WO2014002954A1 - Stirring mechanism, and stirring method - Google Patents

Stirring mechanism, and stirring method Download PDF

Info

Publication number
WO2014002954A1
WO2014002954A1 PCT/JP2013/067261 JP2013067261W WO2014002954A1 WO 2014002954 A1 WO2014002954 A1 WO 2014002954A1 JP 2013067261 W JP2013067261 W JP 2013067261W WO 2014002954 A1 WO2014002954 A1 WO 2014002954A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
reaction vessel
cell
holding member
motor
Prior art date
Application number
PCT/JP2013/067261
Other languages
French (fr)
Japanese (ja)
Inventor
笹原 潤
陽介 村瀬
Original Assignee
協和メデックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和メデックス株式会社 filed Critical 協和メデックス株式会社
Priority to JP2014522619A priority Critical patent/JPWO2014002954A1/en
Publication of WO2014002954A1 publication Critical patent/WO2014002954A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier

Definitions

  • the present invention relates to a stirring mechanism and a stirring method, and more particularly to a mechanism and a method for stirring a reaction container containing a reagent, a specimen, and the like used in an immunoassay.
  • an immunoassay method for measuring a substance to be measured in a specimen using an antigen-antibody reaction an insoluble carrier particle, a primary antibody, a labeled secondary antibody, and a specimen are added to a reaction container, and the substance is placed on the insoluble carrier particle.
  • a method for measuring a substance to be measured in a specimen by forming an immune complex of a primary antibody, a substance to be measured, and a labeled secondary antibody, and measuring the amount of the label in the immune complex.
  • an object of the present invention is to provide a mechanism and a method for simply and efficiently stirring a reaction vessel.
  • a stirring mechanism includes a holding member that holds a reaction vessel having a recess formed in a bottom portion, a stirring rod that is provided below the holding member, and the stirring rod that extends downward from the holding member. Elevating means for moving the stirring rod into and out of the recessed portion of the protruding reaction vessel, and rotating means for rotating the stirring rod around the axis of the reaction vessel.
  • the lifting / lowering means is held by the holding member, and the stirring bar is inserted into the recess of the reaction vessel protruding downward.
  • the rotating means pivots the stirring rod around the axis of the reaction vessel, the reaction vessel swings (precesses) around the portion held by the holding member.
  • the reagent etc. in reaction container can be stirred by the swing motion of reaction container itself, without inserting a stirring rod into reaction container.
  • the stirring mechanism according to a second aspect is the stirring mechanism according to the first aspect, wherein the holding member is a turntable in which a circular hole larger than an outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel Is suspended from a hole edge of the circular hole by a flange projecting from the reaction vessel.
  • the reaction vessel suspended by the scissors performs a swing motion (precession motion) while having some backlash in the recess of the reaction table, so that the agitation efficiency is improved. To do.
  • the stirring mechanism according to a third aspect is the stirring mechanism according to the second aspect, wherein the concave portion of the reaction vessel is formed with an inclined surface whose diameter increases from the bottom surface of the concave portion toward the opening.
  • the swivel diameter of the bar is smaller than the diameter of the opening of the recess.
  • the stirring bar can be inserted into the recess even if the stop position of the recess of the reaction vessel is shifted to some extent.
  • the stirring mechanism according to a fourth aspect is the stirring mechanism according to any one of the first to third aspects, wherein the rotating means includes a motor provided below the holding member, and the motor. And a rotating body that is rotated and to which the stirring bar is eccentrically attached.
  • the rotating means can be configured using general-purpose parts, the product cost can be reduced.
  • the stirring mechanism according to a fifth aspect is the stirring mechanism according to any one of the first to third aspects, wherein the elevating means includes a subframe in which the motor is fixed and supported so as to be vertically movable; A rack formed on the subframe, and a gear that meshes with the rack and is rotationally driven by the motor.
  • the lifting means can be configured using general-purpose parts, the product cost can be reduced.
  • the agitation mechanism according to a sixth aspect is the agitation mechanism according to the fifth aspect, wherein the gear is stopped based on a height detection means for detecting an elevation height of the frame and a signal from the height detection means. And control means for rotating the motor.
  • the height of the subframe is detected, stopped at a desired position, and the motor is rotated, so that the stirring bar can be correctly inserted into the concave portion of the cell.
  • the stirring method according to the seventh aspect includes a reaction vessel holding step for holding a reaction vessel having a recess formed in the bottom portion on a holding member, and a stirring rod provided on the lower side of the holding member.
  • the reaction vessel having a recess formed in the bottom is held by a holding member, and the stirring rod inserted into the recess of the reaction vessel with the portion held by the holding member as a fulcrum
  • the reaction vessel is agitated by swirling around the axis.
  • An agitation method is the agitation method according to the seventh aspect, wherein the holding member is a turntable in which a circular hole larger than an outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel Is suspended by a flange protruding from the reaction vessel at the hole edge of the circular hole.
  • the stirring efficiency is improved.
  • An agitation method is the agitation method according to the eighth aspect, wherein an inclined surface that expands from the bottom surface of the recess toward the opening is formed.
  • the diameter is smaller than the diameter of the opening.
  • the stirring efficiency is improved because the stirring rod is difficult to be removed from the recess during stirring.
  • the stirring method according to a tenth aspect is the stirring method according to any one of the seventh aspect to the ninth aspect, wherein the stirring rod rotating step is provided on the lower side of the holding member. It is a step of turning around the axis of the reaction vessel by a rotating means comprising a motor and a rotating body that is rotated by the motor and to which the stirring bar is eccentrically attached.
  • stirring can be performed easily.
  • An agitation method is the agitation method according to any one of the seventh aspect to the tenth aspect, wherein the agitation rod insertion step includes a subframe in which the motor is fixed and supported so as to be movable up and down. And a lifting / lowering means having a rack formed on the subframe and a gear that meshes with the rack and is rotationally driven by the motor, and allows the stirring rod to enter and exit the recess of the reaction vessel. It is characterized by that.
  • An agitation method is the agitation method according to the eleventh aspect, wherein the elevating means is based on a height detection means for detecting the elevation height of the frame and a signal from the height detection means. And a control means for rotating the motor by stopping the gear.
  • stirring can be controlled, so that stirring can be performed safely.
  • the stirring method according to a thirteenth aspect is characterized in that, in the stirring method according to any one of the seventh aspect to the twelfth aspect, the reaction vessel contains a reagent containing insoluble carrier particles.
  • the insoluble carrier particle-containing reagent accommodated in the reaction vessel can be efficiently stirred.
  • the stirring method according to a fourteenth aspect is the stirring method according to the thirteenth aspect, wherein the insoluble carrier particle-containing reagent is a magnetic carrier particle-containing reagent.
  • the magnetic carrier particle-containing reagent accommodated in the reaction vessel can be efficiently stirred.
  • the present invention provides a mechanism and a method for simply and efficiently stirring a reaction vessel.
  • FIG. 1 It is a top view which shows the basic composition of the immunoassay apparatus provided with the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. It is the perspective view seen from the slanting upper side which shows the structure of the cell which concerns on embodiment of this invention. It is the perspective view seen from the slanting lower side which shows the structure of the cell which concerns on embodiment of this invention. It is sectional drawing of the lower end part vicinity which shows the structure of the cell which concerns on embodiment of this invention. It is a perspective view which shows the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. It is a top view which shows the turntable in which the stirring mechanism which concerns on embodiment of this invention was set.
  • the immunoassay apparatus 200 mainly includes a cell supply unit 14, a reagent storage unit 12, a reaction table 18, a sample table 20, a BF unit 22, and a test unit 24.
  • the sample table 20 side will be described as the front side of the apparatus.
  • the cell supply unit 14 disposed in the left back of the immunoassay apparatus 200 is a unit that transports empty cells 10 (reaction containers) to a predetermined position and aligns them in a row.
  • the cell tank 30, rails 32, and cell feed A mechanism 34 is included.
  • a reagent storage unit 12 containing a stirrer 16 equipped with a turntable 36 is arranged in front of the cell supply unit 14, and a reagent set for immunoassay is stored in a cassette set on the turntable 36.
  • a plurality of reagent containers 26 are held (not shown).
  • the reagent storage unit 12 is cooled to a certain temperature by a cooling means (not shown).
  • a reaction table 18 is arranged on the right side of the reagent storage unit 12.
  • the reaction table 18 is located slightly to the left of the center of the immunoassay device 200 and includes a heater (not shown).
  • a recess 38 for holding the cell 10 is formed on the outer periphery of the reaction table 18 over the entire periphery of the reaction table 18.
  • the diameter of the recess 38 needs to be larger than the diameter of the cell 10 in accordance with the conveyance position accuracy of the cell hand 72 and the like described later, and is smaller than the diameter of the flange 10B described later. Is done.
  • a cover 19 may be provided on the reaction table 18 as shown in FIGS. 3A to 3C. As shown in the plan view of FIG. 3B, the cover 19 is provided with a hole 19A only at a location where the cell hand to be described later is delivered, and the cell 10 is set in the recess 38 of the reaction table 18 through the hole 19A. be able to. On the other hand, by covering the top of the cell 10 with the cover 19, it is possible to prevent the splashing of other reagents / specimens and the like from being mixed into the cell 10 during the rotational movement of the reaction table 18.
  • 60 concave portions 38 are formed at equal intervals in the circumferential direction of the reaction table 18. Further, the cell 10 held in the recess 38 can be warmed by a heater (not shown), and the reagent in the cell 10 can be activated.
  • a sample table 20 is arranged in front of the reaction table 18 and a plurality of test tubes 40 containing samples are held.
  • a BF unit 22 is disposed on the right side of the reaction table 18 with a cell hand 72 to be described later interposed therebetween.
  • the BF unit 22 includes a BF table 42 that rotates and conveys the cell 10 and a BF nozzle unit 44 that performs B / F separation of the reagent in the cell 10 set on the BF table 42.
  • the BF units 22 are disposed at two locations on the back side and the near side of the device, but may be disposed at only one location.
  • the inspection unit 24 is disposed on the right side of the BF unit 22 with a cell hand 74 described later interposed therebetween.
  • the inspection unit 24 includes a stirring unit 46 that stirs the reagent in the cell 10 and a measurement chamber 48 that measures the amount of light.
  • the immunoassay apparatus 200 includes a cell hand 52 that moves the cell 10 to the reaction table 18, reagent dispensing nozzles 54 and 68 that suck and discharge reagents, and a sample dispensing nozzle 60 that sucks and discharges samples.
  • the units, cell hands, nozzles, and the like constituting the immunoassay apparatus 200 are connected to the control unit 300 (not shown) and operate according to signals from the control unit 300. Further, the operation of the entire apparatus is controlled including the vertical position of a sub-frame 162, which will be described later, and the rotational speed of the stirring motor 174.
  • a reagent containing streptavidin-bonded magnetic carrier particles is used as the reagent containing insoluble carrier particles.
  • the present invention is not limited to this, and a reagent containing other magnetic carrier particles may be used.
  • insoluble carrier particles having no magnetism, such as latex can be used.
  • a biotinylated primary antibody-containing reagent is used as the primary antibody-containing reagent.
  • the present invention is not limited thereto, and a reagent containing an antibody appropriately selected according to the type of the insoluble carrier particle-containing reagent may be used. it can.
  • an alkaline phosphatase-labeled secondary antibody-containing reagent is used as the labeled secondary antibody-containing reagent.
  • the reagent is not limited to this and is labeled with a labeling substance that is appropriately selected according to the type of substance to be measured.
  • Reagents containing different antibodies can be used.
  • the chemiluminescence immunoassay based on the sandwich method is used as the immunoassay, but not limited to this, other immunoassays may be used.
  • the user puts a plurality of unused cells 10 into the cell tank 30 of the cell supply unit 14.
  • the cell 10 also referred to as a cuvette
  • the cell 10 used in the present embodiment is a plastic bottomed cylindrical body having one end opened, and is a general-purpose reaction container having a ridge formed in the opening.
  • the cell 10 has a substantially cylindrical shape.
  • One end (opening side) is provided with a ridge 10A for gripping and transporting by each cell hand, and below that is a cell in a recess of each table.
  • a flange 10 ⁇ / b> B is provided so that it does not fall off when 10 is inserted and is held.
  • the inside of the cell 10 is a cavity 10C, and a reagent and a specimen can be injected into the cell 10 and stored and stirred inside.
  • the bottom of the cell 10 is provided with an engagement hole 10E that opens so as to expand in the downward direction.
  • the engagement hole 10E does not communicate with the cavity 10C and has a so-called blind tube shape.
  • the engagement hole 10E has a bowl-shaped inclined surface 10F, and the cell 10 is rotated and stirred on the reaction table 18 by engaging with a rotating pin 180 of a stirring mechanism 66 described later. The internal reagent and specimen are mixed.
  • the whole cell 10 may have a substantially cylindrical shape, but in order to save material and reduce the weight, a structure in which the vicinity of the engagement hole 10E is supported by the rib 10D may be used.
  • the cell 10 is not limited to a cylindrical shape, and may have various shapes such as a quadrangular prism shape and a semi-cylindrical shape.
  • stirring can be performed by the pin 180.
  • the cells 10 put into the cell tank 30 are lifted one by one above the cell tank 30 by an elevator (not shown), and then slide on a rail 32 composed of two inclined bars and conveyed to the cell feed mechanism 34. Is done.
  • the cells 10 conveyed to the cell feeding mechanism 34 are fed one by one to the terminal end portion 32A of the rail 32 by opening and closing the alignment plate 50 of the cell feeding mechanism 34. Note that the cell 10 may be slid from the cell tank 30 to the terminal end portion 32A of the rail 32 without providing the cell feed mechanism 34.
