, a quadruple solar cell, a sealing material
  • the solar cell module comprised by the layer and electrode material is mentioned.
  • a front surface protection member (a thermoplastic resin molded body or a thermoplastic resin laminate molded body of the present invention) is provided on the light receiving surface side (front surface side) on which solar rays of the solar cell module are incident, and the solar cell module
  • a back surface protection member is provided on the surface (back surface side) facing the light receiving surface side.
  • a sealing material layer is formed between the front surface protection member (the thermoplastic resin molded body or the thermoplastic resin laminated molded body of the present invention) and the back surface protection member.
  • Quadruple solar cells and electrode materials are embedded in the sealing material layer, and the electrode material extending from the quadruple solar cells is in a state that can be connected to the outside of the solar cell module. In the quadruple solar cells, four solar cells are connected in series in two rows and two columns with an electrode material.
  • examples of the back surface protection member include a sheet in which a polyethylene terephthalate (PET) sheet is laminated on one or both sides of a resin sheet mainly composed of polyvinyl fluoride. .
  • PET polyethylene terephthalate
  • the solar battery cell in the solar battery module according to one embodiment of the present invention is not particularly limited as long as it is a solar battery cell that can generate power using the photovoltaic effect of a semiconductor, and a known solar battery cell is used. Can do.
  • a crystalline silicon cell is preferable from the viewpoint of a balance between power generation performance and cost.
  • insulating transparent resin As a sealing material in the solar cell module which is one embodiment of this invention, insulating transparent resin is mentioned, for example.
  • the insulating transparent resin include, for example, thermoplastic resins such as ethylene-vinyl acetate copolymer, polyvinyl butyral, ionomer resin, and low density polyethylene; and urethane curable resins, epoxy curable resins, ( Known curable resins such as a (meth) acrylate-based curable resin may be used.
  • part means “part by mass”.
  • thermoplastic resin (A) (a) Refractive index Pellets of thermoplastic resin (A) were molded at 220 ° C. and 10 MPa for 3 minutes using a 100TON heating molding machine (manufactured by Shoji Iron Works Co., Ltd.). It pressed and produced the test piece of thickness 2mm * length 20mm * width 8mm. Next, based on JIS K 7142, the refractive index of the test piece was measured with the D line of sodium using an Abbe refractometer (DR-A1 (trade name) manufactured by Atago Co., Ltd.).
  • DR-A1 Abbe refractometer
  • thermoplastic resin composition Average particle diameter and aspect ratio of flaky glass (B) 50 mg of thermoplastic resin composition was placed in an electric muffle furnace (manufactured by Advantech Toyo Co., Ltd., model “FUW-230PA”). )) And ashed at 400 ° C. for 1.5 hours or longer to obtain flaky glass (B). Next, 10 mg of flaky glass (B) was dispersed in 5 ml of water, the particle size was measured using a particle size distribution analyzer (LA-910 (trade name) manufactured by Horiba, Ltd.), and the mass average was obtained. The average particle size was taken. The aspect ratio of the flaky glass (B) was determined by repeating the average particle diameter with the thickness value (ie, 5 ⁇ m) described in the flaky glass (B) catalog.
  • thermoplastic resin molding (a) Total light transmittance A 5 cm square test piece was cut out from the thermoplastic resin molding, and a haze meter (Murakami Color Technology Research Co., Ltd.) based on JIS K 6361-1. The total light transmittance of the test piece was measured with a D65 light source using HM-150 (trade name) manufactured by Tokosho.
  • (D) Thermal linear expansion coefficient A test piece having a length of 15 mm and a width of 5 mm was cut out from a thermoplastic resin molded article, and JIS K 7197 was measured using a thermomechanical analyzer (TMA) (TMA8310 (trade name) manufactured by Rigaku Corporation). Based on the temperature increase rate of 5 ° C./minute, the coefficient of thermal expansion was measured in the range of 30 to 100 ° C. In the present invention, the value at 50 ° C. is defined as the thermal linear expansion coefficient.
  • melt flow rate The fluidity was evaluated by measuring the melt flow rate (MFR) according to JIS K7210 using pellets of thermoplastic resin. MFR was measured under the conditions of temperature: 230 ° C. and load: 37.3N.
  • (meth) acrylic coating composition (1) As a raw material for forming a (meth) acrylic polymer protective layer, 50 parts of phenoxyethyl acrylate (Biscoat # 192 manufactured by Osaka Organic Chemical Industry Co., Ltd.), 50 parts of bisphenol A-diepoxy diacrylate (manufactured by Kyoeisha Oil Chemical Co., Ltd., trade name: Epoxy ester 3000A), and 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by Ciba Geigy) (Product name: Darocur 1173) 1.5 parts were mixed to obtain a (meth) acrylic coating composition (1) containing a monomer having at least two (meth) acryloyloxy groups in the molecule.
  • thermoplastic resin (A) 100 parts of (meth) acrylic resin (trade name: Acrypet VH001, manufactured by Mitsubishi Rayon Co., Ltd.) as the thermoplastic resin (A) is C glass, a refractive index of 1.52, an average particle size of 667 ⁇ m, and an aspect ratio of 133 33 parts of flaky glass (B) (manufactured by Nippon Sheet Glass Co., Ltd., trade name “RCF-600”, thickness 5 ⁇ m) was added to obtain a dry blend. Next, the dry blend is melt-kneaded at 250 ° C.
  • thermoplastic resin composition was obtained.
  • the evaluation results of the obtained thermoplastic resin composition are shown in Table 1.
  • the thermoplastic resin composition was extruded into a sheet having a thickness of 2 mm and a width of 35 cm at 250 ° C. using a single-screw extruder (manufactured by Nakamura Industries Co., Ltd.).
  • the obtained sheet-like material is cut into a length of 50 cm, and the surface is smoothed under conditions of 220 ° C. and 10 MPa using a 100 TON heating molding machine (manufactured by Shoji Tekko Co., Ltd.), and a thermoplastic resin molding is performed.
  • Table 1 shows the evaluation results of the obtained thermoplastic resin molded article.
  • thermoplastic resin molded body cut to a width of 34.3 cm and a length of 37.3 cm, Sealing material (34.3cm x length 37.3cm x thickness 0.45mm) (ethylene-vinyl acetate copolymer manufactured by CI Kasei Co., Ltd., trade name “CIKcap”) 5 inches in which 4 cells are connected in series Solar cell (Asden Co., Ltd., polycrystalline silicon solar cell), width 34.3 cm ⁇ length 37.3 cm ⁇ thickness 0.45 mm sealing material (Ci Kasei Co., Ltd.
  • ethylene-vinyl acetate) Copolymer trade name “CIKcap”
  • back surface protective member having a width of 34.3 cm ⁇ length of 37.3 cm ⁇ thickness of 0.3 mm (a PET film laminate manufactured by MPackaging Co., Ltd., trade name “PTD250”)
  • the laminated body that is sequentially laminated is sandwiched between 500 mm square release films (trade name “HGS-P610”, manufactured by Nissan Sangyo Co., Ltd.) and a vacuum laminator (trade name, manufactured by NPC Corporation). LM-50X50-S ").
  • the inside of a vacuum laminator was 90 mmHg, the said laminated body was vacuum-bonded on condition of 135 degreeC for 15 minutes, and 101.3 kPa, and the solar cell module laminated body was obtained.
  • the two release films were peeled from the solar cell module laminate to obtain a solar cell module.
  • the evaluation results of the obtained solar cell module are shown in Table 1.
  • thermoplastic resin composition A thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained in the same manner as in Example 1 except that the content of the flaky glass (B) was changed as shown in Table 1. The evaluation results are shown in Table 1.
  • Comparative Example 1 when a TC50 test was performed on the solar cell module, power was not generated due to the disconnection of the wiring, and it was impossible to measure the maximum output value.
  • Example 4 A thermoplastic resin composition and a thermoplastic resin in the same manner as in Example 1 except that (meth) acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet TF8 001) is used as the thermoplastic resin (A). A molded body and a solar cell module were obtained. The evaluation results are shown in Table 1.
  • thermoplastic resin composition and the thermoplastic resin molding were the same as in Example 1 except that (meth) acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet MF001) was used as the thermoplastic resin (A).
  • the evaluation results are shown in Table 1.
  • thermoplastic resin composition (Example 6) Polycarbonate resin (Mitsubishi Engineer Plastic Co., Ltd., trade name: Iupilon S2000) as the thermoplastic resin (A) and E glass REF-600 (Nippon Sheet Glass Co., Ltd., trade name, refraction) as the flaky glass (B)
  • a thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained in the same manner as in Example 1 except that the ratio 1.56, the average particle diameter 600 ⁇ m, the thickness 5 ⁇ m, and the aspect ratio 120) were used.
  • the evaluation results are shown in Table 1.
  • Example 7 A 125- ⁇ m thick (meth) acrylic film (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acryprene HBS006) is pasted as a (meth) acrylic polymer protective layer on the thermoplastic resin molded body obtained in Example 6. In addition, a thermoplastic resin laminate molded body was obtained. As an adhesive material for bonding, an optical material adhesive film PD-S1 (trade name, manufactured by Panac Co., Ltd.) was used. Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
  • Example 8 On the thermoplastic resin molding obtained in Example 6, the (meth) acrylic coating composition (1) was applied as a (meth) acrylic polymer protective layer, and then cured by ultraviolet rays to give a thickness of 5 ⁇ m ( A thermoplastic resin laminate molded body on which a cured film of the (meth) acrylic coating composition (1) (hereinafter sometimes referred to as “film (1)”) was laminated was obtained.
  • Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
  • Comparative Example 2 Example except that C glass RCF-160 (manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.52, average particle size 160 ⁇ m, thickness 5 ⁇ m, aspect ratio 32) is used as the glass flake (B).
  • C glass RCF-160 manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.52, average particle size 160 ⁇ m, thickness 5 ⁇ m, aspect ratio 32
  • Example 3 Example except that C glass RCF-015 (product name, refractive index 1.52, average particle size 26 ⁇ m, thickness 5 ⁇ m, aspect ratio 5) is used as glass flake (B).
  • C glass RCF-015 product name, refractive index 1.52, average particle size 26 ⁇ m, thickness 5 ⁇ m, aspect ratio 5
  • B glass flake
  • Example 4 Example 1 except that E glass REF-600 (manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.56, average particle size 600 ⁇ m, thickness 5 ⁇ m, aspect ratio 120) was used as the glass flake (B).
  • E glass REF-600 manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.56, average particle size 600 ⁇ m, thickness 5 ⁇ m, aspect ratio 120
  • a thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained. The evaluation results are shown in Table 1.
  • thermoplastic resin (A) 100 parts of Acrysilap SY-116 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.), which is a raw material for the (meth) acrylic resin, and an RCF of C glass as the flaky glass (B) -600N (manufactured by Nippon Sheet Glass Co., Ltd., trade name, thickness 5 ⁇ m, refractive index 1.52, average particle diameter 437 ⁇ m, aspect ratio 87) 33 parts, and t-hexylperoxypivalate as a polymerization initiator (Japan) 0.2 part of oil and fat Co., Ltd.
  • thermoplastic resin molded body was obtained as a thermoplastic resin (A). Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
  • thermoplastic resin molded articles are excellent in transparency and have little deformation due to temperature change, so that the maximum output of the solar cell module can be obtained even after the TC test. There was no decline.
  • Comparative Example 1 since the content of the flaky glass (B) is less than the lower limit value, the reduction of the thermal expansion coefficient is not sufficient, and deformation of the thermoplastic resin molded body during the TC50 test is prevented. I could't.
  • Comparative Example 4 the total light transmittance was lowered because the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) was not less than the upper limit.
  • Comparative Example 5 the Charpy impact strength decreased because the aspect ratio of the flaky glass (B) was not less than the upper limit.
  • thermoplastic resin (A) 100 parts of Acrypet VH001 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.), which is a thermoplastic resin (A), is flaky glass having a refractive index of 1.52, an average particle size of 437 ⁇ m, and an aspect ratio of 87, which is C glass.
  • B) 82 parts (made by Nippon Sheet Glass Co., Ltd., trade name “RCF-600”, thickness 5 ⁇ m) were added and dry blended. Next, the above dry blend was melt-kneaded at 250 ° C. using a twin screw extruder (manufactured by Toshiba Machine Co., Ltd., 58 mm ⁇ twin screw extruder) to try to produce a strand. However, since the content of the flaky glass (B) exceeded the upper limit value and a continuous strand of the thermoplastic resin composition could not be obtained, the thermoplastic resin molded product was not evaluated.
  • the present invention can provide a thermoplastic resin molded article that is excellent in translucency and reduced in deformation due to temperature change, and uses this thermoplastic resin molded article as a top sheet member for a solar cell module. As a result, a decrease in the maximum output is suppressed, and a lightweight solar cell module can be provided, which is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

A thermoplastic resin composition which contains (A) a thermoplastic resin and (B) flake glass. The flake glass (B) in the thermoplastic resin composition has an aspect ratio of 30-80, and the content of the flake glass (B) in the thermoplastic resin composition is 25-70 parts by mass relative to 100 parts by mass of the thermoplastic resin (A). The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flake glass (B) in the thermoplastic resin composition is from 0 to 0.05 (inclusive).

