WO2013190118A1 - Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen - Google Patents

Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen Download PDF

Info

Publication number
WO2013190118A1
WO2013190118A1 PCT/EP2013/063058 EP2013063058W WO2013190118A1 WO 2013190118 A1 WO2013190118 A1 WO 2013190118A1 EP 2013063058 W EP2013063058 W EP 2013063058W WO 2013190118 A1 WO2013190118 A1 WO 2013190118A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
composition according
phosphorus
metal hydroxide
flame retardant
Prior art date
Application number
PCT/EP2013/063058
Other languages
English (en)
French (fr)
Inventor
Oliver Steffen Henze
Oliver MÜHREN
Alfons Bertels
Sabine Conrad
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Priority to US14/410,415 priority Critical patent/US10377880B2/en
Priority to CN201380043810.9A priority patent/CN104797645B/zh
Priority to JP2015517795A priority patent/JP6348109B2/ja
Priority to ES13730885.4T priority patent/ES2632263T3/es
Priority to KR1020147036388A priority patent/KR102099337B1/ko
Priority to BR112014031090A priority patent/BR112014031090A2/pt
Priority to EP13730885.4A priority patent/EP2864404B1/de
Publication of WO2013190118A1 publication Critical patent/WO2013190118A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • thermoplastic polyurethane based on polycarbonate diols
  • the present invention relates to compositions comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane. Furthermore, the present invention relates to the use of such compositions for the production of cable sheathing.
  • thermoplastic polyurethanes both halogen-containing and halogen-free flame retardants can be added.
  • the halogen-free flame-retardant thermoplastic polyurethanes generally have the advantage that they develop less toxic and less corrosive flue gases during combustion.
  • Halogen-free flame-retardant TPUs are described, for example, in EP 0 617 079 A2, WO 2006/121549 A1 or WO 03/066723 A2.
  • thermoplastic polyurethanes nitrogen-containing and / or phosphorus-containing flame retardants can be used which are disclosed, for example, in EP 0 617 079 A2, WO 2006/121549 A1 or WO 03/066723 A2.
  • flame-retardant thermoplastic polyurethanes are disclosed which contain phosphorus compounds as flame retardants.
  • Suitable thermoplastic polyurethanes also include those which are prepared using polyesters, polyethers, polycarbonates or mixtures thereof. Suitable polycarbonates are also disclosed. The sole use of phosphorus-containing flame retardants can often ensure adequate flame retardancy.
  • nitrogen-containing flame retardants alone or in combination with phosphorus-containing flame retardants, on the other hand, has proven to be well flame-retardant thermoplastic polyurethanes, but also has the disadvantage that poisonous combustion gases such as HCN or nitrogen oxides can also be released by the nitrogen-containing compounds.
  • thermoplastic polyurethanes and metal hydroxides can be used alone or in combination with phosphorus-containing flame retardants and / or Schichtsil- ikaten.
  • EP 1 167 429 A1 also relates to flameproofed thermoplastic polyurethanes for cable sheaths.
  • the compositions contain a polyurethane, preferably a polyether-based polyurethane, aluminum or magnesium hydroxide and phosphoric acid esters.
  • EP 1 491 580 A1 also discloses flameproofed thermoplastic polyurethanes for cable sheaths.
  • the compositions contain a polyurethane, in particular a polyether, Aluminum or magnesium hydroxide, phosphoric acid esters and phyllosilicates, for example bentonite.
  • thermoplastic polyurethanes are disclosed, in particular based on polyethers for cable sheaths with good aging resistance.
  • the compositions contain a polyurethane and an inorganic oxide.
  • flame retardants are aluminum or magnesium hydroxide, phosphoric acid esters, sheet silicates or mixtures thereof called.
  • DE 103 43 121 A1 discloses flameproofed thermoplastic polyurethanes which contain a metal hydroxide, in particular aluminum and / or magnesium hydroxide.
  • the thermoplastic polyurethanes are characterized by their molecular weight.
  • the compositions may further contain phosphates or phosphonates.
  • polycarbonate diols are also disclosed as isocyanate-reactive compounds in addition to polyesterols and polyetherols, with polyether polyols being preferred. No examples of polycarbonate diols are mentioned. According to DE 103 43 121 A1, it is also possible to use mixtures of different polyols instead of a polyol. In addition, high fill levels are disclosed, i. high levels of metal hydroxides and other solid components in the thermoplastic polyurethane, which lead to the deterioration of the mechanical properties.
  • WO 201 1/050520 A1 also discloses flameproofed thermoplastic polyurethanes which contain a metal hydrate and a specific phosphorus compound as flame retardant. Suitable metal hydrates are aluminum and / or magnesium hydroxide. Thermoplastic polyurethanes based on polycarbonates are also mentioned in WO 201 1/050520 A1 as suitable thermoplastic polyurethanes, the thermoplastic polyurethanes based on polycarbonate-diols only being mentioned in general terms and no examples given. Likewise, WO 201 1/147068 A1 and WO 201 1/150567 A1 relate to flameproofed thermoplastic polyurethanes.
  • thermoplastic polyurethanes in combination with metal hydroxides is their low resistance to aging, which makes these materials unsuitable for many applications.
  • sparingly soluble oxides of divalent and trivalent metals are added.
  • thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane.
  • the compositions of the invention comprise at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, and at least one metal hydroxide and at least one phosphorus-containing flame retardant. It has surprisingly been found that the compositions according to the invention have improved properties compared to the compositions known from the prior art, for example an increased flame retardance and improved aging resistance.
  • compositions according to the invention have good smoke gas density properties and good mechanical properties.
  • a measure of the mechanical properties is, for example, the tensile strength or breaking elongation of the molded bodies produced from the compositions according to the invention before aging. The tensile strength is determined according to DIN 53504.
  • compositions according to the invention comprise at least one thermoplastic polyurethane which is based on at least one diisocyanate and at least one polycarbonate diol, moreover has a very good hydrolysis resistance, which is required for many applications.
  • compositions of the invention preferably contain at least one thermoplastic polyurethane based on at least one diisocyanate and at least one aliphatic polycarbonate diol.
  • the present invention therefore relates to a composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is a thermoplastic polyurethane based on at least one diisocyanate and at least one aliphatic polycarbonate diol.
  • the composition according to the invention may contain further additives.
  • the composition according to the invention contains as further component at least one layered silicate or hydrotalcite or mixtures thereof.
  • inventively preferred compositions containing at least one layered silicate or hydrotalcite or mixtures thereof have in particular good flame retardancy and good aging resistance.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least a metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • all sheet silicates are suitable for the purposes of the present invention, for example two-layer minerals such as kaolinite and serpentine, three-layer minerals such as montmorillonite or mica and clay minerals such as bentonites.
  • the compositions according to the invention preferably contain bentonites or mixtures of bentonites and further sheet silicates or hydrotalcite.
  • intercalated phyllosilicates are used.
  • Starting layer silicates for these intercalated phyllosilicates are preferably swellable smectites, such as montmorillonite, hectorite, saponite, beidellite or bentonite.
  • organically intercalated phyllosilicates which have a layer spacing of about 1.5 nm to 4 nm.
  • these layered silicates are intercalated with quaternary ammonium compounds, protonated amines, organic phosphonium ions and / or aminocarboxylic acids.
  • composition of the invention may also contain hydrotalcite or at least one layered silicate and hydrotalcite.
  • Hydrokalkit has a layer structure.
  • Hydrotalcite also includes comblainite, desautelite, pyroaurite, reevesite, Sergeevit, stichtite and takovit.
  • a preferred hydrotalcite in the context of the present invention is based on aluminum and magnesium and is neutralized with hydroxide, nitrate and / or carbonate ions in the intermediate layers.
  • An inventively preferred hydrotalcite has the empirical formula
  • the hydrotalcites contained in the compositions of the invention are preferably intercalated organically, that is, the anions which are in the intermediate layers, preferably the hydroxide cation, are at least partially replaced by organic anions.
  • Organic anions preferred in the context of the present invention are anions of fatty acids and / or hydrogenated fatty acids.
  • Organic intercalated phyllosilicates and organically intercalated hydrotalcites can be processed well in the compositions according to the invention.
  • a uniform distribution of the phyllosilicates and / or of the hydrotalcite is achieved.
  • the present invention therefore also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the phyllosilicate is an organically intercalated phyllosilicate and / or the hydrotalcite is an organically intercalated hydrotalcite.
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the phyllosilicate is bentonite.
  • the at least one layered silicate or hydrotalcite or the mixture thereof is preferably present in the composition according to the invention in an amount of from 0.5% by weight to 20% by weight, preferably from 3% by weight to 15% by weight. , And particularly preferably with 3% by weight to 8% by weight, each based on the total composition.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the at least one layered silicate or hydrotalcite or the mixture thereof in an amount in the range of 0.5 wt .-% to 20 wt .-%, based on the total composition, is included.
  • the amount of the components contained in the composition is selected so that the sum of all components of the composition unless otherwise stated 100% wt .-% results.
  • Thermoplastic polyurethanes are known in principle.
  • the preparation is customarily carried out by reacting the components (a) isocyanates and (b) isocyanate-reactive compounds and optionally (c) chain extenders optionally in the presence of at least one (d) catalyst and / or (e) customary auxiliaries and / or additives.
  • the components (a) isocyanate, (b) isocyanate-reactive compounds, (c) chain extenders are mentioned individually or together as synthesis components.
  • the compositions according to the invention comprise at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol. Accordingly, at least one polycarbonate diol is used as component (b) to prepare the polyurethanes contained in the compositions according to the invention.
  • organic isocyanates (a) it is preferred to use aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, more preferably tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methylpentamethylene diisocyanate 1, 5, 2-ethyl-butylene-diisocyanate-1, 4, pentamethylene-diisocyanate-1, 5, butylene-diisocyanate-1, 4, 1-iso-cyanato-3,3,5-trimethyl-5-isocyanatomethyl cyclohexane (isophorone diisocyanate, IPDI), 1,4- and / or 1,3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexane diisocyanate, 1-methyl-2,4- and / or 2, 6-cyclohexane diis
  • At least one polycarbonate diol is used according to the invention, preferably an aliphatic polycarbonate diol.
  • Suitable polycarbonate diols are, for example, polycarbonate diols based on alkanediols.
  • Suitable polycarbonate diols are strictly difunctional OH-functional polycarbonate diols, preferably strictly difunctional OH-functional aliphatic polycarbonate diols.
  • Suitable polycarbonate diols are based, for example, on butanediol, pentanediol or hexanediol, in particular 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentano (1,5-diol or mixtures thereof, more preferably 1,4 Butanediol, 1, 5-pentanediol, 1, 6-hexanediol or mixtures thereof.
  • Polycarbonate diols based on butanediol and hexanediol, polycarbonate diols based on pentanediol and hexanediol, polycarbonate diols based on hexanediol, and mixtures of two or more of these polycarbonate diols are preferably used in the context of the present invention.
  • the polycarbonate diols used have a number average molecular weight Mn in the range of 500 to 4000, determined by GPC, preferably in the range of 650 to 3500, determined by GPC, more preferably in the range of 800 to 3000, determined by GPC.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the at least one polycarbonate diol is selected from the group best polyhydric diols based on butanediol and hexanediol, polycarbonate diols based on pentanediol and hexanediol, polycarbonate diols based on hexanediol, and mixtures of two or more of these polycarbonate diols.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the polycarbonate diol has a number average molecular weight Mn in the range from 500 to 4000, determined by GPC.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the at least one polycarbonate diol is selected from the group consisting polycarbonate diols based on butanediol and hexanediol, polycarbonate diols based on pentanediol and hexanediol, polycarbonate diols based on hexanediol, and mixtures of two or more of these polycarbonate diols and wherein the polycarbonate diol has a number average molecular weight Mn in the range of 500 to 4000 as determined by GPC ,
  • the chain extenders (c) used may preferably be aliphatic, araliphatic, aromatic and / or cycloaliphatic compounds having a molecular weight of from 0.05 kg / mol to 0.499 kg / mol, preferably 2-functional compounds, for example diamines and / or alkanediols of 2 to 10 carbon atoms in the alkylene radical, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona- and / or decaalkylene glycols having 3 to 8 carbon atoms, in particular 1, 2-ethylene glycol, 1, 3 Propanediol, 1, 4-butanediol, 1, 6-hexanediol, preferably corresponding oligo and / or polypropylene glycols, mixtures of the chain extenders can be used.
  • the compounds (c) have only primary hydroxyl groups, very particularly preferably 1, 4-butaned
  • Catalysts (d) which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the isocyanate-reactive compound (b) and the chain extender (c) are, in a preferred embodiment, tertiary amines, in particular triethylamine, Dimethylcyclohexylamine, N-methylmorpholine, ⁇ , ⁇ '-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo (2,2,2) octane, in another preferred embodiment, these are organic metal compounds such as titanic acid esters, iron compounds, preferably iron, (II) acetylacetonate, tin compounds, preferably tin diacetate, tin dioctoate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids, preferably dibutyltin diacetate, dibutyltin d
  • Carboxylic acids used are preferably carboxylic acids having 6 to 14 carbon atoms, more preferably having 8 to 12 carbon atoms.
  • suitable bismuth salts are bismuth (III) neodecanoate, bismuth 2-ethylhexanoate and bismuth octanoate.
  • the catalysts (d) are preferably used in amounts of 0.0001 to 0.1 parts by weight per 100 parts by weight of the isocyanate-reactive compound (b).
  • Zinnka- taylsatoren are preferably used, in particular tin dioctoate.
  • auxiliaries (e) can also be added to structural components (a) to (c). Mention may be made, for example, of surface-active substances, fillers, other flame retardants, nucleating agents, oxidation stabilizers, lubricants and mold release agents, dyes and pigments, optionally stabilizers, for example against hydrolysis, light, heat or discoloration, inorganic and / or organic fillers, reinforcing agents and plasticizers. Suitable auxiliaries and additives can be found, for example, in the Kunststoffhandbuch, Volume VII, edited by Vieweg and Hochtlen, Carl Hanser Verlag, Kunststoff 1966 (S103-1 13).
  • thermoplastic polyurethanes are disclosed, for example, in EP 0922552 A1, DE 10103424 A1 or WO 2006/072461 A1.
  • the preparation is usually carried out on a belt system or a reaction extruder, but can also be done on a laboratory scale, for example by hand casting. Depending on the material properties of the components, these are all mixed together directly or individual components are premixed and / or pre-reacted, e.g. to prepolymers, and then brought to polyaddition.
  • first of all a thermoplastic polyurethane is prepared from the synthesis components, if appropriate with catalyst, into which auxiliary substances may possibly be incorporated. At least one flame retardant is then introduced into this material and distributed homogeneously.
  • the homogeneous distribution preferably takes place in an extruder, preferably in a twin-screw extruder.
  • the amounts of the constituent components (b) and (c) used can be varied in relatively broad molar ratios, the hardness usually increasing with increasing content of chain extender (c).
  • the substantially difunctional polyhydroxy compounds (b) and chain extenders (c) can advantageously be in molar ratios of 1: 1 to 1: 5, preferably 1: 1, 5 to 1: 4.5 are used, so that the resulting mixtures of the constituent components (b) and (c) have a hydroxyl equivalent weight greater than 200, and in particular from 230 to 450, while for the production of harder TPU, eg those with a hardness Shore A greater than 98, preferably from 55 to 75 Shore D, the molar ratios of (b) :( c) in the range from 1: 5.5 to 1:15, preferably from 1: 6 to 1: 12, so that the resulting mixtures of (b) and (c) have a hydroxyl equivalent weight of from 10 to 200, preferably from 120 to 180.
  • thermoplastic polyurethanes To prepare the thermoplastic polyurethanes according to the invention, the synthesis components (a), (b) and (c) are preferably reacted in the presence of catalysts (d) and optionally auxiliaries and / or additives (e) in amounts such that the equivalence ratio of NCO Groups of the diisocyanates (a) to the sum of the hydroxyl groups of the constituent components (b) and (c) 0.9 to 1, 1: 1, preferably 0.95 to 1, 05: 1 and especially about 0.96 to 1, 0 : 1 is.
  • the composition according to the invention contains the at least one thermoplastic polyurethane in an amount in the range from 20% by weight to 90% by weight, based on the total composition, preferably in the range from 30% by weight to 75% by weight preferably in the range from 40% by weight to 60% by weight and particularly preferably in the range from 45% by weight to 55% by weight, in each case based on the total composition.
  • thermoplastic polyurethane and flame retardant are processed in one step to produce the compositions of the invention.
