WO2014002431A1 - 警報音駆動回路 - Google Patents

警報音駆動回路 Download PDF

Info

Publication number
WO2014002431A1
WO2014002431A1 PCT/JP2013/003809 JP2013003809W WO2014002431A1 WO 2014002431 A1 WO2014002431 A1 WO 2014002431A1 JP 2013003809 W JP2013003809 W JP 2013003809W WO 2014002431 A1 WO2014002431 A1 WO 2014002431A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control unit
voltage
power supply
transformer
Prior art date
Application number
PCT/JP2013/003809
Other languages
English (en)
French (fr)
Inventor
泰輝 向
阿部 豊
幸弘 松岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13808508.9A priority Critical patent/EP2866224B1/en
Priority to CN201380033308.XA priority patent/CN104412321B/zh
Publication of WO2014002431A1 publication Critical patent/WO2014002431A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission

Definitions

  • the present invention relates to an alarm sound driving circuit.
  • the thief may remove the battery for the purpose of stopping the operation of the vehicle burglar alarm.
  • a vehicle theft alarm device that can generate an alarm sound even when the battery is removed, using a built-in battery mounted on the vehicle theft alarm device.
  • an alarm sound driving circuit configured to generate an alarm sound having a sufficient sound pressure even when driven by a built-in battery. No. 2011-242698.
  • the above-mentioned conventional example includes a sounding body driving unit that includes two switching elements and drives a siren (sounding body), and a PWM control unit that controls the duty cycle of these switching elements.
  • PWM is an abbreviation for “Pulse Width Modulation”.
  • the PWM control unit controls the duty cycle of each switching element, thereby supplying high frequency power from the transformer connected to the siren to the siren and driving the siren.
  • the duty cycle is changed depending on whether the power source is a battery or a built-in battery, the duty cycle is constant with respect to changes in other conditions.
  • the duty cycle is constant with respect to changes in other conditions.
  • the sound pressure of the siren fluctuates due to the variation in current consumption.
  • the present invention has been made in view of the above points, and provides an alarm sound driving circuit capable of preventing the sound pressure output by the sounding body from fluctuating due to variations in current consumption due to individual differences among sounding bodies.
  • the purpose is to do.
  • the alarm sound driving circuit of the present invention has a transformer connected to a sounding body and a switch unit interposed between a power source and the transformer, and the switch unit is turned on / off via the transformer.
  • a drive unit that converts a power supply voltage into a high-frequency voltage and supplies drive power to the sounding body, a control unit that applies a drive signal to the switch unit of the drive unit and performs PWM control, and a voltage that detects the power supply voltage
  • a detection unit a temperature detection unit that detects an ambient temperature of the sounding body; and a current detection unit that detects a current consumption of the sounding body, wherein the control unit is associated with the power supply voltage and the ambient temperature.
  • the current consumption threshold value and a plurality of pattern tables distributed based on the threshold value are stored, and the control unit compares the current consumption value detected by the current detection unit with the threshold value.
  • the select pattern table, and adjusts the drive power such by referring to the pattern table selected maintain a constant output sound to pressure of the sounding body.
  • the pattern table has on-pulse width data of the drive signal linked to the power supply voltage and the ambient temperature
  • the control unit includes the voltage detection unit and the temperature detection unit.
  • the on-pulse width is preferably set based on the detection value.
  • the pattern table has frequency data of the driving signal linked to the power supply voltage and the ambient temperature, and the control unit detects the voltage detecting unit and the temperature detecting unit. It is preferable to set the frequency based on the value.
  • the present invention detects the power supply voltage, the ambient temperature of the sounding body, and the current consumption, and compares the detected current consumption value with the threshold value of the current consumption associated with the power supply voltage and the ambient temperature of the sounding body.
  • One of the plurality of pattern tables distributed based on the above is selected.
  • the driving power is adjusted so as to keep the sound pressure output by the sounding body constant with reference to the selected pattern table. Thereby, in this invention, it can prevent that the sound pressure which a sounding body outputs by fluctuation
  • the alarm sound drive circuit of the present embodiment includes a transformer T1, a drive unit 1, a vehicle power supply unit 2, a built-in battery unit 3, a control unit 4, a voltage detection unit 5, and a temperature.
  • a detection unit 6 and a current detection unit 7 are provided.
  • the transformer T1 is composed of an autotransformer (single transformer).
  • a siren (sound generator) SI1 including a piezoelectric speaker or a dynamic speaker is connected to the output end of the transformer T1.
  • the transformer T1 is provided with taps TA1 to TA5 in order from the end of the winding.
  • the taps TA1 to TA3 constitute an input unit, and the taps TA4 and TA5 constitute an output unit.
  • the taps TA4 and TA5 are provided at both ends of the winding, and the tap TA3 is provided at the neutral point of the transformer T1.
  • the taps TA1 and TA2 are provided so as to sandwich the tap TA3.
  • the taps TA4 and TA5 are connected to the siren SI1 via the connector CN1. Further, the tap TA3 is connected to the vehicle power supply unit 2 and the built-in battery unit 3.
  • the taps TA1 and TA2 are connected to the drive unit 1.
  • the drive unit 1 includes a first switch unit 10, a second switch unit 11, and resistors R1 and R2.
  • the first switch unit 10 includes a switching element 100 that is an N-channel MOSFET and a switching element 101 that is an NPN transistor.
  • MOSFET is an abbreviation for “Metal-Oxide-Semiconductor-Field-Effect-Transistor”.
  • the second switch unit 11 includes a switching element 110 that is an N-channel MOSFET and a switching element 111 that is an NPN transistor.
  • a parasitic diode is built in between the drain and source of each switching element 100, 110, and a protection diode is built in between the gate and source. Bias resistors are connected between the input stage of the bases of the switching elements 101 and 111 and between the base and the emitter, respectively.
  • the switching element 100 has a drain connected to the tap TA1 of the transformer T1, a gate connected to a connection point between the resistor R1 and the collector of the switching element 101, and a source connected to the ground (earth).
  • the switching element 110 has a drain connected to the tap TA2 of the transformer T1, a gate connected to a connection point between the resistor R2 and the collector of the switching element 111, and a source connected to the ground (earth).
  • the switching element 101 has a collector connected to the tap TA3 of the transformer T1 via a resistor R1, and an emitter connected to the ground (earth).
  • the first drive signal S ⁇ b> 1 is input to the base of the switching element 101.
  • the switching element 111 has a collector connected to the tap TA3 of the transformer T1 via the resistor R2, and an emitter connected to the ground (earth).
  • the second drive signal S2 is input to the base of the switching element 111.
  • the vehicle power supply unit 2 includes a battery 20 and a switch unit 21.
  • the battery 20 is a lead storage battery mounted on a vehicle.
  • the battery 20 has a positive electrode connected to the switch unit 21 and a negative electrode connected to the ground.
  • the switch unit 21 includes two switching elements 210 and 211 that are P-channel MOSFETs and a switching element 212 that is an NPN transistor.
  • a parasitic diode is built in between the drain and source of each switching element 210 and 211, and a protective diode is built in between the gate and source.