  • the cell 10 that has reached the end portion 32A of the rail 32 is gripped by the cell hand 52, rotated around the rotation shaft 52A, and set in the recess 38 of the reaction table 18. Thereafter, the reaction table 18 is transported directly under the reagent dispensing nozzle 54 by the rotation of the reaction table 18. Here, the reagent dispensing nozzle 54 rotates around the rotation shaft 54A, and the insoluble carrier particle-containing reagent is sucked from the reagent container 26 held in the cassette of the turntable 36 and discharged to the cell 10 (not shown).
  • the primary antibody-containing reagent is aspirated from another reagent container 26 and discharged to the cell 10 (not shown).
  • the reagent dispensing nozzle 54 from which the insoluble carrier particle-containing reagent has been discharged is washed once in the dispensing nozzle washing tank 58, and then the primary antibody-containing reagent is aspirated. Thereby, mixing of a reagent can be prevented.
  • the cell 10 from which the reagent containing streptavidin-bound magnetic carrier particles and the biotinylated primary antibody-containing reagent were discharged was provided on the reaction table 18 while being transported to the vicinity of the sample dispensing nozzle 60 by the rotation of the reaction table 18.
  • the heater is heated at a predetermined temperature (in this embodiment, 37 ° C. as an example), and the reaction between streptavidin bound to the magnetic carrier particles and the biotinylated antibody is promoted.
  • the sample dispensing nozzle 60 rotates around the rotation axis 60A, sucks the sample from the test tube 40 set on the sample table 20, and streptavidin. It discharges to the cell 10 into which the binding magnetic carrier particle-containing reagent and the biotinylated primary antibody-containing reagent are discharged.
  • the diluent is sucked from the diluent container 64, and then the specimen is sucked from the test tube 40 set on the specimen table 20, so that the mixture of the specimen and the diluent is streptavidin.
  • the reagent containing bound magnetic carrier particles and the biotinylated primary antibody-containing reagent are discharged to the discharged cells. Thereafter, the specimen dispensing nozzle 60 that has ejected the specimen or a mixture of the specimen and the diluted solution to the cell is washed in the specimen nozzle washing tank 62. Thereby, contamination by the sample in the sample dispensing nozzle 60 is prevented.
  • the cell 10 from which the specimen or the specimen and the diluent are discharged is transported to the position of the stirring mechanism 66 provided along the outer periphery of the reaction table 18, and the reagent, specimen, and The diluent is stirred without contact. Stirring is performed by rotating the bottom of the cell 10 along the trajectory of the conical pendulum as will be described later.
  • the measurement target substance in the specimen is bound to the primary antibody, and a complex of the primary antibody and the measurement target substance is formed on the magnetic carrier particles.
  • the reagent dispensing nozzle 68 rotates about the rotation axis 68A, and the alkaline phosphatase-labeled secondary antibody is sucked from the reagent container 26 held at a predetermined position of the cassette of the reagent storage unit 12 and discharged to the cell 10. .
  • the reagent dispensing nozzle 68 discharges the alkaline phosphatase-labeled secondary antibody, and then moves to the dispensing nozzle washing tank 70 for cleaning.
  • the reagents in the cell 10 from which the alkaline phosphatase-labeled secondary antibody has been discharged are stirred by the stirring mechanism 66, and the reaction between the alkaline phosphatase-labeled secondary antibody and the substance to be measured in the sample is promoted. Thereby, a complex (immunocomplex) composed of the primary antibody, the substance to be measured, and the labeled secondary antibody is formed on the magnetic carrier particles.
  • the cell 10 is transported to the vicinity of the cell hand 72 by the rotation of the reaction table 18, is gripped by the cell hand 72, rotates around the rotation shaft 72 ⁇ / b> A, and is transported to one BF unit 22.
  • the cell 10 transported to the BF unit 22 is set in a recess 42 ⁇ / b> A provided on the outer periphery of the BF table 42.
  • a neodymium magnet (not shown) is provided so as to surround the outer peripheral surface of the cell 10, and the magnetic carrier particles in the cell 10 set in the recess 42A are collected.
  • the BF nozzle unit 44 moves above the cell 10 set in the recess 42A. Then, the four BF nozzles 44A constituting the BF nozzle unit 44 perform the suction of reagents and the discharge of the cleaning liquid to the cells 10 set in the respective concave portions 42A. At this time, the magnetic carrier particles collected by the neodymium magnet and the reagents combined with the magnetic carrier particles remain in the cell 10 without being attracted to the BF nozzle 44A.
  • reagents that are not bonded to the magnetic carrier particles are sucked by the BF nozzle 44A and removed from the cell 10.
  • the substance (Bind) bonded to the magnetic carrier particles and the substance (Free) not bonded are separated (B / F separation).
  • B / F separation is repeatedly performed to reliably remove substances that are not bonded to the magnetic carrier particles.
  • the cell 10 subjected to the B / F separation is gripped by the cell hand 74, rotated around the rotation shaft 74A, and conveyed to the stirring unit 46 of the measurement unit 24.
  • a detection reagent (a luminescent substrate reagent) is discharged from a tube (not shown) provided in the cell hand 74 to the cell.
  • the stirring unit 46 the magnetic carrier particles carrying the immune complex thereon and the detection reagent are stirred, and the alkaline phosphatase in the immune complex reacts with the luminescent substrate reagent to emit light.
  • the cell 10 is gripped by the cell hand 74, rotated around the rotation shaft 74A, and conveyed into the measurement chamber 48.
  • the measurement chamber 48 is a completely closed space where light does not enter, and the reaction between the alkaline phosphatase in the immune complex and the luminescent substrate reagent is detected by a sensor that measures the amount of luminescence provided in the measurement chamber 48. Is measured, and the concentration of the substance to be measured in the sample is determined from the measured light emission amount.
  • the cell 10 for which measurement has been completed is grasped by the cell hand 74 and discarded into the waste pipe 76.
  • the control unit 300 (not shown) accumulates the concentration of the measurement target substance in the sample as data, and displays the measurement result on a monitor (not shown) or the like.
  • the reaction table 18 is provided with a stirring mechanism 66.
  • two agitation mechanisms 66 are provided on the reaction table 18, but the number may be three or more, or may be one in some cases.
  • a sub-frame 162 provided on the frame 160 so as to be movable in the vertical direction is supported on the frame 160 so as to be movable in the vertical direction.
  • a moving motor 164 is fixed on the frame 160, and a pinion gear 166 provided at the tip of the rotating shaft of the moving motor 164 held horizontally is engaged with a rack gear 172 fixed to the subframe 162.
  • the pinion gear 166 is rotated by the rotation of the moving motor 164 and the rack gear 172 is moved up and down, so that the sub-frame 162 is moved up and down.
  • a pulse motor can be preferably used from the viewpoint of positional accuracy.
  • the subframe 162 is provided on a slider 160B supported so as to be movable in the vertical direction on a rail 160A provided on the frame 160 in the vertical direction.
  • the stirring motor 174 fixed to the subframe 162 is moved in the vertical direction.
  • the rail 160A and the slider 160B can be selected from various structures such as dovetails as long as the subframe 162 does not fall off and hinder smooth movement up and down.
  • the sub-frame 162 can move a distance H from the home position (initial position) shown in FIGS. 4C and 4D to the stirring position (upper end position) shown in FIG. 4E.
  • the photo sensor 186 detects the light shielding plate 183 provided on the sub-frame 162, and the position information is transmitted to the control unit 300 (not shown).
  • the rotation stops and the subframe 162 stops.
  • a method may be used in which a micro switch is provided on the frame 160 and is operated by moving the sub frame 162 downward to detect the lower end position.
  • the stirring motor 174 provided in the subframe 162 is provided with, for example, a lattice disk 176, and a rotary encoder 188 is configured in combination with the optical sensor 184 also provided in the subframe 162.
  • the rotary encoder 188 may detect the rotation of the lattice disk 176 to detect the rotation speed of the stirring motor 174, and the control unit 300 (not shown) may control the rotation speed of the stirring motor 174.
  • the control unit referred to here may be the same control board as the control unit 300 that performs the vertical position control of the subframe 162 described above, or may be a dedicated control unit that is separate from this.
  • the stirring motor 174 is provided with a substantially cylindrical boss 178 on the rotating shaft, and is rotated by the rotation of the stirring motor 174.
  • the boss 178 is provided with a hole 182 on the upper surface, and a pin 180 is inserted into the hole 182 and protrudes upward.
  • the hole 182 is located at an eccentric position radially deviated from the rotation center of the boss 178 (rotation axis C shown in FIG. 5), and as a result, the pin 180 is eccentric from the rotation axis C (shown in FIG. 5) of the stirring motor 174. Will be provided in the (eccentric) position. For this reason, the rotation of the stirring motor 174 causes the pin 180 to rotate on the circular orbit R1 centering on the rotation axis C shown in FIG. At this time, by setting the diameter of the circular track R1 smaller than the diameter of the engagement hole 10E, the pin 180 is inserted into the engagement hole 10E of the cell 10 regardless of the position of the boss 178 on the track.
  • the hole 182 is located at an eccentric position radially deviated from the rotation center of the boss 178 (rotation axis C shown in FIG. 5), and as a result, the pin 180 is eccentric from the rotation axis C (shown in FIG. 5) of the stirring motor 174. Will be provided in the (e
  • the movement motor 164 is driven by a signal from the control unit 300 (not shown) to drive the subframe. 162 rises to the stirring position by a distance H. If the moving motor 164 is a pulse motor, the stop position of the subframe 162 can be accurately defined without providing a new position sensor by stopping at the stirring position shown in FIG. 4E by counting the number of drive pulses.
  • the pin 180 is engaged with the engagement hole 10E of the cell 10 inserted into the recess 38 of the reaction table 18 positioned immediately above the stirring mechanism 66. Match. As described above, the pin 180 is provided at a position away from the rotation axis C of the boss 178. Therefore, as shown in FIG. 5, the pin 180 rotates and moves on the circular orbit R1 around the rotation axis C. The engagement hole 10E of the cell 10 with which the tip of 180 is engaged also moves in a circular orbit by the pin 180.
  • the cell 10 is inserted into the recess 38, and the diameter of the recess 38 is larger than the diameter of the cell 10 as described above, so that the engagement hole 10E moves so as to draw a circular orbit as shown in FIG.
  • the entire cell 10 rotates with the concave portion 38 as a fulcrum so that the central axis draws a circular orbit R2 above the concave portion 38, and rotates in a substantially conical pendulum orbit below the concave portion 38 so as to draw a circular orbit R1. .
  • the pin 180 is inserted into the engagement hole 10E. Since the engagement hole 10E is not in communication with the cavity 10C in the cell 10 as described above, the pin 180 is injected into the cell 10 as a result.
  • the cell 10 can be agitated in a non-contact manner without an external member such as a stirrer coming into contact with the sample, diluent, insoluble carrier particle-containing reagent, or the like.
  • the stirring method of the present invention comprises: (1) a reaction vessel holding step of holding a reaction vessel (cell 10) having a recess (engagement hole 10E) formed in the bottom portion on a holding member (reaction table 18); (2) A stirring rod (pin 180) provided on the lower side of the holding member (reaction table 18) is inserted into the concave portion (engagement) of the reaction vessel (cell 10) protruding downward from the holding member (recess 38). A stirring rod insertion step for entering and exiting the joint hole 10E); (3) a stirring rod rotating step of rotating the stirring rod (pin 180) around the axis of the reaction vessel (cell 10); Is a stirring method of a reaction vessel containing
  • the stirring method of the present invention can be performed using the stirring mechanism of the present invention.
  • the reaction vessel (cell 10) is a reaction vessel having a recess (engagement hole 10E) formed at the bottom, and the reaction vessel having a structure held by a holding member (reaction table 18) is provided.
  • maintained at a holding member a collar part (flange 10B) etc. are mentioned, for example.
  • the concave portion formed in the bottom portion is not particularly limited as long as the stirring rod (pin 180) is inserted therein.
  • the holding member is a holding member that holds the reaction vessel (cell 10) having a recess (engagement hole 10) formed in the bottom and enables the agitation of the reaction vessel.
  • a turntable in which a circular hole (concave portion 38) larger than the outer diameter of the reaction vessel is formed on the outer peripheral portion may be used.
  • the reaction container is suspended and held by a flange (flange 10B) protruding from the reaction container at the hole edge of the circular hole of the turntable.
  • the stirring rod (pin 180) is inserted into a recess (engagement hole 10E) formed at the bottom of the reaction vessel (cell 10), and the reaction vessel is swung around the axis (rotation axis C).
  • the swirling diameter of the stirring rod is preferably smaller than the diameter of the opening of the recess formed at the bottom of the reaction vessel.
  • the stirring of the reaction vessel by the stirring rod can be performed by, for example, a rotating means (stirring motor 174).
  • the rotating means for example, a motor provided on the lower side of the holding member and a motor are rotated.
  • the rotating means include a rotating body (boss 178) attached in a center.
  • the stirring rod can be inserted (in / out) into a recess formed in the bottom of the reaction vessel by, for example, an elevating means, and as the elevating means, for example, a motor (moving motor 164) is fixed and moved up and down.
  • An elevating means including a subframe 162 that is supported, a rack 172 formed on the subframe 162, and a gear 166 that meshes with the rack 172 and is driven to rotate, and the like.
  • a height detection means photo sensor 186) for detecting the elevation height of the motor, and a control means (control unit 300) for stopping the gear 166 and rotating the motor based on a signal from the height detection means.
  • Elevating means having
  • the stirring method of the present invention is suitably used for stirring a reaction vessel (cell 10) containing an insoluble carrier particle-containing reagent, and particularly preferably for stirring a reaction vessel containing a magnetic carrier particle-containing reagent. Used. Since the magnetic carrier particles have a high specific gravity and easily settle, the stirring method of the present invention is particularly effective.
  • reaction vessel cell 10
  • holding member reaction table 18
  • stirring rod pin 180
  • rotating means stirring motor 174
  • lifting means moving motor 164
  • the use of the stirring mechanism 66 is not limited to the example given in the present embodiment.
  • the stirring mechanism 66 is also applied to other parts. Can be used.
  • the shape of the pin 180 that is the engaging means is not limited to a rod shape, and may be various shapes such as a ring shape at the tip and a bottom of the cell 10 held by the ring.