  • a thermoplastic polyurethane is first prepared with a reaction extruder, a belt system or other suitable devices, preferably as granules, into which at least one further flame retardant is then introduced in at least one further step or else several working steps ,
  • thermoplastic polyurethane with the at least one flame retardant, in particular with the at least one metal hydroxide, the at least one phosphorus-containing flame retardant, and optionally with at least one layered silicate and / or hydrotalcite takes place in a mixing device, preferably an internal kneader or an extruder a twin-screw extruder.
  • the metal hydroxide is preferably an aluminum hydroxide.
  • at least one flame retardant introduced into the mixing device in the at least one further working step is liquid, i. liquid at a temperature of 21 ° C.
  • the introduced flame retardant is liquid at a temperature that prevails in the flow direction of the filling material in the extruder behind the filling point.
  • thermoplastic polyurethanes are preferably prepared in which the thermoplastic polyurethane has a number-average molecular weight of at least 0.02 ⁇ 10 6 g / mol, preferably of at least 0.06 ⁇ 10 6 g / mol and in particular greater than 0.08 ⁇ 10 6 g / mol.
  • the upper limit for the number average molecular weight of the thermoplastic polyurethanes is usually determined by the processability as well as the desired property spectrum.
  • the number average molecular weight of the thermoplastic polyurethanes according to the invention does not exceed about 0.2 ⁇ 10 6 g / mol, preferably 0.15 ⁇ 10 6 g / mol.
  • the composition according to the invention contains at least one metal hydroxide.
  • metal hydroxides release only water and therefore do not form toxic or corrosive flue gas products.
  • these hydroxides are able to reduce the smoke density in case of fire.
  • the disadvantage of these substances is that they if promote the hydrolysis of thermoplastic polyurethanes and also affect the oxidative aging of the polyurethanes.
  • hydroxides of magnesium, calcium, zinc and / or aluminum or mixtures of these are preferably suitable.
  • the metal hydroxide is particularly preferably selected from the group consisting of aluminum hydroxides, aluminum oxide hydroxides, magnesium hydroxide and a mixture of two or more of these hydroxides.
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the metal hydroxide is selected from the group consisting of aluminum hydroxides , Alumina hydroxides, magnesium hydroxide and a mixture of two or more of these hydroxides.
  • a preferred mixture is aluminum hydroxide and magnesium hydroxide. Particularly preferred is magnesium hydroxide or aluminum hydroxide. Very particular preference is given to aluminum hydroxide.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the metal hydroxide is aluminum hydroxide.
  • the proportion of the at least one metal hydroxide in the compositions according to the invention is preferably in the range from 10% by weight to 80% by weight. At higher fill levels, the mechanical properties of the corresponding polymeric materials degrade in an unacceptable manner. Thus, in particular, the tensile strength and elongation at break, which are important for cable insulation, go back to an unacceptable level.
  • the proportion of the metal hydroxide in the composition according to the invention is preferably in the range from 10% by weight to 65% by weight, more preferably in the range from 20% by weight to 50% by weight, more preferably in the range from 25% by weight. -% to 40 wt .-%, each based on the total composition.
  • the metal hydroxides used according to the invention usually have a specific surface area of 2 m 2 / g to 150 m 2 / g, but the specific surface is preferably between 2 m 2 / g and 9 m 2 / g, more preferably between 3 m 2 / g and 8 m 2 / g, more preferably between 3 m 2 / g and 5 m 2 / g.
  • the specific surface area is determined using the BET method according to DIN ISO 9277: 2003-05 with nitrogen.
  • the surface of the metal hydroxides may be at least partially surrounded by a shell, also referred to as at least partially enveloping.
  • the shell is equivalent to the commonly used term coating or surface treatment.
  • the shell either physically adheres to the metal hydroxide by positive engagement or van der Waals forces, or it is chemically bonded to the metal hydroxide. This happens mainly by covalent interaction.
  • the surface treatment or surface modification which leads to a shell around the enclosed part, in the present case the metal hydroxide, in particular the aluminum hydroxide is described in detail in the literature.
  • a basic text describing suitable materials as well as the coating technique is "Particulate-Filled Polymer Composites (2nd Edition), edited by: Rothon, Roger N., 2003, Smithers Rapra Technology. Particularly relevant is Chapter 4.
  • Corresponding materials are commercially available, e.g. at the company Nabaltec, Schwandorf or Martinswerke in Bergheim, both in Germany.
  • Preferred coating materials are saturated or unsaturated polymers having an acid function, preferably with at least one acrylic acid or an acid anhydride, preferably maleic anhydride, since these attach particularly well to the surface of the metal hydroxide.
  • the polymer is a polymer or mixtures of polymers, preferably a polymer.
  • Preferred polymers are polymers of monoolefins and diolefins, mixtures thereof, copolymers of monoolefins and diolefins with one another or with other vinyl monomers, polystyrene, poly (p-methylstyrene), poly (alpha-methylstyrene), copolymers of styrene or allylene.
  • pha-methylstyrene with dienes or acrylic derivatives graft copolymers of styrene or alpha-methylstyrene, halogen-containing polymers, polymers derived from alpha, beta-unsaturated acids and their derivatives, and copolymers of these monomers with each other or with other unsaturated monomers.
  • Also preferred coating materials are monomeric organic acids and their salts, preferably saturated fatty acids, less commonly used are unsaturated acids.
  • Preferred fatty acids comprise 10 to 30 carbon atoms, preferably 12 to 22, in particular 16 to 20, carbon atom, they are aliphatic and preferably have no double bonds.
  • stearic acid very particularly preferred is stearic acid.
  • Preferred fatty acid derivatives are their salts, preferably calcium, aluminum, magnesium or zinc. Particularly preferred is calcium, especially as calcium stearate.
  • Other preferred substances which form a shell around the metal hydroxide, preferably the aluminum hydroxide, are organosilane compounds having the following structure:
  • X is a hydrolyzable group that reacts with the surface of the metal hydroxide, also referred to as a coupling group.
  • the radical R is preferably a hydrocarbon radical and is selected so that the organosilane compound is readily miscible with the thermoplastic polyurethane.
  • the radical R is connected to the silicon via a hydrolytically stable carbon-silicon compound and may be reactive or inert.
  • An example of a reactive radical which is preferably an unsaturated hydrocarbon radical is an allyl radical.
  • the radical R is preferably inert, more preferably a saturated hydrocarbon radical having 2 to 30 carbon atoms, preferably 6 to 20 carbon atoms and particularly preferably 8 to 18 carbon atoms, more preferably it is an aliphatic hydrocarbon radical which is branched or linear ,
  • the organosilane compound contains only one radical R and has the general formula:
  • the coupling group X is preferably a halogen, preferably chlorine, and consequently the coupling reagent is a tri-, di- or monochlorosilane.
  • the coupling group X is an alkoxy group, preferably a methoxy or ethoxy group. Most preferably, the remainder is the hexadecyl radical, preferably with the methoxy or ethoxy coupling group, thus the organosilane is hexadecylsilane.
  • the silanes are used with 0.1 wt .-% to 5 wt .-%, more preferably 0.5 wt .-% to 1, 5 wt .-% and particularly preferably with about 1 wt.% Based on the total amount of Metallhydroxides applied to this.
  • Carboxylic acids and derivatives are obtained at from 0.1% to 5% by weight, more preferably from 1.5% to 5% by weight, and more preferably from 3% to 5% by weight applied to the total amount of the metal hydroxide on this.
  • the partially sheathed metal hydroxides more preferably have
  • thermoplastic polyurethanes In the preparation of the thermoplastic polyurethanes according to the invention, preference is given to using metal hydroxides which have already been coated. Only in this way can unwanted side reactions of the coating materials with the constituents of the thermoplastic polyurethane be avoided and the advantage of preventing the oxidative degradation of the thermoplastic polyurethane is particularly effective. More preferably, the coating of the metal hydroxide can also take place in the filling area of the extruder before the polyurethane is added in a downstream part of the extruder.
  • the present invention accordingly also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the metal hydroxide is at least partially surrounded by a shell is.
  • compositions according to the invention contain at least one phosphorus-containing flame retardant.
  • phosphorus-containing flame retardants for thermoplastic polyurethanes can be used according to the invention.
  • Derivatives of phosphoric acid, derivatives of phosphonic acid or derivatives of phosphinic acid or mixtures of two or more of these derivatives are preferably used in the context of the present invention.
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the phosphorus-containing flame retardant is selected from the group consisting of Derivatives of phosphoric acid, derivatives of phosphonic acid, derivatives of phosphinic acid and a mixture of two or more of these derivatives.
  • the phosphorus-containing flame retardant at 21 ° C is liquid.
  • the derivatives of phosphoric acid, phosphonic acid or phosphinic acid are preferably salts with an organic or inorganic cation or organic esters.
  • Organic esters are derivatives of phosphorus-containing acids in which at least one oxygen atom bonded directly to the phosphorus is esterified with an organic radical.
  • the organic ester is an alkyl ester, in another preferred embodiment an aryl ester. Particularly preferably, all hydroxy groups of the corresponding phosphorus-containing acid are esterified.
  • Organic phosphate esters are preferred, especially the triesters, the phosphoric acid, such as tri-alkyl phosphates and in particular triaryl phosphates, such as, for example, triphenyl phosphate.
  • flame retardants for the thermoplastic polyurethanes are preferably phosphoric esters of the general formula (I)
  • R in the general formula (I) is an alkyl radical, especially those alkyl radicals having 1 to 8 C atoms are suitable.
  • An example of the cycloalkyl groups is the cyclohexyl radical.
  • Preference is given to using those phosphoric esters of the general formula (I) in which R phenyl or alkyl-substituted phenyl, n in the general formula (I) is in particular 1 or is preferably in the range from about 3 to 6.
  • a preferred resorcinol is resorcinol bis-diphenyl phosphate (RDP), which is usually present in oligomers.
  • Further preferred phosphorus-containing flame retardants are bisphenol A bis-
  • BDP diphenyl phosphate
  • DPK Diphenylkresylphos- phat
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the phosphorus-containing flame retardant is selected from the group consisting of Resorcinol bis-diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK).
  • RDP Resorcinol bis-diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • the organic phosphonates are salts with organic or inorganic cation or the esters of phosphonic acid.
  • Preferred esters of phosphonic acid are the diesters of alkyl or phenylphosphonic acids.
  • Illustrative of the phosphonic acid esters to be used according to the invention as flame retardants are the phosphonates of the general formula (II) 0
  • R 1 represents optionally substituted, alkyl, cycloalkyl or phenyl groups, where the two radicals R 1 may also be cyclically linked to one another and
  • R 2 represents an optionally substituted, alkyl, cycloalkyl or phenyl radical. Particularly suitable are cyclic phosphonates such as
  • R 2 CH 3 and C 6 H 5, which are derived from pentaerythritol, or
  • R 2 CH 3 and C 6 H 5 , which are derived from neopentyl glycol, or
  • R 2 CH3 and C6H 5 , which are derived from pyrocatechol, but also
  • R 2 an unsubstituted or substituted phenyl radical.
  • the radicals R 1 , R 2 and R 3 are either aliphatic or aromatic and have 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 to 3.
  • at least one of the radicals is aliphatic, preferably all radicals are aliphatic, very particularly preferred R 1 and R 2 are ethyl radicals. More preferably, R 3 is an ethyl radical or a methyl radical. In a preferred embodiment, R 1 , R 2 and R 3 are simultaneously ethyl or methyl.
  • phosphinates ie the salts of phosphinic acid.
  • the radicals R 1 and R 2 are either aliphatic or aromatic and have 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 to 3.
  • at least one of the radicals is aliphatic, preferably all radicals are aliphatic, very particularly preferably R 1 and R 2 is ethyl radicals.
  • Preferred salts of the phosphinic acids are aluminum, calcium or zinc salts.
  • a preferred embodiment is diethylaluminum phosphinate.
  • the phosphorus-containing flame retardants, their salts and / or their derivatives are used in the inventive compositions as a single substance or in mixtures.
  • the at least one phosphorus-containing flame retardant is used in an amount such that the content of phosphorus calculated on the entire phosphorus-containing flame retardant is greater than 5% by weight, more preferably greater than 7% by weight.
  • the content of phosphorus-containing flame retardants in the composition is, for example, less than 30% by weight, preferably less than 20% by weight and particularly preferably less than 15% by weight.
  • the at least one phosphorus-containing flame retardant is preferably present in an amount in the range from 3% by weight to 30% by weight, more preferably in the range from 5% by weight to 20% by weight and particularly preferably in the range from 8% by weight .-% to 15% by weight, in each case based on the total composition.
  • the composition according to the invention contains resorcinol bis-diphenyl phosphate (RDP) as the phosphorus-containing flame retardant.
  • the composition according to the invention contains resorcinol bis-diphenyl phosphate (RDP) and aluminum hydroxide as the phosphorus-containing flame retardant.
  • the composition according to the invention contains as phosphorus-containing flame retardant resorcinol bis-diphenyl phosphate (RDP), aluminum hydroxide and a phyllosilicate and / or hydrotalcite.
  • the phosphorus-containing flame retardant in particular the phosphoric acid esters, phosphonic acid esters and / or phospinklare and / or their salts are used in admixture with at least one metal hydroxide as a flame retardant.
  • the weight ratio of the sum of the weight of the phosphate ester, phosphonate ester and phosphinate ester used to the weight of the metal hydroxide used in the composition according to the invention is preferably in the range from 1: 5 to 1: 2.
  • the composition according to the invention contains not only the at least one metal hydroxide and the at least one phosphorus-containing flame retardant, but also at least one phyllosilicate or hydrotalcite or mixtures thereof, the at least one phosphorus-containing flame retardant is preferably present in an amount in the range from 3% by weight to 30% by weight , more preferably in the range of 5% by weight to 20% by weight and particularly preferably in the range of 8% by weight to 15% by weight, each based on the total composition.
  • the at least one metal hydroxide is preferably present in an amount in the range from 10% by weight to 65% by weight, based on the total composition, preferably in the range from 15% by weight to 50% by weight and more preferably in the range from 25% by weight to 40% by weight, in each case based on the total composition.
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the proportion of the metal hydroxide in the composition in the range of 10 to 65% based on the total composition.
  • the present invention also relates to a composition
  • a composition comprising at least one thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the proportion of the phosphorus-containing flame retardant in the range of 3 up to 30% based on the total composition.
  • the present invention thus also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the proportion of metal hydroxide in the composition in the range from 10 to 65% based on the total composition, and the proportion of the phosphorus-containing flame retardant in the range of 3 to 30% based on the total composition is.
  • composition according to the invention contains, in addition to the at least one metal hydroxide and the at least one phosphorus-containing flame retardant, at least one phyllosilicate or hydrotalcite or mixtures thereof, the proportion of the sum of the percentages by weight (% by weight) of these constituents, in total, is also appealed as flame retardant in the composition according to the invention in the range of 10% by weight to 80% by weight, based on the total composition, preferably in the range of 25% by weight to 70% by weight, more preferably in the range of 40% by weight. % to 60% by weight and more preferably in the range of 45% to 55% by weight.
  • the present invention also relates to a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above, wherein the proportion of the sum of the weight fractions of at least a metal hydroxide, the at least one phosphorus-containing flame retardant and the at least one layered silicate or hydrotalcite or mixtures thereof in the range of 10 to 80%, based on the total composition.
  • the proportions by weight of the at least one phosphorus-containing flame retardant to metal hydroxides to the at least one phyllosilicate or hydrotalcite or the mixture thereof behave like a to b to c, wherein a according to the invention can be varied, for example in the range of 5 to 15, b for example in the range of 30 to 40 and c, for example, in the range of 0 to 8, preferably in the range of 3 to 8. More preferably, the weight proportions of the at least one phosphorus-containing flame retardant to metal hydroxide to the at least one layered silicate or hydrotalcite or the mixture thereof, such as 9 to 34 behave to 5.
  • the present invention also relates to the use of the composition according to the invention comprising at least one flame-retardant thermoplastic polyurethane as described above for the production of coatings, damping elements, bellows, films or fibers, moldings, building and transportation floors, nonwoven fabrics, preferably gaskets, Rolls, shoe soles, hoses, cables, cable plugs, cable sheathing, cushions, laminates, profiles, belts, saddles, foams, connectors,
  • Tow cables, solar modules, car paneling Preferred is the use for the production of cable sheathing.