  • a bias resistor is connected between the base input stage of the switching element 212 and the base-emitter.
  • the switching element 210 has a drain connected to the positive electrode of the battery 20, a gate connected to the collector of the switching element 212, and a source connected to the source of the switching element 211.
  • the switching element 211 has a gate connected to the collector of the switching element 212 and a drain connected to the tap TA3 of the transformer T1. Further, a resistor R3 is connected between the gate and source of each switching element 210, 211.
  • the switching element 212 has an emitter connected to the ground.
  • the battery control signal S3 is input to the base of the switching element 212.
  • the built-in battery unit 3 includes a built-in battery 30, a switch unit 31, and a DC / DC converter 32.
  • a secondary battery such as a Ni-MH battery or a primary battery such as a lithium battery is used.
  • the built-in battery 30 has a positive electrode connected to the switch unit 31 and a negative electrode connected to the ground.
  • the switch unit 31 includes two switching elements 310 and 311 that are P-channel type MOSFETs and a switching element 312 that is an NPN type transistor.
  • a parasitic diode is built in between the drain and source of each switching element 310, 311 and a protective diode is built in between the gate and source.
  • a bias resistor is connected between the base input stage of the switching element 312 and the base-emitter.
  • the switching element 310 has a drain connected to the positive electrode of the internal battery 30, a gate connected to the collector of the switching element 312, and a source connected to the source of the switching element 311.
  • the switching element 311 has a gate connected to the collector of the switching element 312 and a drain connected to the DC / DC converter 32.
  • a resistor R4 is connected between the gate and source of each switching element 310, 311.
  • the switching element 312 has an emitter connected to the ground.
  • the built-in battery control signal S4 is input to the base of the switching element 312.
  • the DC / DC converter 32 is composed of, for example, a flyback converter, and its output end is connected to the tap TA3 of the transformer T1.
  • the DC / DC converter 32 boosts the output voltage of the built-in battery 30 and outputs the boosted voltage to the drive unit 1.
  • the voltage detection unit 5 includes a series circuit of two resistors R5 and R6 and is connected in parallel to the output terminals of the vehicle power supply unit 2 and the built-in battery unit 3. A connection point between the resistors R5 and R6 is connected to the control unit 4. Therefore, a voltage obtained by dividing the power supply voltage (the output voltage of the vehicle power supply unit 2 or the output voltage of the built-in battery unit 3) is input to the control unit 4 as the voltage detection signal S5.
  • the control unit 4 monitors the power supply voltage based on the voltage detection signal S5.
  • the temperature detection unit 6 includes a thermistor TH1 which is a temperature sensor.
  • the thermistor TH1 is attached to the outer surface of a housing (not shown) made of a resin material that forms the outline of the siren SI1, for example.
  • the thermistor TH1 detects the ambient temperature of the siren SI1 through the housing.
  • the arrangement of the thermistor TH1 is not limited to this.
  • the thermistor TH1 may be arranged around the siren SI1 without being attached to the casing. In this case, the thermistor TH1 detects the ambient temperature of the siren SI1 via air.
  • the thermistor TH1 is connected to the control unit 4. Therefore, the ambient temperature of the siren SI1 detected by the thermistor TH1 is input to the control unit 4 as the temperature detection signal S6.
  • the controller 4 monitors the ambient temperature of the siren SI1 based on the input temperature detection signal S6.
  • the current detection unit 7 includes a detection resistor R7 inserted between the connector CN1 and the tap TA5 of the transformer T1. One end of the detection resistor R7 on the connector CN1 side is connected to the control unit 4. Therefore, the voltage drop in the detection resistor R7 is input to the control unit 4 as the current detection signal S7.
  • the control unit 4 monitors the current consumption of the siren SI1 based on the input current detection signal S7.
  • the control unit 4 includes a microcomputer (not shown) and a memory (not shown) as main components.
  • the control unit 4 drives and controls the switch units 10 and 11 by outputting the first drive signal S1 and the second drive signal S2 to the switch units 10 and 11 of the drive unit 1 (see FIG. 1). Further, the control unit 4 monitors the output voltage V1 of the battery 20 and the output voltage V2 of the built-in battery 30. As will be described later, the control unit 4 outputs a battery control signal S3 and a built-in battery control signal S4 to the vehicle power supply unit 2 and the built-in battery unit 3 based on the output voltages V1 and V2, respectively.
  • control part 4 selects any one of the battery 20 or the internal battery 30 as a drive power supply of siren SI1. Further, the control unit 4 receives an alarm signal S0 indicating whether there is an abnormality output from an abnormality detection unit (not shown) provided in a vehicle theft alarm device (not shown).
  • a plurality of pattern tables are stored in the memory of the control unit 4.
  • Each pattern table has the drive signal S1 was linked to the ambient temperature and power supply voltage of the siren SI1, S2 of the data pulse width T ON, respectively.
  • the unit of pulse width T ON shown in each pattern table is " ⁇ s".
  • the memory of the control unit 4 stores in advance data on the current consumption threshold value associated with the ambient temperature of the siren SI1 and the power supply voltage.
  • Each pattern table is divided into a pattern A (see FIG. 4), a pattern B (see FIG. 5), and a pattern C (see FIG. 6) based on this current consumption threshold.
  • Pulse width T ON as shown in FIG. 3, the time width of the low level of the drive signals S1, S2. As described later, a current flows through the transformer T1 during the on-pulse width T ON, supplies drive power to the siren SI1. Accordingly, the control unit 4, control for changing the pulse width T ON to the driving unit 1, that is, by performing PWM control to adjust the driving power supplied to the siren SI1, to adjust the sound pressure.
  • a voltage detection signal S5 from the voltage detection unit 5 a temperature detection signal S6 from the temperature detection unit 6, and a current detection signal S7 from the current detection unit 7 are input to the control unit 4.
  • Control unit 4 selects one of the pattern tables based on the detection signal S5 ⁇ S7, it carries out a PWM control of the drive unit 1 to set the pulse width T ON.
  • the control unit 4 monitors the output voltage V1 of the battery 20. Then, the control unit 4 outputs a high-level battery control signal S3 to the switch unit 21 if the output voltage V1 is equal to or higher than a predetermined voltage. In response to the battery control signal S3, the switching element 212 is turned on, and the switching elements 210 and 211 are also turned on. Therefore, the battery 20 conducts to the tap TA3 of the transformer T1, and supplies power to the transformer T1. Thereby, drive power can be supplied to the siren SI1 via the transformer T1.
  • control unit 4 outputs a low-level internal battery control signal S4 to the switch unit 31.
  • the switching element 312 is switched off, and the switching elements 310 and 311 are also switched off. Therefore, when the battery 20 is used as a power source, the built-in battery 30 does not conduct with the tap TA3 of the transformer T1, and does not supply power to the transformer T1.
  • the control unit 4 monitors the output voltage V2 of the built-in battery 30. If the output voltage V1 of the battery 20 is lower than the predetermined voltage and the output voltage V2 of the internal battery 30 is equal to or higher than the predetermined voltage, the control unit 4 outputs a high-level internal battery control signal S4 to the switch unit 31. . With this built-in battery control signal S4, the switching element 312 is turned on, and the switching elements 310 and 311 are also turned on. Therefore, the built-in battery 30 conducts to the tap TA3 of the transformer T1 via the DC / DC converter 32, and supplies power to the transformer T1. Thereby, drive power can be supplied to the siren SI1 via the transformer T1.