Abstract

Provided are a mechanism and method for efficiently and easily stirring a reaction container (cell). A stirring mechanism having: a reaction table (18) for holding a cell (10) formed with an engagement hole (10E) on the bottom; a pin (180) disposed below the reaction table (18); an elevating means for bringing the pin (180) into and out of the engagement hole (10E) of the cell (10) protruding downward from the reaction table (18); and a rotating means for rotating the pin (180) about the axial line of the cell (10). A method for stirring the cell (10), the method involving: a cell holding step for holding, on the reaction table (18), the cell (10) formed with the engagement hole (10E) on the bottom; a pin insertion step for bringing the pin (180) disposed below the reaction table (18) into and out of the engagement hole (10E) of the cell (10) protruding downward from the reaction table (18); and a pin rotation step for rotating the pin (180) about the axial line of the cell (10).

Description

攪拌機構及び攪拌方法Stirring mechanism and stirring method
本発明は攪拌機構及び攪拌方法に関し、特に免疫測定法に用いられる、試薬、検体等を収容する反応容器を攪拌するための機構及び方法に関する。 The present invention relates to a stirring mechanism and a stirring method, and more particularly to a mechanism and a method for stirring a reaction container containing a reagent, a specimen, and the like used in an immunoassay.
 検体中の測定対象物質を、抗原抗体反応を利用して測定する免疫測定法として、反応容器に、不溶性担体粒子、一次抗体、標識化二次抗体、及び検体を添加し、不溶性担体粒子上に、一次抗体、測定対象物質、及び、標識化二次抗体の免疫複合体を形成させ、この免疫複合体中の標識量を測定することにより、検体中の測定対象物質を測定する方法がある。 As an immunoassay method for measuring a substance to be measured in a specimen using an antigen-antibody reaction, an insoluble carrier particle, a primary antibody, a labeled secondary antibody, and a specimen are added to a reaction container, and the substance is placed on the insoluble carrier particle. There is a method for measuring a substance to be measured in a specimen by forming an immune complex of a primary antibody, a substance to be measured, and a labeled secondary antibody, and measuring the amount of the label in the immune complex.
 上記の免疫測定法で使用される、特に磁性担体粒子等の不溶性担体粒子を含む試薬については、その攪拌および沈降防止のため種々の攪拌装置が提案されている。例えば、容器を乗せたトレイを回転・停止を繰り返すことにより容器内部の液を攪拌し沈降を防止する、又は容器そのものに回転運動その他複雑な動きを与えて内部の試薬に回転流を起させて攪拌、沈降を防止し、あるいは内部にボール,ロッド等の攪拌子を入れて攪拌の効果を増強する等の攪拌機構が提案されている(例えば、特許文献1、特許文献2参照)。 For the reagent containing insoluble carrier particles such as magnetic carrier particles used in the above immunoassay, various stirring devices have been proposed for stirring and preventing sedimentation. For example, by repeatedly rotating and stopping the tray on which the container is placed, the liquid inside the container is agitated to prevent sedimentation, or the container itself is subjected to rotational movement and other complicated movements to cause rotational flow in the internal reagent. Stirring mechanisms that prevent stirring and settling or enhance the stirring effect by inserting a stirrer such as a ball or rod inside are proposed (for example, see Patent Document 1 and Patent Document 2).
 また、容器の攪拌方法として、容器の上端部を支点として、容器底部に対して偏心した平面円運動を生じさせ、容器を攪拌する方法が報告されている(例えば、特許文献3、特許文献4参照)。 Further, as a method for stirring the container, a method has been reported in which the container is stirred by causing a planar circular motion eccentric with respect to the bottom of the container with the upper end of the container as a fulcrum (for example, Patent Document 3 and Patent Document 4). reference).
特開平08-201396号公報Japanese Patent Laid-Open No. 08-201396 特開2006-047250号公報JP 2006-047250 A 特開平07-198561号公報Japanese Patent Application Laid-Open No. 07-198561 特開昭59-019858号公報JP 59-019858 A
 しかしながら、特許文献1に記載のセル(反応容器)のように、セルに外部と連通する流路を設け、流路の先端に加圧機構を設けた構成とすればセル自体が大型化し、結果としてセルを固定せざるを得ず、複数のセルを使い分けることができなくなるので、複数の検体を測定することができない。さらにセルを測定ごとに洗浄する必要も生じる。またセル自体に攪拌装置を設ければセルが大型化/重量化する上にセルのコストも上昇するため、多数の検体を短時間で効率よく測定することができない。 However, as in the cell (reaction vessel) described in Patent Document 1, if the cell is provided with a flow path communicating with the outside and a pressure mechanism is provided at the tip of the flow path, the cell itself becomes large, resulting in As a result, the cells must be fixed, and a plurality of cells cannot be used properly, so that a plurality of samples cannot be measured. In addition, the cell needs to be cleaned for each measurement. In addition, if a stirrer is provided in the cell itself, the cell becomes larger and heavier and the cost of the cell also increases, so that a large number of specimens cannot be measured efficiently in a short time.
 さらに、セルに超音波を当てて攪拌するためには装置が大型化し、騒音など環境への影響を免れ得ず、また、攪拌子をセルの中へ挿入して使用する方法ではセルと同数の攪拌子が必要となるためコストが上昇し、攪拌子の洗浄、搬送など付随する装置の追加が必要となる。 Furthermore, in order to stir by applying ultrasonic waves to the cell, the size of the apparatus becomes large, and it is inevitable that the effects of the environment, such as noise, will be unavoidable. Since a stirrer is required, the cost increases, and additional devices such as cleaning and transporting the stirrer are required.
 本発明は上記事実を考慮し、反応容器を簡便かつ効率的に攪拌するための機構及び方法を提供することを課題とする。 In view of the above facts, an object of the present invention is to provide a mechanism and a method for simply and efficiently stirring a reaction vessel.
 第1の態様に係る攪拌機構は、底部に凹部が形成された反応容器を保持する保持部材と、前記保持部材の下側に設けられた攪拌棒と、前記攪拌棒を前記保持部材から下方へ突き出た前記反応容器の前記凹部内へ前記攪拌棒を出入りさせる昇降手段と、前記攪拌棒を前記反応容器の軸線周りに旋回させる回転手段と、を有することを特徴とする。 A stirring mechanism according to a first aspect includes a holding member that holds a reaction vessel having a recess formed in a bottom portion, a stirring rod that is provided below the holding member, and the stirring rod that extends downward from the holding member. Elevating means for moving the stirring rod into and out of the recessed portion of the protruding reaction vessel, and rotating means for rotating the stirring rod around the axis of the reaction vessel.
 第1の態様に係る攪拌機構では、昇降手段が保持部材に保持され下方に突き出た反応容器の凹部へ攪拌棒を入れる。回転手段が、攪拌棒を反応容器の軸線周りに旋回させると、保持部材に保持されている部分を支点として、反応容器が首振り運動(歳差運動)する。これにより、攪拌棒を反応容器内へ挿入せずに、反応容器自体の首振り運動によって、反応容器内の試薬等を攪拌することができる。 In the stirring mechanism according to the first aspect, the lifting / lowering means is held by the holding member, and the stirring bar is inserted into the recess of the reaction vessel protruding downward. When the rotating means pivots the stirring rod around the axis of the reaction vessel, the reaction vessel swings (precesses) around the portion held by the holding member. Thereby, the reagent etc. in reaction container can be stirred by the swing motion of reaction container itself, without inserting a stirring rod into reaction container.
 第2の態様に係る攪拌機構は、第1の態様に係る攪拌機構において、前記保持部材は、外周部に前記反応容器の外径より大きな円孔が形成されたターンテーブルであり、前記反応容器は前記円孔の孔縁に前記反応容器から張出した鍔部で吊下されることを特徴とする。 The stirring mechanism according to a second aspect is the stirring mechanism according to the first aspect, wherein the holding member is a turntable in which a circular hole larger than an outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel Is suspended from a hole edge of the circular hole by a flange projecting from the reaction vessel.
 第2の態様に係る攪拌機構では、鍔で吊下された状態の反応容器が反応テーブルの凹部の中で多少のガタツキを有しながら首振り運動(歳差運動)するので、攪拌効率が向上する。 In the agitation mechanism according to the second aspect, the reaction vessel suspended by the scissors performs a swing motion (precession motion) while having some backlash in the recess of the reaction table, so that the agitation efficiency is improved. To do.
 第3の態様に係る攪拌機構は、第2の態様に係る攪拌機構において、前記反応容器の前記凹部には、前記凹部の底面から開口部に向って拡径する傾斜面が形成され、前記攪拌棒の旋回径は、前記凹部の開口部の径より小径であることを特徴とする。 The stirring mechanism according to a third aspect is the stirring mechanism according to the second aspect, wherein the concave portion of the reaction vessel is formed with an inclined surface whose diameter increases from the bottom surface of the concave portion toward the opening. The swivel diameter of the bar is smaller than the diameter of the opening of the recess.
 第3の態様に係る攪拌機構では、反応容器の凹部の停止位置がある程度ズレていても、攪拌棒を凹部へ入れることができる。 In the stirring mechanism according to the third aspect, the stirring bar can be inserted into the recess even if the stop position of the recess of the reaction vessel is shifted to some extent.
 第4の態様に係る攪拌機構は、第1の態様~第3の態様の何れか一つに攪拌機構において、前記回転手段は、前記保持部材の下側に設けられたモータと、前記モータで回転され、前記攪拌棒が偏心して取付けられる回転体と、を備えたことを特徴とする。 The stirring mechanism according to a fourth aspect is the stirring mechanism according to any one of the first to third aspects, wherein the rotating means includes a motor provided below the holding member, and the motor. And a rotating body that is rotated and to which the stirring bar is eccentrically attached.
 第4の態様に係る攪拌機構では、汎用部品を使用して回転手段を構成できるので、製品コストを削減できる。 In the stirring mechanism according to the fourth aspect, since the rotating means can be configured using general-purpose parts, the product cost can be reduced.
 第5の態様に係る攪拌機構は、第1の態様~第3の態様の何れか一つの攪拌機構において、前記昇降手段は、前記モータが固定され上下に移動可能に支持されたサブフレームと、前記サブフレームに形成されたラックと、前記ラックと噛み合い、前記モータで回転駆動されるギアと、を備えたことを特徴とする。 The stirring mechanism according to a fifth aspect is the stirring mechanism according to any one of the first to third aspects, wherein the elevating means includes a subframe in which the motor is fixed and supported so as to be vertically movable; A rack formed on the subframe, and a gear that meshes with the rack and is rotationally driven by the motor.
 第5の態様に係る攪拌機構では、汎用部品を使用して昇降手段を構成できるので、製品コストを削減できる。 In the stirring mechanism according to the fifth aspect, since the lifting means can be configured using general-purpose parts, the product cost can be reduced.
 第6の態様に係る攪拌機構は、第5の態様に係る攪拌機構において、前記フレームの昇降高さを検出する高さ検出手段と、前記高さ検出手段からの信号に基づき、前記ギアを停止して、前記モータを回転させる制御手段と、を有することを特徴とする。 The agitation mechanism according to a sixth aspect is the agitation mechanism according to the fifth aspect, wherein the gear is stopped based on a height detection means for detecting an elevation height of the frame and a signal from the height detection means. And control means for rotating the motor.
 第6の態様に係る攪拌機構では、サブフレームの高さを検出して所望の位置で停止させ、モータを回転させることで、正しく攪拌棒をセルの凹部に挿入することができる。 In the stirring mechanism according to the sixth aspect, the height of the subframe is detected, stopped at a desired position, and the motor is rotated, so that the stirring bar can be correctly inserted into the concave portion of the cell.
 第7の態様に係る攪拌方法は、底部に凹部が形成された反応容器を保持部材に保持する反応容器保持工程と、前記保持部材の下側に設けられた攪拌棒を、前記保持部材から下方へ突き出た前記反応容器の前記凹部内へ出入りさせる攪拌棒挿入工程と、前記攪拌棒を、前記反応容器の軸線周りに旋回させる攪拌棒回転工程と、を含むことを特徴とする。 The stirring method according to the seventh aspect includes a reaction vessel holding step for holding a reaction vessel having a recess formed in the bottom portion on a holding member, and a stirring rod provided on the lower side of the holding member. A step of inserting a stirring bar into and out of the recess of the reaction vessel protruding to the side, and a step of rotating a stirring bar for turning the stirring bar around the axis of the reaction vessel.
 第7の態様に係る攪拌方法では、底部に凹部が形成された反応容器を保持部材に保持し、保持部材で保持されている部分を支点に、反応容器の凹部へ挿入され攪拌棒を反応容器の軸線周りに旋回させて、反応容器を攪拌する。これにより、攪拌棒を反応容器内へ挿入することなく、反応容器内の試薬等を均一に攪拌することができる。 In the stirring method according to the seventh aspect, the reaction vessel having a recess formed in the bottom is held by a holding member, and the stirring rod inserted into the recess of the reaction vessel with the portion held by the holding member as a fulcrum The reaction vessel is agitated by swirling around the axis. As a result, it is possible to uniformly stir the reagents and the like in the reaction vessel without inserting the stirring rod into the reaction vessel.
 第8の態様に係る攪拌方法は、第7の態様に係る攪拌方法において、前記保持部材は、外周部に前記反応容器の外径より大きな円孔が形成されたターンテーブルであり、前記反応容器は、前記円孔の孔縁に前記反応容器から張出した鍔部で吊下されることを特徴とする。 An agitation method according to an eighth aspect is the agitation method according to the seventh aspect, wherein the holding member is a turntable in which a circular hole larger than an outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel Is suspended by a flange protruding from the reaction vessel at the hole edge of the circular hole.
 第8の態様に係る攪拌方法では、反応容器が、反応容器から張出した鍔部で吊下された状態で攪拌されるので、攪拌効率が向上する。 In the stirring method according to the eighth aspect, since the reaction vessel is agitated in a state where it is suspended by a flange extending from the reaction vessel, the stirring efficiency is improved.
 第9の態様に係る攪拌方法は、第8の態様に係る攪拌方法において、前記凹部の底面から開口部に向って拡径する傾斜面が形成され、前記攪拌棒の旋回径は、前記凹部の開口部の径より小径であることを特徴とする。 An agitation method according to a ninth aspect is the agitation method according to the eighth aspect, wherein an inclined surface that expands from the bottom surface of the recess toward the opening is formed. The diameter is smaller than the diameter of the opening.
 第9の態様に係る攪拌方法では、攪拌中に、攪拌棒が凹部からはずれ難くなっているため、攪拌効率が向上する。 In the stirring method according to the ninth aspect, the stirring efficiency is improved because the stirring rod is difficult to be removed from the recess during stirring.
 第10の態様に係る攪拌方法は、第7の態様~第9の態様の何れか一つの攪拌方法において、前記攪拌棒回転工程は、前記攪拌棒を、前記保持部材の下側に設けられたモータと、前記モータで回転され、前記攪拌棒が偏心して取り付けられる回転体とを備える回転手段により、前記反応容器の軸線周りに旋回させる工程であることを特徴とする。 The stirring method according to a tenth aspect is the stirring method according to any one of the seventh aspect to the ninth aspect, wherein the stirring rod rotating step is provided on the lower side of the holding member. It is a step of turning around the axis of the reaction vessel by a rotating means comprising a motor and a rotating body that is rotated by the motor and to which the stirring bar is eccentrically attached.
 第10の態様に係る攪拌方法では、汎用部品から構成される回転手段を用いるので、簡易に攪拌することができる。 In the stirring method according to the tenth aspect, since the rotating means composed of general-purpose parts is used, stirring can be performed easily.