  • the preparation preferably takes place from granules, by injection molding, calendering, powder sintering, or extrusion and / or by additional foaming of the composition according to the invention.
  • the present invention also relates to the use of a composition
  • a composition comprising at least one based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant as described above for the production of cable sheathing.
  • Further embodiments of the present invention can be taken from the claims and the examples. It is understood that the features of the subject / method / uses according to the invention mentioned above and those explained below can be used not only in the particular combination indicated, but also in other combinations, without departing from the scope of the invention. So z. Also, the combination of a preferred feature with a particularly preferred feature, or a non-further characterized feature with a particularly preferred feature, etc. implicitly encompasses, even if this combination is not explicitly mentioned.
  • thermoplastic polyurethane a thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol.
  • composition according to embodiment 2 wherein the phyllosilicate is an organically intercalated phyllosilicate and / or the hydrotalcite is an organically intercalated hydroxtritol.
  • Composition according to one of embodiments 2 to 5, wherein the proportion of the sum of the weight proportions of the at least one metal hydroxide, the at least one phosphorus flame retardant and the at least one phyllosilicate or hydrotalcite or mixtures thereof in the range of 10 to 80%, based on the total Composition, lies.
  • composition according to one of embodiments 1 to 1 1, wherein the Metallhyd xid is at least partially surrounded by a shell.
  • composition according to one of embodiments 1 to 12, wherein the phosphorus-containing flame retardant is selected from the group consisting of derivatives of phosphoric acid, derivatives of phosphonic acid, derivatives of phosphinic acid and a mixture of two or more of these derivatives.
  • composition according to any of embodiments 1 to 13, wherein the phosphorus-containing flame retardant is selected from the group consisting of resorcinol bis-diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK).
  • RDP resorcinol bis-diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • composition according to one of embodiments 1 to 13, wherein the phosphorus-containing flame retardant is selected from the group consisting of resorcinol bis- diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK), wherein the metal hydroxide is aluminum hydroxide and wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • RDP resorcinol bis- diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • thermoplastic polyurethane based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane and wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • Composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, wherein the composition is at least one layered silicate or hydrotalcite or mixtures thereof and wherein the proportion of the sum of the weight fractions of the at least one metal hydroxide, the at least one phosphorus-containing flame retardant and the at least one layered silicate or hydrotalcite or mixtures thereof is in the range from 10 to 80%, based on the total composition.
  • a composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane, wherein the proportion of the metal hydroxide in the composition in the range of 10 to 65 % based on the total composition, and the proportion of the phosphorus-containing flame retardant in the range of 3 to 30% based on the total composition is. 26.
  • thermoplastic polyurethane at least one metal hydroxide and at least one phosphorus-containing flame retardant
  • thermoplastic polyurethane is based on at least one diisocyanate and at least one polycarbonate diol thermoplastic polyurethane
  • phosphorus-containing flame retardant is selected from the group consisting of resorcinol bis-diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenylcresyl phosphate (DPK)
  • RDP resorcinol bis-diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenylcresyl phosphate
  • thermoplastic polyurethane is a thermoplastic polyurethane based on at least one diisocyanate and at least one aliphatic polycarbonate diol.
  • composition of any of embodiments 27 to 32, wherein the at least one aliphatic polycarbonate diol is selected from the group consisting of aliphatic polycarbonate diols based on butanediol and hexanediol, aliphatic polycarbonate diols based on pentanediol and hexanediol, aliphatic polycarbonate diols based on hexanediol, and mixtures of two or more of these aliphatic polycarbonate diols.
  • composition of any of embodiments 27 to 32, wherein the at least one aliphatic polycarbonate diol is selected from the group consisting of aliphatic polycarbonate diols based on butanediol and hexanediol, aliphatic polycarbonate diols based on pentanediol and hexanediol, aliphatic polycarbonate diols based on hexanediol, and mixtures of two or more this aliphatic polycarbonate diol and wherein the aliphatic polycarbonate diol has a number average molecular weight Mn in the range of 500 to 4000, determined by GPC.
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • composition according to any of embodiments 27 to 39 wherein the phosphorus-containing flame retardant is selected from the group consisting of resorcinol bis diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK) and wherein the metal hydroxide is hydroxide.
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • compositions according to any of embodiments 27 to 39 wherein the phosphorus-containing flame retardant is selected from the group consisting of resorcinol bis diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK) and wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • RDP resorcinol bis diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • a composition according to any one of embodiments 27 to 44, wherein the proportion of the metal hydroxide in the composition is in the range of 10 to 65% based on the total composition.
  • thermoplastic polyurethane based on at least one diisocyanate and at least one aliphatic polycarbonate diol thermoplastic polyurethane and wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • a composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is based on at least one diisocyanate and at least one aliphatic polycarbonate diol thermoplastic polyurethane, wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof and wherein the proportion of the sum of the weight fractions of the at least one metal hydroxide, the at least one phosphorus-containing flame retardant and the at least one layered silicate or hydrotalcite or mixtures thereof is in the range from 10 to 80%, based on the total composition.
  • Composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is a thermoplastic polyurethane based on at least one diisocyanate and at least one aliphatic polycarbonate diol, the proportion of the metal hydroxide in the composition being in the range from 10 to 65%. based on the total composition, and the proportion of the phosphorus-containing flame retardant in the range of 3 to 30% based on the total composition lies.
  • a composition comprising at least one thermoplastic polyurethane, at least one metal hydroxide and at least one phosphorus-containing flame retardant, wherein the thermoplastic polyurethane is based on at least one diisocyanate and at least one aliphatic polycarbonate diol thermoplastic polyurethane, wherein the phosphorus-containing flame retardant is selected from the group consisting of resorcinol to diphenyl phosphate (RDP), bisphenol A bis (diphenyl phosphate) (BDP), and diphenyl cresyl phosphate (DPK), wherein the metal hydroxide is aluminum hydroxide and wherein the composition contains at least one layered silicate or hydrotalcite or mixtures thereof.
  • RDP resorcinol to diphenyl phosphate
  • BDP bisphenol A bis (diphenyl phosphate)
  • DPK diphenyl cresyl phosphate
  • the examples show the improved flame resistance of the compositions according to the invention, as well as the good mechanical properties and the resistance to hydrolysis.
  • Elastollan 1 185A10 TPU of Shore hardness 85A from BASF Polyurethanes GmbH, Elastomerstrasse 60, 49448 Lemförde, based on polytetrahydrofuran (PTHF) with a molecular weight of 1000, 1,4-butanediol, MDI.
  • Elastollan A Shore hardness 86A TPU, test material, based on a polycarbonate diol from Bayer (Desmophen 2200), 1, 4-butanediol, MDI.
  • Elastollan B Shore hardness 87A TPU, test material, based on a polycarbonate diol from the companytowne (Eternacoll PH-200D), 1,4-butanediol, MDI.
  • Martinal OL 104 LEO aluminum hydroxide without coating, Martinswerk GmbH, Schmer Strasse 1 10, 50127 Bergheim, Al (OH) 3 content [%] «99.4, particle size (laser diffraction, cilas) [ ⁇ ] D50: 1 .7 - 2.1; Specific surface area (BET) [m 2 / g]: 3 - 5.
  • Magnifin H5 MV Magnesium hydroxide with a hydrophobic surface coating, Martinswerk GmbH, Schoer Strasse 1 10, 50127 Bergheim, Mg (OH) 2 content [%]> 99.8, Particle size (laser diffraction) [ ⁇ ] D50: 1, 6-2; Specific surface area (BET) [m2 / g]: 2-5
  • Nanofil 15 Organically modified nano-dispersible sheet silicate based on naturally more Bentonite, Rockwood Clay Additives GmbH, Stadtwald No 44, D-85368 Moosburg, powder, average particle size D50, i. at least 50% of the particles are smaller than 40 ⁇ .
  • Disflamoll TOF Tris (2-ethylhexyl) phosphate, CAS 78-42-2, Lanxess Germany GmbH, 51369 Leverkusen
  • Fyrolflex RDP resorcinol bis (diphenyl phosphate), CAS #: 125997-21 -9, Supresta Netherlands BV, Office Park De Hoef, Hoefseweg 1, 3821 AE Amersfoort, The Netherlands. Production by hand casting
  • the amount of polyol and chain extender rer specified in the recipe is weighed into the tinplate can and briefly sprayed with nitrogen.
  • the can is closed with a lid and heated in the heating cabinet to about 90 ° C.
  • Another heating cabinet for tempering the rind is preheated to 80 ° C.
  • the Teflon dish is placed on the heating table and this is set to 125 ° C.
  • the calculated amount of liquid isocyanate is determined by elution.
  • the liquid isocyanate (MDI is leached at a temperature of about 48 ° C) weighed in a PE cup and poured within 10s in a PE cup. Subsequently, the thus emptied beaker is tared and filled with the calculated amount of isocyanate. In the case of MDI this is stored at about 48 ° C in the heating cabinet.
  • the preheated polyol is placed on a lift under the static stirrer. Then the reaction vessel is raised with the lift until the stirring blades are completely immersed in the polyol.
  • additives such as e.g. Antioxidants are given in the polyol.
  • the temperature of the reaction mixture is carefully adjusted to 80 ° C with a hot air dryer.
  • isocyanate catalyst is metered with the Microliterspritze to the reaction mixture.
  • the addition of isocyanate is now carried out by the previously liberated amount is entered within 10 seconds in the reaction mixture. By weighing back the weight control takes place. Deviations greater / less than 0.2 g from the recipe quantity are documented.
  • the stopwatch is started. When reaching 1 10 ° C, the reaction mixture in the Teflon dishes, which are preheated to 125 ° C, poured out.
  • the rind is removed from the heating table and then stored for 15 h in the heating cabinet at 80 ° C.
  • the cooled rind is crushed in the cutting mill.
  • the granules are now dried for 3 h at 1 10 ° C and stored dry. In principle, this process can be transferred to the reaction extruder or the belt process.
  • the polycarbonate diol used is a polycarbonate diol from Bayer (Desmophen 2200), for the production of Elastollan B a polycarbonate diol from the companyessee (Eternacoll PH-200D).
  • test piece having 5mm thickness horizontally at an irradiance of 35 kW / m 2 in the cone calorimeter according to ISO 5660 Part 1 and Part 2 (2002-12) is checked.
  • compositions are listed in which the individual starting materials in parts by weight (GT) are given.
  • GT parts by weight
  • the mixtures were each prepared with a twin-screw extruder type ZE 40 A from Berstorff with a process part length of 35 D divided into 10 housings and then with a single-shaft extruder type Arenz with a three-zone screw with mixing part (screw ratio 1: 3) to films extruded with a thickness of 1, 6 mm.
  • the test specimens for the Cone measurements with dimensions of 200x150x5mm were injection molded on an Arburg 520S with a screw diameter of 30 mm (Zonel zone 3 180 ° C, zone 4 zone 6 185 ° C). The plates were then sawn to the size necessary for the cone measurement.
  • VB comparative example
  • egB example according to the invention
  • nb values were not determined According to Petrella (Petrella RV, The measurement of fire hazards from cone calorimeter data, Journal of Fire Science, 12 (1994), p.14), the quotient of maximum heat release and ignition time is a measure of how the corresponding material contributes to a fast growing fire. Furthermore, the total heat release is a measure of how the corresponding material contributes to a long-lasting fire.
  • the materials of the invention have a higher flame resistance.
  • the mixtures according to the invention have a lower flue gas density.
  • Mixture 1 is a comparative example using a thermoplastic polyurethane based on polyether polyol.
  • Blends 2 and 3 are according to the invention and show that the use of thermoplastic polyurethanes based on polycarbonate diols leads to thermoplastic polyurethanes with good mechanical properties.
  • the tensile strength or elongation at break (in accordance with DIN 53504) and the Shore hardness A (in accordance with DIN 53505) of the corresponding specimens were measured.
  • Blend 1 is a comparative example using a thermoplastic polyurethane based on polyether polyol.
  • Mixtures 4 and 8 are also comparative examples.
  • mixtures 2 and 3 are according to the invention and show that the use of thermoplastic polyurethanes based on polycarbonate diols significantly improves the flame resistance.
  • Mixtures 5 and 9 are examples according to the invention.
  • Oxidative aging is used in the context of this invention if the mechanical parameters, such as tensile strength, elongation at break, tear propagation resistance, flexibility, impact resistance, softness, etc., change negatively over time with respect to the thermoplastic polyurethanes.
  • Blends 2, 3, 5 and 9 are in accordance with the invention and show that the use of blends containing thermoplastic polyurethanes based on polycarbonate diols significantly reduces the strength drop by heat treatment, i. the oxidative aging resistance significantly improved.
  • Mixture 2 is in accordance with the invention and shows that the use of mixtures containing thermoplastic polyurethanes based on polycarbonate diols is similarly good
  • Fig. 1 shows the results of Cone calorimeter measurements of the mixtures 1 -3 in a Petrellaplot.
  • the inclination of the material on the x-axis is used to contribute to a rapidly growing fire (PHRR / ti g - 1 / kWnr 2 s- 1 ).
  • the inclination of the material is plotted to contribute to a long-lasting fire (THE / MJnr 2 ).
  • TEE / MJnr 2 the quotient of maximum heat release and ignition timing is a measure that the corresponding material to a fast growing fire contributes.
  • the total heat release is a measure of how the corresponding material contributes to a long-lasting fire.
  • Materials with better flame resistance have the lowest possible x and y values.
  • the materials 2 and 3 (symbolized by the two filled squares) have better properties than comparison material 1 (symbolized by the filled triangle).
  • Fig. 2 shows the results of the Cone calorimeter measurements of mixtures 4 and 5 in a Petrellaplot.
  • the inclination of the material on the x-axis is used to contribute to a rapidly growing fire (PHRR / ti g - 1 / kWnr 2 s- 1 ).
  • the inclination of the material is applied to contribute to a long-lasting fire (THE / MJm- 2 ).
  • TEE / MJm- 2 the quotient of maximum heat release and ignition timing is a measure that the corresponding material to a fast growing fire contributes.
  • the total heat release is a measure of how the corresponding material contributes to a long-lasting fire.
  • Materials with better flame resistance have the lowest possible x and y values.
  • Material 5 symbolized by the filled square
  • comparison material 4 symbolized by the filled triangle.
  • Fig. 3 shows the results of the Cone calorimeter measurements of mixtures 6 and 7 in a Petrellaplot.
  • the inclination of the material on the x-axis is used to contribute to a rapidly growing fire (PHRR / ti g - 1 / kWnr 2 s- 1 ).
  • the inclination of the material is applied to contribute to a long-lasting fire (THE / MJm- 2 ).
  • TEE long-lasting fire
  • the total heat release is a measure of how the corresponding material contributes to a long-lasting fire.
  • Materials with better flame resistance have the lowest possible x and y values.
  • Material 7 (symbolized over the filled square) has better properties compared to comparison material 6 (symbolized by the filled triangle). shows the results of the Cone calorimeter measurements of mixtures 8 and 9 in a Petrellaplot.
  • the inclination of the material on the x-axis is used to contribute to a rapidly growing fire (PHRR / ti g - 1 / kWnr 2 s- 1 ).
  • the inclination of the material is plotted to contribute to a long-lasting fire (THE / MJnr 2 ).
  • Petrella The assessment of philll scale fire hammers from cone calorimeter data, Journal of Fire Science, 12 (1994), p.14), the quotient of maximum heat release and ignition time is a measure that the corresponding material contributes to a fast growing fire. Furthermore, the total heat release is a measure of how the corresponding material contributes to a long-lasting fire. Materials with better flame resistance have the lowest possible x and y values. Material 9 (symbolized by the filled square) has better properties than comparison material 8 (symbolized by the filled triangle). shows the results of the Cone calorimeter measurements of mixtures 10 and 11 in a Petrellaplot.
  • the inclination of the material on the x-axis is used to contribute to a rapidly growing fire (PHRR / ti g - 1 / kWnr 2 s- 1 ).
  • the inclination of the material is applied to contribute to a long-lasting fire (THE / MJnr 2 ).
  • TEE / MJnr 2 the quotient of maximum heat release and ignition timing is a measure that the corresponding material to a fast growing fire contributes.
  • the total heat release is a measure of how the corresponding material contributes to a long-lasting fire.
  • Materials with better flame resistance have the lowest possible x and y values. Material 1 1 (symbolized by the filled square) has better properties than comparison material 10 (symbolized by the filled triangle).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft Zusammensetzungen enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel,wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist. Weiter betrifft die vorliegende Erfindung die Verwendung derartiger Zusammensetzungen zur Herstellung von Kabelummantelungen.