  • control unit 4 outputs a low level battery control signal S3 to the switch unit 21.
  • the switching element 212 is switched off, and the switching elements 210 and 211 are also switched off. Therefore, when the built-in battery 30 is used as a power source, the battery 20 does not conduct with the tap TA3 of the transformer T1, and does not supply power to the transformer T1.
  • the abnormality detection unit of the vehicle burglar alarm detects an abnormality, it outputs a high level alarm signal S0.
  • the control unit 4 outputs the first drive signal S1 and the second drive signal S2 that alternately repeat the high level and the low level to the drive unit 1.
  • the first switch unit 10 of the driving unit 1 when the switching element 101 is switched on by the first driving signal S1 having a high level, the switching element 100 is switched off, and the tap TA1 of the transformer T1 is cut off from the ground (earth).
  • the switching element 100 when the switching element 101 is turned off by the low-level first drive signal S1, the switching element 100 is turned on, and the tap TA1 of the transformer T1 is electrically connected to the ground (earth). Flows. Therefore, a current flows alternately between the taps TA1 and TA3 of the transformer T1 by the first drive signal S1.
  • the switching element 111 when the switching element 111 is turned on by the high-level second drive signal S2, the switching element 110 is turned off, and the tap TA2 of the transformer T1 is grounded (earth). Is cut off from.
  • the switching element 111 when the switching element 111 is turned off by the low-level second drive signal S2, the switching element 110 is turned on, and the tap TA2 of the transformer T1 is brought into conduction with the ground (earth). Flows. Therefore, a current flows alternately between the taps TA2 and TA3 of the transformer T1 by the second drive signal S2.
  • the transformer T1 boosts the input voltage between the taps TA1 and TA3 and between the taps TA2 and TA3, and outputs a high frequency voltage between the taps TA4 and TA5. Thereby, driving power is supplied to the siren SI1 via the connector CN1, and the siren SI1 emits an alarm sound.
  • the abnormality detection unit of the vehicle burglar alarm when it detects any abnormality, it outputs a low level alarm signal S0.
  • the control unit 4 When the low level alarm signal S0 is input, the control unit 4 outputs the low level first drive signal S1 and the second drive signal S2 to the drive unit 1.
  • the switching elements 101 and 111 and the switching elements 100 and 110 are all turned off. For this reason, no current flows between the taps TA1-TA3 and between the taps TA2-TA3 of the transformer T1, and no driving power is supplied to the siren SI1, so the siren SI1 does not emit an alarm sound.
  • the control unit 4 by adjusting the pulse width T ON of the drive signals S1, S2, but adjusts the driving power supplied to the siren SI1, carries out the following operations in this. That is, the control unit 4 detects the power supply voltage and the ambient temperature of the siren SI1 based on the voltage detection signal S5 and the temperature detection signal S6, and reads the corresponding current consumption threshold value from the memory. Then, the control unit 4 compares the read current consumption threshold value with the current consumption value of the siren SI1 based on the current detection signal S7, and selects one of the pattern tables based on the comparison result. Then, the control unit 4 refers to the pattern table selected, set the pulse width T ON corresponding to the ambient temperature of the power supply voltage and the siren SI1, carries out the PWM control of the drive unit 1.
  • the current consumption threshold has a certain range centered on a reference value corresponding to the power supply voltage and the ambient temperature of the siren SI1, and has a range. Then, the control unit 4 selects the pattern table of the pattern B when the current consumption is within the threshold range. In addition, the control unit 4 selects the pattern table for pattern A when the current consumption exceeds the threshold range, and selects the pattern table for pattern C when the current consumption falls below the threshold range.
  • the control unit 4 selects the pattern table pattern B, to set the pulse width T ON to 75 ⁇ s and performs PWM control of the drive unit 1.
  • the control unit 4 selects the pattern table pattern A, performs to set the pulse width T ON to 50 ⁇ s by PWM control of the drive unit 1.
  • the control unit 4 selects the pattern table pattern C, set the pulse width T ON to 100 ⁇ s and performs PWM control of the drive unit 1.
  • the control unit 4 of the alarm sound drive circuit includes the threshold value of the current consumption associated with the power supply voltage and the ambient temperature of the siren SI1, and a plurality of pattern tables distributed based on the threshold value. I remember it.
  • the power supply voltage, the ambient temperature of the siren SI1, and the current consumption of the siren SI1 are detected, and the pattern value is selected by comparing the detected current consumption value with the current consumption threshold value. To do.
  • the drive power supplied to the siren SI1 is adjusted so as to keep the sound pressure output from the siren SI1 constant with reference to the selected pattern table. Thereby, in the warning sound drive circuit of the present embodiment, it is possible to prevent the sound pressure output from the siren SI1 from fluctuating due to variations in current consumption due to individual differences in the siren SI1.
  • the pattern table includes data of pulse width T ON of the power supply voltage and a driving signal correlated to the ambient temperature of the siren SI1.
  • the control part 4 of the alarm sound drive circuit of this embodiment sets ON pulse width TON based on the detection value of the voltage detection part 5 and the temperature detection part 6, and keeps the sound pressure which siren SI1 outputs constant.
  • PWM control of the drive unit 1 is performed.
  • the sound pressure output by the siren SI1 can be kept constant regardless of changes in the power supply voltage and the ambient temperature of the siren SI1.
  • the control unit 4 selects any one of the three pattern tables based on the current consumption. However, more pattern tables may be prepared. In this case, since it is possible to cope with minute variations in current consumption due to individual differences of the siren SI1, it is possible to enhance the effect of preventing a change in sound pressure output by the siren SI1.
  • alarm circuit of this embodiment is carried out PWM control of the drive unit 1 so as to maintain the output sound to pressure sirens SI1 constant by changing the pulse width T ON of the drive signal
  • the other It may be the control.
  • the control unit 4 may be configured to perform PWM control of the drive unit 1 by changing the frequency (cycle) of the drive signal.
  • the pattern table the data of the frequency of the drive signal correlated to the ambient temperature of the power supply voltage and siren SI1
  • the control part 4 sets the frequency of a drive signal based on the detection value of the voltage detection part 5 and the temperature detection part 6, and performs PWM control of the drive part 1 so that the sound pressure which siren SI1 outputs may be kept constant. Do. Even with this configuration, the sound pressure output by the siren SI1 can be kept constant regardless of changes in the power supply voltage and the ambient temperature of the siren SI1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mechanical Engineering (AREA)
  • Burglar Alarm Systems (AREA)
  • Alarm Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明に係る警報音駆動回路は、制御部と、電源電圧を検出する電圧検出部と、発音体の周囲温度を検出する温度検出部と、発音体の消費電流を検出する電流検出部とを備える。制御部は、電源電圧及び周囲温度に紐付けた消費電流の閾値と、閾値に基づいて振り分けられた複数のパターンテーブルとを記憶する。そして、制御部は、検出した消費電流の値と閾値とを比較して何れかのパターンテーブルを選択し、選択したパターンテーブルを参照して発音体の出力する音圧を一定に保つように駆動電力を調整する。