 第11の態様に係る攪拌方法は、第7の態様~第10の態様の何れか一つの攪拌方法において、前記攪拌棒挿入工程は、前記モータが固定され上下に移動可能に支持されたサブフレームと、前記サブフレームに形成されたラックと、前記ラックと噛み合い、前記モータで回転駆動されるギアとを備えた昇降手段により、前記攪拌棒を、前記反応容器の前記凹部へ出入りさせる工程であることを特徴とする。 An agitation method according to an eleventh aspect is the agitation method according to any one of the seventh aspect to the tenth aspect, wherein the agitation rod insertion step includes a subframe in which the motor is fixed and supported so as to be movable up and down. And a lifting / lowering means having a rack formed on the subframe and a gear that meshes with the rack and is rotationally driven by the motor, and allows the stirring rod to enter and exit the recess of the reaction vessel. It is characterized by that.
 第11の態様に係る攪拌方法では、汎用部品から構成される昇降手段を用いるので、簡易に攪拌することができる。 In the stirring method according to the eleventh aspect, since the elevating means composed of general-purpose parts is used, stirring can be performed easily.
 第12の態様に係る攪拌方法は、第11の態様に係る攪拌方法において、前記昇降手段は、前記フレームの昇降高さを検出する高さ検出手段と、前記高さ検出手段からの信号に基づき、前記ギアを停止して、前記モータを回転させる制御手段と、を有することを特徴とする。 An agitation method according to a twelfth aspect is the agitation method according to the eleventh aspect, wherein the elevating means is based on a height detection means for detecting the elevation height of the frame and a signal from the height detection means. And a control means for rotating the motor by stopping the gear.
 第12の態様に係る攪拌方法では、攪拌を制御することができるので、安全に攪拌することができる。 In the stirring method according to the twelfth aspect, stirring can be controlled, so that stirring can be performed safely.
 第13の態様に係る攪拌方法は、第7の態様~第12の態様の何れか一つの攪拌方法において、前記反応容器が、不溶性担体粒子含有試薬を収容していることを特徴とする。 The stirring method according to a thirteenth aspect is characterized in that, in the stirring method according to any one of the seventh aspect to the twelfth aspect, the reaction vessel contains a reagent containing insoluble carrier particles.
 第13の態様に係る攪拌方法では、反応容器に収容されている不溶性担体粒子含有試薬を効率的に攪拌することができる。 In the stirring method according to the thirteenth aspect, the insoluble carrier particle-containing reagent accommodated in the reaction vessel can be efficiently stirred.
 第14の態様に係る攪拌方法は、第13の態様に係る攪拌方法において、前記不溶性担体粒子含有試薬が、磁性担体粒子含有試薬であることを特徴とする。 The stirring method according to a fourteenth aspect is the stirring method according to the thirteenth aspect, wherein the insoluble carrier particle-containing reagent is a magnetic carrier particle-containing reagent.
 第14の態様に係る攪拌方法では、反応容器に収容されている磁性担体粒子含有試薬を効率的に攪拌することができる。 In the stirring method according to the fourteenth aspect, the magnetic carrier particle-containing reagent accommodated in the reaction vessel can be efficiently stirred.
 本発明により、反応容器を簡便かつ効率的に攪拌するための機構及び方法が提供される。 The present invention provides a mechanism and a method for simply and efficiently stirring a reaction vessel.
本願発明の実施形態に係る攪拌機構がセットされたターンテーブルを備えた免疫測定装置の基本構成を示す上面図である。It is a top view which shows the basic composition of the immunoassay apparatus provided with the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. 本願発明の実施形態に係るセルの構造を示す斜め上側から見た斜視図である。It is the perspective view seen from the slanting upper side which shows the structure of the cell which concerns on embodiment of this invention. 本願発明の実施形態に係るセルの構造を示す斜め下側から見た斜視図である。It is the perspective view seen from the slanting lower side which shows the structure of the cell which concerns on embodiment of this invention. 本願発明の実施形態に係るセルの構造を示す下端部付近の断面図である。It is sectional drawing of the lower end part vicinity which shows the structure of the cell which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構がセットされたターンテーブルを示す斜視図である。It is a perspective view which shows the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. 本願発明の実施形態に係る攪拌機構がセットされたターンテーブルを示す平面図である。It is a top view which shows the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. 本願発明の実施形態に係る攪拌機構がセットされたターンテーブルを示す分解斜視図である。It is a disassembled perspective view which shows the turntable in which the stirring mechanism which concerns on embodiment of this invention was set. 本願発明の実施形態に係る攪拌機構の構造を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the stirring mechanism which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構の構造を説明するための斜視図である。It is a perspective view for demonstrating the structure of the stirring mechanism which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構の構造を説明するための正面図である。It is a front view for demonstrating the structure of the stirring mechanism which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構の構造を説明するための側面図である。It is a side view for demonstrating the structure of the stirring mechanism which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構の動作状態を説明するための正面図である。It is a front view for demonstrating the operation state of the stirring mechanism which concerns on embodiment of this invention. 本願発明の実施形態に係る攪拌機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the stirring mechanism which concerns on embodiment of this invention.
<全体構成>
 図を参照しながら、本発明の実施形態に係る免疫測定装置200について説明する。図1に示すように、免疫測定装置200は主として、セル供給ユニット14、試薬保管ユニット12、反応テーブル18、検体テーブル20、BFユニット22、及び検査ユニット24で構成されている。なお、以下の説明において、便宜上、検体テーブル20側を装置手前側として説明する。
<Overall configuration>
An immunoassay apparatus 200 according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the immunoassay apparatus 200 mainly includes a cell supply unit 14, a reagent storage unit 12, a reaction table 18, a sample table 20, a BF unit 22, and a test unit 24. In the following description, for convenience, the sample table 20 side will be described as the front side of the apparatus.
 免疫測定装置200の左奥に配置されたセル供給ユニット14は、空のセル10(反応容器)を所定の位置へ搬送し、一列に整列させるユニットであり、セルタンク30、レール32、及びセル送り機構34を含んで構成されている。セル供給ユニット14の手前には、ターンテーブル36を備えた攪拌装置16を収容した試薬保管ユニット12が配置されており、ターンテーブル36にセットされたカセットには、免疫測定に必要な試薬が収容された複数の試薬容器26が保持されている(図示せず)。また、試薬保管ユニット12は、冷却手段(不図示)によって一定の温度に冷却されている。 The cell supply unit 14 disposed in the left back of the immunoassay apparatus 200 is a unit that transports empty cells 10 (reaction containers) to a predetermined position and aligns them in a row. The cell tank 30, rails 32, and cell feed A mechanism 34 is included. A reagent storage unit 12 containing a stirrer 16 equipped with a turntable 36 is arranged in front of the cell supply unit 14, and a reagent set for immunoassay is stored in a cassette set on the turntable 36. A plurality of reagent containers 26 are held (not shown). The reagent storage unit 12 is cooled to a certain temperature by a cooling means (not shown).
 試薬保管ユニット12の右側には、反応テーブル18が配置されている。反応テーブル18は、免疫測定装置200の中央部よりやや左側に位置しており、ヒータ(不図示)を備えている。図3A~Cに示すように、反応テーブル18の外周部には、セル10を保持する凹部38が反応テーブル18の全周に亘って形成されている。凹部38の径は後述するセルハンド72などの搬送位置精度に合わせて、セル10の径より大きい必要があり、かつ後述するフランジ10Bの径よりも小さいので、セル10はフランジ10Bで凹部38に保持される。 A reaction table 18 is arranged on the right side of the reagent storage unit 12. The reaction table 18 is located slightly to the left of the center of the immunoassay device 200 and includes a heater (not shown). As shown in FIGS. 3A to 3C, a recess 38 for holding the cell 10 is formed on the outer periphery of the reaction table 18 over the entire periphery of the reaction table 18. The diameter of the recess 38 needs to be larger than the diameter of the cell 10 in accordance with the conveyance position accuracy of the cell hand 72 and the like described later, and is smaller than the diameter of the flange 10B described later. Is done.
 さらに、図3A~Cに示すように反応テーブル18の上にはカバー19が設けられていてもよい。後述するセルハンドによってセル10の受け渡しが行われる箇所のみ、図3Bに平面図で示すようにカバー19には穴19Aが設けられ、穴19Aを介してセル10を反応テーブル18の凹部38にセットすることができる。一方、カバー19でセル10の上を覆うことで、反応テーブル18の回転移動中に他の試薬/検体などの飛沫や埃のセル10への混入を防止することができる。 Furthermore, a cover 19 may be provided on the reaction table 18 as shown in FIGS. 3A to 3C. As shown in the plan view of FIG. 3B, the cover 19 is provided with a hole 19A only at a location where the cell hand to be described later is delivered, and the cell 10 is set in the recess 38 of the reaction table 18 through the hole 19A. be able to. On the other hand, by covering the top of the cell 10 with the cover 19, it is possible to prevent the splashing of other reagents / specimens and the like from being mixed into the cell 10 during the rotational movement of the reaction table 18.
 本実施形態では、一例として、反応テーブル18の周方向に等間隔で60個の凹部38が形成されている。また、ヒータ(不図示)により、凹部38に保持されたセル10を温め、セル10内の試薬を活性化させることができる。 In the present embodiment, as an example, 60 concave portions 38 are formed at equal intervals in the circumferential direction of the reaction table 18. Further, the cell 10 held in the recess 38 can be warmed by a heater (not shown), and the reagent in the cell 10 can be activated.
 反応テーブル18の手前には、検体テーブル20が配置されており、検体を収容した複数の試験管40が保持されている。また、反応テーブル18の右側には、後述するセルハンド72を挟んでBFユニット22が配置されている。BFユニット22は、セル10を回転搬送するBFテーブル42と、BFテーブル42にセットされたセル10内の試薬のB/F分離を行うBFノズルユニット44とを含んで構成されている。なお、本実施形態では、装置の奥側と手前側の2箇所にBFユニット22が配置されているが、1箇所だけに配置してもよい。 A sample table 20 is arranged in front of the reaction table 18 and a plurality of test tubes 40 containing samples are held. A BF unit 22 is disposed on the right side of the reaction table 18 with a cell hand 72 to be described later interposed therebetween. The BF unit 22 includes a BF table 42 that rotates and conveys the cell 10 and a BF nozzle unit 44 that performs B / F separation of the reagent in the cell 10 set on the BF table 42. In the present embodiment, the BF units 22 are disposed at two locations on the back side and the near side of the device, but may be disposed at only one location.
 BFユニット22の右側には、後述するセルハンド74を挟んで検査ユニット24が配置されている。検査ユニット24は、セル10内の試薬を攪拌する攪拌部46と、光量を測定する測定室48とで構成されている。 The inspection unit 24 is disposed on the right side of the BF unit 22 with a cell hand 74 described later interposed therebetween. The inspection unit 24 includes a stirring unit 46 that stirs the reagent in the cell 10 and a measurement chamber 48 that measures the amount of light.
 免疫測定装置200には、上記の他に、セル10を反応テーブル18へ移動させるセルハンド52、試薬を吸引吐出する試薬分注ノズル54、68、及び検体を吸引吐出する検体分注ノズル60が配置されている。また、免疫測定装置200を構成するユニット、セルハンド、及びノズル等は、制御部300(不図示)に接続されており、制御部300からの信号により動作する。また、後述するサブフレーム162の上下位置、および攪拌モータ174の回転速度を含めて装置全体の動作を制御する。 In addition to the above, the immunoassay apparatus 200 includes a cell hand 52 that moves the cell 10 to the reaction table 18, reagent dispensing nozzles 54 and 68 that suck and discharge reagents, and a sample dispensing nozzle 60 that sucks and discharges samples. Has been. Further, the units, cell hands, nozzles, and the like constituting the immunoassay apparatus 200 are connected to the control unit 300 (not shown) and operate according to signals from the control unit 300. Further, the operation of the entire apparatus is controlled including the vertical position of a sub-frame 162, which will be described later, and the rotational speed of the stirring motor 174.
<免疫測定法>
 次に、免疫測定装置200を用いた免疫測定法の一例を説明する。なお、本実施態様では、不溶性担体粒子含有試薬としてストレプトアビジン結合磁性担体粒子含有試薬を用いているが、これに限らず、他の磁性担体粒子を含有する試薬を用いてもよい。また、磁石を用いずにB/F分離を行う場合は、磁性を有しない不溶性担体粒子、例えば、ラテックス等を用いることができる。本実施態様では、一次抗体含有試薬としてビオチン化一次抗体含有試薬を用いているが、これに限らず、不溶性担体粒子含有試薬の種類に応じて適宜選択される抗体を含有する試薬を用いることができる。本実施態様では、標識化二次抗体含有試薬として、アルカリホスファターゼ標識二次抗体含有試薬を用いているが、これに限らず、測定対象物質の種類に応じて適宜選択される標識物質で標識された抗体を含有する試薬を用いることができる。本実施態様においては、免疫測定法として、サンドイッチ法に基づく化学発光免疫測定法を用いているが、これに限らず、他の免疫測定法を用いてもよい。
 初めに、セル供給ユニット14のセルタンク30内に使用者が未使用のセル10を複数投入する。なお、本実施形態で用いるセル10(キュベットともいう)は、一端部が開口したプラスチック製の有底円筒体であり、開口部に鍔が形成された汎用の反応容器である。
<Immunoassay>
Next, an example of an immunoassay method using the immunoassay apparatus 200 will be described. In this embodiment, a reagent containing streptavidin-bonded magnetic carrier particles is used as the reagent containing insoluble carrier particles. However, the present invention is not limited to this, and a reagent containing other magnetic carrier particles may be used. Moreover, when performing B / F separation without using a magnet, insoluble carrier particles having no magnetism, such as latex, can be used. In this embodiment, a biotinylated primary antibody-containing reagent is used as the primary antibody-containing reagent. However, the present invention is not limited thereto, and a reagent containing an antibody appropriately selected according to the type of the insoluble carrier particle-containing reagent may be used. it can. In this embodiment, an alkaline phosphatase-labeled secondary antibody-containing reagent is used as the labeled secondary antibody-containing reagent. However, the reagent is not limited to this and is labeled with a labeling substance that is appropriately selected according to the type of substance to be measured. Reagents containing different antibodies can be used. In this embodiment, the chemiluminescence immunoassay based on the sandwich method is used as the immunoassay, but not limited to this, other immunoassays may be used.
First, the user puts a plurality of unused cells 10 into the cell tank 30 of the cell supply unit 14. Note that the cell 10 (also referred to as a cuvette) used in the present embodiment is a plastic bottomed cylindrical body having one end opened, and is a general-purpose reaction container having a ridge formed in the opening.
 図2に示すように、セル10は略円筒形とされており、一端(開口側)には各セルハンドで把持し搬送するための鍔10Aが設けられ、その下には各テーブルの凹部にセル10を挿入した際に抜け落ちず、保持されるためのフランジ10Bが設けられている。セル10内は空洞10Cとされており、内部に試薬、検体を注入し内部で貯留、攪拌可能とされている。 As shown in FIG. 2, the cell 10 has a substantially cylindrical shape. One end (opening side) is provided with a ridge 10A for gripping and transporting by each cell hand, and below that is a cell in a recess of each table. A flange 10 </ b> B is provided so that it does not fall off when 10 is inserted and is held. The inside of the cell 10 is a cavity 10C, and a reagent and a specimen can be injected into the cell 10 and stored and stirred inside.
 セル10の底部には下方向に向けて拡径するように開口する係合穴10Eが設けられており、係合穴10Eは空洞10Cとは連通せず、所謂盲管形状とされている。係合穴10Eは図2Cに示すように擂鉢状の傾斜面10Fを備えており、後述する攪拌機構66の回転するピン180と係合することで、セル10は反応テーブル18上において回転、攪拌され、内部の試薬、検体が混合される。 The bottom of the cell 10 is provided with an engagement hole 10E that opens so as to expand in the downward direction. The engagement hole 10E does not communicate with the cavity 10C and has a so-called blind tube shape. As shown in FIG. 2C, the engagement hole 10E has a bowl-shaped inclined surface 10F, and the cell 10 is rotated and stirred on the reaction table 18 by engaging with a rotating pin 180 of a stirring mechanism 66 described later. The internal reagent and specimen are mixed.