Description

Flammgeschütztes thermoplastisches Polyurethan auf der Basis von Polycarbonatdiolen
Die vorliegende Erfindung betrifft Zusammensetzungen enthaltend mindestens ein thermoplas- tisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diiso- cyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist. Weiter betrifft die vorliegende Erfindung die Verwendung derartiger Zusammensetzungen zur Herstellung von Kabelummantelungen.
Flammgeschützte thermoplastische Polyurethane sind seit langem bekannt. Für viele Anwendungen ist die Zugabe von Flammschutzmitteln notwendig. Dabei können den thermoplastischen Polyurethanen (TPU) sowohl halogenhaltige als auch halogenfreie Flammschutzmittel beigemischt werden. Die halogenfrei flammgeschützten thermoplastischen Polyurethane haben dabei in der Regel den Vorteil, dass sie beim Abbrennen weniger toxische und weniger korrosive Rauchgase entwickeln. Halogenfreie flammgeschützten TPU sind beispielsweise beschrieben in EP 0 617 079 A2, WO 2006/121549 A1 oder WO 03/066723 A2.
Zum halogenfreien Flammschutz von thermoplastischen Polyurethanen können stickstoffhaltige und/oder phosphorhaltige Flammschutzmittel verwendet werden, die beispielsweise in EP 0 617 079 A2, WO 2006/121549 A1 oder WO 03/066723 A2 offenbart werden. In WO 2006/121549 A1 werden beispielsweise flammgeschützte thermoplastische Polyurethane offenbart, die als Flammschutzmittel Phosphorverbindungen enthalten. Als geeignete thermoplastische Polyurethane werden auch solche genannt, die unter Verwendung von Polyestern, Polyethern, Polycarbonaten oder Mischungen davon hergestellt werden. Geeignete Polycarbonate werden ebenfalls offenbart. Die alleinige Verwendung von phosphorhaltigen Flammschutzmitteln kann häufig keinen ausreichenden Flammschutz gewährleisten. Die Verwendung von stickstoffhaltigen Flammschutzmitteln allein oder in Kombination mit phosphorhaltigen Flammschutzmitteln dagegen gibt ausweislich des Stands der Technik gut flammgeschützte thermoplastische Po- lyurethane, hat aber auch den Nachteil, dass durch die stickstoffhaltigen Verbindungen auch giftige Brandgase wie HCN oder Stickoxide freigesetzt werden können.
Zum halogenfreien Flammschutz von thermoplastischen Polyurethanen können auch Metallhydroxide allein oder in Kombination mit phosphorhaltigen Flammschutzmitteln und/oder Schichtsil- ikaten eingesetzt werden.
Auch EP 1 167 429 A1 betrifft flammgeschützte thermoplastische Polyurethane für Kabelmäntel. Die Zusammensetzungen enthalten ein Polyurethan, bevorzugt ein Polyether basiertes Polyurethan, Aluminium- oder Magnesium-Hydroxid und Phosphorsäureester.
Auch EP 1 491 580 A1 offenbart flammgeschützte thermoplastische Polyurethane für Kabelmäntel. Die Zusammensetzungen enthalten ein Polyurethan, insbesondere einen Polyether, Aluminium- oder Magnesium-Hydroxid, Phosphorsaureester sowie Schichtsilikate, beispielsweise Bentonit.
In EP 2 374 843 A1 werden beispielsweise flammgeschützte thermoplastische Polyurethane insbesondere auf Basis von Polyethern für Kabelmäntel mit guter Alterungsbeständigkeit offenbart. Die Zusammensetzungen enthalten ein Polyurethan und ein anorganisches Oxid. Als Flammschutzmittel sind Aluminium- oder Magnesium-Hydroxid, Phosphorsäureester, Schichtsilikate oder Mischungen davon genannt. DE 103 43 121 A1 offenbart flammgeschützte thermoplastische Polyurethane, die ein Metallhydroxid enthalten, insbesondere Aluminium- und/oder Magnesium-Hydroxid. Die thermoplastischen Polyurethane sind durch ihr Molekulargewicht charakterisiert. Die Zusammensetzungen können weiter Phosphate oder Phosphonate enthalten. Bezüglich der Ausgangsstoffe für die Synthese der thermoplastischen Polyurethane werden als gegenüber Isocyanaten reaktive Ver- bindungen neben Polyesterolen und Polyetherolen auch Polycarbonatdiole offenbart, wobei Polyetherpolyole bevorzugt sind. Es werden keine Beispiele für Polycarbonatdiole genannt. Gemäß DE 103 43 121 A1 können statt eines Polyols auch Mischungen verschiedener Polyole eingesetzt werden. Darüber hinaus werden hohe Füllgrade offenbart, d.h. hohe Anteile an Metallhydroxiden und weiteren festen Komponenten im thermoplastischen Polyurethan, die zur Verschlechterung der mechanischen Eigenschaften führen.
Auch in WO 201 1/050520 A1 werden flammgeschützte thermoplastische Polyurethane offenbart, die ein Metallhydrat und eine spezielle Phosphorverbindung als Flammschutzmittel enthalten. Als geeignete Metallhydrate werden Aluminium- und/oder Magnesium-Hydroxid genannt. Als geeignete thermoplastische Polyurethane werden in WO 201 1/050520 A1 auch auf Poly- carbonaten basierende thermoplastische Polyurethane erwähnt, wobei die auf Polycarbonatdio- len basierenden thermoplastischen Polyurethane nur generell erwähnt werden und keine Beispiele genannt werden. Ebenso betreffen WO 201 1/147068 A1 und WO 201 1/150567 A1 flammgeschützte thermoplastische Polyurethane.
Ein Nachteil von Mischungen basierend auf thermoplastischen Polyurethanen in Kombination mit Metallhydroxiden ist eine geringe Alterungsbeständigkeit, die diese Materialen für viele Einsatzgebiete ungeeignet erscheinen läßt. Um die Alterungsbeständigkeit zu verbessern, werden beispielsweise gemäß EP 2 374 843 A1 schwer lösliche Oxide von zwei- und dreiwertigen Me- tallen zugesetzt.
Ausgehend vom Stand der Technik lag der vorliegenden Erfindung demgemäß die Aufgabe zugrunde, flammgeschützte thermoplastische Polyurethane bereitzustellen, die gute mechanische Eigenschaften aufweisen, gute Flammschutzeigenschaften zeigen, und die gleichzeitig eine gute Hydrolysebeständigkeit und Alterungsbeständigkeit aufweisen.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist. Die erfindungsgemäßen Zusammensetzungen enthalten mindestens ein thermoplastisches Polyurethan, das auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basiert, sowie mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel. Es wurde überraschend gefunden, dass die erfindungsgemäßen Zusammensetzungen gegenüber den aus dem Stand der Technik bekannten Zusammensetzungen verbes- serte Eigenschaften aufweisen, beispielsweise eine erhöhte Flammwidrigkeit und eine verbesserte Alterungsbeständigkeit. Darüber hinaus weisen die erfindungsgemäßen Zusammensetzungen gute Eigenschaften in Bezug auf die Rauchgasdichten auf sowie gute mechanische Eigenschaften. Ein Maß für die mechanischen Eigenschaften ist beispielsweise die Zugfestigkeit oder die Bruchdehnung der aus den erfindungsgemäßen Zusammensetzungen hergestell- ten Formkörper vor Alterung. Die Zugfestigkeit wird bestimmt gemäß DIN 53504.
Die erfindungsgemäßen Zusammensetzungen enthalten mindestens ein thermoplastisches Polyurethan, das auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basiert, weisen darüber hinaus eine sehr gute Hydrolysebeständigkeit auf, die für viele Anwen- düngen erforderlich ist.
Die erfindungsgemäßen Zusammensetzungen enthalten bevorzugt mindestens ein thermoplastisches Polyurethan, das auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basiert. Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung daher eine Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist. Neben dem mindestens einem auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierenden thermoplastischen Polyurethan, dem mindestens einen Metallhydroxid und mindestens einen phosphorhaltigen Flammschutzmittel kann die erfindungsgemäße Zusammensetzung weitere Zusatzstoffe enthalten. Gemäß einer bevorzugten Ausführungsform enthält die erfindungsgemäße Zusammensetzung als weitere Komponente mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon. Die erfindungsgemäß bevorzugten Zusammensetzungen enthaltend mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon weisen insbesondere gute Flammschutzeigenschaften und eine gute Alterungsbeständigkeit auf.
Demgemäß betrifft die vorliegende Erfindung gemäß einer bevorzugten Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Schichtsilikate/Hydrotalkit
Grundsätzlich sind im Rahmen der vorliegenden Erfindung alle Schichtsilikate geeignet, beispielsweise Zweischicht-Minerale wie Kaolinit und Serpentin, Dreischicht-Minerale wie Mont- morillonit oder Glimmer und Tonminerale wie Bentonite. Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Bentonite oder Mischungen von Bentoniten und weiteren Schichtsilikaten oder Hydrotalkit.
Gemäß einer weiteren bevorzugten Ausführungsform werden interkalierte Schichtsilikate einge- setzt. Ausgangsschichtsilikate für diese interkalierten Schichtsilikate sind bevorzugt quellfähige Smectite, wie Montmorillonit, Hectorit, Saponit, Beidellit bzw. Bentonit.
Insbesondere geeignet sind im Rahmen der vorliegenden Erfindung organisch interkalierte Schichtsilikate, die einen Schichtabstand von etwa 1 ,5 nm bis 4 nm haben. Vorzugsweise sind diese Schichtsilicate mit quaternären Ammoniumverbindungen, protonierten Aminen, organischen Phosphoniumionen und/oder Aminocarbonsäuren interkaliert.
Die erfindungsgemäße Zusammensetzung kann auch Hydrotalkit oder mindestens ein Schichtsilikat und Hydrotalkit enthalten. Auch Hydrokalkit besitzt einen Schichtaufbau. Zu Hydrotalkit gehören auch Comblainit, Desautelsit, Pyroaurit, Reevesit, Sergeevit, Stichtit und Takovit. Ein im Rahmen der vorliegenden Erfindung bevorzugtes Hydrotalkit basiert auf Aluminium und Magnesium und ist mit Hydroxid, Nitrat und/oder Carbonationen in den Zwischenschichten neutralisiert. Ein erfindungsgemäß bevorzugter Hydrotalkit weist die Summenformel
Mg6AI2[(OH)i6|C03] · 4H20 auf.
Die in den erfindungsgemäßen Zusammensetzungen enthaltenen Hydrotalkite sind bevorzugt organisch interkaliert, das heißt die Anionen, die sich in den Zwischenschichten befinden, bevorzugt das Hydroxid-Kation, werden zumindest teilweise durch organische Anionen ausgetauscht. Im Rahmen der vorliegenden Erfindung bevorzugte organische Anionen sind Anionen von Fettsäuren und/oder hydrierten Fettsäuren.
Organisch interkalierte Schichtsilikate und organisch interkalierte Hydrotalkite lassen sich in den erfindungsgemäßen Zusammensetzungen gut verarbeiten. Beispielsweise wird bei der Vermischung von organisch interkalierten Schichtsilikaten und/oder organisch interkalierten Hydrotal- kiten mit dem thermoplastischen Polyurethan eine gleichmäßige Verteilung der Schichtsilikate und/oder des Hydrotalkits erreicht. Gemäß einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das Schichtsilikat ein organisch interkaliertes Schichtsilikat ist und/oder der Hydrotalkit ein organisch interkalierter Hydrotalkit ist.
Gemäß einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das Schichtsilikat Bentonit ist.
Das mindestens eine Schichtsilikat oder Hydrotalkit oder die Mischung davon ist in der erfin- dungsgemäßen Zusammensetzung vorzugsweise in einer Menge im Bereich von 0,5 Gew.-% bis 20 Gew.-%, bevorzugt 3 Gew.- % bis 15 Gew.- %, und besonders bevorzugt mit 3 Gew.- % bis 8 Gew.- %, jeweils bezogen auf die gesamte Zusammensetzung, enthalten.
Demgemäß betrifft die vorliegende Erfindung gemäß einer bevorzugten Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das mindestens eine Schichtsilikat oder Hydrotalkit oder die Mischung davon in einer Menge im Bereich von 0,5 Gew.-% bis 20 Gew.-%, bezogen auf die gesamte Zusam- mensetzung, enthalten ist.
Alle weiteren Gewichtsangaben der Bestandteile beziehen sich soweit nicht anders angegeben ebenfalls auf die gesamte Zusammensetzung. Dabei wird die Menge der in der Zusammensetzung enthaltenen Komponenten so gewählt, dass die Summe aller Komponenten der Zusam- mensetzung soweit nicht anders angegeben 100% Gew.-% ergibt.
Thermoplastische Polyurethane Thermoplastische Polyurethane sind grundsätzlich bekannt. Die Herstellung erfolgt üblicher Weise durch Umsetzung der Komponenten (a) Isocyanaten und (b) gegenüber Isocyanaten reaktiven Verbindungen und gegebenenfalls (c) Kettenverlängerungsmittel gegebenenfalls in Gegenwart von mindestens einem (d) Katalysator und/oder (e) üblichen Hilfsstoffen und/oder Zusatzstoffen. Die Komponenten (a) Isocyanat, (b) gegenüber Isocyanaten reaktive Verbindun- gen, (c) Kettenverlängerungsmittel werden einzeln oder zusammen auch als Aufbaukomponenten angesprochen. Die erfindungsgemäßen Zusammensetzungen enthalten mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan. Demgemäß wird zur Herstellung der in den erfindungsgemäßen Zusammensetzungen enthaltenen Polyurethane als Komponente (b) mindestens ein Polycarbonatdiol eingesetzt.
Als organische Isocyanate (a) werden bevorzugt aliphatische, cycloaliphatische, araliphatische und/oder aromatische Isocyanate eingesetzt, weiter bevorzugt Tri-, Tetra-, Penta-, Hexa-, Hep- ta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen-diisocyanat-1 ,5, 2-Ethyl- butylen-diisocyanat-1 ,4, Pentamethylen-diisocyanat-1 ,5, Butylen-diisocyanat-1 ,4, 1 -lso- cyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-diisocyanat, 1- Methyl-2,4- und/oder -2, 6-cyclohexan-diisocyanat und/oder 4,4'-, 2,4'- und 2,2'- Dicyclohexylmethan-diisocyanat, 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1 ,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2, 6-Toluylendiisocyanat (TDI), Diphenylmet- handiisocyanat, 3,3'-Dimethyl-diphenyl-diisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder Phenylendiisocyanat. Besonders bevorzugt wird 4,4,-MDI eingesetzt.
Als gegenüber Isocyanaten reaktive Verbindungen (b) wird erfindungsgemäß mindestens ein Polycarbonatdiol eingesetzt, bevorzugt ein aliphatisches Polycarbonatdiol. Geeignete Polycar- bonatdiole sind beispielsweise Polycarbonatdiole, die auf Alkandiolen basieren. Geeignete Polycarbonatdiole sind streng difunktionelle OH-funktionelle Polycarbonatdiole, bevorzugt streng difunktionelle OH-funktionelle aliphatische Polycarbonatdiole. Geeignete Polycarbonatdiole basieren beispielsweise auf Butandiol, Pentandiol oder Hexandiol, insbesondere 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 3-Methylpentan-(1 ,5)-diol oder Mischungen davon, besonders bevorzugt 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol oder Mischungen davon. Bevorzugt werden im Rahmen der vorliegenden Erfindung Polycarbonatdiole basierend auf Butandiol und Hexandiol, Polycarbonatdiole basierend auf Pentandiol und Hexandiol, Polycarbonatdiole basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole eingesetzt. Vorzugsweise weisen die eingesetzten Polycarbonatdiole ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, bevorzugt im Bereich von 650 bis 3500, bestimmt über GPC, besonders bevorzugt im Bereich von 800 bis 3000, bestimmt über GPC auf. Demgemäß betrifft die vorliegende Erfindung gemäß einer bevorzugten Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe beste- hend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole. Gemäß einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor be- schrieben, wobei das Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Die vorliegende Erfindung betrifft gemäß einer weiteren bevorzugten Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischun- gen aus zwei oder mehr dieser Polycarbonatdiole und wobei das Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Als Kettenverlängerungsmittel (c) können bevorzugt aliphatische, araliphatische, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 0,05 kg/mol bis 0,499 kg/mol, bevorzugt 2-funktionelle Verbindungen, eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, Di-, Tri-, Tetra-, Penta-, Hexa-, Hepta-, Okta-, Nona- und/oder Dekaalkylenglykole mit 3 bis 8 Kohlenstoffatomen insbesondere 1 ,2-Ethylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol, bevorzugt entsprechende Oli- go- und/oder Polypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Bevorzugt haben die Verbindungen (c) nur primäre Hydroxylgruppen, ganz besonders bevorzugt ist 1 ,4-Butandiol.