Description

熱可塑性樹脂組成物、熱可塑性樹脂成形体、熱可塑性樹脂積層成形体及び太陽電池モジュールThermoplastic resin composition, thermoplastic resin molded body, thermoplastic resin laminated molded body, and solar cell module
 本発明は、熱可塑性樹脂組成物、熱可塑性樹脂成形体、熱可塑性樹脂積層成形体及び太陽電池モジュールに関する。
 本願は、2012年7月6日に、日本に出願された特願2012-152115号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoplastic resin composition, a thermoplastic resin molded body, a thermoplastic resin laminated molded body, and a solar cell module.
This application claims priority based on Japanese Patent Application No. 2012-152115 for which it applied to Japan on July 6, 2012, and uses the content here.
 従来、太陽電池モジュールのトップシート部材にはガラス材料が用いられている。ガラス製のトップシート部材は寸法安定性及び難燃性が良好であるが、軽量化のために厚みを薄くするためには化学強化ガラス等を使用する必要があり、太陽電池モジュールのような大面積の製品に使用する場合には高コストとなる。このため、太陽電池モジュールの軽量化のために樹脂材料への置き換えが検討されている。
 太陽電池モジュールのトップシート部材として樹脂材料を使用する場合、太陽電池の光電変換効率を良好とするために、良好な透光性を有する樹脂材料が求められる。
 透光性に優れた樹脂材料を得る方法としては、透明なマトリクス樹脂中に透明な粒子や繊維等を分散させ、マトリクス樹脂と粒子の屈折率差を調整する方法が知られている。
 例えば、特許文献1には、ガラス代替樹脂シートとして、透明樹脂中に透明樹脂との屈折率差が0.01~0.04であるガラスを分散させたシートが提案されている。しかしながら、用いられているガラスは繊維状で、且つ、繊維直径が小さいため、得られる成形体内で多重散乱が生じ易く、透光性が低下する恐れがある。
 上記の繊維状ガラスの問題点を解決するために、例えば、フレーク状ガラスを使用することが考えられ、特許文献2には、熱可塑性樹脂中にフレーク状ガラスを0.1~20重量%分散させて得られる成形体が提案されている。
Conventionally, a glass material has been used for a top sheet member of a solar cell module. The glass topsheet member has good dimensional stability and flame retardancy, but it is necessary to use chemically tempered glass to reduce the thickness for weight reduction, which is large like a solar cell module. When used for a product with an area, the cost is high. For this reason, replacement with a resin material has been studied in order to reduce the weight of the solar cell module.
When using a resin material as a top sheet member of a solar cell module, a resin material having good translucency is required in order to improve the photoelectric conversion efficiency of the solar cell.
As a method for obtaining a resin material having excellent translucency, a method is known in which transparent particles, fibers, and the like are dispersed in a transparent matrix resin to adjust the refractive index difference between the matrix resin and the particles.
For example, Patent Document 1 proposes a sheet in which glass having a refractive index difference of 0.01 to 0.04 with a transparent resin is dispersed in a transparent resin as a glass substitute resin sheet. However, since the glass used is fibrous and has a small fiber diameter, multiple scattering is likely to occur in the resulting molded body, and the translucency may be reduced.
In order to solve the problems of the above-mentioned fibrous glass, for example, it is conceivable to use flaky glass. Patent Document 2 discloses that the flaky glass is dispersed in an amount of 0.1 to 20% by weight in a thermoplastic resin. There has been proposed a molded body obtained by the above process.
特開2007-077,385号公報Japanese Patent Laid-Open No. 2007-077,385 特開2008-074,927号公報Japanese Patent Laid-Open No. 2008-074,927
一方、太陽電池モジュールには高い信頼性が必要であり、この要求を満たすために、85℃~-40℃の温度変化が生じる熱サイクル試験に対しても変形が少ないトップシート部材が求められる。
このような状況において、特許文献2に示される成形体ではガラスの含有率が低いため、熱サイクル試験後に太陽電池モジュールの最大出力が低下するという問題がある。
On the other hand, high reliability is required for the solar cell module, and in order to satisfy this requirement, a top sheet member with less deformation is required even for a thermal cycle test in which a temperature change of 85 ° C. to −40 ° C. occurs.
In such a situation, the molded body disclosed in Patent Document 2 has a problem that the maximum output of the solar cell module decreases after the thermal cycle test because the glass content is low.
本発明は、上記事情に鑑みてなされたものであり、透光性に優れ、熱サイクル試験後でも太陽電池モジュールの最大出力の低下が抑制された太陽電池モジュール用のトップシート部材を提供できる熱可塑性樹脂組成物、太陽電池モジュール用のトップシート部材として使用できる熱可塑性樹脂成形体及び熱可塑性樹脂積層成形体、並びに上記性能を有する太陽電池モジュールを提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a heat capable of providing a top sheet member for a solar cell module that is excellent in translucency and that suppresses a decrease in the maximum output of the solar cell module even after a thermal cycle test. It is an object of the present invention to provide a thermoplastic resin composition, a thermoplastic resin molded body and a thermoplastic resin laminate molded body that can be used as a top sheet member for a solar cell module, and a solar cell module having the above performance.
上記課題を解決するため、本発明は以下に関する。
〔1〕 熱可塑性樹脂(A)とフレーク状ガラス(B)とを含む熱可塑性樹脂組成物であって、
熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比は、30~80であり、
熱可塑性樹脂組成物中のフレーク状ガラス(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、25~70質量部であり、
熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率の差が、0以上、0.05以下である熱可塑性樹脂組成物。
〔2〕フレーク状ガラス(B)の平均粒径が30~600μmである前記〔1〕に記載の熱可塑性樹脂組成物。
〔3〕 熱可塑性樹脂組成物中の熱可塑性樹脂(A)のメルトフローレートが、5g/10分間以上、20g/10分間以下である前記〔1〕又は〔2〕に記載の熱可塑性樹脂組成物。
〔4〕 熱可塑性樹脂(A)が、(メタ)アクリル樹脂又はポリカーボネート樹脂である前記〔1〕~〔3〕のいずれか1つに記載の熱可塑性樹脂組成物。
〔5〕  熱可塑性樹脂(A)とフレーク状ガラス(B)とを含む熱可塑性樹脂成形体であって、
熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比は、25~70であり、
熱可塑性樹脂成形体中のフレーク状ガラス(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、25~70質量部であり、
熱可塑性樹脂成形体中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率の差が、0以上、0.05以下であり、
熱可塑性樹脂成形体における全光線透過率が86%以上、93%以下である熱可塑性樹脂成形体。
〔6〕 50℃における熱線膨張係数が、9ppm/K以上、40ppm/K以下である前記〔5〕に記載の熱可塑性樹脂成形体。
〔7〕 熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径が25~500μmである前記〔5〕又は〔6〕に記載の熱可塑性樹脂成形体。
〔8〕 熱可塑性樹脂成形体中の熱可塑性樹脂(A)のメルトフローレートが5g/10分間以上、20g/10分間以下である前記〔5〕~〔7〕のいずれか1つに記載の熱可塑性樹脂成形体。
〔9〕 熱可塑性樹脂(A)が、(メタ)アクリル樹脂又はポリカーボネート樹脂である前記〔5〕~〔8〕のいずれか1つに記載の熱可塑性樹脂成形体。
〔10〕 前記〔5〕~〔9〕のいずれか1つに記載の熱可塑性樹脂成形体に(メタ)アクリル重合体保護層が積層された熱可塑性樹脂積層成形体。
〔11〕 前記(メタ)アクリル重合体保護層が、(メタ)アクリルフィルム、及び分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリルコーティング組成物の硬化物からなる群から選択される少なくとも1つの成分を含む前記〔10〕に記載の熱可塑性樹脂積層成形体。
〔12〕 前記〔6〕~〔9〕のいずれか1つに記載の熱可塑性樹脂成形体、又は前記〔10〕若しくは前記〔11〕に記載の熱可塑性樹脂積層成形体を用いた太陽電池モジュール。
〔13〕 熱可塑性樹脂成形体、又は熱可塑性樹脂積層成形体が、厚さ1~3mmのシートである前記〔12〕に記載の太陽電池モジュール。
In order to solve the above problems, the present invention relates to the following.
[1] A thermoplastic resin composition comprising a thermoplastic resin (A) and flaky glass (B),
The aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 to 80,
The content of the flaky glass (B) in the thermoplastic resin composition is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
A thermoplastic resin composition in which a difference between a refractive index of the thermoplastic resin (A) and a refractive index of the flaky glass (B) in the thermoplastic resin composition is 0 or more and 0.05 or less.
[2] The thermoplastic resin composition according to [1], wherein the average particle size of the flaky glass (B) is 30 to 600 μm.
[3] The thermoplastic resin composition according to [1] or [2], wherein the melt flow rate of the thermoplastic resin (A) in the thermoplastic resin composition is 5 g / 10 minutes or more and 20 g / 10 minutes or less. object.
[4] The thermoplastic resin composition according to any one of [1] to [3], wherein the thermoplastic resin (A) is a (meth) acrylic resin or a polycarbonate resin.
[5] A thermoplastic resin molded article containing the thermoplastic resin (A) and the flaky glass (B),
The aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70,
The content of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
The difference between the refractive index of the thermoplastic resin (A) in the thermoplastic resin molded body and the refractive index of the flaky glass (B) is from 0 to 0.05,
A thermoplastic resin molded article having a total light transmittance of 86% to 93% in the thermoplastic resin molded article.
[6] The thermoplastic resin molded article according to [5], wherein the coefficient of thermal expansion at 50 ° C. is 9 ppm / K or more and 40 ppm / K or less.
[7] The thermoplastic resin molded article according to the above [5] or [6], wherein the average particle diameter of the flaky glass (B) in the thermoplastic resin molded article is 25 to 500 μm.
[8] The melt flow rate of the thermoplastic resin (A) in the thermoplastic resin molded body is 5 g / 10 min or more and 20 g / 10 min or less, according to any one of the above [5] to [7] Thermoplastic resin molding.
[9] The thermoplastic resin molded article according to any one of [5] to [8], wherein the thermoplastic resin (A) is a (meth) acrylic resin or a polycarbonate resin.
[10] A thermoplastic resin laminated molded article in which a (meth) acrylic polymer protective layer is laminated on the thermoplastic resin molded article according to any one of [5] to [9].
[11] Curing of a (meth) acrylic coating composition in which the (meth) acrylic polymer protective layer contains a (meth) acrylic film and a monomer having at least two (meth) acryloyloxy groups in the molecule. The thermoplastic resin laminate molded article according to [10], comprising at least one component selected from the group consisting of products.
[12] A solar cell module using the thermoplastic resin molded article according to any one of [6] to [9] or the thermoplastic resin laminate molded article according to [10] or [11] .
[13] The solar cell module according to [12], wherein the thermoplastic resin molded body or the thermoplastic resin laminated molded body is a sheet having a thickness of 1 to 3 mm.
 本発明によれば、透光性に優れ、且つ温度変化による変形の発生が低減された熱可塑性樹脂成形体を得ることができる。また、この熱可塑性樹脂成形体を太陽電池モジュール用のトップシート部材として使用することにより、最大出力の低下が抑制され、且つ軽量な太陽電池モジュールを提供することができる。 According to the present invention, it is possible to obtain a thermoplastic resin molded article that is excellent in translucency and reduced in deformation due to temperature change. Moreover, by using this thermoplastic resin molded body as a top sheet member for a solar cell module, it is possible to provide a lightweight solar cell module in which a decrease in maximum output is suppressed.
<熱可塑性樹脂(A)>
 熱可塑性樹脂(A)は、本発明の一実施形態である熱可塑性樹脂組成物の構成成分の1つである。
 熱可塑性樹脂(A)のメルトフローレート(以下、MFRという場合がある。)は、5g/10分間以上、20g/10分間以下が好ましい。熱可塑性樹脂(A)のメルトフローレート(MFR)を5g/10分間以上とすることにより、本発明の一実施形態である熱可塑性樹脂組成物の成形時における後述するガラスフレーク(B)の破砕が抑制できる点で好ましく、熱可塑性樹脂成形体の透光性を向上することができる点で好ましい。
 熱可塑性樹脂のMFRを20g/10分間以下とすることにより、熱可塑性樹脂組成物を押出成形して後述の熱可塑性樹脂成形体を得る際の作業性が向上する。
熱可塑性樹脂のMFRは、8g/10分間以上、17g/10分間以下がより好ましく、12g/10分間以上、15g/10分間以下がさらに好ましい。
ここでいう 熱可塑性樹脂(A)の「メルトフローレート」とは、溶融プラスチックの流動性の大きさを意味する。また、熱可塑性樹脂(A)のメルトフローレートの測定は、JIS K7210に準拠し、温度230度、荷重37.3Nの条件下で行う。 
<Thermoplastic resin (A)>
A thermoplastic resin (A) is one of the components of the thermoplastic resin composition which is one embodiment of the present invention.
The melt flow rate (hereinafter sometimes referred to as MFR) of the thermoplastic resin (A) is preferably 5 g / 10 minutes or more and 20 g / 10 minutes or less. By setting the melt flow rate (MFR) of the thermoplastic resin (A) to 5 g / 10 minutes or more, the glass flakes (B), which will be described later, are crushed during the molding of the thermoplastic resin composition according to an embodiment of the present invention. Is preferable in that it can be suppressed, and it is preferable in that the translucency of the thermoplastic resin molding can be improved.
By setting the MFR of the thermoplastic resin to 20 g / 10 min or less, the workability when the thermoplastic resin composition is extruded to obtain a thermoplastic resin molded body described later is improved.
The MFR of the thermoplastic resin is more preferably 8 g / 10 minutes or more and 17 g / 10 minutes or less, and further preferably 12 g / 10 minutes or more and 15 g / 10 minutes or less.
The “melt flow rate” of the thermoplastic resin (A) here means the fluidity of the molten plastic. The measurement of the melt flow rate of the thermoplastic resin (A) is performed under the conditions of a temperature of 230 degrees and a load of 37.3 N in accordance with JIS K7210.
 熱可塑性樹脂(A)の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)で測定した質量平均分子量(Mw)が、5万~20万であることが好ましい。熱可塑性樹脂(A)のMwが5万以上である場合、熱可塑性樹脂成形体の強度や耐久性が向上する点で好ましく、熱可塑性樹脂(A)のMwが20万以下である場合、熱可塑性樹脂成形体を得る際の成形時における熱可塑性樹脂組成物の流動性等の加工性が向上する点で好ましい。
熱可塑性樹脂(A)のMwの下限値は6万以上がより好ましい。また、熱可塑性樹脂(A)のMwの上限値は15万以下がより好ましい。即ち、熱可塑性樹脂(A)のMwは、6万以上、15万以下であることがより好ましい。
熱可塑性樹脂(A)のMwの下限値は7万以上がさらに好ましい。また、熱可塑性樹脂(A)のMwの上限値は10万以下がさらに好ましい。即ち、熱可塑性樹脂(A)のMwは、7万以上、10万以下であることがさらに好ましい。
As for the molecular weight of the thermoplastic resin (A), the mass average molecular weight (Mw) measured by GPC (gel permeation chromatography) is preferably 50,000 to 200,000. When the Mw of the thermoplastic resin (A) is 50,000 or more, it is preferable in terms of improving the strength and durability of the thermoplastic resin molded article, and when the Mw of the thermoplastic resin (A) is 200,000 or less, This is preferable in terms of improving processability such as fluidity of the thermoplastic resin composition at the time of molding when obtaining a plastic resin molded body.
The lower limit value of Mw of the thermoplastic resin (A) is more preferably 60,000 or more. The upper limit value of Mw of the thermoplastic resin (A) is more preferably 150,000 or less. That is, the Mw of the thermoplastic resin (A) is more preferably 60,000 or more and 150,000 or less.
The lower limit value of Mw of the thermoplastic resin (A) is more preferably 70,000 or more. Further, the upper limit value of Mw of the thermoplastic resin (A) is more preferably 100,000 or less. That is, the Mw of the thermoplastic resin (A) is more preferably 70,000 or more and 100,000 or less.
熱可塑性樹脂(A)としては、例えば、(メタ)アクリル樹脂及びポリカーボネート樹脂が挙げられる。
 熱可塑性樹脂(A)として(メタ)アクリル樹脂を使用する場合、後述する本発明の熱可塑性樹脂成形体の耐候性を向上することが出来る。また、熱可塑性樹脂(A)としてポリカーボネート樹脂を使用する場合、熱可塑性樹脂成形体の耐衝撃性を向上することが出来る。
Examples of the thermoplastic resin (A) include (meth) acrylic resins and polycarbonate resins.
When a (meth) acrylic resin is used as the thermoplastic resin (A), the weather resistance of the thermoplastic resin molded article of the present invention described later can be improved. Moreover, when using polycarbonate resin as a thermoplastic resin (A), the impact resistance of a thermoplastic resin molding can be improved.
(メタ)アクリル樹脂としては、後述するフレーク状ガラス(B)との屈折率差を0.05以下に調整しやすいことから、(メタ)アクリル酸エステル単位を含有する重合体、及び(メタ)アクリル酸エステルとスチレンとの共重合体であるMS樹脂が好ましく、(メタ)アクリル酸エステル単位を含有する重合体がより好ましい。これらは1種を単独で又は2種以上を併せて使用することができる。
尚、本明細書及び請求の範囲において、「(メタ)アクリル樹脂」は、「アクリル樹脂」と「メタクリル樹脂」の一方又は両方を意味し、「(メタ)アクリル酸」は、「アクリル酸」と「メタクリル酸」の一方又は両方を意味する。
As the (meth) acrylic resin, a polymer containing a (meth) acrylic acid ester unit, and (meth), since the difference in refractive index from the glass flake (B) described later can be easily adjusted to 0.05 or less. MS resin which is a copolymer of acrylic ester and styrene is preferable, and a polymer containing (meth) acrylic ester units is more preferable. These can be used alone or in combination of two or more.
In the present specification and claims, “(meth) acrylic resin” means one or both of “acrylic resin” and “methacrylic resin”, and “(meth) acrylic acid” means “acrylic acid”. And “methacrylic acid” or both.
 (メタ)アクリル酸エステル単位を含有する重合体の原料である(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-エチルヘキシル及び(メタ)アクリル酸2-ヒドロキシエチルが挙げられる。これらは1種を単独で又は2種以上を併せて使用することができる。 Examples of the (meth) acrylic acid ester that is a raw material for a polymer containing a (meth) acrylic acid ester unit include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, Iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and (meth ) 2-hydroxyethyl acrylate. These can be used alone or in combination of two or more.