Description

警報音駆動回路
 本発明は、警報音駆動回路に関する。
 近年、車両盗難や車上盗難などの自動車に対する犯罪が増加しているため、車両の異常(例えば、不審者の車内への侵入や窓ガラスの破壊、レッカーによる移動など)を検出して警報を発する車両盗難警報機が普及してきている。
 しかし、窃盗者が車両盗難警報機の動作を止める目的で、バッテリーを外す虞がある。そこで、車両盗難警報機に搭載された内蔵電池を用いて、バッテリーが外された状態でも警報音を発することができる車両盗難警報機が提供されている。また、このような車両盗難警報機において、内蔵電池で駆動する場合でも十分な音圧の警報音を発生させることができるように構成した警報音駆動回路が提供されており、例えば日本国公開特許第2011-242698号公報に開示されている。
 ところで、上記従来例は、2つのスイッチング素子から成りサイレン(発音体)を駆動する発音体駆動部と、これらスイッチング素子のデューティサイクルを制御するPWM制御部とを備えている。「PWM」は、「Pulse Width Modulation」の略語である。そして、上記従来例では、PWM制御部が各スイッチング素子のデューティサイクルを制御することにより、サイレンに接続されたトランスから高周波電力をサイレンに供給し、サイレンを駆動している。
 しかしながら、上記従来例では、電源がバッテリーの場合と内蔵電池の場合とでデューティサイクルを変更しているものの、その他の条件の変化に対してはデューティサイクルが一定である。ここで、サイレンには製品毎に個体差があり、個体差により駆動時の消費電流にもバラつきがある。そして、この消費電流のバラつきによってサイレンの音圧は変動する。
 したがって、デューティサイクルを一定にしてサイレンを駆動する上記従来例では、サイレンの個体差による消費電流のバラつきが原因となってサイレンが出力する音圧が変化するという問題があった。
 本発明は、上記の点に鑑みて為されたもので、発音体の個体差による消費電流のバラつきにより発音体が出力する音圧が変動するのを防止することのできる警報音駆動回路を提供することを目的とする。
 本発明の警報音駆動回路は、発音体が接続されるトランスと、電源と前記トランスとの間に介在するスイッチ部を有し、前記スイッチ部のオン/オフを切り替えることにより前記トランスを介して電源電圧を高周波電圧に変換して前記発音体に駆動電力を供給する駆動部と、前記駆動部の前記スイッチ部に駆動信号を与えてPWM制御を行う制御部と、前記電源電圧を検出する電圧検出部と、前記発音体の周囲温度を検出する温度検出部と、前記発音体の消費電流を検出する電流検出部とを備え、前記制御部は、前記電源電圧及び前記周囲温度に紐付けた前記消費電流の閾値と、前記閾値に基づいて振り分けられた複数のパターンテーブルとを記憶し、前記制御部は、前記電流検出部で検出した消費電流の値と前記閾値とを比較して何れかの前記パターンテーブルを選択し、選択した前記パターンテーブルを参照して前記発音体の出力する音圧を一定に保つように前記駆動電力を調整することを特徴とする。
 この警報音駆動回路において、前記パターンテーブルは、前記電源電圧及び前記周囲温度に紐付けた前記駆動信号のオンパルス幅のデータを有し、前記制御部は、前記電圧検出部及び前記温度検出部の検出値に基づいて前記オンパルス幅を設定することが好ましい。
 この警報音駆動回路において、前記パターンテーブルは、前記電源電圧及び前記周囲温度に紐付けた前記駆動信号の周波数のデータを有し、前記制御部は、前記電圧検出部及び前記温度検出部の検出値に基づいて前記周波数を設定することが好ましい。
 本発明は、電源電圧、発音体の周囲温度及び消費電流を検出し、検出した消費電流の値と、電源電圧及び発音体の周囲温度に紐付けた消費電流の閾値とを比較して、閾値に基づいて振り分けられた複数のパターンテーブルの何れかを選択する。そして、本発明は、選択したパターンテーブルを参照して発音体の出力する音圧を一定に保つように駆動電力を調整する。これにより、本発明では、発音体の個体差による消費電流のバラつきにより発音体が出力する音圧が変動するのを防止することができる。
本発明の実施形態に係る警報音駆動回路を示す回路概略図である。 本発明の実施形態に係る警報音駆動回路における動作波形図である。 本発明の実施形態に係る警報音駆動回路における動作波形図である。 本発明の実施形態に係る警報音駆動回路におけるパターンAのパターンテーブルを示す図である。 本発明の実施形態に係る警報音駆動回路におけるパターンBのパターンテーブルを示す図である。 本発明の実施形態に係る警報音駆動回路におけるパターンCのパターンテーブルを示す図である。
 以下、本発明の実施形態に係る警報音駆動回路について図面を用いて説明する。本実施形態の警報音駆動回路は、図1に示すように、トランスT1と、駆動部1と、車両電源部2と、内蔵電池部3と、制御部4と、電圧検出部5と、温度検出部6と、電流検出部7とを備える。
 トランスT1は、オートトランス(単巻変圧器)から成る。このトランスT1の出力端には、圧電スピーカやダイナミックスピーカから成るサイレン(発音体)SI1を接続している。トランスT1には、巻線の端から順にタップTA1~TA5を設けており、タップTA1~TA3は入力部を構成し、タップTA4,TA5は出力部を構成している。タップTA4,TA5は巻線の両端に、タップTA3はトランスT1の中性点に設けている。また、タップTA1,TA2は、タップTA3を挟む形で設けている。タップTA4,TA5は、コネクタCN1を介してサイレンSI1に接続している。また、タップTA3は、車両電源部2及び内蔵電池部3に接続している。また、タップTA1,TA2は、駆動部1に接続している。