Katalysatoren (d) welche insbesondere die Reaktion zwischen den NCO-Gruppen der Diiso- cyanate (a) und den Hydroxylgruppen der gegenüber Isocyanaten reaktiven Verbindung (b) und dem Kettenverlängerungsmittel (c) beschleunigen, sind in einer bevorzugten Ausführungsform tertiären Amine, insbesondere Triethylamin, Dimethylcyclohexylamin, N-Methylmorpholin, Ν,Ν'- Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan, in einer anderen bevorzugten Ausführungsform sind dies organische Metallverbindungen wie Titansäureester, Eisenverbindungen, bevorzugt Eisen— (I II)— acetylacetonat, Zinnverbindungen, bevor- zugt Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren, bevorzugt Dibutylzinndiacetat, Dibutylzinndilaurat oder Bismutsalzen in denen Bismut bevorzugt in den Oxidationsstufen 2 oder 3 vorliegt, insbesondere 3. Bevorzugt sind Salze von Carbonsäuren. Als Carbonsäuren werden bevorzugt Carbonsäuren mit 6 bis 14 Kohlenstoffatomen, besonders bevorzugt mit 8 bis 12 Kohlenstoffatomen verwendet. Beispiele für geeigne- te Bismutsalze sind Bismut(lll)-neodecanoat, Bismut-2-ethylhexanoat und Bismut-octanoat. Die Katalysatoren (d) werden bevorzugt in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile der mit Isocyanaten reaktiven Verbindung (b) eingesetzt. Bevorzugt werden Zinnka- taylsatoren eingesetzt, insbesondere Zinndioktoat. Neben Katalysatoren (d) können den Aufbaukomponenten (a) bis (c) auch übliche Hilfsstoffe (e) hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Füllstoffe, weitere Flammschutzmittel, Keimbildungsmittel, Oxidationsstabilisatoren, Gleit- und Entfor- mungshilfen, Farbstoffe und Pigmente, gegebenenfalls Stabilisatoren, z.B. gegen Hydrolyse, Licht, Hitze oder Verfärbung, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher. Geeignete Hilfs- und Zusatzstoffe können beispielsweise dem Kunststoffhandbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl Hanser Verlag, München 1966 (S103-1 13) entnommen werden.
Geeignete Herstellungsverfahren für thermoplastische Polyurethane werden beispielsweise offenbart in EP 0922552 A1 , DE 10103424 A1 oder WO 2006/072461 A1. Die Herstellung erfolgt üblicherweise auf einer Bandanlage oder einem Reaktionsextruder, kann aber auch im Labormaßstab, beispielsweise im Handgußverfahren, erfolgen. In Abhängigkeit der stofflichen Eigenschaften der Komponenten werden diese alle unmittelbar miteinander vermischt oder es werden einzelne Komponenten vorvermischt und/oder vorreagiert, z.B. zu Präpolymeren, und dann erst zur Polyaddition gebracht. In einer weiteren Ausführungsform wird zunächst ein thermoplastisches Polyurethan aus den Aufbaukomponenten, ggf. mit Katalysator hergestellt, in das ggf. noch Hilfsstoffe eingearbeitet sein können. In dieses Material wird dann wenigstens ein Flammschutzmittel eingebracht und homogen verteilt. Das homogene Verteilen erfolgt vorzugsweise in einem Extruder, bevorzugt in einem Zweiwellenextruder. Zur Einstellung von Härte der TPU können die eingesetzten Mengen der Aufbaukomponenten (b) und (c) in relativ breiten molaren Verhältnissen variiert werden, wobei die Härte üblicherweise mit zunehmendem Gehalt an Kettenverlängerungsmittel (c) ansteigt.
Zur Herstellung von thermoplastischen Polyurethanen, z.B. solchen mit einer Härte Shore A von kleiner als 95, vorzugsweise von 95 bis 75 Shore A, besonders bevorzugt etwa 85 A, können beispielsweise die im wesentlichen difunktionellen Polyhydroxylverbindungen (b) und Kettenver- längerer (c) vorteilhafterweise in Molverhältnissen von 1 :1 bis 1 :5, vorzugsweise 1 :1 ,5 bis 1 :4,5 verwendet werden, so dass die resultierenden Mischungen aus den Aufbaukomponenten (b) und (c) ein Hydroxyläquivalentgewicht von größer als 200, und insbesondere von 230 bis 450, besitzen, während zur Herstellung von härteren TPU, z.B. solchen mit einer Härte Shore A von größer als 98, vorzugsweise von 55 bis 75 Shore D, die Molverhältnisse von (b):(c) im Bereich von 1 :5,5 bis 1 :15, vorzugsweise von 1 :6 bis 1 :12, liegen, so dass die erhaltenen Mischungen aus (b) und (c) ein Hydroxyläquivalentgewicht von 1 10 bis 200, vorzugsweise von 120 bis 180, aufweisen.
Zur Herstellung der erfindungsgemäßen thermoplastischen Polyurethane werden die Aufbaukomponenten (a), (b) und (c) bevorzugt in Gegenwart von Katalysatoren (d) und gegebenenfalls Hilfsmitteln und/ oder Zusatzstoffen (e) in solchen Mengen zur Reaktion gebracht, dass das Äquivalenzverhältnis von NCO-Gruppen der Diisocyanate (a) zur Summe der Hydroxylgruppen der Aufbaukomponenten (b) und (c) 0,9 bis 1 ,1 : 1 , vorzugsweise 0,95 bis 1 ,05 : 1 und insbesondere ungefähr 0,96 bis 1 ,0 : 1 beträgt. Die erfindungsgemäße Zusammensetzung enthält das mindestens eine thermoplastische Polyurethan in einer Menge im Bereich von 20 Gew.- % bis 90 Gew.-%, bezogen auf die gesamte Zusammensetzung, bevorzugt im Bereich von 30 Gew.-% bis 75 Gew.-%, weiter bevorzugt im Bereich von 40 Gew.- % bis 60 Gew.- % und besonders bevorzugt im Bereich von 45 Gew.-% bis 55 Gew.-%, jeweils bezogen auf die gesamte Zusammensetzung.
In einer Ausführungsform werden zur Herstellung der erfindungsgemäßen Zusammensetzungen thermoplastisches Polyurethan und Flammschutzmittel in einem Arbeitsschritt verarbeitet. In anderen bevorzugten Ausführungsformen wird zur Herstellung der erfindungsgemäßen Zusammensetzungen zunächst mit einem Reaktionsextruder, einer Bandanlage oder sonstigen geeigneten Vorrichtungen ein thermoplastisches Polyurethan hergestellt, bevorzugt als Granulat, in das dann in mindestens einem weiteren Arbeitsschritt, oder auch mehreren Arbeitsschritten, mindestens ein weiteres Flammschutzmittel eingebracht wird.
Das Vermischen des thermoplastischen Polyurethans mit dem mindestens einen Flammschutzmittel, insbesondere mit dem mindestens einen Metallhydroxid, dem mindestens einen phosphorhaltigen Flammschutzmittel, und gegebenenfalls mit mindestens einem Schichtsilikat und/oder Hydrotalkit erfolgt in einer Mischeinrichtung, die bevorzugt ein Innen-Kneter oder ein Extruder, bevorzugt ein Zweiwellenextruder, ist. Das Metallhydroxid ist bevorzugt ein Aluminiumhydroxid. In einer bevorzugten Ausführungsform ist zumindest ein in die Mischeinrichtung in dem mindestens einem weiteren Arbeitsschritt eingebrachte Flammschutzmittel flüssig, d.h. flüssig bei einer Temperatur von 21 °C. In einer anderen bevorzugten Ausführungsform der Verwendung eines Extruder ist das eingebrachte Flammschutzmittel bei einer Temperatur flüs- sig, die in Fließrichtung des Füllgutes in dem Extruders hinter dem Einfüllpunkt herrscht.
Vorzugsweise werden erfindungsgemäß thermoplastische Polyurethane hergestellt, bei denen das thermoplastische Polyurethan ein zahlenmittleres Molekulargewicht von mindestens 0,02x106 g/mol, bevorzugt von mindestens 0,06 x106 g/mol und insbesondere größer als 0,08 x106 g/mol aufweist. Die Obergrenze für das zahlenmittlere Molekulargewicht der thermoplastischen Polyurethane wird in aller Regel durch die Verarbeitbarkeit wie auch das gewünschte Eigenschaftsspektrum bestimmt. Gleichzeitig liegt das zahlenmittlere Molekulargewicht der thermoplastischen Polyurethane erfindungsgemäß nicht über etwa 0,2 x106 g/mol, bevorzugt 0,15 x106 g/mol.
Metallhydroxid
Die erfindungsgemäße Zusammensetzung enthält mindestens ein Metallhydroxid. Im Brandfall setzten Metallhydroxide ausschließlich Wasser frei und bilden daher keine toxischen oder korrosiven Rauchgasprodukte. Darüber hinaus sind diese Hydroxide in der Lage, die Rauchgasdichte im Brandfall zu reduzieren. Nachteil dieser Substanzen ist jedoch, dass sie gegebenen- falls die Hydrolyse von thermoplastischen Polyurethanen fördern und auch die oxidative Alterung der Polyurethane beeinflussen.
Geeignet sind im Rahmen der vorliegenden Erfindung vorzugsweise Hydroxide des Magnesi- ums, Calciums, Zinks und/oder Aluminiums oder Mischungen dieser. Besonders bevorzugt ist das Metallhydroxid ausgewählt aus der Gruppe bestehend aus Aluminiumhydroxiden, Alumini- umoxidhydroxiden, Magnesiumhydroxid und einer Mischung aus zwei oder mehr dieser Hydroxide. Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das Metallhydroxid ausgewählt ist aus der Gruppe bestehend aus Aluminiumhydroxiden, Aluminiumoxidhydroxiden, Magnesiumhydroxid und einer Mischung aus zwei oder mehr dieser Hydroxide.
Eine bevorzugte Mischung ist Aluminiumhydroxid und Magnesiumhydroxid. Besonders bevorzugt ist Magnesiumhydroxid oder Aluminiumhydroxid. Ganz besonders bevorzugt ist Alumini- umhydroxid.
Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Me- tallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das Metallhydroxid Aluminiumhydroxid ist.
Der Anteil des mindestens einen Metallhydroxids in den erfindungsgemäßen Zusammensetzungen liegt vorzugsweise im Bereich von 10 Gew.-% bis 80 Gew.-%. Bei höheren Füllgraden verschlechtern sich die mechanischen Eigenschaften der entsprechenden Polymerwerkstoffe in einer nicht akzeptablen Weise. So gehen insbesondere die für die Kabelisolierung wichtige Zugfestigkeit und Reißdehnung auf ein nicht akzeptables Maß zurück. Bevorzugt ist der Anteil des Metallhydroxids in der erfindungsgemäßen Zusammensetzung im Bereich von 10 Gew.-% bis 65 Gew.-%, weiter bevorzugt im Bereich von 20 Gew.-% bis 50 Gew.-%, weiter bevorzugt im Bereich von 25 Gew.-% bis 40 Gew.-%, jeweils bezogen auf die gesamte Zusammensetzung.
Die erfindungsgemäß eingesetzten Metallhydroxide haben üblicherweise eine spezifische Oberfläche von 2 m2/g bis 150 m2/g, bevorzugt liegt die spezifische Oberfläche jedoch zwischen 2 m2/g und 9 m2/g, weiter bevorzugt zwischen 3 m2/g und 8 m2/g, besonders bevorzugt zwischen 3 m2/g und 5 m2/g. Die spezifische Oberfläche wird mit dem BET Verfahren nach DIN ISO 9277:2003-05 mit Stickstoff bestimmt. Beschichtete Metallhydroxide
Erfindungsgemäß kann die Oberfläche der Metallhydroxide zumindest teilweise von einer Hülle umgeben sein, auch als zumindest teilweise Umhüllung bezeichnet. Die Hülle ist gleichzusetzen mit dem häufig verwendeten Begriff Coating oder Oberflächenbehandlung. Die Hülle haftet entweder durch Formschluss oder van-der Waals-Kräften rein physikalisch auf dem Metallhydroxid, oder sie ist chemisch mit dem Metallhydroxid verbunden. Dies geschieht überwiegend durch kovalente Wechselwirkung. Die Oberflächenbehandlung oder auch Oberflächenmodifikation, die zu einer Hülle um das eingeschlossene Teil, in vorliegendem Fall das Metallhydroxid, insbesondere das Aluminiumhydroxid führt, wird ausführlich in der Literatur beschrieben. Ein Basiswerk in dem geeignete Materialien als auch die Beschichtungstechnik beschrieben wird, ist„Particulate-Filled Polymer Composites (2nd Edition), edited by: Rothon, Roger N., 2003, Smithers Rapra Technology. Be- sonders relevant ist das Kapitel 4. Entsprechende Materialien sind kommerziell erhältlich, z.B. bei der Firma Nabaltec, Schwandorf oder Martinswerke in Bergheim, beide in Deutschland.
Bevorzugte Beschichtungsmaterialien sind gesättigte oder ungesättigte Polymere mit Säurefunktion, bevorzugt mit mindestens einer Acrylsäure oder einem Säureanhydrid, bevorzugt Mal- einsäureanhydrid, da sich diese besonders gut an die Oberfläche des Metallhydroxides anlagern.
Bei dem Polymer handelt es sich um ein Polymer oder Mischungen von Polymeren, bevorzugt ist ein Polymer. Bevorzugte Polymere sind Polymere von Mono- und Diolefinen, Mischungen hiervon, Copolymere von Mono- und Diolefinen untereinander oder mit anderen Vinylmonome- ren, Polystyrol, Poly(p-methylstyrol), Poly-(alpha-methylstyrol), Copolymere von Styrol oder al- pha-Methylstyrol mit Dienen oder Acrylderivaten, Propfcopolymere von Styrol oder alpha- Methylstyrol, halogenhaltige Polymere, Polymere, die sich von alpha-, beta-ungesättigten Säuren und deren Derivaten ableiten, und Copolymere dieser Monomere untereinander oder mit anderen ungesättigten Monomeren.
Ebenfalls bevorzugte Beschichtungsmaterialien sind monomere organische Säuren und ihre Salze, bevorzugt gesättigte Fettsäuren, weniger gebräuchlich sind ungesättigte Säuren. Bevorzugte Fettsäuren umfassen 10 bis 30 Kohlenstoffatome, bevorzugt 12 bis 22, insbesondere 16 bis 20 Kohlenstoffatom, sie sind aliphatisch und haben bevorzugt keine Doppelbindungen.
Ganz besonders bevorzugt ist die Stearinsäure. Bevorzugte Fettsäurederivate sind ihre Salze, bevorzugt Calcium, Aluminium, Magnesium oder Zink. Besonders bevorzugt ist Calcium, insbesondere als Calciumstearat. Andere bevorzugte Stoffe die eine Hülle um das Metallhydroxid, bevorzugt das Aluminiumhydroxid bilden sind Organosilanverbindungen mit folgendem Aufbau:
(R)4-n— Si— Xn mit n = 1 , 2 oder 3. X ist eine hydrolysierbare Gruppe, die mit der Oberfläche des Metallhydroxides reagiert, auch als Kupplungsgruppe bezeichnet. Bevorzugt ist der Rest R ein Kohlenwasserstoffrest und ist so ausgewählt, dass die Orgnosilanverbindung gut mit dem thermoplastischen Polyurethan misch- bar ist. Der Rest R ist über eine hydrolytisch stabile Kohlenstoff-Silizium Verbindung mit dem Silicium verbunden und kann reaktiv sein oder inert. Ein Beispiel für einen reaktiven Rest, der bevorzugt ein ungesättigter Kohlenwasserstoffrest ist, ist ein Allylrest. Bevorzugt ist der Rest R inert, weiter bevorzugt ein gesättigter Kohlenstoffwasserstoffrest mit 2 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 20 Kohlenstoffatomen und besonders bevorzugt 8 bis 18 Kohlenstoffato- men, weiter bevorzugt handelt es sich um einen aliphatischen Kohlenwasserstoffrest, der ver- zweigtkettig oder linear ist.
Weiter bevorzugt enthält die Organosilanverbindung nur einen Rest R und hat die allgemeine Formel:
R— Si— (X)3
Bevorzugt ist die Kupplungsgruppe X ein Halogen, bevorzugt Chlor und demzufolge das Kupp- lungreaganz ein Tri-, Di- oder Monochlorsilan. Ebenfalls bevorzugt ist die Kupplungsgruppe X eine Alkoxy-Gruppe, bevorzugt eine Methoxy- oder eine Ethoxy-Gruppe. Ganz bevorzugt ist der Rest das Hexadecyl-Radikal, bevorzugt mit der Methoxy- oder Ethoxy-Kupplungsgruppe, somit ist das Organosilan das Hexadecylsilan.
Die Silane werden mit 0,1 Gew.-% bis 5 Gew.-%, weiter bevorzugt 0,5 Gew.-% bis 1 ,5 Gew.-% und besonders bevorzugt mit ca. 1 Gew. % bezogen auf die Gesamtmenge des Metallhydroxides auf dieses aufgebracht. Carbonsäuren und -derivate werden mit 0,1 Gew.-% bis 5 Gew.-%, weitere bevorzugt mit 1 ,5 Gew. % bis 5 Gew. % und besonders bevorzugt mit 3 Gew.-% bis 5 Gew.-% bezogen auf die Gesamtmenge des Metallhydroxid auf dieses aufgebracht. Von den teilweise mit einer Hülle umgebenen Metallhydroxiden haben bevorzugt mehr als
50 %, weiter bevorzugt mehr als 70 %, weiter bevorzugt mehr als 90 % eine maximale Ausdehnung von weniger als 10 μηη, bevorzugt weniger als 5 μηη, besonders bevorzugt weniger als 3 μηη. Gleichzeitig haben mindestens 50 % der Teilchen, bevorzugt mindestens 70 %, weiter bevorzugt mindestens 90 % zumindest eine maximale Ausdehnung von mehr als 0,1 μηη, weiter bevorzugt von mehr als 0,5 μηη und besonders bevorzugt mehr als 1 μηη.
Bevorzugt werden bei der Herstellung der erfindungsgemäßen thermoplastischen Polyurethane Metallhydroxide verwendet, die bereits beschichtet sind. Nur so können ungewünschte Nebenreaktionen der Beschichtungsmaterialien mit den Bestandteilen des thermoplastischen Po- lyurethans vermieden werden und der Vorteil der Verhinderung des oxidativen Abbaus des thermoplastischen Polyurethans kommt besonders gut zum Tragen. Weiter bevorzugt kann die Beschichtung des Metallhydroxides auch im Einfüllbereich des Extruders erfolgen, bevor in einem flussabwärts gelegenen Teil des Extruders das Polyurethan zugegeben wird. Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung demgemäß auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Me- tallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das Metallhydroxid zumindest teilweise von einer Hülle umgeben ist.
Phosphorhaltige Flammschutzmittel
Die erfindungsgemäßen Zusammensetzungen enthalten mindestens ein phosphorhaltiges Flammschutzmittel. Erfindungsgemäß können prinzipiell alle bekannten phosphorhaltigen Flammschutzmittel für thermoplastische Polyurethane eingesetzt werden. Bevorzugt werden im Rahmen der vorliegenden Erfindung Derivate der Phosphorsäure, Derivate der Phosphonsäure oder Derivate der Phosphinsäure oder Mischungen aus zwei oder mehreren dieser Derivate eingesetzt.
Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das phosphorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Derivaten der Phosphorsäure, Derivaten der Phosphonsäure, Derivaten der Phosphinsäure und einer Mischung aus zwei oder mehr dieser Derivate.