 (メタ)アクリル酸エステル単位を含有する重合体は、必要に応じて(メタ)アクリル酸エステル単位以外のその他の単量体単位を含有することができる。
 その他の単量体単位を構成するための原料であるその他の単量体としては、例えば、酢酸ビニル等のビニルエステル;スチレン、p-メチルスチレン、α-メチルスチレン、ビニルナフタレン等の芳香族ビニル単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体;(メタ)アクリル酸、クロトン酸等のα,β-不飽和カルボン酸;及びN-エチルマレイミド、N-シクロヘキシルマレイミド等のマレイミド化合物等が挙げられる。これらは1種を単独で又は2種以上を併せて使用することができる。
The polymer containing a (meth) acrylic acid ester unit can contain other monomer units other than the (meth) acrylic acid ester unit as needed.
Examples of other monomers that are raw materials for constituting other monomer units include vinyl esters such as vinyl acetate; aromatic vinyls such as styrene, p-methylstyrene, α-methylstyrene, and vinylnaphthalene. Monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; α, β-unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid; and maleimides such as N-ethylmaleimide and N-cyclohexylmaleimide Compounds and the like. These can be used alone or in combination of two or more.
 (メタ)アクリル酸エステル単位を含有する重合体としては、(メタ)アクリル酸エステル単位を含有する重合体の光線透過率、耐熱性、力学的特性及び成形性が良好であることから、(メタ)アクリル酸エステル単位を含有する重合体の総質量に対して、(メタ)アクリル酸メチル単位を80~100質量%、及びその他の単量体単位を0~20質量%含有し、且つ、前記(メタ)アクリル酸メチル単位の総質量に対して、メタクリル酸メチル単位が50~100質量%である重合体が好ましい。 As a polymer containing a (meth) acrylic acid ester unit, a polymer containing a (meth) acrylic acid ester unit has good light transmittance, heat resistance, mechanical properties and moldability. ) 80-100% by mass of methyl (meth) acrylate unit and 0-20% by mass of other monomer units based on the total mass of the polymer containing acrylate units, and A polymer having 50 to 100% by mass of methyl methacrylate units with respect to the total mass of methyl (meth) acrylate units is preferred.
 ポリカーボネート樹脂としては、特に限定されないが、例えば、三菱エンジニアリングプラスチック(株)製「ユーピロン」(登録商標)及び住化スタイロン(株)製「SDポリカ」(登録商標)等が挙げられる。 The polycarbonate resin is not particularly limited, and examples thereof include “Iupilon” (registered trademark) manufactured by Mitsubishi Engineering Plastics Co., Ltd. and “SD Polyca” (registered trademark) manufactured by Sumika Stylon Co., Ltd.
<フレーク状ガラス(B)>
 フレーク状ガラス(B)は本発明の一実施態様である熱可塑性樹脂組成物の構成成分の1つである。
 なお、本願明細書及び請求の範囲において「フレーク状ガラス」とは、厚さが0.5μm以上、20μm以下、アスペクト比が30以上、200以下の平板状ガラスを意味する。フレーク状ガラスの形状としては、多角形や円形等が挙げられ、特に限定されない。
<Flake glass (B)>
The flaky glass (B) is one of the components of the thermoplastic resin composition that is one embodiment of the present invention.
In the present specification and claims, “flaky glass” means flat glass having a thickness of 0.5 μm or more and 20 μm or less and an aspect ratio of 30 or more and 200 or less. Examples of the shape of the flaky glass include polygons and circles, and are not particularly limited.
 熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比は30~80である。熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比が30以上の場合、熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比を25以上にすることができ、熱可塑性樹脂成形体の透光性が良好になる。また、熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比が80以下の場合、熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比を75以下にすることができ、熱可塑性樹脂成形体の耐衝撃性が良好になる。
熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比の下限値は35以上が好ましく、45以上がより好ましい。熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比の上限値は75以下が好ましく、70以下がより好ましく、65以下が更に好ましい。
即ち、熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比は、35以上、75以下が好ましく、45以上、75以下がより好ましく、45以上、70以下が更に好ましく、45以上、65以下が特に好ましい。
尚、本発明の一実施態様である熱可塑性樹脂組成物におけるフレーク状ガラス(B)のアスペクト比は、フレーク状ガラス(B)の平均粒径をフレーク状ガラス(B)の厚さの値で除して得られた値である。
なお、ここでいうフレーク状ガラス(B)の「厚さ」は、電子顕微鏡等で測定することが出来る。
具体的には、「熱可塑性樹脂組成物におけるフレーク状ガラス(B)の厚さ」は、電子顕微鏡により、原料であるフレーク状ガラス(B)単体または熱可塑性樹脂組成物の、断面または表面を、フレーク状ガラス(B)の面方向から観察し、電子顕微鏡のスケールバーを用いて測定することが出来る。
The aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 to 80. When the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 or more, the aspect ratio of the flaky glass (B) in the thermoplastic resin molding can be 25 or more, and the thermoplastic resin The translucency of the molded product is improved. When the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 80 or less, the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body can be 75 or less, The impact resistance of the plastic resin molding is improved.
The lower limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 35 or more, and more preferably 45 or more. The upper limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 75 or less, more preferably 70 or less, and even more preferably 65 or less.
That is, the aspect ratio of the flaky glass (B) in the thermoplastic resin composition is preferably 35 or more and 75 or less, more preferably 45 or more and 75 or less, still more preferably 45 or more and 70 or less, and more preferably 45 or more and 65 or less. The following are particularly preferred:
In addition, the aspect ratio of the flaky glass (B) in the thermoplastic resin composition which is one embodiment of the present invention is the average particle diameter of the flaky glass (B) by the thickness value of the flaky glass (B). It is the value obtained by dividing.
The “thickness” of the flaky glass (B) here can be measured with an electron microscope or the like.
Specifically, the “thickness of the flaky glass (B) in the thermoplastic resin composition” is obtained by measuring the cross-section or surface of the raw flaky glass (B) alone or the thermoplastic resin composition with an electron microscope. It can be observed from the surface direction of the flaky glass (B) and measured using a scale bar of an electron microscope.
 本発明においては、熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径は、30~600μmが好ましい。熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径を30μm以上とすることにより熱可塑性樹脂成形体の透光性が良好となる点で好ましい。成形前の熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径が600μmを超える場合、成形の過程でフレーク状ガラス(B)が崩れて平均粒径が600μm以下になる点で好ましい。そのため、熱可塑性樹脂組成物又は熱可塑性樹脂成形体を得る際の作業性の点で、熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径は600μm以下が好ましい。
熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径の下限値は80μm以上がより好ましく、200μm以上が更に好ましい。また、熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径の上限値は500μm以下がより好ましく、400μm以下が更に好ましい。
即ち、熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径は、80μm以上、500μm以下がより好ましく、200μm以上、400μm以下が更に好ましい。
尚、本発明の一実施態様である「熱可塑性樹脂組成物におけるフレーク状ガラス(B)の平均粒径」は、電気マッフル炉を用いて熱可塑性樹脂組成物を灰化することによりフレーク状ガラス(B)を得た後、粒度分布測定装置((株)堀場製作所製LA-950V2(商品名))を用いて、水中を流動しているフレーク状ガラス(B)に波長650μmのレーザー光を照射し、その散乱パターンから平均粒径を解析した値をいう。
フレーク状ガラス(B)を構成するガラスの種類としては、例えば、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、クオーツ、低誘電率ガラス及び高誘電率ガラス等が挙げられる。
In the present invention, the average particle size of the flaky glass (B) in the thermoplastic resin composition is preferably 30 to 600 μm. By setting the average particle size of the flaky glass (B) in the thermoplastic resin composition to 30 μm or more, it is preferable in terms of improving the translucency of the thermoplastic resin molded article. When the average particle diameter of the flaky glass (B) in the thermoplastic resin composition before molding exceeds 600 μm, it is preferable in that the flaky glass (B) is broken during the molding process and the average particle diameter becomes 600 μm or less. Therefore, the average particle diameter of the flaky glass (B) in the thermoplastic resin composition is preferably 600 μm or less from the viewpoint of workability when obtaining a thermoplastic resin composition or a thermoplastic resin molded article.
The lower limit of the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 80 μm or more, and even more preferably 200 μm or more. In addition, the upper limit of the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 500 μm or less, and even more preferably 400 μm or less.
That is, the average particle size of the flaky glass (B) in the thermoplastic resin composition is more preferably 80 μm or more and 500 μm or less, and further preferably 200 μm or more and 400 μm or less.
The “average particle diameter of the flaky glass (B) in the thermoplastic resin composition”, which is one embodiment of the present invention, is obtained by ashing the thermoplastic resin composition using an electric muffle furnace. After obtaining (B), using a particle size distribution measuring device (LA-950V2 (trade name) manufactured by HORIBA, Ltd.), laser light having a wavelength of 650 μm is applied to the flaky glass (B) flowing in water. This is a value obtained by irradiating and analyzing the average particle size from the scattering pattern.
Examples of the glass constituting the flaky glass (B) include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz, low dielectric constant glass, and high dielectric constant glass. Is mentioned.
<熱可塑性樹脂組成物>
 本発明の一実施態様である熱可塑性樹脂組成物は、熱可塑性樹脂(A)100質量部に対して、フレーク状ガラス(B)を25~70質量部含有する。熱可塑性樹脂組成物中のフレーク状ガラス(B)の含有量が25質量部以上の場合、熱可塑性樹脂組成物を成形することにより得られる熱可塑性樹脂成形体の熱線膨張係数をガラスのレベル(即ち、7~9ppm/K)近づけることができ、熱サイクル試験後の太陽電池モジュールの最大出力の低下を抑制することができる。また、熱可塑性樹脂組成物中のフレーク状ガラス(B)の含有量が70質量部以下の場合、熱可塑性樹脂成形体を得る際の成形時の加工性が良好となる。熱可塑性樹脂組成物中、熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量の下限値は30質量部以上が好ましい。また、熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量の上限値は60質量部以下が好ましく、50質量部以下がより好ましい。
 即ち、熱可塑性樹脂組成物中、熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量は、30質量部以上、60質量部以下が好ましく、30質量部以上、50質量部以下がより好ましい。
<Thermoplastic resin composition>
The thermoplastic resin composition according to one embodiment of the present invention contains 25 to 70 parts by mass of flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A). When the content of the flaky glass (B) in the thermoplastic resin composition is 25 parts by mass or more, the thermal linear expansion coefficient of the thermoplastic resin molded article obtained by molding the thermoplastic resin composition is set to the glass level ( That is, it can be close to 7-9 ppm / K), and the decrease in the maximum output of the solar cell module after the thermal cycle test can be suppressed. Moreover, when content of the flaky glass (B) in a thermoplastic resin composition is 70 mass parts or less, the workability at the time of shaping | molding at the time of obtaining a thermoplastic resin molded object becomes favorable. In the thermoplastic resin composition, the lower limit of the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) is preferably 30 parts by mass or more. Moreover, 60 mass parts or less is preferable and, as for the upper limit of content of flake shaped glass (B) with respect to 100 mass parts of thermoplastic resins (A), 50 mass parts or less are more preferable.
That is, in the thermoplastic resin composition, the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) is preferably 30 parts by mass or more and 60 parts by mass or less, more preferably 30 parts by mass or more and 50 parts by mass. The following is more preferable.
 熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差は、0以上、0.05以下である。熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差を0.05以下とすることにより、熱可塑性樹脂成形体の透光性が良好となる。熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差は0以上、0.04以下が好ましく、0以上、0.03以下がより好ましい。
 ここでいう「熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率」とは、原料として用いる熱可塑性樹脂(A)の屈折率のことであり、真空を1とした絶対屈折率を意味する。熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率は、原料として用いる熱可塑性樹脂(A)を用い、JIS K 7142に準拠し、アッベ屈折計(NAR-2:株式会社アタゴ製)等で測定することが出来る。
 また、ここでいう「熱可塑性樹脂組成物中のフレーク状ガラス(B)の屈折率」とは、原料として用いるフレーク状ガラス(B)の屈折率のことであり、真空を1とした絶対屈折率を意味する。熱可塑性樹脂組成物中のフレーク状ガラス(B)の屈折率は、原料として用いるフレーク状ガラス(B)を様々な屈折率の屈折率標準液に浸漬し、光学顕微鏡観察においてフレーク状ガラス(B)と屈折率標準液の界面が見えなくなった時に使用した屈折率標準液の屈折率をガラスフレーク(B)の屈折率として測定することが出来る。
The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin composition is 0 or more and 0.05 or less. By setting the difference between the refractive index of the thermoplastic resin (A) in the thermoplastic resin composition and the refractive index of the flaky glass (B) to 0.05 or less, the transparency of the thermoplastic resin molded article is good. It becomes. The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin composition is preferably 0 or more and 0.04 or less, more preferably 0 or more and 0.03 or less. .
The “refractive index of the thermoplastic resin (A) in the thermoplastic resin composition” herein refers to the refractive index of the thermoplastic resin (A) used as a raw material. means. The refractive index of the thermoplastic resin (A) in the thermoplastic resin composition is the Abbe refractometer (NAR-2: manufactured by Atago Co., Ltd.) in accordance with JIS K 7142 using the thermoplastic resin (A) used as a raw material. Etc. can be measured.
The “refractive index of the flaky glass (B) in the thermoplastic resin composition” herein refers to the refractive index of the flaky glass (B) used as a raw material. Means rate. The refractive index of the flaky glass (B) in the thermoplastic resin composition is determined by immersing the flaky glass (B) used as a raw material in a refractive index standard solution having various refractive indexes, and observing the flaky glass (B ) And the refractive index standard solution can be measured as the refractive index of the glass flake (B).
 本発明においては、熱可塑性樹脂組成物には、必要に応じて、公知の安定剤や添加剤を添加してもよい。 In the present invention, known stabilizers and additives may be added to the thermoplastic resin composition as necessary.
 熱可塑性樹脂組成物の形状としては、例えば、粉体及びペレットが挙げられる。ここでいう「ペレット」とは、最長の長さが1mm以上、10mm以下で多面体、円柱、球、その他の形状をとる粒状の形態を意味する。
 ペレットの寸法としては、取扱い性や成形の容易さから、最長の長さが1~5mmであることが好ましく、1~3mmであることがより好ましい。
 ここでいう「粉体」とは、粒径1mm以下の粉状固形物質を意味する。
粉体としては、取扱い性や成形の容易さから、粒径が200μm以上、1mm以下であることが好ましい。
Examples of the shape of the thermoplastic resin composition include powder and pellets. The term “pellet” used herein means a granular form having a longest length of 1 mm or more and 10 mm or less and having a polyhedron, a cylinder, a sphere, or other shapes.
Regarding the size of the pellet, the longest length is preferably 1 to 5 mm, more preferably 1 to 3 mm, from the viewpoint of handleability and ease of molding.
The “powder” here means a powdery solid substance having a particle size of 1 mm or less.
The powder preferably has a particle size of 200 μm or more and 1 mm or less from the viewpoint of handleability and ease of molding.
 熱可塑性樹脂組成物は、例えば、熱可塑性樹脂(A)及びフレーク状ガラス(B)を混合した粉体としてもよく、及び熱可塑性樹脂(A)及びフレーク状ガラス(B)を溶融混練したペレットとしてもよい。 The thermoplastic resin composition may be, for example, a powder obtained by mixing a thermoplastic resin (A) and flaky glass (B), and a pellet obtained by melt-kneading the thermoplastic resin (A) and flaky glass (B). It is good.
 熱可塑性樹脂(A)として(メタ)アクリル樹脂を使用する場合、熱可塑性樹脂組成物は、例えば、以下のようにして得ることができる。
(メタ)アクリル樹脂を得るための単量体を含む原料の部分重合体、又は(メタ)アクリル樹脂を別の(メタ)アクリル樹脂を得るための単量体を含む原料に溶解し、粘調な液体であるシラップ状物(以下、「シラップ」ということがある)を得る。次いで、その中に、フレーク状ガラス(B)を分散させ、その後、前記シラップを重合させる。その結果、熱可塑性樹脂組成物を得ることができる。 
When a (meth) acrylic resin is used as the thermoplastic resin (A), the thermoplastic resin composition can be obtained, for example, as follows.
A raw material partial polymer containing a monomer for obtaining a (meth) acrylic resin, or a (meth) acrylic resin dissolved in a raw material containing a monomer for obtaining another (meth) acrylic resin A syrup-like product (hereinafter sometimes referred to as “syrup”) is obtained. Next, the flaky glass (B) is dispersed therein, and then the syrup is polymerized. As a result, a thermoplastic resin composition can be obtained.