 セル10全体が略円筒形状であってもよいが、材料の節約と軽量化のため、係合穴10Eの近傍はリブ10Dで支持する構造であってもよい。またセル10は円筒形状に限定されず、四角柱状、半円柱状など種々の形状であってよい。この際、係合穴10Eが円錐形状となるように傾斜面10Fが形成されていれば、ピン180によって攪拌は可能となる。 The whole cell 10 may have a substantially cylindrical shape, but in order to save material and reduce the weight, a structure in which the vicinity of the engagement hole 10E is supported by the rib 10D may be used. The cell 10 is not limited to a cylindrical shape, and may have various shapes such as a quadrangular prism shape and a semi-cylindrical shape. At this time, if the inclined surface 10F is formed so that the engagement hole 10E has a conical shape, stirring can be performed by the pin 180.
 セルタンク30へ投入されたセル10は、エレベータ(不図示)により1個ずつセルタンク30の上方へ持ち上げられ、その後、傾いた2本の棒で構成されたレール32を滑ってセル送り機構34へ搬送される。 The cells 10 put into the cell tank 30 are lifted one by one above the cell tank 30 by an elevator (not shown), and then slide on a rail 32 composed of two inclined bars and conveyed to the cell feed mechanism 34. Is done.
 セル送り機構34へ搬送されたセル10は、セル送り機構34の整列板50が開閉することによりレール32の終端部32Aへ1つずつ送り込まれる。なお、セル送り機構34を設けずに、セルタンク30からレール32の終端部32Aまでセル10を滑らせてもよい。 The cells 10 conveyed to the cell feeding mechanism 34 are fed one by one to the terminal end portion 32A of the rail 32 by opening and closing the alignment plate 50 of the cell feeding mechanism 34. Note that the cell 10 may be slid from the cell tank 30 to the terminal end portion 32A of the rail 32 without providing the cell feed mechanism 34.
 レール32の終端部32Aに到達したセル10は、セルハンド52に掴まれ、回転軸52A回りに回転して反応テーブル18の凹部38へセットされる。その後、反応テーブル18の回転により、試薬分注ノズル54の直下へ搬送される。ここで、試薬分注ノズル54が回転軸54A周りに回転し、ターンテーブル36のカセットに保持された試薬容器26から不溶性担体粒子含有試薬を吸引してセル10へ吐出する(図示せず)。 The cell 10 that has reached the end portion 32A of the rail 32 is gripped by the cell hand 52, rotated around the rotation shaft 52A, and set in the recess 38 of the reaction table 18. Thereafter, the reaction table 18 is transported directly under the reagent dispensing nozzle 54 by the rotation of the reaction table 18. Here, the reagent dispensing nozzle 54 rotates around the rotation shaft 54A, and the insoluble carrier particle-containing reagent is sucked from the reagent container 26 held in the cassette of the turntable 36 and discharged to the cell 10 (not shown).
 次に、別の試薬容器26から一次抗体含有試薬を吸引してセル10へ吐出する(図示せず)。ここで、不溶性担体粒子含有試薬を吐出した試薬分注ノズル54は、分注ノズル洗浄槽58で一旦洗浄され、その後、一次抗体含有試薬の吸引が行われる。これにより、試薬の混入を防止できる。 Next, the primary antibody-containing reagent is aspirated from another reagent container 26 and discharged to the cell 10 (not shown). Here, the reagent dispensing nozzle 54 from which the insoluble carrier particle-containing reagent has been discharged is washed once in the dispensing nozzle washing tank 58, and then the primary antibody-containing reagent is aspirated. Thereby, mixing of a reagent can be prevented.
 ストレプトアビジン結合磁性担体粒子含有試薬とビオチン化一次抗体含有試薬とが吐出されたセル10は、反応テーブル18の回転により、検体分注ノズル60の近傍へ搬送されながら、反応テーブル18に設けられたヒータにより所定の温度(本実施形態では一例として37℃)で温められ、磁性担体粒子に結合されたストレプトアビジンとビオチン化抗体との反応が促進される。 The cell 10 from which the reagent containing streptavidin-bound magnetic carrier particles and the biotinylated primary antibody-containing reagent were discharged was provided on the reaction table 18 while being transported to the vicinity of the sample dispensing nozzle 60 by the rotation of the reaction table 18. The heater is heated at a predetermined temperature (in this embodiment, 37 ° C. as an example), and the reaction between streptavidin bound to the magnetic carrier particles and the biotinylated antibody is promoted.
 セル10が検体分注ノズル60の近傍へ搬送されると、検体分注ノズル60は、回転軸60A回りに回転し、検体テーブル20にセットされた試験管40から検体を吸引して、ストレプトアビジン結合磁性担体粒子含有試薬とビオチン化一次抗体含有試薬とが吐出されたセル10へ吐出する。検体の希釈が必要な場合には、希釈液容器64から希釈液を吸引し、次いで、検体テーブル20にセットされた試験管40から検体を吸引して、検体と希釈液の混合物を、ストレプトアビジン結合磁性担体粒子含有試薬とビオチン化一次抗体含有試薬とが吐出されたセルへ吐出する。その後、検体、又は、検体と希釈液の混合物をセルへ吐出した検体分注ノズル60は、検体ノズル洗浄槽62で洗浄される。これにより、検体分注ノズル60における検体による汚染が防止される。 When the cell 10 is transported to the vicinity of the sample dispensing nozzle 60, the sample dispensing nozzle 60 rotates around the rotation axis 60A, sucks the sample from the test tube 40 set on the sample table 20, and streptavidin. It discharges to the cell 10 into which the binding magnetic carrier particle-containing reagent and the biotinylated primary antibody-containing reagent are discharged. When the specimen needs to be diluted, the diluent is sucked from the diluent container 64, and then the specimen is sucked from the test tube 40 set on the specimen table 20, so that the mixture of the specimen and the diluent is streptavidin. The reagent containing bound magnetic carrier particles and the biotinylated primary antibody-containing reagent are discharged to the discharged cells. Thereafter, the specimen dispensing nozzle 60 that has ejected the specimen or a mixture of the specimen and the diluted solution to the cell is washed in the specimen nozzle washing tank 62. Thereby, contamination by the sample in the sample dispensing nozzle 60 is prevented.
 検体、又は、検体と希釈液とが吐出されたセル10は、反応テーブル18の外周に沿って設けられた攪拌機構66の位置まで搬送され、攪拌機構66によりセル10内の試薬、検体、及び希釈液が非接触で攪拌される。攪拌は、後述するようにセル10の底部を円錐振り子の軌道で回転させて行われる。 The cell 10 from which the specimen or the specimen and the diluent are discharged is transported to the position of the stirring mechanism 66 provided along the outer periphery of the reaction table 18, and the reagent, specimen, and The diluent is stirred without contact. Stirring is performed by rotating the bottom of the cell 10 along the trajectory of the conical pendulum as will be described later.
  以上により、検体中の測定対象物質が一次抗体に結合され、磁性担体粒子上に、一次抗体、及び測定対象物質の複合体が形成される。次に、試薬分注ノズル68が回転軸68A回りに回転し、試薬保管ユニット12のカセットの所定の位置に保持された試薬容器26からアルカリホスファターゼ標識二次抗体を吸引し、セル10へ吐出する。試薬分注ノズル68は、アルカリホスファターゼ標識二次抗体を吐出した後、分注ノズル洗浄槽70に移動して洗浄が行われる。 As described above, the measurement target substance in the specimen is bound to the primary antibody, and a complex of the primary antibody and the measurement target substance is formed on the magnetic carrier particles. Next, the reagent dispensing nozzle 68 rotates about the rotation axis 68A, and the alkaline phosphatase-labeled secondary antibody is sucked from the reagent container 26 held at a predetermined position of the cassette of the reagent storage unit 12 and discharged to the cell 10. . The reagent dispensing nozzle 68 discharges the alkaline phosphatase-labeled secondary antibody, and then moves to the dispensing nozzle washing tank 70 for cleaning.
 アルカリホスファターゼ標識二次抗体が吐出されたセル10内の試薬類は、攪拌機構66により攪拌され、アルカリホスファターゼ標識二次抗体と検体中の測定対象物質との反応が促進される。これにより、磁性担体粒子上に、一次抗体、測定対象物質、及び標識化二次抗体からなる複合体(免疫複合体)が形成される。 The reagents in the cell 10 from which the alkaline phosphatase-labeled secondary antibody has been discharged are stirred by the stirring mechanism 66, and the reaction between the alkaline phosphatase-labeled secondary antibody and the substance to be measured in the sample is promoted. Thereby, a complex (immunocomplex) composed of the primary antibody, the substance to be measured, and the labeled secondary antibody is formed on the magnetic carrier particles.
 次に、セル10は、反応テーブル18の回転によりセルハンド72の近傍へ搬送され、セルハンド72に掴まれ、回転軸72A回りに回転して一方のBFユニット22へ搬送される。BFユニット22に搬送されたセル10は、BFテーブル42の外周部に設けられた凹部42Aへセットされる。ここで、BFテーブル42の内部には、セル10の外周面を取り囲んでネオジム磁石(不図示)が設けられており、凹部42Aへセットされたセル10内の磁性担体粒子を集磁する。 Next, the cell 10 is transported to the vicinity of the cell hand 72 by the rotation of the reaction table 18, is gripped by the cell hand 72, rotates around the rotation shaft 72 </ b> A, and is transported to one BF unit 22. The cell 10 transported to the BF unit 22 is set in a recess 42 </ b> A provided on the outer periphery of the BF table 42. Here, inside the BF table 42, a neodymium magnet (not shown) is provided so as to surround the outer peripheral surface of the cell 10, and the magnetic carrier particles in the cell 10 set in the recess 42A are collected.
 次に、BFノズルユニット44が凹部42Aにセットされたセル10の上方へ移動する。そして、BFノズルユニット44を構成する4本のBFノズル44Aが、それぞれの凹部42Aにセットされたセル10に対して、試薬類の吸引と洗浄液の吐出を行う。このとき、ネオジム磁石に集磁されている磁性担体粒子、及び磁性担体粒子と結合した試薬類は、BFノズル44Aに吸引されず、セル10内に残留する。 Next, the BF nozzle unit 44 moves above the cell 10 set in the recess 42A. Then, the four BF nozzles 44A constituting the BF nozzle unit 44 perform the suction of reagents and the discharge of the cleaning liquid to the cells 10 set in the respective concave portions 42A. At this time, the magnetic carrier particles collected by the neodymium magnet and the reagents combined with the magnetic carrier particles remain in the cell 10 without being attracted to the BF nozzle 44A.
 一方、磁性担体粒子と結合しなかった試薬類は、BFノズル44Aに吸引されて、セル10から除去される。以上のようにして、磁性担体粒子と結合した物質(Bind)と、結合しなかった物質(Free)が分離(B/F分離)される。なお、本実施形態では、B/F分離を繰り返し行い、磁性担体粒子と結合しなかった物質を確実に取り除くようにしている。 On the other hand, reagents that are not bonded to the magnetic carrier particles are sucked by the BF nozzle 44A and removed from the cell 10. As described above, the substance (Bind) bonded to the magnetic carrier particles and the substance (Free) not bonded are separated (B / F separation). In the present embodiment, B / F separation is repeatedly performed to reliably remove substances that are not bonded to the magnetic carrier particles.
 B/F分離が行われたセル10は、セルハンド74に掴まれ、回転軸74A回りに回転して測定ユニット24の攪拌部46へ搬送される。このとき、セルハンド74に設けられたチューブ(不図示)から検出試薬(発光基質試薬)がセルへ吐出される。攪拌部46では、免疫複合体をその上に担持する磁性担体粒子と、検出試薬とが攪拌され、免疫複合体中のアルカリホスファターゼが発光基質試薬と反応して発光する。 The cell 10 subjected to the B / F separation is gripped by the cell hand 74, rotated around the rotation shaft 74A, and conveyed to the stirring unit 46 of the measurement unit 24. At this time, a detection reagent (a luminescent substrate reagent) is discharged from a tube (not shown) provided in the cell hand 74 to the cell. In the stirring unit 46, the magnetic carrier particles carrying the immune complex thereon and the detection reagent are stirred, and the alkaline phosphatase in the immune complex reacts with the luminescent substrate reagent to emit light.
 次にセル10は、セルハンド74に掴まれ、回転軸74A回りに回転して測定室48内へ搬送される。測定室48は、完全に閉塞されて光が入らない空間となっており、測定室48内に設けられた発光量を測定するセンサにより、免疫複合体中のアルカリホスファターゼと発光基質試薬との反応により生成した光の発光量が測定され、この測定された発光量から、検体中の測定対象物質の濃度を決定する。測定が終わったセル10は、セルハンド74に掴まれ、廃棄管76へ廃棄される。制御部300(不図示)は、検体中の測定対象物質の濃度をデータとして蓄積し、また、測定結果をモニタ(不図示)等に表示させる。 Next, the cell 10 is gripped by the cell hand 74, rotated around the rotation shaft 74A, and conveyed into the measurement chamber 48. The measurement chamber 48 is a completely closed space where light does not enter, and the reaction between the alkaline phosphatase in the immune complex and the luminescent substrate reagent is detected by a sensor that measures the amount of luminescence provided in the measurement chamber 48. Is measured, and the concentration of the substance to be measured in the sample is determined from the measured light emission amount. The cell 10 for which measurement has been completed is grasped by the cell hand 74 and discarded into the waste pipe 76. The control unit 300 (not shown) accumulates the concentration of the measurement target substance in the sample as data, and displays the measurement result on a monitor (not shown) or the like.
<攪拌機構の構成>
 次に、本実施形態に係る攪拌機構66の構成を説明する。
<Configuration of stirring mechanism>
Next, the configuration of the stirring mechanism 66 according to the present embodiment will be described.
 図3A~Cに示すように、反応テーブル18には攪拌機構66が設けられている。本実施形態においては反応テーブル18に2個の攪拌機構66が設けられているが、3個以上であっても、また場合によっては1個であってもよい。 As shown in FIGS. 3A to 3C, the reaction table 18 is provided with a stirring mechanism 66. In the present embodiment, two agitation mechanisms 66 are provided on the reaction table 18, but the number may be three or more, or may be one in some cases.
 図4に示すように攪拌機構66はフレーム160上に、上下方向に移動可能に設けられたサブフレーム162が、上下方向に移動可能に支持されている。フレーム160上には移動モータ164が固定され、横置きに保持された移動モータ164の回転軸の先端に設けられたピニオンギア166が、サブフレーム162に固定されたラックギア172に嵌合する。移動モータ164の回転によってピニオンギア166が回転し、ラックギア172を上下に移動させることで、サブフレーム162は上下方向に移動する。移動モータ164には位置精度の面から例えばパルスモータなどが好適に使用できる。 As shown in FIG. 4, a sub-frame 162 provided on the frame 160 so as to be movable in the vertical direction is supported on the frame 160 so as to be movable in the vertical direction. A moving motor 164 is fixed on the frame 160, and a pinion gear 166 provided at the tip of the rotating shaft of the moving motor 164 held horizontally is engaged with a rack gear 172 fixed to the subframe 162. The pinion gear 166 is rotated by the rotation of the moving motor 164 and the rack gear 172 is moved up and down, so that the sub-frame 162 is moved up and down. For the moving motor 164, for example, a pulse motor can be preferably used from the viewpoint of positional accuracy.
 サブフレーム162は図4Aに示すようにフレーム160上に上下方向に設けられたレール160A上を上下方向に移動可能に支持されたスライダ160B上に設けられている。これにより、サブフレーム162に固定された攪拌モータ174を上下方向に移動させる。レール160Aおよびスライダ160Bは、サブフレーム162が脱落せず、上下へのスムーズな移動を妨げなければ蟻溝など種々の構造から選択できる。 As shown in FIG. 4A, the subframe 162 is provided on a slider 160B supported so as to be movable in the vertical direction on a rail 160A provided on the frame 160 in the vertical direction. As a result, the stirring motor 174 fixed to the subframe 162 is moved in the vertical direction. The rail 160A and the slider 160B can be selected from various structures such as dovetails as long as the subframe 162 does not fall off and hinder smooth movement up and down.
 サブフレーム162は図4C、Dに示すホームポジション(初期位置)から図4Eに示す攪拌位置(上端位置)までの距離Hを移動可能とされている。ホームポジションにおいては、サブフレーム162に設けられた遮光板183をフォトセンサ186が検出し、制御部300(不図示)へ位置情報が伝達され、制御部300の指示により移動モータ164は(下方向へ移動中であれば)回転を停止し、サブフレーム162は停止する。あるいはマイクロスイッチをフレーム160に設け、サブフレーム162の下方向への移動によって作動し、下端位置を検出するなどの方法でもよい。 The sub-frame 162 can move a distance H from the home position (initial position) shown in FIGS. 4C and 4D to the stirring position (upper end position) shown in FIG. 4E. At the home position, the photo sensor 186 detects the light shielding plate 183 provided on the sub-frame 162, and the position information is transmitted to the control unit 300 (not shown). The rotation stops and the subframe 162 stops. Alternatively, a method may be used in which a micro switch is provided on the frame 160 and is operated by moving the sub frame 162 downward to detect the lower end position.