Gemäß einer weiteren bevorzugten Ausführungsform ist das phosphorhaltige Flammschutzmittel bei 21 °C flüssig. Bevorzugt handelt es sich bei den Derivaten der Phosphorsäure, Phosphonsäure oder Phosphinsäure um Salze mit organischem oder anorganischem Kation oder um organische Ester. Organische Ester sind Derivate der Phosphor-haltigen Säuren, bei denen zumindest ein direkt an den Phosphor gebundenes Sauerstoffatom mit einem organischen Rest verestert ist. In einer bevorzugten Ausführungsform handelt es sich bei dem organischen Ester um einen Alkylester, in einer anderen bevorzugten Ausführungsform um einen Arylester. Besonders bevorzugt sind alle Hydroxygruppen der entsprechenden Phosphor-haltigen Säure verestert.
Organische Phosphatester sind bevorzugt, besonders die Triester, der Phosphorsäure, wie Tri- alkylphosphate und insbesondere Triarylphosphate, wie zum Beispiel Triphenylphosphat. Bevorzugt werden erfindungsgemäß als Flammschutzmittel für die thermoplastischen Polyurethane Phos horsäureester der allgemeinen Formel (I)
Figure imgf000015_0001
verwendet, wobei R für, gegebenenfalls substituierte, Alkyl-, Cycloalkyl- oder Phenylgruppen steht und n = 1 bis 15 bedeutet.
Steht R in der allgemeinen Formel (I) für einen Alkylrest, kommen insbesondere solche Alkyl- reste mit 1 bis 8 C-Atomen in Betracht. Als Beispiel für die Cycloalkylgruppen sei der Cyclohe- xyl-Rest genannt. Bevorzugt werden solche Phosphorsäureester der allgemeinen Formel (I) eingesetzt, bei denen R = Phenyl oder alkylsubstituiertes Phenyl bedeutet, n ist in der allgemeinen Formel (I) insbesondere 1 oder liegt vorzugsweise im Bereich von etwa 3 bis 6. Als Beispiele für die bevorzugten Phosphorsäureester der allgemeinen Formel (I) seien das 1 ,3-Phenylen- bis-(diphenyl)phosphat, das 1 ,3-Phenylen-bis-(dixylenyl)phosphat sowie die entsprechenden oligomeren Produkte mit einem mittleren Oligomerisierungsgrad von n = 3 bis 6 genannt. Ein bevorzugtes Resorcinol ist Resorcinol bis-diphenylphosphat (RDP), das üblicherweise in Oligomeren vorliegt. Weitere bevorzugte phosphorhaltige Flammschutzmittel sind Bisphenol-A bis-
(diphenylphosphat) (BDP), das üblicherweise als Oligomer vorliegt, und Diphenylkresylphos- phat (DPK).
Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei das phosphorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis-diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkresylphosphat (DPK).
Bei den organischen Phosphonaten handelt es sich um Salze mit organischem oder anorganischem Kation oder um die Ester der Phosphonsäure. Bevorzugte Ester der Phosphonsäure sind die Diester von Alkyl- oder Phenylphosphonsäuren. Beispielhaft für die erfindungsgemäß als Flammschutzmittel einzusetzenden Phosphonsäureester seien die Phosphonate der allgemeinen Formel (II) 0
II ^-O-R1
R2 —P ^
^O-R1 angeführt, wobei
R1 für gegebenenfalls substituierte, Alkyl-, Cycloalkyl- oder Phenylgruppen steht, wobei die beiden Reste R1 auch cyclisch miteinander verknüpft sein können und
R2: für einen, gegebenenfalls substituierten, Alkyl-, Cycloalkyl- oder Phenylrest steht. Besonders geeignet sind dabei cyclische Phosphonate wie z.B.
Figure imgf000016_0001
mit R2 = CH3 und C6H5, die sich vom Pentaerythrit ableiten, oder
Figure imgf000016_0002
mit R2 = CH3 und C6H5, die sich vom Neopentylglykol ableiten, oder
0
Figure imgf000016_0003
mit R2 = CH3 und C6H5, die sich vom Brenzkatechin ableiten, aber auch
Figure imgf000016_0004
mit R2 = einem unsubstituierten oder auch substituierten Phenylrest.
Phosphinsäureester haben die allgemeine Formel R1R2(P=0)OR3, wobei alle drei organischen Gruppen R1, R2 und R3 gleich oder verschieden sein können. Die Reste R1, R2 und R3 sind entweder aliphatisch oder aromatisch und haben 1 bis 20 Kohlenstoffatome, bevorzugt 1 bis 10, weiter bevorzugt 1 bis 3. Bevorzugt ist zumindest einer der Reste aliphatisch, bevorzugt sind alle Reste aliphatisch, ganz besonders bevorzugt sind R1 und R2 Ethylreste. Weiter bevorzugt ist auch R3 ein Ethylrest oder ein Methylrest. In einer bevorzugten Ausführungsform sind R1, R2 und R3 gleichzeitig Ethylrest oder Methylreste.
Bevorzugt sind auch Phosphinate, d.h. die Salze der Phosphinsäure. Die Reste R1 und R2 sind entweder aliphatisch oder aromatisch und haben 1 bis 20 Kohlenstoffatome, bevorzugt 1 bis 10, weiter bevorzugt 1 bis 3. Bevorzugt ist zumindest einer der Reste aliphatisch, bevorzugt sind alle Reste aliphatisch, ganz besonders bevorzugt sind R1 und R2 Ethylreste. Bevorzugte Salze der Phosphinsäuren sind Aluminium-, Calcium- oder Zinksalze. Eine bevorzugte Ausführungsform ist Diethylaluminiumphosphinat.
Die phophorhaltigen Flammschutzmittel, ihre Salze und/oder ihre Derivate werden in den erfin- dungsgemäßen Zusammensetzungen als Einzelsubstanz oder in Mischungen verwendet.
Im Rahmen der vorliegenden Erfindung wird das mindestens eine phosphorhaltige Flammschutzmittel in einer Menge eingesetzt, dass der Gehalt an Phosphor berechnet auf das gesamte phosphorhaltige Flammschutzmittel größer als 5 Gew.-%, weiter bevorzugt größer als 7 Gew.-% ist. Gleichzeitig ist der Gehalt an phosphorhaltigen Flammschutzmitteln in der Zusammensetzung beispielsweise geringer als 30 Gew.-%, bevorzugt kleiner als 20 Gew.-% und besonders bevorzugt kleiner als 15 Gew.-%. Bevorzugt ist das mindestens eine phosphorhaltige Flammschutzmittel in einer Menge im Bereich von 3 Gew.-% bis 30 Gew.-% enthalten, weiter bevorzugt im Bereich von 5 Gew.- % bis 20 Gew.- % und besonders bevorzugt im Bereich von 8 Gew.- % bis 15 Gew.- %, jeweils bezogen auf die gesamte Zusammensetzung.
Gemäß einer bevorzugten Ausführungsform enthält die erfindungsgemäße Zusammensetzung als phosphorhaltiges Flammschutzmittel Resorcinol bis-diphenylphosphat (RDP). Gemäß einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Zusammensetzung als phosphorhaltiges Flammschutzmittel Resorcinol bis-diphenylphosphat (RDP) und Aluminiumhydroxid. Gemäß einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Zusammensetzung als phosphorhaltiges Flammschutzmittel Resorcinol bis-diphenylphosphat (RDP), Aluminiumhydroxid und eine Schichtsilikat und/oder Hydrotalkit.
Durch die Kombination der verschiedenen Flammschutzmittel werden mechanische Eigenschaften und Flammschutzeigenschaften auf die jeweilige Anforderung optimiert. Gemäß der vorliegenden Erfindung werden das phosphorhaltige Flammschutzmittel, insbesondere die Phosphorsäureester, Phosphonsäureester und/oder Phospinsäureester und/oder deren Salze in Mischung zusammen mit mindestens einem Metallhydroxid als Flammschutzmittel eingesetzt. Dabei ist das Gewichtsverhältnis der Summe des Gewichts der eingesetzten Phos- phatester, Phosphonatester und Phosphinatatester zu dem Gewicht des eingesetzten Metallhydroxid in der erfindungsgemäßen Zusammensetzung vorzugsweise im Bereich von 1 :5 bis 1 :2.
Enthält die erfindungsgemäße Zusammensetzung neben dem mindestens einen Metallhydroxid und dem mindestens einen phosphorhaltigen Flammschutzmittel noch mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon, ist vorzugsweise das mindestens eine phosphorhaltige Flammschutzmittel in einer Menge im Bereich von 3 Gew.-% bis 30 Gew.-% enthalten, weiter bevorzugt im Bereich von 5 Gew.- % bis 20 Gew.- % und besonders bevorzugt im Bereich von 8 Gew.- % bis 15 Gew.- %, jeweils bezogen auf die gesamte Zusammensetzung.
Gleichzeitig ist das mindestens eine Metallhydroxid bevorzugt in einer Menge im Bereich von 10 Gew.-% bis 65 Gew. % bezogen auf die gesamte Zusammensetzung, bevorzugt im Bereich von 15 Gew.- % bis 50 Gew.- % und besonders bevorzugt im Bereich von 25 Gew.- % bis 40 Gew.- % enthalten, jeweils bezogen auf die gesamte Zusammensetzung.
Demgemäß betrifft die vorliegende Erfindung auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phos- phorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt.
Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens ei- nem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Gemäß einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung damit auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Enthält die erfindungsgemäße Zusammensetzung neben dem mindestens einen Metallhydroxid und dem mindestens einen phosphorhaltigen Flammschutzmittel noch mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon, ist vorzugsweise der Anteil der Summe der Gewichtsprozente (Gew.- %) dieser Bestandteile, in Summe auch als Flammschutzmittel ange- sprachen, in der erfindungsgemäßen Zusammensetzung im Bereich von 10 Gew.- % bis 80 Gew.-%, bezogen auf die gesamte Zusammensetzung, bevorzugt im Bereich von 25 Gew.-% bis 70 Gew.-%, weiter bevorzugt im Bereich von 40 Gew.- % bis 60 Gew.- % und besonders bevorzugt im Bereich von 45 Gew.-% bis 55 Gew.-%. Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform auch eine Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben, wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phosphorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotalkits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
Die Gewichtsanteile des mindestens einen phosphorhaltigen Flammschutzmittels zu Metallhyd- roxid zu dem mindestens einen Schichtsilkat oder Hydrotalkit oder der Mischung davon verhalten sich wie a zu b zu c, wobei a erfindungsgemäß beispielsweise im Bereich von 5 bis 15 variiert werden kann, b beispielsweise im Bereich von 30 bis 40 und c beispielsweise im Bereich von 0 bis 8, bevorzugt im Bereich von 3 bis 8. Weiter bevorzugt verhalten sich die Gewichtsanteile des mindestens einen phosphorhaltigen Flammschutzmittels zu Metallhydroxid zu dem mindestens einen Schichtsilkat oder Hydrotalkit oder der Mischung davon wie etwa 9 zu 34 zu 5.
Die vorliegende Erfindung betrifft auch die Verwendung der erfindungsgemäßen Zusammensetzung enthaltend mindestens ein flammgeschütztes thermoplastisches Polyurethan wie zuvor beschrieben, zur Herstellung von Beschichtungen, Dämpfungselementen, Faltenbälgen, Folien oder Fasern, Formkörpern, Fußböden für Gebäude und Transport,„non woven" Gewebe, bevorzugt Dichtungen, Rollen, Schuhsohlen, Schläuchen, Kabel, Kabelstecker, Kabelummantelungen, Kissen, Laminaten, Profilen, Riemen, Sätteln, Schäumen, Steckverbindungen,
Schleppkabel, Solarmodulen, Verkleidungen in Automobilen. Bevorzugt ist die Verwendung zur Herstellung von Kabelummantelungen. Die Herstellung erfolgt bevorzugt aus Granulaten, durch Spritzguss, Kalandrieren, Pulversintern, oder Extrusion und/oder durch zusätzliches Schäumen der erfindungsgemäßen Zusammensetzung.
Demgemäß betrifft die vorliegende Erfindung auch die Verwendung einer Zusammensetzung enthaltend mindestens ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel wie zuvor beschrieben zur Herstellung von Kabelummantelungen. Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend erläuterten Merkmale des erfindungsgemäßen Gegenstandes/Verfahren/Verwendungen nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen. So ist z. B. auch die Kombination von einem bevorzugten Merkmal mit einem besonders bevorzugten Merkmal, oder eines nicht weiter charakterisierten Merkmals mit einem besonders bevorzugten Merkmal etc. implizit umfasst auch wenn diese Kombination nicht ausdrücklich erwähnt wird.
Im Folgenden sind beispielhafte Ausführungsformen der vorliegenden Erfindung aufgeführt, wobei diese die vorliegende Erfindung nicht einschränken. Insbesondere umfasst die vorliegende Erfindung auch solche Ausführungsformen, die sich aus den im Folgenden angegebenen Rückbezügen und damit Kombinationen ergeben.
1 . Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist.
2. Zusammensetzung gemäß Ausführungsform 1 , wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß Ausführungsform 2, wobei das Schichtsilikat ein organisch interkaliertes Schichtsilikat ist und/oder der Hydrotalkit ein organisch interkalierter Hydro talkit ist.
Zusammensetzung gemäß einer der Ausführungsformen 2 oder 3, wobei das Schichtsilikat Bentonit ist.
Zusammensetzung gemäß einer der Ausführungsformen 2 bis 4, wobei das mindestens eine Schichtsilikat oder Hydrotalkit oder die Mischung davon in einer Mengen im Bereich von 0,5 Gew.-% bis 20 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten ist.
Zusammensetzung gemäß einer der Ausführungsformen 2 bis 5, wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phosphorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotalkits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 6, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 7, wobei das Polycar- bonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 6, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole und wobei das Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 9, wobei das Metallhydroxid ausgewählt ist aus der Gruppe bestehend aus Aluminiumhydroxiden, Aluminiumoxid- hydroxiden, Magnesiumhydroxid und einer Mischung aus zwei oder mehr dieser Hydroxide.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 10, wobei das Metallhydroxid Aluminiumhydroxid ist.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 1 1 , wobei das Metallhyd xid zumindest teilweise von einer Hülle umgeben ist.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 12, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Derivaten der Phosphorsäure, Derivaten der Phosphonsäure, Derivaten der Phosphinsäure und einer Mischung aus zwei oder mehr dieser Derivate.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 13, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK).
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 13, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK) und wobei das Metallhydroxid Aluminiumhydroxid ist.
Zusammensetzung gemäß einer der Ausführungsformen 1 bis 13, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK), wobei das Metallhydroxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 13, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK) und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 17, wobei das Metallhydroxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 18, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 19, wobei der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 17, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Verwendung einer Zusammensetzung gemäß einer der Ausführungsformen 1 bis 21 zur Herstellung von Kabelummantelungen. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält und wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phosphorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotalkits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
25. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. 26. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei das phos- phorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis-diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphe- nylkresylphosphat (DPK), wobei das Metallhydroxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist.
Zusammensetzung gemäß Ausführungsform 27, wobei die Zusammensetzung mind tens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß Ausführungsform 28, wobei das Schichtsilikat ein organisch interkaliertes Schichtsilikat ist und/oder der Hydrotalkit ein organisch interkalierter Hydrotalkit ist.
Zusammensetzung gemäß einer der Ausführungsformen 28 oder 29, wobei das Schichtsilikat Bentonit ist.