 熱可塑性樹脂(A)及びフレーク状ガラス(B)を混合する装置としては、例えば、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の予備混合機が挙げられる。
 また、熱可塑性樹脂(A)及びフレーク状ガラス(B)を溶融混練する装置としては、例えば、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の溶融混練装置が挙げられる。
 熱可塑性樹脂(A)及びフレーク状ガラス(B)を混合、又は溶融混練する際の温度としては、250度以上、280度以下が好ましい。
 溶融混練装置への各種原材料の供給方法としては、予め各成分を混合した後に供給する方法が好ましいが、それぞれの成分を独立した形で溶融混練装置に供給することも可能である。 
Examples of the apparatus for mixing the thermoplastic resin (A) and the flaky glass (B) include premixers such as a ribbon blender, a tumbler, a nauter mixer, a Henschel mixer, a super mixer, and a planetary mixer.
Examples of the apparatus for melting and kneading the thermoplastic resin (A) and the flaky glass (B) include, for example, melt kneading apparatuses such as a Banbury mixer, a kneader, a roll, a kneader ruder, a single screw extruder, a twin screw extruder, and the like. Can be mentioned.
The temperature at the time of mixing or melt-kneading the thermoplastic resin (A) and the flaky glass (B) is preferably 250 degrees or more and 280 degrees or less.
As a method for supplying various raw materials to the melt-kneading apparatus, a method in which the respective components are mixed and supplied in advance is preferable, but it is also possible to supply each component independently to the melt-kneading apparatus.
<熱可塑性樹脂成形体>
 本発明の一実施態様である「熱可塑性樹脂成形体」とは、熱可塑性樹脂組成物が所望の形状に成形されたものを意味し、例えば、射出成形、押出成形、圧縮成形等の成形方法によって成形することができる。
<Thermoplastic resin molding>
The “thermoplastic resin molded product” according to one embodiment of the present invention means a product obtained by molding a thermoplastic resin composition into a desired shape, for example, a molding method such as injection molding, extrusion molding or compression molding. Can be molded by.
本発明の一実施態様である熱可塑性樹脂成形体は、熱可塑性樹脂(A)100質量部に対して、フレーク状ガラス(B)25~70質量部を含有する。熱可塑性樹脂成形体中、熱可塑性樹脂(A)100質量部に対して、フレーク状ガラス(B)の含有量を25質量部以上とすることにより、熱可塑性樹脂成形体の熱線膨張係数をガラスのレベル(即ち、7~9ppm/K)に近づけることができ、熱サイクル試験後の太陽電池モジュールの最大出力の低下を抑制することができる。また、熱可塑性樹脂成形体中、熱可塑性樹脂(A)100質量部に対して、フレーク状ガラス(B)の含有量を70質量部以下とすることにより、熱可塑性樹脂成形体を得る際の成形時の加工性が良好となる。熱可塑性樹脂成形体中の熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量の下限値は30質量部以上が好ましい。また、熱可塑性樹脂成形体中の熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量の上限値は60質量部以下が好ましく、50質量部以上がより好ましい。
即ち、熱可塑性樹脂成形体中の熱可塑性樹脂(A)100質量部に対するフレーク状ガラス(B)の含有量は、30質量部以上、60質量部以下が好ましく、30質量部以上、50質量部以下がより好ましい。
The thermoplastic resin molded body according to one embodiment of the present invention contains 25 to 70 parts by mass of flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A). By setting the content of the flaky glass (B) to 25 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (A) in the thermoplastic resin molded body, the coefficient of thermal expansion of the thermoplastic resin molded body is made of glass. (That is, 7 to 9 ppm / K), and a decrease in the maximum output of the solar cell module after the thermal cycle test can be suppressed. Further, in the thermoplastic resin molded body, the content of the flaky glass (B) is 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A), thereby obtaining a thermoplastic resin molded body. Good processability during molding. The lower limit of the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 30 parts by mass or more. Moreover, 60 mass parts or less is preferable and, as for the upper limit of content of flake shaped glass (B) with respect to 100 mass parts of thermoplastic resins (A) in a thermoplastic resin molding, 50 mass parts or more are more preferable.
That is, the content of the flaky glass (B) with respect to 100 parts by mass of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 30 parts by mass or more and 60 parts by mass or less, more preferably 30 parts by mass or more and 50 parts by mass. The following is more preferable.
 熱可塑性樹脂成形体中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差は、0以上、0.05以下である。熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差は、0以上、0.04以下が好ましく、0以上、0.03以下がより好ましい。熱可塑性樹脂成形体中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率との差を0.05以下とすることにより、熱可塑性樹脂成形体の透光性が良好となる。
なお、ここでいう「熱可塑性樹脂成形体中の熱可塑性樹脂(A)の屈折率」は、「熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率」と同じ意味であり、原料である熱可塑性樹脂(A)を用いて測定した屈折率を意味する。
また、ここでいう「熱可塑性樹脂成形体中のフレーク状ガラス(B)の屈折率」は、「熱可塑性樹脂組成物中のフレーク状ガラス(B)の屈折率」と同じ意味であり、原料であるフレーク状ガラス(B)を用いて測定した屈折率を意味する。
The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin molding is 0 or more and 0.05 or less. The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) is preferably from 0 to 0.04, more preferably from 0 to 0.03. By setting the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin molded body to be 0.05 or less, the transparency of the thermoplastic resin molded body is good. It becomes.
The “refractive index of the thermoplastic resin (A) in the thermoplastic resin molded product” herein has the same meaning as the “refractive index of the thermoplastic resin (A) in the thermoplastic resin composition”. Means the refractive index measured using the thermoplastic resin (A).
Further, the “refractive index of the flaky glass (B) in the thermoplastic resin molded product” herein has the same meaning as the “refractive index of the flaky glass (B) in the thermoplastic resin composition”. Means the refractive index measured using the flaky glass (B).
 熱可塑性樹脂成形体の全光線透過率は86%以上、93%以下である。本発明の熱可塑性樹脂組成物を成形して成形体を得ることにより、樹脂成形体の全光線透過率を86%以上、93%以下とすることができる。
 ここでいう「熱可塑性樹脂成形体の全光線透過率」とは試験片の平行入射光束に対する全透過光束の割合を意味する。
 また、熱可塑性樹脂成形体の全光線透過率の測定方法としては、JIS K 6361-1に準拠し、ヘイズメーター((株)村上色彩技術研究所製HM-150(商品名))等で測定することが出来る。
The total light transmittance of the thermoplastic resin molded body is 86% or more and 93% or less. By molding the thermoplastic resin composition of the present invention to obtain a molded product, the total light transmittance of the resin molded product can be 86% or more and 93% or less.
The “total light transmittance of the thermoplastic resin molding” as used herein means the ratio of the total transmitted light beam to the parallel incident light beam of the test piece.
The total light transmittance of the thermoplastic resin molded body is measured with a haze meter (HM-150 (trade name) manufactured by Murakami Color Research Laboratory Co., Ltd.) according to JIS K 6361-1. I can do it.
熱可塑性樹脂成形体中の熱可塑性樹脂(A)のメルトフローレート(MFR)は、5g/10分間以上、20g/10分間以下が好ましい。
熱可塑性樹脂成形体中の熱可塑性樹脂のMFRは、8g/10分間以上、17g/10分間以下がより好ましく、12g/10分間以上、15g/10分間以下がさらに好ましい。
なお、 熱可塑性樹脂成形体中の熱可塑性樹脂(A)の「メルトフローレート」とは、溶融プラスチックの流動性の大きさを意味する。
また、熱可塑性樹脂成形体中の熱可塑性樹脂(A)のメルトフローレートの測定は、JIS K7210に準拠し、温度230度、荷重37.3Nの条件下で行う。
The melt flow rate (MFR) of the thermoplastic resin (A) in the thermoplastic resin molded body is preferably 5 g / 10 min or more and 20 g / 10 min or less.
The MFR of the thermoplastic resin in the thermoplastic resin molded body is more preferably 8 g / 10 min or more and 17 g / 10 min or less, and further preferably 12 g / 10 min or more and 15 g / 10 min or less.
The “melt flow rate” of the thermoplastic resin (A) in the thermoplastic resin molded product means the fluidity of the molten plastic.
Moreover, the measurement of the melt flow rate of the thermoplastic resin (A) in the thermoplastic resin molding is performed under the conditions of a temperature of 230 degrees and a load of 37.3 N in accordance with JIS K7210.
 熱可塑性樹脂成形体中のフレーク状ガラス(B)はフレーク状(鱗片状)である。
 なお、熱可塑性樹脂成形体中のフレーク状ガラス(B)における「フレーク状ガラス」とは、厚さが0.5μm以上、20μm以下、アスペクト比が30以上、200以下の平板状ガラスを意味する。形状は多角形や円形等が挙げられ、特に限定されない。
また、熱可塑性樹脂成形体中のフレーク状ガラス(B)の形態は熱可塑性樹脂組成物中のフレーク状ガラス(B)の形態と同じか、又は熱可塑性樹脂成形体を得る際の成形条件等により粉砕されてフレーク状ガラス(B)の平均粒径やアスペクト比が熱可塑性樹脂組成物中のフレーク状ガラス(B)の平均粒径やアスペクト比よりも小さくなる場合がある。
The flaky glass (B) in the thermoplastic resin molded product is flaky (flaky).
The “flaky glass” in the flaky glass (B) in the thermoplastic resin molded body means a flat glass having a thickness of 0.5 μm or more and 20 μm or less and an aspect ratio of 30 or more and 200 or less. . Examples of the shape include a polygon and a circle, and are not particularly limited.
Further, the form of the flaky glass (B) in the thermoplastic resin molded body is the same as the form of the flaky glass (B) in the thermoplastic resin composition, or molding conditions for obtaining the thermoplastic resin molded body, etc. The average particle size and aspect ratio of the flaky glass (B) may be smaller than the average particle size and aspect ratio of the flaky glass (B) in the thermoplastic resin composition.
熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比は、25~70である。熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比を25以上とすることにより熱可塑性樹脂成形体の透光性が良好となる。また、熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比を70以下とすることにより、熱可塑性樹脂成形体の表面平滑性が良好となる。熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比の下限値は30以上が好ましく、35以上がより好ましい。また、熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比の上限値は65以下が好ましい。
即ち、熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比は、30以上、65以下が好ましく、35以上、65以下がより好ましい。
The aspect ratio of the flaky glass (B) in the thermoplastic resin molded product is 25 to 70. By setting the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body to 25 or more, the translucency of the thermoplastic resin molded body is improved. Further, when the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 70 or less, the surface smoothness of the thermoplastic resin molded body is improved. The lower limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin molding is preferably 30 or more, and more preferably 35 or more. The upper limit of the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is preferably 65 or less.
That is, the aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is preferably 30 or more and 65 or less, and more preferably 35 or more and 65 or less.
 熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比は、熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径の値を、原料として用いるフレーク状ガラス(B)の厚さの値で除して得られた値である。
「原料として用いるフレーク状ガラス(B)の厚さ」は、上記と同様の方法で測定することができる。
The aspect ratio of the flaky glass (B) in the thermoplastic resin molded product is the thickness of the flaky glass (B) using the value of the average particle diameter of the flaky glass (B) in the thermoplastic resin molded product as a raw material. It is a value obtained by dividing by the value.
"The thickness of the flaky glass (B) used as a raw material" can be measured by the same method as described above.
 熱可塑性樹脂成形体は、熱サイクル試験後の太陽電池モジュールの最大出力を維持するために、50℃における熱線膨張係数が、8ppm/K以上、40ppm/K以下であることが好ましく、8ppm/K以上、37ppm/K以下であることがより好ましい。 In order to maintain the maximum output of the solar cell module after the thermal cycle test, the thermoplastic resin molded body preferably has a thermal linear expansion coefficient at 50 ° C. of 8 ppm / K or more and 40 ppm / K or less, and 8 ppm / K. As mentioned above, it is more preferable that it is 37 ppm / K or less.
 熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径は、25~500μmが好ましい。熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径を25μm以上とすることにより、熱可塑性樹脂成形体の透光性が良好となる傾向にある。また、熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径を500μm以下とすることにより、熱可塑性樹脂成形体の表面の平滑性が良好となる傾向にある。
熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径の下限値は、60μm以上がより好ましく、150μm以上が更に好ましい。また、熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径の上限値は、400μm以下がより好ましく、300μm以下が更に好ましい。
即ち、熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径としては、60μm以上、400μm以下であることがより好ましく、150μm以上、300μm以下であることが更に好ましい。
熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径の測定方法としては、電気マッフル炉を用いて、熱可塑性樹脂成形体を灰化することによりフレーク状ガラス(B)を得た後、粒度分布測定装置((株)堀場製作所製LA-950V2(商品名))を用いて、水中を流動しているフレーク状ガラス(B)に波長650μmのレーザー光を照射し、その散乱パターンから平均粒径を解析した値をいう。
The average particle size of the flaky glass (B) in the thermoplastic resin molding is preferably 25 to 500 μm. By setting the average particle size of the flaky glass (B) in the thermoplastic resin molded body to 25 μm or more, the light-transmitting property of the thermoplastic resin molded body tends to be good. Moreover, it exists in the tendency for the smoothness of the surface of a thermoplastic resin molding to become favorable by making the average particle diameter of the flaky glass (B) in a thermoplastic resin molding into 500 micrometers or less.
The lower limit value of the average particle diameter of the flaky glass (B) in the thermoplastic resin molded body is more preferably 60 μm or more, and further preferably 150 μm or more. The upper limit of the average particle size of the flaky glass (B) in the thermoplastic resin molded body is more preferably 400 μm or less, and further preferably 300 μm or less.
That is, the average particle size of the flaky glass (B) in the thermoplastic resin molded body is more preferably 60 μm or more and 400 μm or less, and further preferably 150 μm or more and 300 μm or less.
As a measuring method of the average particle diameter of the flaky glass (B) in the thermoplastic resin molded body, the flaky glass (B) was obtained by ashing the thermoplastic resin molded body using an electric muffle furnace. Then, using a particle size distribution analyzer (LA-950V2 (trade name) manufactured by Horiba, Ltd.), flaky glass (B) flowing in water is irradiated with a laser beam having a wavelength of 650 μm, and its scattering pattern. To the value obtained by analyzing the average particle diameter.
 熱可塑性樹脂成形体が太陽電池モジュールのトップシート部材として使用される場合、熱可塑性樹脂成形体の形状としては、例えば、厚さ1~3mmのシート状であることが好ましい。シートの厚さを1mm以上とすることにより、熱可塑性樹脂成形体の剛性が良好となり、得られる太陽電池モジュールは熱サイクル試験後も最大出力を維持できる点で好ましい。また、シートの厚さを3mm以下とすることにより、太陽電池モジュールを軽量化することが出来る点で好ましい。シートの厚さの下限値は1.5mm以上がより好ましい。また、シートの厚さの上限値は2.5mm以下がより好ましい。即ち、シートの厚さとしては、1.5mm以上、2.5mm以下であることがより好ましい。
なお、ここでいう「シートの厚さ」とは、シートの長さ方向における中央部において、シートの幅方向に垂直に切断した断面における厚さを意味する。
When the thermoplastic resin molded body is used as a top sheet member of a solar cell module, the shape of the thermoplastic resin molded body is preferably, for example, a sheet having a thickness of 1 to 3 mm. By setting the thickness of the sheet to 1 mm or more, the thermoplastic resin molded article has good rigidity, and the obtained solar cell module is preferable in that the maximum output can be maintained even after the thermal cycle test. Moreover, it is preferable at the point which can reduce a solar cell module by making thickness of a sheet | seat 3 mm or less. The lower limit value of the sheet thickness is more preferably 1.5 mm or more. The upper limit value of the sheet thickness is more preferably 2.5 mm or less. That is, the thickness of the sheet is more preferably 1.5 mm or more and 2.5 mm or less.
Here, the “sheet thickness” means a thickness in a cross section cut perpendicularly to the width direction of the sheet at the center in the sheet length direction.
 熱可塑性樹脂成形体を得る方法としては、熱可塑性樹脂組成物を、例えば、射出成形、押出成形、圧縮成形等の成形方法で成形して得る方法が挙げられる。これらの成形法の中で、所望の形状に均一に成形できることから、押出成形が好ましい。
 押出成形により板状、又はフィルム状の成形体を得るために、Tダイ等の押出機を用いて押出した溶融樹脂を、冷却ロールで冷却しながら引取ることができる。
Examples of a method for obtaining a thermoplastic resin molded body include a method obtained by molding a thermoplastic resin composition by a molding method such as injection molding, extrusion molding, or compression molding. Among these molding methods, extrusion molding is preferred because it can be uniformly molded into a desired shape.
In order to obtain a plate-shaped or film-shaped molded body by extrusion molding, the molten resin extruded using an extruder such as a T-die can be taken out while being cooled by a cooling roll.