 駆動部1は、第1スイッチ部10と、第2スイッチ部11と、抵抗R1,R2とを備える。第1スイッチ部10は、Nチャネル型のMOSFETであるスイッチング素子100と、NPN型のトランジスタであるスイッチング素子101とから成る。「MOSFET」は、「Metal-Oxide-Semiconductor-Field-Effect-Transistor」の略語である。また、第2スイッチ部11は、Nチャネル型のMOSFETであるスイッチング素子110と、NPN型のトランジスタであるスイッチング素子111とから成る。各スイッチング素子100,110のドレイン-ソース間には寄生ダイオードが、ゲート-ソース間には保護ダイオードが内蔵されている。また、各スイッチング素子101,111のベースの入力段、及びベース-エミッタ間には、それぞれバイアス抵抗を接続している。
 スイッチング素子100は、ドレインをトランスT1のタップTA1に接続し、ゲートを抵抗R1とスイッチング素子101のコレクタとの接続点に接続し、ソースをグラウンド(アース)に接続している。また、スイッチング素子110は、ドレインをトランスT1のタップTA2に接続し、ゲートを抵抗R2とスイッチング素子111のコレクタとの接続点に接続し、ソースをグラウンド(アース)に接続している。スイッチング素子101は、コレクタを抵抗R1を介してトランスT1のタップTA3に接続し、エミッタをグラウンド(アース)に接続している。そして、スイッチング素子101のベースには、第1駆動信号S1を入力している。スイッチング素子111は、コレクタを抵抗R2を介してトランスT1のタップTA3に接続し、エミッタをグラウンド(アース)に接続している。そして、スイッチング素子111のベースには、第2駆動信号S2を入力している。
 車両電源部2は、バッテリー20と、スイッチ部21とから成る。バッテリー20は、車両に搭載されている鉛蓄電池である。バッテリー20は、正極をスイッチ部21に接続し、負極をグランドに接続している。
 スイッチ部21は、Pチャネル型のMOSFETである2つのスイッチング素子210,211と、NPN型のトランジスタであるスイッチング素子212とから成る。各スイッチング素子210,211のドレイン-ソース間には寄生ダイオードを、ゲート-ソース間には保護ダイオードを内蔵している。また、スイッチング素子212のベースの入力段、及びベース-エミッタ間にはバイアス抵抗を接続している。スイッチング素子210は、ドレインをバッテリー20の正極に接続し、ゲートをスイッチング素子212のコレクタに接続し、ソースをスイッチング素子211のソースに接続している。また、スイッチング素子211は、ゲートをスイッチング素子212のコレクタに接続し、ドレインをトランスT1のタップTA3に接続している。更に、各スイッチング素子210,211のゲート-ソース間には、抵抗R3を接続している。スイッチング素子212は、エミッタをグランドに接続している。また、スイッチング素子212のベースには、バッテリー制御信号S3を入力している。
 内蔵電池部3は、内蔵電池30と、スイッチ部31と、DC/DCコンバータ32とから成る。内蔵電池30には、Ni-MH電池等の2次電池や、リチウム電池等の1次電池を用いる。また、内蔵電池30は、正極をスイッチ部31に接続し、負極をグランドに接続している。
 スイッチ部31は、Pチャネル型のMOSFETである2つのスイッチング素子310,311と、NPN型のトランジスタであるスイッチング素子312とから成る。各スイッチング素子310,311のドレイン-ソース間には寄生ダイオードを、ゲート-ソース間には保護ダイオードを内蔵している。また、スイッチング素子312のベースの入力段、及びベース-エミッタ間にはバイアス抵抗を接続している。スイッチング素子310は、ドレインを内蔵電池30の正極に接続し、ゲートをスイッチング素子312のコレクタに接続し、ソースをスイッチング素子311のソースに接続している。また、スイッチング素子311は、ゲートをスイッチング素子312のコレクタに接続し、ドレインをDC/DCコンバータ32に接続している。更に、各スイッチング素子310,311のゲート-ソース間には、抵抗R4を接続している。スイッチング素子312は、エミッタをグランドに接続している。また、スイッチング素子312のベースには、内蔵電池制御信号S4を入力している。
 DC/DCコンバータ32は、例えばフライバック・コンバータから成り、その出力端はトランスT1のタップTA3に接続している。DC/DCコンバータ32は、内蔵電池30の出力電圧を昇圧して駆動部1に出力する。
 電圧検出部5は、2つの抵抗R5,R6の直列回路から成り、車両電源部2及び内蔵電池部3の出力端に並列に接続している。各抵抗R5,R6の間の接続点は制御部4に接続している。したがって、電源電圧(車両電源部2の出力電圧又は内蔵電池部3の出力電圧)を分圧した電圧が、電圧検出信号S5として制御部4に入力される。制御部4では、電圧検出信号S5に基づいて電源電圧を監視する。
 温度検出部6は、温度センサであるサーミスタTH1から成る。サーミスタTH1は、例えばサイレンSI1の外郭を為す樹脂材料から成る筐体(図示せず)の外面に取り付けられる。そして、サーミスタTH1は、筐体を介してサイレンSI1の周囲温度を検出する。勿論、サーミスタTH1の配置はこれに限定されるものではなく、例えばサイレンSI1の筐体に取り付けずに、その周囲に配置してもよい。この場合、サーミスタTH1は、空気を介してサイレンSI1の周囲温度を検出する。サーミスタTH1は制御部4に接続している。したがって、サーミスタTH1で検出したサイレンSI1の周囲温度が、温度検出信号S6として制御部4に入力される。制御部4は、入力された温度検出信号S6に基づいてサイレンSI1の周囲温度を監視する。
 電流検出部7は、コネクタCN1とトランスT1のタップTA5との間に挿入した検出抵抗R7から成る。検出抵抗R7のコネクタCN1側の一端は制御部4に接続している。したがって、検出抵抗R7における電圧降下分が、電流検出信号S7として制御部4に入力される。制御部4では、入力された電流検出信号S7に基づいてサイレンSI1の消費電流を監視する。