Zusammensetzung gemäß einer der Ausführungsformen 28 bis 30, wobei das mindestens eine Schichtsilikat oder Hydrotalkit oder die Mischung davon in einer Mengen im Bereich von 0,5 Gew.-% bis 20 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten ist. Zusammensetzung gemäß einer der Ausführungsformen 28 bis 31 , wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phosphorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotalkits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 32, wobei das mindestens eine aliphatische Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus aliphatischen Polycarbonatdiolen basierend auf Butandiol und Hexandiol, aliphatischen Polycar- bonatdiolen basierend auf Pentandiol und Hexandiol, aliphatischen Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser aliphatischen Poly- carbonatdiole.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 33, wobei das aliphatische Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 32, wobei das mindestens eine aliphatische Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus aliphatischen Polycarbonatdiolen basierend auf Butandiol und Hexandiol, aliphatischen Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, aliphatischen Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser aliphatischen Polycarbonatdiol und wobei das aliphatische Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 35, wobei das Metallhydroxid ausgewählt ist aus der Gruppe bestehend aus Aluminiumhydroxiden, Alumini- umoxidhydroxiden, Magnesiumhydroxid und einer Mischung aus zwei oder mehr dieser Hydroxide.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 36, wobei das Metallhydroxid Aluminiumhydroxid ist.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 37, wobei das Metallhydroxid zumindest teilweise von einer Hülle umgeben ist.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 38, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Derivaten der Phosphorsäure, Derivaten der Phosphonsäure, Derivaten der Phosphinsäure und einer Mischung aus zwei oder mehr dieser Derivate. Zusammensetzung gemäß einer der Ausführungsformen 27 bis 39, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK).
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 39, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK) und wobei das Metallhyd roxid Aluminiumhydroxid ist.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 39, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK), wobei das Metallhyd roxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 39, wobei das phosphor- haltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK) und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 43, wobei das Metallhydroxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß einer der Ausführungsformen 27 bis 44, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 45, wobei der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Zusammensetzung gemäß einer der Ausführungsformen 1 bis 44, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt. Verwendung einer Zusammensetzung gemäß einer der Ausführungsformen 27 bis 47 zur Herstellung von Kabelummantelungen. 49. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
50. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält und wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phosphorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotalkits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
51 . Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zusammenset- zung, liegt.
52. Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem aliphatischen Polycarbonatdiol basierendes thermoplastisches Polyurethan ist, wobei das phosphorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis-diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkresylphosphat (DPK), wobei das Metallhydroxid Aluminiumhydroxid ist und wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischun- gen davon enthält.
Die nachfolgenden Beispiele dienen der Veranschaulichung der Erfindung, sind aber in keiner Weise einschränkend hinsichtlich des Gegenstands der vorliegenden Erfindung. BEISPIELE
Die Beispiele zeigen die verbesserte Flammfestigkeit der erfindungsgemäßen Zusammenset- zungen, sowie die guten mechanischen Eigenschaften und die Hydrolysebeständigkeit.
1. Herstellbeispiel
1.1 Einsatzstoffe
Elastollan 1 185A10: TPU der Shore Härte 85A der BASF Polyurethanes GmbH, Elasto- granstrasse 60, 49448 Lemförde, basiert auf Polytetrahydrofuran (PTHF) mit einem Molekulargewicht von 1000, 1 ,4-Butandiol, MDI. Elastollan A: TPU der Shore Härte 86A, Versuchsmaterial, basiert auf einem Polycar- bonatdiol der Firma Bayer (Desmophen 2200), 1 ,4-Butandiol, MDI.
Elastollan B: TPU der Shore Härte 87A, Versuchsmaterial, basiert auf einem Polycar- bonatdiol der Firma Übe (Eternacoll PH-200D), 1 ,4-Butandiol, MDI.
Martinal OL 104 LEO: Aluminiumhydroxid ohne Coating, Martinswerk GmbH, Kölner Strasse 1 10, 50127 Bergheim, AI(OH)3-Gehalt [%] « 99.4, Teilchengröße (Laserbeugung, Cilas) [μπΊ] D50: 1 .7 - 2.1 ; Spezifische Oberfläche (BET) [m2/g]: 3 - 5. Magnifin H5 MV: Magnesiumhydroxid mit einem hydrophoben Oberflächencoating, Martinswerk GmbH, Kölner Strasse 1 10, 50127 Bergheim, Mg(OH)2-Gehalt [%] > 99.8, Teilchengröße (Laserbeugung) [μηη] D50: 1 ,6-2; Spezifische Oberfläche (BET) [m2/g]: 2-5
Nanofil 15: organisch modifiziertes nano-dispergierbares Schichtsilikat auf Basis natürli- eher Bentonite, Rockwood Clay Additives GmbH, Stadtwaldstraße 44, D-85368 Moosburg, Pulver, mittlere Korngröße D50, d.h. mindestens 50 % der Teilchen sind kleiner als 40μηη.
Disflamoll TOF: Tris(2-ethylhexyl)phosphate, CAS 78-42-2, Lanxess Deutschland GmbH, 51369 Leverkusen
Fyrolflex RDP: Resorcinol bis (diphenyl phosphat), CAS #: 125997-21 -9, Supresta Netherlands B.V., Office Park De Hoef, Hoefseweg 1 , 3821 AE Amersfoort, The Netherlands. Herstellung im Handgußverfahren
Die in der zugrundeliegenden Rezeptur festgelegte Menge Polyol und der Kettenverlänge rer wird in der Weißblechdose eingewogen und kurz mit Stickstoff beschleiert. Die Dose wird mit einem Deckel verschlossen und im Heizschrank auf ca. 90°C aufgeheizt.
Ein weiterer Heizschrank zum Tempern der Schwarte wird auf 80 °C vorgeheizt. Die Teflonschale wird auf den Heiztisch gestellt und dieser auf 125°C eingestellt.
Die berechnete Menge an flüssigem Isocyanat wird durch Auslitern bestimmt. Dazu wird das flüssige Isocyanat (MDI wird mit einer Temperatur von ca. 48 °C ausgelitert) in einem PE-Becher eingewogen und innerhalb von 10s in einen PE-Becher ausgegossen. Anschließend wird der so entleerte Becher tariert und mit der berechneten Menge an Isocyanat befüllt. Im Fall von MDI wird dieser bei ca. 48°C im Heizschrank gelagert.
Zusätze wie Hydrolyseschutz, Antioxidans, etc. die bei RT als Feststoffe vorliegen, werden direkt eingewogen.
Das vorgeheizte Polyol wird auf einer Hebebühne unter den ruhenden Rührer gestellt. Anschließend wird das Reaktionsgefäß mit der Hebebühne soweit angehoben, bis die Rührblätter vollständig in das Polyol eintauchen.
Bevor der Rührmotor eingeschaltet wird, unbedingt darauf achten, dass sich der Drehzahlregler in der Nullstellung befindet. Anschließend wird die Drehzahl langsam hochgeregelt, so dass eine gute Durchmischung ohne Einrühren von Luft gewährleistet wird.
Anschließend werden Additive wie z.B. Antioxidantien in das Polyol gegeben.
Die Temperatur der Reaktionsmischung wird vorsichtig mit einem Heißluftfön auf 80°C eingestellt.
Falls erforderlich wird vor der Isocyanatzugabe Katalysator mit der Microliterspritze zur Reaktionsmischung dosiert. Bei 80 °C erfolgt nun die Zugabe von Isocyanat, indem die zuvor ausgeliterte Menge innerhalb von 10s in die Reaktionsmischung eingetragen wird. Durch Rückwaage erfolgt die Gewichtskontrolle. Abweichungen größer/kleiner 0,2 g von der Rezepturmenge werden dokumentiert. Mit der Zugabe des Isocyanats wird die Stoppuhr gestartet. Bei Erreichen von 1 10°C wird die Reaktionsmischung in die Teflonschalen, die auf 125°C vorgeheizt sind, ausgegossen.
10min nach Start der Stoppuhr wird die Schwarte vom Heiztisch genommen und anschließend für 15h im Heizschrank bei 80°C gelagert. Die ausgekühlte Schwarte wird in der Schneidmühle zerkleinert. Das Granulat wird nun für 3h bei 1 10°C getrocknet und trocken gelagert. Grundsätzlich kann dieses Verfahren auf den Reaktionsextruder oder das Bandverfahren übertragen werden.
Rezeptur für Elastollan A und B:
Figure imgf000029_0001
Für die Herstellung von Elastollan A wird als Polycarbonatdiol ein Polycarbonatdiol der Firma Bayer (Desmophen 2200) eingesetzt, für die Herstellung von Elastollan B ein Polycarbonatdiol der Firma Übe (Eternacoll PH-200D).
Beispiel - Flammwidrigkeit
Um die Flammwidrigkeit zu bewerten, wird ein Probekörper mit 5mm Dicke horizontal bei einer Strahlungsintensität von 35kW/m2 im Cone Kalorimeter nach der ISO 5660 Teil 1 und Teil 2 (2002-12) geprüft.
In den nachfolgenden Tabellen werden Zusammensetzungen aufgeführt, in denen die einzelnen Einsatzstoffe in Gewichtsanteilen (GT) angegeben sind. Die Mischungen wurden jeweils mit einem Doppelwellen-Extruder Typ ZE 40 A der Fa. Berstorff mit einer Verfahrensteillänge von 35 D unterteilt in 10 Gehäuse hergestellt und anschließend mit einem Einwellen-Extruder Typ Arenz mit einer Dreizonenschnecke mit Mischteil (Schneckenverhältnis 1 :3) zu Folien mit einer Dicke von 1 ,6 mm extrudiert. Die Prüfkörper für die Cone Messungen mit Abmessungen von 200x150x5mm wurden an einer Arburg 520S mit einem Schneckendurchmesser von 30 mm spritzgegossen (Zonel - Zone 3 180°C, Zone 4- Zone 6 185°C). Die Platten wurden dann auf die für die Cone Messung nötige Größe gesägt.
Tabelle 1
Figure imgf000030_0001
VB: Vergleichsbeispiel, egB: erfindungsgemäßes Beispiel
Tabelle 2
Figure imgf000030_0002
n.b.: Werte wurden nicht bestimmt Nach Petrella (Petrella R.V., The assessment of füll scale fire hazards from cone calorim- eter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, wie das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt.
Die Ergebnisse der Cone Kalorimertermessungen der Mischungen 1 bis 1 1 wurden in einem Petrellaplot graphisch dargestellt, der in Fig. 1 bis Fig. 5 wiedergegeben ist. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y-Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJnr2). Dabei weisen Materialien mit besseren Flammfestigkeiten möglichst kleine x und y Werte auf. Die Ergebnisse sind in der Tabelle 2 sowie dem jeweiligen Petrella Plot zusammengefasst.
Die erfindungsgemäßen Materialien haben eine höhere Flammfestigkeit. Die erfindungsgemäßen Mischungen weisen eine geringere Rauchgasdichte auf.
Beispiel - mechanische Eigenschaften
Die Mischung 1 ist ein Vergleichsbeispiel, wobei ein thermoplastisches Polyurethan basierend auf Polyetherpolyol eingesetzt wurde.
Die Mischungen 2 und 3 sind erfindungsgemäß und zeigen, dass der Einsatz von thermoplastischen Polyurethanen basierend auf Polycarbonatdiolen zu thermoplastischen Polyurethanen mit guten mechanischen Eigenschaften führt. Gemessen wurde die Zugfestigkeit bzw. Reissdehnung (gemäß DIN 53504) und die Shore Härte A (gemäß DIN 53505) der entsprechenden Probenkörper.
Tabelle 3
Figure imgf000031_0001
4. Beispiel - Alterungsbeständigkeit
Die Mischungen 1 ist ein Vergleichsbeispiel, wobei ein thermoplastisches Polyurethan basierend auf Polyetherpolyol eingesetzt wurde. Mischungen 4 und 8 sind ebenfalls Vergleichsbeispiele.
Die Mischungen 2 und 3 sind erfindungsgemäß und zeigen, dass der Einsatz von thermoplastischen Polyurethanen basierend auf Polycarbonatdiolen die Flammfestigkeit deutlich verbessert. Auch Mischungen 5 und 9 sind erfindungsgemäße Beispiele.
Von oxidativer Alterung wird im Zusammenhang mit dieser Erfindung gesprochen, wenn sich bei den thermoplastischen Polyurethanen im Laufe der Zeit die mechanischen Parameter, wie Zugfestigkeit, Reißdehnung, Weiterreißfestigkeit, Flexibilität, Schlagfestigkeit, Weichheit etc. negativ verändern.
Um die oxidative Alterungsbeständigkeit zu bewerten, wird ein Probekörper bei 1 13 °C für 7 Tage, bei 121 °C für 7 Tage und bei 136 °C für 7 Tage in einem Umluftofen gelagert und anschließend mechanische Parameter bestimmt. Die Ergebnisse sind in den nachfolgenden Tabellen 4, 5 und 6 zusammengefasst.
Tabelle 4
Figure imgf000032_0001
n.b.: Werte wurden nicht bestimmt Tabelle 6
Figure imgf000033_0001
Die Mischungen 2, 3, 5 und 9 sind erfindungsgemäß und zeigen, dass der Einsatz von Mischungen enthaltend thermoplastischen Polyurethanen basierend auf Polycarbonatdio- len den Festigkeitsabfall durch Wärmebehandlung signifikant verringert, d.h. die oxidative Alterungsbeständigkeit deutlich verbessert.
Beispiel - Hydrolysebeständigkeit
Um die Hydrolysebeständigkeit zu bewerten, wird ein Probekörper bei 80 °C für 1008 Stunden in Wasser gelagert und anschließend mechanische Parameter bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle 7 zusammengefasst.
Tabelle 7
Figure imgf000033_0002
Die Mischung 2 ist erfindungsgemäß und zeigt, dass der Einsatz von Mischungen enthal- tend thermoplastischen Polyurethanen basierend auf Polycarbonatdiolen ähnlich gute
Hydrolyseeigenschaften besitzen wie Mischungen enthaltend thermoplastische Polyurethane basierend auf Polyethern. Kurze Beschreibung der Figuren
Fig. 1 zeigt die Ergebnisse der Cone Kalorimertermessungen der Mischungen 1 -3 in einem Petrellaplot. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y-Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJnr2). Nach Petrella (Petrella R.V., The assessment of füll scale fire hazards from cone calorimeter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, dass das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt. Materialien mit besseren Flammfestigkeiten weisen möglichst kleine x und y Werte auf. Die Materialien 2 und 3 (symbolisiert über die beiden gefüllten Quadrate) weisen gegenüber Vergleichsmaterial 1 (symbolisiert über das gefüllte Dreieck) bessere Eigenschaften auf.
Fig. 2 zeigt die Ergebnisse der Cone Kalorimertermessungen der Mischungen 4 und 5 in einem Petrellaplot. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y-Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJm-2). Nach Petrella (Petrella R.V., The assessment of füll scale fire hazards from cone calorimeter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, dass das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt. Materialien mit besseren Flammfestigkeiten weisen möglichst kleine x und y Werte auf. Material 5 (symbolisiert über das gefüllte Quadrat) weist gegenüber Vergleichsmaterial 4 (symbolisiert über das gefüllte Dreieck) bessere Eigenschaften auf.
Fig. 3 zeigt die Ergebnisse der Cone Kalorimertermessungen der Mischungen 6 und 7 in einem Petrellaplot. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y-Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJm-2). Nach Petrella (Petrella R.V., The assessment of füll scale fire hazards from cone calorimeter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, dass das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt. Materialien mit besseren Flammfestigkeiten weisen möglichst kleine x und y Werte auf. Material 7 (symbolisiert über das gefüllte Quadrat) weist gegenüber Vergleichsmaterial 6 (symbolisiert über das gefüllte Dreieck) bessere Eigenschaften auf. zeigt die Ergebnisse der Cone Kalorimertermessungen der Mischungen 8 und 9 in einem Petrellaplot. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y-Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJnr2). Nach Petrella (Petrella R.V., The assessment of füll scale fire ha- zards from cone calorimeter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, dass das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt. Materialien mit besseren Flammfestigkeiten weisen möglichst kleine x und y Werte auf. Material 9 (symbolisiert über das gefüllte Quadrat) weist gegenüber Vergleichsmaterial 8 (symbolisiert über das gefüllte Dreieck) bessere Eigenschaften auf. zeigt die Ergebnisse der Cone Kalorimertermessungen der Mischungen 10 und 1 1 in einem Petrellaplot. Dabei ist auf der x-Achse die Neigung des Materials aufgetragen, zu einem schnell wachsenden Feuer beizutragen (PHRR/tig-1/kWnr2s-1). Auf der y- Achse ist die Neigung des Materials aufgetragen, zu einem lang anhaltenden Feuer beizutragen (THE/MJnr2). Nach Petrella (Petrella R.V., The assessment of füll scale fire hazards from cone calorimeter data, Journal of Fire Science, 12 (1994), p. 14) ist der Quotient aus maximaler Wärmefreisetzung und Zündzeitpunkt ein Maß dafür, dass das entsprechende Material zu einem schnell wachsenden Feuer beiträgt. Weiterhin ist die gesamte Wärmefreisetzung ein Maß dafür, wie das entsprechende Material zu einem lang anhaltenden Feuer beiträgt. Materialien mit besseren Flammfestigkeiten weisen möglichst kleine x und y Werte auf. Material 1 1 (symbolisiert über das gefüllte Quadrat) weist gegenüber Vergleichsmaterial 10 (symbolisiert über das gefüllte Dreieck) bessere Eigenschaften auf.