 本発明においては、平滑性に優れた表面を有する熱可塑性樹脂成形体を得るために、必要に応じて成形体の表面を加熱プレスすることができる。
 加熱プレスする方法としては、例えば、高圧プレス機によるバッチ式プレス法、ロールプレス法、ベルトプレス法等の連続プレス法が挙げられる。
 加熱プレスする際の温度としては、例えば、200~300℃での加熱が挙げられる。また、プレス圧としては、例えば、3~15MPaでのプレスが挙げられる。
In the present invention, in order to obtain a thermoplastic resin molded body having a surface excellent in smoothness, the surface of the molded body can be hot-pressed as necessary.
Examples of the heat pressing method include a continuous press method such as a batch press method using a high-pressure press, a roll press method, and a belt press method.
Examples of the temperature at the time of hot pressing include heating at 200 to 300 ° C. An example of the press pressure is a press at 3 to 15 MPa.
<熱可塑性樹脂積層成形体>
 熱可塑性樹脂積層成形体は、熱可塑性樹脂成形体上に(メタ)アクリル重合体保護層が積層されたものである。
 なお、ここでいう「積層」とは、熱可塑性樹脂成形体上に(メタ)アクリル重合体保護層を「被覆」する場合も包含する。
 (メタ)アクリル重合体保護層としては、耐候性、耐衝撃性、耐擦傷性、高硬度、柔軟性等の各種機能を有する機能層が挙げられる。
<Thermoplastic resin laminate molding>
The thermoplastic resin laminate molded body is obtained by laminating a (meth) acrylic polymer protective layer on a thermoplastic resin molded body.
The term “lamination” as used herein includes the case where a (meth) acrylic polymer protective layer is “coated” on a thermoplastic resin molded body.
Examples of the (meth) acrylic polymer protective layer include functional layers having various functions such as weather resistance, impact resistance, scratch resistance, high hardness, and flexibility.
(メタ)アクリル重合体保護層は、(メタ)アクリル重合体から形成される保護層である。なお、ここでいう「(メタ)アクリル重合体」とは、(メタ)アクリル酸が重合した重合体を意味する。
(メタ)アクリル重合体としては、例えば、(メタ)アクリルフィルム、及び分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリルコーティング組成物の硬化物が挙げられる。
The (meth) acrylic polymer protective layer is a protective layer formed from a (meth) acrylic polymer. The “(meth) acrylic polymer” here means a polymer obtained by polymerizing (meth) acrylic acid.
Examples of the (meth) acrylic polymer include a (meth) acrylic film and a cured product of a (meth) acrylic coating composition containing a monomer having at least two (meth) acryloyloxy groups in the molecule. It is done.
 (メタ)アクリルフィルムは、(メタ)アクリル酸が重合することにより構成された、厚さ50~200μmのフィルムであることが好ましく、例えば、三菱レイヨン(株)製の「アクリプレンHBS006」(登録商標)が挙げられる。
 分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリルコーティング組成物の硬化物とは、分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリル酸の重合体を含むコーティング組成物を硬化したものである。その具体例としては、ハードコート層等の各種機能層を形成するための各種(メタ)アクリルコーティング組成物の硬化物が挙げられる。
The (meth) acrylic film is preferably a film having a thickness of 50 to 200 μm constituted by polymerization of (meth) acrylic acid. For example, “Acryprene HBS006” (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd. ).
A cured product of a (meth) acrylic coating composition containing a monomer having at least two (meth) acryloyloxy groups in the molecule is a monomer having at least two (meth) acryloyloxy groups in the molecule A coating composition containing a polymer of (meth) acrylic acid containing styrene is cured. Specific examples thereof include cured products of various (meth) acrylic coating compositions for forming various functional layers such as a hard coat layer.
 熱可塑性樹脂積層成形体が太陽電池モジュールのトップシート部材として使用される場合、熱可塑性樹脂積層成形体の形状としては、厚さ1~3mmのシート状であることが好ましい。シートの厚さを1mm以上とすることにより熱可塑性樹脂積層成形体の剛性が良好となり、得られる太陽電池モジュールは熱サイクル試験後も最大出力を維持できる点で好ましい。また、シートの厚さを3mm以下とすることにより、太陽電池モジュールを軽量化することが出来る点で好ましい。シートの厚さの下限値は1.5mm以上がより好ましい。また、シートの厚さの上限値は2.5mm以下がより好ましい。即ち、シートの厚さは、1.5mm以上、2.5mm以下がより好ましい。
なおここでいう「熱可塑性樹脂積層成形体のシートの厚さ」とは、熱可塑性樹脂積層成形体のシートの長さ方向における中央部において、シートの幅方向に垂直に切断した断面における厚さを意味する。
When the thermoplastic resin laminated molded body is used as a top sheet member of a solar cell module, the thermoplastic resin laminated molded body is preferably a sheet having a thickness of 1 to 3 mm. By setting the thickness of the sheet to 1 mm or more, the thermoplastic resin laminate molded article has good rigidity, and the obtained solar cell module is preferable in that the maximum output can be maintained even after the thermal cycle test. Moreover, it is preferable at the point which can reduce a solar cell module by making thickness of a sheet | seat 3 mm or less. The lower limit value of the sheet thickness is more preferably 1.5 mm or more. The upper limit value of the sheet thickness is more preferably 2.5 mm or less. That is, the thickness of the sheet is more preferably 1.5 mm or more and 2.5 mm or less.
The “thickness of the sheet of the thermoplastic resin laminate molded product” as used herein refers to the thickness of a section cut perpendicularly to the width direction of the sheet at the center in the length direction of the sheet of the thermoplastic resin laminate molded product. Means.
 熱可塑性樹脂積層成形体を得る方法としては、例えば、熱プレス法及びコーティング法が挙げられる。 
熱プレスする際の温度としては、例えば、200~250℃での加熱が挙げられる。また、プレス圧としては、例えば、5~20MPaでのプレスが挙げられる。
コーティングの方法としては、バーコート、グラビアコート、スピンコートなどの方法を用いることが出来る。
Examples of a method for obtaining a thermoplastic resin laminated molded body include a hot press method and a coating method.
Examples of the temperature at the time of hot pressing include heating at 200 to 250 ° C. An example of the press pressure is a press at 5 to 20 MPa.
As a coating method, methods such as bar coating, gravure coating, and spin coating can be used.
<太陽電池モジュール>
 本発明の一実施態様である太陽電池モジュールは、熱可塑性樹脂成形体又は熱可塑性樹脂積層成形体を用いて得られる。
 本発明の一実施態様である太陽電池モジュールとしては、例えば、前面保護部材(本発明の熱可塑性樹脂成形体又は熱可塑性樹脂積層成形体)、裏面保護部材、4連太陽電池セル、封止材層及び電極材料で構成された太陽電池モジュールが挙げられる。詳細には、太陽電池モジュールの太陽光線が入射する受光面側(表面側)に、前面保護部材(本発明の熱可塑性樹脂成形体又は熱可塑性樹脂積層成形体)が設けられ、太陽電池モジュールの受光面側と対向する面(裏面側)に裏面保護部材が設けられている。前面保護部材(本発明の熱可塑性樹脂成形体又は熱可塑性樹脂積層成形体)と裏面保護部材との間には封止材層が形成されている。封止材層中には4連太陽電池セルと電極材料が埋設されており、4連太陽電池セルから伸びる電極材料は、太陽電池モジュールの外部に接続可能な状態になっている。
 4連太陽電池セルは4枚の太陽電池セルが電極材料により2行2列に直列配線されている。
<Solar cell module>
The solar cell module which is one embodiment of the present invention is obtained using a thermoplastic resin molded body or a thermoplastic resin laminated molded body.
As a solar cell module which is one embodiment of the present invention, for example, a front protective member (a thermoplastic resin molded body or a thermoplastic resin laminated molded body of the present invention), a back surface protective member, a quadruple solar cell, a sealing material The solar cell module comprised by the layer and electrode material is mentioned. Specifically, a front surface protection member (a thermoplastic resin molded body or a thermoplastic resin laminate molded body of the present invention) is provided on the light receiving surface side (front surface side) on which solar rays of the solar cell module are incident, and the solar cell module A back surface protection member is provided on the surface (back surface side) facing the light receiving surface side. A sealing material layer is formed between the front surface protection member (the thermoplastic resin molded body or the thermoplastic resin laminated molded body of the present invention) and the back surface protection member. Quadruple solar cells and electrode materials are embedded in the sealing material layer, and the electrode material extending from the quadruple solar cells is in a state that can be connected to the outside of the solar cell module.
In the quadruple solar cells, four solar cells are connected in series in two rows and two columns with an electrode material.
本発明の一実施態様である太陽電池モジュールにおいては、裏面保護部材としては、例えば、ポリフッ化ビニルを主成分とする樹脂シートの片面又は両面にポリエチレンテレフタレート(PET)シートを積層したシートが挙げられる。 In the solar cell module which is one embodiment of the present invention, examples of the back surface protection member include a sheet in which a polyethylene terephthalate (PET) sheet is laminated on one or both sides of a resin sheet mainly composed of polyvinyl fluoride. .
本発明の一実施形態である太陽電池モジュールにおける太陽電池セルとしては、半導体の光起電力効果を利用して発電できる太陽電池セルであれば特に限定はされず、公知の太陽電池セルを用いることができる。太陽電池セルとしては、発電性能とコストとのバランスの観点から、結晶系シリコンセルが好ましい。 The solar battery cell in the solar battery module according to one embodiment of the present invention is not particularly limited as long as it is a solar battery cell that can generate power using the photovoltaic effect of a semiconductor, and a known solar battery cell is used. Can do. As the solar cell, a crystalline silicon cell is preferable from the viewpoint of a balance between power generation performance and cost.
本発明の一実施態様である太陽電池モジュールにおける封止材料としては、例えば、絶縁性透明樹脂が挙げられる。
絶縁性透明樹脂の具体例としては、例えば、エチレン-ビニルアセテート共重合体、ポリビニルブチラール、アイオノマー系樹脂、低密度ポリエチレン等の熱可塑性樹脂;及びウレタン系硬化性樹脂、エポキシ系硬化性樹脂、(メタ)アクリレート系硬化性樹脂等の公知の硬化性樹脂が挙げられる。
As a sealing material in the solar cell module which is one embodiment of this invention, insulating transparent resin is mentioned, for example.
Specific examples of the insulating transparent resin include, for example, thermoplastic resins such as ethylene-vinyl acetate copolymer, polyvinyl butyral, ionomer resin, and low density polyethylene; and urethane curable resins, epoxy curable resins, ( Known curable resins such as a (meth) acrylate-based curable resin may be used.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、以下において「部」は「質量部」を示す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In the following, “part” means “part by mass”.
(1)熱可塑性樹脂(A)の評価
(a)屈折率
 熱可塑性樹脂(A)のペレットを、100TON加熱用成形機(庄司鉄工(株)製)を用いて、220℃及び10MPaで3分間プレスして、厚さ2mm×長さ20mm×幅8mmの試験片を作製した。次いで、JIS K 7142に基づいて、アッベ屈折率計((株)アタゴ製DR-A1(商品名))を用い、ナトリウムのD線にて試験片の屈折率を測定した。
(1) Evaluation of thermoplastic resin (A) (a) Refractive index Pellets of thermoplastic resin (A) were molded at 220 ° C. and 10 MPa for 3 minutes using a 100TON heating molding machine (manufactured by Shoji Iron Works Co., Ltd.). It pressed and produced the test piece of thickness 2mm * length 20mm * width 8mm. Next, based on JIS K 7142, the refractive index of the test piece was measured with the D line of sodium using an Abbe refractometer (DR-A1 (trade name) manufactured by Atago Co., Ltd.).
(2)熱可塑性樹脂組成物の評価
(a)フレーク状ガラス(B)の平均粒径とアスペクト比
 熱可塑性樹脂組成物50mgを、電気マッフル炉(アドバンテック東洋(株)製、形式「FUW-230PA」)を用いて、400℃で1.5時間以上灰化し、フレーク状ガラス(B)を得た。次いで、水5mlにフレーク状ガラス(B)10mgを分散させ、粒度分布測定装置((株)堀場製作所製LA-910(商品名))を用いて粒径を測定し、その質量平均を求めて平均粒径とした。尚、フレーク状ガラス(B)のアスペクト比は、フレーク状ガラス(B)のカタログに記載されている厚さの値(即ち、5μm)で、上記平均粒径を割り返すことにより求めた。
(2) Evaluation of thermoplastic resin composition (a) Average particle diameter and aspect ratio of flaky glass (B) 50 mg of thermoplastic resin composition was placed in an electric muffle furnace (manufactured by Advantech Toyo Co., Ltd., model “FUW-230PA”). )) And ashed at 400 ° C. for 1.5 hours or longer to obtain flaky glass (B). Next, 10 mg of flaky glass (B) was dispersed in 5 ml of water, the particle size was measured using a particle size distribution analyzer (LA-910 (trade name) manufactured by Horiba, Ltd.), and the mass average was obtained. The average particle size was taken. The aspect ratio of the flaky glass (B) was determined by repeating the average particle diameter with the thickness value (ie, 5 μm) described in the flaky glass (B) catalog.
(3)熱可塑性樹脂成形体の評価
(a)全光線透過率
 熱可塑性樹脂成形体から5cm角の試験片を切り出し、JIS K 6361-1に基づいて、ヘイズメーター((株)村上色彩技術研究所製HM-150(商品名))を用い、D65光源にて試験片の全光線透過率を測定した。
(3) Evaluation of thermoplastic resin molding (a) Total light transmittance A 5 cm square test piece was cut out from the thermoplastic resin molding, and a haze meter (Murakami Color Technology Research Co., Ltd.) based on JIS K 6361-1. The total light transmittance of the test piece was measured with a D65 light source using HM-150 (trade name) manufactured by Tokosho.
(b)フレーク状ガラス(B)の平均粒径とアスペクト比
 熱可塑性樹脂成形体50mgを、電気マッフル炉(アドバンテック東洋(株)製、形式「FUW-230PA」)を用いて、450℃で1.5時間以上灰化し、フレーク状ガラス(B)を得た。次いで、水5mlにフレーク状ガラス(B)10mgを分散させ、粒度分布測定装置((株)堀場製作所製LA-950V2(商品名))を用いて粒径を測定し、その質量平均を平均粒径とした。尚、フレーク状ガラス(B)のアスペクト比は、フレーク状ガラス(B)のカタログに記載されている厚さの値(即ち、5μm)で、上記平均粒径を割り返すことにより求めた。
(B) Average particle diameter and aspect ratio of flaky glass (B) 50 mg of a thermoplastic resin molded article was measured at 450 ° C. using an electric muffle furnace (manufactured by Advantech Toyo Co., Ltd., model “FUW-230PA”). Incinerated for 5 hours or more to obtain flaky glass (B). Next, 10 mg of flaky glass (B) was dispersed in 5 ml of water, the particle size was measured using a particle size distribution analyzer (LA-950V2 (trade name) manufactured by Horiba, Ltd.), and the mass average was averaged. The diameter. The aspect ratio of the flaky glass (B) was determined by repeating the average particle diameter with the thickness value (ie, 5 μm) described in the flaky glass (B) catalog.
(d)熱線膨張係数
 熱可塑性樹脂成形体から長さ15mm×幅5mmの試験片を切り出し、熱機械分析装置(TMA)((株)リガク製TMA8310(商品名))を用いてJIS K 7197に基づき5℃/分間の昇温速度で、熱線膨張係数を30~100℃の範囲で測定した。尚、本発明においては50℃における値を熱線膨張係数とした。
(D) Thermal linear expansion coefficient A test piece having a length of 15 mm and a width of 5 mm was cut out from a thermoplastic resin molded article, and JIS K 7197 was measured using a thermomechanical analyzer (TMA) (TMA8310 (trade name) manufactured by Rigaku Corporation). Based on the temperature increase rate of 5 ° C./minute, the coefficient of thermal expansion was measured in the range of 30 to 100 ° C. In the present invention, the value at 50 ° C. is defined as the thermal linear expansion coefficient.
(3)太陽電池モジュールの評価
(a)温度サイクル試験(TC50試験)
 モジュールテスター((株)エヌ・ピー・シー製)を用いて、太陽電池モジュールの初期状態における最大出力の値を測定した。その後、IEC61215に基づくTC50試験を行い、試験後の最大出力の値を測定し、試験前後における最大出力の値の低下率を求め、5%以下のものを合格とした。
(3) Evaluation of solar cell module (a) Temperature cycle test (TC50 test)
The maximum output value in the initial state of the solar cell module was measured using a module tester (manufactured by NPC Corporation). Then, the TC50 test based on IEC61215 was performed, the value of the maximum output after the test was measured, the rate of decrease in the value of the maximum output before and after the test was obtained, and 5% or less was accepted.
(e)シャルピー衝撃強度
熱可塑性樹脂成形体から長さ80mm×幅10mmの試験片を切り出し、U-F(シャルピー)衝撃試験機((株)上島製作所製)を用いてJIS K7111に基づきシャルピー衝撃強度を求めた。試験条件は、フラットワイズ、ノッチなしとした。
(E) Charpy impact strength A test piece of length 80 mm x width 10 mm was cut out from a thermoplastic resin molded article, and Charpy impact was performed based on JIS K7111, using a UF (Charpy) impact tester (manufactured by Ueshima Seisakusho Co., Ltd.). The strength was determined. The test conditions were flat wise and no notch.
(f)メルトフローレート
熱可塑性樹脂のペレットを用いてJIS K7210に準拠して、メルトフローレート(MFR)を測定することにより、流動性を評価した。MFRの測定は、温度:230℃、荷重:37.3Nの条件で行なった。
(F) Melt flow rate The fluidity was evaluated by measuring the melt flow rate (MFR) according to JIS K7210 using pellets of thermoplastic resin. MFR was measured under the conditions of temperature: 230 ° C. and load: 37.3N.
(g)耐候性試験
(a)で用いた試験片をサンシャインウェザーメーターS80(スガ試験機(株)製)を用いて2000時間の耐候性試験にかけ、試験後の試験片について(a)と同様に全光線透過率を測定した。耐候性試験条件は、60分間中12分間を雨とする繰り返し、ブラックパネル温度は63℃で行った。
(G) The test piece used in the weather resistance test (a) was subjected to a 2000-hour weather resistance test using a sunshine weather meter S80 (manufactured by Suga Test Instruments Co., Ltd.), and the test piece after the test was the same as (a) The total light transmittance was measured. The weathering test conditions were repeated with rain for 12 minutes out of 60 minutes, and the black panel temperature was 63 ° C.
(製造例1)(メタ)アクリルコーティング組成物(1)の製造
 (メタ)アクリル重合体保護層を形成するための原料として、フェノキシエチルアクリレート(大阪有機化学工業社製ビスコート#192)50部、ビスフェノールA-ジエポキシジアクリレート(共栄社油脂化学工業(株)製、商品名:エポキシエステル3000A)50部、及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(チバガイギー社製、商品名:ダロキュア1173)1.5部を混合し、分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリルコーティング組成物(1)を得た。