 サブフレーム162に設けられた攪拌モータ174には、例えば格子円盤176が設けられ、同じくサブフレーム162に設けられた光センサ184と組合わせてロータリーエンコーダ188を構成している。このロータリーエンコーダ188にて格子円盤176の回転を検知することで攪拌モータ174の回転速度を検出し、制御部300(不図示)にて攪拌モータ174の回転速度を制御するようにしてもよい。また、ここでいう制御部は前述のサブフレーム162の上下位置制御を行う制御部300と同一の制御基板であっても、これとは別個の専用の制御部であってもよい。 The stirring motor 174 provided in the subframe 162 is provided with, for example, a lattice disk 176, and a rotary encoder 188 is configured in combination with the optical sensor 184 also provided in the subframe 162. The rotary encoder 188 may detect the rotation of the lattice disk 176 to detect the rotation speed of the stirring motor 174, and the control unit 300 (not shown) may control the rotation speed of the stirring motor 174. Further, the control unit referred to here may be the same control board as the control unit 300 that performs the vertical position control of the subframe 162 described above, or may be a dedicated control unit that is separate from this.
 攪拌モータ174には回転軸上に略円筒形状のボス178が設けられ、攪拌モータ174の回転によって回転駆動される。ボス178には、上面に穴182が設けられ、穴182にはピン180が挿入され上方に突出している。 The stirring motor 174 is provided with a substantially cylindrical boss 178 on the rotating shaft, and is rotated by the rotation of the stirring motor 174. The boss 178 is provided with a hole 182 on the upper surface, and a pin 180 is inserted into the hole 182 and protrudes upward.
 穴182はボス178の回転中心(図5に示す回転軸C)から径方向に外れた偏芯位置にあり、結果としてピン180は攪拌モータ174の回転軸C(図5に示す)から偏芯した(エキセントリックな)位置に設けられることになる。このため、攪拌モータ174の回転によりピン180は図5に示す回転軸Cを中心とした円軌道R1上を回転移動する。このとき、円軌道R1の径を係合穴10Eの径よりも小さくしておくことで、ボス178の軌道上の位置がどこであっても、ピン180はセル10の係合穴10Eに挿入される。 The hole 182 is located at an eccentric position radially deviated from the rotation center of the boss 178 (rotation axis C shown in FIG. 5), and as a result, the pin 180 is eccentric from the rotation axis C (shown in FIG. 5) of the stirring motor 174. Will be provided in the (eccentric) position. For this reason, the rotation of the stirring motor 174 causes the pin 180 to rotate on the circular orbit R1 centering on the rotation axis C shown in FIG. At this time, by setting the diameter of the circular track R1 smaller than the diameter of the engagement hole 10E, the pin 180 is inserted into the engagement hole 10E of the cell 10 regardless of the position of the boss 178 on the track. The
 セル10がセットされた反応テーブル18が回転し、セル10を保持する凹部38が攪拌機構66の直上に回転移動すると、制御部300(不図示)からの信号により移動モータ164が駆動されサブフレーム162は攪拌位置に距離Hだけ上昇する。移動モータ164がパルスモータであれば、駆動パルス数のカウントにより図4Eの攪拌位置で停止させることで、新たに位置センサを設けることなく正確にサブフレーム162の停止位置を規定できる。 When the reaction table 18 in which the cell 10 is set rotates and the concave portion 38 that holds the cell 10 rotates and moves directly above the stirring mechanism 66, the movement motor 164 is driven by a signal from the control unit 300 (not shown) to drive the subframe. 162 rises to the stirring position by a distance H. If the moving motor 164 is a pulse motor, the stop position of the subframe 162 can be accurately defined without providing a new position sensor by stopping at the stirring position shown in FIG. 4E by counting the number of drive pulses.
 図4Eに示すようにサブフレーム162が攪拌位置まで距離Hだけ上昇すると、攪拌機構66の直上に位置する反応テーブル18の凹部38に挿入された、セル10の係合穴10Eにピン180が係合する。前述のようにピン180はボス178の回転軸Cから外れた位置に設けられているため、図5に示すようにピン180は回転軸Cを中心とした円軌道R1上を回転移動し、ピン180の先端が契合したセル10の係合穴10Eもまたピン180によって円軌道を描くように移動する。 As shown in FIG. 4E, when the subframe 162 is moved up to the stirring position by the distance H, the pin 180 is engaged with the engagement hole 10E of the cell 10 inserted into the recess 38 of the reaction table 18 positioned immediately above the stirring mechanism 66. Match. As described above, the pin 180 is provided at a position away from the rotation axis C of the boss 178. Therefore, as shown in FIG. 5, the pin 180 rotates and moves on the circular orbit R1 around the rotation axis C. The engagement hole 10E of the cell 10 with which the tip of 180 is engaged also moves in a circular orbit by the pin 180.
 このときセル10は凹部38に挿入されており、凹部38の径は前述のようにセル10の径よりも大きいので、図5に示すように係合穴10Eが円軌道を描くように移動することで、凹部38を支点としてセル10全体は凹部38より上では中心軸が円軌道R2を描くように回転し、凹部38より下では円軌道R1を描くように略円錐振り子の軌道で回転する。 At this time, the cell 10 is inserted into the recess 38, and the diameter of the recess 38 is larger than the diameter of the cell 10 as described above, so that the engagement hole 10E moves so as to draw a circular orbit as shown in FIG. Thus, the entire cell 10 rotates with the concave portion 38 as a fulcrum so that the central axis draws a circular orbit R2 above the concave portion 38, and rotates in a substantially conical pendulum orbit below the concave portion 38 so as to draw a circular orbit R1. .
 上記の攪拌工程中、ピン180は係合穴10Eに挿入されており、前述のように係合穴10Eはセル10内の空洞10Cとは連通していないので、結果としてセル10内部に注入された検体、希釈液、不溶性担体粒子含有試薬等に攪拌子など外部の部材が接触することなく、非接触でセル10の攪拌を行うことができる。 During the agitation process, the pin 180 is inserted into the engagement hole 10E. Since the engagement hole 10E is not in communication with the cavity 10C in the cell 10 as described above, the pin 180 is injected into the cell 10 as a result. The cell 10 can be agitated in a non-contact manner without an external member such as a stirrer coming into contact with the sample, diluent, insoluble carrier particle-containing reagent, or the like.
 これによりセル10内部の検体、希釈液、不溶性担体粒子含有試薬等が、攪拌子などに付着した、他のセル10由来の検体、希釈液、不溶性担体粒子含有試薬等によって汚染される(コンタミネーション)事態を防ぐことができる。また当然、セル10内の液に浸漬される攪拌子が存在しないため、これを洗浄する機構等も不要となり、特に洗浄用の配管が不要となるため反応テーブル18および周辺機器の簡略化、小型化が可能となる。
<攪拌方法>
As a result, the specimen, diluent, insoluble carrier particle-containing reagent, etc. inside the cell 10 are contaminated by the specimen, diluent, insoluble carrier particle-containing reagent, etc. derived from other cells 10 attached to the stirrer (contamination). ) Can prevent the situation. Of course, since there is no stirrer immersed in the liquid in the cell 10, a mechanism for cleaning it is not required, and in particular, no piping for cleaning is required, so the reaction table 18 and peripheral devices are simplified and compact. Can be realized.
<Method of stirring>
 本発明の攪拌方法は、
(1)底部に凹部(係合穴10E)が形成された反応容器(セル10)を保持部材(反応テーブル18)に保持する反応容器保持工程と、
(2)前記保持部材(反応テーブル18)の下側に設けられた攪拌棒(ピン180)を、前記保持部材(凹部38)から下方へ突き出た前記反応容器(セル10)の前記凹部(係合穴10E)内へ出入りさせる攪拌棒挿入工程と、
(3)前記攪拌棒(ピン180)を、前記反応容器(セル10)の軸線周りに旋回させる攪拌棒回転工程と、
を含む反応容器の攪拌方法である。
The stirring method of the present invention comprises:
(1) a reaction vessel holding step of holding a reaction vessel (cell 10) having a recess (engagement hole 10E) formed in the bottom portion on a holding member (reaction table 18);
(2) A stirring rod (pin 180) provided on the lower side of the holding member (reaction table 18) is inserted into the concave portion (engagement) of the reaction vessel (cell 10) protruding downward from the holding member (recess 38). A stirring rod insertion step for entering and exiting the joint hole 10E);
(3) a stirring rod rotating step of rotating the stirring rod (pin 180) around the axis of the reaction vessel (cell 10);
Is a stirring method of a reaction vessel containing
 本発明の攪拌方法は、本発明の攪拌機構を用いて行うことができる。本発明の攪拌方法において、反応容器(セル10)は、底部に凹部(係合穴10E)が形成された反応容器であり、保持部材(反応テーブル18)に保持される構造を有する反応容器が好ましい。保持部材に保持される構造としては、例えば鍔部(フランジ10B)等が挙げられる。また、底部に形成される凹部は、攪拌棒(ピン180)が挿入される形状であれば特に制限はなく、例えば底面から開口部に向って拡径する傾斜面10Fが形成される形状等が挙げられる。 The stirring method of the present invention can be performed using the stirring mechanism of the present invention. In the stirring method of the present invention, the reaction vessel (cell 10) is a reaction vessel having a recess (engagement hole 10E) formed at the bottom, and the reaction vessel having a structure held by a holding member (reaction table 18) is provided. preferable. As a structure hold | maintained at a holding member, a collar part (flange 10B) etc. are mentioned, for example. The concave portion formed in the bottom portion is not particularly limited as long as the stirring rod (pin 180) is inserted therein. For example, the concave portion formed in an inclined surface 10F whose diameter is increased from the bottom surface toward the opening portion or the like. Can be mentioned.
 本発明の攪拌方法において、保持部材(反応テーブル18)は、底部に凹部(係合穴10)が形成された反応容器(セル10)を保持し、反応容器の攪拌を可能とする保持部材であれば特に制限はなく、例えば外周部に前記反応容器の外径より大きな円孔(凹部38)が形成されたターンテーブル等が挙げられる。反応容器は、ターンテーブルの円孔の孔縁に、反応容器から張出した鍔部(フランジ10B)で吊下されて保持される。 In the agitation method of the present invention, the holding member (reaction table 18) is a holding member that holds the reaction vessel (cell 10) having a recess (engagement hole 10) formed in the bottom and enables the agitation of the reaction vessel. If there is no particular limitation, for example, a turntable in which a circular hole (concave portion 38) larger than the outer diameter of the reaction vessel is formed on the outer peripheral portion may be used. The reaction container is suspended and held by a flange (flange 10B) protruding from the reaction container at the hole edge of the circular hole of the turntable.
 本発明の攪拌方法において、攪拌棒(ピン180)は、反応容器(セル10)の底部に形成される凹部(係合穴10E)に挿入され、反応容器を軸線(回転軸C)周りに旋回させる攪拌棒であれば特に制限はない。攪拌棒の旋回径は、反応容器の底部に形成される凹部の開口部の径より小径であることが好ましい。攪拌棒による反応容器の攪拌は、例えば回転手段(攪拌モータ174)により行うことができ、回転手段としては、例えば保持部材の下側に設けられたモータと、モータで回転され、攪拌棒が偏心して取り付けられる回転体(ボス178)とを備える回転手段等が挙げられる。 In the stirring method of the present invention, the stirring rod (pin 180) is inserted into a recess (engagement hole 10E) formed at the bottom of the reaction vessel (cell 10), and the reaction vessel is swung around the axis (rotation axis C). There is no particular limitation as long as it is a stirring rod. The swirling diameter of the stirring rod is preferably smaller than the diameter of the opening of the recess formed at the bottom of the reaction vessel. The stirring of the reaction vessel by the stirring rod can be performed by, for example, a rotating means (stirring motor 174). As the rotating means, for example, a motor provided on the lower side of the holding member and a motor are rotated. Examples of the rotating means include a rotating body (boss 178) attached in a center.
 また、攪拌棒の、反応容器の底部に形成された凹部への挿入(出入り)は、例えば昇降手段により行うことができ、昇降手段としては、例えばモータ(移動モータ164)が固定され上下に移動可能に支持されたサブフレーム162と、前記サブフレーム162に形成されたラック172と、前記ラック172と噛み合い、回転駆動されるギア166とを備えた昇降手段等が挙げられ、さらに、前記フレーム160の昇降高さを検出する高さ検出手段(フォトセンサ186)と、前記高さ検出手段からの信号に基づき、前記ギア166を停止して、前記モータを回転させる制御手段(制御部300)とを有する昇降手段が好ましい。 Further, the stirring rod can be inserted (in / out) into a recess formed in the bottom of the reaction vessel by, for example, an elevating means, and as the elevating means, for example, a motor (moving motor 164) is fixed and moved up and down. An elevating means including a subframe 162 that is supported, a rack 172 formed on the subframe 162, and a gear 166 that meshes with the rack 172 and is driven to rotate, and the like. A height detection means (photo sensor 186) for detecting the elevation height of the motor, and a control means (control unit 300) for stopping the gear 166 and rotating the motor based on a signal from the height detection means. Elevating means having
 本発明の攪拌方法は、不溶性担体粒子含有試薬を収容している反応容器(セル10)の攪拌に好適に用いられ、磁性担体粒子含有試薬を収容している反応容器の攪拌に特に、好適に用いられる。磁性担体粒子は比重が高く、沈降し易いため、本発明の攪拌方法は特に有効である。 The stirring method of the present invention is suitably used for stirring a reaction vessel (cell 10) containing an insoluble carrier particle-containing reagent, and particularly preferably for stirring a reaction vessel containing a magnetic carrier particle-containing reagent. Used. Since the magnetic carrier particles have a high specific gravity and easily settle, the stirring method of the present invention is particularly effective.
 尚、本発明の攪拌方法における反応容器(セル10)、保持部材(反応テーブル18)、攪拌棒(ピン180)、回転手段(攪拌モータ174)、昇降手段(移動モータ164)の具体例としては、それぞれ、前述の、攪拌機構における反応容器、保持部材、攪拌棒、回転手段、昇降手段等が挙げられる。 Specific examples of the reaction vessel (cell 10), the holding member (reaction table 18), the stirring rod (pin 180), the rotating means (stirring motor 174), and the lifting means (moving motor 164) in the stirring method of the present invention are as follows. And the above-mentioned reaction vessel, holding member, stirring rod, rotating means, lifting means and the like in the stirring mechanism.
<まとめ> <Summary>
 以上、本発明の実施例について記述したが、本発明は上記の実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない。 As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to said Example at all, and can implement in a various aspect in the range which does not deviate from the summary of this invention.
 例えば、攪拌機構66の使用は本実施形態に挙げた例に限定されるものではなく、例えば反応テーブル18以外にセル10の攪拌を必要とする工程があれば、他の部位にも攪拌機構66を使用することができる。 For example, the use of the stirring mechanism 66 is not limited to the example given in the present embodiment. For example, if there is a process that requires stirring of the cell 10 other than the reaction table 18, the stirring mechanism 66 is also applied to other parts. Can be used.
 あるいは係合手段であるピン180の形状も、棒状に限定されず、例えば先端をリング状としてセル10の底部をリングで把持するなど、種々の形状であってもよい。 Alternatively, the shape of the pin 180 that is the engaging means is not limited to a rod shape, and may be various shapes such as a ring shape at the tip and a bottom of the cell 10 held by the ring.
10   セル(反応容器)
10B  フランジ(鍔部)
10E  係合穴(凹部)
10F  傾斜面
12   試薬保管ユニット
14   セル供給ユニット
18   反応テーブル(保持部材)
20   検体テーブル
30   セルタンク
38   凹部(円孔)
40   試験管
60   検体分注ノズル
66   攪拌機構
70   分注ノズル洗浄槽
72   セルハンド
160  フレーム
162  サブフレーム
164  移動モータ(昇降手段)
166  ピニオンギア(ギア)
172  ラックギア(ラック)
174  攪拌モータ(回転手段)
176  格子円盤
178  ボス(回転体)
180  ピン(攪拌棒)
181  上端面
182  穴
184  ロータリーエンコーダ
186  フォトセンサ(高さ検出手段)
200  免疫測定装置
300  制御部(制御手段)
C    回転軸
10 cells (reaction vessel)
10B flange
10E engagement hole (concave)
10F Inclined surface 12 Reagent storage unit 14 Cell supply unit 18 Reaction table (holding member)
20 Specimen table 30 Cell tank 38 Recessed portion (circular hole)
40 Test tube 60 Specimen dispensing nozzle 66 Stirring mechanism 70 Dispensing nozzle washing tank 72 Cell hand 160 Frame 162 Subframe 164 Moving motor (lifting means)
166 Pinion gear (gear)
172 Rack gear (rack)
174 Stirring motor (rotating means)
176 Lattice disk 178 Boss (rotating body)
180 pins (stir bar)
181 Upper end surface 182 Hole 184 Rotary encoder 186 Photo sensor (height detection means)
200 Immunoassay device 300 Control unit (control means)
C Rotating shaft