Claims

Patentansprüche
Zusammensetzung enthaltend mindestens ein thermoplastisches Polyurethan, mindestens ein Metallhydroxid und mindestens ein phosphorhaltiges Flammschutzmittel, wobei das thermoplastische Polyurethan ein auf mindestens einem Diisocyanat und mindestens einem Polycarbonatdiol basierendes thermoplastisches Polyurethan ist.
Zusammensetzung gemäß Anspruch 1 , wobei die Zusammensetzung mindestens ein Schichtsilikat oder Hydrotalkit oder Mischungen davon enthält.
Zusammensetzung gemäß Anspruch 2, wobei das Schichtsilikat ein organisch interkalier- tes Schichtsilikat ist und/oder der Hydrotalkit ein organisch interkalierter Hydrotalkit ist.
4. Zusammensetzung gemäß einem der Ansprüche 2 oder 3, wobei das Schichtsilikat Ben- tonit ist.
Zusammensetzung gemäß einem der Ansprüche 2 bis 4, wobei das mindestens eine Schichtsilikat oder Hydrotalkit oder die Mischung davon in einer Menge im Bereich von 0,5 Gew.-% bis 20 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten ist.
Zusammensetzung gemäß einem der Ansprüche 2 bis 5, wobei der Anteil der Summe der Gewichts-Anteile des mindestens einen Metallhydroxids, des mindestens einen phos- phorhaltigen Flammschutzmittels und des mindestens einen Schichtsilikats oder Hydrotal- kits oder Mischungen davon im Bereich von 10 bis 80 %, bezogen auf die gesamte Zusammensetzung, liegt.
Zusammensetzung gemäß einem der Ansprüche 1 bis 6, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und He- xandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole.
Zusammensetzung gemäß einem der Ansprüche 1 bis 7, wobei das Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
Zusammensetzung gemäß einem der Ansprüche 1 bis 6, wobei das mindestens eine Polycarbonatdiol ausgewählt ist aus der Gruppe bestehend aus Polycarbonatdiolen basierend auf Butandiol und Hexandiol, Polycarbonatdiolen basierend auf Pentandiol und Hexandiol, Polycarbonatdiolen basierend auf Hexandiol, und Mischungen aus zwei oder mehr dieser Polycarbonatdiole und wobei das Polycarbonatdiol ein zahlenmittleres Molekulargewicht Mn im Bereich von 500 bis 4000, bestimmt über GPC, aufweist.
10. Zusammensetzung gemäß einem der Ansprüche 1 bis 9, wobei das Metallhydroxid ausgewählt ist aus der Gruppe bestehend aus Aluminiumhydroxiden, Aluminiumoxidhydroxi- den, Magnesiumhydroxid und einer Mischung aus zwei oder mehr dieser Hydroxide.
1 1 . Zusammensetzung gemäß einem der Ansprüche 1 bis 10, wobei das Metallhydroxid Aluminiumhydroxid ist.
12. Zusammensetzung gemäß einem der Ansprüche 1 bis 1 1 , wobei das Metallhydroxid zumindest teilweise von einer Hülle umgeben ist.
13. Zusammensetzung gemäß einem der Ansprüche 1 bis 12, wobei das phosphorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Derivaten der Phosphorsäure, Derivaten der Phosphonsäure, Derivaten der Phosphinsäure und einer Mischung aus zwei oder mehr dieser Derivate.
14. Zusammensetzung gemäß einem der Ansprüche 1 bis 13, wobei das phosphorhaltige Flammschutzmittel ausgewählt ist aus der Gruppe bestehend aus Resorcinol bis- diphenylphosphat (RDP), Bisphenol-A bis-(diphenylphosphat) (BDP), und Diphenylkre- sylphosphat (DPK).
15. Zusammensetzung gemäß einem der Ansprüche 1 bis 14, wobei der Anteil des Metallhyd- roxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte
Zusammensetzung, liegt.
16. Zusammensetzung gemäß einem der Ansprüche 1 bis 15, wobei der Anteil des phos- phorhaltigen Flammschutzmittels im Bereich von 3 bis 30 % bezogen auf die gesamte Zu- sammensetzung, liegt.
17. Zusammensetzung gemäß einem der Ansprüche 1 bis 16, wobei der Anteil des Metallhydroxids in der Zusammensetzung im Bereich von 10 bis 65 % bezogen auf die gesamte Zusammensetzung, liegt und der Anteil des phosphorhaltigen Flammschutzmittels im Be- reich von 3 bis 30 % bezogen auf die gesamte Zusammensetzung, liegt.
18. Verwendung einer Zusammensetzung gemäß einem der Ansprüche 1 bis 17 zur Herstellung von Kabelummantelungen.
PCT/EP2013/063058 2012-06-22 2013-06-21 Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen WO2013190118A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/410,415 US10377880B2 (en) 2012-06-22 2013-06-21 Flame-retardant thermoplastic polyurethane based on polycarbonate diols
CN201380043810.9A CN104797645B (zh) 2012-06-22 2013-06-21 基于聚碳酸酯二醇的阻燃热塑性聚氨酯
JP2015517795A JP6348109B2 (ja) 2012-06-22 2013-06-21 ポリカーボネートジオールに基づく難燃性熱可塑性ポリウレタン
ES13730885.4T ES2632263T3 (es) 2012-06-22 2013-06-21 Poliuretano termoplástico ignífugo a base de dioles de policarbonato
KR1020147036388A KR102099337B1 (ko) 2012-06-22 2013-06-21 폴리카르보네이트디올을 기초로 한 난연성 열가소성 폴리우레탄
BR112014031090A BR112014031090A2 (pt) 2012-06-22 2013-06-21 composição compreendendo pelo menos um poliuretano termoplástico, pelo menos um hidróxido de metal e pelo menos um retardante de chama contendo fósforo e uso da composição.
EP13730885.4A EP2864404B1 (de) 2012-06-22 2013-06-21 Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12173273 2012-06-22
EP12173273.9 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013190118A1 true WO2013190118A1 (de) 2013-12-27

Family

ID=48672628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/063058 WO2013190118A1 (de) 2012-06-22 2013-06-21 Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen

Country Status (8)

Country Link
US (1) US10377880B2 (de)
EP (1) EP2864404B1 (de)
JP (1) JP6348109B2 (de)
KR (1) KR102099337B1 (de)
CN (1) CN104797645B (de)
BR (1) BR112014031090A2 (de)
ES (1) ES2632263T3 (de)
WO (1) WO2013190118A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365697B2 (en) 2012-07-27 2016-06-14 Basf Se Flame-retardant thermoplastic polyurethane based on metal hydroxides and polyesterols
EP3284800A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung zur herstellung einer elektrochromen schicht
EP3284764A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung, insbesondere zum drucken und beschichten, mit polyurethanpolymeren
EP3284799A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung, insbesondere zum drucken und beschichten, mit (meth)acrylatpolymeren
WO2018033620A1 (en) 2016-08-18 2018-02-22 Basf Se Composition especially for printing or coating comprising polyurethane polymers
WO2018033621A1 (en) 2016-08-18 2018-02-22 Basf Se Composition for preparing an electrochromic layer
WO2019106148A1 (de) * 2017-11-30 2019-06-06 Basf Se Alterungsbeständiges tpu
EP3620478A1 (de) 2018-09-10 2020-03-11 Covestro Deutschland AG Verwendung von thermoplastischen polyurethanen für anwendungen mit hoher alltagsbelastung
WO2020048881A1 (en) 2018-09-06 2020-03-12 Covestro Deutschland Ag Use of thermoplastic polyurethanes for applications subject to significant everyday stress

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670337B2 (en) * 2012-03-13 2017-06-06 Basf Se Flame-retardant thermoplastic polyurethane comprising coated metal hydroxides based on aluminum
CN109844000B (zh) 2016-10-18 2021-11-09 马丁斯韦克有限公司 增效的阻燃剂组合物及其在聚合物复合材料中的用途
CN111356732A (zh) 2017-11-03 2020-06-30 巴斯夫欧洲公司 阻燃剂组合物、其制备方法及其制品
JP7291609B2 (ja) * 2019-11-07 2023-06-15 信越ポリマー株式会社 熱可塑性ポリウレタンエラストマー組成物
EP4002395A1 (de) * 2020-11-11 2022-05-25 Prysmian S.p.A. Flammhemmendes kabel mit selbstverlöschender beschichtungsschicht

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617079A2 (de) 1993-03-22 1994-09-28 Elastogran GmbH Selbstverlöschende thermoplastische Polyurethane sowie Verfahren zu ihrer Herstellung
EP0922552A1 (de) 1997-12-10 1999-06-16 Basf Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Granulat aus thermoplastischen Polyurethanelastomern
EP1167429A1 (de) 2000-06-14 2002-01-02 Nexans Mischung für Mäntel von optischen oder elektischen Kabeln
DE10103424A1 (de) 2001-01-26 2002-08-01 Basf Ag Verfahren zur Herstellung von Polyisocyanat-Polyadditionsprodukten mittels Plattenreaktor
WO2003066723A2 (en) 2002-02-08 2003-08-14 Noveon Ip Holdings Corp. Flame retardant thermoplastic polyurethane containing melamine cyanurate
EP1491580A1 (de) 2003-06-02 2004-12-29 Nexans Mischung für Mäntel von optischen oder elektrischen Kabeln
DE10343121A1 (de) 2003-09-16 2005-04-07 Basf Ag Thermoplastisches Polyurethan enthaltend Metallhydroxid
WO2006072461A1 (de) 2005-01-10 2006-07-13 Basf Aktiengesellschaft Verfahren zur herstellung von thermoplastischen polyurethanpartikeln
WO2006121549A1 (en) 2005-04-13 2006-11-16 Lubrizol Advanced Materials, Inc. Non halogen flame retardant thermoplastic polyurethane
WO2007043945A1 (en) * 2005-10-14 2007-04-19 Perstorp Specialty Chemicals Ab Polyurethane elastomer
WO2011050520A1 (en) 2009-10-28 2011-05-05 Dow Global Technologies Inc. Thermoplastic polyurethane composition with high insulation resistance
EP2374843A1 (de) 2010-04-07 2011-10-12 Nexans Alterungsbeständige Polyurethanmischung
WO2011147068A1 (en) 2010-05-24 2011-12-01 Dow Global Technologies Llc HALOGEN-FREE, FLAME RETARDANT COMPOSITION COMPRISING CROSSLINKED SILANE-g-EVA
WO2011150567A1 (en) 2010-06-03 2011-12-08 Dow Global Technologies Llc Halogen-free, flame retardant tpu composite

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265960A (ja) * 1987-04-24 1988-11-02 Asahi Glass Co Ltd 無機質充填剤
US6388120B1 (en) * 1998-02-13 2002-05-14 Pabu Services, Inc. Continuous process for the manufacture of phosphoric acid esters
JP2001200028A (ja) * 1999-11-09 2001-07-24 Kurabo Ind Ltd 低燃焼性ポリウレタンフォーム
KR100501788B1 (ko) 2000-05-24 2005-07-18 아사히 가세이 가부시키가이샤 일차 말단 oh 비가 높은 폴리카보네이트 디올
TW200801060A (en) * 2006-02-28 2008-01-01 Asahi Glass Co Ltd Flexible polyurethane foam and process for producing the same
WO2009103765A1 (de) * 2008-02-21 2009-08-27 Basf Se Halogenfrei flammgeschütztes tpu
JP5345793B2 (ja) * 2008-02-22 2013-11-20 ポリプラスチックス株式会社 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル
WO2009153934A1 (ja) * 2008-06-16 2009-12-23 株式会社Adeka ノンハロゲン系難燃性合成樹脂組成物
JP5091049B2 (ja) * 2008-08-20 2012-12-05 株式会社ブリヂストン 電磁波シールドガスケット
JP2010138318A (ja) * 2008-12-12 2010-06-24 Nippon Polyurethane Ind Co Ltd 難燃性艶消し樹脂組成物
JP5183540B2 (ja) * 2009-03-23 2013-04-17 太陽ホールディングス株式会社 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板
JP5377021B2 (ja) * 2009-03-23 2013-12-25 太陽ホールディングス株式会社 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板
JP5261242B2 (ja) 2009-03-23 2013-08-14 太陽ホールディングス株式会社 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板
MX2012006697A (es) * 2009-12-11 2012-07-17 Dow Global Technologies Llc Mezclas de polimeros termoplasticos que comprenden polimeros olefinicos polares reticulados en una matriz de poliuretano termoplastico.
JP5820568B2 (ja) 2010-03-31 2015-11-24 太陽ホールディングス株式会社 硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板
US20110288210A1 (en) * 2010-05-21 2011-11-24 Pinnavaia Thomas J Mesoporous Silicate Fire Retardant Compositions
JP5734722B2 (ja) 2011-04-13 2015-06-17 太陽インキ製造株式会社 難燃性熱硬化性樹脂組成物、その硬化物及びそれを用いたプリント配線板
JP5808864B2 (ja) * 2011-08-31 2015-11-10 ダウ グローバル テクノロジーズ エルエルシー 非移行非ハロゲン難燃性熱可塑性ポリウレタン組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617079A2 (de) 1993-03-22 1994-09-28 Elastogran GmbH Selbstverlöschende thermoplastische Polyurethane sowie Verfahren zu ihrer Herstellung
EP0922552A1 (de) 1997-12-10 1999-06-16 Basf Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Granulat aus thermoplastischen Polyurethanelastomern
EP1167429A1 (de) 2000-06-14 2002-01-02 Nexans Mischung für Mäntel von optischen oder elektischen Kabeln
DE10103424A1 (de) 2001-01-26 2002-08-01 Basf Ag Verfahren zur Herstellung von Polyisocyanat-Polyadditionsprodukten mittels Plattenreaktor
WO2003066723A2 (en) 2002-02-08 2003-08-14 Noveon Ip Holdings Corp. Flame retardant thermoplastic polyurethane containing melamine cyanurate
EP1491580A1 (de) 2003-06-02 2004-12-29 Nexans Mischung für Mäntel von optischen oder elektrischen Kabeln
DE10343121A1 (de) 2003-09-16 2005-04-07 Basf Ag Thermoplastisches Polyurethan enthaltend Metallhydroxid
WO2006072461A1 (de) 2005-01-10 2006-07-13 Basf Aktiengesellschaft Verfahren zur herstellung von thermoplastischen polyurethanpartikeln
WO2006121549A1 (en) 2005-04-13 2006-11-16 Lubrizol Advanced Materials, Inc. Non halogen flame retardant thermoplastic polyurethane
WO2007043945A1 (en) * 2005-10-14 2007-04-19 Perstorp Specialty Chemicals Ab Polyurethane elastomer
WO2011050520A1 (en) 2009-10-28 2011-05-05 Dow Global Technologies Inc. Thermoplastic polyurethane composition with high insulation resistance
EP2374843A1 (de) 2010-04-07 2011-10-12 Nexans Alterungsbeständige Polyurethanmischung
WO2011147068A1 (en) 2010-05-24 2011-12-01 Dow Global Technologies Llc HALOGEN-FREE, FLAME RETARDANT COMPOSITION COMPRISING CROSSLINKED SILANE-g-EVA
WO2011150567A1 (en) 2010-06-03 2011-12-08 Dow Global Technologies Llc Halogen-free, flame retardant tpu composite

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Kunststoff- handbuch", vol. VII, 1966, CARL HANSER VERLAG, pages: 103 - 113
"Particulate-Filled Polymer Composites", 2003, SMITHERS RAPRA TECHNOLOGY
PETRELLA R.V.: "The assessment of full scale fire ha- zards from cone calorimeter data", JOURNAL OF FIRE SCIENCE, vol. 12, 1994, pages 14
PETRELLA R.V.: "The assessment of full scale fire hazards from cone calorim- eter data", JOURNAL OF FIRE SCIENCE, vol. 12, 1994, pages 14
PETRELLA R.V.: "The assessment of full scale fire hazards from cone calorimeter data", JOURNAL OF FIRE SCIENCE, vol. 12, 1994, pages 14

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365697B2 (en) 2012-07-27 2016-06-14 Basf Se Flame-retardant thermoplastic polyurethane based on metal hydroxides and polyesterols
EP3284800A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung zur herstellung einer elektrochromen schicht
EP3284764A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung, insbesondere zum drucken und beschichten, mit polyurethanpolymeren
EP3284799A1 (de) 2016-08-18 2018-02-21 Basf Se Zusammensetzung, insbesondere zum drucken und beschichten, mit (meth)acrylatpolymeren
WO2018033620A1 (en) 2016-08-18 2018-02-22 Basf Se Composition especially for printing or coating comprising polyurethane polymers
WO2018033621A1 (en) 2016-08-18 2018-02-22 Basf Se Composition for preparing an electrochromic layer
WO2019106148A1 (de) * 2017-11-30 2019-06-06 Basf Se Alterungsbeständiges tpu
US11851523B2 (en) 2017-11-30 2023-12-26 Basf Se Aging-resistant TPU
WO2020048881A1 (en) 2018-09-06 2020-03-12 Covestro Deutschland Ag Use of thermoplastic polyurethanes for applications subject to significant everyday stress
EP3620478A1 (de) 2018-09-10 2020-03-11 Covestro Deutschland AG Verwendung von thermoplastischen polyurethanen für anwendungen mit hoher alltagsbelastung

Also Published As

Publication number Publication date
CN104797645A (zh) 2015-07-22
EP2864404A1 (de) 2015-04-29
EP2864404B1 (de) 2017-04-05
JP2015521666A (ja) 2015-07-30
ES2632263T3 (es) 2017-09-12
JP6348109B2 (ja) 2018-06-27
KR102099337B1 (ko) 2020-05-26
KR20150031247A (ko) 2015-03-23
CN104797645B (zh) 2017-05-17
US10377880B2 (en) 2019-08-13
US20150284537A1 (en) 2015-10-08
BR112014031090A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
EP2864404B1 (de) Flammgeschütztes thermoplastisches polyurethan auf der basis von polycarbonatdiolen
EP3083741B1 (de) Flammgeschütztes thermoplastisches polyurethan
EP2825597B1 (de) Flammgeschütztes thermoplastisches polyurethan enthaltend umhüllte metallhydroxide, phosphor-haltige flammschutzmittel und/oder hydrotalkit bzw. schichtsilikat
US9688841B2 (en) Flame-retardant thermoplastic polyurethane comprising coated metal hydroxides, phosphorus-containing flame retardants and/or hydrotalcite or phyllosilicate
EP3110882B1 (de) Flammgeschütztes thermoplastisches polyurethan
EP2877537B1 (de) Flammgeschütztes thermoplastisches polyurethan auf der basis von metallhydroxiden und polyesterolen
EP3083734B1 (de) Flammgeschütztes thermoplastisches polyurethan
EP3337855B1 (de) Flammgeschütztes thermoplastisches polyurethan
EP3337850B1 (de) Flammgeschütztes thermoplastisches polyurethan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13730885

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015517795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410415

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036388

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013730885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013730885

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031090

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031090

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141211