 制御部4は、マイコン(図示せず)やメモリ(図示せず)を主な構成要素とする。制御部4は、駆動部1の各スイッチ部10,11に第1駆動信号S1及び第2駆動信号S2を出力することで、各スイッチ部10,11を駆動制御する(図1参照)。また、制御部4は、バッテリー20の出力電圧V1と、内蔵電池30の出力電圧V2とを監視している。制御部4は、後述するように、各出力電圧V1,V2に基づいて車両電源部2、内蔵電池部3にバッテリー制御信号S3、内蔵電池制御信号S4をそれぞれ出力する。これにより、制御部4は、バッテリー20又は内蔵電池30の何れか1つをサイレンSI1の駆動電源として選択する。また、制御部4には、車両盗難警報機(図示せず)に備えられた異常検出部(図示せず)から出力される異常の有無を示す警報信号S0が入力される。
 制御部4のメモリには、図4~6に示すように、複数(本実施形態の警報音駆動回路では3つ)のパターンテーブルが記憶されている。各パターンテーブルは、サイレンSI1の周囲温度及び電源電圧に紐付けた各駆動信号S1,S2のオンパルス幅TONのデータをそれぞれ有する。なお、各パターンテーブルに示すオンパルス幅TONの単位は「μs」である。また、制御部4のメモリには、サイレンSI1の周囲温度及び電源電圧に紐付けた消費電流の閾値のデータが予め記憶されている。各パターンテーブルは、この消費電流の閾値に基づいて、パターンA(図4参照)、パターンB(図5参照)、パターンC(図6参照)に振り分けられている。
 オンパルス幅TONは、図3に示すように、各駆動信号S1,S2のローレベルの時間幅である。後述するように、このオンパルス幅TONの間にトランスT1に電流が流れ、サイレンSI1に駆動電力を供給する。したがって、制御部4は、駆動部1に対してオンパルス幅TONを変化させる制御、すなわちPWM制御を行うことにより、サイレンSI1に供給する駆動電力を調整し、音圧を調整する。なお、何れのパターンテーブルにおいても、電源電圧が高くなるほど、また、サイレンSI1の周囲温度が高くなるほどオンパルス幅TONが狭くなる。
 制御部4には、図1に示すように、電圧検出部5からの電圧検出信号S5、温度検出部6からの温度検出信号S6、電流検出部7からの電流検出信号S7が入力される。制御部4は、各検出信号S5~S7に基づいて何れかのパターンテーブルを選択し、オンパルス幅TONを設定して駆動部1のPWM制御を行う。
 以下、本実施形態の警報音駆動回路の動作について説明する。先ず、バッテリー20を用いてサイレンSI1に動作電力を供給する場合について説明する。制御部4は、バッテリー20の出力電圧V1を監視している。そして、制御部4は、出力電圧V1が所定電圧以上であればハイレベルのバッテリー制御信号S3をスイッチ部21に出力する。このバッテリー制御信号S3により、スイッチング素子212がオンに切り替わり、各スイッチング素子210,211もオンに切り替わる。したがって、バッテリー20がトランスT1のタップTA3に導通し、トランスT1に電力を供給する。これにより、トランスT1を介してサイレンSI1に駆動電力を供給することができる。
 また、制御部4はローレベルの内蔵電池制御信号S4をスイッチ部31に出力する。この内蔵電池制御信号S4により、スイッチング素子312はオフに切り替わり、各スイッチング素子310,311もオフに切り替わる。したがって、バッテリー20を電源としている場合には、内蔵電池30はトランスT1のタップTA3と導通せず、トランスT1に電力を供給しない。
 次に、内蔵電池30を用いてサイレンSI1を駆動する場合について説明する。制御部4は、内蔵電池30の出力電圧V2を監視している。そして、制御部4は、バッテリー20の出力電圧V1が所定電圧を下回り、且つ内蔵電池30の出力電圧V2が所定電圧以上であれば、ハイレベルの内蔵電池制御信号S4をスイッチ部31に出力する。この内蔵電池制御信号S4により、スイッチング素子312がオンに切り替わり、各スイッチング素子310,311もオンに切り替わる。したがって、内蔵電池30がDC/DCコンバータ32を介してトランスT1のタップTA3に導通し、トランスT1に電力を供給する。これにより、トランスT1を介してサイレンSI1に駆動電力を供給することができる。
 また、制御部4はローレベルのバッテリー制御信号S3をスイッチ部21に出力する。このバッテリー制御信号S3により、スイッチング素子212はオフに切り替わり、各スイッチング素子210,211もオフに切り替わる。したがって、内蔵電池30を電源としている場合には、バッテリー20はトランスT1のタップTA3と導通せず、トランスT1に電力を供給しない。
 次に、サイレンSI1を駆動する場合について図2,3を用いて説明する。なお、ここでは、バッテリー20を電源とした場合について説明するが、内蔵電池30を電源とした場合でも同様である。
 車両盗難警報機の異常検出部は、異常を検出するとハイレベルの警報信号S0を出力する。制御部4は、ハイレベルの警報信号S0が入力されると、ハイレベルとローレベルを交互に繰り返す第1駆動信号S1と第2駆動信号S2とを駆動部1に出力する。駆動部1の第1スイッチ部10では、ハイレベルの第1駆動信号S1によりスイッチング素子101がオンに切り替わると、スイッチング素子100がオフに切り替わり、トランスT1のタップTA1がグラウンド(アース)から遮断される。また、第1スイッチ部10では、ローレベルの第1駆動信号S1によりスイッチング素子101がオフに切り替わると、スイッチング素子100がオンに切り替わり、トランスT1のタップTA1がグラウンド(アース)と導通して電流が流れる。したがって、第1駆動信号S1によりトランスT1のタップTA1-TA3間に交互に電流が流れる。