Claims (14)

  1.  底部に凹部が形成された反応容器を保持する保持部材と、
     前記保持部材の下側に設けられた攪拌棒と、
     前記攪拌棒を、前記保持部材から下方へ突き出た前記反応容器の前記凹部内へ出入りさせる昇降手段と、
     前記攪拌棒を前記反応容器の軸線周りに旋回させる回転手段と、
     を有する攪拌機構。
    A holding member for holding a reaction vessel having a recess formed at the bottom;
    A stirring bar provided on the lower side of the holding member;
    Elevating means for allowing the stirring bar to enter and exit into the recess of the reaction container protruding downward from the holding member;
    Rotating means for rotating the stirring rod around the axis of the reaction vessel;
    A stirring mechanism.
  2.  前記保持部材は、外周部に前記反応容器の外径より大きな円孔が形成されたターンテーブルであり、前記反応容器は前記円孔の孔縁に前記反応容器から張出した鍔部で吊下される請求項1に記載の攪拌機構。 The holding member is a turntable in which a circular hole larger than the outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel is suspended by a flange protruding from the reaction vessel at a hole edge of the circular hole. The stirring mechanism according to claim 1.
  3.  前記反応容器の前記凹部には、前記凹部の底面から開口部に向って拡径する傾斜面が形成され、前記攪拌棒の旋回径は、前記凹部の開口部の径より小径である請求項2に記載の攪拌機構。 The inclined surface of the reaction vessel is formed with an inclined surface whose diameter increases from the bottom surface of the recess toward the opening, and the swirling diameter of the stirring rod is smaller than the diameter of the opening of the recess. The stirring mechanism described in 1.
  4.  前記回転手段は、
     前記保持部材の下側に設けられたモータと、
     前記モータで回転され、前記攪拌棒が偏心して取付けられる回転体と、
     を備えた請求項1~3の何れか1項に記載の攪拌機構。
    The rotating means includes
    A motor provided on the lower side of the holding member;
    A rotating body that is rotated by the motor and to which the stirring rod is eccentrically attached;
    The stirring mechanism according to any one of claims 1 to 3, further comprising:
  5.  前記昇降手段は、
     前記モータが固定され上下に移動可能に支持されたサブフレームと、
     前記サブフレームに形成されたラックと、
     前記ラックと噛み合い、前記モータで回転駆動されるギアと、
     を備えた請求項1~4の何れか1項に記載の攪拌機構。
    The lifting means is
    A subframe in which the motor is fixed and supported so as to be movable up and down;
    A rack formed on the subframe;
    A gear meshing with the rack and driven to rotate by the motor;
    The stirring mechanism according to any one of claims 1 to 4, further comprising:
  6.  前記フレームの昇降高さを検出する高さ検出手段と、
     前記高さ検出手段からの信号に基づき、前記ギアを停止して、前記モータを回転させる制御手段と、を有する請求項5に記載の攪拌機構。
    A height detection means for detecting the elevation height of the frame;
    The stirring mechanism according to claim 5, further comprising a control unit that stops the gear and rotates the motor based on a signal from the height detection unit.
  7.  底部に凹部が形成された反応容器を保持部材に保持する反応容器保持工程と、
     前記保持部材の下側に設けられた攪拌棒を、前記保持部材から下方へ突き出た前記反応容器の前記凹部内へ出入りさせる攪拌棒挿入工程と、
     前記攪拌棒を、前記反応容器の軸線周りに旋回させる攪拌棒回転工程と、
    を含む反応容器の攪拌方法。
    A reaction vessel holding step of holding a reaction vessel having a recess formed in the bottom portion on a holding member;
    A stirring rod insertion step for allowing the stirring rod provided on the lower side of the holding member to enter and exit into the concave portion of the reaction vessel protruding downward from the holding member;
    A stirring rod rotating step of rotating the stirring rod around the axis of the reaction vessel;
    A method for stirring a reaction vessel comprising:
  8.  前記保持部材は、外周部に前記反応容器の外径より大きな円孔が形成されたターンテーブルであり、前記反応容器は前記円孔の孔縁に前記反応容器から張出した鍔部で吊下される請求項7に記載の攪拌方法。 The holding member is a turntable in which a circular hole larger than the outer diameter of the reaction vessel is formed in an outer peripheral portion, and the reaction vessel is suspended by a flange protruding from the reaction vessel at a hole edge of the circular hole. The stirring method according to claim 7.
  9.  前記反応容器の前記凹部には、前記凹部の底面から開口部に向って拡径する傾斜面が形成され、前記攪拌棒の旋回径は、前記凹部の開口部の径より小径である請求項8に記載の攪拌方法。 9. The inclined surface of the reaction vessel is formed with an inclined surface whose diameter increases from the bottom surface of the recessed portion toward the opening, and the swirling diameter of the stirring rod is smaller than the diameter of the opening of the recessed portion. The stirring method described in 1.
  10.  前記攪拌棒回転工程は、
     前記攪拌棒を、前記保持部材の下側に設けられたモータと、前記モータで回転され、前記攪拌棒が偏心して取り付けられる回転体とを備える回転手段により、前記反応容器の軸線周りに旋回させる工程である、請求項7~9の何れか1項に記載の攪拌方法。
    The stirring rod rotating step includes
    The stirring rod is swung around the axis of the reaction vessel by a rotating means including a motor provided below the holding member and a rotating body that is rotated by the motor and to which the stirring rod is eccentrically attached. The stirring method according to any one of claims 7 to 9, which is a step.
  11.  前記攪拌棒挿入工程は、
     前記モータが固定され上下に移動可能に支持されたサブフレームと、
     前記サブフレームに形成されたラックと、
     前記ラックと噛み合い、前記モータで回転駆動されるギアとを備えた昇降手段により、前記攪拌棒を、前記反応容器の前記凹部へ出入りさせる工程である、請求項7~10の何れか1項に記載の攪拌方法。
    The stirring rod insertion step includes
    A subframe in which the motor is fixed and supported so as to be movable up and down;
    A rack formed on the subframe;
    The method according to any one of claims 7 to 10, which is a step of moving the stirring bar into and out of the concave portion of the reaction vessel by an elevating means that meshes with the rack and that is rotated by a motor. The stirring method described.
  12.  前記昇降手段は、
     前記フレームの昇降高さを検出する高さ検出手段と、
     前記高さ検出手段からの信号に基づき、前記ギアを停止して、前記モータを回転させる制御手段と、を有する請求項11に記載の攪拌方法。
    The lifting means is
    A height detection means for detecting the elevation height of the frame;
    The stirring method according to claim 11, further comprising: a control unit that stops the gear and rotates the motor based on a signal from the height detection unit.
  13.  前記反応容器が、不溶性担体粒子含有試薬を収容している請求項7~12の何れか1項に記載の攪拌方法。 The stirring method according to any one of claims 7 to 12, wherein the reaction vessel contains an insoluble carrier particle-containing reagent.
  14.  前記不溶性担体粒子含有試薬が、磁性担体粒子含有試薬である請求項13記載の攪拌方法。 The stirring method according to claim 13, wherein the insoluble carrier particle-containing reagent is a magnetic carrier particle-containing reagent.
PCT/JP2013/067261 2012-06-25 2013-06-24 Stirring mechanism, and stirring method WO2014002954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522619A JPWO2014002954A1 (en) 2012-06-25 2013-06-24 Stirring mechanism and stirring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142141 2012-06-25
JP2012-142141 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002954A1 true WO2014002954A1 (en) 2014-01-03