(Production Example 1) Production of (meth) acrylic coating composition (1) As a raw material for forming a (meth) acrylic polymer protective layer, 50 parts of phenoxyethyl acrylate (Biscoat # 192 manufactured by Osaka Organic Chemical Industry Co., Ltd.), 50 parts of bisphenol A-diepoxy diacrylate (manufactured by Kyoeisha Oil Chemical Co., Ltd., trade name: Epoxy ester 3000A), and 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by Ciba Geigy) (Product name: Darocur 1173) 1.5 parts were mixed to obtain a (meth) acrylic coating composition (1) containing a monomer having at least two (meth) acryloyloxy groups in the molecule.
(実施例1)
 熱可塑性樹脂(A)として(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットVH001)100部に、Cガラスである、屈折率1.52、平均粒径667μm及びアスペクト比133のフレーク状ガラス(B)(日本板硝子(株)製、商品名「RCF-600」、厚み5μm)33部を加え、ドライブレンド物を得た。
 次いで、上記のドライブレンド物を二軸押出機(東芝機械(株)製、58mmφ二軸押出機)を用いて、250℃で溶融混練し、押出されたストランドをペレット状にカットし、熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物の評価結果を表1に示す。
 上記熱可塑性樹脂組成物を単軸押出機(ナカムラ産機(株)製)を用いて、250℃で、厚さ2mm×幅35cmのシート状に押出した。次いで、得られたシート状物を長さ50cmに切断し、100TON加熱用成形機(庄司鉄工(株)製)を用いて、220℃及び10MPaの条件で表面を平滑化して、熱可塑性樹脂成形体を得た。得られた熱可塑性樹脂成形体の評価結果を表1に示す。
(Example 1)
100 parts of (meth) acrylic resin (trade name: Acrypet VH001, manufactured by Mitsubishi Rayon Co., Ltd.) as the thermoplastic resin (A) is C glass, a refractive index of 1.52, an average particle size of 667 μm, and an aspect ratio of 133 33 parts of flaky glass (B) (manufactured by Nippon Sheet Glass Co., Ltd., trade name “RCF-600”, thickness 5 μm) was added to obtain a dry blend.
Next, the dry blend is melt-kneaded at 250 ° C. using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., 58 mmφ twin-screw extruder), and the extruded strand is cut into pellets to be thermoplastic. A resin composition was obtained. The evaluation results of the obtained thermoplastic resin composition are shown in Table 1.
The thermoplastic resin composition was extruded into a sheet having a thickness of 2 mm and a width of 35 cm at 250 ° C. using a single-screw extruder (manufactured by Nakamura Industries Co., Ltd.). Next, the obtained sheet-like material is cut into a length of 50 cm, and the surface is smoothed under conditions of 220 ° C. and 10 MPa using a 100 TON heating molding machine (manufactured by Shoji Tekko Co., Ltd.), and a thermoplastic resin molding is performed. Got the body. Table 1 shows the evaluation results of the obtained thermoplastic resin molded article.
 太陽電池ラミネーター((株)エヌ・ピー・シー製LM-50X50-S(商品名))の熱板上に、幅34.3cm×長さ37.3cmに切断した上記熱可塑性樹脂成形体、幅34.3cm×長さ37.3cm×厚さ0.45mmの封止材(シーアイ化成(株)製エチレン-酢酸ビニル共重合体、商品名「CIKcap」)、4つのセルを直列配線した5インチの太陽電池セル(アスデン(株)製、多結晶シリコン太陽電池セル)、幅34.3cm×長さ37.3cm×厚さ0.45mmの封止材(シーアイ化成(株)製エチレン-酢酸ビニル共重合体、商品名「CIKcap」)、及び幅34.3cm×長さ37.3cm×厚さ0.3mmの裏面保護部材((株)エムエーパッケージング製PETフィルム積層体、商品名「PTD250」)を順次積層させた積層体を、500mm四方の離型フィルム(本多産業(株)製、商品名「HGS-P610」)に挟んで真空ラミネーター((株)エヌ・ピー・シー製、商品名「LM-50X50-S」)内に設置した。その後、真空ラミネーター内を90mmHgとし、135℃で15分間、及び101.3kPaの条件で、前記積層体を真空圧着させて太陽電池モジュール積層体を得た。次いで、太陽電池モジュール積層体から2枚の離型フィルムを剥離し、太陽電池モジュールを得た。得られた太陽電池モジュールの評価結果を表1に示す。 On the hot plate of a solar cell laminator (LM-50X50-S (trade name) manufactured by NPC Co., Ltd.), the above thermoplastic resin molded body cut to a width of 34.3 cm and a length of 37.3 cm, Sealing material (34.3cm x length 37.3cm x thickness 0.45mm) (ethylene-vinyl acetate copolymer manufactured by CI Kasei Co., Ltd., trade name “CIKcap”) 5 inches in which 4 cells are connected in series Solar cell (Asden Co., Ltd., polycrystalline silicon solar cell), width 34.3 cm × length 37.3 cm × thickness 0.45 mm sealing material (Ci Kasei Co., Ltd. ethylene-vinyl acetate) Copolymer, trade name “CIKcap”), and back surface protective member having a width of 34.3 cm × length of 37.3 cm × thickness of 0.3 mm (a PET film laminate manufactured by MPackaging Co., Ltd., trade name “PTD250”) ) The laminated body that is sequentially laminated is sandwiched between 500 mm square release films (trade name “HGS-P610”, manufactured by Honda Sangyo Co., Ltd.) and a vacuum laminator (trade name, manufactured by NPC Corporation). LM-50X50-S "). Then, the inside of a vacuum laminator was 90 mmHg, the said laminated body was vacuum-bonded on condition of 135 degreeC for 15 minutes, and 101.3 kPa, and the solar cell module laminated body was obtained. Next, the two release films were peeled from the solar cell module laminate to obtain a solar cell module. The evaluation results of the obtained solar cell module are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中の略号は以下の化合物を示す。
VH:(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットVH001)
TF8:(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットTF8 001)
MF:(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットMF001)
S2000:ポリカーボネート樹脂(三菱エンジニアプラスチック(株)製、商品名:ユーピロンS2000)
HBS:(メタ)アクリルフィルム(三菱レイヨン(株)製、商品名:アクリプレンHBS006)
The abbreviations in Table 1 indicate the following compounds.
VH: (Meth) acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH001)
TF8: (Meth) acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet TF8 001)
MF: (Meth) acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet MF001)
S2000: Polycarbonate resin (Mitsubishi Engineer Plastic Co., Ltd., trade name: Iupilon S2000)
HBS: (Meth) acrylic film (Mitsubishi Rayon Co., Ltd., trade name: Acryprene HBS006)
(実施例2、3及び比較例1)
 フレーク状ガラス(B)の含有量を表1に記載のように変更する以外は、実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。尚、比較例1においては、太陽電池モジュールについてTC50試験を行ったところ、配線が断線したことにより発電せず、最大出力の値の測定が不可能であった。
(Examples 2 and 3 and Comparative Example 1)
A thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained in the same manner as in Example 1 except that the content of the flaky glass (B) was changed as shown in Table 1. The evaluation results are shown in Table 1. In Comparative Example 1, when a TC50 test was performed on the solar cell module, power was not generated due to the disconnection of the wiring, and it was impossible to measure the maximum output value.
(実施例4)
 熱可塑性樹脂(A)としてとして(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットTF8 001)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
Example 4
A thermoplastic resin composition and a thermoplastic resin in the same manner as in Example 1 except that (meth) acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet TF8 001) is used as the thermoplastic resin (A). A molded body and a solar cell module were obtained. The evaluation results are shown in Table 1.
(実施例5)
 熱可塑性樹脂(A)としてとして(メタ)アクリル樹脂(三菱レイヨン(株)製、商品名:アクリペットMF001)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
(Example 5)
The thermoplastic resin composition and the thermoplastic resin molding were the same as in Example 1 except that (meth) acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet MF001) was used as the thermoplastic resin (A). The body and the solar cell module were obtained. The evaluation results are shown in Table 1.
(実施例6)
 熱可塑性樹脂(A)としてポリカーボネート樹脂(三菱エンジニアプラスチック(株)製、商品名:ユーピロンS2000)及びフレーク状ガラス(B)としてEガラスのREF-600(日本板硝子(株)製、商品名、屈折率1.56、平均粒径600μm、厚さ5μm、アスペクト比120)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
(Example 6)
Polycarbonate resin (Mitsubishi Engineer Plastic Co., Ltd., trade name: Iupilon S2000) as the thermoplastic resin (A) and E glass REF-600 (Nippon Sheet Glass Co., Ltd., trade name, refraction) as the flaky glass (B) A thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained in the same manner as in Example 1 except that the ratio 1.56, the average particle diameter 600 μm, the thickness 5 μm, and the aspect ratio 120) were used. The evaluation results are shown in Table 1.
(実施例7)
 実施例6で得られた熱可塑性樹脂成形体の上に、(メタ)アクリル重合体保護層として、厚み125μmの(メタ)アクリルフィルム(三菱レイヨン(株)製、商品名:アクリプレンHBS006)を貼り合わせて熱可塑性樹脂積層成形体を得た。貼り合わせの際の粘着材としては、光学材料用粘着フィルムPD-S1(パナック(株)製、商品名)を使用した。得られた熱可塑性樹脂積層成形体の評価結果を表1に示す。
(Example 7)
A 125-μm thick (meth) acrylic film (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acryprene HBS006) is pasted as a (meth) acrylic polymer protective layer on the thermoplastic resin molded body obtained in Example 6. In addition, a thermoplastic resin laminate molded body was obtained. As an adhesive material for bonding, an optical material adhesive film PD-S1 (trade name, manufactured by Panac Co., Ltd.) was used. Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
(実施例8)
 実施例6で得られた熱可塑性樹脂成形体の上に、(メタ)アクリル重合体保護層として、(メタ)アクリルコーティング組成物(1)を塗布したのち紫外線により硬化して厚さ5μmの(メタ)アクリルコーティング組成物(1)の硬化膜(以下、「膜(1)」ということがある)が積層された熱可塑性樹脂積層成形体を得た。得られた熱可塑性樹脂積層成形体の評価結果を表1に示す。
(Example 8)
On the thermoplastic resin molding obtained in Example 6, the (meth) acrylic coating composition (1) was applied as a (meth) acrylic polymer protective layer, and then cured by ultraviolet rays to give a thickness of 5 μm ( A thermoplastic resin laminate molded body on which a cured film of the (meth) acrylic coating composition (1) (hereinafter sometimes referred to as “film (1)”) was laminated was obtained. Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
(比較例2)
 ガラスフレーク(B)として、CガラスのRCF-160(日本板硝子(株)製、商品名、屈折率1.52、平均粒径160μm、厚さ5μm、アスペクト比32)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
(Comparative Example 2)
Example except that C glass RCF-160 (manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.52, average particle size 160 μm, thickness 5 μm, aspect ratio 32) is used as the glass flake (B). In the same manner as in Example 1, a thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained. The evaluation results are shown in Table 1.
(比較例3)
 ガラスフレーク(B)として、CガラスのRCF-015(日本板硝子(株)製、商品名、屈折率1.52、平均粒径26μm、厚さ5μm、アスペクト比5)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
(Comparative Example 3)
Example except that C glass RCF-015 (product name, refractive index 1.52, average particle size 26 μm, thickness 5 μm, aspect ratio 5) is used as glass flake (B). In the same manner as in Example 1, a thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained. The evaluation results are shown in Table 1.
(比較例4)
 ガラスフレーク(B)としてEガラスのREF-600(日本板硝子(株)製、商品名、屈折率1.56、平均粒径600μm、厚さ5μm、アスペクト比120)を用いること以外は実施例1と同様にして熱可塑性樹脂組成物、熱可塑性樹脂成形体及び太陽電池モジュールを得た。評価結果を表1に示す。
(Comparative Example 4)
Example 1 except that E glass REF-600 (manufactured by Nippon Sheet Glass Co., Ltd., trade name, refractive index 1.56, average particle size 600 μm, thickness 5 μm, aspect ratio 120) was used as the glass flake (B). In the same manner as above, a thermoplastic resin composition, a thermoplastic resin molded article, and a solar cell module were obtained. The evaluation results are shown in Table 1.
(比較例5)
 熱可塑性樹脂(A)の原料として、(メタ)アクリル樹脂の原料となるアクリシラップSY-116(三菱レイヨン(株)製、商品名)100部に、フレーク状ガラス(B)としてCガラスのRCF-600N(日本板硝子(株)社製、商品名、厚さ5μm、屈折率1.52、平均粒径437μm、アスペクト比87)33部、及び重合開始剤としてt-ヘキシルパーオキシピバレート(日本油脂(株)製、商品名:パーヘキシルPV)0.2部を加え、ガラスフレークが分散した重合性樹脂組成物を得た。
 上記重合性樹脂組成物をシート形状の鋳型に流し込み、80℃で30分間加熱した後、130℃で30分間乾燥して、長さ10cm×幅10cm×厚さ2mmのシート状のシラップ硬化物を熱可塑性樹脂(A)とする熱可塑性樹脂成形体を得た。得られた熱可塑性樹脂積層成形体の評価結果を表1に示す。
(Comparative Example 5)
As a raw material for the thermoplastic resin (A), 100 parts of Acrysilap SY-116 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.), which is a raw material for the (meth) acrylic resin, and an RCF of C glass as the flaky glass (B) -600N (manufactured by Nippon Sheet Glass Co., Ltd., trade name, thickness 5 μm, refractive index 1.52, average particle diameter 437 μm, aspect ratio 87) 33 parts, and t-hexylperoxypivalate as a polymerization initiator (Japan) 0.2 part of oil and fat Co., Ltd. product name: perhexyl PV) was added to obtain a polymerizable resin composition in which glass flakes were dispersed.
The polymerizable resin composition is poured into a sheet-shaped mold, heated at 80 ° C. for 30 minutes, and then dried at 130 ° C. for 30 minutes to obtain a sheet-like cured syrup of length 10 cm × width 10 cm × thickness 2 mm. A thermoplastic resin molded body was obtained as a thermoplastic resin (A). Table 1 shows the evaluation results of the obtained thermoplastic resin laminate molded body.
 表1から明らかなように、実施例1~5では、得られた熱可塑性樹脂成形体は透明性に優れ、且つ温度変化による変形が少ないことから、TC試験後でも太陽電池モジュールの最大出力の低下は認められなかった。これに対して、比較例1では、フレーク状ガラス(B)の含有量が下限値未満であるために熱線膨張係数の低減が十分でなく、TC50試験中における熱可塑性樹脂成形体の変形を防ぐことが出来なかった。 As is apparent from Table 1, in Examples 1 to 5, the obtained thermoplastic resin molded articles are excellent in transparency and have little deformation due to temperature change, so that the maximum output of the solar cell module can be obtained even after the TC test. There was no decline. On the other hand, in Comparative Example 1, since the content of the flaky glass (B) is less than the lower limit value, the reduction of the thermal expansion coefficient is not sufficient, and deformation of the thermoplastic resin molded body during the TC50 test is prevented. I couldn't.
一方、比較例2及び3では、フレーク状ガラス(B)のアスペクト比が下限値未満であるために全光線透過率が低下した。また、熱線膨張係数が十分ではなく、TC50試験中における熱可塑性樹脂成形体の変形を防ぐことが出来なかった。 On the other hand, in Comparative Examples 2 and 3, the total light transmittance was lowered because the aspect ratio of the flaky glass (B) was less than the lower limit. Moreover, the thermal expansion coefficient was not sufficient, and the deformation of the thermoplastic resin molded article during the TC50 test could not be prevented.
比較例4では、熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率の差が上限値以上であるために全光線透過率が低下した。
比較例5では、フレーク状ガラス(B)のアスペクト比が上限値以上であるためにシャルピー衝撃強度が低下した。
In Comparative Example 4, the total light transmittance was lowered because the difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) was not less than the upper limit.
In Comparative Example 5, the Charpy impact strength decreased because the aspect ratio of the flaky glass (B) was not less than the upper limit.
(比較例6)
 熱可塑性樹脂(A)であるアクリペットVH001(三菱レイヨン(株)製、商品名)100部に、Cガラスである、屈折率1.52、平均粒径437μm及びアスペクト比87のフレーク状ガラス(B)(日本板硝子(株)製、商品名「RCF-600」、厚さ5μm)82部を加え、ドライブレンドした。 次いで、上記のドライブレンド物を二軸押出機(東芝機械(株)製、58mmφ二軸押出機)を用いて、250℃で溶融混練し、ストランドの作製を試みた。
しかし、フレーク状ガラス(B)の含有量が上限値を超えており、熱可塑性樹脂組成物の連続したストランドを得ることができなかったので、熱可塑性樹脂成形体の評価は実施しなかった。
(Comparative Example 6)
100 parts of Acrypet VH001 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.), which is a thermoplastic resin (A), is flaky glass having a refractive index of 1.52, an average particle size of 437 μm, and an aspect ratio of 87, which is C glass. B) 82 parts (made by Nippon Sheet Glass Co., Ltd., trade name “RCF-600”, thickness 5 μm) were added and dry blended. Next, the above dry blend was melt-kneaded at 250 ° C. using a twin screw extruder (manufactured by Toshiba Machine Co., Ltd., 58 mmφ twin screw extruder) to try to produce a strand.
However, since the content of the flaky glass (B) exceeded the upper limit value and a continuous strand of the thermoplastic resin composition could not be obtained, the thermoplastic resin molded product was not evaluated.
本発明は、透光性に優れ、且つ温度変化による変形の発生が低減された熱可塑性樹脂成形体を提供でき、また、この熱可塑性樹脂成形体を太陽電池モジュール用のトップシート部材として使用することにより、最大出力の低下が抑制され、且つ軽量な太陽電池モジュールを提供することができるので、産業上極めて有用である。 INDUSTRIAL APPLICABILITY The present invention can provide a thermoplastic resin molded article that is excellent in translucency and reduced in deformation due to temperature change, and uses this thermoplastic resin molded article as a top sheet member for a solar cell module. As a result, a decrease in the maximum output is suppressed, and a lightweight solar cell module can be provided, which is extremely useful industrially.