 同様に、駆動部1の第2スイッチ部11では、ハイレベルの第2駆動信号S2によりスイッチング素子111がオンに切り替わると、スイッチング素子110がオフに切り替わり、トランスT1のタップTA2がグラウンド(アース)から遮断される。また、第2スイッチ部11では、ローレベルの第2駆動信号S2によりスイッチング素子111がオフに切り替わると、スイッチング素子110がオンに切り替わり、トランスT1のタップTA2がグラウンド(アース)と導通して電流が流れる。したがって、第2駆動信号S2によりトランスT1のタップTA2-TA3間に交互に電流が流れる。
 トランスT1では、タップTA1-TA3間、及びタップTA2-TA3間の入力電圧を昇圧し、タップTA4-TA5間から高周波電圧を出力する。これにより、サイレンSI1にコネクタCN1を介して駆動電力が供給され、サイレンSI1は警報音を発する。
 一方、車両盗難警報機の異常検出部が異常を検出しないときは、ローレベルの警報信号S0を出力する。制御部4は、ローレベルの警報信号S0が入力されると、ローレベルの第1駆動信号S1と第2駆動信号S2とを駆動部1に出力する。このとき、各スイッチ部10,11では、スイッチング素子101,111及びスイッチング素子100,110が何れもオフに切り替わる。このため、トランスT1のタップTA1-TA3間及びタップTA2-TA3間の何れにも電流が流れず、サイレンSI1には駆動電力が供給されないので、サイレンSI1は警報音を発しない。
 ここで、制御部4は、各駆動信号S1,S2のオンパルス幅TONを調整することで、サイレンSI1に供給する駆動電力を調整するが、この際に以下の動作を行う。すなわち、制御部4は、電圧検出信号S5及び温度検出信号S6に基づいて電源電圧及びサイレンSI1の周囲温度を検出し、対応する消費電流の閾値をメモリから読み出す。そして、制御部4は、読み出した消費電流の閾値と、電流検出信号S7に基づくサイレンSI1の消費電流の値とを比較し、その比較結果により何れかのパターンテーブルを選択する。そして、制御部4は、選択したパターンテーブルを参照し、電源電圧及びサイレンSI1の周囲温度に対応するオンパルス幅TONを設定し、駆動部1のPWM制御を行う。
 なお、消費電流の閾値は、電源電圧及びサイレンSI1の周囲温度に対応する基準値を中心とした一定の範囲を有するものであり、幅がある。そして、制御部4は、消費電流が閾値の範囲内に収まっている場合にはパターンBのパターンテーブルを選択する。また、制御部4は、消費電流が閾値の範囲を上回る場合はパターンAのパターンテーブルを選択し、消費電流が閾値の範囲を下回る場合はパターンCのパターンテーブルを選択する。
 以下、上記動作の具体例について図4~6を用いて説明する。以下の説明では、例えば、サイレンSI1の周囲温度が45~55℃、電源電圧が12~13Vであるものとする。消費電流が閾値の範囲内に収まっている場合、制御部4はパターンBのパターンテーブルを選択し、オンパルス幅TONを75μsに設定して駆動部1のPWM制御を行う。一方、消費電流が基準となる範囲を上回る場合は、制御部4はパターンAのパターンテーブルを選択し、オンパルス幅TONを50μsに設定して駆動部1のPWM制御を行う。また、消費電流が基準となる範囲を下回る場合は、制御部4はパターンCのパターンテーブルを選択し、オンパルス幅TONを100μsに設定して駆動部1のPWM制御を行う。
 上述のように、本実施形態の警報音駆動回路の制御部4は、電源電圧及びサイレンSI1の周囲温度に紐付けた消費電流の閾値と、閾値に基づいて振り分けられた複数のパターンテーブルとを記憶している。また、本実施形態の警報音駆動回路では、電源電圧、サイレンSI1の周囲温度、サイレンSI1の消費電流を検出し、検出した消費電流の値と消費電流の閾値とを比較してパターンテーブルを選択する。そして、本実施形態の警報音駆動回路では、選択したパターンテーブルを参照してサイレンSI1の出力する音圧を一定に保つようにサイレンSI1に供給する駆動電力を調整している。これにより、本実施形態の警報音駆動回路では、サイレンSI1の個体差による消費電流のバラつきによりサイレンSI1が出力する音圧が変動するのを防止することができる。
 また、本実施形態の警報音駆動回路では、パターンテーブルが、電源電圧及びサイレンSI1の周囲温度に紐付けた駆動信号のオンパルス幅TONのデータを有している。そして、本実施形態の警報音駆動回路の制御部4は、電圧検出部5及び温度検出部6の検出値に基づいてオンパルス幅TONを設定し、サイレンSI1の出力する音圧を一定に保つように駆動部1のPWM制御を行う。これにより、本実施形態では、電源電圧及びサイレンSI1の周囲温度の変化に依らず、サイレンSI1が出力する音圧を一定に保つことができる。
 なお、本実施形態の警報音駆動回路では、制御部4は消費電流に基づいて3つのパターンテーブルから何れかを選択するようになっているが、更に多くのパターンテーブルを用意してもよい。この場合、サイレンSI1の個体差による消費電流の微小なバラつきに対しても対応できるため、サイレンSI1が出力する音圧の変化を防止する効果を高めることができる。
 また、本実施形態の警報音駆動回路では、駆動信号のオンパルス幅TONを変更することでサイレンSI1の出力する音圧を一定に保つように駆動部1のPWM制御を行っているが、他の制御であってもよい。例えば、制御部4は、駆動信号の周波数(周期)を変更することで駆動部1のPWM制御を行なう構成であってもよい。
 この構成では、パターンテーブルは、電源電圧及びサイレンSI1の周囲温度に紐付けた駆動信号の周波数のデータを、オンパルス幅TONのデータの代わりに有している。そして、制御部4は、電圧検出部5及び温度検出部6の検出値に基づいて駆動信号の周波数を設定し、サイレンSI1の出力する音圧を一定に保つように駆動部1のPWM制御を行う。この構成でも、電源電圧及びサイレンSI1の周囲温度の変化に依らず、サイレンSI1が出力する音圧を一定に保つことができる。
 なお、駆動信号の周波数を変更するとサイレンSI1の出力する警報音の音色が変化するが、変更する周波数の範囲が法規で定められた範囲内(例えば、1.8~3.55kHz)であればよい。