Family

ID=49783100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067261 WO2014002954A1 (en) 2012-06-25 2013-06-24 Stirring mechanism, and stirring method

Country Status (2)

Country Link
JP (1) JPWO2014002954A1 (en)
WO (1) WO2014002954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006097A1 (en) * 2014-07-11 2016-01-14 株式会社島津製作所 Preprocessing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296428A (en) * 1990-04-16 1991-12-27 Tosoh Corp Mixing apparatus
JPH06509647A (en) * 1991-07-26 1994-10-27 デイド・ケミストリイ・システムズ・インコーポレーテッド Multilinear automation equipment for immunoassay processing
JP2002196006A (en) * 2000-12-27 2002-07-10 Olympus Optical Co Ltd Automatic analyzer
JP2011017716A (en) * 2005-04-01 2011-01-27 Mitsubishi Chemical Medience Corp Reaction cuvette for biosample multiple autoanalyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296428A (en) * 1990-04-16 1991-12-27 Tosoh Corp Mixing apparatus
JPH06509647A (en) * 1991-07-26 1994-10-27 デイド・ケミストリイ・システムズ・インコーポレーテッド Multilinear automation equipment for immunoassay processing
JP2002196006A (en) * 2000-12-27 2002-07-10 Olympus Optical Co Ltd Automatic analyzer
JP2011017716A (en) * 2005-04-01 2011-01-27 Mitsubishi Chemical Medience Corp Reaction cuvette for biosample multiple autoanalyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006097A1 (en) * 2014-07-11 2016-01-14 株式会社島津製作所 Preprocessing apparatus
JPWO2016006097A1 (en) * 2014-07-11 2017-04-27 株式会社島津製作所 Pretreatment device

Also Published As

Publication number Publication date
JPWO2014002954A1 (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5801722B2 (en) Immune analyzer
CN109917145B (en) Full-automatic chemiluminescence immunoassay instrument
JP5346265B2 (en) Sample analyzer and sample analysis method
US20090009757A1 (en) Cuvette
JP6148670B2 (en) Container supply device
US20070172390A1 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JPH06509647A (en) Multilinear automation equipment for immunoassay processing
EP3131651B1 (en) Reaction vessel handling apparatus, testing apparatus, and methods using same
JP6170917B2 (en) Container gripping device
CN107942085A (en) Automatic analysing apparatus and its method of sample analysis
CN210090481U (en) Chemiluminescence immunoassay appearance
WO2012105398A1 (en) Automatic analyzing device
JP6063761B2 (en) Magnetic separation stirrer and automatic analyzer
JPH10123136A (en) Automatic immunoanalysis device
JP5192455B2 (en) Automatic analyzer
JP6012728B2 (en) Cassette and reagent set
US20200393474A1 (en) Bf separator, sample analyzer, and bf separation method
WO2014002954A1 (en) Stirring mechanism, and stirring method
US20190018029A1 (en) Automated Analysis Device and Automated Analysis Method
JP6153759B2 (en) Automatic analyzer
JP2022179656A (en) Specimen measurement device and specimen measurement method
JP2014228318A (en) Automatic analyzer and automatic analysis method
JP2012098201A (en) Reagent stirring mechanism and autoanalyzer
CN113655233B (en) Immunoassay analyzer
JPH0665862U (en) Luminous measuring container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809335

Country of ref document: EP

Kind code of ref document: A1