Claims (13)

  1.  熱可塑性樹脂(A)とフレーク状ガラス(B)とを含む熱可塑性樹脂組成物であって、
    熱可塑性樹脂組成物中のフレーク状ガラス(B)のアスペクト比は、30~80であり、
    熱可塑性樹脂組成物中のフレーク状ガラス(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、25~70質量部であり、
    熱可塑性樹脂組成物中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率の差が、0以上、0.05以下である熱可塑性樹脂組成物。
    A thermoplastic resin composition comprising a thermoplastic resin (A) and flaky glass (B),
    The aspect ratio of the flaky glass (B) in the thermoplastic resin composition is 30 to 80,
    The content of the flaky glass (B) in the thermoplastic resin composition is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
    A thermoplastic resin composition in which a difference between a refractive index of the thermoplastic resin (A) and a refractive index of the flaky glass (B) in the thermoplastic resin composition is 0 or more and 0.05 or less.
  2. フレーク状ガラス(B)の平均粒径が30~600μmである請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the flaky glass (B) has an average particle size of 30 to 600 µm.
  3.  熱可塑性樹脂(A)のメルトフローレートが5g/10分間以上、20g/10分間以下である請求項1又は2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein the melt flow rate of the thermoplastic resin (A) is 5 g / 10 min or more and 20 g / 10 min or less.
  4.  熱可塑性樹脂(A)が、(メタ)アクリル樹脂又はポリカーボネート樹脂である請求項1~3のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin (A) is a (meth) acrylic resin or a polycarbonate resin.
  5.  熱可塑性樹脂(A)とフレーク状ガラス(B)とを含む熱可塑性樹脂成形体であって、
    熱可塑性樹脂成形体中のフレーク状ガラス(B)のアスペクト比は、25~70であり、
    前記熱可塑性樹脂成形体中のフレーク状ガラス(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、25~70質量部であり、
    熱可塑性樹脂成形体中の熱可塑性樹脂(A)の屈折率とフレーク状ガラス(B)の屈折率の差が0以上、0.05以下であり、
    熱可塑性樹脂成形体における全光線透過率が86%以上、93%以下である熱可塑性樹脂成形体。
    A thermoplastic resin molded body containing a thermoplastic resin (A) and flaky glass (B),
    The aspect ratio of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70,
    The content of the flaky glass (B) in the thermoplastic resin molded body is 25 to 70 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A).
    The difference between the refractive index of the thermoplastic resin (A) and the refractive index of the flaky glass (B) in the thermoplastic resin molded article is 0 or more and 0.05 or less,
    A thermoplastic resin molded article having a total light transmittance of 86% to 93% in the thermoplastic resin molded article.
  6.  50℃における熱線膨張係数が8ppm/K以上、40ppm/K以下である請求項5に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded article according to claim 5, wherein the coefficient of thermal expansion at 50 ° C is 8 ppm / K or more and 40 ppm / K or less.
  7.  熱可塑性樹脂成形体中のフレーク状ガラス(B)の平均粒径が25~500μmである請求項5又は6に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded article according to claim 5 or 6, wherein the average particle diameter of the flaky glass (B) in the thermoplastic resin molded article is 25 to 500 µm.
  8.  熱可塑性樹脂成形体中の熱可塑性樹脂(A)のメルトフローレートが5g/10分間以上、20g/10分間以下である請求項5~7のいずれか1項に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded article according to any one of claims 5 to 7, wherein a melt flow rate of the thermoplastic resin (A) in the thermoplastic resin molded article is 5 g / 10 minutes or more and 20 g / 10 minutes or less.
  9.  熱可塑性樹脂(A)が、(メタ)アクリル樹脂又はポリカーボネート樹脂である請求項5~8のいずれか1項に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded article according to any one of claims 5 to 8, wherein the thermoplastic resin (A) is a (meth) acrylic resin or a polycarbonate resin.
  10.  請求項5~9のいずれか1項に記載の熱可塑性樹脂成形体に(メタ)アクリル重合体保護層が積層された熱可塑性樹脂積層成形体。 A thermoplastic resin laminate molded article in which a (meth) acrylic polymer protective layer is laminated on the thermoplastic resin molded article according to any one of claims 5 to 9.
  11.  前記(メタ)アクリル重合体保護層が、(メタ)アクリルフィルム、及び分子内に(メタ)アクリロイルオキシ基を少なくとも2つ有する単量体を含有する(メタ)アクリルコーティング組成物の硬化物からなる群から選択される少なくとも1つの成分を含む請求項10に記載の熱可塑性樹脂積層成形体。 The (meth) acrylic polymer protective layer comprises a cured product of a (meth) acrylic coating composition containing a (meth) acrylic film and a monomer having at least two (meth) acryloyloxy groups in the molecule. The thermoplastic resin laminate molded article according to claim 10, comprising at least one component selected from the group.
  12.  請求項6~9のいずれか1項に記載の熱可塑性樹脂成形体、又は請求項10若しくは請求項11に記載の熱可塑性樹脂積層成形体を用いた太陽電池モジュール。 A solar cell module using the thermoplastic resin molded article according to any one of claims 6 to 9, or the thermoplastic resin laminated molded article according to claim 10 or 11.
  13.  熱可塑性樹脂成形体又は熱可塑性樹脂積層成形体が、厚さ1~3mmのシート状である請求項12に記載の太陽電池モジュール。 The solar cell module according to claim 12, wherein the thermoplastic resin molded body or the thermoplastic resin laminated molded body is a sheet having a thickness of 1 to 3 mm.
PCT/JP2013/068151 2012-07-06 2013-07-02 Thermoplastic resin composition, thermoplastic resin molded body, multilayer thermoplastic resin molded body, and solar cell module WO2014007253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531806A JPWO2014007253A1 (en) 2012-07-06 2013-07-02 Thermoplastic resin composition, thermoplastic resin molded body, thermoplastic resin laminated molded body, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-152115 2012-07-06
JP2012152115 2012-07-06

Publications (1)

Publication Number Publication Date
WO2014007253A1 true WO2014007253A1 (en) 2014-01-09

Family

ID=49882007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068151 WO2014007253A1 (en) 2012-07-06 2013-07-02 Thermoplastic resin composition, thermoplastic resin molded body, multilayer thermoplastic resin molded body, and solar cell module

Country Status (3)

Country Link
JP (1) JPWO2014007253A1 (en)
TW (1) TW201412852A (en)
WO (1) WO2014007253A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077385A (en) * 2005-08-19 2007-03-29 Asahi Kasei Chemicals Corp High-rigidity decorated extruded sheet
JP2008074927A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Mining Co Ltd Molded article and method for producing the same
JP2011151391A (en) * 2009-12-25 2011-08-04 Mitsubishi Rayon Co Ltd Solar cell module
WO2012093717A1 (en) * 2011-01-07 2012-07-12 三菱レイヨン株式会社 Glass-containing thermoplastic acrylic resin composition and molded article thereof
JP2012246473A (en) * 2011-05-02 2012-12-13 Mitsubishi Rayon Co Ltd Molded body, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077385A (en) * 2005-08-19 2007-03-29 Asahi Kasei Chemicals Corp High-rigidity decorated extruded sheet
JP2008074927A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Mining Co Ltd Molded article and method for producing the same
JP2011151391A (en) * 2009-12-25 2011-08-04 Mitsubishi Rayon Co Ltd Solar cell module
WO2012093717A1 (en) * 2011-01-07 2012-07-12 三菱レイヨン株式会社 Glass-containing thermoplastic acrylic resin composition and molded article thereof
JP2012246473A (en) * 2011-05-02 2012-12-13 Mitsubishi Rayon Co Ltd Molded body, and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACRYPETTM NO GRADE *

Also Published As

Publication number Publication date
JPWO2014007253A1 (en) 2016-06-02
TW201412852A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP7169411B2 (en) Stretched film and method for producing stretched film
CN103403880B (en) Solar module
JP6007789B2 (en) Acrylic resin composition, acrylic resin sheet, acrylic resin laminate, and production method thereof
KR101757988B1 (en) Adsorption-proof coated reflective polyester film and preparation method thereof
US20160054490A1 (en) Multilayer optical film, method of producing the same and polarizer comprising the same
JP2017205941A (en) Laminate and method for producing the same, molded body, polarizer protective film, and polarizing plate
WO2016157913A1 (en) Process for producing stretched acrylic-resin film
CN109456710B (en) Packaging back plate integrated material and preparation method thereof
KR20150093111A (en) Thermoplastic resin film, stretched film, polarizer protection film and polarizing plate
JP5954171B2 (en) Thermoplastic acrylic resin composition containing glass and molded article thereof
TWI468457B (en) Acrylic resin film with excellent transparency and impact resistance and method of fabricating the same
JP6039168B2 (en) Protective sheet, method for producing protective sheet and polarizing plate
JP7267200B2 (en) LAMINATED GLASS INTERMEDIATE FILM OR RESIN COMPOSITION FOR SOLAR CELL ENCLOSURE MATERIAL, LAMINATED GLASS INTERMEDIATE FILM, LAMINATED GLASS, SOLAR CELL ENCLOSURE MATERIAL AND SOLAR CELL MODULE
KR20190046907A (en) Resin composition and its use
JP7133084B2 (en) Resin composition for laminated glass interlayer film, laminated glass interlayer film, and laminated glass
JPWO2018070480A1 (en) Glass laminate
WO2014007253A1 (en) Thermoplastic resin composition, thermoplastic resin molded body, multilayer thermoplastic resin molded body, and solar cell module
TWI778937B (en) Cosmetic sheets, panels, articles with cosmetic sheets, and articles with panels
JP5296389B2 (en) Infrared reflective laminate
JP2019172788A (en) (meth)acrylic-based rubber-containing graft copolymer, and acrylic resin film comprising same
JP2012093726A (en) Protective sheet and polarizing plate
JP2018053210A (en) Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
JP2022158509A (en) Resin molding, heat ray-shielding plate, roof material, and window material
JP2013131663A (en) Translucent laminated sheet and solar cell module
JP5628382B2 (en) Infrared reflective laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013531806

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813930

Country of ref document: EP

Kind code of ref document: A1