Claims (3)

  1.  発音体が接続されるトランスと、
     電源と前記トランスとの間に介在するスイッチ部を有し、前記スイッチ部のオン/オフを切り替えることにより前記トランスを介して電源電圧を高周波電圧に変換して前記発音体に駆動電力を供給する駆動部と、
     前記駆動部の前記スイッチ部に駆動信号を与えてPWM制御を行う制御部と、
     前記電源電圧を検出する電圧検出部と、
     前記発音体の周囲温度を検出する温度検出部と、
     前記発音体の消費電流を検出する電流検出部とを備え、
     前記制御部は、前記電源電圧及び前記周囲温度に紐付けた前記消費電流の閾値と、前記閾値に基づいて振り分けられた複数のパターンテーブルとを記憶し、
     前記制御部は、前記電流検出部で検出した消費電流の値と前記閾値とを比較して何れかの前記パターンテーブルを選択し、選択した前記パターンテーブルを参照して前記発音体の出力する音圧を一定に保つように前記駆動電力を調整することを特徴とする警報音駆動回路。
  2.  前記パターンテーブルは、前記電源電圧及び前記周囲温度に紐付けた前記駆動信号のオンパルス幅のデータを有し、
     前記制御部は、前記電圧検出部及び前記温度検出部の検出値に基づいて前記オンパルス幅を設定することを特徴とする請求項1記載の警報音駆動回路。
  3.  前記パターンテーブルは、前記電源電圧及び前記周囲温度に紐付けた前記駆動信号の周波数のデータを有し、
     前記制御部は、前記電圧検出部及び前記温度検出部の検出値に基づいて前記周波数を設定することを特徴とする請求項1記載の警報音駆動回路。
PCT/JP2013/003809 2012-06-25 2013-06-19 警報音駆動回路 WO2014002431A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13808508.9A EP2866224B1 (en) 2012-06-25 2013-06-19 Alarm drive circuit
CN201380033308.XA CN104412321B (zh) 2012-06-25 2013-06-19 警报器驱动电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142291A JP5891458B2 (ja) 2012-06-25 2012-06-25 警報音駆動回路
JP2012-142291 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002431A1 true WO2014002431A1 (ja) 2014-01-03

Family

ID=49782630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003809 WO2014002431A1 (ja) 2012-06-25 2013-06-19 警報音駆動回路

Country Status (4)

Country Link
EP (1) EP2866224B1 (ja)
JP (1) JP5891458B2 (ja)
CN (1) CN104412321B (ja)
WO (1) WO2014002431A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314496B2 (ja) * 2014-01-21 2018-04-25 浜名湖電装株式会社 警報音発生装置
JP2017084256A (ja) * 2015-10-30 2017-05-18 国立大学法人東北大学 センサシステム
CN106263513B (zh) * 2016-08-31 2018-11-27 宁波汇五洲智能科技有限公司 一种升降桌子
EP3518231B1 (en) * 2016-09-21 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Sound-emitting device, notification device, and sensor
JP6872723B2 (ja) * 2017-12-27 2021-05-19 パナソニックIpマネジメント株式会社 音響装置、音響制御装置、及びプログラム
CN108600905A (zh) * 2018-03-28 2018-09-28 惠州市德赛西威汽车电子股份有限公司 一种动态扬声器驱动电路
FR3083935B1 (fr) * 2018-07-12 2022-07-29 Finsecur Systeme de commutation d'alimentation entre deux piles electriques
CN110415671A (zh) * 2019-06-14 2019-11-05 新沂市承翔电子有限公司 一种具备散热功能的电磁式蜂鸣器
CN110473509B (zh) * 2019-08-19 2021-11-12 深圳南云微电子有限公司 一种峰值电流型蜂鸣器驱动电路
CN114123107A (zh) * 2021-11-30 2022-03-01 中汽创智科技有限公司 车辆电机的控制***、方法、存储介质及具有***的车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09114467A (ja) * 1995-10-13 1997-05-02 Mitsubishi Automob Eng Co Ltd ブザー装置
JPH09147269A (ja) * 1995-11-20 1997-06-06 Hochiki Corp 警報音響装置
JP2011109616A (ja) * 2009-11-20 2011-06-02 Denso Corp スピーカ信号制御回路およびそれを用いたスピーカ信号の制御方法
JP2011230556A (ja) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd 車両盗難警報音駆動回路
JP2011242698A (ja) 2010-05-20 2011-12-01 Panasonic Electric Works Co Ltd 車両盗難警報音駆動回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180796A (en) * 1978-05-22 1979-12-25 Palafox Jose L Vehicular burglar alarm system
US7830269B2 (en) * 2007-09-14 2010-11-09 Astec International Limited Health monitoring for power converter capacitors
CN101980335B (zh) * 2010-09-30 2013-04-10 曹志才 电喇叭智能控制方法
CN101934758B (zh) * 2010-09-30 2012-10-03 曹志才 电喇叭初级稳声压级控制方法
CN102170733A (zh) * 2011-05-05 2011-08-31 深圳市银盾科技开发有限公司 一种大功率led数控照明方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09114467A (ja) * 1995-10-13 1997-05-02 Mitsubishi Automob Eng Co Ltd ブザー装置
JPH09147269A (ja) * 1995-11-20 1997-06-06 Hochiki Corp 警報音響装置
JP2011109616A (ja) * 2009-11-20 2011-06-02 Denso Corp スピーカ信号制御回路およびそれを用いたスピーカ信号の制御方法
JP2011230556A (ja) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd 車両盗難警報音駆動回路
JP2011242698A (ja) 2010-05-20 2011-12-01 Panasonic Electric Works Co Ltd 車両盗難警報音駆動回路

Also Published As

Publication number Publication date
JP5891458B2 (ja) 2016-03-23
JP2014006396A (ja) 2014-01-16
EP2866224B1 (en) 2017-08-16
EP2866224A1 (en) 2015-04-29
CN104412321B (zh) 2017-04-05
EP2866224A4 (en) 2015-07-01
CN104412321A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014002431A1 (ja) 警報音駆動回路
JP2530717B2 (ja) 電池電圧判別回路
US8552845B2 (en) Vehicle burglar alarm circuit
US8395489B2 (en) Vehicle burglar alarm circuit
US5990797A (en) Ultraloud smoke detector
US9419429B2 (en) Power supply apparatus and control method thereof
JP2005067457A (ja) 車両用照明制御装置
JP4974560B2 (ja) 火災警報器
JP4657339B2 (ja) 火災警報器
JP4561237B2 (ja) 駆動状態検出回路
CN103959905B (zh) 方向指示灯控制装置、方向指示装置及方向指示装置的断线检测方法
JPH0954885A (ja) 火災警報器
JP4815645B2 (ja) 電子回路および増幅装置
JP2020016778A (ja) バックライト保護回路
KR970005814B1 (ko) 일산화탄소 가스경보기
US20060006165A1 (en) Control device for electric blanket
KR101552681B1 (ko) 신호등용 음향신호 장치
JP4960750B2 (ja) 警報装置
KR0128100Y1 (ko) 시계의 밧데리 전원 경보장치
KR100939018B1 (ko) 전열침구의 자동 온도제어장치
US7068000B1 (en) Torque control device for electrical tools
JP2021168546A (ja) 発振検出回路
JP2000247121A (ja) タイヤパンク検知装置
KR200247209Y1 (ko) 저 전력소모형 오토바이 도난 방지 시스템
KR100524674B1 (ko) 차량용 디브이알 장치의 전원제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808508

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013808508

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013808508

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE